
Freescale Semiconductor
Users Guide

RS08QRUG
Rev. 2, 11/2011

sing the Analog Comparator (ACMP) for the RS08
Microcontrollers . 3

sing the Internal Clock Source (ICS) for the RS08
Microcontrollers . 7

sing the Keyboard Interrupt (KBI) for the RS08
Microcontrollers . 11

sing the Modulo Timer (MTIM) for the RS08
Microcontrollers . 15

sing the Real-Time Interrupt (RTI) for the RS08
Microcontrollers . 21

S08 Addressing Modes . 25
nterrupt Handling on RS08 MCUs 31
esting Subroutines in the RS08 Microcontrollers . . 37
sing the Low-Power Modes for the RS08 Family

Microcontrollers . 41
mplementing an Analog-to-Digital Converter (ADC)

on the MC9RS08KA2 . 45
erial Communication Interface Implementation

using MTIM module for the MC9RS08KA2
Microcontroller . 51

RS08 Peripheral Module Quick
Reference
A Compilation of Demonstration Software for RS08 Modules

Topic Reference

NOTE
This example code has been developed
using the CodeWarrior Development
Studio for HC(S)08 v5.1, and expressly
made for the MC9RS08KA2 in the 8-pin
package. Changes may be needed before
the code can be used with other RS08
MCUs.

This example code is expressly made to
operate in an 8-pin package. Therefore, the
PTA3 pin shares functionality with
This collection of code examples, useful tips, and quick
reference material has been created to help users with
fast development of their applications. Each section
within this document contains an example that may be
modified to work with RS08 MCU Family members.
When you are developing your application, consult your
device data sheet for part-specific information, such as
which versions of the peripheral modules are on your
device.

This book explores the different peripheral modules
found in the RS08 Family of MCUs.

Each section of this users guide contains the following
topics:

• Programmer’s model register figure for quick
reference

• Example code

• Supplemental information supporting the code

All code is available inside a CodeWarrior project, or
from Freescale’s Web site in RS08QGUGSW.zip.

In-depth material about using the RS08 modules is also
available in Freescale’s application notes. See the
Freescale Web site: http://freescale.com

To provide the most up-to-date information, the revision
of our documents on the World Wide Web will be the
most current. Your printed copy may be an earlier
revision. To verify you have the latest information
available, refer to: http://freescale.com

U

U

U

U

U

R
I
N
U

I

S

•

•

© Freescale Semiconductor, Inc., 2011. All rights reserved.

background mode. In background mode,
the PTA3 pin is not available for
application purposes. In run mode, the

Revision History

Date
Revision

Level
Description

Page
Number(s)

21-May-06 0 Initial public release. N/A

25-Apr-07 1 Replaced schematic 31

Nov-11 2 Corrected equation 8
RS08 Peripheral Module Quick Reference, Rev. 2

Freescale Semiconductor2

Freescale Semiconductor
Users Guide

Overview . 3
Code Example and Explanation 4
Hardware Implementation. 6

Using the Analog Comparator (ACMP)
for the RS08 Microcontrollers
by: Oscar Luna González and Alan Led Collins Rivera

RTAC Americas
México 2011

Table of Contents
1 Overview
This is a quick reference for using the analog-to-digital
comparator (ACMP) module on an MC9RS08KA2
microcontroller (MCU). Basic information about the
functional description and configuration options is
provided. The following examples may be modified to
suit your application. Refer to the data sheet for your
device.

The ACMP module provides a circuit for comparing two
analog input voltages or for comparing one analog input
voltage with an internal reference voltage. Inputs of the
ACMP module can operate across the full range of the
supply voltage.

1
2
3

© Freescale Semiconductor, Inc., 2011. All rights reserved.

SIP1
R 0 0 0 KBI ACMP MTIM RTI LVD

W

ACMP Quick Reference

ACMPSC
R

ACME ACBGS ACF ACIE
ACO

ACOPE ACMOD
W

System Interrupt Pending Register
KBI – pending interrupt from the KBI module
ACMP – pending interrupt from ACMP module
MTIM – pending interrupt from MTIM module

RTI – pending interrupt from RTI module
LVD – pending interrupt from LVD module

ACMP Status and Control Register
ACME – enable module
ACBGS – selects ACMP+ input pin or internal bandgap reference
ACF – set when event occurs
ACIE – interrupt enable
ACO – read analog comparator output
ACOPE – enable comparator output
ACMOD[1:0] – sets compare mode

Code Example and Explanation
The analog comparator (ACMP) module consists of two analog inputs called ACMP+ and ACMP–, and
one digital output called ACMPO. ACMP+ serves as a non-inverting analog input. ACMP– serves as an
inverting analog input. ACMPO serves as a digital output and can be enabled to drive an external pin. Be
aware that interrupts in RS08 MCUs must be polled by software because module hardware interrupts
donot exist in RS08 MCUs.

2 Code Example and Explanation
This project has been developed using CodeWarrior v5.1 and a Softec board.

The project (Analog_Comparator_Module.mpc) implements the ACMP function, selecting a rising- or
falling-edge event to trigger an interrupt. Following are the main functions:

• Loop — Endless loop polling and waiting for the ACMP interrupt to occur.

• InitConfig — Configures the MCU to work with the internal oscillator at 8 MHz (bus speed),
configures port A, and enables the ACMP module to work with ACMP– and ACMP+ inputs.

• ACMP_Isr — Toggles an LED after a rising- or falling-edge event occurs.

This example compares two different voltages using the ACMP module. Inverted analog input is fed using
a potentiometer that is attached to the pin (ACMP–). The ACBGS bit in the ACMPSC register is cleared
by writing a 0 to it. This enables the ACMP+ input to be used as the reference input. The ACMP+ signal
is fed through a voltage divider set at ~1.6 V. For more detailed information, refer to the RS08 data sheet.

Every time the ACMP– voltage crosses the ACMP+ reference voltage (ACMP– is greater than ACMP+),
the ACMP interrupt is triggered turning off a pin at port A (PTA5). Therefore, every time the ACMP– input
voltage is lower than ACMP+ input voltage, the PTA5 pin is turned on.

In this application, the ACMP module is demonstrated by lighting and dimming an LED due to an ACMP
interrupt triggered by the comparison voltage between the ACMP– and ACMP+ inputs. Please refer to the
source code for more details.

Table 1. ACMP Pin Functionality

Signal Function I/O

ACMP–
Inverting analog input to the ACMP
(negative input)

I

ACMP+
Non-inverting analog input to the ACMP
(positive input)

I

ACMPO Digital output of the ACMP O
Using the Analog Comparator (ACMP) for the RS08 Microcontrollers

Freescale Semiconductor4

Code Example and Explanation
Following are the steps to use the ACMP module for this example:

1. Configure ICS module to work with internal oscillator at 8 MHz (bus speed), configure PTA5 as
an output and the rest of the PTA pins as inputs, and configure the ACMP module by enabling
ACMP– and ACMP+ pins.
;CONFIGURES SYSTEM CONTROL
InitConfig:

IFNE MODE
mov #HIGH_6_13(SOPT), PAGESEL
mov #$01, MAP_ADDR_6(SOPT) ; Disables COP and enables RESET (PTA2) pin

ELSE
mov #HIGH_6_13(SOPT), PAGESEL
mov #$03, MAP_ADDR_6(SOPT) ; Disables COP, enables BKGD (PTA3) and RESET (PTA2)

; pins
ENDIF
clr ICSC1 ; FLL is selected as Bus Clock
TRIM_ICS ; call macro to Trim the ICS at ~8 MHz
clr ICSC2

;CONFIGURES PORT A

mov #HIGH_6_13(PTAPE), PAGESEL
mov #$FF, MAP_ADDR_6(PTAPE) ; Enables internal Pulling device

mov #HIGH_6_13(PTAPUD), PAGESEL
mov #$00,MAP_ADDR_6(PTAPUD) ; Configures Internal pull up device in PTA

mov #$30, PTADD ; PTA5(LED2) and PTA4 (LED1) as outputs
mov #$00, PTAD

;CONFIGURES ANALOG COMPARATOR
mov #$B3, ACMPSC ; Selects analog comparator between ACMP- and an ACMP+ (external 1.5

; Volts)
; Compares in output falling and rising edge , ACMP enable,

rts

2. Wait in an infinite loop until an ACMP interrupt is triggered. The ACMP interrupt is polling in the
loop. After the ACMP interrupt is detected inside the infinite loop, it automatically jumps into a
predefined subroutine (ACMP_Isr). The ACMP interrupt is triggered by rising- or falling- edge
events.

Loop:
mov #HIGH_6_13(SIP1), PAGE_ADR
brset 3, MAP_ADDR_6(SIP1),ACMP_Isr ; branch if ACMP interrupt pending
bra Loop ; Return to main loop

3. After the MCU branches into the ACMP_Isr subroutine, the ACF flag is cleared. After clearing
the ACF flag, the ACO bit in register ACMPSC is compared with value 1 to assess whether the
non-inverting input (ACMP+) is greater than the inverting input (ACMP–). If non-inverting input
is greater than the inverting input, the LED2 subroutine is called to light the LED. This indicates
that the ACMP– input is below the reference voltage (ACMP+).
ACMP_Isr:
 bset 5,ACMPSC ; Clear Compare event flag
 brset 3,ACMPSC,LED2 ; Checks analog comparator output (ACO).
Using the Analog Comparator (ACMP) for the RS08 Microcontrollers

Freescale Semiconductor 5

Hardware Implementation
 ; if ACMP+ voltage is greater than ACMP-
 ; voltage, ACO will be set with 1
 bclr 5,PTAD
 bra Loop ; Return to main loop

LED2:
 bset 5,PTAD ; Turn LED on

 bra Loop ; Return to main loop

3 Hardware Implementation
This schematic shows the hardware used to exercise the code provided.

Figure 1. Hardware Implementation for ACMP

NOTE
• The ACMP module can compare one analog input to an internal

reference. This example code is expressly made to configure the ACMP
module to work without using the internal bandgap reference voltage.

• The analog comparator circuit is designed to operate across the full
range of the supply voltage. Please see the data sheet for your device.
Using the Analog Comparator (ACMP) for the RS08 Microcontrollers

Freescale Semiconductor6

Freescale Semiconductor
Users Guide

Overview . 7
Operating Modes and Examples. 8

2.1 FLL Engaged Internal (FEI) 8
2.2 FLL Bypassed Internal (FBI) 8
2.3 FLL Bypassed Internal Low Power (FBILP). . 9
Recommendations . 9
Conclusion . 9

Using the Internal Clock Source (ICS) for
the RS08 Microcontrollers
by: Gabriel Sanchez Barba and Sergio García de Alba Garcin

RTAC Americas
México 2011

Table of Contents
1 Overview
This is a quick reference for using the internal clock
source (ICS) module on an MC9RS08KA2
microcontroller (MCU). Basic information about the
functional description and configuration options is
provided. The following examples may be modified to
suit your application. Refer to the data sheet for your
device.

1
2

3
4

© Freescale Semiconductor, Inc., 2011. All rights reserved.

ICSC1
R

CLKS
0 0 0 0 0

IREFSTEN
W

ICS Quick Reference

ICSSC
R 0 0 0 0 0

CLKST
0

FTRIM
W

ICS Control Register 1
CLKS – selects the clock source that controls bus frequency
IREFSTEN – controls whether the internal reference clock remains enabled while in stop mode

ICS Status and Control Register

ICSC2
R

BDIV
0 0

LP
0 0 0

W

ICS Control Register 2
BDIV – divides the clock source selected by CLKS bit
LP – disables or enables FLL in bypass mode

ICSTRIM
R

TRIM
W

ICS Trim Register
TRIM – controls the internal reference clock frequency

CLKST – indicates current clock mode
FTRIM – controls the smallest adjustment of the internal reference clock

Operating Modes and Examples
2 Operating Modes and Examples
The ICS provides several options for clock sources. This allows great flexibility for users choosing among
precision, cost, current consumption, and performance. The requirements and characteristics of the
application being developed determine the importance of each of these factors.

2.1 FLL Engaged Internal (FEI)
FEI is the default mode of operation out of any reset. The MCU also enters this mode when the CLKS bit
is cleared. While in this mode, the bus clock is derived from the FLL clock. The FLL locks the bus
frequency as shown in Equation 1.

fBus = (firc * 512) / 2BDIV+1 Eqn. 1

Where firc is the frequency of the internal reference clock. If the firc is trimmed to 31.25 kHz and the BDIV
value is 3, the resulting bus frequency is:

fBus = (31250 * 512) / 23+1 = 1000000 Hz = 1MHz Eqn. 2

Example code:

LDA #$00
STA ICSC1
LDA #$C0
STA ICSC2

2.2 FLL Bypassed Internal (FBI)
The MCU enters FBI mode when the CLKS bit is set and the LP bit is cleared. While in this mode, the bus
clock is derived as shown in Equation 3.

fbus = firc / 2
BDIV+1 Eqn. 3

Where firc is the frequency of the internal reference clock. If the firc is trimmed to 31.25 kHz and the BDIV
value is 0, the resulting bus frequency is:

fbus = 31250 / 20+1 = 15625 Hz = 15.625 kHz Eqn. 4

In this mode, the FLL is active but does not affect the bus clock.

Example code:

LDA #$40
STA ICSC1
LDA #$00
STA ICSC2
Using the Internal Clock Source (ICS) for the RS08 Microcontrollers

Freescale Semiconductor8

Recommendations
2.3 FLL Bypassed Internal Low Power (FBILP)
The MCU enters FBILP when the CLKS and LP bits are set. While in this mode, the bus clock is derived
as shown in Equation 5:

fbus = firc / 2BDIV+1 Eqn. 5

Where firc is the frequency of the internal reference clock. If the firc is trimmed to 31.25 kHz and the BDIV
value is 0, the resulting bus frequency is:

fbus = 31250 / 20+1 = 15625 Hz = 15.625 kHz

The main difference between this mode and FLL bypassed internal (FBI) is that the FLL is not active,
which allows the MCU to consume less current.

Example code:

LDA #$40
STA ICSC1
LDA #$08
STA ICSC2

3 Recommendations
When changing from FBILP to either FEI or FBI, or anytime the trim value is written, you must wait for
the FLL acquisition time, tAcquire, before FLL is guaranteed to be at the desired frequency.

The BDIV bits can be changed at any time. The change to the new frequency occurs immediately.

The TRIM and FTRIM value is not affected by reset.

4 Conclusion
Although the ICS module has few modes of operation, it allows the flexibility of using many different
clock speeds for different applications. It also allows the user to determine the amount of energy that is
used by the MCU.
Using the Internal Clock Source (ICS) for the RS08 Microcontrollers

Freescale Semiconductor 9

Conclusion
Using the Internal Clock Source (ICS) for the RS08 Microcontrollers

Freescale Semiconductor10

Freescale Semiconductor
Users Guide

Overview . 11
Code Example and Explanation 12
Hardware Implementation. 13

Using the Keyboard Interrupt (KBI) for
the RS08 Microcontrollers
by: Alan Led Collins Rivera, Oscar Luna González, and Gabriel Sanchez Barba

RTAC Americas
México 2011

Table of Contents
1 Overview
This is a quick reference for using the keyboard interrupt
(KBI) module on an RS08 microcontroller (MCU). Basic
information about the functional description and
configuration options is provided. The following
example may be modified to suit your application —
refer to the data sheet for your device.

1
2
3

© Freescale Semiconductor, Inc., 2011. All rights reserved.

KBISC
R 0 0 0 0 KBF 0

KBIE KBMOD
W KBACK

Module Configuration
KBF – set when event occurs
KBACK – clears KBF

KBI Quick Reference

KBIPE
R 0 0

KBIPE5 KBIPE4
0

KBIPE2 KBIPE1 KBIPE0
W

KBI Pin Enable
KBIPE[5,4,2:0] – enables the corresponding keyboard interrupt pin.

KBIES
R 0 0

KBEDG5 KBEDG4
0

KBEDG2 KBEDG1 KBEDG0
W

KBI Edge Select
KBEDG[5,4,2:0] – selects the falling or rising edge/level function of the corresponding pin.

SIP1
R 0 0 0 KBI ACMP MTIM RTI LVD

W

System Interrupt Pending Register
KBI – pending interrupt from the KBI module
ACMP – pending interrupt from ACMP module
MTIM – pending interrupt from MTIM module

RTI – pending interrupt from RTI module
LVD – pending interrupt from LVD module

KBIE – interrupt enable
KBMOD – mode select

Code Example and Explanation
2 Code Example and Explanation
In this application, one of the KBI pins is used to trigger a routine that lights one LED, then a second LED,
then a third LED, and finally powers off all three LEDs. This occurs every time a keyboard event is
detected. The MCU is programmed to do the following tasks:

• Use the KBI pin 1 as the interrupt trigger

• Detect falling edges on the selected pin

• Jump to routines that light the appropriate LEDs

This is the initialization code for the keyboard interrupt using the MC9RS08KA2. For this example, two
KBI registers (KBISC and KBIPE) are used to customize the module as mentioned above. (For KBIES,
use the default value of the register after reset.) During the initialization phase, the interrupt flag is cleared
in case there were any false interrupts and the keyboard interrupt is unmasked.

mov #$00,KBIES ; Select only falling edges or low-level condition

mov #$02,KBIPE ; PTA1 as KBI

mov #$06,KBISC ; Clear any false interrupts and unmask KBI

After the keyboard module is set, the MCU goes into a loop that loads the SIP1 register and checks the
KBI bit. If the KBI bit is set, the program jumps to the routines that determine which LEDs to power on.
If the KBI bit is not set, then the program branchs to the start of the loop until the KBI bit is set.

Loop:

mov #HIGH_6_13(SIP1), PAGE_ADR

brset 4, MAP_ADDR_6(SIP1),Led2 ; Branch if KB interrupt pending

bra Loop

After the program branches to the Led2 label, it acknowledges the KBI interrupt by writing a 1 to the
KBIACK bit. The program then checks whether LED2 is already set. If it is set, the program branches to
test the next LED (LED1). If LED2 is not set, the program toggles the port pin to light LED2 and returns
to the beginning of the main loop.

Led2:

bset 2,KBISC ; Acknowledge to KBI

brset 5,PTAD,Led1 ; Branch if LED2 set

lda PTAD

eor #$20 ; Toggles LED2

sta PTAD

bra Loop
Using the Keyboard Interrupt (KBI) for the RS08 Microcontrollers

Freescale Semiconductor12

Hardware Implementation
The other labels (Led1 and Led0) also check whether the current LED is lit. If it is, the program continues
to the next LED. If it is not, the program lights the LED. After all LEDs are lit, the program toggles all
three port pins so none of the three LEDs is lit and then returns to the beginning of the main loop.

Off:

 clr PTAD ; Powers off all LEDs

bra Loop

3 Hardware Implementation
For this example the hardware implementation is fairly simple because we are using only PTA7 as a KBI
input. Only the following six pins of the MCU are needed:

• Supply voltage pin

• Ground reference pin

• KBI pin as interrupt input

• Three I/O pins as output; LEDs are used as visual display of the KBI module proper function

Figure 1. Hardware Implementation for KBI

VDD
PTAD5
PTAD4
PTAD3
KBIP1
GND
Using the Keyboard Interrupt (KBI) for the RS08 Microcontrollers

Freescale Semiconductor 13

Hardware Implementation
Using the Keyboard Interrupt (KBI) for the RS08 Microcontrollers

Freescale Semiconductor14

Freescale Semiconductor
Users Guide

Overview . 15
Code Example and Explanation 16
Hardware Implementation. 18

Using the Modulo Timer (MTIM) for the
RS08 Microcontrollers
by: Oscar Luna González and Alan Led Collins Rivera

RTAC Americas
México 2011

Table of Contents
1 Overview
This is a quick reference for using the modulo timer
(MTIM) module on an MC9RS08KA2 microcontroller
(MCU). The basic functional description and
configuration options are provided. The following
examples may be modified to suit your applications.
Refer to the data sheet for your device.

1
2
3

© Freescale Semiconductor, Inc., 2011. All rights reserved.

SIP1
R 0 0 0 KBI ACMP MTIM RTI LVD

W

MTIM Quick Reference

MTIMSC
R TOF

TOIE TSTP
0 0 0 0

W TRST

MTIMCLK
R 0 0

CLKS PS
W

MTIMCNT
R COUNT

W

MTIMMOD
R

MOD
W

System Interrupt Pending Register
KBI – pending interrupt from the KBI module
ACMP – pending interrupt from ACMP module
MTIM – pending interrupt from MTIM module

RTI – pending interrupt from RTI module
LVD – pending interrupt from LVD module

MTIM Status and Control Register
TOF – set Overflow flag when counter
TOIE – enables MTIM overflow interrupts

TRST – reset MTIM counter if it set with 1
TSTP – run or stop MTIMs counter

MTIM Clock Configuration Register
CLKS – select MTIM clock source
PS – select one of nine prescaler outputs

MTIM Counter
MTIM count – current value of the 8-bit counter

MTIM Modulo Register
MOD – modulo value

Code Example and Explanation
The MTIM comprises an 8-bit up-counter with a source clock selector and a prescaler block that allows
the counter to generate larger time bases. The prescaler block helps to divide the selected source clock
frequency by 1, 2, 4, 8, 16, 32, 64, 128, and 256.

2 Code Example and Explanation
This project has been developed using CodeWarrior v5.1 and the DEMO9RS08KA2 board from Softec.

The project (MTIM_Module.mpc) uses the MTIM module of the RS08 MCU by selecting reference
source clock from bus clock. Following are the main functions:

• Loop — Endless loop polling and waiting for the MTIM overflow interrupt to occur.

• InitConfig — Configures the MCU to work with the internal oscillator at 8 MHz (bus speed),
configure port A pins 3, 4, and 5 as outputs, and enables the MTIM module to work with an
operation mode called modulo.

• MTIM_Isr — Toggles an LED after a rising- or falling-edge event occurs.

This example shows how to configure the MTIM module to use one of four clock source selecting choices
that the module has. The clock source option in this example is taken directly from the bus clock. Also,
the MTIM module is configured to set the prescaler value at 256. Configuring the prescaler with a value
of 256 divides the selectable clock source (bus clock, in this case) by 256. Doing this, every 32 s
(8 MHz/256), a count in MTIM modulus counter is increased, so every 8.192 ms (32 s * 256), an MTIM
overflow interrupt is generated and attended by polling SIP1 register to branch into the proper subroutine.

The MTIM module has been configured to work with modulo operation mode, so every time the modulus
counter reaches the overflow compare value, an interrupt is triggered. After the overflow interrupt triggers,
an infinite loop in the code polls the MTIM interrupt flag in SIP1 register to compare and branch into a
subroutine called MTIM_Isr (if MTIM flag is set).

In this application, the MTIM module is demonstrated by lighting and dimming three LEDs (in run mode)
approximately every second. Because, the application is running at 8 MHz (bus clock) and the MTIM
prescaler is set at the maximum divider value (256), a 1 second interrupt cannot be reached. To solve this
problem, a subroutine called ‘Count’ counts 122 times to generate an approximate base time of 1 second.
After the 1 second base time has elapsed, the application follows a sequence pattern by lighting LED0,
then lighting LED1, and then lighting LED2 every second. After the fourth second, all LEDs are dimmed.

Please refer to the source code for more details.

Following are the steps to use the ACMP module as in this example:

1. Configure the ICS module to work with internal oscillator at 8 MHz (bus speed), configure PTA4
and PTA5 as outputs and the rest of the PTA pins as inputs, and configure MTIM module in modulo
mode.
InitConfig:

IFNE MODE
mov #HIGH_6_13(SOPT), PAGESEL
mov #$01, MAP_ADDR_6(SOPT) ; Disables COP and enables RESET (PTA2) pin

ELSE
mov #HIGH_6_13(SOPT), PAGESEL
mov #$03, MAP_ADDR_6(SOPT) ; Disables COP, enables BKGD (PTA3) and RESET (PTA2)

; pins
Using the Modulo Timer (MTIM) for the RS08 Microcontrollers

Freescale Semiconductor16

Code Example and Explanation
ENDIF
clr ICSC1 ; FLL is selected as Bus Clock (8MHz)
TRIM_ICS ; call macro to Trim the ICS at ~8 MHz
clr ICSC2
rts

;CONFIGURES PORT A
 mov #$30, PTADD ; PTA4(LED1),PTA5(LED0) as outputs
 clr PTAD ; Clears PTA

;CONFIGURES TIMER
 mov #$70, MTIMSC ; Enables interrupt, stops and resets timer counter
 mov #$FF, MTIMMOD ; MTIM modulo with 256 counts before
 ; interrupt.
 mov #$08, MTIMCLK ; Selects internal clock as reference bus
 ; clock (8 MHz) with prescaler 256

 ; Bus Clk
 ; --------------------- = Timer interrupt
 ; (preescaler)*(MTIMMOD)

 ; (increments timer counter every 32
 ; us)(flag interrupt every 8.192ms)

 bclr 4,MTIMSC ; MTIM counter is Active

 rts

2. Wait in an infinite loop until the MTIM overflow flag is triggered. The MTIM interrupt is polling
in the loop. After the MTIM interrupt is detected polling the SIP1 register, it automatically jumps
into a predefined subroutine called MTIM_Isr.

Loop:
 mov #HIGH_6_13(SIP1), PAGE_ADR
 brset 2, MAP_ADDR_6(SIP1),Count ; branch if timer interrupt pending
 bra Loop

3. After an MTIM overflow has been detected by the infinite loop, the MTIM_Isr subroutine is
called and the overflow flag (TOF) is cleared. A variable called Counter stores 122 iterations to
generate an approximate base time of 1 second. After 1 second has elapsed, LED0 is lit; then one
second later, LED1 is lit; then one second later, LED2 is lit. After three seconds all three LEDs are
dimmed. This sequence is generated forever in the application.
Using the Modulo Timer (MTIM) for the RS08 Microcontrollers

Freescale Semiconductor 17

Hardware Implementation
MTIM_Isr:
 lda MTIMSC ; Clear overflow interrupt flag
 mov #$60,MTIMSC ; Reset MTIM Counter, Clear overflow flag
 lda Counter ; Store new value in the Accumulator
 cbeqa #122,Led2 ; (8.192ms*122) =~ 1 seg

 inc Counter ; Increase counter value
 bra Loop

Led2:
clr Counter ; Reset Counter Value
brset 5,PTAD,Led1 ; Branch if LED2 is set
lda PTAD
eor #$20 ; Toggles LED2
sta PTAD
bra Loop

Led1:

brset 4,PTAD,Led0 ; Branch if LED1 is set
lda PTAD
eor #$10 ; Toggles LED1
sta PTAD
bra Loop

Led0:
brset 3,PTAD,Off ; Branch if LED0 is set
lda PTAD
eor #$08 ; Toggles LED0 (not available in background mode)
sta PTAD
bra Loop

Off:
clr PTAD ; Turn Off all LEDs
bra Loop

3 Hardware Implementation
This schematic shows the hardware used to exercise the code provided. For this example, the hardware
implementation is fairly simple, because the application itself uses only six of the pins available in the
MCU.

Following six pins of the MCU are needed:

• Supply voltage pin

• Ground reference pin

• Reset pin
Using the Modulo Timer (MTIM) for the RS08 Microcontrollers

Freescale Semiconductor18

Hardware Implementation
• Three pins configured as outputs to turn on-off the three LEDs. The LEDs are the visual display
that shows the MTIM is functioning correctly.

Figure 1. Hardware Implementation for MTIM

NOTE
• The MTIM module can operate using two more operating modes (stop mode and free-running

mode). This example code is made to configure the MTIM module to work in modulo operating
mode. Please refer to data sheet for more details.
Using the Modulo Timer (MTIM) for the RS08 Microcontrollers

Freescale Semiconductor 19

Hardware Implementation
Using the Modulo Timer (MTIM) for the RS08 Microcontrollers

Freescale Semiconductor20

Freescale Semiconductor
Users Guide

Overview . 21
Code Example and Explanation 22
Hardware Implementation. 24

Using the Real-Time Interrupt (RTI) for
the RS08 Microcontrollers
by: Oscar Luna González

RTAC Americas
México 2011

Table of Contents
1 Overview
This is a quick reference for using the real-time interrupt
(RTI) module on an MCRS08KA2 microcontroller.
Basic information about the functional description and
configuration options is provided. The following
example may be modified to suit your application. Refer
to the data sheet for your device.

1
2
3

© Freescale Semiconductor, Inc., 2011. All rights reserved.

SIP1
R 0 0 0 KBI ACMP MTIM RTI LVD

W

RTI Quick Reference

System Interrupt Pending Register
KBI – pending interrupt from the KBI module
ACMP – pending interrupt from ACMP module

MTIMSC
R RTIF 0

RTICLKS RTIE
0

RTIS
W RTIACK

MTIM Status and Control Register
RTIF – RTI interrupt flag
RTIACK – bit used to acknowledge RTI interrupt request
RTICLKS – RTI clock source
RTIE – RTI interrupt
RTIS – RTI interrupt period

MTIM – pending interrupt from MTIM module
RTI – pending interrupt from RTI module
LVD – pending interrupt from LVD module

Code Example and Explanation
The real-time interrupt module allows the generation of seven different interrupt time bases. The RTI has
two different sources to be driven: the 1-kHz internal clock reference or the trimmed 32-kHz internal clock
reference. The 32-kHz internal clock reference is divided by 32 to generate a more accurate 1-kHz clock.
When an application requires a more accurate base time, run the RTI module from 32-kHz internal source
after the internal oscillator has been trimmed.

Seven different options are available in the RTI module to configure a periodic interrupt base time. These
options are: 1024 ms, 512 ms, 256 ms, 128 ms, 64 ms, 32 ms, and 8 ms.

RTI module remains active in run, wait, or stop mode and also wakes the MCU from wait or stop modes.

2 Code Example and Explanation
This project has been developed using CodeWarrior v5.1 and DEMO9RS08KA2 board from Softec.

The project (RTI.mpc) implements the use of the RTI module of the RS08 MCU by selecting the reference
source clock from the 32-kHz internal trimmed source clock. The main functions are:

• Loop — Endless loop polling and waiting for the RTI interrupt to occur.

• InitConfig — Configures the MCU to work with the internal oscillator at 8 MHz (bus speed), sets
a trim value to the internal oscillator, configures port A pin 5 as output.

• InitRTI — Initializes the RTI module to work with the 32-kHz trimmed internal source clock and
set an initial interrupt period of 1024 ms.

• RTI_Isr — Checks whether a counter variable has reached a value of 0 to change the periodic
blinking time of an LED. A status variable is also checked to determine whether the 1024 ms or
256 ms periodic base time must be set to change the periodic interrupt base time of the RTI
module after 10 counts. Further detailed explanation is given below:

This example shows how to configure the RTI module using one of the two possible clock source
references available. For this document, the 32-kHz trimmed internal source clock has been used instead
of the 1-kHz internal source clock that the RTI module has. This 32-kHz trimmed internal reference is
divided by 32 to generate a more accurate 1-kHz clock. For more detail, refer to RS08 datasheet.

This example code blinks an LED (PTA5) ten times every 1024 ms. After the tenth time, the periodic
interrupt time of the RTI module changes to generate a periodic interrupt time every 256 ms. After the
tenth time of generating an interrupt every 256 ms, the RTI changes again to generate a 1024 ms interrupt
time. It continues to change from 1024 ms interrupt time to 256 ms interrupt time every ten counts.

To accomplish the requirements of this example, the RTI module is initially configured to generate a
1024 ms interrupt using the internal 32-kHz trimmed oscillator frequency. After the initial configuration,
the periodic interrupt time of the RTI is changed from one interrupt period to another every ten times.

Refer to the source code for more details.
Using the Real-Time Interrupt (RTI) for the RS08 Microcontrollers

Freescale Semiconductor22

Code Example and Explanation
Following are steps to use the RTI module as in this example:

1. Configure ICS module to work with the internal oscillator at 8 MHz (bus speed), trim the internal
oscillator to generate the fewest possible errors, configure PTA5 as an output and the rest of the
PTA pins as inputs, and initialize a counter variable (which changes from one interrupt frequency
to another interrupt frequency).
InitConfig:
;CONFIGURES SYSTEM CONTROL

IFNE MODE
mov #HIGH_6_13(SOPT), PAGESEL
mov #$01, MAP_ADDR_6(SOPT) ; Disables COP and enables RESET (PTA2) pin

ELSE
mov #HIGH_6_13(SOPT), PAGESEL
mov #$03, MAP_ADDR_6(SOPT) ; Disables COP, enables BKGD (PTA3) and RESET (PTA2)

; pins
ENDIF
clr ICSC1 ; FLL is selected as Bus Clock
TRIM_ICS ; call macro to Trim the ICS at ~8 MHz
clr ICSC2

;CONFIGURES PORT A
mov #$30, PTADD ; PTA4(LED1),PTA5(LED0) as outputs
clr PTAD ; Clears PTA
mov #20,Counter ; Initialize Counter variable
rts

2. Configure RTI module to work with the internal 32-kHz trimmed frequency and set the interrupt
time every 1024 ms.

mov #$37,MAP_ADDR_6(SRTISC) ; 32-kHz trimmed internal source selected,
; Interrupt enabled, 1.024s interrupt period base

rts

3. Wait in an infinite loop until the RTI overflow flag is triggered. RTI interrupt is polling in the
loop. After the RTI interrupt is detected polling the SIP1 register, it automatically jumps into a
predefined subroutine called RTI_Isr.
Loop:

wait ; Enter into wait mode until an interrupt arrives
mov #HIGH_6_13(SIP1), PAGESEL
brset 1, MAP_ADDR_6(SIP1),RTI_Isr ; branch if RTI interrupt pending
bra Loop

4. After RTI interrupt has been detected by the infinite loop, the RTI_Isr subroutine is called and the
acknowledge flag (ACK) is cleared. A variable called Counter stores one iteration every RTI
interrupt event. Every iteration is shown by turning on/off an LED (PTA5). After 10 interrupt
times, the RTI periodic interrupt is changed from 1024 ms to 256 ms and the LED blinks faster.
This process continues to change the periodic interrupt from 1024 ms to 256 ms and vice versa.
RTI_Isr:

bset 6,MAP_ADDR_6(SRTISC) ; Clear RTI interrupt flag (ACK)
dbnz Counter,Blink_Led ; Check if Counter = 0 in order to change RTI interrupt period
bsr RTIPeriod ; branch to blink subroutine
bra Loop

RTIPeriod:
Using the Real-Time Interrupt (RTI) for the RS08 Microcontrollers

Freescale Semiconductor 23

Hardware Implementation
brset 0,StatusPeriod,_1024msPeriod ; if StatusPeriod = 1, Configure RTI with 1024ms period
brclr 0,StatusPeriod,_256msPeriod ; if StatusPeriod = 0, Configure RTI with 256ms period
bra Loop

_256msPeriod:
mov #RTI_256,Period
ChangeRTIPeriod ; call macro
bra Loop

_1024msPeriod:
mov #RTI_1024,Period
ChangeRTIPeriod ; call macro
bra Loop

Blink_Led:

lda PTAD
eor #$20 ; Toggles LED2 (PTA5)
sta PTAD ; blink LED2
bra Loop

3 Hardware Implementation
This schematic shows the hardware used to exercise the code. For this example, the hardware
implementation is fairly simple because the application itself uses only four of the eight pins available in
the MCU.

Follwoing four pins of the MCU are needed:

• Supply voltage pin

• Ground reference pin

• Reset pin

• One available pin configured as output to turn on-off one LED. The LED is the visual display that
shows the RTI is functioning correctly).

Figure 1. Hardware Implementation for RTI
Using the Real-Time Interrupt (RTI) for the RS08 Microcontrollers

Freescale Semiconductor24

Freescale Semiconductor
Users Guide

Overview . 25
RS08 Memory Map . 26

2.1 Addressing Modes . 27
2.1.1 Inherent . 27
2.1.2 Immediate . 27
2.1.3 Tiny . 27
2.1.4 Short. 27
2.1.5 Direct . 27
2.1.6 Extended . 27

2.2 Page Mapping . 28
2.3 Implementation Example 29
2.4 Search Routine . 29

RS08 Addressing Modes
by: José Ruiz Juárez

Oscar Luna González
RTAC Americas
México 2011

Table of Contents
1 Overview
This is a quick reference to the addressing modes in the
MC9RS08KA2 microcontroller. The RS08 family
introduces a paging scheme to allow the CPU to access
the whole 16K memory space. Basic information about
addressing modes is given to introduce you to the new
features on the MCU.

1
2

© Freescale Semiconductor, Inc., 2011. All rights reserved.

RS08 Memory Map
2 RS08 Memory Map
The RS08 family introduces a standard paging scheme that allows the CPU to access the whole 16K
memory space using 64-byte paged windows. The page window is located from $C0 to $FF. 256 pages
already segmented in 64-bytes per page window exist in the RS08 family to segment the full 16-KB
memory map of the microcontroller.

To access every memory space in the microcontroller, the RS08 MCU implements a memory mapped
indirect memory access using two registers:

Using these registers the user can have easy access to the first 256 bytes of the memory map. This is an
advantage of tiny and short addressing modes and a powerful solution for indexed access.

The RS08 MCUs have pseudo instructions to implement all X inherent instructions with a single
instruction.

LDX LDA $0F
LDX #SC0 MOV #SC0,$0F
LDX $44 MOV $44,$0F

Also, all zero byte indexed operations ‘,X’ can be implemented simply by using the address $0E in direct
addressing instructions.

STA ,X STA $0E
EOR ,X EOR $0E
MOV ,X,$C0 MOV $0E,$C0

Register Description

X
Contains the address of memory to be accessed when accessing register D[X]. It is mapped in
address location $000F

D[X] Address memory pointed to by register X. The address location of D[X] register is $000E
RS08 Addressing Modes

Freescale Semiconductor26

RS08 Memory Map
2.1 Addressing Modes

2.1.1 Inherent
The CPU knows everything it needs. No addressing information is required because only internal registers
can be accessed with this addressing mode; there are no operands.

inca
clra

2.1.2 Immediate
The operands is located immediately after the opcode in the instruction stream. Immediate addressing is
used when the programmer wants to use an explicit value. The # symbol is the operator that indicates
immediate addressing mode.

Lda #$C0

2.1.3 Tiny
This mode can accessed with only the first 16 bytes in the address map ($0000–$000F) A system can be
optimized by placing the most computation-intensive data in this area memory. This addressing mode is
available for INC, DEC, ADD, and SUB instructions.

Tax

2.1.4 Short
CLR, LDA, and STA are some instructions that short addressing mode supports. Short addressing mode is
capable of addressing only the first 32 bytes in the address map.

Sta PAGESEL

2.1.5 Direct
This addressing mode is used to access operands located in direct address space ($0000 through $00FF).

lda $C0

2.1.6 Extended
There is only one instruction for extended addressing mode: JMP can jump to all of the memory map. The
destination address is given by two bytes next the opcode.

Indexed

Jmp $3800
RS08 Addressing Modes

Freescale Semiconductor 27

RS08 Memory Map
2.2 Page Mapping
The memory in the RS08 MCU is organized in 64 byte pages. The first page (0) starts in $0000 and ends
in $003F. Direct addressing mode works in the address range $0000 to $00FF.

RS08 does not directly support extended addressing; access to extended address is available through the
paging window.

The paging window is $00C0 and ends at $00FF (page 03). These 64 bytes contains a mirror of the page
selected by the page register ($001F).

Accessing extended memory through the page window involves simply setting the page number from the
upper eight bits of the address and the offset within the page window from the lower six bits of the
extended address.

In other words, shift right six times the 14 bit address and store the result in the page register. The six least
significant bits of the 14-bit address are the offset in the window page.

For example, to access to the $0142 memory location, load a 0x05 ($0142 shifted right 6 times) in the page
register. The offset value is two but to accomplish the 8-bit address, set the two most significant bits to 1.
That results in 0xC2, which is the 3rd value of the mirror page.
RS08 Addressing Modes

Freescale Semiconductor28

RS08 Memory Map
2.3 Implementation Example
Having a table with 256 elements (4 pages of 64 bytes), the program automatically calculates the page and
the offset values depending the position that want to access.

The table starts at 0x3E00 in the memory (page F8 and offset 0).

Table
ORG $3E00
 dc.b 0,5,12,20,27,34,41,47,53,59,65,71,77,82,87,92
 dc.b 97,102,107,111,116,120,124,128,132,135,139,142,146,149,152,155
 dc.b 158,161,164,167,170,172,175,177,179,182,184,186,188,190,192,194
 dc.b 196,197,199,201,202,204,206,207,208,210,211,212,214,215,216,217
 dc.b 218,219,221,222,223,223,224,225,226,227,228,229,229,230,231,232
 dc.b 232,233,234,234,235,235,236,236,237,238,238,238,239,239,240,240
 dc.b 241,241,241,242,242,243,243,243,244,244,244,244,245,245,245,246
 dc.b 246,246,246,247,247,247,247,247,248,248,248,248,248,248,249,249
 dc.b 249,249,249,249,250,250,250,250,250,250,250,250,250,251,251,251
 dc.b 251,251,251,251,251,251,251,251,252,252,252,252,252,252,252,252
 dc.b 252,252,252,252,252,252,252,252,252,252,253,253,253,253,253,253
 dc.b 253,253,253,253,253,253,253,253,253,253,253,253,253,253,253,253
 dc.b 253,253,253,253,253,253,253,253,253,253,253,253,253,253,253,253
 dc.b 253,253,253,253,253,253,254,254,254,254,254,254,254,254,254,254
 dc.b 254,254,254,254,254,254,254,254,254,254,254,254,254,254,254,254
 dc.b 254,254,254,254,254,254,254,254,254,254,254,254,254,254,254,254

2.4 Search Routine
The CounterValue has the position of the table data that contains the value that needs to be accessed.
Because, CounterValue is an 8-bit variable, only the two MSB bits are needed to calculate the page. The
page register is loaded with the eight most significant bits of origin table address plus the two more
significant bits of CounterValue.

lda CounterValue ; load the search value in the accumulator
rola ; getting 2 MSB
rola
rola
and #$03 ; make a logical AND
add #(Table_Data>>6) ; address of table data>>6 + calculated page
sta PAGESEL ; load Page in Page Register (Now page is set)

Next, reload the counter value on the accumulator and extract the six LSBs with a logical AND, add a 0xC0
(page window) and store it in x register.

Now, D[x] contains the required value.

lda CounterValue ; Reload search value on accumulator
and #$3F ; Extract 6 LSB
add #$C0 ; Add offset to the first page window address
tax ; Store address in X register

lda ,x ; Load table result
sta ConvertedValue ; Store result on Convertedvalue variable
RS08 Addressing Modes

Freescale Semiconductor 29

RS08 Memory Map
RS08 Addressing Modes

Freescale Semiconductor30

Freescale Semiconductor
Users Guide

Overview . 31
Code Example and Explanation 32
Hardware Implementation. 35

Interrupt Handling on RS08 MCUs
by: Alan Led Collins Rivera and Oscar Luna González

RTAC Americas
México 2011

Table of Contents
1 Overview
This is a quick reference for using interrupts on an RS08
microcontroller (MCU). There are no interrupt vectors
on the MCU; every module interrupt request must be
attended by polling flags.

Because the RS08 does not have interrupt vectors, it is
necessary to poll every enabled interrupt except the reset
interrupt. When a reset occurs, the program counter starts
at $3FFD. A jump instruction must be placed in this
location for correct reset operation.

1
2
3

© Freescale Semiconductor, Inc., 2011. All rights reserved.

SIP1
R 0 0 0 KBI ACMP MTIM RTI LVD

W

Interrupts Quick Reference

MTIMSC
R TOF

TOIE TSTP
0 0 0 0

W TRST

KBISC
R 0 0 0 0 KBF 0

KBIE KBMOD
W KBACK

System Interrupt Pending Register
KBI – pending interrupt from the KBI module
ACMP – pending interrupt from ACMP module
MTIM – pending interrupt from MTIM module

RTI – pending interrupt from RTI module
LVD – pending interrupt from LVD module

MTIM Status and Control Register
TOF – Set Overflow flag when counter
TOIE – Enables MTIM overflow interrupts

TRST – Reset MTIM counter if it set with 1
TSTP – Run or Stop MTIM counter

KBI Status and Control Register
KBF – Indicates that a keyboard interrupt is detected
KBACK – Writing a 1 clears KBF

KBIE – Enables keyboard Interrupt

KBMOD – Controls the detection mode of the keyboard interrupt pins (0-detects edges only,
1-Detects both edges and levels).

Code Example and Explanation
The interrupt request for every module may be checked using two different registers:

• System interrupts pending register (SIP)

• The module registers

The programmer chooses between these two ways of polling the interrupt events. Using the SIP1 register
provides the advantage of setting priority to interrupts, but this register is mapped in the $0202 memory
address, so indexed addressing is needed to access it. One more instruction is needed for writing in the
page register the page of the SIP1 register address.

Using the module register flag for polling may provide faster acknowledgement of the event that
interrupted the MCU.

You can determine how to poll the interrupts based on your preference and on the requirements of the
application.

2 Code Example and Explanation
This project has been developed using CodeWarrior v5.1 and the DEMO9RS08KA2 board from Softec.

The project shows how to use interrupts in the MTIM and KBI modules. Following are the main functions:

• Entry — Configures the system control, ports, and modules that will be used (ICS, KBI, MTIM)

• Loop — Endless loop polling and waiting for the MTIM or KBI overflow interrupt to occur

• Timer — Toggles an LED every 0.5 seconds.

• Kboard — Chooses whether LED2 or LED1 will toggle.

This example shows how to manage interrupts requests by polling flags. The clock source option in this
example is taken directly from the bus clock that is trimmed to 8 MHz. Configuring the MTIM prescaler
with a value of 256 divides the selectable clock source (bus clock, in this case) by 256. Doing this, every
32 s (8 MHz/256), a count in MTIM modulus counter is increased, so every 8.192 ms (32 s * 256), an
MTIM overflow interrupt is generated. When this event occurs, a counter is checked, so every 0.5 seconds
an LED (LED2) will toggle.

The keyboard interrupt is also enabled in this example. When a keyboard event occurs, the dim toggling
LED2, and another LED (LED1) will replace its function of toggling every 0.5 seconds. If the keyboard
interrupt is received again, LED1 dims, and LED2 toggles again.

The interrupts generated by MTIM will be attended by polling SIP1 or MTIMSC register to branch into
the proper subroutine. KBI interrupts may be attended checking SIP1 or KBISC register. Please refer to
the source code for more details.

1. Configure ICS module to work with internal oscillator at 8 MHz (bus speed), configure PTA4 and
PTA5 as outputs, configure KBI detecting edges only in PTA1, and configure the MTIM module
in free running mode.
Entry:
;--------------------------------------
; CONFIGURES SYSTEM CONTROL
;--------------------------------------
 IFNE MODE
Interrupt Handling on RS08 MCUs

Freescale Semiconductor32

Code Example and Explanation
 mov #HIGH_6_13(SOPT), PAGE_ADR

 mov #$01, MAP_ADDR_6(SOPT) ;Disables COP and enables RESET pin

 ELSE
 mov #HIGH_6_13(SOPT), PAGE_ADR

 mov #$03, MAP_ADDR_6(SOPT) ;Disables COP, enables BKGD and RESET pins

 ENDIF
;--------------------------------------
; CONFIGURES CLOCK (FEI Operation Mode)
;--------------------------------------

 clr ICSC1 ; Selects FLL as clock source and disables it in stop mode
 mov #$98,ICSTRM

 clr ICSC2 ; ICSOUT = DCO output frequency
 mov #$04,ICSSC

;--------------------------------------
; CONFIGURES PORT A
;--------------------------------------

 mov #$30, PTADD ;PTA4(LED1),PTA5(LED2) as outputs
 clr PTAD ; Clears PTA
;--------------------------------------
; CONFIGURES KEYBOARD INTERRUPT MODULE
;--------------------------------------
 mov #HIGH_6_13(PTAPE), PAGE_ADR

 mov #$FF, MAP_ADDR_6(PTAPE); Enables internal Pulling device
 mov #HIGH_6_13(PTAPUD), PAGE_ADR

 clr MAP_ADDR_6(PTAPUD) ; Configures Internal pull up device in PTA
 mov #$02,KBIPE; PTA1 as KBI
 mov #$06,KBISC; KBI interrupt request enable
;-------------------------------------
; CONFIGURES TIMER
;-------------------------------------

 mov #$70, MTIMSC ; Enables interrupt, stops and resets timer counter
 mov #$00, MTIMMOD ; MTIM modulo in free running mode (256 counts).
 mov #$08, MTIMCLK ; Selects internal clock as reference bus clock
 ; (8 MHz) ; with prescaler 256
 ; Bus Clk
 ; ----------------------- = Timer interrupt
 ; (preescaler)*(MTIMMOD)
 ; (increments timer counter every 32 us)(flag interrupt
 ; every 8.192ms)

bclr 4,MTIMSC ; MTIM counter is Active

2. The MCU waits until an interrupt is generated. The source of the interrupt event may be checked
in two ways:

— Using the SIP1 register: The MCU has a system interrupt pending register (SIP1) that contains
all the modules’ interrupt flags.
Loop:

wait ; MCU in low voltage mode
mov #HIGH_6_13(SIP1), PAGE_ADR
Interrupt Handling on RS08 MCUs

Freescale Semiconductor 33

Code Example and Explanation
brset 4, MAP_ADDR_6(SIP1),Kboard ; Branch if KB interrupt pending
brset 2, MAP_ADDR_6(SIP1),Timer ; branch if timer interrupt pending
bra Loop

Using the modules registers: Every module that use interrupts, has a flag interrupt in
its control register. If an interrupt occurs because of a specific module, that exactly
module will set a flag interrupt. Checking the interrupt event by the module register is
one instruction faster than using the SIP1 register, because of the location in memory of
the SIP1 register.
Loop:

wait ; MCU in low voltage mode
brset 3,KBISC,Kboard ; Branch if KB interrupts pending
brset 7,MTIMSC,Timer ; branch if timer interrupt pending
bra Loop

— If the interrupt detected by the infinite loop is from MTIM, then branches to the Timer label.
The overflow flag (TOF) is cleared. A variable called Counter stores 61 interactions to
generate a base time of approximately 0.5 seconds. Every half second, an LED toggles. The
LED that toggles is chosen by the Kboard function.
Timer:
 bset 5,MTIMSC ; Acknowledge to Timer
 lda count
 cbeqa #61,Toggle ; (8.192ms*61) =~ 0.5 seg
 inc count
 bra Loop

Toggle:
 clr count
 brset 0,change,LED1 ; Checks which LED will toggle.
 lda PTAD
 eor #$20 ; Toggles LED2
 sta PTAD
 bra Loop

LED1:
 lda PTAD
 eor #$10 ; Toggles LED1
 sta PTAD
 bra Loop

3. If the interrupt detected by the infinite loop is from KBI, then branches to the Kboard label. The
keyboard interrupt flag (KBF) is cleared and both LEDs are dimmed. A variable called change is
toggled so the next time the MTIM interrupts the MCU, the LED that was not toggling will toggle
every 0.5 seconds.
Kboard:
 bset 2,KBISC ; Acknowledge to KBI
 clr PTAD
 lda change ;
 eor #1
 sta change
 bra Loop
Interrupt Handling on RS08 MCUs

Freescale Semiconductor34

Hardware Implementation
3 Hardware Implementation
This schematic shows the hardware used to exercise the code provided. For this example, the hardware
implementation is fairly simple because the application itself uses only six pins.

Following six pins of the MCU are needed:

• Supply voltage pin

• Ground reference pin

• Reset pin

• Three available pins — two configured as outputs to toggle on-off two LEDs and one configured
as an input for the keyboard interrupt

Figure 1. Hardware Implementation Interrupt Handling
Interrupt Handling on RS08 MCUs

Freescale Semiconductor 35

Hardware Implementation
Interrupt Handling on RS08 MCUs

Freescale Semiconductor36

Freescale Semiconductor
Users Guide

Overview . 41
Low-Power Modes . 42

2.1 Wait Mode Overview 42
2.2 Stop Mode Overview 42
Code Example and Explanation 43
Hardware Configuration 44

Using the Low-Power Modes for the
RS08 Family Microcontrollers
by: Gabriel Sanchez Barba

RTAC Americas
México 2011

Table of Contents

1 Overview
This is a quick reference for using the low-power modes
on an HCRS08 microcontroller (MCU). Basic
information about the functional description and
configuration options is provided. The following
example may be modified to suit your application. Refer
to the data sheet for your device.

1
2

3
4

© Freescale Semiconductor, Inc., 2011. All rights reserved.

SOPT
R

COPE COPT STOPE
0 0 0

BGDPE RSTPE
W

Low-Power Stop Mode Quick Reference

System Options Register
COPE – COP watchdog enable
COPT – COP watchdog timeout
STOPE – stop mode enable
BKGDPE – background debug mode pin enable
RSTPE – reset pin enable

Low-Power Modes
2 Low-Power Modes
The MC9RS08KA2 has two modes of low-power consumption. These modes offer flexibility for the user
and may be used to lower the power consumption for many types of applications. These modes are the wait
mode and the stop mode.

This table summarizes the behavior of the MCU in low-power modes

1 ICS requires IREFSTEN=1 and LVDE and LVDSE must be set to allow operation in stop.
2 If bandgap reference is required, the LVDE and LVDSE bits in the SPMSC1 must be set before entering stop to allow the

32-kHz clock source to run during stop.

2.1 Wait Mode Overview
Wait mode is entered whenever a WAIT instruction is executed. When executed, the CPU will enter a
low-power state in which it is not clocked. The program counter (PC) is halted, but all the peripherals on
the chip continue to work if they were enabled before the WAIT instruction was executed. The state of all
internal registers and logic, as well as the RAM content, is maintained as all are I/O pin states. The CPU
remains in this state until either a reset or interrupt occurs. If a reset occurs, the PC will fetch the address
in the reset vector and begin to process instructions at that address. If an interrupt occurs, the MCU will
exit wait mode and process the next instruction to be processed. If the MCU exits wait mode by an
interrupt, then it is the user program’s responsibility to check the source of the interrupt, and then take
whichever actions that are necessary.

2.2 Stop Mode Overview
Stop mode is entered whenever a STOP instruction is executed if the STOPE bit in the system options
register is set. If the STOPE bit is not set, then an illegal opcode reset is forced. In stop mode, the voltage
regulator is put in standby, and all internal clocks to the CPU and the modules are halted. The ICS is turned
off when the IREFSTEN bit is cleared. The state of all internal registers and logic, as well as the RAM
content is maintained as are all I/O pin states.

Exit from stop mode is done after either a reset or interrupt occurs. If a reset occurs, the PC will fetch the
address in the reset vector and begin to process instructions at that address. If an interrupt occurs, the MCU
will increment the PC, which halted at the location where the STOP instruction was executed, and the next
instruction will be fetched and executed accordingly. It is the user program’s responsibility to check the
source of the interrupt, and then take whichever actions are necessary.

Mode CPU MTIM ICS ACMP Regulator I/O Pins RTI

Wait Standby Optionally on On Optionally on On States held Optionally On

Stop Standby Standby Optionally On1 Optionally On2 Standby States held Optionally On
Using the Low-Power Modes for the RS08 Family Microcontrollers

Freescale Semiconductor38

Code Example and Explanation
3 Code Example and Explanation
In this application, the MCU switches from one low-power mode to another after a small delay. To trigger
the exit from one mode and let the MCU enter the other, one of the KBI pins is used through a pushbutton.
There is a LED that lights while the MCU is running, and dims when the MCU enters a low-power mode
to let the user know whether the MCU is running or in a low-power mode. Every time the pushbutton is
pressed, the MCU will exit low-power mode, delay, and re-enter a low-power mode.

The code initializes the MCU first. Here, we disable the COP, enable stop modes, the BKGD pin, and the
reset pin. Then the hardware is setup; PTAD4 is setup as an output and turns on the LED, and the KBI1
pin is enabled.

MOV #HIGH_6_13(SOPT), PAGESEL
MOV #$23, MAP_ADDR_6(SOPT) ; Disables COP, enables BKGD,RESET & STOP
MOV #$10,PTADD ; PTA4 as Output
MOV #$02,KBIPE ; PTA1 as KBI
MOV #$06,KBISC ; Clear any false interrupts and unmask KBI

Next, the MCU is set to run in FEI mode:
LDA #$00
STA ICSC1
LDA #$C0
STA ICSC2

The code then initializes the two variables used in the delay:
MOV #0, COUNTER2
MOV #0, COUNTER1

The code then goes in and does a delay, which will turn off the LED when done, and finally enters wait
mode.

mainLoop:
JSR Delay
WAIT

When the pushbutton is pressed, the MCU exits wait mode, lights the LED, and clears the KBI flag:
LDA PTAD ; Toggle LED
EOR #$10
STA PTAD
BSET KBISC_KBACK,KBISC ; Clear KBI interrupt

Then the code enters the delay routine, which dims the LED, and then enters stop mode:
JSR Delay
STOP

When the pushbutton is pressed, the MCU exits wait mode and lights the LED, clears the KBI flag, and
branches to the start:

LDA PTAD ; Toggle LED
EOR #$10
STA PTAD
BSET KBISC_KBACK,KBISC ; Clear KBI interrupt
BRA mainLoop
Using the Low-Power Modes for the RS08 Family Microcontrollers

Freescale Semiconductor 39

Hardware Configuration
4 Hardware Configuration
Using the Low-Power Modes for the RS08 Family Microcontrollers

Freescale Semiconductor40

Freescale Semiconductor
Users Guide

Overview . 41
Code Example and Explanation 42
Hardware Implementation. 44

Nesting Subroutines in the RS08
Microcontrollers
by: José Ruiz Juarez
 RTAC Americas
 México 2011

Table of Contents

1 Overview
This is a quick reference for using nested subroutines on
an MC9RS08KA2 microcontroller.

The MC9RS08KA2 does not have stack support, but it
does have a single level of subroutine that is
implemented by using a shadow program counter. Upon
calling a subroutine, the PC is saved in the shadow
program counter before the jump to the subroutine is
made. On returning from a subroutine, the program
counter is loaded from the saved return address in the
shadow program counter.

When calling a subroutine from another subroutine, the
present program counter is stored in the shadow program
counter but the previous PC that was stored on the
shadow program counter is lost, which means that the
CPU cannot go back to the main program.

This reference shows how subroutine nesting can be
implemented in software by accessing the shadow
program counter through the new instructions added to
instruction set.

1
2
3

© Freescale Semiconductor, Inc., 2011. All rights reserved.

Code Example and Explanation
2 Code Example and Explanation
In this application, the implementation of nested subroutines will be demonstrated by turning on and off
three LEDs. Each LED is turned on in a different subroutine and the main program turns all LEDs off. The
single level subroutine is used to make the direct jump to the subroutine. Before it makes the jump, the
shadow program counter must be backed up in RAM. The program counter is restored when the program
returns from the subroutine. These procedures must be implemented in software. This application uses two
macros to do that procedure.

Please refer to the source code for more details

1. Initialization. Configure PTA3, PTA4 and PTA5 as outputs
InitConfig: ;CONFIGURES SYSTEM CONTROL

IFNE MODE

mov #HIGH_6_13(SOPT), PAGESEL
mov #$01, MAP_ADDR_6(SOPT) ; Disables COP and enables RESET (PTA2) pin
mov #$34, PTADD ; PTA4(LED2),PTA5(LED1), PTA1 (LED3) as outputs

ELSE
mov #HIGH_6_13(SOPT), PAGESEL
mov #$03, MAP_ADDR_6(SOPT) ; Disables COP, enables BKGD (PTA3) and RESET

(PTA2) pins
mov #$30, PTADD ; PTA4(LED2),PTA5(LED1), PTA1 (LED3) as outputs

ENDIF
; configure PORT A

clr PTAD ; Clears PTA
rts

2. Call the LED1 subroutine in an infinite loop and after that, clear all ports.
_Startup:

bsr InitConfig
loop: clr PTAD

jsr sal1
jsr led1
jsr sal1
bra loop

3. Macro declarations. There are two macros. ENTRY_SUB is for backing up the shadow program
counter into RAM. EXIT_SUB is to restore the shadow program counter from the RAM.
— ENTRY_SUB — SHA instruction swaps the high byte of the shadow program counter with

the accumulator. Then, STA stores the accumulator in a RAM location. Then it swaps the high
byte of the shadow program counter with the accumulator. Now, the low byte of the shadow
program counter must be backed up. To do this, the SLA instruction is used to swap the low
byte of the shadow program counter with the accumulator. Then the accumulator is stored into
the next available RAM, followed by a swap of the low byte of the shadow program counter
with the accumulator.
ENTRY_SUB: MACRO ; Macro for "stacking" SPC

SHA
STA pcBuffer + 2*(\1)
SHA
SLA
STA pcBUFFER + 2*(\1) +1
SLA

ENDM
Nesting Subroutines in the RS08 Microcontrollers

Freescale Semiconductor42

Code Example and Explanation
— EXIT_SUB — This subroutine does the exact opposite of what happened in the
ENTRY_SUB routine. Here, the high byte of shadow program counter is swapped with the
accumulator. Then the accumulator loads what is in RAM. This value is then swapped into the
shadow program counter with an SHA. Next, the low byte of the shadow program counter is
swapped with the accumulator, and the accumulator is loaded with the next available RAM
location. This value is then swapped into the shadow program counter, and with that, the
original values are restored.

EXIT_SUB: MACRO ; Macro for restore SPC
SHA
LDA pcBuffer + 2*(\1)
SHA
SLA
LDA pcBUFFER + 2*(\1) +1
SLA

ENDM

4. Subroutines. The three subroutines turn on a single LED and call a nested subroutine; LED3 is the
last level subroutine of this application.

led1: bset 5,PTAD
 ENTRY_SUB 0

jsr sal1 ;Call for a nested subroutine
EXIT_SUB 0

ENTRY_SUB 0
jsr led2 ;Call for a nested subroutine
EXIT_SUB 0
rts

led2: bset 4,PTAD
ENTRY_SUB 1
jsr sal1 ;Call for a nested subroutine
EXIT_SUB 1

ENTRY_SUB 1
jsr led3 ;Call for a nested subroutine
EXIT_SUB 1
rts

led3: bset 3,PTAD
ENTRY_SUB 2
jsr sal1 ;Call for a nested subroutine
EXIT_SUB 2
rts

sal1: ;delay by software
sal2: dbnz COUNTER, sal2

dbnz COUNTER2,sal1
 rts
Nesting Subroutines in the RS08 Microcontrollers

Freescale Semiconductor 43

Hardware Implementation
3 Hardware Implementation
This schematic show the hardware used to exercise the code provided. For this example the hardware
implementation is fairly simple, because the application itself uses only six of the pins available in the
MCU.

The six pins of the MCU that will be needed are:

• Supply voltage pin

• Ground reference pin

• Reset pin

• Three available pins configured as outputs to turn on-off three LEDs.

Figure 1. Hardware Implementation for nested subroutines
Nesting Subroutines in the RS08 Microcontrollers

Freescale Semiconductor44

Freescale Semiconductor
Users Guide

Overview . 45
Theory. 45
Calculating Table Values 46

3.1 Example Calculating an ADC Value 47
Code Example and Explanation 47
Hardware Implementation. 50

Implementing an Analog-to-Digital
Converter (ADC) on the MC9RS08KA2
by: Oscar Luna González, Alan Led Collins Rivera, and José Ruiz Juárez

RTAC Americas
México 2011

Table of Contents
1 Overview
This is a quick reference for implementing an
analog-to-digital converter using the modulo timer
(MTIM) and analog comparator (ACMP) modules on an
MC9RS08KA2 microcontroller (MCU).

Most embedded controller designs require a voltage
measurement from sensors. The low-cost
MC9RS08KA2 MCU provides an analog comparator
with low powered modes, so it is the solution for this
issue.

2 Theory
To implement an ADC with the voltage comparator, it is
necessary to match an unknown voltage (VIn) with a
voltage (VOut) controlled by the MC9RS08KA2. This
voltage can be easily generated by implementing a
low-pass filter (RC) that will return a known voltage
depending on the time that the capacitor charges (duty
cycle).

1
2
3

4
5

© Freescale Semiconductor, Inc., 2011. All rights reserved.

Calculating Table Values
The voltage response of the capacitor is not linear because of its behavior at charging:

Because of this issue, it is necessary to create a lookup table with the matching voltage for its specific time.

After VOut has reached the value of VIn, the count taken from the timer register is compared with the values
table. This table contains the exact voltage that matches the time when VOut reached the VIn value. Each
count of the timer must be equal to the desired ADC resolution.

3 Calculating Table Values
The values of the table will be calculated based on the RC circuit establishment time. This establishment
time is defined by the following formula:

Establishment time = 5 t
t = RC

Establishment time = 5 RC Eqn. 1

The overflow time (tOF) of the timer must be less-than or equal-to the establishment time of the RC circuit,
so each count of the timer is defined by:

Count time = MTIM overflow time Eqn. 2

 256

The converted value in embedded 8-bit ADC format is in the 0 – 255 range. The next formula shows how
to calculate each value of the table.

Eqn. 3

Where VOut is the calculated voltage on the capacitor in each count of the timer.














RC

t

ddo eVV 1

dd

o

V

V
Value

256


Implementing an Analog-to-Digital Converter (ADC) on the MC9RS08KA2

Freescale Semiconductor46

Code Example and Explanation
The next table contains the formulas that need to get the values of the table data.

Note: OF means overflow

For this application, a specific RC value has been chosen to generate a capacitor charging time of 5 ms.
These RC values are:

R = 10 k

C = 100 nF (ceramic capacitor)

3.1 Example Calculating an ADC Value
To start this example, a VIn value is proposed with a voltage of 2.28 V.

After the 2.28 V has been detected by the ACMP module,

Counter = 65 (MTIM Counter), the value of the 65th position in the ADC table is:

So, the ADC value will be:

4 Code Example and Explanation
The ACMPSC (analog comparator status and control register) must be initialized. Enabling the ACMP
module to set the PTA1 as external ACMP+ terminal, enable interrupt and comparator falling edge type
are the settings that are necessary to set for the ADC operation.

ACMP_Conf:
 MOV #ACMP_ENABLE,ACMPSC ; ACMP Enabled, ACMP+ pin active, Interrupt enabled, Rising

; edges detections
 rts

Timer Count Time Voltage Value ADC Value

0–255
countxTimer

timeOFMTIM

256
)1(RC

t

ddo eVV



dd

o

V

V256

   veV

msxTime

msRCtimeOverFlowMTIM

count

nk

m

o 13.2)1(3.3

04.165
256

005.

55

65

10010

04.1










1.26 ms

1.26 m

2.28 v

  
165

3.3

13.2256
ValueADC

(2.28)
177
Implementing an Analog-to-Digital Converter (ADC) on the MC9RS08KA2

Freescale Semiconductor 47

Code Example and Explanation
The MTIM module is configured with the internal clock reference, prescaler divide by 128 and the mode
as free running. See code below for more details:

MTIM_ADC_Init:
 mov #MTIM_128_DIV,MTIMCLK ; Select bus clock as reference, Set prescaler with 128
 mov #FREE_RUN,MTIMMOD ; Configure Timer as free running
 mov #MTIM_STOP_RESET,MTIMSC
 rts

1. Discharge Capacitor — completely discharges the capacitor. Is invoked before an ADC conversion
has begun to avoid any unexpected voltage value that the capacitor could have. After this function
is invoked, a delay loop is implemented to ensure the capacitor discharge.
Discharge_Cap:

bset 1,PTADD ; Configure PTA1 as Output
bclr 1,PTAD ; Start Capacitor discharging
lda #$FE ; Set delay time

waste_time:
dbnza waste_time ; wait until Delay = 0
rts

2. Read value from ACMP — resets the timer counter, clears the ACMP interrupt flag, disables the
ACMP, and calls to a routine to search in the data table.
ReadVal:

mov #MTIM_STOP_RESET,MTIMSC ; Stop and reset counter
mov #ACMP_DISABLED, ACMPSC ; ACMP Disabled, Clear Interrupt flag
ENTRY_SUB 0
jsr tabla ; Search on table
EXIT_SUB 0
rts

3. Search in table function — To access the data table (allocated in Flash 0x3E00) it is necessary to
use the page register. Four pages are needed because table data needs to store a 256 value and
each page can hold 64 bytes. To accomplish this, an algorithm has been generated to calculate the
page and the offset page where the data will be.

To calculate the page, it is necessary to divide the start direction of the table between 64 and add
the counter value divided by 64. For this case, the first 64 values of the table are stored in the F8
page, the second one in the F9, third one in the FA, and the last 64 values are in the FB page.
tabla:

lda CounterValue
clc ; clear Carry
rola ; Getting 2 MSB
rola ;
rola
add #(Table_Data>>6) ; Page Calculating
mov #PAGESEL,Temp_Page ; Backup actual page
sta PAGESEL ; Page Change

After the page has been validated, the next step is determining in which of the 64 bytes the
conversion result is located. The six least significant bits of the timer counter must be applied with
a logical AND operation and add a 0xC0 value (start of the paging window). The result of this
operation is the physical address that contains the result of the conversion. To access this location,
Implementing an Analog-to-Digital Converter (ADC) on the MC9RS08KA2

Freescale Semiconductor48

Code Example and Explanation
it is necessary to store the address in the X register and go to the accumulator with lda, x instruction
(D[X]).
lda CounterValue

and #$3F ; Extract 6 LSB
add #$C0 ; Index to paging window
tax
lda ,x ; Load table result
sta ConvertedValue ; Store result
mov #Temp_Page, PAGESEL ; Back Page
rts

For example, if the counter value has a count of 65 (0x41), the page register will be loaded with an
F9 value (second data page) and the X register will load a 193 (0xC1). That is the second value of
the second page.

4. Main Function — The first step of the main function is to initialize the microcontroller to run at
8 MHz and trim the internal oscillator. Then configure the timer by calling MTIM_ADC_Init
function. Next, discharge the capacitor thought Discharge_Cap function. After that, the
conversion starts. ACMP_Conf is called and the capacitor charging starts, immediately
initializing the timer. The charge continues until the voltage of capacitor is equal to VIn. When the
non-inverting voltage reaches the inverting voltage (VOut = VIn), the ACMP interrupt will be
triggered leaving the wait mode.

After the ACMP interrupt has been triggered, the counter value of the timer is stored immediately
in a variable. Finally, the code must branch into the ReadVal subroutine (if the interrupt was caused
by ACMP).
_Startup:

bsr Init_mc
bsr MTIM_ADC_Init ; Configure MITM
bsr Discharge_Ca ; Discharge Capacitor
bsr ACMP_Conf ; Configure ACMP+ and ACMP-
mov #MTIM_ENABLE,MTIMSC ; Timer Counter Enabled

mainLoop:
wait ; Wait for ACMP interrupt
bset 1,MTIMSC
lda MTIMCNT
sta CounterValue ; store counter value
mov #HIGH_6_13(SIP1), PAGESEL
brset 3, MAP_ADDR_6(SIP1),ReadVal ; branch if ACMP interrupt arrives
bra mainLoop

Data table
ORG Table_Data
dc.b 0,5,10,14,19,23,28,32,36,40,44,48,52,56,60,63
dc.b 67,71,74,78,81,84,87,91,94,97,100,103,106,108,111,114
dc.b 117,119,122,124,127,129,132,134,136,139,141,143,145,147,149,151
dc.b 153,155,157,159,161,162,164,166,168,169,171,173,174,176,177,179
dc.b 180,182,183,184,186,187,188,190,191,192,193,194,196,197,198,199
dc.b 200,201,202,203,204,205,206,207,208,209,210,211,211,212,213,214
dc.b 215,215,216,217,218,218,219,220,221,221,222,222,223,224,224,225
dc.b 226,226,227,227,228,228,229,229,230,230,231,231,232,232,233,233
dc.b 234,234,234,235,235,236,236,236,237,237,237,238,238,238,239,239
dc.b 239,240,240,240,241,241,241,241,242,242,242,243,243,243,243,244
dc.b 244,244,244,244,245,245,245,245,245,246,246,246,246,246,247,247
dc.b 247,247,247,247,248,248,248,248,248,248,249,249,249,249,249,249
Implementing an Analog-to-Digital Converter (ADC) on the MC9RS08KA2

Freescale Semiconductor 49

Hardware Implementation
dc.b 249,249,250,250,250,250,250,250,250,250,250,251,251,251,251,251
dc.b 251,251,251,251,251,252,252,252,252,252,252,252,252,252,252,252
dc.b 252,252,253,253,253,253,253,253,253,253,253,253,253,253,253,253
dc.b 253,253,253,253,254,254,254,254,254,254,254,254,254,254,254,254

5 Hardware Implementation
This schematic shows the hardware used to evaluate the code. For this example, the hardware
implementation is fairly simple because the application itself uses only four of the pins available on the
MCU. Only two external components are needed to implement this 8-bit ADC, giving a really low-cost
ADC implementation.

Follwoing four pins of the MCU are needed:

• Supply voltage pin

• Ground reference pin

• ACMP+ (PTA0)

• ACMP– (PTA1)

Figure 1. Hardware Implementation ADC

U1

MC9R08KA2

PTA2/KBIP2/TCLK/RESET/VPP
1

PTA3/BKGD/MS/ACMPO
2

VDD
3

VSS
4

PTA5/KBIP5
5PTA4/KBIP4
6PTA1/KBIP1/ACMP-
7PTA0/KBIP0/ACMP+
8

C1
100n

1

2

R1
10k

VCC

0 0

VCC

Vin
Implementing an Analog-to-Digital Converter (ADC) on the MC9RS08KA2

Freescale Semiconductor50

Freescale Semiconductor
Users Guide

Overview . 51
Theory — Asynchronous Serial Communication
Interface . 52
Flow Chart. 53
Code Example and Explanation 54
Hardware Implementation. 56

Serial Communication Interface
Implementation using MTIM module for
the MC9RS08KA2 Microcontroller
by: José Ruiz Juárez

Oscar Luna González
Alan Led Collins Rivera
Miguel Agnesi Meléndez
México 2011

Table of Contents
1 Overview
This is a quick reference to implement a basic serial
communication interface (SCI) using the timer (MTIM)
module of the MC9RS08KA2 microcontroller.

Some embedded designs require communication
because of a peripheral or with another application.

This document describes how to implement a low-cost
serial communication interface transmitter using one pin
and the MTIM module of MC9RS08KA2.

1
2

3
4
5

© Freescale Semiconductor, Inc., 2011. All rights reserved.

Theory — Asynchronous Serial Communication Interface
2 Theory — Asynchronous Serial Communication
Interface

This communication protocol uses two pins of data, one for transmitting (TxD) and one for receiving
(RxD) data. There is no need for a clock pin, because of the validation at the start and stop bits of the
communication.

In first instance, the signal is on idle state (high). This means that no data transfer is taking place. Then, if
a falling edge is detected, a time equal to the baud rate chosen (9600 bps) is needed for validation of data.
So, if there is a change in the signal before this time has come, a false start bit error occurred (Figure 1).
This means that the data is just noise and there is no need to save it.

Otherwise, the start bit validates the communication and the next bit that transfers will be the LSB of the
data byte. Every time the baud rate time elapses, a data bit will be taken from the data pin until the complete
byte is received. Then, the data pin must be in high state for one baud rate time. If the data changes before
the time of validation, a false stop bit has occurred and this means that the data byte taken is not correct.
If the data does not change, the stop bit has validated the byte received and the data pin enters in idle state
for a new communication.

Figure 2 summarizes the protocol.

Figure 1. Example of False Start and Stop Bits

Figure 2. Correct Serial Communication
Serial Communication Interface Implementation using MTIM module for the MC9RS08KA2 Microcontroller

Freescale Semiconductor52

Flow Chart
3 Flow Chart
Figure 3. Implementation a serial communication interface transmitter

using one pin and MTIM module

Start

Configure MCU

Configure MTIM

Configure PTA5

Point to the first
character in the Table

Store value read from
table to a local variable

Mask first bit in the
variable

Send Start bit

Start Timer Counter

Has 104 s
elapsed?

Is mask bit = 1?

Set PTA5 with 1
PTA5 = 1 (LSB)

Rotate Mask bit
one position to the left

as Output

1

3

Have 8 bits
reached?

Send Stop bit

Have all
characters
been sent?

Point to the next
element in the table

Yes

No

1

2

2

3

Set PTA5 with 0
PTA5 = 0 (LSB)

Yes

No

No

Yes
Serial Communication Interface Implementation using MTIM module for the MC9RS08KA2 Microcontroller

Freescale Semiconductor 53

Code Example and Explanation
4 Code Example and Explanation
The advantage of using the MCRS08KA2 microcontroller for implementing a serial communication
interface (SCI) is that, it is extremely low cost. The MCU may communicate with other microcontrollers
or the PC, depending on the requirements of the application.

This example implements only the transferring data communication running at 9600 bits per second,
which means that every validated bit length is 104 s. Serial communication interface protocol allows a
maximum bit error of 4%, so the MCU must generate a precise signal every 104 s. Therefore the MCU
must be trimmed to generate the fewest errors in the SCI signal generation using the MTIM module. After
these considerations, a free pin in the MCU is needed to transmit data.

This project has benn developed using CodeWarrior v5.1 and the DEMO9RS08KA2 board from Softec.

This example sends the legend FREESCALE through PTA5 using the RS232 protocol. The main function
calls three initialization functions. The first function loads from the table data the value that will be sent
with the page register and calls for the Send_SCI function to send 1 byte each cycle. The operation repeats
Letter_Number times. This variable is the number of characters that contain the data table.

_Startup:
jsr Init_Conf
jsr Init_MTIM
jsr Init_PTA

mainloop:
mov #Letter_Number,Letter_Counter
lda #$C0
tax ;Load in X the first position of table

cicle:
mov #$F8,PAGESEL ;Change Page to Table data
lda ,x ;Load value of allocation
sta Byte_to_Send ;Store value in Variable to Send
jsr Send_SCI
inc x ;Increment to the next position of table
dbnz Letter_Counter,cicle
BRA mainloop

To generate a 9600 baud rate, the time of each bit on the package will be generated every 104 s. Running
at frequency of 8 MHz, it is necessary to establish the MTIM prescaler value with 32, which gives a result
of 4 s for each count. So, to get the 104 s value, it is necessary to generate 26 counts.

Init_MTIM:
mov #$70, MTIMSC ; Enables interrupt, stops and resets timer

; counter
mov #$1A, MTIMMOD ; MTIM modulo with 26 counts before interrupt.
mov #$05, MTIMCLK ; Selects internal clock as reference bus and 32

; preescaler
rts
Serial Communication Interface Implementation using MTIM module for the MC9RS08KA2 Microcontroller

Freescale Semiconductor54

Code Example and Explanation
PTA5 pin is configured as an output because this pin will serve as the transmitter pin.

Init_PTA:
bset 5,PTADD ;PTA5 as output
bset 5,PTAD ;Set PTA5
rts

Send_SCI function initializes the counter variable with eight because the package contains 8-bit data. The
roll_bit serves as a mask bit. This bit will shift left eight times (one each cycle) to make a logical and mask
with the byte to send. If the result is zero, the bit to send will be zero and if the result is non-zero, the bit
to send will be 1. Each bit waits for a timer overflow (104 s) to be sent. When the eight bits have been
sent, PTA is set to 1 for two more timer overflows: the first is the STOP bit and the second one is the gap
time to do the next START bit.

Send_SCI:
mov #08,counter ; variable for control
mov #01,roll_bit ; Mask Variable
bclr 4,MTIMSC ; run Timer
bclr 5,PTAD ; Start Bit
mov #HIGH_6_13(SIP1), PAGESEL

wait2:
brset 2, MAP_ADDR_6(SIP1),data
bra wait2

data: ; Start to Send a data Bit
lda MTIMSC ; Clear overflow interrupt flag
mov #$60,MTIMSC ; Reset MTIM Counter, Clear overflow flag
lda Byte_to_Send
and roll_bit ; Mask with data
beq value_0 ; If bit=0 call Value_0
bra value_1 ; If bit=1 call Value_1

temp:
lda roll_bit
asla ; Shift left Mask Bit
sta roll_bit
dbnz counter,wait2 ; loop until 8 data bits

wait3:
brset 2, MAP_ADDR_6(SIP1),data2
bra wait3

data2:
lda MTIMSC
mov #$60,MTIMSC ; Reset MTIM Counter, Clear overflow flag
bset 5,PTAD ; Stop Bit

wait4:
brset 2, MAP_ADDR_6(SIP1),data3
bra wait4

data3:
lda MTIMSC
mov #$60,MTIMSC ; Reset MTIM Counter, Clear overflow flag

wait5:
brset 2, MAP_ADDR_6(SIP1),data4
bra wait5

data4:
lda MTIMSC
mov #$60,MTIMSC ; Reset MTIM Counter, Clear overflow flag
rts
Serial Communication Interface Implementation using MTIM module for the MC9RS08KA2 Microcontroller

Freescale Semiconductor 55

Hardware Implementation
value_0:
bclr 5,PTAD ; send 0 to data port
bra temp

value_1:
bset 5,PTAD ; send 1 to data port
bra temp

5 Hardware Implementation
This schematic shows the hardware used to evaluate the code provided. For this example, the hardware
implementation is fairly simple because the application itself uses only three of the pins available on the
MCU.

Only three pins of the MCU will be needed:

• Supply voltage pin

• Ground reference pin

• One GPIO pin

Figure 4. SCI transmitter implementation

U1

MAX232

C1+
1

C1-
3

C2+
4

C2-
5

V+
2

V-
6

R1OUT
12

R2OUT
9

T1IN
11

T2IN
10

R1IN
13

R2IN
8

T1OUT
14

T2OUT
7

U2

MC9R08KA2

PTA2/KBIP2/TCLK/RESET/VPP 1
PTA3/BKGD/MS/ACMPO 2
VDD 3
VSS 4

PTA5/KBIP5
5PTA4/KBIP4
6PTA1/KBIP1/ACMP-
7PTA0/KBIP0/ACMP+
8

C1

1uf

C2

1uf

C4
1uF

C6

1uF

0

P1

CONNECTOR DB9

5
9
4
8
3
7
2
6
1

0
VCC
Serial Communication Interface Implementation using MTIM module for the MC9RS08KA2 Microcontroller

Freescale Semiconductor56

Freescale Semiconductor 57

Document Number: RS08QRUG
Rev. 2
11/2011

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org

© Freescale Semiconductor, Inc. 2011–2012. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	RS08 Peripheral Module Quick Reference
	1 Overview
	2 Code Example and Explanation
	3 Hardware Implementation

	Using the Analog Comparator (ACMP) for the RS08 Microcontrollers
	1 Overview
	2 Operating Modes and Examples
	2.1 FLL Engaged Internal (FEI)
	2.2 FLL Bypassed Internal (FBI)
	2.3 FLL Bypassed Internal Low Power (FBILP)

	3 Recommendations
	4 Conclusion

	Using the Internal Clock Source (ICS) for the RS08 Microcontrollers
	1 Overview
	2 Code Example and Explanation
	3 Hardware Implementation

	Using the Keyboard Interrupt (KBI) for the RS08 Microcontrollers
	1 Overview
	2 Code Example and Explanation
	3 Hardware Implementation

	Using the Modulo Timer (MTIM) for the RS08 Microcontrollers
	1 Overview
	2 Code Example and Explanation
	3 Hardware Implementation

	Using the Real-Time Interrupt (RTI) for the RS08 Microcontrollers
	1 Overview
	2 RS08 Memory Map
	2.1 Addressing Modes
	2.2 Page Mapping
	2.3 Implementation Example
	2.4 Search Routine

	RS08 Addressing Modes
	1 Overview
	2 Code Example and Explanation
	3 Hardware Implementation

	Interrupt Handling on RS08 MCUs
	1 Overview
	2 Low-Power Modes
	2.1 Wait Mode Overview
	2.2 Stop Mode Overview

	3 Code Example and Explanation
	4 Hardware Configuration

	Using the Low-Power Modes for the RS08 Family Microcontrollers
	1 Overview
	2 Code Example and Explanation
	3 Hardware Implementation

	Nesting Subroutines in the RS08 Microcontrollers
	1 Overview
	2 Theory
	3 Calculating Table Values
	3.1 Example Calculating an ADC Value

	4 Code Example and Explanation
	5 Hardware Implementation

	Implementing an Analog-to-Digital Converter (ADC) on the MC9RS08KA2
	1 Overview
	2 Theory - Asynchronous Serial Communication Interface
	3 Flow Chart
	4 Code Example and Explanation
	5 Hardware Implementation

	Serial Communication Interface Implementation using MTIM module for the MC9RS08KA2 Microcontroller

