
PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. 

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2023 NXP B.V.

M A R C H  2 0 2 3

S32G-VNP-RDB3 

REAL TIME DRIVER 

EXAMPLE ENABLEMENT GUIDE

PUBLIC



1PUBLIC

CONTENTS

• Hands on UART Real Time Driver example   

• Hands on ETH Real Time Driver example 

• Hands on CAN Real Time Driver example 



2PUBLIC

HARDWARE REQUIREMENT AND SOFTWARE INSTALLATION

Hardware Requirement

- S32G-VNP-RDB3

- S32 Debug Probe

- AD/DC power supply 

- Serial port cable for UART example 

Software Installation 

- Install S32DS 3.5 according to S32G-VNP-RDB3 Software Enablement Guide

- Install SW32G_RTD_4.4_4.0.0_D2210(RTD) according to S32G-VNP-RDB3 Software Enablement Guide

https://www.nxp.com/design/designs/s32g3-vehicle-networking-reference-design:S32G-VNP-RDB3
https://www.nxp.com/design/designs/s32g3-vehicle-networking-reference-design:S32G-VNP-RDB3


3PUBLIC3

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. 

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2023 NXP B.V.

Hands on UART Example 



4PUBLIC

HANDS ON UART: OBJECTIVE

− How to import the UART example into S32DS

− How to configure the clock of UART via S32DS

− How to configure the UART module via S32DS

− How to debug the UART example with S32 debug probe



5PUBLIC

HANDS ON UART: IMPORT UART EXAMPLE PROJECT 

Open S32 Design Studio, go to "File -> New -> S32DS Project From Example". Select 

"Linflexd_Uart_Ip_Example_S32G399A_M7" example, click on "Finish". The project should now be copied into 

the current workspace.

The "Linflexd_Uart_Ip_Example_S32G399A_M7" example is a simple application which shows the usage of 

UART driver.

1

2

3

 Hello 

 Hello World 

S32G Debug Probe

Serial port cable

S32G-VNP-RDB3

J48 JTAG

UART1



6PUBLIC

HANDS ON UART: PIN CONFIGURATION
Open the Pins configuration tool. According to schematic of RDB3, configure pins routing. By default, this 

example already has corresponding pin routing configuration.

Enable pin and select correct signal

Configure pin’s attributes



7PUBLIC

HANDS ON UART: CLOCK CONFIGURATION 1

Open the Clocks Diagram:

− Right-click the Project

− Select S32 Configuration Tools

− Select Open Clocks



8PUBLIC

HANDS ON UART: CLOCK CONFIGURATION 2

Open the Peripheral Clock View, and double-click the Lin module. The Clocks Diagram will show the clock tree of 

the LinFlexD. The default clock configuration of UART is 48 MHZ which comes from FIRC directly. 



9PUBLIC

HANDS ON UART: UART CONFIGURATION 1

Open the Peripherals Diagram:

− Right-click the Project 

− Select S32 Configuration Tools

− Select Open Peripherals



1 0PUBLIC

HANDS ON UART: UART CONFIGURATION 2

UART module configuration :

− Configure Uart Hardware Channel

− Configure Baudrate

− Configure Uart Parity Enable option

− Configure Uart Stop Bit Number

− Configure Uart Word Length

The Components shows all drivers which used by this example, the Linflexd_Uart Component includes the 
configuration of UART driver 



1 1PUBLIC

HANDS ON UART: UPDATE CODE

1

2

3

Generate code method:

1. Open the view of  any configuration tool, like 

Pins, then click Update Code (ensure desired

project is selected)

2. The Update Files window pops up. It shows 

the detailed update information. Click OK button.

3. The configuration .c and .h files will be 

generated in "generate" folder. 



1 2PUBLIC

HANDS ON UART: APPLICATION CODE 1

MCU clock initialization and Interrupt initialization

Initialize pins

Initialize LINFlexD module

Send the greeting message to console

Dissecting the main.c



1 3PUBLIC

HANDS ON UART: APPLICATION CODE 2

Echo the received data back

Receive data from user

Dissecting the main.c



1 4PUBLIC

HANDS ON UART: BUILD AND DEBUG 1

Build the target :

− Right-click the Project

− Select Build Project 

− Print Build information on Console window 

− Linflexd_Uart_Ip_Example_S32G399A_M7.elf is 
generated



1 5PUBLIC

HANDS ON UART: BUILD AND DEBUG 2  

Go to debug configuration:

− Right-click the Project 

− Select the Debug As 

− Click on Debug Configurations

Debug configuration setting:

− Connect the S32 Debug probe with PC and RDB3

− Click on target project

− Select the target device and core as S32G399A_M7_0

− Select target S32 Debug Probe 



1 6PUBLIC

HANDS ON UART : DEBUG AND RUN

Power on the RDB3, click on "Apply", then click on "Debug". The view will switch to the Debug Perspective, 

and you can use the controls to control the program flow.  



1 7PUBLIC

HANDS ON UART: TEST RESULT 

1
2

3

4

Check the test result:

− Connect UART1 with PC and RDB3

− Open Serial terminal like Tera Term and configure the serial port

− Click on the Resume option in Debug view 

− The Serial terminal will print messages

− Then input "Hello" in step 3

− UART1 will output “Hello World!” back



1 8PUBLIC1 8

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. 

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2023 NXP B.V.

Hands on ETH Example   



1 9PUBLIC

HANDS ON ETH – OBJECTIVE 

−How to import the ETH example into S32DS

−How to configure the clock of ETH via S32DS

−How to configure the port of ETH via S32DS

−How to use the ETH module to transmit/receive ETH frame

−How to debug the ETH example using S32 debug probe



2 0PUBLIC

HANDS ON ETH: IMPORT ETH EXAMPLE PROJECT 

Open S32 Design Studio, go to "File -> New -> S32DS Project From Example". Select 

"Gmac_Ip_InternalLoopback_S32G399A_M7 " example, then click on "Finish". The project is copied into the 

current workspace.

This “Gmac_Ip_InternalLoopback_S32G399A_M7” example demonstrates the GMAC transmission and 

reception in internal loopback mode. The ETH frame is transmitted back directly through GMAC, and the frame 

will not be transmitted to PHY. 

S32G-VNP-RDB3

GMAC0 KSZ9031Eth Frame



2 1PUBLIC

HANDS ON ETH : PORT CONFIGURATION

Pins configuration setting:

− Right-click the Project

− Select S32 Configuration Tools

− Select Open Pins

− Configure pins to provide the external clock to Tx, Rx signals

1

2



2 2PUBLIC

HANDS ON ETH : CLOCK CONFIGURATION

Open the Peripheral Clock View, and double-click the GMAC0 module. The Clocks Diagram shows the clock 

tree of GMAC module 



2 3PUBLIC

HANDS ON ETH: ETH CONFIGURATION

Select Components to find out GMAC Driver 

and double-click

Open the peripheral configuration:

− Right-click the Project 

− Select S32 Configuration Tools

− Select Open Peripherals



2 4PUBLIC

HANDS ON ETH: UPDATE CODE

1

2

3

Generate code method:

1. Open the view of any configuration tool, like 

Pins, then click Update Code (ensure desired

project is selected)

2.The Update Files window pops up. It shows 

the detailed update information. Click OK button.

3.The configuration .c and .h files will be 

generated in "generate" folder. 



2 5PUBLIC

HANDS ON ETH: APPLICATION CODE 1

Initialize pins to provide the external clock for GMAC

Enable GMAC controller, initialize Tx and Rx buffer via the function 

Gmac_Ip_Init

Apply for Txbuffer via the function Gmac_Ip_GetTxBuff

and initialize transmission buffer

Dissecting the main.c



2 6PUBLIC

HANDS ON ETH: APPLICATION CODE 2

Transmit frame via Gmac_Ip_SendFrame

Verify frame is transmitted or received

Dissecting the main.c



2 7PUBLIC

HANDS ON ETH: BUILD AND DEBUG 1 

Build target Project:

− Right-click the Project

− Build Project 

− The console print build information

− Gmac_Ip_InternalLoopback_S32G399A_M7.elf is 

created



2 8PUBLIC

HANDS ON ETH: BUILD AND DEBUG 2 

Go to debug configuration:

− Right-click the Project

− Select the Debug As 

− Click on Debug Configurations

Debug configuration setting:

− Connect the S32 Debug probe with PC and RDB3

− Click on target project

− Select the target device and core as S32G399A_M7_0

− Select target S32 Debug Probe 



2 9PUBLIC

HANDS ON ETH: DEBUG AND RUN

Power on the RDB3, click on "Apply", then click on "Debug". The view will switch to the Debug Perspective, 

and you can use the controls to control the program flow.  



3 0PUBLIC

HANDS ON ETH: TEST RESULT 1  

In this project, the Ethernet module works in internal loopback mode. Add a breakpoint to the last line of the main 

function, then click on the Resume option. The received ETH frame can be watched from rxBuffer.

1

2

3



3 1PUBLIC

HANDS ON ETH: TEST RESULT 2  

The received frame can be watched in rxBuffer. 



3 2PUBLIC
NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. 

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2023 NXP B.V. 3 2

PUBLIC

Hands on CAN Example   



3 3PUBLIC

HANDS ON CAN – OBJECTIVE 

−How to import the CAN example into S32DS

−How to configure the clock of CAN via S32DS

−How to configure the port of CAN via S32DS

−How to modify the CAN loopback

−How to debug the CAN example with S32 debug probe



3 4PUBLIC

HANDS ON CAN : IMPORT CAN EXAMPLE PROJECT 

Open S32 Design Studio, go to "File -> New -> S32DS Project From Example". Select 

"FlexCAN_Ip_Example_S32G399A_M7" example, then click on “Finish”. The project is copied into current 

workspace.

By default, "FlexCAN_Ip_Example_S32G399A_M7" project only shows the LoopBack function of FlexCAN. 

S32G-VNP-RDB3

FlexCAN0 TJA1043CAN Frame



3 5PUBLIC

HANDS ON CAN: MODIFY THE EXAMPLE

The "FlexCAN_Ip_Example_S32G399A_M7" project only supports loopback mode. This guide will demonstrate 

how to modify the default configuration to transmit CAN frame from FlexCAN_0 to FlexCAN_1

FlexCAN_0 connect to FlexCAN_1 via physical wiring 



3 6PUBLIC

HANDS ON CAN: PORT CONFIGURATION 1

Go to Pin configuration view:

− Right-click the Project

− Select S32 Configuration Tools

− Select Open Pins

− Enable Pins



3 7PUBLIC

HANDS ON CAN: PORT CONFIGURATION 2

Add the Pins as the schematic of FlexCAN0 and FlexCAN1



3 8PUBLIC

HANDS ON CAN: PORT CONFIGURATION 3

Add the Port configuration:

− Right-click the Project, 

− Select S32 Configuration Tools

− Select Open Peripherals

− Click on the plus button

− Click on the Siul2_Port component

− Click on OK

− The Siul2_Port driver will be added



3 9PUBLIC

HANDS ON CAN: CLOCK CONFIGURATION 1

Switch to clocks configuration view:

− Right-click the Project, 

− Select S32 Configuration Tools

− Select Open Clocks



4 0PUBLIC

HANDS ON CAN: CLOCK CONFIGURATION 2

Open the Peripheral Clock View, double-click the FLEXCAN0_CLK. The Clocks Diagram will show the 

clock tree and the key node can be re-set. The default clock configuration of FlexCAN is 48 MHZ. Switch 

the clock which source from FXOSC(40 MHZ).



4 1PUBLIC

HANDS ON CAN: CAN CONFIGURATION 1 

Mode setting for FlexCAN0:

− Right-click the Project, 

− Select S32 Configuration Tools

− Select Open Peripherals

− Double-click FlexCAN component 

− Set mode for FlexCAN0

Choose “Normal mode or user mode”



4 2PUBLIC

HANDS ON CAN: CAN CONFIGURATION 2 

Configure the BaudRate as 500Kbps for FlexCAN0

− TimeQuantum (seconds) = Prescaler / CanClockFrequency

− No. of CanTimeQuantas = (1 / CancontrollerBaudRate) / TimeQuantum

− No. of CanTimeQuantas = 1 + CanControllerPropSeg + CanControllerSeg1 + CanControllerSeg2



4 3PUBLIC

HANDS ON CAN: CAN CONFIGURATION 3 

Add FlexCAN1:

− Right-click the Project, 

− Select S32 Configuration Tools

− Select Open Peripherals



4 4PUBLIC

HANDS ON CAN: CAN CONFIGURATION 4 

Add FlexCAN1:

− Double-click FlexCAN component 

− Click on plus button to add FlexCAN_1

− Set Clock as 40MHz for FlexCAN_1

− Set Bitrate as 500kbps

Set Bitrate 

Set Clock 

Add FlexCAN_1

1

2



4 5PUBLIC

HANDS ON CAN: UPDATE CODE

1

2

3

Generate code method:

1. Open the view of any configuration tool, like 

Pins, then click Update Code (ensure desired

project is selected)

2.The Update Files window pops up. It shows 

the detailed update information. Click OK button.

3.The configuration .c and .h files will be 

generated at “generate” folder. 

Enable Pins.



4 6PUBLIC

HANDS ON CAN: APPLICATION CODE 1

Add the Port includes and 

Port initialization function 

Enable Interrupt and Install 

Handler for FlexCAN_1

Redefine the FlexCAN

Instance

Modify the main.c:



4 7PUBLIC

HANDS ON CAN: APPLICATION CODE 2

Initialize FlexCAN_1 Controller

FlexCAN0 send the message

FlexCAN1 receive the message

Configure Rx MailBox for FlexCAN_1 

Modify the main.c:



4 8PUBLIC

HANDS ON CAN: BUILD AND DEBUG 1 

Build target Project:

− Right-click the Project

− Build Project 

− The console will print build information

− FlexCAN_Ip_Example_S32G399A_M7.elf is created



4 9PUBLIC

HANDS ON CAN: BUILD AND DEBUG 2 

Go to debug configuration:

− Right-click the Project

− Select the Debug As 

− Click on Debug Configurations

Debug configuration setting:

− Connect the S32 Debug probe with PC and RDB3

− Click on target project

− Select the target device and core as S32G399A_M7_0

− Select target S32 Debug Probe 



5 0PUBLIC

HANDS ON CAN: DEBUG AND RUN

Power on the RDB3, click on “Apply”, then click on “Debug”. The view will switch to the Debug Perspective, 

and you can use the controls to control the program flow.  



5 1PUBLIC

HANDS ON CAN: TEST RESULT  

Add a breakpoint to the FlexCAN_Ip_SetStopMode function, then click on the Resume option. The received 

CAN frame can be watched from rxData.

Note: Make sure FlexCAN_0 connect to FlexCAN_1 via physical wiring 

2

1

3



5 2PUBLIC



5 3PUBLIC

LEGAL INFORMATION

• Definitions
Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in 

modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of 

information included in a draft version of a document and shall have no liability for the consequences of use of such information.

• Disclaimers
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not 

give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for 

the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an 

information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without 

limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether 

or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability 

towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP 

Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without 

limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied 

prior to the publication hereof.



5 4PUBLIC

LEGAL INFORMATION

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no 

representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP 

Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to 

determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the 

planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to 

minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, 

damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by 

customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP 

Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party 

customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial 

sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual 

agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to 

applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has been qualified for use in automotive applications. If this product is used 

by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could 

lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as “Critical 

Applications”), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, 

regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by 

NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for 

any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated 

costs and expenses (including attorneys’ fees) that NXP may incur related to customer’s incorporation of any product in a Critical Application.



5 5PUBLIC

LEGAL INFORMATION

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior 

authorization from competent authorities.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The 

English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security

standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products 

throughout their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also 

extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for 

any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the 

ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related 

requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,reporting, and 

solution release to security vulnerabilities of NXP products.

• Trademarks
Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.


