
NXP Semiconductors Document Number: PEXMVHBRIDGEPUG
User’s guide Rev. 1.0, 2/2016

© 2016 NXP B.V.

Contents

1 General Info . 2

2 Embedded Component Description . 2
2.1 Component API . 2
2.2 Events . 4
2.3 Methods . 4
2.4 Properties . 9

3 Typical Usage . 12

4 User Types . 19

MVHBridge Programming Guide

General Info

2 NXP Semiconductors

MVHBridge Programming Guide, Rev. 1.0

1 General Info

This documentation introduces Processor Expert component named MVHBridge. This component
supports and provides flexible software solution for these analog parts:

NXP MC33926: Single H-Bridge, Brushed DC Motor Driver, 5-28V, 5A, 20kHz

NXP MC33931: Single H-Bridge, Brushed DC Motor Driver, 5-28V, 5A, 11kHz

NXP MC33932: Dual H-Bridge, Stepper/Brushed DC Motor Driver, 5-28V, 5A, 11kHz

NXP MC34931(S): Single H-Bridge, Brushed DC Motor Driver, 5-36V, 5A, 11kHz/20kHz

NXP MC34932(S): Dual H-Bridge, Stepper/Brushed DC Motor Driver, 5-36V, 5A, 11kHz/20kHz

NXP offers Tower and Freedom board solutions based on these chips, namely TWR-MC-MVHB1EVB
(for MC33926 and MC33932), FRDM-33931-EVB, FRDM-34931-EVB and FRDM-34931S-EVB boards.
Detailed description can be found in related hardware user guides and datasheets.

2 Embedded Component Description

2.1 Component API

MVHBridge component provides API, which can be used for dynamic real-time configuration of device
in user code. Available methods and events are listed under component selection Some of those
methods/events are marked with ticks and other ones with crosses, it distinguishes which
methods/events are supposed to be generated or not. You can change this setting in Processor Expert
Inspector. Note that methods with grey text are always generated because they are needed for proper
functionality. This forced behavior depends on various combinations of settings of component
properties. For summarization of available API methods and events and their descriptions, see Table 1
MVHBridge Component API

Table 1

Method Description
Init Initializes the device. Allocates memory for the device data

structure, sets HBridge device mode, etc. This method can
be called only once. Before the second call of Init() the
Deinit() must be called first. Components linked by HBridge
(TimerUnitLDD, ADC LDD) are not initialized here.

Deinit This method deinitializes the device. Method Deinit of en-
able and disable pins (BitIO LDD components) is called. This
method does not influence linked timer device (TimerUnitLDD
component). Channels of the timer used by the MVHBridge
component remains functional.

SetMode This method sets HBridge device mode using enable and disable
pins. The method is available only when Enable and Disable
Pins setting is enabled.

GetCurrentMeasurement This method is intended for measuring of HBridge output cur-
rent. The method is available only when Feedback Pin setting
is enabled. This method returns raw measurement result from
ADC. HBridge feedback provides groundreferenced 0.24% of the
high side output current.

GetStatusFlag This method returns fault status of HBridge device. Fault is
detected when HBridge Status Flag pin goes to LOW. The
method is available only when Status Flag Pin attribute is en-
abled.

ClearStatusFlag This method clears fault flag of HBridge device by toggling of
D1 pin. Method is available only when Status Flag Pin setting
and Enable and Disable Pins setting is enabled.

1
2
2.1

Embedded Component Description

MVHBridge Programming Guide, Rev. 1.0

NXP Semiconductors 3

InvertInputPins This method inverts output value of IN pins. The method
is available only when Input Invert setting is enabled and
MC33926 HBridge model is used.

RotateProportional This method starts rotation of brush motor. The method allows
control of motor speed.

RotateFull This method starts rotation of brush motor. The method is in-
tended for state motor control (on/off).

SetRecirculation This method sets recirculation of brush motor.
SetDirection This method sets direction of brush motor.
SetFullStepSpeed Set speed of fullstep mode. Unit is number of fullsteps per sec-

ond. It is not allowed to change speed while motor is running.
SetMicroStepSpeed Set speed of microstep mode. Unit is number of microsteps per

second. Size of microstep depends on setting in Processor Ex-
pert (number of microsteps per fullstep). It is not allowed to
change speed while motor is running.

MoveSteps This method moves the motor by specified number of fullsteps.
When the rotor is not at physical fullstep position then the
method sets the nearest fullstep position without correction.
Note that number of steps returned by method [GetFullStep-
Position] are updated before they are executed. For example an
user calls the method [MoveSteps] with parameter Steps equal
to 100. Certain number of these steps are counted before they
are physically executed (for example 64 steps when ”Output-
Control” property is set to PWM and FTM device is used).

MoveMicroSteps Moves motor by specified number of microsteps. When the ro-
tor is not at physical microstep position then the method sets
nearest microstep without correction. For example the size is
initialized to 32 microsteps per one fullstep and the motor exe-
cuted three microsteps. Then user changes microstep size to 2
microsteps per one fullstep and starts motor movement (previ-
ous three microsteps are not visible).

MoveContinual Moves motor continually in fullstep mode. You can stop mo-
tor by calling [StopContinualMovement] method. When rotor
is not at physical fullstep position then the method sets nearest
fullstep without correction. This method is not available when
acceleration ramp is used.

MoveMicroContinual This method moves motor continually in microstep mode. You
can stop motor by calling [StopContinualMovement] method.
When the rotor is not at physical microstep position then the
method sets nearest microstep without correction. For example
the size is initialized to 32 microsteps per one fullstep and the
motor executed three microsteps. Then user changes microstep
size to 2 microsteps per one fullstep and starts motor movement
(previous three microsteps are not visible). This method is not
available when the acceleration ramp is used.

StopContinualMovement This method is intended to stop continual movement of step-
per motor. The method does not stop motor immediately, mo-
tor can execute several steps. In microstep mode the motor
does not have to stop at fullstep position (can stop anywhere).
This method is not available when acceleration ramp is used or
method [MoveContinual] or [MoveMicroContinual] is not en-
abled.

GetMotorStatus This method returns status of stepper motor control. Possible
values are defined in TMotorStatus enumeration in header file.

AlignRotor Align the rotor to fullstep position. The method executes 4 full-
steps forward (one electrical revolution) at minimum speed (see
”component name” MIN FULLSTEP SPEED constant). These
steps are not counted to the number of fullsteps. This method is
not available when Motor Control Mode is set to Microstep.

Embedded Component Description

4 NXP Semiconductors

MVHBridge Programming Guide, Rev. 1.0

SetMicroStepSize This method serves to change size of microstep. Note that the
size of microstep is initialized to value set in Processor Expert
property ”Microsteps per Step”. The motor must not be run-
ning when you call this method. The method is available only
when microstepping is enabled.

GetFullStepPosition This method returns current fullstep position. Position is set to
zero when initialization of HBridge component occurs. It can be
reset by method [ResetFullStepPosition].

ResetFullStepPosition This method sets counter of fullsteps to zero.
DisableMotor The method sets IN pins output value to LOW. The method

can be used to stop the stepper motor. Output value of the pins
are not changed immediately, because the counter registers are
updated after the counter overflows (at the beginning of the
next counter period). Note that default behavior of the motor
control is to hold position when a movement is completed.

2.2 Events

OnStatusFlagA - This event is called when status flag signal goes to LOW on Bridge A. The handler
is available only when Status Flag Pin setting is enabled for interface A.

ANSIC prototype:void OnStatusFlagA(LDD TUserData UserDataPtr)

UserDataPtr:LDD TUserData - Pointer to the user data. The pointer passed as the parameter of
Init method.

OnStatusFlagB - This event is called when status flag signal goes to LOW on Bridge B. The handler
is available only when Status Flag Pin setting is enabled for interface B and dual H-Bridge models is
used.

ANSIC prototype:void OnStatusFlagB(LDD TUserData UserDataPtr)

UserDataPtr:LDD TUserData - Pointer to the user data. The pointer passed as the parameter of
Init method.

OnActionComplete - This event is called when the motor reaches desired number of steps or the
motor is stopped by method [StopContinualMovement]. The handler is available only for stepper motor.

ANSIC prototype:void OnActionComplete(LDD TUserData UserDataPtr)

UserDataPtr:LDD TUserData - Pointer to the user data. The pointer passed as the parameter of
Init method.

2.3 Methods

Init - Initializes the device. Allocates memory for the device data structure, sets H-Bridge device mode,
etc. This method can be called only once. Before the second call of Init() the Deinit() must be called
first. Components linked by H-Bridge (TimerUnitLDD, ADC LDD) are not initialized here.

ANSIC prototype:Init(LDD TUserData *UserDataPtr)

UserDataPtr: Pointer to LDD TUserData - Pointer to the user data. This pointer will be passed
as an event or callback parameter.

Return value:void - Device data structure pointer.

Deinit - This method deinitializes the device. Method Deinit of enable and disable pins (BitIO LDD
components) is called. This method does not influence linked timer device (TimerUnitLDD component).
Channels of the timer used by the MVHBridge component remains functional.

ANSIC prototype: void Deinit()

Return value:void -

SetMode - This method sets H-Bridge device mode using enable and disable pins. The method is
available only when Enable and Disable Pins setting is enabled.

2.2
2.3

Embedded Component Description

MVHBridge Programming Guide, Rev. 1.0

NXP Semiconductors 5

ANSIC prototype: LDD TError SetMode(THBrMode Mode,THBridge Bridge)

Mode:THBrMode - Desired H-Bridge mode, possible values are defined in enumeration THBrMode
in header file.

Bridge:THBridge - Selection of H-Bridge interface. Only hbBRIDGE A value is correct when
single H-Bridge model is used.

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR PARAM VALUE : Invalid value of parameter Bridge or Mode.

GetCurrentMeasurement - This method is intended for measuring of H-Bridge output current. The
method is available only when Feedback Pin setting is enabled. This method returns raw measurement
result from ADC. H-Bridge feedback provides ground-referenced 0.24% of the high side output current.

ANSIC prototype: LDD TError GetCurrentMeasurement(THBridge Bridge,uint16 t *BufferPtr)

Bridge:THBridge - Selection of H-Bridge interface. Only hbBRIDGE A value is correct when
single H-Bridge model is used.

BufferPtr: Pointer to uint16 t - Array with one item for measurement result. Current must be
count from BufferPtr. Formula for I=f(BufferPtr)[mA] is: I = (BufferPtr * ADC REF * 1000) /
(65535 * R FB * 0.24%),

where R FB is Resistor on Feedback pin and ADC REF is reference Voltage on ADC converter.

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR PARAM VALUE : Invalid value of parameter Bridge.

Other error codes are defined by ADC LDD. For more details see the ADC LDD documentation.

GetStatusFlag - This method returns fault status of H-Bridge device. Fault is detected when
H-Bridge Status Flag pin goes to LOW. The method is available only when Status Flag Pin attribute is
enabled.

ANSIC prototype: LDD TError GetStatusFlag(THBridge Bridge,bool *Fault)

Bridge:THBridge - Selection of H-Bridge interface. Only hbBRIDGE A value is correct when
single H-Bridge model is used.

Fault: Pointer to bool - Here will be stored value of H-Bridge current status. It is set to TRUE
when a fault occurred, else set to FALSE.

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR PARAM VALUE : Invalid value of parameter Bridge.

ClearStatusFlag - This method clears fault flag of H-Bridge device by toggling of D1 pin. Method is
available only when Status Flag Pin setting and Enable and Disable Pins setting is enabled.

ANSIC prototype: LDD TError ClearStatusFlag(THBridge Bridge)

Bridge:THBridge - Selection of H-Bridge interface. Only hbBRIDGE A value is correct when
single H-Bridge model is used.

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR PARAM VALUE : Invalid value of Bridge parameter.

InvertInputPins - This method inverts output value of IN pins. The method is available only when
Input Invert setting is enabled and MC33926 H-Bridge model is used.

ANSIC prototype: void InvertInputPins(bool Invert)

Invert:bool - TRUE for inverting value on IN pins. Put FALSE when you do not want to invert
value on pins.

Return value:void -

RotateProportional - This method starts rotation of brush motor. The method allows control of
motor speed.

Embedded Component Description

6 NXP Semiconductors

MVHBridge Programming Guide, Rev. 1.0

ANSIC prototype: LDD TError RotateProportional(uint8 t PWMDuty,THBridge Bridge)

PWMDuty:uint8 t - Value of PWM duty. Value have to be in range 0,.., 100.

Bridge:THBridge - Selection of H-Bridge interface. Only hbBRIDGE A value is correct when
single H-Bridge model is used.

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR PARAM VALUE : Invalid value of parameter PWMDuty or parameter Bridge.

Other error codes are defined by TimerUnit LDD. For more details see the TimerUnit LDD
documentation.

RotateFull - This method starts rotation of brush motor. The method is intended for state motor
control (on/off).

ANSIC prototype: LDD TError RotateFull(bool Rotate,THBridge Bridge)

Rotate:bool - TRUE for rotation, FALSE for stop.

Bridge:THBridge - Selection of H-Bridge interface. Only hbBRIDGE A value is correct when
single H-Bridge model is used.

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR PARAM VALUE : Invalid value of parameter Bridge.

SetRecirculation - This method sets recirculation of brush motor.

ANSIC prototype: LDD TError SetRecirculation(bool HSide,THBridge Bridge)

HSide:bool - When the parameter is TRUE high-Side Recirculation is set (IN1 and IN2 are set to
HIGH or IN3 and IN4 are set to HIGH). When the parameter Low-Side Recirculation is set (IN1
and IN2 are set to LOW or IN3 and IN4 are set to LOW).

Bridge:THBridge - Selection of H-Bridge interface. Only hbBRIDGE A value is correct when
single H-Bridge model is used.

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR PARAM VALUE : Invalid value of paramter Bridge.

Other error codes are defined by TimerUnit LDD. For more details see the TimerUnit LDD
documentation.

SetDirection - This method sets direction of brush motor.

ANSIC prototype: LDD TError SetDirection(bool Forward,THBridge Bridge)

Forward:bool - Motor direction.

Bridge:THBridge - Selection of H-Bridge interface. Only hbBRIDGE A value is correct when
single H-Bridge model is used.

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR PARAM VALUE : Invalid value of parameter Bridge.

SetFullStepSpeed - Set speed of full-step mode. Unit is number of full-steps per second. It is not
allowed to change speed while motor is running.

ANSIC prototype: LDD TError SetFullStepSpeed(uint32 t StepsSec)

StepsSec:uint32 t - Motor speed in number of full-steps per second. Minimal and maximal speed is
defined by constants ”component name” MIN FULLSTEP SPEED and
”component name” MAX FULLSTEP SPEED placed in header file.

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR BUSY : Motor is running.

ERR PARAM VALUE : Invalid value of parameter StepsSec.

Other error codes are defined by TimerUnit LDD. For more details see the TimerUnit LDD
documentation.

Embedded Component Description

MVHBridge Programming Guide, Rev. 1.0

NXP Semiconductors 7

SetMicroStepSpeed - Set speed of micro-step mode. Unit is number of micro-steps per second. Size
of micro-step depends on setting in Processor Expert (number of micro-steps per full-step). It is not
allowed to change speed while motor is running.

ANSIC prototype: LDD TError SetMicroStepSpeed(uint32 t MicroStepsSec)

MicroStepsSec:uint32 t - Motor speed in number of micro-steps per second. Minimal and maximal
speed is defined by constants ”component name” MIN MICROSTEP SPEED,
”component name” MAX MICROSTEP SPEED.

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR BUSY : Motor is running.

ERR PARAM VALUE : Invalid value of parameter MicroStepsSec.

Other error codes are defined by TimerUnit LDD. For more details see the TimerUnit LDD
documentation.

MoveSteps - This method moves the motor by specified number of full-steps. When the rotor is not at
physical full-step position then the method sets the nearest full-step position without correction. Note
that number of steps returned by method [GetFullStepPosition] are updated before they are executed.
For example an user calls the method [MoveSteps] with parameter Steps equal to 100. Certain number
of these steps are counted before they are physically executed (for example 64 steps when
”OutputControl” property is set to PWM and FTM device is used).

ANSIC prototype: LDD TError MoveSteps(bool Forward,uint32 t Steps)

Forward:bool - Motor direction.

Steps:uint32 t - Number of full-steps to be performed. Maximal value is 100 000 000.

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR BUSY : Motor is running.

ERR PARAM VALUE : Invalid number of steps.

ERR FAILED : Invalid value of TimerUnit LDD input frequency (see setting Counter frequency of
TimerUnit LDD component).

Other error codes are defined by TimerUnit LDD. For more details see the TimerUnit LDD
documentation.

MoveMicroSteps - Moves motor by specified number of micro-steps. When the rotor is not at
physical micro-step position then the method sets nearest micro-step without correction. For example
the size is initialized to 32 micro-steps per one full-step and the motor executed three micro-steps. Then
user changes micro-step size to 2 micro-steps per one full-step and starts motor movement (previous
three micro-steps are not visible).

ANSIC prototype: LDD TError MoveMicroSteps(bool Forward,uint32 t MicroSteps)

Forward:bool - Motor direction.

MicroSteps:uint32 t - Number of micro-steps to be performed. Maximal value is 100 000 000.

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR BUSY : Motor is running.

ERR PARAM VALUE : Invalid number of steps.

ERR FAILED : Invalid value of TimerUnit LDD input frequency (see setting Counter frequency of
TimerUnit LDD component).

Other error codes are defined by TimerUnit LDD. For more details see the TimerUnit LDD
documentation.

MoveContinual - Moves motor continually in full-step mode. You can stop motor by calling
[StopContinualMovement] method. When rotor is not at physical full-step position then the method
sets nearest full-step without correction. This method is not available when acceleration ramp is used.

ANSIC prototype: LDD TError MoveContinual(bool Forward)

Forward:bool - Motor direction.

Embedded Component Description

8 NXP Semiconductors

MVHBridge Programming Guide, Rev. 1.0

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR BUSY : Motor is running.

ERR FAILED : Invalid value of TimerUnit LDD input frequency (see setting Counter frequency of
TimerUnit LDD component).

Other error codes are defined by TimerUnit LDD. For more details see the TimerUnit LDD
documentation.

MoveMicroContinual - This method moves motor continually in micro-step mode. You can stop
motor by calling [StopContinualMovement] method. When the rotor is not at physical micro-step
position then the method sets nearest micro-step without correction. For example the size is initialized
to 32 micro-steps per one full-step and the motor executed three micro-steps. Then user changes
micro-step size to 2 micro-steps per one full-step and starts motor movement (previous three
micro-steps are not visible). This method is not available when the acceleration ramp is used.

ANSIC prototype: LDD TError MoveMicroContinual(bool Forward)

Forward:bool - Motor direction.

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR BUSY : Motor is running.

ERR FAILED : Invalid value of TimerUnit LDD input frequency (see setting Counter frequency of
TimerUnit LDD component).

Other error codes are defined by TimerUnit LDD. For more details see the TimerUnit LDD
documentation.

StopContinualMovement - This method is intended to stop continual movement of stepper motor.
The method does not stop motor immediately, motor can execute several steps. In micro-step mode the
motor does not have to stop at full-step position (can stop anywhere). This method is not available
when acceleration ramp is used or method [MoveContinual] or [MoveMicroContinual] is not enabled.

ANSIC prototype: LDD TError StopContinualMovement()

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR FAILED : Motor is not running or not running in continuous mode.

GetMotorStatus - This method returns status of stepper motor control. Possible values are defined in
TMotorStatus enumeration in header file.

ANSIC prototype: TMotorStatus GetMotorStatus()

Return value:TMotorStatus - Motor status.

AlignRotor - Align the rotor to full-step position. The method executes 4 full-steps forward (one
electrical revolution) at minimum speed (see ”component name” MIN FULLSTEP SPEED constant).
These steps are not counted to the number of full-steps. This method is not available when Motor
Control Mode is set to Micro-step.

ANSIC prototype: LDD TError AlignRotor()

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR BUSY : Motor is running.

ERR FAILED : Invalid value of TimerUnit LDD input frequency (see setting Counter frequency of
TimerUnit LDD component).

Other error codes are defined by TimerUnit LDD. For more details see the TimerUnit LDD
documentation.

SetMicroStepSize - This method serves to change size of micro-step. Note that the size of micro-step
is initialized to value set in Processor Expert property ”Micro-steps per Step”. The motor must not be
running when you call this method. The method is available only when micro-stepping is enabled.

ANSIC prototype: LDD TError SetMicroStepSize(uint8 t Size)

Size:uint8 t - Number of micro-steps per one full-step. Possible values are 2, 4, 8, 16, 32. For
example put 16 to set 16 micro-steps per one full-step.

Embedded Component Description

MVHBridge Programming Guide, Rev. 1.0

NXP Semiconductors 9

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR BUSY : Motor is running.

ERR PARAM VALUE : Invalid value of parameter Size.

GetFullStepPosition - This method returns current full-step position. Position is set to zero when
initialization of H-Bridge component occurs. It can be reset by method [ResetFullStepPosition].

ANSIC prototype: int32 t GetFullStepPosition()

Return value:int32 t - Current position of rotor in number of full-steps taken from initial position.

ResetFullStepPosition - This method sets counter of full-steps to zero.

ANSIC prototype: LDD TError ResetFullStepPosition()

Return value:LDD TError - Error code.

ERR OK : No problem detected

ERR BUSY : Motor is running.

DisableMotor - The method sets IN pins output value to LOW. The method can be used to stop the
stepper motor. Output value of the pins are not changed immediately, because the counter registers are
updated after the counter overflows (at the beginning of the next counter period). Note that default
behavior of the motor control is to hold position when a movement is completed.

ANSIC prototype: LDD TError DisableMotor()

Return value:LDD TError - Error code. Error code values are defined by TimerUnit LDD. For
more details see the TimerUnit LDD documentation.

2.4 Properties

Component Name - Name of the component.

H-Bridge Model - H-Bridge model.

Motor Control - Select type of motor you want to use. DC brush motor is controlled by two
input pins. Stepper motor is controlled by 4 input pins and can be used only with dual H-Bridge
model. Custom control is without motor settings.

Timer Settings - Timer Settings property. Select TimerUnit LDD component and select
Timer device.

The following items are available only if the group is enabled (the value is ”Enabled”):

Timer Component - Reference to TimerUnit LDD that serves for timing of motor
control.

Timer Device - Name of the counter used by TimerUnit LDD component.

Stepper Motor - Stepper motor settings.

Output Control - Stepper control method.

There are 2 options:

PWM: All four IN pins are controlled by PWM signal (TimerUnit LDD channels).

GPIO: All four IN pins are controlled by GPIO (BitIO LDD).

Manual Timer setting - Setting ”Counter frequency” of linked TimerUnit LDD
component is automaticaly set when ”Manual timer setting” is set to ”Disable”. You can
change the timer frequency when you enable the manual setting. Please note that list of
frequencies (2 values of frequency, first is for full-stepping and second for micro-stepping)
must be set when the ”Motor Control Mode” is set to ”Full-step and Micro-step”. Fixed
value (1 value of frequency) is required in other cases. You also must set correct values of
frequency. Minimal frequency for full-stepping is 131 072 Hz and maximal frequency is 1
MHz. Minimal frequency for micro-stepping is 1.2 MHz and maximal value is 10 MHz.

There are 2 options:

Enabled

Disabled

Motor Control Mode - Stepper motor control mode. Micro-stepping is available only
when output control is set to ”PWM”.

2.4

Embedded Component Description

10 NXP Semiconductors

MVHBridge Programming Guide, Rev. 1.0

Full-step Configuration - Configuration of full-stepping.

Initial Speed - Initial motor speed in full-step mode. The speed can be changed later
in C code. Unit is number of full-steps per second.

Acceleration Ramp - Fluent acceleration to desired speed and decelaration to zero.
Put 0 value to disable ramp. Unit is full-steps per second per second.

Micro-step Configuration - Configuration of micro-stepping.

PWM Frequency - PWM frequency for micro-stepping in kHz. Maximum value
depends on used H-Bridge model. 20 kHz is max. when MC34931S or MC34932S
models are selected in ”H-Bridge Model”. Other dual H-Bridge models have max. 11
kHz.

Micro-steps per Step - Number of micro-steps per one full-step. The size can be
changed later in C code.

There are 2 options:

2 Micro-steps

4 Micro-steps

Initial Speed - Initial motor speed in micro-step mode. The speed can be changed
later in C code. Unit is number of micro-steps per second. Size of micro-step depends
on property ”Micro-steps per step”.

Acceleration Ramp - Fluent acceleration to desired speed and decelaration to zero.
Put 0 value to disable ramp. Unit is micro-steps per second per second. Size of
micro-step depends on Micro-steps per Step setting.

H-Bridge A MCU Interface - Configuration of H-Bridge interface to MCU. If the H-Bridge
model has two independent interfaces (dual H-Bridge model) then this is interface A.

The following items are available only if the group is enabled (the value is ”Enabled”):

DC brush - Configuration of DC Brush motor.

Control Mode - Motor can be controlled by PWM signal from linked TimerUnit LDD
(speed control) or by GPIO pins (state control). In state control you can only switch the
motor on or off.

PWM Frequency - PWM frequency for speed motor control. Maximum value
depends on selected H-Bridge model (11 kHz is limit of MC33931, MC34931,
MC33932, MC34932; 20 kHz is limit of MC33926, MC34931S, MC34932S). It is
necessary to type here both a value and an unit.

Direction Control - Setting of direction in which you can change speed. Available
only when Speed control is set.

Init. Direction - Initial direction of brushed DC motor. Forward means that IN1 is
high and IN2 low. Reverse means IN1 is low and IN2 high. Direction can be changed
later in C code.

There are 2 options:

Forward: Initial direction is forward.

Reverse: Initial direction is reverse.

Device Mode - Selection of H-Bridge operating mode.

There are 3 options:

Normal Mode: H-Bridge is fully operational.

Sleep Mode: H-Bridge is not operational and saves energy (consuming max 50uA).

StandBy Mode: H-Bridge is operational, output OUT1 and OUT2 are tri-stated
(consuming max 20 mA).

Device Settings A - H-Bridge pins configuration. If the H-Bridge model has two
independent interfaces (dual H-Bridge model) then this is interface A.

Enable and Disable Pins - Settings of enable and disable pins.

The following items are available only if the group is enabled (the value is ”Enabled”):

Pin for D1 - Disable input 1 pin for stand by mode.

Pin for D2 - Disable input 2 pin for stand by mode.

Pin for EN/D2bar - Enable pin for sleep mode.

Pin for En - Enable pin for sleep mode.

Slew Rate - Pin is used to select fast or slow Slew rate.

Embedded Component Description

MVHBridge Programming Guide, Rev. 1.0

NXP Semiconductors 11

The following items are available only if the group is enabled (the value is ”Enabled”):

Pin for SLEW - Selection of pin for Slew rate. Slew rate is selected automatically
according to value of PWM Frequency property (fast slew rate for more than 11 kHz,
else slow slew rate).

Input Invert - Input invert pin. Default condition is not inverted.

The following items are available only if the group is enabled (the value is ”Enabled”):

Pin for INV - Selection of Input invert pin. Input pins are not inverted by default.

Input Control Pins - Control mode for IN1 and IN2 pin. Attribute can be changed
only when ”Custom” option is selected in ”Motor Control” attribute.

Pin for IN1 - IN1 pin for control of OUT1.

Pin for IN2 - IN2 pin for control of OUT2.

Feedback Pin - Sensing of current via AD converter.

The following items are available only if the group is enabled (the value is ”Enabled”):

ADC Component - Select linked ADC LDD you want to use.

ADC Device - AD converter device used by linked ADC LDD.

ADC Pin - Select pin for current sensing via AD converter.

There are 2 options:

Enabled

Disabled

ADC Conversion Time - Time for one AD conversion. It is necessary to type here
both a value and an unit.

Status Flag Pin - Status flag for H-Bridge fault detection.

The following items are available only if the group is enabled (the value is ”Enabled”):

Pin for Status Flag - Select pin you want to use for status flag.

There are 2 options:

Enabled

Disabled

H-Bridge B MCU Interface - Configuration of H-Bridge interface to MCU. If the H-Bridge
model has two independent interfaces (dual H-Bridge model) then this is interface B.

The following items are available only if the group is enabled (the value is ”Enabled”):

DC brush - Configuration of DC Brush motor.

Control Mode - Motor can be controlled by PWM signal from linked TimerUnit LDD
(speed control) or by GPIO pins (state control). In state control you can only switch the
motor on or off.

PWM Frequency - PWM frequency for speed motor control. Maximum value
depends on selected H-Bridge model (11 kHz is limit of MC33931, MC34931,
MC33932, MC34932; 20 kHz is limit of MC33926, MC34931S, MC34932S). It is
necessary to type here both a value and an unit.

Direction Control - Setting of direction in which you can change speed. Available
only when Speed control is set.

Init. Direction - Initial direction of brushed DC motor. Forward means that IN3 is
high and IN4 low. Reverse means IN3 is low and IN4 high. Direction can be changed
later in C code.

There are 2 options:

Forward: Initial direction is forward.

Reverse: Initial direction is reverse.

Device Mode - Selection of H-Bridge operating mode.

There are 3 options:

Normal Mode: H-Bridge is fully operational.

Sleep Mode: H-Bridge is not operational and saves energy (consuming max 50uA).

StandBy Mode: H-Bridge is operational, output OUT1 and OUT2 are tri-stated
(consuming max 20 mA).

Device Settings B - H-Bridge pins configuration. If the H-Bridge model has two
independent interfaces (dual H-Bridge model) then this is interface B.

Typical Usage

12 NXP Semiconductors

MVHBridge Programming Guide, Rev. 1.0

Enable and Disable Pins - Settings of enable and disable pins.

The following items are available only if the group is enabled (the value is ”Enabled”):

Pin for D3 - Disable input 3 pin for stand by mode.

Pin for EN/D4bar - Enable pin for sleep mode.

Input Control Pins - Control mode for IN3 and IN4 pin. Attribute can be changed
only when ”Custom” option is selected in ”Motor Control” attribute.

Pin for IN3 - IN3 pin for control of OUT3

Pin for IN4 - IN4 pin for control of OUT4

Feedback Pin - Sensing of current via AD converter.

The following items are available only if the group is enabled (the value is ”Enabled”):

ADC Component - Select linked ADC LDD you want to use.

ADC Device - AD converter device used by linked ADC LDD.

ADC Pin - Select pin for current sensing via AD converter.

There are 2 options:

Enabled

Disabled

ADC Conversion Time - Time for one AD conversion. It is necessary to type here
both a value and an unit.

Status Flag Pin - Status flag for H-Bridge fault detection.

The following items are available only if the group is enabled (the value is ”Enabled”):

Pin for Status Flag - Select pin you want to use for status flag.

There are 2 options:

Enabled

Disabled

Auto Initialization - Automated initialization of the component. The component Init method is
automatically called from CPU component initialization function PE low level init().

There are 2 options:

yes

no

3 Typical Usage

Examples of typical settings and usage of MVHBridge component.

The state control of DC brushed motor

Required component setup:

Motor Control Mode: Brushed

Device Mode: Normal Mode

Set properties under group H-Bridge A MCU Interface. Set also H-Bridge B MCU Interface when
you use dual H-Bridge model:

Control Mode: State Control

Direction Control: select Bidirectional if you want to change the motor direction in runtime
(not necessary here).

Set Enable and Disable Pins and Input Control Pins according to used MCU.

Feedback Pin and Status Flag Pin are not necessary (you can disable these pins).

Auto Initialization: no

Methods: Init, RotateFull,

Note: ”MVH1” is name of MVHBridge component.

Content of Main.c:

3

Typical Usage

MVHBridge Programming Guide, Rev. 1.0

NXP Semiconductors 13

Listing 1: Source code

void main (void)
{

/∗ Var iab le f o r sav ing e r r o r code . ∗/
LDD TError e r r o r = ERR OK;

. . .

/∗ I n i t i a l i z a t i o n o f MVHBridge component . I t i s p o s s i b l e to pass po in t e r
to
∗ your own data , which i s then s to r ed in dev i c e data s t r u c tu r e . ∗/

MVH1 Init(&UserData) ;

∗ placed in header f i l e (here MVH1. h) . ∗/
e r r o r = MVH1 RotateFull (TRUE, hbBRIDGE B) ;
i f (e r r o r != ERR OK) {

/∗ Handle e r r o r . ∗/
}

/∗ Stop motor ∗/
e r r o r = MVH1 RotateFull (FALSE, hbBRIDGE B) ;
i f (e r r o r != ERR OK) {

/∗ Handle e r r o r . ∗/
}
. . .

}

The proportional control of DC brushed motor

Required component setup:

Motor Control Mode: Brushed

Set properties under group H-Bridge A MCU Interface. Set also H-Bridge B MCU Interface when
you use dual H-Bridge model

Device Mode: Normal Mode

Control Mode: Speed Control

Direction Control: Bidirectional

Set Enable and Disable Pins and Input Control Pins according to used MCU.

Feedback Pin and Status Flag Pin are not necessary (you can disable these pins).

Auto Initialization: yes

Methods: Init, SetDirection, RotateProportional

Note: example also shows how to change the motor direction. The method ”Init” is called from
”PE low level init” function automatically due to auto initialization.

Content of Main.c:

Listing 2: Source code

void main (void)
{

/∗ Var iab le f o r sav ing e r r o r code . ∗/
LDD TError e r r o r = ERR OK;

. . .

/∗ Set forward d i r e c t i o n o f a motor on the i n t e r f a c e A. ∗/
e r r o r = MVH1 SetDirection (TRUE, hbBRIDGE A) ;
i f (e r r o r != ERR OK) {

/∗ Handle e r r o r . ∗/
}

Typical Usage

14 NXP Semiconductors

MVHBridge Programming Guide, Rev. 1.0

/∗ Run the motor in forward d i r e c t i o n . ∗/
e r r o r = MVH1 RotateProportional (50 , hbBRIDGE A) ;
i f (e r r o r != ERR OK) {

/∗ Handle e r r o r . ∗/
}

/∗ Stop the motor . ∗/
e r r o r = MVH1 RotateProportional (0 , hbBRIDGE A) ;
i f (e r r o r != ERR OK) {

/∗ Handle e r r o r . ∗/
}

/∗ Set r e v e r s e d i r e c t i o n o f the motor on i n t e r f a c e A. ∗/
e r r o r = MVH1 SetDirection (FALSE, hbBRIDGE A) ;
i f (e r r o r != ERR OK) {

/∗ Handle e r r o r . ∗/
}
/∗ Run the motor in r e v e r s e d i r e c t i o n . ∗/
e r r o r = MVH1 RotateProportional (50 , hbBRIDGE A) ;
i f (e r r o r != ERR OK) {

/∗ Handle e r r o r . ∗/
}
. . .

}

High/Low Side Recirculacion of DC brushed motor

Required component setup:

Motor Control Mode: Brushed

Device Mode: Normal Mode

Set properties under group H-Bridge A MCU Interface. Set also H-Bridge B MCU Interface when
you use dual H-Bridge model:

Control Mode: Speed Control

Direction Control: select Bidirectional if you want to change the motor direction in runtime
(not necessary here).

Set Enable and Disable Pins and Input Control Pins according to used MCU.

Feedback Pin and Status Flag Pin are not necessary (you can disable these pins).

Auto Initialization: yes

Methods: Init, SetRecirculation, RotateProportional

Note: the example also shows how to change the motor direction.

Content of Main.c:

Listing 3: Source code

void main (void)
{

/∗ Var iab le f o r sav ing e r r o r code . ∗/
LDD TError e r r o r = ERR OK;

. . .

/∗ Run a motor . ∗/
e r r o r = MVH1 RotateProportional (100 , hbBRIDGE A) ;
i f (e r r o r != ERR OK) {

/∗ Handle e r r o r . ∗/
}
/∗ Set High s i d e r e c i r c u l a t i o n . ∗/
e r r o r = MVH1 SetRecirculation (TRUE, hbBRIDGE A) ;

Typical Usage

MVHBridge Programming Guide, Rev. 1.0

NXP Semiconductors 15

i f (e r r o r != ERR OK) {
/∗ Handle e r r o r . ∗/

}

/∗ Run a motor . ∗/
e r r o r = MVH1 RotateProportional (100 , hbBRIDGE A) ;
i f (e r r o r != ERR OK) {

/∗ Handle e r r o r . ∗/
}
/∗ Set Low s i d e r e c i r c u l a t i o n . ∗/
e r r o r = MVH1 SetRecirculation (FALSE, hbBRIDGE A) ;
i f (e r r o r != ERR OK) {

/∗ Handle e r r o r . ∗/
}
. . .

}

Stepper motor control

This example demonstrates usage of full-step and micro-step mode.

Required component setup:

H-Bridge Model: MC33932 or MC34932

Motor Control Mode: Stepper

Timer Device: you must use FTM device (not TPM), beacuse we want to switch between full-step
and micro-step in run-time (available only when FTM is used).

Output Control: PWM

Motor Control Mode: Full-step and Micro-step.

Initial Speed: for example 20 (full-step)

Acceleraion Ramp: 0 (full-step)

Micro-steps per Step: for example 2 Micro-steps

Initial Speed: 30 (micro-step)

Acceleraion Ramp: 0 (micro-step)

Set properties under groups H-Bridge A MCU Interface and H-Bridge B MCU Interface:

Device Mode: Normal Mode

Set Enable and Disable Pins and Input Control Pins according to used MCU.

Feedback Pin and Status Flag Pin are not necessary (you can disable these pins).

Auto Initialization: yes

Methods: Init, SetMode, AlignRotor, GetMotorStatus, SetFullStepSpeed, SetFullStepSpeed,
MoveSteps, MoveMicroSteps,

Note that name of the MVHBridge component is MVH1 (this shortcut is used as prefix in MVHBridge
methods).

Content of Main.c ():

Listing 4: Source code

void main (void)
{

. . .

/∗ Align the ro to r to the f u l l −s tep po s i t i o n (4 f u l l −s t ep s in forward
d i r e c t i o n) . ∗/

i f (MVH1 AlignRotor () != ERR OK) {
/∗ Handle e r r o r . ∗/

}

whi le (MVH1 GetMotorStatus () == msRUNNING) {

Typical Usage

16 NXP Semiconductors

MVHBridge Programming Guide, Rev. 1.0

/∗ Wait un t i l the motor s tops . ∗/
}

/∗ Check p o s s i b l e e r r o r . ∗/
i f (MVH1 GetMotorStatus () == msERROR) {

/∗ Handle e r r o r . ∗/
}

/∗ Change f u l l −s t epp ing speed to 50 f u l l −s t ep s per second . ∗/
i f (MVH1 SetFullStepSpeed (50) != ERR OK) {

/∗ Handle e r r o r . ∗/
}

/∗ Execute 25 f u l l −s t ep s in forward d i r e c t i o n (second parametr i s TRUE) .
∗ For more in fo rmat ion about motor d i r e c t i o n see H−Bridge component user
guide . ∗/

i f (MVH1 MoveSteps (TRUE, 25) != ERR OK) {
/∗ Handle e r r o r . ∗/

}

whi le (MVH1 GetMotorStatus () == msRUNNING) {
/∗ Wait un t i l the motor s tops . ∗/

}

/∗ Check p o s s i b l e e r r o r . ∗/
i f (MVH1 GetMotorStatus () == msERROR) {

/∗ Handle e r r o r . ∗/
}

/∗ Change f u l l −s t epp ing speed to 40 micro−s t ep s per second . S i z e o f micro−
s tep
∗ depends on Micro−s t ep s per Step s e t t i n g . ∗/
i f (MVH1 SetMicroStepSpeed (40) != ERR OK) {

/∗ Handle e r r o r . ∗/
}

/∗ Execute 10 micro−s t ep s in forward d i r e c t i o n . ∗/
i f (MVH1 MoveMicroSteps (TRUE, 10) != ERR OK) {

/∗ Handle e r r o r . ∗/
}
. . .

}

Stepper motor control with acceleration ramp

This example demonstrates usage of full-step and micro-step mode with enabled acceleration and
deceleration ramp.

Required component setup:

H-Bridge Model: MC33932 or MC34932

Motor Control Mode: Stepper

Timer Device: you must use FTM device (not TPM), beacuse we want to switch between full-step
and micro-step in run-time (available only when FTM is used).

Output Control: PWM

Motor Control Mode: Full-step and Micro-step.

Initial Speed: for example 200 (full-step)

Acceleraion Ramp: for example 100 (full-step)

Micro-steps per Step: for example 2 Micro-steps

Initial Speed: for example 300 (micro-step)

Typical Usage

MVHBridge Programming Guide, Rev. 1.0

NXP Semiconductors 17

Acceleraion Ramp: for example 150 (micro-step)

Set properties under groups H-Bridge A MCU Interface and H-Bridge B MCU Interface:

Device Mode: Normal Mode

Set Enable and Disable Pins and Input Control Pins according to used MCU.

Feedback Pin and Status Flag Pin are not necessary (you can disable these pins).

Auto Initialization: yes

Methods: Init, SetMode, AlignRotor, GetMotorStatus MoveSteps MoveMicroSteps

Events: OnActionComplete

Note that name of the MVHBridge component is MVH1 (this shortcut is used as prefix in MVHBridge
methods).

Content of Main.c ():

Listing 5: Source code

void main (void)
{

/∗ Error code . ∗/
LDD TError Error = ERR OK;

. . .

/∗ Note : OnActionComplete Event handler w i l l be c a l l e d when al ignment
∗ o f r o t o r i s completed . ∗/
i f ((Error = MVH1 AlignRotor ()) != ERR OK) {

/∗ Handle e r r o r . ∗/
}
. . .

}

Content of Events.c ():

Listing 6: Source code

typede f enum {
/∗ 1 s t t e s t case : t e s t o f f u l l −s tep mode with a c c e l e r a t i o n and
d e c e l e r a t i o n ramp . ∗/

stcFULLSTEP RAMP = 0 ,

/∗ 2nd t e s t case : t e s t o f micro−s tep mode with the ramp . ∗/
stcMICROSTEP RAMP,

/∗ Al l t e s t case are completed in t h i s s t a t e . ∗/
stcTESTS COMPLETE,

} TStepperTestCase ;

void MVH1 OnActionComplete (LDD TUserData ∗UserDataPtr)
{

/∗ Error code . ∗/
LDD TError Error = ERR OK;
s t a t i c TStepperTestCase TestCase = stcFULLSTEP RAMP;

/∗ Check i f an e r r o r occurred during prev ious motor movement . ∗/
i f (MVH1 GetMotorStatus () == msERROR) {

/∗ Handle e r r o r . ∗/
}

switch (TestCase) {
case stcFULLSTEP RAMP:

/∗ Run the motor in forward d i r e c t i o n . The f u l l −s tep mode i s used and
number

User Types

18 NXP Semiconductors

MVHBridge Programming Guide, Rev. 1.0

∗ o f f u l l −s t ep s are 200 (1 mechanical r e vo l u t i on) . ∗/
Error = MVH1 MoveSteps (TRUE, 200) ;
i f (Error != ERR OK) {

/∗ Handle e r r o r . ∗/
}
/∗ Switch to next t e s t case . ∗/
TestCase = stcMICROSTEP RAMP;
break ;

case stcMICROSTEP RAMP:
/∗ Run the motor in forward d i r e c t i o n . The micro−s tep mode i s used and

number
∗ o f micro−s t ep s are 400 (1 mechanical r e vo l u t i on) . ∗/

Error = MVH1 MoveMicroSteps (TRUE, 400) ;
i f (Error != ERR OK) {

/∗ Handle e r r o r . ∗/
}
TestCase = stcTESTS COMPLETE;
break ;

case stcTESTS COMPLETE:
/∗ Do nothing . ∗/

d e f au l t :
break ;

}
}

Custom mode

The MVHBridge component does not offer methods to control a motor in this mode. User must
implement control logic. This example shows control of two DC brushed motors.

Required component setup:

H-Bridge Model: here is used dual H-Bridge model (MC33932 or MC34932), but you can use any
H-Bridge model.

Device Mode: Normal Mode

Set properties under group H-Bridge A MCU Interface:

Input Control Pins: Two GPIO Pins

Set Enable and Disable Pins and Input Control Pins according to used MCU.

Feedback Pin and Status Flag Pin are not necessary (you can disable these pins).

Set properties under group H-Bridge B MCU Interface:

Input Control Pins: Two PWM Pins

Set Enable and Disable Pins and Input Control Pins according to used MCU.

Feedback Pin and Status Flag Pin are not necessary (you can disable these pins).

Auto Initialization: yes

Methods: Init, SetMode

Required setup of TimerUnit LDD component used by MVHBridge:

Period : 11 kHz

Set these properties on all channels used by MVHBridge (channel 0 and 1 here):

Offset : 0

Output on compare: Clear

Output on overrun: Set

Methods: Init, SetOffsetTicks

Content of Main.c:

User Types

MVHBridge Programming Guide, Rev. 1.0

NXP Semiconductors 19

Listing 7: Source code

void main (void)
{

/∗ Var iab le f o r sav ing e r r o r code . ∗/
LDD TError e r r o r = ERR OK;

. . .

/∗ Control o f H−Bridge i n t e r f a c e A − two GPIO pins (two BitIO LDD
components) . ∗/

IN1BitIO1 SetVal (PE LDD GetDeviceStructure (PE LDD COMPONENT IN1BitIO1 ID))
;

IN2BitIO1 ClrVal (PE LDD GetDeviceStructure (PE LDD COMPONENT IN2BitIO1 ID))
;

/∗ Control o f H−Bridge i n t e r f a c e B − two PWM pins (two channe l s o f
TimerUnit LDD
∗ component) . Channels 0 (pin IN3) and 1 (pin IN4) o f TimerUnit LDD
component
∗ are used by H−Bridge . Set 0% PWM duty on channel 0 and 50% duty on
channel 1 . ∗/

Error = TU1 SetOffsetTicks (PE LDD GetDeviceStructure (
PE LDD COMPONENT TU1 ID) , 0 , 0) ;

i f (Error != ERR OK) {
/∗ Handle e r r o r . ∗/

}
Error = TU1 SetOffsetTicks (PE LDD GetDeviceStructure (
PE LDD COMPONENT TU1 ID) , 0 , TU1 PERIOD TICKS / 2) ;

i f (Error != ERR OK) {
/∗ Handle e r r o r . ∗/

}

. . .
}

4 User Types

ComponentName THBrMode = enum { hbmNORMAL, hbmSLEEP, hbmSTANDBY}
ComponentName THBridge = enum { hbBRIDGE A, hbBRIDGE B} Type

ComponentName TMotorStatus = enum { msRUNNING, msSTOP, msERROR} Type

4

Information in this document is provided solely to enable system and software implementers to use NXP

products. There are no expressed or implied copyright licenses granted hereunder to design or fabricate any

integrated circuits based on the information in this document. NXP reserves the right to make changes without

further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular

purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and

specifically disclaims any and all liability, including without limitation, consequential or incidental damages.

"Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different

applications, and actual performance may vary over time. All operating parameters, including "typicals," must be

validated for each customer application by the customer's technical experts. NXP does not convey any license

under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of

sale, which can be found at the following address:

http://www.nxp.com/terms-of-use.html.

How to Reach Us:

Home Page:
NXP.com

Web Support:
http://www.nxp.com/support

NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of NXP B.V. All other product or

service names are the property of their respective owners. All rights reserved.

© 2016 NXP B.V.

Document Number: PEXMVHBRIDGEPUG
Rev. 1.0

2/2016

http://www.nxp.com/terms-of-use.html
http://www.nxp.com/
http://www.nxp.com/support

	MVHBridge Programming Guide
	General Info
	Embedded Component Description
	Component API
	Events
	Methods
	Properties

	Typical Usage
	User Types

