

NXP MQX™ RTOS

User's Guide

MQXUG

Rev 5.2,

07/2020

ii

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

CHAPTER 1 BEFORE YOU BEGIN.. 10

1.1 About MQX™ RTOS... 10

1.2 About This Book ... 10

1.3 Conventions ... 11
1.3.1 Tips ... 11
1.3.2 Notes .. 11
1.3.3 Cautions ... 11

CHAPTER 2 MQX RTOS AT A GLANCE .. 12

2.1 Organization of MQX RTOS ... 12

2.1 Initialization ... 14

2.2 Task Management .. 14

2.3 Scheduling ... 14

2.4 Managing Memory with dynamic memory allocators ... 14

2.5 Managing Memory with Fixed-Size Blocks (Partitions) ... 15

2.6 Controlling Caches .. 16

2.7 Controlling an MMU ... 16

2.8 Lightweight Memory Management ... 16

2.9 Lightweight Events ... 16

2.10 Events .. 16

2.11 Lightweight Semaphores... 17

2.12 Semaphores ... 17

2.13 Mutexes ... 17

2.14 Lightweight Message Queue ... 17

2.15 Messages ... 18

2.16 Task Queues ... 18

2.17 Inter-Processor Communication .. 18

iii

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

2.18 Time Component .. 18

2.19 Lightweight Timers ... 19

2.20 Timers .. 19

2.21 Watchdogs ... 19

2.22 Interrupt and Exception Handling .. 19

2.23 I/O Drivers ... 20
2.24.1 Formatted I/O .. 20
2.24.2 I/O Subsystem.. 20

2.24 Logs ... 20

2.25 Lightweight Logs ... 20

2.26 Kernel Log .. 20

2.27 Stack Usage .. 21

2.28 Task Error Codes ... 21

2.29 Exception Handling ... 21

2.30 Run-Time Testing.. 21

2.31 Queue Manipulation .. 21

2.32 Name Component .. 22

CHAPTER 3 USING MQX RTOS .. 23

3.1 Before You Begin .. 23

3.2 Initializing and Starting MQX RTOS .. 23
3.2.1 MQX RTOS Initialization Structure ... 23

3.2.1.1 Default MQX RTOS Initialization Structure ... 24
3.2.2 Task Template List .. 24

3.2.2.1 Assigning Task Priorities .. 25
3.2.2.2 Assigning Task Attributes .. 25
3.2.2.3 Default Task Template List .. 26
3.2.2.4 Example: A Task Template List .. 26
3.2.2.5 Example: Creating an Autostart Task .. 26

3.3 Managing Tasks .. 28
3.3.1 Creating Tasks .. 29
3.3.2 Getting Task IDs ... 29

iv

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.3.3 Setting a Task Environment ... 30
3.3.4 Managing Task Errors... 30
3.3.5 Restarting Tasks ... 30
3.3.6 Terminating Tasks .. 31
3.3.7 Example: Creating Tasks .. 32

3.3.7.1 Code for the Creating Tasks Example ... 32
3.3.7.2 Compiling the Application and Linking it with MQX RTOS.. 34

3.4 Scheduling Tasks .. 34
3.4.1 FIFO Scheduling .. 34
3.4.2 Round Robin Scheduling .. 35

3.4.2.1 Preemption.. 36

3.5 Managing Memory with Variable-Size Blocks... 37
3.5.1 Managing Lightweight Memory with Variable-Size Blocks ... 38
3.5.2 Managing Memory with Fixed-Size Blocks (Partitions) ... 40

3.5.2.1 Creating the Partition Component for Dynamic Partitions .. 40
3.5.2.2 Creating Partitions... 40
3.5.2.3 Allocating and Freeing Partition Blocks .. 40
3.5.2.4 Destroying a Dynamic Partition .. 41
3.5.2.5 Example: Two Partitions ... 41

3.5.3 Controlling Caches ... 42
3.5.3.1 Flushing Data Cache .. 43
3.5.3.2 Invalidating Data or Instruction Cache.. 43

3.5.4 Controlling the MMU (Virtual Memory) .. 44
3.5.4.1 Example: Initializing the MMU with Virtual Memory ... 45
3.5.4.2 Example: Setting Up a Virtual Context .. 46
3.5.4.3 Example: Creating Tasks with a Virtual Context ... 46

3.6 Synchronizing Tasks .. 47
3.6.1 Events ... 48

3.6.1.1 Creating the Event Component... 49
3.6.1.2 Creating an Event Group ... 49
3.6.1.3 Opening a Connection to an Event Group .. 50
3.6.1.4 Waiting for Event Bits (Events) ... 50
3.6.1.5 Setting Event Bits .. 50
3.6.1.6 Clearing Event Bits .. 51
3.6.1.7 Closing a Connection to an Event Group .. 51
3.6.1.8 Destroying an Event Group ... 51
3.6.1.9 Example: Using Events .. 51

3.6.2 Lightweight Events ... 53
3.6.2.1 Creating a Lightweight Event Group ... 54
3.6.2.2 Waiting for Event Bits ... 54
3.6.2.3 Setting Event Bits .. 54
3.6.2.4 Clearing Event Bits .. 55
3.6.2.5 Destroying a Lightweight Event Group ... 55

3.6.3 About Semaphore-Type Objects .. 55
3.6.3.1 Strictness ... 55
3.6.3.2 Priority Inversion ... 55
3.6.3.3 Example: Priority Inversion ... 56

v

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.3.4 Avoiding Priority Inversion with Priority Inheritance ... 56
3.6.3.5 Avoiding Priority Inversion with Priority Protection ... 57

3.6.4 Lightweight Semaphores ... 58
3.6.4.1 Creating a Lightweight Semaphore ... 58
3.6.4.2 Waiting for and Posting a Lightweight Semaphore .. 59
3.6.4.3 Destroying a Lightweight Semaphore ... 59
3.6.4.4 Example: Producers and Consumer .. 59

3.6.5 Semaphores ... 62
3.6.5.1 Using a Semaphore ... 63
3.6.5.2 Creating the Semaphore Component ... 63
3.6.5.3 Creating a Semaphore ... 63
3.6.5.4 Opening a Connection to a Semaphore .. 64
3.6.5.5 Waiting for a Semaphore and Posting a Semaphore .. 64
3.6.5.6 Closing a Connection to a Semaphore .. 65
3.6.5.7 Destroying a Semaphore ... 65
3.6.5.8 Example: Task Synchronization and Mutual Exclusion ... 65

3.6.6 Mutexes ... 70
3.6.6.1 Creating the Mutex Component ... 71
3.6.6.2 Mutex Attributes ... 71
3.6.6.3 Waiting Protocols .. 71
3.6.6.4 Scheduling Protocols ... 72
3.6.6.5 Creating and Initializing a Mutex .. 72
3.6.6.6 Locking a Mutex .. 73
3.6.6.7 Unlocking a Mutex .. 73
3.6.6.8 Destroying a Mutex ... 73
3.6.6.9 Example: Using a Mutex .. 73

3.6.7 Messages .. 75
3.6.7.1 Creating the Message Component ... 76
3.6.7.2 Using Message Pools ... 76
3.6.7.3 Allocating and Freeing Messages .. 77
3.6.7.4 Sending Messages ... 78
3.6.7.5 Message Queues ... 78
3.6.7.6 Using Private Message Queues to Receive Messages .. 78
3.6.7.7 Using System Message Queues to Receive Messages .. 79
3.6.7.8 Determining the Number of Pending Messages ... 79
3.6.7.9 Notification Functions ... 80
3.6.7.10 Example: Client/Server Model .. 80

3.6.8 Lightweight Message Queue.. 83
3.6.8.1 Initialization of a Lightweight Message Queue ... 83
3.6.8.2 Sending Messages ... 84
3.6.8.3 Receiving Messages .. 84
3.6.8.4 Example: Client/Server Model .. 84

3.6.9 Task Queues ... 87
3.6.9.1 Creating and Destroying Task Queues .. 87
3.6.9.2 Suspending a Task ... 87
3.6.9.3 Resuming a Task .. 88
3.6.9.4 Example: Synchronizing Tasks ... 88

3.7 Communication Between Processors ... 89
3.7.1 Sending Messages to Remote Processors ... 90

vi

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.7.1.1 Example: Four-Processor Application ... 91
3.7.2 Creating and Destroying Tasks on Remote Processors.. 91
3.7.3 Accessing Event Groups on Remote Processors .. 91
3.7.4 Creating and Initializing IPC ... 92

3.7.4.1 Building an IPC Routing Table ... 92
3.7.4.2 Building an IPC Protocol Initialization Table ... 93
3.7.4.3 IPC Using I/O PCB Device Drivers .. 94
3.7.4.4 Starting IPC Task .. 94
3.7.4.5 Example: IPC Initialization Information... 94
5.7.1.1 3.7.5 Endian Conversion of Message Headers .. 99

3.8 Timing .. 100
3.8.1 Rollover of MQX RTOS Time .. 100
3.8.2 Accuracy of MQX RTOS Time ... 100
3.8.3 Time Component ... 100

3.8.3.1 Second/Millisecond Time .. 102
3.8.3.2 Time Stamp ... 102
3.8.3.3 Tick Time ... 102
3.8.3.4 Elapsed Time ... 103
3.8.3.5 Time Resolution .. 103
3.8.3.6 Absolute Time ... 103
3.8.3.7 Time in Date Formats .. 104
3.8.3.8 Timeouts.. 105

3.8.4 Timers... 105
3.8.4.1 Creating the Timer Component .. 106
3.8.4.2 Starting Timers .. 106
3.8.4.3 Cancelling Outstanding Timer Requests ... 107
3.8.4.4 Example: Using Timers .. 107

3.8.5 Lightweight Timers ... 109
3.8.5.1 Starting Lightweight Timers .. 109
3.8.5.2 Cancelling Outstanding Lightweight Timer Requests ... 110

3.8.6 Watchdogs ... 110
3.8.6.1 Creating the Watchdog Component ... 111
3.8.6.2 Starting or Restarting a Watchdog .. 111
3.8.6.3 Stopping a Watchdog .. 111
3.8.6.4 Example: Using Watchdogs ... 111

3.9 Handling Interrupts and Exceptions ... 113
3.9.1 Initializing Interrupt Handling .. 115
3.9.2 Installing Application-Defined ISRs .. 115
3.9.3 Restrictions on ISRs .. 116

3.9.3.1 Functions That the ISR Cannot Call ... 116
3.9.3.2 Functions That ISRs should not call ... 117
3.9.3.3 Non-Maskable Interrupts .. 118
3.9.3.4 MQX_HARDWARE_INTERRUPT_LEVEL_MAX Configuration Parameter ... 118

3.9.4 Changing Default ISRs .. 121
3.9.5 Handling Exceptions ... 122
3.9.6 Handling ISR Exceptions ... 122
3.9.7 Handling Task Exceptions... 123
3.9.8 Example: Installing an ISR .. 123

vii

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.9.8.1 Compiling the Application and Linking it with MQX RTOS.. 124

3.10 Instrumentation ... 124
3.10.1 Logs .. 125

3.10.1.1 Creating the Log Component .. 125
3.10.1.2 Creating a Log ... 126
3.10.1.3 Format of a Log Entry ... 126
3.10.1.4 Writing to a Log .. 126
3.10.1.5 Reading From a Log .. 126
3.10.1.6 Disabling and Enabling Writing to a Log ... 126
3.10.1.7 Resetting a Log .. 127
3.10.1.8 Example: Using Logs ... 127

3.10.2 Lightweight Logs .. 128
3.10.2.1 Creating the Lightweight Log Component .. 129
3.10.2.2 Creating a Lightweight Log ... 129
3.10.2.3 Format of a Lightweight Log Entry.. 130
3.10.2.4 Writing to a Lightweight Log... 130
3.10.2.5 Reading From a Lightweight Log... 130
3.10.2.6 Disabling and Enabling Writing to a Lightweight Log ... 130
3.10.2.7 Resetting a Lightweight Log .. 130
3.10.2.8 Example: Using Lightweight Logs ... 131

3.10.3 Kernel Log .. 132
3.10.3.1 Using Kernel Log ... 133
3.10.3.2 Disabling Kernel Logging ... 134
3.10.3.3 Example: Using Kernel Log.. 134

3.10.4 Stack Usage Utilities .. 136

3.11 Utilities .. 136
3.11.1 Queues ... 136

3.11.1.1 Queue Data Structures ... 137
3.11.1.2 Creating a Queue .. 137
3.11.1.3 Adding Elements To a Queue ... 137
3.11.1.4 Removing Elements From a Queue .. 137

3.11.2 Name Component ... 137
3.11.2.1 Creating the Name Component .. 138

3.11.3 Run-Time Testing ... 138
3.11.3.1 Example: Doing Run-Time Testing .. 139

3.11.4 Additional Utilities ... 142

3.12 Embedded Debugging ... 143

3.13 Configuring MQX RTOS at Compile Time .. 143
3.13.1 MQX RTOS Compile-Time Configuration Options ... 143

3.13.1.1 MQX_COMPONENT_DESTRUCTION ... 144
3.13.1.2 MQX_DEFAULT_TIME_SLICE_IN_TICKS .. 144
3.13.1.3 MQX_EXIT_ENABLED .. 144
3.13.1.4 MQX_HAS_TIME_SLICE... 144
3.13.1.5 MQX_HAS_DYNAMIC_PRIORITIES .. 144
3.13.1.6 MQX_HAS_EXCEPTION_HANDLER.. 144
3.13.1.7 MQX_HAS_EXIT_HANDLER ... 145

viii

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.13.1.8 MQX_HAS_HW_TICKS .. 145
3.13.1.9 MQX_HAS_TICK .. 145
3.13.1.10 MQX_TD_HAS_TEMPLATE_INDEX .. 145
3.13.1.11 MQX_TD_HAS_STACK_LIMIT .. 145
3.13.1.12 MQX_INCLUDE_FLOATING_POINT_IO ... 145
3.13.1.13 MQX_IS_MULTI_PROCESSOR ... 146
3.13.1.14 MQX_KERNEL_LOGGING .. 146
3.13.1.15 MQX_LWLOG_TIME_STAMP_IN_TICKS.. 146
3.13.1.16 MQX_MEMORY_FREE_LIST_SORTED ... 146
3.13.1.17 MQX_MONITOR_STACK ... 146
3.13.1.18 MQX_MUTEX_HAS_POLLING ... 147
3.13.1.19 MQX_PROFILING_ENABLE .. 147
3.13.1.20 MQX_RUN_TIME_ERR_CHECK_ENABLE ... 147
3.13.1.21 MQX_ROM_VECTORS ... 147
3.13.1.22 MQX_SPARSE_ISR_TABLE ... 147
3.13.1.23 MQX_SPARSE_ISR_SHIFT .. 148
3.13.1.24 MQX_TASK_CREATION_BLOCKS ... 148
3.13.1.25 MQX_TASK_DESTRUCTION ... 148
3.13.1.26 MQX_TIMER_USES_TICKS_ONLY .. 148
3.13.1.27 MQX_USE_IDLE_TASK... 148
3.13.1.28 MQX_USE_IO .. 148
3.13.1.29 MQX_USE_LWMEM_ALLOCATOR .. 149
3.13.1.30 MQXCFG_ENABLE_FP ... 149
3.13.1.31 MQX_SAVE_FP_ALWAYS .. 149
3.13.1.32 MQX_INCLUDE_FLOATING_POINT_IO ... 149
3.13.1.33 MQXCFG_MEM_COPY .. 149
3.13.1.34 MQXCFG_MEM_COPY_NEON .. 149

3.13.2 Recommended Settings ... 150

CHAPTER 4 REBUILDING NXP MQX RTOS ... 152

4.1 Why Rebuild MQX RTOS? ... 152

4.2 Before You Begin .. 152

4.3 NXP MQX RTOS Directory Structure .. 153
4.3.1 MQX RTOS Directory Structure .. 153
4.3.2 PSP Subdirectories ... 154
4.3.3 BSP Subdirectories ... 154
4.3.4 I/O Subdirectories .. 155
4.3.5 Other Source Subdirectories .. 155

4.4 NXP MQX RTOS Build Projects ... 155
4.4.1 PSP Build Project .. 155
4.4.2 BSP Build Project .. 155
4.4.3 Post-Build Processing ... 156
4.4.4 Build Targets .. 156

4.5 Rebuilding NXP MQX RTOS ... 157

ix

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

CHAPTER 5 FAQS ... 158

6.1 General .. 158

6.2 Events .. 158

6.3 Global Constructors .. 158

6.4 Idle Task... 158

6.5 Interrupts ... 159

6.6 Memory ... 159

6.7 Message Passing... 160

6.8 Mutexes ... 161

6.9 Semaphores ... 161

6.10 Task Exit Handler Versus Task Exception Handler ... 161

6.11 Task Queues ... 162

6.12 Tasks.. 162

6.13 Time Slices ... 163

6.14 Timers .. 163

10

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Chapter 1 Before You Begin

1.1 About MQX™ RTOS

The MQX™ Real-Time Operating System is designed for uniprocessor, multiprocessor,

and distributed-processor embedded real-time systems.

To leverage the success of the MQX operating system, NXP Semiconductors adopted

this software platform for its microprocessors. Compared to the original MQX RTOS

distributions, the NXP MQX RTOS distribution was made simpler to configure and use.

One single release now contains the MQX operating system plus all the other software

components supported for a given microprocessor part. In this document, the sections

specific to NXP MQX RTOS release are marked as below.

Table 1-1. Note formatting

Note This is how notes specific to NXP MQX RTOS release are marked in this document.

MQX RTOS provides a run-time library of functions that programs use to become real-

time multitasking applications. The main features of MQX RTOS are scalable size,

component-oriented architecture, and ease of use.

MQX RTOS supports multiprocessor applications and can be used with flexible

embedded I/O products for networking, data communications, and file management.

Throughout this book, we use MQX RTOS as the abbreviation for Message Queue

Executive Real Time Operating System.

Table 1-2. Relative paths

<MQX_DIR> Directory where MQX RTOS is located within KSDK. Specifically,
<KSDK_DIR>\rtos\mqx.

<board> Replaces board name (for example, TWR-K64F120M).

<mcu> Replaces processor name (for example, MK64F120M).

<tool> Replaces toolchain name (for example, IAR).

<target> Replaces project target name (for example, Debug).

<library> Replaces library name (for example, PSP).

1.2 About This Book

Use this book in conjunction with:

11

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

• MQX RTOS Reference - contains MQX RTOS simple and complex data types and

alphabetically-ordered listings of MQX RTOS function prototypes.

Table 1-3. Release Contents

Note NXP MQX RTOS release includes also other software products, based on MQX

operating system. See also user guides and reference manuals for RTCS TCP/IP

stack, MFS File System and the Release Notes for your specific release of MQX.

1.3 Conventions

The following tips, notes, and cautions represent the conventions used in MQX RTOS

documentation.

1.3.1 Tips

Tips point out useful information.

Table 1-4. Generic Tip Format

1.3.2 Notes

Notes point out important information.

Table 1-5. Generic Notes Format

1.3.3 Cautions

Cautions tell you about commands or procedures that could have unexpected or

undesirable side effects or could be dangerous to your files or your hardware.

Table 1-6. Generic Cautions Format

The most efficient way to allocate a message from an ISR is to use _msg_alloc(). Tip

Non-strict semaphores do not have priority inheritance. Note

If you modify MQX RTOS data types, some MQX RTOS Host Tools might not operate
properly.

Caution

12

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Chapter 2 MQX RTOS at a Glance

2.1 Organization of MQX RTOS

MQX RTOS consists of core (non-optional) and optional components. Functions that

MQX RTOS or an application calls are the only functions included in the application

image for core components. To match application requirements, an application can be

extended by adding optional components.

The following diagram shows core components in the center with optional components

around the outside.

Figure 2-1. Core and Optional Components

13

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

The following table summarizes core and optional components, each of which is briefly

described in subsequent sections of the chapter.

Table 2-1. Core and Optional Components

Component Includes Type

Initialization Initialization and automatic task creation Core

Task management Dynamic task management Core

Scheduling Round robin and FIFO Core

 Explicit using task queues Optional

Task synchronization

and communication

Lightweight semaphores Core

Semaphores Optional

 Lightweight events Optional

 Events Optional

 Mutexes Optional

 Lightweight message queue Optional

 Messages Optional

 Task queues Optional

Interprocessor communication Optional

Timing Time component Optional (BSP)

 Lightweight timers Optional

 Timers Optional

 Watchdogs Optional

Memory management Memory with variable-size blocks Core

 Memory with fixed-size blocks (partitions) Optional

 MMU, cache, and virtual memory Optional

 Lightweight memory Optional

Interrupt handling Optional (BSP)

I/O drivers I/O subsystem (NIO) Optional (BSP)

 Formatted I/O MQX_STDLIB

Instrumentation Stack usage Core

 Kernel log Optional

 Logs Optional

 Lightweight logs Optional

Error handling Task error codes, exception handling, runtime
testing

Core

Queue manipulation Core

Name component Optional

14

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

2.1 Initialization

Initialization is a core component. The application starts when _mqx() runs. The function

initializes the hardware and starts MQX RTOS. When MQX RTOS starts, it creates tasks

that the application defines as autostart tasks.

2.2 Task Management

Task management is a core component.

Because it automatically creates tasks when MQX RTOS starts, an application can also

create, manage, and terminate tasks as the application runs. It can create multiple

instances of the same task, and there is no limit to the total number of tasks in an

application. The application can dynamically change the attributes of any task. MQX

RTOS frees task resources, when it terminates a task.

Also, for each task you can specify:

An exit function, which MQX RTOS calls when it terminates the task.

• An exception handler, which MQX RTOS calls if an exception occurs while the task

is active.

2.3 Scheduling

Scheduling complies with POSIX.4 (real-time extensions) and supports these policies:

• FIFO (also called priority-based preemptive) scheduling is a core component - the

active task is the highest-priority task that has been ready the longest.

• Round robin (also called time slice) scheduling is a core component - the active task
is the highest-priority task that has been ready the longest without consuming its time

slice.

• Explicit scheduling (using task queues) is an optional component - you can use task

queues to explicitly schedule tasks or to create more complex synchronization

mechanisms. Because task queues provide minimal functionality, they are fast. An

application can specify a FIFO or round robin scheduling policy when it creates the

task queue.

2.4 Managing Memory with dynamic memory allocators
To allocate and free variable-size pieces (called memory blocks) of memory, MQX

15

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

RTOS provides core services that are similar to malloc() and free(), which most C run-

time libraries provide. You can choose between two implementations of dynamic
allocation - LWMEM or MEM. For a comparison, see the following table:

Table 2-2. RAM footprint comparison [in bytes]

 LWMEM MEM

Per block overhead 12 28

Per instance/pool overhead 44 72

Note: Values may vary depending on the compiler used and the target CPU.

Table 2-3. Code size footprint comparison [in bytes]

 LWMEM MEM

Release target build size 1048 1968

Note: Values may vary depending on the compiler used and the target CPU.

Table 2-4. Execution time [in cycles]

 LWMEM MEM

Average allocation time 360 450

Average deallocation time 300 1000

malloc() WCET* after several seconds of

run in webserver application

4200+ 4500+

free() WCET* after several seconds of

run in webserver application

4300+ 4300+

Time complexity O(n) O(n)

For systems which have only a few kilobytes of RAM, it is advised to use the LWMEM

allocator. It has a lower initial RAM footprint and its linear time complexity is not a

problem if the number of free blocks in the free list cannot grow much - the RAM is

small and there is a minimum size for an allocated block.

2.5 Managing Memory with Fixed-Size Blocks (Partitions)

Partitions are an optional component. You can allocate and manage fixed-size pieces

(called partition blocks) of memory. The partition component supports fast, deterministic

memory allocation, which reduces memory fragmentation and conserves memory

resources. Partitions can be in the default memory pool (dynamic partitions) and outside

16

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

it (static partitions). You can allocate partition blocks to a task or to the system. Partition

blocks allocated to a task are a resource of the task, and MQX RTOS frees them if the

allocating task terminates.

2.6 Controlling Caches

MQX RTOS functions let you control the instruction cache and data cache that some

CPUs have.

2.7 Controlling an MMU

For some CPUs, you must initialize the memory management unit (MMU) before you

enable caches. MQX RTOS functions let you initialize, enable, and disable an MMU, and

add a memory region to it. You can control an MMU by using MMU page tables.

2.8 Lightweight Memory Management

If an application is constrained by data- and code-size requirements, lightweight memory

can be used. It has fewer interface functions and smaller code and data sizes. As a result,

some areas have less robustness (removal of header checksums) and are slower (task-

destruction times).

If you change a compile-time configuration option, MQX RTOS uses the lightweight-

memory component when it allocates memory. For more information, see Configuring

MQX RTOS at Compile Time.

2.9 Lightweight Events

Lightweight events (LWEvents) are an optional component. They are a low-overhead

way for tasks to synchronize using bit state changes. Lightweight events require a

minimal amount of memory and run quickly.

2.10 Events

Events are an optional component. They support the dynamic management of objects that

are formatted as bit fields. Tasks and interrupt service routines can use events to

synchronize and convey simple information in the form of bit-state changes. There are

17

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

named and fast-event groups. Event groups can have autoclearing event bits, whereby

MQX RTOS clears the bits immediately after they are set. An application can set event

bits in an event group that is on a remote processor.

2.11 Lightweight Semaphores

Lightweight semaphores (LWSems) are a core component. They are a low-overhead way

for tasks to synchronize their access to shared resources. LWSems require a minimal

amount of memory and run quickly. LWSems are counting FIFO semaphores without

priority inheritance.

2.12 Semaphores

Semaphores are an optional component. They are counting semaphores. You can use

semaphores to synchronize tasks. You can use a semaphore to guard access to a shared

resource, or to implement a producer/consumer-signalling mechanism. Semaphores

provide FIFO queuing, priority queuing, and priority inheritance. Semaphores can be

strict or non-strict. There are named and fast semaphores.

2.13 Mutexes

Mutexes are an optional component. A mutex provides mutual exclusion among tasks,

when they access a shared resource. Mutexes provide polling, FIFO queuing, priority

queuing, spin-only and limited-spin queuing, priority inheritance, and priority protection.

Mutexes are strict; that is, a task cannot unlock a mutex, unless it had first locked the

mutex.

2.14 Lightweight Message Queue

Lightweight message queue is an optional component. It deals with low-overhead

implementation of standard MQX RTOS messages. Tasks send messages to lightweight

message queues and receive messages from lightweight message queues. A message in

the message pool has a fixed size, a multiple of 32 bits. Blocking reads and blocking

writes are provided.

18

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

2.15 Messages

Messages are an optional component. Tasks can communicate with each other by sending

messages to message queues that are opened by other tasks. Each task opens its own

input-message queues. A message queue is uniquely identified by its queue ID, which

MQX RTOS assigns when the queue is created. Only the task that opens a message queue

can receive messages from the queue. Any task can send to any previously opened

message queue, if it knows the queue ID of the opened queue.

Tasks allocate messages from message pools. There are system-message pools and

private-message pools. Any task can allocate a message (system message) from system-

message pools. Any task with the pool ID can allocate a message (private message) from

a private-message pool.

2.16 Task Queues

In addition to providing a scheduling mechanism, task queues provide a simple and

efficient way to synchronize tasks. You can suspend tasks in the task queue and remove

them from the task queue.

2.17 Inter-Processor Communication

Inter-processor communication (IPC) is an optional component.

An application can run concurrently on multiple processors with one executable image of

MQX RTOS on each processor. The images communicate and cooperate using messages

that are transferred by memory or over communication links using inter-processor

communication. The application tasks in each image need not be the same and, indeed,

are usually different.

2.18 Time Component

Time is an optional component that you can enable and disable at the BSP level. There is

elapsed time and absolute time. You can change absolute time. The time resolution

depends on the application-defined resolution that is set for the target hardware when

MQX RTOS starts.

19

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

2.19 Lightweight Timers

Lightweight timers are an optional component and provide a low-overhead mechanism

for calling application functions at periodic intervals. Lightweight timers are installed by

creating a periodic queue, then adding a timer to expire at some offset from the start of

the period.

When you add a lightweight timer to the queue, you specify a notification function that is

called by the MQX RTOS tick ISR when the timer expires. Since the timer runs from an

ISR, not all MQX RTOS functions can be called from the timer.

2.20 Timers

Timers are an optional component. They provide periodic execution of an application

function. MQX RTOS supports one-shot timers (they expire once) and periodic timers

(they expire repeatedly at a given interval). You can set timers to start at a specified time

or after a specified duration.

When you set a timer, you specify the notification function that timer task calls when the

timer expires. The notification function can be used to synchronize tasks by sending

messages, setting events, or using one of the other MQX RTOS synchronization

mechanisms.

2.21 Watchdogs

Watchdogs are option components that let the user detect task starvation and deadlock

conditions at the task level.

2.22 Interrupt and Exception Handling

Interrupt and exception handling is optional at the PSP level. MQX RTOS services all

hardware interrupts within a range that the BSP defines, and saves a minimum context for

the active task. MQX RTOS supports fully nested interrupts, if the CPU supports nested

interrupts. Once inside an interrupt service routine (ISR), an application can re-enable

any interrupt level. To further reduce interrupt latencies, MQX RTOS defers task

rescheduling until after all ISRs have run. In addition, MQX RTOS reschedules only if a

new task has been made ready by an ISR. To reduce stack size, MQX RTOS supports a

separate interrupt stack.

20

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

An ISR is not a task; it is a small, high-speed routine that reacts quickly to hardware

interrupts. An ISR is usually written in C language. Its duties include resetting the device,

getting its data, and signaling the appropriate task. An ISR can be used to signal a task

with any of the non-blocking MQX RTOS functions.

2.23 I/O Drivers

I/O drivers are an optional component at the BSP level. They consist of formatted I/O and

the I/O subsystem . I/O drivers are not described in this book.

2.24.1 Formatted I/O

MQX RTOS provides formatted I/O functions that are the API to the I/O subsystem.

2.24.2 I/O Subsystem

You can dynamically install I/O device drivers, after which any task can open them.

2.24 Logs

Logs are an optional component that lets you store and retrieve application-specific

information. Each log entry has a timestamp and sequence number. You can use the

information to test, debug, verify, and analyze performance.

2.25 Lightweight Logs

Lightweight logs are similar to logs, but use only fixed-sized entries. They are faster than

the conventional application logs and are used by kernel log.

2.26 Kernel Log

Kernel log is an optional component that lets you record MQX RTOS activity. You can

create kernel log at a specific location or let MQX RTOS choose the location. You can

configure kernel log to record all MQX RTOS function calls, context switches, and

interrupt servicing. Performance tool uses kernel log.

21

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

2.27 Stack Usage

MQX RTOS has core functions that let you dynamically examine the interrupt stack and

the stack usage by all tasks, so that you can determine whether you have allocated enough

stack space.

2.28 Task Error Codes

Each task has a task error code, which is associated with the task's context. Specific

MQX RTOS functions read and update the task error code.

2.29 Exception Handling

You can specify a default ISR that runs for all unhandled interrupts, and an ISR-specific

exception handler that runs if the ISR generates an exception.

2.30 Run-Time Testing

MQX RTOS provides core run-time test functions that an application can call during its

normal operation. There are test functions for the following components:

• events and lightweight events

• kernel log and lightweight logs

• memory with fixed-size blocks (partitions)

• memory with variable-size memory blocks and lightweight memory

• message pools and message queues

• mutexes

• name component

• queues (application-defined)

• semaphores and lightweight semaphores

• task queues

• timers and lightweight timers

• watchdogs

2.31 Queue Manipulation

There is a core component that implements a double-linked list of queue elements. You

can initialize a queue, add elements, remove elements, and peek at elements.

22

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

2.32 Name Component

The name component is optional. It provides a names database that maps a string to a

dynamically defined scalar, such as a queue ID.

23

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Chapter 3 Using MQX RTOS

3.1 Before You Begin

This chapter describes how to use MQX RTOS. It includes examples that you can

compile and run.

Table 3-1. References

Information Type Reference Doc

Prototype for each function that is mentioned in this chapter. MQX RTOS Reference Manual

Data types that are mentioned in this chapter. MQX RTOS Reference Manual

3.2 Initializing and Starting MQX RTOS

MQX RTOS is started with _mqx(), which takes the MQX RTOS initialization structure
as its argument. Based on the values in the structure, MQX RTOS does the following:

• It sets up and initializes the data that MQX RTOS uses internally, including the

default memory pool, ready queues, the interrupt stack, and task stacks.
• It initializes the hardware (for example, chip selects).

• It enables timers.

• It sets the default time slice value.

• It creates the Idle task, which is active if no other task is ready.

• It creates tasks that the task template list defines as autostart tasks.

• It starts scheduling the tasks.

3.2.1 MQX RTOS Initialization Structure

The MQX RTOS initialization structure defines parameters of the application and target

hardware.

typedef struct mqx_initialization_struct
{

_mqx_uint PROCESSOR_NUMBER;
void * START_OF_KERNEL_MEMORY;
void * END_OF_KERNEL_MEMORY;
_mqx_uint INTERRUPT_STACK_SIZE;

TASK_TEMPLATE_STRUCT_PTR TASK_TEMPLATE_LIST;

mqx_uint MQX_HARDWARE_INTERRUPT_LEVEL_MAX;
mqx_uint MAX_MSGPOOLS;
mqx_uint MAX_MSGQS;

24

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

char * IO_CHANNEL;
char * IO_OPEN_MODE;
mqx_uint RESERVED[2];

} MQX_INITIALIZATION_STRUCT, * MQX_INITIALIZATION_STRUCT_PTR;

For a description of each field, see NXP MQX™ RTOS Reference Manual.

3.2.1.1 Default MQX RTOS Initialization Structure

You can either define your own initialization values of the MQX RTOS initialization

structure or use the default initialization that is provided with each BSP. The default

initialization variable is called MQX_init_struct and is in mqx_init.c in the appropriate
BSP directory. The function has been compiled and linked with MQX RTOS.

The examples in this chapter use the following MQX_init_struct.

MQX_INITIALIZATION_STRUCT MQX_init_struct =

{

/* PROCESSOR_NUMBER */ BSP_DEFAULT_PROCESSOR_NUMBER,

/* START_OF_KERNEL_MEMORY */ BSP_DEFAULT_START_OF_KERNEL_MEMORY,

/* END_OF_KERNEL_MEMORY */ BSP_DEFAULT_END_OF_KERNEL_MEMORY,

/* INTERRUPT_STACK_SIZE */ BSP_DEFAULT_INTERRUPT_STACK_SIZE,

/* TASK_TEMPLATE_LIST */ (void *)MQX_template_list,

/* MQX_HARDWARE_INTERRUPT_LEVEL_MAX*/

BSP_DEFAULT_MQX_HARDWARE_INTERRUPT_LEVEL_MAX,

/* MAX_MSGPOOLS */ BSP_DEFAULT_MAX_MSGPOOLS,

/* MAX_MSGQS */ BSP_DEFAULT_MAX_MSGQS,

/* IO_CHANNEL */ BSP_DEFAULT_IO_CHANNEL,

/* IO_OPEN_MODE */ BSP_DEFAULT_IO_OPEN_MODE,

};

3.2.2 Task Template List

The task template list, which is a list of task templates
(TASK_TEMPLATE_STRUCT), defines an initial set of templates that are used to
create tasks on the processor.

At initialization, MQX RTOS creates one instance of each task, whose template defines it

as an autostart task. In addition, while an application is running, it can create other tasks

using a task template that either the task template list defines or the application defines

dynamically. The end of the task template list is a zero-filled task template.

For task-aware debugging host tools to work, the MQX RTOS initialization structure

variable must be called MQX_init_struct.

Note

Initialize both elements of the RESERVED field to zero. Note

25

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

typedef struct task_template_struct
{

_mqx_uint TASK_TEMPLATE_INDEX;

TASK_FPTR TASK_ADDRESS;

mem_size TASK_STACKSIZE;
_mqx_uint TASK_PRIORITY;

char *TASK_NAME;

_mqx_uint TASK_ATTRIBUTES;

uint32_t CREATION_PARAMETER;

mqx_uint DEFAULT_TIME_SLICE;
} TASK_TEMPLATE_STRUCT, * TASK_TEMPLATE_STRUCT_PTR;

For a description of each field, see the NXP MQX™ RTOS Reference Manual.

3.2.2.1 Assigning Task Priorities

When you assign task priorities in the task template list, note that:

• MQX RTOS creates one ready queue for each priority up to the lowest priority

(highest number).

• While an application is running, it cannot create a task that has a lower priority (a
higher number) than the lowest-priority task in the task template list.

3.2.2.2 Assigning Task Attributes

You can assign any combination of the following attributes to a task:

• Autostart - when MQX RTOS starts, it creates one instance of the task.

• DSP - MQX RTOS saves the DSP co-processor registers as part of the task's context.

• Floating point - MQX RTOS saves floating-point registers as part of the task's

context.

• Time slice - MQX RTOS uses round robin scheduling for the task (the default is

FIFO scheduling).

If you assign priority zero to a task, the task runs with interrupts disabled.

On some target processor platforms (e.g., ColdFire), certain task priority levels are

reserved and are mapped to processor interrupt priority levels. Tasks running at such a

special priority may prevent lower priority interrupts to be serviced. See more details about

interrupt handling in section Handling Interrupts and Exceptions.

Note

26

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.2.2.3 Default Task Template List

You can initialize your own task template list or use the default, which is called
MQX_template_list.

3.2.2.4 Example: A Task Template List

TASK_TEMPLATE_STRUCT MQX_template_list[] =
{

{ MAIN_TASK, world_task, 0x2000, 5, "world_task", MQX_AUTO_START_TASK, 0L, 0},

{ HELLO, hello_task, 0x2000, 5, "hello_task", MQX_TIME_SLICE_TASK, 0L, 100},

{ FLOAT, float_task, 0x2000, 5, "Float_task", MQX_AUTO_START_TASK |

MQX_FLOATING_POINT_TASK, 0L, 0},

{ 0, 0, 0, 0, 0, 0, 0L, 0 }
};

world_task

The world_task is an autostart task. So, at initialization, MQX RTOS creates one instance

of the task with a creation parameter of zero. The application defines the task template

index (MAIN_TASK). The task is of priority five. The function world_task() is the
code-entry point for the task. The stack size is 0x2000 single-addressable units.

hello_task

The hello_task task is a time-slice task with a time slice of 100, in milliseconds, if the

default compile-time configuration options are used. For information about these options,

see page Configuring MQX RTOS at Compile Time.

Float_task

The Float_task task is both a floating-point task and an autostart task.

3.2.2.5 Example: Creating an Autostart Task

A single task prints Hello World.

/* hello.c */

#include <mqx.h>
#include <bsp.h>
#include <fio.h>
#include <log.h>
#include <klog.h>

27

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

/* Task IDs */
#define HELLO_TASK 5

extern void hello_task(uint32_t);

const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{
 /* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice */
 { HELLO_TASK, hello_task, 1500, 8, "hello", MQX_AUTO_START_TASK, 0, 0 },
 { 0 }
};

static uint32_t g_i = 0;

/*TASK*---
*
* Task Name : hello_task
* Comments :
* This task prints " Hello World "
*
END---*/
void hello_task
 (
 uint32_t initial_data
)

{
 (void)initial_data; /* disable 'unused variable' warning */

 _int_install_unexpected_isr();

 while (1)
 {
 printf("Hello World %d\n",g_i++);

 _time_delay(1000);
 }
}

Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mqx\examples\hello

2. See the MQX™ RTOS Release Notes document for instructions on how to build and
run the application.

The following appears on the output device:

Hello World 1

Hello World 2

Hello World 3

•

•

•

28

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.3 Managing Tasks

Multiple tasks, created from the same task template can coexist, and each task is a unique

instance. MQX RTOS maintains each instance by saving its context; that is, its program

counter, registers, and stack. Each task has an application-unique 32-bit task ID, which

MQX RTOS and other tasks use to identify the task.

The section on initialization (page Initializing and Starting MQX RTOS) shows how a

task can be started automatically when MQX RTOS initializes. You can also create,

manage, and terminate tasks, while the application runs.

Table 3-2. Summary: Managing Tasks

_task_abort Terminates the task after running its task exit handler and releasing its
resources.

_task_check_stack Determines whether the task's stack is out of bounds.

_task_create Allocates and starts (makes ready) a new task.

_task_create_blocked Allocates a new task in the blocked state.

_task_create_at Creates a new task with the stack location specified.

_task_destroy Terminates the task after freeing its resources.

_task_disable_fp Disable floating-point context switching for the task, if the task is a

floating- point task.

_task_enable_fp Enables floating-point context switching for the task.

_task_errno Gets the task error code for the active task.

_task_get_creator Gets the task ID of the task that created the task.

_task_get_environment Gets a pointer to the environment data for a task.

_task_get_error Gets the task error code.

_task_get_error_ptr Gets a pointer to the task error code.

_task_get_exit_handler Gets a task's exit handler.

_task_get_id Gets the task ID.

_task_get_id_from_name Gets the task ID of the first task with this name in the task template.

_task_get_index_from_id Gets the task template index for the task ID.

_task_get_parameter Gets the task-creation parameter.

_task_get_parameter_for Gets the task-creation parameter for a task.

_task_get_processor Gets the processor number on which a task resides.

_task_get_td Converts a task ID to a pointer to a task descriptor.

_task_get_template_index Gets the task template index of a task name.

_task_get_template_ptr Gets a pointer to the task template for the task ID.

29

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_task_restart Restarts a task at the beginning of the task's function; keeps the

same task descriptor, task ID, and task stack.

_task_set_environment Sets a pointer to the environment data for a task.

_task_set_error Sets the task error code.

_task_set_exit_handler Sets the task's exit handler.

_task_set_parameter Sets the task creation parameter.

_task_set_parameter_for Sets the task creation parameter for a task.

3.3.1 Creating Tasks

Any task (creator) can create another task (child) by calling _task_create(),

_task_create_at()or _task_create_blocked(), and passing the processor number, a task
template index, and a task-creation parameter. The application defines one creation

parameter, which is normally used to provide initialization information to the child. A

task can also create a task that is not defined in the task template list, by specifying a

template index of zero. In this case, MQX RTOS interprets the task-creation parameter as

a pointer to a task template.

The functions initialize the child's stack. The function _task_create() puts the child in the

ready queue for the task's priority. If the child is of higher priority than the creator, the

child becomes the active task, because it is the highest-priority ready task. If the creator is

of higher or equal priority, it remains the active task.

The function _task_create_blocked() creates a task that is blocked. The task is not ready

to run, until another task calls _task_ready().

The function _task_create_at() creates a task with the stack location specified, i.e., task

stack is not dynamically allocated but has to be allocated before the

_task_create_at()function is issued.

3.3.2 Getting Task IDs
A task can directly get its task ID with _task_get_id(). If a function takes a task ID as a

parameter, you can specify MQX_NULL_TASK_ID to refer to the task ID of the active

task.

A task can directly get the task ID of its creator with _task_get_creator(). The function

_task_create() returns the child's task ID to the creator.

A task ID can also be determined from the task name in the task template, from which the

30

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

task was created. This is done with _task_get_id_from_name(), which returns the task

ID of the first task that matches the name in the task template list.

3.3.3 Setting a Task Environment

A task can save an application-specific environment pointer with

_task_set_environment(). Other tasks can access the environment pointer with

_task_get_environment().

3.3.4 Managing Task Errors
Each task has an error code (the task error code) associated with the task's context. Some

MQX RTOS functions update the task error code when they detect an error.

If an MQX RTOS function detects an error and the application ignores the error,

additional errors might still occur. Usually the first error best indicates the problem;

subsequent errors might be misleading. To provide a reliable opportunity to diagnose

problems after MQX RTOS sets the task error code to a value other than MQX_OK,

MQX RTOS does not further change the task error code until the task explicitly resets it

to MQX_OK.

A task can get its task error code from:

• _task_get_error()

• _task_errno

A task resets its task error code by calling _task_set_error() with MQX_OK. The

function returns the previous task error code and sets the task error code to MQX_OK.

Using _task_set_error(), a task can attempt to set its task error code to a value other than

MQX_OK. However, only if the current task error code is MQX_OK, does MQX RTOS

change the task error code to the new value.

If MQX_CHECK_ERRORS is set to 0 (see MQX RTOS Compile-Time Configuration

Options), then not all error codes listed for a particular function are returned.

3.3.5 Restarting Tasks

31

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

An application can restart a task by calling _task_restart(), which restarts the task at the
beginning of its function with the same task descriptor, task ID, and task stack.

3.3.6 Terminating Tasks

A task can terminate itself or any other task, whose task ID it knows. When a task is

terminated, its children are not terminated. When a task is terminated, MQX RTOS frees

the task's MQX RTOS-managed resources. These resources include:

• dynamically allocated memory blocks and partition blocks

• message queues

• messages

• mutexes

• non-strict semaphores

• strict semaphores after posting them

• queued connections are dequeued

• task descriptor

An application can terminate a task immediately (after MQX RTOS frees the task's

resources) with _task_destroy() or gracefully with _task_abort(). While

_task_destroy() causes the task destroy to happen from the context of the caller and is

performed immediately, _task_abort() causes the victim task to be removed from any

queues it is blocked on, its PC is effectively set to the task exit handler and then the

victim task is added to the ready to run queue. Normal task scheduling and priority rules

apply, so the actual task destruction may be deferred indefinitely (or for a long time). The

implication is that there is no guarantee that the victim task is destroyed upon return from

_task_abort().

When the to-be-terminated task becomes active, an application-defined task exit handler

runs. The exit handler could clean up resources that MQX RTOS does not manage.

The task exit handler is set with _task_set_exit_handler(), and obtained with

_task_get_exit_handler().

MQX RTOS also calls the task exit handler if the task returns from its task body.

The user is responsible for destroying all lightweight objects (lightweight semaphores,

lightweight events, lightweight timers, etc.) before terminating a task as this is not done by the

MQX RTOS task termination functions!

Note

32

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.3.7 Example: Creating Tasks

This example adds a second task (world_task) to the example on page Example: Creating

an Autostart Task. We modify that example's task template list to include information

about world_task, and to change hello_task, so that it is not an autostart task. The

world_task task is an autostart task.

When MQX RTOS starts, it creates world_task. The world_task then creates hello_task

by calling _task_create() with hello_task as a parameter. MQX RTOS uses the

hello_task template to create an instance of hello_task.

If _task_create() is successful, it returns the task ID of the new child task; otherwise, it

returns MQX_NULL_TASK_ID.

The new hello_task task is put in the ready queue for the task's priority. Since it has a

higher priority than world_task, it becomes active. The active task prints Hello. The

world_task task then becomes active and checks to see whether hello_task was created

successfully. If it was, world_task prints World; otherwise, world_task prints an error

message.

If you change the priority of world_task to be of the same priority as hello_task, the

output is World Hello only. The world_task runs before hello_task, because world_task

has the same priority and does not relinquish control with a blocking function. When the

world_task becomes blocked, the hello_task becomes active.

3.3.7.1 Code for the Creating Tasks Example
/* hello2.c */

#include <mqx.h>

#include <fio.h>

/* Task IDs */
#define HELLO_TASK 5
#define WORLD_TASK 6
extern void

hello_task(uint32_t); extern

void world_task(uint32_t);

const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice */

{ WORLD_TASK, world_task, 1000, 9, “world”, MQX_AUTO_START_TASK, 0, 0 },

33

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

{ HELLO_TASK, hello_task, 1000, 8, “hello”, 0, 0, 0 },
{ 0 } };

#include <mqx.h>

#include <bsp.h>

#include <fio.h>

/* Task IDs */

#define HELLO_TASK 5

#define WORLD_TASK 6

extern void hello_task(uint32_t);

extern void world_task(uint32_t);

const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{
/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice */

{ WORLD_TASK, world_task, 1000, 8, “world”, MQX_AUTO_START_TASK, 0, 0 },

{ HELLO_TASK, hello_task, 1000, 8, “hello”, 0, 0, 0 },
{ 0 } };

/*TASK*---

*

* Task Name : hello_task

* Comments :

* This task creates world_task and then prints "Hello ".

*

END---*/

void hello_task(uint32_t initial_data)

{

 _task_id world_task_id;

 (void) initial_data;

 world_task_id = _task_create(0, WORLD_TASK, 0);

 if (world_task_id == MQX_NULL_TASK_ID)

 {

 printf ("\n Could not create world_task\n");

 _task_block();

 }

 while (1)

 {

 printf("Hello ");

 _sched_yield();

 }

}

/*TASK*---

*

34

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

* Task Name : world_task

* Comments :

* This task prints "World\n".

*

END---*/

void world_task(uint32_t initial_data)

{

 while (1)

 {

 printf("World\n");

 _sched_yield();

 }

}

3.3.7.2 Compiling the Application and Linking it with MQX RTOS

1. Go to this directory:

mqx\examples\hello2

2. See the MQX™ RTOS Release Notes for instructions on how to build and run the
application.

This message appears on the output device:

Hello

World

3.4 Scheduling Tasks

MQX RTOS provides these task-scheduling policies:

• FIFO

• Round Robin

• Explicit, using task queues (described in a subsequent section on page Lightweight

Message Queue).

You can set the scheduling policy to FIFO or round robin for the processor and separately

for each task. As a result, an application might consist of tasks that use any combination

of FIFO or round robin scheduling.

3.4.1 FIFO Scheduling

35

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

FIFO is the default scheduling policy. With FIFO scheduling, the task that runs (becomes

active) next is the highest-priority task that has been waiting the longest time. The active

task runs, until any of the following occurs:

• The active task voluntarily relinquishes the processor, because it calls a blocking

MQX RTOS function.

• An interrupt occurs that has higher priority than the active task.

• A task that has priority higher than the active task, becomes ready.

You can change the priority of a task with _task_set_priority().

3.4.2 Round Robin Scheduling

Round robin scheduling is similar to FIFO scheduling, but with the additional constraint

that each round robin task has a maximum amount of time (the time slice), during which

it can be active.

A task uses round robin scheduling only if the MQX_TIME_SLICE_TASK attribute is

set in its task template. The task's time slice is determined by the value of the template's

DEFAULT_TIME_SLICE. However, if the value is zero, the task's time slice is the

default time slice for the processor. Initially, the default time slice for the processor is ten

times the interval of the periodic timer interrupt. Since the interval on most BSPs is five

milliseconds, the initial default time slice for the processor is usually 50 milliseconds.

You can change the default time slice for the processor with _sched_set_rr_interval() or

_sched_set_rr_interval_ticks(), passing the task ID parameter as

MQX_DEFAULT_TASK_ID.

When the time slice expires for an active round robin task, MQX RTOS saves the task's

context. MQX RTOS then performs a dispatch operation, in which it examines the ready

queues to determine, which task should become active. MQX RTOS moves the expired

task to the end of the task's ready queue, an action that causes control to pass to the next

task in the ready queue. If there are no other tasks in the ready queue, the expired task

continues to run.

With round robin scheduling, tasks of the same priority can share the processor in a time-

equitable manner.

Table 3-3. Summary: Getting and Setting Scheduling Info

_sched_get_max_priority Gets the highest priority allowed for any task; always returns zero.

_sched_get_min_priority Gets the lowest priority for any task.

36

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_sched_get_policy Gets the scheduling policy.

_sched_get_rr_interval Gets the time slice in milliseconds.

_sched_get_rr_interval_ticks Gets the time slice in tick time.

_sched_set_policy Sets the scheduling policy.

_sched_set_rr_interval Sets the time slice in milliseconds.

_sched_set_rr_interval_ticks Sets the time slice in tick time.

Table 3-4. Summary: Scheduling Tasks

_sched_yield Moves the active task to the end of its ready queue, which yields the

processor to the next ready task of equal priority.

_task_block Blocks the task.

_task_get_priority Gets a task's priority.

_task_ready Makes a task ready.

_task_set_priority Sets a task's priority.

_task_start_preemption Re-enables preemption for the task.

_task_stop_preemption Disables preemption for the task.

Each task is in one of the following logical states:

• Blocked - task is not ready to become active, because it is waiting for a condition to

occur; when the condition occurs, the task becomes ready.

• Ready - task is ready to become active, but it is not active, because it is of the same
priority as, or lower priority than the active task.

• Active - task is running.

If the active task becomes blocked or is preemptied, MQX RTOS performs a dispatch

operation, in which it examines the ready queues to determine, which task should become

active. MQX RTOS makes the highest-priority ready task the active task. If more than

one task of the same priority is ready, the task at the start of that ready queue becomes the

active task. That is, each ready queue is in FIFO order.

3.4.2.1 Preemption

The active task can be preemptied. Preemption occurs, when a higher-priority task

becomes ready, and thus becomes the active task. The previously active task is still ready,

but is no longer the active task. Preemption occurs, when an interrupt handler causes a

higher-priority task to become ready, or the active task makes a higher-priority task

37

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

ready.

3.5 Managing Memory with Variable-Size Blocks

By default, MQX RTOS allocates memory blocks from its default memory pool. Tasks

can also create memory pools outside the default memory pool, and allocate memory

blocks from them.

Both allocation processes are similar to using malloc() and free(), which are in most C
run-time libraries.

A memory block can be a private memory block (a resource owned by the task that

allocates it) or a system memory block (not owned by any task). When a task is

terminated, MQX RTOS returns the task's private memory blocks to memory.

When MQX RTOS allocates a memory block, it allocates a block of at least the requested

size (the block might be larger).

A task can transfer ownership of a memory block to another task (_mem_transfer()).

Table 3-5. Summary: Managing Memory with Variable-Size Blocks

_mem_alloc Allocates a private memory block from the default memory pool.

_mem_alloc_from Allocates a private memory block from the specified memory pool.

_mem_alloc_zero Allocates a zero-filled private memory block from the default

memory pool.

_mem_alloc_zero_from Allocates a zero-filled private memory block from the specified

memory pool.

_mem_alloc_system Allocates a system memory block from the default memory.

_mem_alloc_system_from Allocates a system memory block from the specified memory pool.

_mem_alloc_system_zero Allocates a zero-filled system memory block from the default

memory pool.

_mem_alloc_system_zero_from Allocates a zero-filled system memory block from the specified

memory pool.

_mem_alloc_align Allocates an aligned private memory block from the default
memory pool.

_mem_alloc_align_from Allocates an aligned private memory block from the specified

memory pool.

_mem_alloc_system_align Allocates an aligned system memory block from the default
memory pool.

You cannot use a memory block as a message. You must allocate messages from message

pools (see Messages).

Note

38

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_mem_alloc_system_align_from Allocates an aligned system memory block from the specified

memory pool.

_mem_alloc_at Allocates a private memory block at the defined start address.

_mem_copy Copies data from one memory location to another.

_mem_create_pool Creates a memory pool outside the default memory pool.

_mem_extend Adds additional memory to the default memory pool; the

additional memory must by outside the current default memory

pool, but need not be contiguous with it.

_mem_extend_pool Adds additional memory to a memory pool that is outside the

default memory pool; the additional memory must be outside the

memory pool, but it needs not to be contiguous with the pool.

_mem_free Frees a memory block that is inside or outside the default memory
pool.

_mem_free_part Frees part of a memory block (used if the memory block is

larger than requested, or if it is larger than needed).

_mem_get_error Gets a pointer to the memory block that caused _mem_test() to

indicate an error.

_mem_get_error_pool Gets a pointer to the last memory block that caused
_mem_test_pool()

to indicate an error.

_mem_get_highwater Gets the highest memory address that has been allocated in the

default memory pool (it might have since been freed).

_mem_get_highwater_pool Gets the highest memory pool address that has been allocated

(it might have since been freed)

_mem_get_size Gets the size of a memory block; the size might be larger than

the requested size.

_mem_swap_endian Converts to the other endian format.

_mem_test Tests the default memory pool; this is, checking the internal

checksums to determine, whether the integrity of the memory

has been violated (usually the cause of failure is that an

application writes past the end of a memory block).

_mem_test_and_set Tests and sets a memory location.

_mem_test_pool Tests the memory pool for errors, as described for

_mem_test().

_mem_transfer Transfers ownership of a memory block to another task.

_mem_zero Sets all or part of a memory block to zero.

3.5.1 Managing Lightweight Memory with Variable-Size Blocks

Lightweight memory functions are similar to the functions for regular memory that are

39

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

described in Managing Memory with Variable-Size Blocks. However, they have less

overhead in data and code.

If you change an MQX RTOS compile-time configuration option, MQX RTOS uses the

lightweight memory component when it allocates memory. For more information, see

page Configuring MQX RTOS at Compile Time.

Table 3-6. Summary: Managing Lightweight Memory with Variable-Size
Blocks

Lightweight memory uses certain structures and

constants, which are defined in lwmem.h.

Lightweight memory uses certain structures and

constants, which are defined in lwmem.h.

_lwmem_alloc Allocates a private lightweight-memory block

from the default lightweight-memory pool.

_lwmem_alloc_from Allocates a private lightweight-memory block

from the specified lightweight-memory pool.

_lwmem_alloc_zero Allocates a zero-filled private lightweight-memory

block from the default lightweight-memory pool.

_lwmem_alloc_zero_from Allocates a zero-filled private lightweight-memory

block from the specified lightweight-memory pool.

_lwmem_alloc_system Allocates a system lightweight-memory block

from the default lightweight-memory pool.

_lwmem_alloc_system_from Allocates a system lightweight-memory block

from the specified lightweight-memory pool.

_lwmem_alloc_system_zero Allocates a zero-filled system lightweight-

memory block from the default lightweight-

memory pool.

_lwmem_alloc_system_zero_from Allocates a zero-filled system memory block

from the specified lightweight-memory pool.

_lwmem_alloc_align Allocates an aligned private lightweight-memory

block from the default lightweight-memory pool.

_lwmem_alloc_align_from Allocates an aligned private lightweight-memory

block from the specified lightweight-memory

pool.

_lwmem_alloc_system_align Allocates an aligned system lightweight-memory

block from the default lightweight-memory pool.

_lwmem_alloc_system_align_from Allocates an aligned system lightweight memory

block from the specified lightweight memory

pool.

_lwmem_alloc_at Allocates a private lightweight-memory block at

the defined start address.

_lwmem_create_pool Creates a lightweight-memory pool.

_lwmem_free Frees a lightweight-memory block.

40

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_lwmem_get_size Gets the size of a lightweight-memory block; the

size might be larger than the requested size.

_lwmem_set_default_pool Sets the pool to be used for the default

lightweight-memory pool.

_lwmem_test Tests all lightweight memory pools.

_lwmem_transfer Transfers ownership of a lightweight-memory

block to another task.

3.5.2 Managing Memory with Fixed-Size Blocks (Partitions)

With the partition component, you can manage partitions of fixed-size memory blocks,

whose size the task specifies when it creates the partition. There are dynamic partitions

(in the default memory pool) that can grow, and static partitions (outside the default

memory pool) that cannot grow.

3.5.2.1 Creating the Partition Component for Dynamic Partitions

You can explicitly create the partition component with _partition_create_component(). If

you do not explicitly create it, MQX RTOS creates it the first time an application creates

a partition. There are no parameters.

3.5.2.2 Creating Partitions

There are two types of partitions.

Table 3-7. Static and Dynamic Partitions

Type of partition: Created from: By calling:

Dynamic Default-memory pool _partition_create()

Static Outside default-memory pool _partition_create_at()

If you create a static partition, you must ensure that the memory does not overlap code or

data space that your application uses.

3.5.2.3 Allocating and Freeing Partition Blocks

An application can allocate two types of partition blocks from either a dynamic or static

41

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

partition.

Table 3-8. Private and System Partition Blocks

Type of partition block: Allocated by calling: Is a resource of: Can be freed by:

Private _partition_alloc() Task that allocated it Owner only

System _partition_alloc_system() No one task Any task

If the task is terminated, its private partition blocks are freed.

3.5.2.4 Destroying a Dynamic Partition

If all the partition blocks in a dynamic partition are freed, any task can destroy the
partition by calling _partition_destroy(). You cannot destroy a static partition.

3.5.2.5 Example: Two Partitions
The following diagram shows one static partition and one dynamic partition.

Figure 3-1. Example: Two Partitions

Table 3-9. Summary: Managing Memory with Fixed-Sixe Blocks (Partitions)

_partition_alloc Allocates a private partition block from a partition.

42

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_partition_alloc_system Allocates a system partition block from a partition.

_partition_alloc_system_zero Allocates a zero-filled system partition block from a partition.

_partition_alloc_zero Allocates a zero-filled private partition block from a partition.

_partition_calculate_blocks Calculates the number of partition blocks from the partition

block size and the partition size (for static partitions).

_partition_calculate_size Calculates the size of a partition from the partition block size

and the number of blocks.

_partition_create Creates a partition from the default memory pool (dynamic
partition).

_partition_create_at Creates a partition at a specific location outside the default

memory pool (static partition).

_partition_create_component Creates the partition component.

_partition_destroy Destroys a dynamic partition that has no allocated partition
blocks.

_partition_extend Adds memory to a static partition; the added memory is

divided into partition blocks that are the same size as other

blocks in the partition.

_partition_free Returns a partition block to a partition.

_partition_get_block_size Gets the size of partition blocks in a partition.

_partition_get_free_blocks Gets the number of free partition blocks in a partition.

_partition_get_max_used_blocks Gets the number of allocated partition blocks in a partition; this

is, a highwater mark that indicates the maximum number that

have been allocated simultaneously, not necessarily the

number that are currently allocated.

_partition_get_total_blocks Gets the number of partition blocks in a partition.

_partition_get_total_size Gets the size of a partition, including extensions.

_partition_test Tests the partition component.

_partition_transfer Transfers ownership of a partition block to another task

(including the system); only the new owner can free the

partition block.

3.5.3 Controlling Caches

MQX RTOS functions let you control the instruction cache and data cache that some

CPUs have.

So that you can write an application that applies to both cached and non-cached systems,

MQX RTOS wraps the functions in macros. For CPUs that do not have the cache, the

macros do not map to a function. Some CPUs implement a unified cache (one cache is

43

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

used for both data and code), in which case, the _DCACHE_ and _ICACHE_ macros
map to the same function.

3.5.3.1 Flushing Data Cache

MQX RTOS uses the term flush to mean flushing the entire data cache. Unwritten data

that is in the cache is written to physical memory.

3.5.3.2 Invalidating Data or Instruction Cache

MQX RTOS uses the term invalidate to mean invalidating all the cache entries. Data or

instructions that are left in the cache, and have not been written to memory, are lost. A

subsequent access reloads the cache with data or instructions from physical memory.

Table 3-10. Summary: Controlling Data Caches

_DCACHE_DISABLE Disables the data cache.

_DCACHE_ENABLE Enables the data cache.

_DCACHE_FLUSH Flushes the entire data cache.

_DCACHE_FLUSH_LINE Flushes the data-cache line containing the specified address.

_DCACHE_FLUSH_ MLINES Flushes the data-cache lines containing the specified memory region.

_DCACHE_INVALIDATE Invalidates the data cache.

_DCACHE_INVALIDATE_ LINE Invalidates the data-cache line containing the specified address.

_DCACHE_INVALIDATE_ MLINES Invalidates the data-cache lines containing the specified memory region.

Table 3-11. Summary: Controlling Instruction Caches

_ICACHE_DISABLE Disables the instruction cache.

_ICACHE_ENABLE Enables the instruction cache.

_ICACHE_INVALIDATE Invalidates the instruction cache.

_ICACHE_INVALIDATE_ LINE Invalidates the instruction cache line containing the specified address.

_ICACHE_INVALIDATE_MLINES Invalidates the instruction cache lines containing the specified memory
region.

44

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.5.4 Controlling the MMU (Virtual Memory)

For some CPUs, you must initialize the memory management unit (MMU) before you

enable caches. MQX RTOS functions let you initialize, enable, and disable an MMU, and

add a memory region to it. MMU functions are not supported on all architectures.

You can control an MMU by using MMU page tables.

The virtual memory component lets an application control the MMU page tables.

The following diagram shows the relationship between virtual address, MMU page

tables, MMU pages, physical page, and physical address.

Figure 3-2. Virtual and Physical Addresses

The flushing and invalidating functions always operate with whole cache lines. In case the data

entity is not aligned to the cache line size, these operations affect data that precedes and follows

data area currently being flushed/invalidated.

The MQX RTOS memory allocators align data entity to the cache line size by default. Once an entity

is declared statically the alignment to the cache line size is not guaranteed (unless align pragma is

used).

Note

45

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

With the virtual memory component, an application can manage virtual memory, which

maps to physical addresses.

An application can use the virtual memory component to create a virtual context for a

task. Virtual context provides memory that is private to a task, and is visible only while

the task is the active task.

The functions are called when the BSP is initialized.

Table 3-12. Summary: Managing Virtual Memory

_mmu_add_vcontext Adds a memory region to a virtual context.

_mmu_add_vregion Adds a memory region to the MMU page tables that all tasks

and MQX RTOS can use.

_mmu_create_vcontext Creates a virtual context for a task.

_mmu_create_vtask Creates a task with an initialized virtual context.

_mmu_destroy_vcontext Destroys a virtual context for a task.

_mmu_get_vmem_attributes Gets the virtual memory attributes of an MMU page.

_mmu_get_vpage_size Gets the size of an MMU page.

_mmu_set_vmem_attributes Modifies the virtual memory attributes of an MMU page.

_mmu_vdisable Disables virtual memory.

_mmu_venable Enables virtual memory.

_mmu_vinit Initializes the MMU to use MMU page tables.

_mmu_vtop Gets the physical address that corresponds to a virtual address.

3.5.4.1 Example: Initializing the MMU with Virtual Memory

Add a number of memory regions to support both instruction caching and data caching.

All tasks can access the regions.

_mqx_uint _bsp_enable_operation(void)
{

...
_mmu_vinit(MPC860_MMU_PAGE_SIZE_4K, NULL);
/* Set up and initialize the instruction cache: */
_mmu_add_vregion(BSP_FLASH_BASE, BSP_FLASH_BASE,

BSP_FLASH_SIZE, PSP_MMU_CODE_CACHE |

PSP_MMU_CACHED);

_mmu_add_vregion(BSP_DIMM_BASE, BSP_DIMM_BASE,

BSP_DIMM_SIZE, PSP_MMU_CODE_CACHE | PSP_MMU_CACHED);

_mmu_add_vregion(BSP_RAM_BASE, BSP_RAM_BASE,

BSP_RAM_SIZE, PSP_MMU_CODE_CACHE | PSP_MMU_CACHED);

/* Set up and initialize the data cache: */
_mmu_add_vregion(BSP_FLASH_BASE, BSP_FLASH_BASE,

BSP_FLASH_SIZE, PSP_MMU_DATA_CACHE |

46

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

PSP_MMU_CACHE_INHIBITED);

_mmu_add_vregion(BSP_PCI_MEMORY_BASE,

BSP_PCI_MEMORY_BASE, BSP_PCI_MEMORY_SIZE,

PSP_MMU_DATA_CACHE | PSP_MMU_CACHE_INHIBITED);

_mmu_add_vregion(BSP_PCI_IO_BASE,

BSP_PCI_IO_BASE, BSP_PCI_IO_SIZE,

PSP_MMU_DATA_CACHE |

PSP_MMU_CACHE_INHIBITED);

_mmu_add_vregion(BSP_DIMM_BASE, BSP_DIMM_BASE,

BSP_DIMM_SIZE, PSP_MMU_DATA_CACHE |

PSP_MMU_CACHE_INHIBITED);

_mmu_add_vregion(BSP_RAM_BASE,

BSP_RAM_BASE, BSP_COMMON_RAM_SIZE,

PSP_MMU_DATA_CACHE |

PSP_MMU_CACHE_INHIBITED);

_mmu_venable();
_ICACHE_ENABLE(0);
_DCACHE_ENABLE(0);
...

}

3.5.4.2 Example: Setting Up a Virtual Context

Set the active task to access 64 KB of private memory at 0xA0000000.

...
{

void *

 virtual_mem_pt

r; uint32_t

 size;

virtual_mem_ptr = (void

*)0xA0000000; size = 0x10000L;

...

result =

_mmu_create_vcontext(MQX_NULL_TASK_ID); if

(result != MQX_OK) {

}
result =

_mmu_add_vcontext(MQX_NULL_TASK_ID,

virtual_mem_ptr, size, 0);

if (result != MQX_OK) {
}
...

3.5.4.3 Example: Creating Tasks with a Virtual Context

Create tasks with a virtual context and a copy of common data.

...
/* Task template number for the virtual-context

task: */ #define VMEM_TTN 10

/* Global variable: */

47

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

unsigned char * data_to_duplicate[0x10000] = { 0x1, 0x2, 0x3 };
...
{
void * virtual_mem_ptr;

virtual_mem_ptr = (void

*)0xA0000000;

...
result = _mmu_create_vtask(VMEM_TTN, 0,

&data_to_duplicate, virtual_mem_ptr,

sizeof(data_to_duplicate), 0);

if (result == MQX_NULL_TASK_ID) {
}

result = _mmu_create_vtask(VMEM_TTN, 0,

&data_to_duplicate, virtual_mem_ptr,

sizeof(data_to_duplicate), 0);

if (result == MQX_NULL_TASK_ID) {
}

...
}

3.6 Synchronizing Tasks

You can synchronize tasks by using one or more of the following mechanisms, which are

described in subsequent sections:

• Events - tasks can wait for a combination of event bits to become set. A task can set

or clear a combination of event bits.
• Lightweight events - simpler implementation of events.

• Semaphores - tasks can wait for a semaphore to be incremented from non-zero. A

task can post (increment) the semaphore. MQX RTOS semaphores prevent priority

inversion by providing priority inheritance. For a discussion of priority inversion, see

page Priority Inversion.
• Lightweight semaphores - simple counting semaphores.

• Mutexes - tasks can use a mutex to ensure that only one task at a time accesses

shared data. To access shared data, a task locks a mutex, waiting if the mutex is

already locked. When the task is finished accessing the shared data, it unlocks the

mutex. Mutexes prevent priority inversion by providing priority inheritance and

priority protection. For details, see page Mutexes.

• Message passing - lets tasks transfer data between themselves. A task fills a message

with data and sends it to a particular message queue. Another task waits for messages

to arrive at the message queue (receives messages).
• Lightweight Message Queue - simpler implementation of Messages.

• Task queues - let an application suspend and resume tasks.

48

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.1 Events

Events can be used to synchronize a task with another task or with an ISR.

The event component consists of event groups, which are groupings of event bits. The
number of event bits in an event group is the number of bits in _mqx_uint.

Any task can wait for event bits in an event group. If the event bits are not set, the task

blocks. Any other task or ISR can set the event bits. When the event bits are set, MQX

RTOS puts all waiting tasks, whose waiting condition is met, into the task's ready queue.

If the event group has autoclearing event bits, MQX RTOS clears the event bits as soon

as they are set, and makes one task ready.

Note To optimize code and data memory requirements on some target platforms, the event

component is not compiled in the MQX RTOS kernel by default. To test this feature,

you need to enable it first in the MQX RTOS user configuration file, and recompile the

MQX RTOS PSP, BSP, and other core components. See Rebuilding NXP MQX RTOS

for more details.

There can be named event groups, which are identified by a unique string name, and fast

event groups, which are identified by a unique number.

An application can open an event group on a remote processor by specifying the

processor number in the string that it uses to open the event group. After opening the

remote-processor event group, an application can set any event bit in the event group. An

application cannot wait for event bits in a remote event group.

Table 3-13. Summary: Using the Event Component

Event1 Description

_event_clear Clears the specified event bits in an event group.

_event_close Closes a connection to an event group.

_event_create Creates a named event group.

_event_create_auto_clear Creates a named event group with autoclearing event bits.

_event_create_component Creates the event component.

_event_create_fast Creates a fast event group.

_event_create_fast_auto_clear Creates a fast event group with autoclearing event bits.

_event_destroy Destroys a named event group.

_event_destroy_fast Destroys a fast event group.

_event_get_value Gets the value of an event group.

_event_get_wait_count Gets the number of tasks waiting for event bits in an event group.

49

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_event_open Opens a connection to a named event group.

_event_open_fast Opens a connection to a fast event group.

_event_set Sets the specified event bits in an event group on the local processor or on

a remote processor.

_event_test Tests the event component.

_event_wait_all Waits for all the specified event bits in an event group for a specified

number of milliseconds.

_event_wait_all_for Waits for all the specified event bits in an event group for a specified tick-

time period (including hardware ticks).

_event_wait_all_ticks Waits for all the specified event bits in an event group for a specified

number of ticks.

_event_wait_all_until Waits for all the specified event bits in an event group until a specified tick

time.

_event_wait_any Waits for any of the specified event bits in an event group for a specified

number of milliseconds.

_event_wait_any_for Waits for any of the specified event bits in an event group for a specified tick

time period.

_event_wait_any_ticks Waits for any of the specified event bits in an event group for a specified

number of ticks.

_event_wait_any_until Waits for any of the specified event bits in an event group until a specified

tick time.

1. Events use certain structures and constants, which are defined in event.h.

3.6.1.1 Creating the Event Component

You can explicitly create the event component with _event_create_component(). If you
do not explicitly create it, MQX RTOS creates it with default values the first time an
application creates an event group.

Table 3-14. Default Event Component Values

Parameter Meaning Default

Initial number Initial number of event groups that can be created 8

Grow number Number of additional event groups that can be created if

all the event groups are created, until the maximum

number is reached

8

Maximum number If grow number is not 0, maximum number of event groups

that can be created

0 (unlimited)

3.6.1.2 Creating an Event Group

Before a task can use the event component, it must create an event group.

50

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Table 3-15. Event Group Creation

To create this type of

event group:

Call: With:

Fast (with autoclearing event
bits)

_event_create_fast()

_event_create_fast_ auto_clear()

Index (must be within the limits

specified, when the event

component was created)

Named (with autoclearing

event bits)

_event_create()

_event_create_auto_ clear()

String name

If an event group is created with autoclearing event bits, MQX RTOS clears the bits as

soon as they are set. This action makes ready any tasks that are waiting for the bits,

without the tasks having to clear the bits.

3.6.1.3 Opening a Connection to an Event Group

Before a task can use the event component, it must open a connection to a created event

group.

Table 3-16. Event Group Open

To open a connection to

this type of event group:

Call: With:

Fast _event_open_fast() Index, which must be within the limits that

were specified, when the event component

was created.

Named _event_open() String name

Both functions return a unique handle to the event group.

3.6.1.4 Waiting for Event Bits (Events)
A task waits for a pattern of event bits (a mask) in an event group with _event_wait_all()

or _event_wait_any(). When a bit is set, MQX RTOS makes ready the tasks that are

waiting for the bit. If the event group is created with autoclearing event bits

(_event_create_auto_clear() or _event_create_fast_auto_clear()), MQX RTOS clears

the bit so that the waiting tasks need not clear it.

3.6.1.5 Setting Event Bits

A task can set a pattern of event bits (a mask) in an event group with _event_set(). The

51

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

event group can be local or on a remote processor. When an event bit is set, tasks waiting
for the bit are made ready. If the event group is created with autoclearing event bits,
MQX RTOS clears the bits as soon as they are set.

3.6.1.6 Clearing Event Bits

A task can clear a pattern of event bits (a mask) in an event group with _event_clear().
However, if the event group is created with autoclearing event bits, MQX RTOS clears
the bits as soon as they are set.

3.6.1.7 Closing a Connection to an Event Group

When a task no longer needs to use an event group, it can close its connection to the
group with _event_close().

3.6.1.8 Destroying an Event Group

If tasks are blocked, waiting for an event bit in the to-be-destroyed event group, MQX

RTOS moves them to their ready queues.

3.6.1.9 Example: Using Events

Simulated_tick ISR sets an event bit each time it runs. Service task performs a certain

action each time a tick occurs, and therefore waits for the event bit that Simulated_tick

sets.

3.6.1.9.1 Code for the Using Events Example

/* event.c */

#include

<mqx.h>

#include <fio.h>

#include

<event.h>

/* Task IDs */
#define SERVICE_TASK 5
#define ISR_TASK 6
/* Function Prototypes */

52

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

extern void simulated_ISR_task(uint32_t);

extern void service_task(uint32_t);
const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{

/* Task Index, Function, Stack,Prio, Name, Attributes, Param, TS */

{ SERVICE_TASK, service_task, 2000, 8, "service", MQX_AUTO_START_TASK, 0, 0},
{ ISR_TASK, simulated_ISR_task, 2000, 8,
"simulated_ISR", 0, 0, 0},
{ 0 }
};
/*TASK*---
*
* Task Name : simulated_ISR_task
* Comments :

* This task opens a connection to the event. After

* delaying the event bits are set.

END -- */

void simulated_ISR_task(uint32_t initial_data)

{

void * event_ptr;

/* open event connection */

if (_event_open("global", &event_ptr) !=

MQX_OK) { printf("\nOpen Event failed");

_mqx_exit(0);
}

while (TRUE) {

 _time_delay(1000);

if (_event_set(event_ptr, 0x01) !=

MQX_OK) { printf("\nSet Event

failed");

_mqx_exit(0);

}

}

}

/*TASK*---
*
* Task Name : service_task
* Comments :
* This task creates an event and the simulated_ISR_task
* task. It opens a connection to the event and waits.
* After all bits have been set "Tick" is printed and
* the event is cleared.
END--- */
void service_task(uint32_t initial_data)
{

void * event_ptr;
_task_id second_task_id;
/* setup event */
if (_event_create("global") !=

MQX_OK) { printf("\nMake event

failed");
_mqx_exit(0);

}

if (_event_open("global", &event_ptr) !=

MQX_OK) { printf("\nOpen event failed");

53

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_mqx_exit(0);

}
/* create task */
second_task_id = _task_create(0,

ISR_TASK, 0); if (second_task_id ==

MQX_NULL_TASK_ID) {

printf("Could not create simulated_ISR_task \n");
_mqx_exit(0);

}
while (TRUE) {

if (_event_wait_all(event_ptr, 0x01, 0) !=

MQX_OK) { printf("\nEvent Wait failed");

_mqx_exit(0);

}
if (_event_clear(event_ptr, 0x01) !=

MQX_OK) { printf("\nEvent Clear

Failed");

_mqx_exit(0);

}
printf(" Tick \n");

}
}

3.6.1.9.2 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mqx\examples\event

2. See the MQX™ RTOS Release Notes for instructions on how to build and run the
application.

Event task prints a message each time an event bit is set.

3.6.2 Lightweight Events

Lightweight events are a simpler, low-overhead implementation of events.

The lightweight event component consists of lightweight event groups, which are

groupings of event bits. The number of event bits in a lightweight event group is the

number of bits in _mqx_uint.

Any task can wait for event bits in a lightweight event group. If the event bits are not set,

the task blocks. Any other task or ISR can set the event bits. When the event bits are set,

54

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

MQX RTOS puts all waiting tasks, whose waiting condition is met, into the task's ready

queue. If the lightweight event group has autoclearing event bits, MQX RTOS clears the

event bits as soon as they are set and makes one task ready.

Lightweight event groups are created from static-data structures and are not multi-

processor.

Table 3-17. Summary: Using the Lightweight Event Component

Event1 Description

_lwevent_clear Clears the specified event bits in a lightweight event group.

_lwevent_create Creates a lightweight event group, indicating whether it has autoclearing event
bits.

_lwevent_destroy Destroys a lightweight event group.

_lwevent_set Sets the specified event bits in a lightweight event group.

_lwevent_test Tests the lightweight event component.

_lwevent_wait_for Waits for all or any of the specified event bits in a lightweight event

group for a specified tick-time period.

_lwevent_wait_ticks Waits for all or any of the specified event bits in a lightweight event

group for a specified number of ticks.

_lwevent_wait_until Waits for all or any of the specified event bits in a lightweight event

group until a specified tick time.

1. Lightweight events use certain structures and constants, which are defined in lwevent.h.

3.6.2.1 Creating a Lightweight Event Group
To create a lightweight event group, an application declares a variable of type

LWEVENT_STRUCT, and initializes it by calling _lwevent_create() with a pointer to

the variable and a flag indicating, whether the event group has autoclearing event bits.

3.6.2.2 Waiting for Event Bits

A task waits a pattern of event bits (a mask) in a lightweight event group with one of the
_lwevent_wait functions. If the waiting condition is not met, the function waits for a
specified time to expire.

3.6.2.3 Setting Event Bits

A task sets a pattern of event bits (a mask) in a lightweight event group with
_lwevent_set(). If tasks are waiting for the appropriate bits, MQX RTOS makes them
ready. If the event group has autoclearing event bits, MQX RTOS makes ready only the

55

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

first task that is waiting.

3.6.2.4 Clearing Event Bits

A task can clear a pattern of event bits (a mask) in a lightweight event group with
_lwevent_clear(). However, if the lightweight event group is created with autoclearing
event bits, MQX RTOS clears the bits as soon as they are set.

3.6.2.5 Destroying a Lightweight Event Group

When a task no longer needs a lightweight event group, it can destroy the event group
with _lwevent_destroy().

3.6.3 About Semaphore-Type Objects

MQX RTOS provides lightweight semaphores (LWSems), semaphores, and mutexes.

You can use both types of semaphores for task synchronization and mutual exclusion. A

task waits for a semaphore. If the semaphore count is zero, MQX RTOS blocks the task;

otherwise, MQX RTOS decrements the semaphore count, gives the task the semaphore,

and the task continues to run. When the task is finished with the semaphore, it posts the

semaphore; the task remains ready. If a task is waiting for the semaphore, MQX RTOS

puts the task in the task ready queue; otherwise, MQX RTOS increments the semaphore

count.

You can use mutexes for mutual exclusion. A mutex is sometimes called a binary

semaphore because its counter can be only zero or one.

3.6.3.1 Strictness

If a semaphore-type object is strict, a task must first wait for and get the object, before it

can release the object. If the object is non-strict, a task does not need to get the object

before it releases the object.

3.6.3.2 Priority Inversion

Task priority inversion is a classic condition, where the relative priorities of tasks appear

to be reversed. Priority inversion might occur, when tasks use semaphores or mutexes to

gain access to a shared resource.

56

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.3.3 Example: Priority Inversion

There are three tasks of three different priorities. The mid-priority task prevents the

highest-priority task from running.

Table 3-18. Priority Inversion Example

Sequence Task_1 (highest priority P1) Task_2 (mid priority P2) Task_3 (lowest priority P3)

1

2

 • Runs

• Gets semaphore

3 • Is made ready

4 • Preempties Task_3

and runs

5 • Is made ready

6 • Preempties Task_2

and runs

7 • Tries to get

semaphore that

Task_3 has

8 • Blocks, waiting for

the semaphore

9 • Runs and keeps running

3.6.3.4 Avoiding Priority Inversion with Priority Inheritance

When you create an MQX RTOS semaphore or mutex, one of the properties that you can

specify is priority inheritance, which prevents priority inversion.

If you specify priority inheritance, during the time that a task has locked a semaphore or

mutex, the task's priority is never lower than the priority of any task that waits for the

semaphore or mutex. If a higher-priority task waits for the semaphore or mutex, MQX

RTOS temporarily raises the priority of the task that has the semaphore or mutex to the

priority of the waiting task.

Table 3-19. Priority Inheritance Properties

Sequence Task_1 (highest priority P1) Task_2 (mid priority P2) Task_3 (lowest priority P3)

1 • Runs

2 • Gets semaphore

3 • Is made ready

4 • Preempties Task_3

57

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

and runs

5 • Is made ready

6 • Preempties Task_2 and

runs

7 • Tries to get semaphore

that Task_3 has

8 • Raises priority of Task_3

to P1 and blocks

9 • Preempts Task_1 and runs

10 • Finishes work and

posts semaphore

11 • Priority is lowered to P3

12 • Preempts Task_3 and

Task_2 and runs

13 • Gets semaphore

3.6.3.5 Avoiding Priority Inversion with Priority Protection

When you create an MQX RTOS mutex, you can specify the mutex attributes of priority

protection and a mutex priority. These attributes prevent priority inversion.

If the priority of a task that requests to lock the mutex is not at least as high as the mutex

priority, MQX RTOS temporarily raises the task's priority to the mutex priority for as

long, as the task has the mutex locked.

Table 3-20. Mutex Attributes

Sequence Task_1 (highest priority P1) Task_2 (mid priority P2) Task_3 (lowest priority P3)

1 • Runs

2 • Locks mutex (with priority

P1); priority is boosted to

P1

3 • Is made ready

4 • Does not preempt
Task_3

5 • Is made ready

6 • Does not preempt
Task_3

7 • Finishes with mutex

and unlocks it

8 • Priority is lowered to P3

9 • Preempts Task_3 and
runs

58

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

10 • Locks mutex

Table 3-21. Comparison of Lightweight Semaphores, Semaphores, and Mutexes

Feature LWSem Semaphore Mutex

Timeout Yes Yes No

Queuing FIFO FIFO Priority FIFO Priority Spin only Limited spin

Strict No No or yes Yes

Priority inheritance No Yes Yes

Priority protection No No Yes

Size Smallest Largest Between lightweight semaphores

and semaphores

Speed Fastest Slowest Between lightweight semaphores

and semaphores

3.6.4 Lightweight Semaphores

Lightweight semaphores are a simpler, low-overhead implementation of semaphores.

Lightweight semaphores are created from static-data structures, and are not multi-

processor.

Table 3-22. Summary: Using Lightweight Semaphores

_lwsem_create Creates a lightweight semaphore.

_lwsem_destroy Destroys a lightweight semaphore.

_lwsem_poll Polls for a lightweight semaphore (non-blocking).

_lwsem_post Posts a lightweight semaphore.

_lwsem_test Tests the lightweight semaphore component.

_lwsem_wait Waits for a lightweight semaphore.

_lwsem_wait_for Waits for a lightweight semaphore for a specified tick-time period.

_lwsem_wait_ticks Waits for a lightweight semaphore for a specified number of ticks.

_lwsem_wait_until Waits for a lightweight semaphore, until a specified number of ticks have elapsed.

3.6.4.1 Creating a Lightweight Semaphore

To create a lightweight semaphore, you declare a variable of type LWSEM_STRUCT,
and initialize it by calling _lwsem_create() with a pointer to the variable and an initial
semaphore count. The semaphore count, which indicates the number of requests that can
be concurrently granted the lightweight semaphore, is set to the initial count.

59

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.4.2 Waiting for and Posting a Lightweight Semaphore

A task waits for a lightweight semaphore with _lwsem_wait(). If the semaphore count is
greater than zero, MQX RTOS decrements it, and the task continues to run. If the count is
zero, MQX RTOS blocks the task, until some other task posts the lightweight semaphore.

To release a lightweight semaphore, a task posts it with _lwsem_post(). If no tasks are
waiting for the lightweight semaphore, MQX RTOS increments the semaphore count.

Since lightweight semaphores are non-strict, tasks can post without waiting first;

therefore, the semaphore count is not bounded and can increase beyond the initial count.

3.6.4.3 Destroying a Lightweight Semaphore

When a task no longer needs a lightweight semaphore, it can destroy it with
_lwsem_destroy().

3.6.4.4 Example: Producers and Consumer

Producer and consumer tasks synchronize each other with lightweight semaphores.

1. Read task creates:

• Multiple Write tasks and assigns a unique character to each.

• One write LWSem.

• One read LWSem.

2. Each Write task waits for the Write LWSem, before it writes a character into the

buffer. When the character is written, each Write task posts the Read LWSem,

signaling that a character is available to the Read task.

3. Read waits for the Read LWSem, before it consumes the character. After it consumes
the character, it posts the Write LWSem, signaling that the buffer is ready for another

character.

3.6.4.4.1 Definitions and Structures for the Example

/* read.h */

/* Number of Writer Tasks

*/ #define NUM_WRITERS 3

/* Task IDs */
#define WRITE_TASK 5
#define READ_TASK 6
/* Global data structure accessible by read and write tasks.
** Contains two lightweight semaphores that govern access to the
** data variable.
*/
typedef struct sw_fifo

60

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

{

LWSEM_STRUCT READ_SEM;

LWSEM_STRUCT WRITE_SEM;
uchar DATA;

} SW_FIFO, _PTR_ SW_FIFO_PTR;

/* Function prototypes */
extern void write_task(uint32_t initial_data);

extern void read_task(uint32_t initial_data);

extern SW_FIFO fifo;

3.6.4.4.2 Task Templates for the Producers and Consumers Example

/* ttl.c */

#include <mqx.h>

#include <bsp.h>

#include "read.h"

const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{
/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time

Slice */
{ WRITE_TASK,write_task, 1000, 8, “write”, 0, 0, 0},
{ READ_TASK, read_task, 1000, 8, “read, MQX_AUTO_STAT_TASK, 0, 0},
{ 0 }

};

3.6.4.4.3 Code for a Write Task

/* write.c */

#include <mqx.h>

#include <bsp.h>

#include "read.h"

/*TASK*--
*
* Task Name : write_task
* Comments : This task waits for the write semaphore,
** then writes a character to "data" and posts a
* read semaphore.
END--- */
void write_task(uint32_t initial_data)
{

printf("\nWrite task created: 0x%lX",

initial_data); while (TRUE) {

if (_lwsem_wait(&fifo.WRITE_SEM) !=

MQX_OK) { printf("\n_lwsem_wait

failed");

_mqx_exit(0);

}
fifo.DATA = (uchar)initial_data;
_lwsem_post(&fifo.READ_SEM);

}
}

61

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.4.4.4 Code for Read Task

/* read.c */

#include <mqx.h>

#include <bsp.h>

#include "read.h"

SW_FIFO fifo;

/*TASK*--
*
* Task Name : read_task
* Comments : This task creates two semaphores and
* NUM_WRITER write_tasks. Then it waits
* on the read_sem and finally outputs the
* "data" variable.
END--- */
void read_task(uint32_t initial_data)
{

_task_id task_id;
_mqx_uint result;
_mqx_uint i;
/* Create the lightweight semaphores */

result = _lwsem_create(&fifo.READ_SEM, 0);

if (result != MQX_OK) {

printf("\nCreating read_sem failed: 0x%X", result);
_mqx_exit(0);

}
result = _lwsem_create(&fifo.WRITE_SEM, 1);

if (result != MQX_OK) {

printf("\nCreating write_sem failed: 0x%X", result);
_mqx_exit(0);

}
/* Create write tasks */
for (i = 0; i < NUM_WRITERS; i++) {

task_id = _task_create(0, WRITE_TASK, (uint32_t)('A' + i));

printf("\nwrite_task created, id 0x%lX", task_id);

}
while (TRUE) {

result = _lwsem_wait(&fifo.READ_SEM);

if (result != MQX_OK) {

printf("\n_lwsem_wait failed: 0x%X", result);
_mqx_exit(0);

}
putchar('\n');

putchar(fifo.DATA

);

_lwsem_post(&fifo.WRITE_SEM);
}

}

3.6.4.4.5 Compiling the Application and Linking It with MQX RTOS
1. Go to this directory:

mqx\examples\lwsem

62

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

2. See the MQX™ RTOS Release Notes document (document MQXRN) for instructions
on how to build and run the application.

The following appears on the output device:

A

A

B

C

A

B

...

3.6.5 Semaphores

Semaphores can be used for task synchronization and mutual exclusion. The main

operations that a task performs on a semaphore, are to wait for the semaphore and to post

the semaphore.

Note To optimize code and data memory requirements on some target platforms, the

Semaphore component is not compiled in the MQX RTOS kernel by default. To test

this feature, you need to enable it first in the MQX RTOS user configuration file and

recompile the MQX RTOS PSP, BSP, and other core components. See Rebuilding

NXP MQX RTOS for more details.

Table 3-23. Summary: Using Semaphores

Semaphore1 Description

_sem_close Closes a connection to a semaphore.

_sem_create Creates a semaphore.

_sem_create_component Creates the semaphore component.

_sem_create_fast Creates a fast semaphore.

_sem_destroy Destroys a named semaphore.

_sem_destroy_fast Destroys a fast semaphore.

_sem_get_value Gets the current semaphore count.

_sem_get_wait_count Gets the number of tasks waiting for a semaphore.

_sem_open Opens a connection to a named semaphore.

_sem_open_fast Opens a connection to a fast semaphore.

_sem_post Posts (frees) a semaphore.

63

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_sem_test Tests the semaphore component.

_sem_wait Waits for a semaphore for a number of milliseconds.

_sem_wait_for Waits for a semaphore for a tick-time period.

_sem_wait_ticks Waits for a semaphore for a number of ticks.

_sem_wait_until Waits for a semaphore until a time (in tick time).

1. Semaphores use certain structures and constants, which are defined in sem.h.

3.6.5.1 Using a Semaphore

To use a semaphore, a task executes the following steps, each of which is described in

subsequent sections.

1. Optionally, creates the semaphore component.

2. Creates the semaphore.

3. Opens a connection to the semaphore.

4. If the semaphore is strict, it waits for the semaphore.

5. When finished using the semaphore for the time being, it posts the semaphore.

6. If it no longer needs the semaphore, it closes its connection to the semaphore.

7. If the semaphore is protecting a shared resource that ceases to exist or is no longer

accessible, the task can destroy the semaphore.

3.6.5.2 Creating the Semaphore Component

You can explicitly create the semaphore component with _sem_create_component(). If
you do not explicitly create it, MQX RTOS creates it with default values the first time an
application creates a semaphore.

The parameters and their default values are the same as for the event component, which is

described on page Creating the Event Component.

3.6.5.3 Creating a Semaphore

Before a task can use a semaphore, it must create the semaphore.

Table 3-24. Semaphore Creation

Semaphore Type Call With

Fast _sem_create_fast() Index, which must be within the limits that were specified

when the semaphore component was created.

64

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Named _sem_create() String name

When the task creates the semaphore, it also specifies:

• Initial count - the initial value for the semaphore count represents the number of

locks that the semaphore has. (A task can get multiple locks).

• Priority queuing - if priority queuing is specified, the queue of tasks waiting for the
semaphore is in priority order, and MQX RTOS puts the semaphore to the highest-

priority waiting task.

• If priority queuing is not specified, the queue is in FIFO order, and MQX RTOS puts

the semaphore to the longest-waiting task.

• Priority inheritance - if priority inheritance is specified and a higher-priority task is

waiting for the semaphore, MQX RTOS raises the priority of the tasks that have the

semaphore to the priority of the waiting task. For more information, see the

discussion on priority inheritance on page Avoiding Priority Inversion with Priority

Inheritance. To use priority inheritance, the semaphore must be strict.

• Strictness - if strictness is specified, a task must wait for the semaphore, before it can

post the semaphore. If a semaphore is strict, the initial count is the maximum value
of the semaphore count. If the semaphore is non-strict, the count is unbounded.

3.6.5.4 Opening a Connection to a Semaphore

Before a task can use a semaphore, it must open a connection to the semaphore.

Table 3-25. Opening a Connection to a Semaphore

Semaphore Type Call With

Fast _sem_open_fast() Index, which must be within the limits that

were specified when the semaphore

component was created.

Named _sem_open() String name

Both functions return a unique handle to the semaphore.

3.6.5.5 Waiting for a Semaphore and Posting a Semaphore

A task waits for a semaphore using one of the functions from the _sem_wait_family of
functions. If the semaphore count is zero, MQX RTOS blocks the task, until another task
posts (_sem_post()) the semaphore or the task-specified timeout expires. If the count is

65

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

not zero, MQX RTOS decrements the count, and the task continues to run.

When a task posts a semaphore, and there are tasks waiting for the semaphore, MQX

RTOS puts them in their ready queues. If there are no tasks waiting, MQX RTOS

increments the semaphore count. In either case, the posting task remains ready.

3.6.5.6 Closing a Connection to a Semaphore

When a task no longer needs to use a semaphore, it can close its connection with the

semaphore with _sem_close().

3.6.5.7 Destroying a Semaphore

When the semaphore is no longer needed, a task can destroy it.

Table 3-26. Semaphore Destroying

Semaphore Type Call With

Fast _sem_destroy_fast() Index, which must be within the limits that

were specified when the semaphore

component was created.

Named _sem_destroy() String name

As well, the task can specify, whether to force destruction. If destruction is forced, MQX

RTOS readies tasks that are waiting for the semaphore, and destroys the semaphore after

all the tasks that have the semaphore post the semaphore.

If destruction is not forced, MQX RTOS destroys the semaphore after the last waiting

task gets and posts the semaphore. (This is always the action if the semaphore is strict).

3.6.5.8 Example: Task Synchronization and Mutual Exclusion

This example builds on the lightweight semaphore example on page Example: Producers

and Consumer. It shows, how semaphores can be used for task synchronization and

mutual exclusion.

The example manages a FIFO that multiple tasks can write to and read from. Mutual

exclusion is required for access to the FIFO data structure. Task synchronization is

required to block the writing tasks when the FIFO is full, and to block the reading tasks

when the FIFO is empty. Three semaphores are used:

66

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

• Index semaphore for mutual exclusion on the FIFO.

• Read semaphore to synchronize the readers.

• Write semaphore to synchronize the writers.

The example consists of three tasks: Main, Read, and Write. Main initializes the

semaphores, and creates Read and Write.

3.6.5.8.1 Definitions and Structures for the Example

/* main.h
** This file contains definitions for the semaphore example.
*/
#define MAIN_TASK 5
#define WRITE_TASK 6
#define READ_TASK 7
#define ARRAY_SIZE 5
#define NUM_WRITERS 2
/* Global data structure accessible by read and write tasks.

** Contains a DATA array that simulates a FIFO. READ_INDEX

** and WRITE_INDEX mark the location in the array that the read
** and write tasks are accessing. All data is protected by
** semaphores.
*/
typedef struct
{

_task_id

 DATA[ARRAY_SIZE

]; uint32_t

 READ_INDEX;

uint32_t WRITE_INDEX;

} SW_FIFO, * SW_FIFO_PTR;

/* Function prototypes */
extern void main_task(uint32_t initial_data);

extern void write_task(uint32_t initial_data);

extern void read_task(uint32_t initial_data);

extern SW_FIFO fifo;

3.6.5.8.2 Task Templates for the Task Synchronization and Mutual Exclusion
Example

/* ttl.c */

#include

<mqx.h>

#include

"main.h"

const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{
/* Task Index, Function, Stack, Priority, Name, Attributes, Param,Time Slice */
{ MAIN_TASK, main_task, 2000, 8, "main", MQX_AUTO_START_TASK,0, 0 },
{ WRITE_TASK, write_task,2000, 8, “write”, 0, 0, 0 },
{ READ TASK, read_task, 2000, 8, “read”, 0, 0, 0 },
{ 0 }

};

67

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.5.8.3 Code for Main Task

The Main task creates:

• The semaphore component

• The Index, Read, and Write semaphores

• Read and Write tasks

/* main.c */

#include <mqx.h>

#include <bsp.h>

#include <sem.h>

#include "main.h"

SW_FIFO fifo;
/*TASK*--
*
* Task Name : main_task
* Comments :
* This task initializes three semaphores, creates NUM_WRITERS
* write_tasks, and creates one read_task.
END--- */
void main_task(uint32_t initial_data)
{

_task_id task_id;

_mqx_uint i;

fifo.READ_INDEX = 0;

fifo.WRITE_INDEX = 0;
/* Create semaphores: */
if (_sem_create_component(3, 1, 6) != MQX_OK) {

printf("\nCreating semaphore component failed");

_mqx_exit(0);

}

if (_sem_create("write", ARRAY_SIZE, 0) != MQX_OK) {

printf("\nCreating write semaphore failed");

 _mqx_exit(0);

}
if (_sem_create("read", 0, 0) != MQX_OK) {

printf("\nCreating read semaphore failed");

_mqx_exit(0);

}
if (_sem_create("index", 1, 0) != MQX_OK) {

printf("\nCreating index semaphore failed");

 _mqx_exit(0);

}
/* Create tasks: */
for (i = 0; i < NUM_WRITERS; i++) {

task_id = _task_create(0, WRITE_TASK, i);

printf("\nwrite_task created, id 0x%lx", task_id);

}
task_id = _task_create(0, READ_TASK, 0);

printf("\nread_task created, id 0x%lx", task_id);

}

68

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.5.8.4 Code for the Read Task

/* read.c */

#include

<mqx.h>

#include

<bsp.h>

#include

<sem.h>

#include

"main.h"

/*TASK*--
* Task Name : read_task
* Comments :
* This task opens a connection to all three semaphores, then
* waits to lock a read semaphore and an index

semaphore. One element in the DATA array is

displayed. The index and write semaphores are then

posted.

END--- */
void read_task(uint32_t initial_data)
{

void * write_sem;

void * read_sem;

void * index_sem;

/* Open connections to all semaphores: */
if (_sem_open("write", &write_sem) != MQX_OK) {

printf("\nOpening write semaphore failed");

_mqx_exit(0);

}
if (_sem_open("index", &index_sem) != MQX_OK) {

printf("\nOpening index semaphore failed");

_mqx_exit(0);

}
if (_sem_open("read", &read_sem) != MQX_OK) {

printf("\nOpening read semaphore failed");

_mqx_exit(0);

}
while (TRUE) {

/* Wait for the semaphores: */
if (_sem_wait(read_sem, 0) != MQX_OK) {

printf("\nWaiting for read semaphore failed");
_mqx_exit(0);

}

if (_sem_wait(index_sem, 0) != MQX_OK) {

printf("\nWaiting for index semaphore failed");

_mqx_exit(0);

}
printf("\n 0x%lx", fifo.DATA[fifo.READ_INDEX++]);

if (fifo.READ_INDEX >=ARRAY_SIZE) {
fifo.READ_INDEX = 0;

}
/* Post the semaphores: */

69

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_sem_post(index_sem);
_sem_post(write_sem);

}
}

3.6.5.8.5 Code for the Write Task

/* write.c */

#include <mqx.h>

#include <bsp.h>

#include <sem.h>

#include "main.h"

/*TASK*--
* Task Name : write_task
* Comments :
* This task opens a connection to all three semaphores, then
* waits to lock a write and an index semaphore. One element

* in the DATA array is written to. The index

and read semaphores are then posted.

END-- */
void write_task(uint32_t initial_data)
{

void * write_sem;

void * read_sem;

void * index_sem;

/* Open connections to all semaphores: */
if (_sem_open("write", &write_sem) != MQX_OK) {

printf("\nOpening write semaphore failed");

_mqx_exit(0);

}
if (_sem_open("index", &index_sem) != MQX_OK) {

printf("\nOpening index semaphore failed");

_mqx_exit(0);

}
if (_sem_open("read", &read_sem) != MQX_OK) {

printf("\nOpening read semaphore failed");

_mqx_exit(0);

}
while (TRUE) {

/* Wait for the semaphores: */
if (_sem_wait(write_sem, 0) != MQX_OK) {

printf("\nWaiting for write semaphore failed");

_mqx_exit(0);

}

if (_sem_wait(index_sem, 0) != MQX_OK) {

printf("\nWaiting for index semaphore failed");

_mqx_exit(0);

}
fifo.DATA[fifo.WRITE_INDEX++] = _task_get_id();

if (fifo.WRITE_INDEX >=ARRAY_SIZE) {

fifo.WRITE_INDEX = 0;

}

70

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

/* Post the semaphores: */
_sem_post(index_sem);
_sem_post(read_sem);

}
}

3.6.5.8.6 Compiling the application and linking it with MQX RTOS
1. Go to this directory:

\mqx\examples\sem

2. See the MQX RTOS Release Notes for instructions how to build and run the
application.

Read task prints the data that is written to the FIFO.

Modify the program to remove priority inheritance, and run the application again.

3.6.6 Mutexes

Mutexes are used for mutual exclusion, so that only one task at a time uses a shared

resource such as data or a device. To access the shared resource, a task locks the mutex

associated with the resource. The task owns the mutex, until it unlocks the mutex.

Note To optimize code and data memory requirements on some target platforms, the Mutex

component is not compiled in the MQX RTOS kernel by default. To test this feature,

you need to enable it first in the MQX RTOS user configuration file, and recompile the

MQX RTOS PSP, BSP, and other core components. See Rebuilding NXP MQX RTOS

for more details.

Mutexes provide priority inheritance and priority protection to prevent priority inversion.

Table 3-27. Summary: Using Mutexes

Mutex1 Description

_mutex_create_component Creates the mutex component.

_mutex_destroy Destroys a mutex.

_mutex_get_priority_ceiling Gets the priority of a mutex.

_mutex_get_wait_count Gets the number of tasks that are waiting for a mutex.

_mutex_init Initializes a mutex.

_mutex_lock Locks a mutex.

_mutex_set_priority_ceiling Sets the priority of a mutex.

_mutex_test Tests the mutex component.

71

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_mutex_try_lock Tries to lock a mutex.

_mutex_unlock Unlocks a mutex.

1. Mutexes use certain structures and constants, which are defined in mutex.h.

3.6.6.1 Creating the Mutex Component

You can explicitly create the mutex component with _mutex_create_component(). If
you do not explicitly create it, MQX RTOS creates it the first time an application
initializes a mutex. There are no parameters.

3.6.6.2 Mutex Attributes

A mutex can have attributes with respect to its waiting and scheduling protocols.

3.6.6.3 Waiting Protocols

A mutex can have one of several waiting protocols, which affect tasks that request to lock

an already locked mutex.

Table 3-28. Mutex Waiting Protocols

Waiting protocol1 Description

Queuing (default) Blocks, until another task unlocks the mutex. When the mutex is unlocked, the

first task (regardless of priority) that requested the lock, locks the mutex.

Priority queuing Blocks, until another task unlocks the mutex. When the mutex is unlocked, the

highest-priority task that requested the lock, locks the mutex.

Spin only Spins (is timesliced) indefinitely, until another task unlocks the mutex. This means

that MQX RTOS saves the requesting task's context, and dispatches the next task

in the same-priority ready queue. When all the tasks in this ready queue have run,

the requesting task becomes active again. If the mutex is still locked, the spin

repeats.

Limited spin Spins for a specified number of times, or fewer, if another task unlocks the mutex first.

1. If the mutex is already locked, the requesting task does this.

Spin-only protocol functions properly, only if the tasks that share the mutex are either:

• time-slice tasks

• the same priority

If non-time-slice tasks of different priority try to share a spin-only mutex, a higher-

priority task that wants to lock the mutex that is locked by a lower-priority task never gets

72

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

the lock (unless the lower-priority task blocks).

Spin-only protocol mutexes are prone to deadlock and are not recommended.

3.6.6.4 Scheduling Protocols

A mutex can have special scheduling protocols that avoid priority inversion. The policies

might affect the priority of a task during the time that the task has the mutex locked. The

default is for neither protocol to be in effect.

Table 3-29. Mutex Scheduling Protocols

Scheduling protocol Meaning

Priority inheritance If the priority of the task that has locked the mutex (task_A) is not as high as the highest-

priority task that is waiting to lock the mutex (task_B), MQX RTOS raises the priority of

task_A to be the same as the priority of task_B, while task_A has the mutex.

Priority protection A mutex can have a priority. If the priority of a task that requests to lock the mutex (task_A)

is not at least as high as the mutex priority, MQX RTOS raises the priority of task_A to the

mutex priority for as long as task_A has the mutex locked.

3.6.6.5 Creating and Initializing a Mutex

A task creates a mutex by first defining a variable of type MUTEX_STRUCT.

To initialize the mutex with the default attributes of a queuing waiting protocol and no
special scheduling protocols, the task calls _mutex_init() with a pointer to the mutex
variable and a NULL pointer.

However, to initialize the mutex with attributes other than the default, the task does the

following:

1. It defines a mutex attributes structure of type MUTEX_ATTR_STRUCT.

2. It initializes the attributes structure with _mutatr_init().
3. It calls various functions to set the appropriate attributes, choosing from:
4.

• _mutatr_set_priority_ceiling()

• _mutatr_set_sched_protocol()

• _mutatr_set_spin_limit()

• _mutatr_set_wait_protocol()

5. It initializes the mutex by calling _mutex_init() with pointers to the mutex and to the
attributes structure. When the mutex is initialized, any task can use it.

6. It destroys the mutex attributes structure with _mutatr_destroy().

73

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Table 3-30. Summary: Using a Mutex Attributes Structure

_mutatr_destroy Destroys a mutex attributes structure.

_mutatr_get_priority_ceiling Gets the priority of a mutex attributes structure.

_mutatr_get_sched_protocol Gets the scheduling protocol of a mutex attributes structure.

_mutatr_get_spin_limit Gets the limited-spin count of a mutex attributes structure.

_mutatr_get_wait_protocol Gets the waiting policy of a mutex attributes structure.

_mutatr_init Initializes a mutex attributes structure.

_mutatr_set_priority_ceiling Sets the priority value in a mutex attributes structure.

_mutatr_set_sched_protocol Sets the scheduling protocol of a mutex attributes structure.

_mutatr_set_spin_limit Sets limited-spin count of a mutex attributes structure.

_mutatr_set_wait_protocol Sets the waiting protocol of a mutex attributes structure.

3.6.6.6 Locking a Mutex

To access a shared resource, a task can lock the mutex that is associated with the resource
by calling _mutex_lock(). If the mutex is not already locked, the task locks it and
continues to run. If the mutex is already locked, depending on the mutex waiting

protocols that are described on page Waiting Protocols, the task might block until the

mutex is unlocked.

To be sure that it does not block, a task can try to lock a mutex with _mutex_trylock(). If
the mutex is not already locked, the task locks it and continues to run. If the task is
already locked, the task does not get the mutex, but continues to run.

3.6.6.7 Unlocking a Mutex

Only the task that has locked a mutex can unlock it (_mutex_unlock()).

3.6.6.8 Destroying a Mutex

If a mutex is no longer needed, a task can destroy it with _mutex_destroy(). If any tasks
are waiting for the mutex, MQX RTOS puts them in their ready queues.

3.6.6.9 Example: Using a Mutex

A mutex is used for mutual exclusion. There are two time-slice tasks, both of which print

to the same device. A mutex prevents the output from being interleaved.

74

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.6.9.1 Code for Using a Mutex Example

/* main.c */

#include <mqx.h>

#include <bsp.h>

#include <mutex.h>

/* Task IDs */

#define MAIN_TASK 5

#define PRINT_TASK 6
extern void main_task(uint32_t initial_data);

extern void print_task(uint32_t initial_data);

const TASK_TEMPLATE_STRUCT MQX_template_list[] =

{
/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice */
{ MAIN_TASK, main_task, 1000, 8, "main",MQX_AUTO_START_TASK,0, 0 },
{ PRINT_TASK, print_task,1000, 9, "print", 0, 0, 3 },
{ 0 }

};
MUTEX_STRUCT print_mutex;

/*TASK*--
*
* Task Name : main_task
* Comments : This task creates a mutex, and then two
* instances of the print task.
END--- */
void main_task(uint32_t initial_data)
{

MUTEX_ATTR_STRUCT mutexattr;
char* string1 = "Hello from Print task 1\n";

char* string2 = "Print task 2 is alive\n";

/* Initialize mutex attributes: */

if (_mutatr_init(&mutexattr) != MQX_OK) {

printf("Initializing mutex attributes failed.\n");

_mqx_exit(0);

}

/* Initialize the mutex: */
if (_mutex_init(&print_mutex, &mutexattr) != MQX_OK) {

printf("Initializing print mutex failed.\n");

 _mqx_exit(0);

}
/* Create the print tasks */
_task_create(0, PRINT_TASK, (uint32_t)string1);
_task_create(0, PRINT_TASK, (uint32_t)string2);

}

/*TASK*--
*
* Task Name : print_task
* Comments : This task prints a message. It uses a mutex to
* ensure I/O is not interleaved.
END--- */
void print_task(uint32_t initial_data)
{

while(TRUE) {
if (_mutex_lock(&print_mutex) != MQX_OK) {

75

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

printf("Mutex lock failed.\n");

 _mqx_exit(0);

}
_io_puts((char *) initial_data);
_mutex_unlock(&print_mutex);

}
}

3.6.6.9.2 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mqx\examples\mutex

2. See the MQX™ RTOS Release Notes document for instructions on how to build and
run the application.

3.6.7 Messages

Tasks can communicate with each other by exchanging messages. Tasks allocate

messages from message pools. Tasks send messages to message queues, and receive

messages from message queues. Messages can be assigned a priority or marked urgent.

Tasks can send broadcast messages.

Note To optimize code and data memory requirements on some target platforms, the

Message component is not compiled in the MQX RTOS kernel by default. To test this

feature, you need to enable it first in the MQX RTOS user configuration file, and

recompile the MQX RTOS PSP, BSP, and other core components. See Rebuilding

NXP MQX RTOS for more details.

Table 3-31. Summary: Using Messages

Messages use certain structure

definitions and constants, which are

defined in message.h.

Messages use certain structure definitions and constants,

which are defined in message.h.

_msg_alloc Allocates a message from a private-message pool.

_msg_alloc_system Allocates a message from a system-message pool.

_msg_available Gets the number of free messages in a message pool.

_msg_create_component Creates the message component.

_msg_free Frees a message.

_msg_swap_endian_data Converts the application-defined data in a message to the other

endian format.

_msg_swap_endian_header Converts the message header to the other endian format.

_msgpool_create Creates a private-message pool.

76

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_msgpool_create_system Creates a system-message pool.

_msgpool_destroy Destroys a private-message pool.

_msgpool_test Tests all message pools.

_msgq_close Closes a message queue.

_msgq_get_count Gets the number of messages in a message queue.

_msgq_get_id Converts a queue number and processor number to a queue ID.

_msgq_get_notification_function Gets the notification function that is associated with a message
queue.

_msgq_get_owner Gets the task ID of the task that owns a message queue.

_msgq_open Opens a private-message queue.

_msgq_open_system Opens a system-message queue.

_msgq_peek Gets a pointer to the message that is at the head of a message
queue (does not dequeue the message).

_msgq_poll Poll (non-blocking) for a message in a message queue.

_msgq_receive Receives a message from a message queue, and waits for a
specified number of milliseconds.

_msgq_receive_for Receives a message from a message queue, and waits for a
specified tick-time period.

_msgq_receive_ticks Receives a message from a message queue, and waits for a
specified number of ticks.

_msgq_receive_until Receives a message from a message queue, and waits for a
specified tick time.

_msgq_send Sends a message to a message queue.

_msgq_send_broadcast Sends a message to multiple message queues.

_msgq_send_priority Sends a priority message to a message queue.

_msgq_send_queue Sends a message directly to a message queue (circumvents inter-
processor routing).

_msgq_send_urgent Sends an urgent message to a message queue.

_msgq_set_notification_function Sets the notification function for a message queue.

_msgq_test Tests message queues.

3.6.7.1 Creating the Message Component

You can explicitly create the message component with _msg_create_component(). If
you do not explicitly create it, MQX RTOS creates it the first time that an application
creates a message pool or opens a message queue.

3.6.7.2 Using Message Pools

Tasks allocate messages from message pools, which a task must first create. A task can
create a private-message pool (_msgpool_create()) or a system-message pool
(_msgpool_create_system()).

77

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

A task specifies the following info, when it creates a message pool:

• Size of the messages in the pool.

• Initial number of messages in the pool.

• Grow factor: the number of additional messages that MQX RTOS adds to the pool, if

tasks have allocated all the messages.

• Maximum number of messages in the pool (if the grow factor is not zero, zero means
here that the pool can contain an unlimited number of messages).

The function _msgpool_create_system() can be called multiple times to create multiple
system-message pools, each with different characteristics.

The function _msgpool_create() returns a pool ID, which any task can use to access the
private-message pool.

Table 3-32. Using Message Pools

 System-message pool Private-message pool

Create a message pool _msgpool_create_system() _msgpool_create()

Allocate a message _msg_alloc_system()

(MQX RTOS searches all system-

message pools.)

_msg_alloc()

(MQX RTOS searches only the

specified private-message pool.)

Free a message (message

owner only)

_msg_free() _msg_free()

Destroy a message pool A system-message pool

cannot be destroyed.

_msgpool_destroy()

(By any task with the pool ID

after all messages in the pool

are freed.)

3.6.7.3 Allocating and Freeing Messages
Before a task sends a message, it allocates a message (_msg_alloc_system() or

_msg_alloc()) of the appropriate size from a system- or private-message pool.

System-message pools are not the resource of any task, and any task can allocate a

message from them. Any task with the pool ID can allocate a message from a private-

message pool.

When a task allocates a message from either type of pool, the message becomes the

resource of the task, until the task frees the message (_msg_free()) or puts it in a message

queue (_msgq_send family of functions). When a task gets a message from a message

queue (_msgq_poll() or _msgq_receive family), the message becomes the resource of

the task. Only the task that has the message as its resource can free the message.

78

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Messages begin with a message header (MESSAGE_HEADER_STRUCT) that defines

the information that MQX RTOS needs to route the message. Application-defined data

follows the message header.

typedef struct message_header_struct
{
_msg_size SIZE;

#if MQX_USE_32BIT_MESSAGE_QIDS
uint16_t PAD;

#endif

_queue_id TARGET_QID;
_queue_id SOURCE_QID;

uchar CONTROL;

#if MQX_USE_32BIT_MESSAGE_QIDS
uchar RESERVED[3];

#else
uchar RESERVED;

#endif

} MESSAGE_HEADER_STRUCT, * MESSAGE_HEADER_STRUCT_PTR;

For a description of each field, see MQX RTOS Reference Manual.

3.6.7.4 Sending Messages
After a task allocates a message and fills in the message header fields and any data fields,

it sends the message with _msgq_send(), which sends the message to the target message

queue that is specified in the message header. Sending a message is not a blocking action.

3.6.7.5 Message Queues

Tasks use message queues to exchange messages. There can be private message queues

and system message queues. When a task opens a message queue (specified by a message

queue number), MQX RTOS returns an application-unique queue ID, which tasks

subsequently use to access the message queue.

A task can convert a queue number to a queue ID with _msgq_get_id().

The most-significant byte of a 16-bit queue ID contains the processor number, and the

least-significant byte contains the queue number.

Table 3-33. Queue ID

bit position 15 - 8 7 - 0

queue ID processor number queue number

3.6.7.6 Using Private Message Queues to Receive Messages

79

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

A task can send a message to any private message queue, but only the task that opened a

private message queue can receive messages from it. Only one task at a time can have the

private message queue open.

A task opens a private message queue (_msgq_open()) by specifying its queue number,

which is a value between eight and the maximum queue number that is specified in the

MQX RTOS initialization structure. (Queue numbers of one through seven are reserved.)

If a task calls _msgq_open() with queue number zero, MQX RTOS opens any of the

task's unopened private message queues.

The task that opened a private message queue can close it with _msgq_close(), which

removes all messages from the message queue and frees the messages.

A task receives a message from one of its private message queues with a function from

the _msgq_receive family, which removes the first message in the specified queue and

returns a pointer to the message. If the task specifies queue ID zero, it receives a message

from any of its open message queues. Receiving a message from a private message queue

is a blocking action, unless the task specifies a timeout, which is the maximum time the

task waits for a message.

3.6.7.7 Using System Message Queues to Receive Messages

System message queues are not owned by a task, and a task does not block waiting to

receive a message from one. Since it is not possible to block waiting for a message in a

system message queue, ISRs can use system message queues. A task or ISR opens a

system message queue with _msgq_open_system().

A task or ISR receives messages from a system message queue with _msgq_poll(). If

there are no messages in the system message queue, the function returns NULL.

3.6.7.8 Determining the Number of Pending Messages

A task can determine how many messages are in a system message queue or in one of its

private message queues with _msgq_get_count().

80

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.7.9 Notification Functions

With both system and private message queues, a task can specify a notification function

that runs, when a message is sent to the queue. For system message queues, the task

specifies the notification function when it opens the queue. For private message queues,

the task sets the notification function with _msgq_set_notification_function(), after it
opens the queue. Applications can use notification functions to couple another
synchronization service (such as an event or semaphore) to a message queue.

3.6.7.10 Example: Client/Server Model

This client/server model shows communication and task synchronization using message

passing.

Server task blocks waiting for a request message from Client task. When Server receives

the request, it executes the request and returns the message to Client. Two-way message

exchange is used, in order to block Client while Server runs.

Server opens an input message queue that it uses to receive requests from Client tasks

and creates a message pool, from which it allocates request messages. Server then creates

a number of Client tasks. In a real application, the Client tasks most likely would not be

created by Server.

When Server has opened its message queue and created its message pool, it enters a loop,

receiving messages from the message queue, acting on them (in this case, printing the

data), and returning the message to Client.

Client also opens a message queue. It allocates a message from the message pool, fills in

the message field, sends the message to Server, and waits for a response from Server.

3.6.7.10.1 Message Definition

/* server.h */

#include <mqx.h>

#include <message.h>

/* Number of clients */

#define NUM_CLIENTS 3

/* Task IDs */
#define SERVER_TASK 5
#define CLIENT_TASK 6
/* Queue IDs */
#define SERVER_QUEUE 8
#define CLIENT_QUEUE_BASE 9
/* This struct contains a data field and a message struct. */

81

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

typedef struct {

MESSAGE_HEADER_STRUCT HEADER;
uchar DATA[5];

} SERVER_MESSAGE, * SERVER_MESSAGE_PTR;
/* Function prototypes */
extern void server_task(uint32_t initial_data);

extern void client_task(uint32_t initial_data);

extern _pool_id message_pool;

3.6.7.10.2 Task Templates for the Client/Server Model Example

/* ttl.c */

#include <mqx.h>

#include <bsp.h>

#include "server.h"

const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{
/* Task Index, Function, Stack, Priority, Name,Attributes, Param, Time Slice*/

{ SERVER_TASK, server_task, 1000, 8, “server”, MQX_AUTOSTART_TASK, 0, 0 },

{ CLIENT_TASK, client_task, 1000, 8, “client”, 0 0, 0 },
{ 0 }

};

3.6.7.10.3 Code for Server Task

/* server.c */

#include <mqx.h>

#include <bsp.h>

#include "server.h"

/* Declaration of a global message pool: */
_pool_id message_pool;
/*TASK*--
*
* Task Name : server_task
* Comments : This task creates a message queue for itself,
* allocates a message pool, creates three client
tasks, and then waits for a message. After

receiving a message, the task returns the message

to the sender.

END--- */
void server_task(uint32_t param)
{

SERVER_MESSAGE_PTR msg_ptr;

uint32_t i;

_queue_id server_qid;
/* Open a message queue: */
server_qid = _msgq_open(SERVER_QUEUE, 0);
/* Create a message pool: */

message_pool = _msgpool_create(sizeof(SERVER_MESSAGE),

NUM_CLIENTS, 0, 0);

/* Create clients: */
 for (i = 0; i < NUM_CLIENTS; i++) {
 _task_create(0, CLIENT_TASK, i);

}
while (TRUE) {

msg_ptr = _msgq_receive(server_qid, 0);

printf(" %c \n", msg_ptr->DATA[0]);

82

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

/* Return the message: */
msg_ptr->HEADER.TARGET_QID = msg_ptr->HEADER.SOURCE_QID;
msg_ptr->HEADER.SOURCE_QID = server_qid;
_msgq_send(msg_ptr);

}

}

3.6.7.10.4 Code for Client Task
/* client.c */

#include <string.h>

#include <mqx.h>

#include <bsp.h>

#include "server.h"

/*TASK*--
*
* Task Name : client_task

* Comments This task creates a message queue and

allocates a message in the message pool. It sends the

message to the server_task and waits for a reply. It

then frees the message.

END--- */
void client_task(uint32_t index)
{

SERVER_MESSAGE_PTR msg_ptr;
_queue_id client_qid;

client_qid =

_msgq_open((_queue_number)(CLIENT_QUEUE_BASE +

index), 0);

while (TRUE) {
/* Allocate a message: */

msg_ptr = (SERVER_MESSAGE_PTR)

_msg_alloc(message_pool); if(msg_ptr == NULL){

printf("\nCould not allocate a message\n");
_mqx_exit(0);

}/* if */
msg_ptr->HEADER.SOURCE_QID = client_qid;
msg_ptr->HEADER.TARGET_QID = _msgq_get_id(0, SERVER_QUEUE);

msg_ptr->HEADER.SIZE = sizeof(MESSAGE_HEADER_STRUCT) +

strlen((char *)msg_ptr->DATA) + 1;

msg_ptr->DATA[0] = ('A'+ index);

printf("Client Task %d\n", index);
_msgq_send(msg_ptr);

/* Wait for the return message: */

msg_ptr = _msgq_receive(client_qid,

0);

/* Free the message: */
__msg_free(msg_ptr);

}
}

83

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.7.10.5 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mqx\examples\lwmsgq

2. See the MQX™ RTOS Release Notes document for instructions on how to build and

run the application.

3. Run the application.

3.6.8 Lightweight Message Queue

Lightweight message queues are a simpler, low-overhead implementation of standard

MQX RTOS messages. Tasks send messages to lightweight message queues and receive

messages from lightweight message queues. A message in the message pool has a fixed

size, a multiple of 32 bits. Blocking reads and blocking writes are provided.

Note To optimize code and data memory requirements on some target platforms, the

Lightweight message queue component is not compiled in the MQX RTOS kernel by

default. To test this feature, you need to enable it first in the MQX RTOS user

configuration file, and recompile the MQX RTOS PSP, BSP, and other core

components. See Rebuilding NXP MQX RTOS for more details.

Table 3-35. Summary: Using the Lightweight Message Queue Component

Lightweight message queue component

uses certain structure definitions and

constants, which are defined in lwmsgq.h.

Lightweight message queue component uses certain structure

definitions and constants, which are defined in lwmsgq.h.

_lwmsgq_init Create a lightweight message queue.

_lwmsgq_receive Get a message from a lightweight message queue.

_lwmsgq_send Puts a message on a lightweight message queue.

3.6.8.1 Initialization of a Lightweight Message Queue

Lightweight message queue is initialized by calling the _lwmsgq_init()function.

Message pool has to be allocated statically before the initialization of this component.

When a task initializes the lightweight message queue the number of messages to be

created and the size of one message has to be specified.

84

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.8.2 Sending Messages

A task sends a message to the Lightweight message queue using the
_lwmsgq_send()function. Special structure of the message is not required, however the
message size must match the message size specified in the _lwmsgq_init() function.

If the queue is full, the task either blocks and waits or the error code is returned. There is

also the possibility to block the task after the message is sent.

3.6.8.3 Receiving Messages

A task gets a message from the Lightweight message queue using the
_lwmsgq_receive()function. This function removes the first message from the queue and
copies the message to the user buffer. The message becomes a resource of the task.

If the queue is empty, the reading task performs timeout. There is also the possibility to

block the reading task if the lightweight message queue is empty.

3.6.8.4 Example: Client/Server Model

This example is the modified version of the client/server example described in Example:

Client/Server Model. The Message component is replaced by the Lightweight message

queue component.

Server task initializes the message queues, creates three client tasks, and then waits for a

message. After receiving a message, the task returns the message to the sender. Client

task sends a message to the server task and then waits for a reply.

3.6.8.4.1 Message Definition

/* server.h */

#include <mqx.h>

/* Number of clients */

#define NUM_CLIENTS 3

/* Task IDs */
#define SERVER_TASK 5
#define CLIENT_TASK 6

/* This structure contains a data field and a message header structure */

#define NUM_MESSAGES 3

#define MSG_SIZE 1
extern uint32_t server_queue[];

extern uint32_t client_queue[];

/* Function prototypes */
extern void server_task (uint32_t initial_data);

extern void client_task (uint32_t initial_data);

85

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.8.4.2 Task Templates for the Client/Server Model

/* ttl.c */

#include <mqx.h>

#include <bsp.h>

#include <lwmsgq.h>

#include "server.h"

uint32_t server_queue[sizeof(LWMSGQ_STRUCT)/sizeof(uint32_t) + NUM_MESSAGES * MSG_SIZE];

uint32_t client_queue[sizeof(LWMSGQ_STRUCT)/sizeof(uint32_t) + NUM_MESSAGES * MSG_SIZE];

const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice */

{ SERVER_TASK, server_task, 2000, 8, “server”, MQX_AUTO_START_TASK, 0, 0 },
 { CLIENT_TASK, client_task, 1000, 8, “client”, 0, 0, 0 },
 { 0 }
 };

3.6.8.4.3 Code for Server Task

/* server.c */

#include <mqx.h>

#include <bsp.h>

#include <lwmsgq.h>

#include "server.h"

/*TASK*--
*
* Task Name : server_task
* Comments : This task initializes the message queues,
* creates three client tasks, and then waits for a message.
* After recieving a message, the task returns the message to
* the sender.
END--- */
void

server_task

(

uint32_t param
)

{
_mqx_uint msg[MSG_SIZE];
_mqx_uint i;
_mqx_uint result;
result = _lwmsgq_init((void *)server_queue, NUM_MESSAGES, MSG_SIZE);

if (result != MQX_OK) {

// lwmsgq_init failed
} /* Endif */
result = _lwmsgq_init((void *)client_queue, NUM_MESSAGES, MSG_SIZE);

if (result != MQX_OK) {

// lwmsgq_init failed
} /* Endif */

/* create the client tasks */
for (i = 0; i < NUM_CLIENTS; i++) {

__task_create(0, CLIENT_TASK, (uint32_t)i);

}

while (TRUE) {

86

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_lwmsgq_receive((void *)server_queue, msg, LWMSGQ_RECEIVE_BLOCK_ON_EMPTY, 0, 0);

printf(" %c \n", msg[0]);

__lwmsgq_send((void *)client_queue, msg, LWMSGQ_SEND_BLOCK_ON_FULL);
}

}

3.6.8.4.4 Code for Client Task

/* client.c */

#include <string.h>

#include <mqx.h>

#include <bsp.h>

#include <lwmsgq.h>

#include "server.h"

/*TASK*--
*
* Task Name : client_task
* Comments : This task sends a message to the server_task and
* then waits for a reply.
END--- */
void

client_task

(

uint32_t index
)

{

_mqx_uint msg[MSG_SIZE];

while (TRUE) {
msg[0] = ('A'+ index);

printf("Client Task %ld\n", index);
_lwmsgq_send((void *)server_queue, msg, LWMSGQ_SEND_BLOCK_ON_FULL);
_time_delay_ticks(1);

/* wait for a return message */
_lwmsgq_receive((void *)client_queue, msg, LWMSGQ_RECEIVE_BLOCK_ON_EMPTY, 0, 0);

}
}

3.6.8.4.5 Compiling the application and linking it with MQX RTOS
1. Go to this directory:

/mqx/examples/msg

2. See the MQX RTOS Release Notes for instructions how to build and run the
application.

3. Run the application.

87

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.9 Task Queues

You can use a task queue to:

• Schedule a task from an ISR.

• Do explicit task scheduling.

• Implement custom synchronization mechanisms.

Table 3-36. Summary: Using Task Queues

_taskq_create Creates a task queue with the specified queuing policy (FIFO or priority).

_taskq_destroy Destroys a task queue (and puts any waiting tasks in the appropriate ready
queues).

_taskq_get_value Gets the size of a task queue.

_taskq_resume Restarts a task that is suspended in a task queue, or restarts all tasks that

are in a task queue (and puts them in their ready queues).

_taskq_suspend Suspends a task and puts it in the specified task queue (and removes it

from the task's ready queue).

_taskq_suspend_task Suspends the non-blocked task and puts it in the specified task queue (and

removes it from the task's ready queue).

_taskq_test Tests all task queues.

3.6.9.1 Creating and Destroying Task Queues

Before an application can perform explicit task scheduling, it must first initialize a task
queue by calling _taskq_create() with the queuing policy for the task queue. MQX
RTOS creates the task queue and returns a queue ID, which the task subsequently uses to

access the task queue.

A task queue is not a resource of the task that created it. It is a system resource and is not

destroyed when its creating task is terminated.

A task can explicitly destroy a task queue with _taskq_destroy(). If there are tasks in the
task queue, MQX RTOS moves them to their ready queues.

3.6.9.2 Suspending a Task

A task can suspend itself in a specific task queue with _taskq_suspend(). MQX RTOS
puts the task in the queue (blocks the task) according to the queuing policy of the task
queue.

88

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.6.9.3 Resuming a Task

A task calls _taskq_resume() to remove either one or all tasks from a specific task
queue. MQX RTOS puts them in their ready queues.

3.6.9.4 Example: Synchronizing Tasks

A task is synchronized with an ISR. A second task simulates the interrupt.

The service_task task waits for a periodic interrupt, and prints a message every time the

interrupt occurs. The task first creates a task queue, then suspends itself in the queue. The

simulated_ISR_task task simulates a periodic interrupt with _time_delay(), and when the
timeout expires, it schedules service_task.

3.6.9.4.1 Code as an Example

/* taskq.c */

#include <mqx.h>

#include <fio.h>

/* Task IDs */
#define SERVICE_TASK 5

#define ISR_TASK 6

extern void simulated_ISR_task(uint32_t);

extern void service_task(uint32_t);

const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{
/* Task Index, Function, Stack, Prio, Name, Attributes, Param, TS*/
{ SERVICE_TASK,service_task, 2000, 8, "service", MQX_AUTO_START_TASK,0, 0},
{ ISR_TASK, simulated_ISR_task,2000, 8, "simulated_ISR",0, 0, 0},
{ 0 }
};

void * my_task_queue;
/*TASK*---
*
* Task Name : simulated_ISR_task
* Comments :
* This task pauses and then resumes the task queue.
END--- */

void simulated_ISR_task(uint32_t initial_data)
{

while (TRUE) {
__time_delay(200);
__taskq_resume(my_task_queue, FALSE);

}
}

/*TASK*---
*
* Task Name : service_task
* Comments :
* This task creates a task queue and the simulated_ISR_task

89

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

* task. Then it enters an infinite loop, printing "Tick" and
* suspending the task queue.
END--- */
void service_task(uint32_t initial_data)
{

_task_id second_task_id;
/* Create a task queue: */
my_task_queue = _taskq_create(MQX_TASK_QUEUE_FIFO);

if (my_task_queue == NULL) {

__mqx_exit(0);

}
/* Create the task: */

second_task_id = _task_create(0, ISR_TASK, 0);

if (second_task_id == MQX_NULL_TASK_ID) {

printf("\n Could not create simulated_ISR_task\n");
_ _mqx_exit(0);

}

while (TRUE) {
printf(" Tick \n");
__taskq_suspend(my_task_queue);

}
}

3.6.9.4.2 Compiling the Application and Linking it with MQX RTOS
1. Go to the Example application directory:

mqx/examples/taskq

2. See the MQX™ RTOS Release Notes document for instructions on how to build and

run the application.

3. Run the application.

3.7 Communication Between Processors

With the inter-processor communication (IPC) component, tasks can do the following on

remote processors:

• exchange messages

• create tasks (blocked or not blocked)

• destroy tasks

• open and close named event groups

• set event bits in named event groups

All the processors need not be directly connected or be of the same type. The IPC

component routes messages through intermediate processors and converts them to the

90

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

appropriate endian format. The IPC component communicates over packet control block

(PCB) device drivers.

When MQX RTOS with the IPC component initializes, it initializes IPC message drivers

and builds message routing tables, which define the paths that messages take to go from

one processor to another. For information that might be specific to your hardware, refer

to the release notes that accompany your MQX RTOS release.

Table 3-37. Summary: Setting Up Inter-Processor Communication

_ipc_add_ipc_handler Adds an IPC handler for an MQX RTOS component.

_ipc_add_io_ipc_handler Adds an IPC handler for an I/O component.

_ipc_msg_route_add Adds a route to the message routing table.

_ipc_msg_route_remove Removes a route from the message routing table.

_ipc_pcb_init Initializes an IPC for a PCB driver.

_ipc_task Task that initializes IPCs, and processes remote service requests.

3.7.1 Sending Messages to Remote Processors

As well as having a message routing table, each processor has one or more IPCs, each of

which consists of:

• input function

• output function

• output queue

When a task sends a message to a message queue, MQX RTOS examines the destination

processor number, which is part of the queue ID. If the destination processor is not local,

MQX RTOS checks the routing table.

If there is a route, the table indicates the output queue of the IPC to use, in order to reach

the destination processor. MQX RTOS then directs the message to that output queue. The

output function runs and transmits the message on the IPC.

When an IPC receives a message, the input function runs. The input function assembles

the message and calls _msgq_send(). The input function needs not to determine, whether

the input message is for the local processor. If the message is not for the local processor,

MQX RTOS routes the message to the destination processor.

91

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.7.1.1 Example: Four-Processor Application

The diagram shows a simple, four-processor application. The numbers in the table are

arbitrary, but processor-unique, output queue numbers.

Each processor has two IPCs. There are two possible routes between each processor; for

example, processor one has one IPC to processor two, and one to processor four. The

routing table supports one route, so the best route should be selected. The table illustrates

one possibility for each of the processor's routing tables.

3.7.1.1.1 Routing Table for Processor 1
Table 3-38. Routing Table

Source processor Destination
processor1

Destination
processor2

Destination
processor3

Destination
processor4

1 - 10 10 11

2 21 - 20 20

3 31 31 - 30

4 40 41 41 -

As in the table, when a task on processor one sends a message to a message queue on

processor three, MQX RTOS sends the message from processor one to processor two

using queue ten, and then from processor two to processor three using queue 20. When

the IPC on processor three receives the message, MQX RTOS directs the message to the

destination (target) message queue.

3.7.2 Creating and Destroying Tasks on Remote Processors

With IPC component, a task can create and destroy tasks on a remote processor by

sending service requests to IPC task on that processor. IPC task runs the request, and

responds to the requesting processor.

3.7.3 Accessing Event Groups on Remote Processors

With the IPC component, a task can open and close a named event group on a remote

processor and set event bits in the event group. However, a task cannot wait for event bits

on a remote processor.

Event groups are opened on remote processors by specifying the processor number

92

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

(followed by a colon) in the name of the event. The following example would open the

event Fred on processor number four:

_event_open("4:fred", &handle);

3.7.4 Creating and Initializing IPC

For tasks to communicate across processors, the application must create and initialize the

IPC component on each processor, as summarized in the following steps. Each step is

described in subsequent sections using information from the routing table previous

example.

1. Build the IPC routing table.

2. Build the IPC protocol initialization table.
3. Provide IPC protocol initialization functions and data.
4. Create IPC task (_ipc_task()).

3.7.4.1 Building an IPC Routing Table

The IPC routing table defines the routes for inter-processor messages. There is one

routing table per processor and it is called _ipc_routing_table. In the previous example,

on processor two, messages for processor one are directed to queue number 20; messages

for processors three and four are directed to queue number 21.

The routing table is an array of routing structures and ends with a zero-filled entry.

typedef struct ipc_routing_struct
{
_processor_number MIN_PROC_NUMBER;
_processor_number MAX_PROC_NUMBER;

_queue_number QUEUE;
} IPC_ROUTING_STRUCT, * IPC_ROUTING_STRUCT_PTR;

The fields are described in the MQX RTOS Reference Manual.

3.7.4.1.1 Routing Table for Processor One

IPC_ROUTING_STRUCT _ipc_routing_table[] =
{ {2, 3, 10},
{4, 4, 11},
{0, 0, 0}};

93

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.7.4.1.2 Routing Table for Processor Two

IPC_ROUTING_STRUCT _ipc_routing_table[] =
{ {1, 1, 21},
{3, 4, 20},
{0, 0, 0}};

3.7.4.1.3 Routing Table for Processor Three

IPC_ROUTING_STRUCT _ipc_routing_table[] =
{ {1, 2, 31},
{4, 4, 30},
{0, 0, 0}};

3.7.4.1.4 Routing Table for Processor Four

IPC_ROUTING_STRUCT _ipc_routing_table[] =

{ {1, 1, 40},
{2, 3, 41},
{0, 0, 0}};

3.7.4.2 Building an IPC Protocol Initialization Table

The IPC protocol initialization table defines and initializes the protocols that implement

the IPC. Each IPC output queue in the routing table refers to an IPC that must have a

corresponding entry in the protocol initialization table, defining the protocol and

communication path that implement the IPC.

The protocol initialization table is an array of protocol initialization structures and ends

with a zero-filled entry.

typedef struct ipc_protocol_init_struct
{
IPC_INIT_FPTR IPC_PROTOCOL_INIT
void * IPC_PROTOCOL_INIT_DATA;
char * IPC_NAME;

_queue_number IPC_OUT_QUEUE;

} IPC_PROTOCOL_INIT_STRUCT, * IPC_PROTOCOL_INIT_STRUCT_PTR;

The fields are described in the MQX RTOS Reference Manual.

When MQX RTOS with the IPC component initializes, it calls the
IPC_PROTOCOL_INIT function for each IPC in the table. It passes to the IPC the

IPC_PROTOCOL_INIT_DATA, which contains IPC-specific initialization

The IPC_OUT_QUEUE field in IPC_PROTOCOL_INIT_STRUCT must match the QUEUE field in

IPC_ROUTING_STRUCT.

Note

94

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

information.

3.7.4.3 IPC Using I/O PCB Device Drivers

While you can develop special-purpose IPCs, MQX RTOS provides a standard IPC that

is built on I/O packet control block (PCB) device drivers.

Using this IPC, an application can use any I/O PCB device driver to receive and send

messages (See IPC Initialization Information).

Here is an IPC_PROTOCL_INIT_STRUCT that is set up to use the standard MQX
RTOS IPC over PCB device drivers:

{ _ipc_pcb_init, &pcb_init, "Pcb_to_test2", QUEUE_TO_TEST2 },
{ NULL, NULL, NULL, 0}

3.7.4.4 Starting IPC Task

IPC task examines the IPC protocol initialization table and starts the IPC server, which

initializes each IPC driver. The IPC server accepts messages from other processors to

perform remote procedure calls.

The application must define IPC task as an autostart task in the MQX RTOS initialization

structure for each processor. The pointer to the IPC initialization structure of the

IPC_INIT_STRUCT type has to be passed to the IPC task as a creation parameter. This

structure contains IPC routing table and IPC initialization table pointers. If not provided

the default IPC_INIT_STRUCT is used. The task template for IPC task is:

{ IPC_TTN, _ipc_task, IPC_DEFAULT_STACK_SIZE, 6,

 "_ipc_task", MQX_AUTO_START_TASK, (uint32_t)&ipc_init, 0}

3.7.4.5 Example: IPC Initialization Information

In this example, two processors set up IPC communication over an asynchronous serial

port using the PCB device drivers that accompany MQX RTOS. Each processor is

connected by interrupt-driven asynchronous character device drivers "ittyb:". The IPC

uses the PCB_MQXA driver, which sends and receives packets that have an MQX

RTOS-defined format.

The ipc_init_table uses the MQX RTOS IPC over PCB I/O driver initialization function
_ipc_pcb_init() and the data structure needed for its initialization, pcb_init, which
defines:

95

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

• The PCB I/O driver name to use when opening the driver.
• The installation function to call, in this case _io_pcb_mqxa_install() (needs not to

be specified, if the PCB I/O driver was previously installed).

• The PCB I/O driver-specific initialization pcb_mqxa_init.

3.7.4.5.1 IPC Initialization Information

/* ipc_ex.h */
#define TEST_ID 1
#define IPC_TTN 9
#define MAIN_TTN 10
#define QUEUE_TO_TEST2 63
#define MAIN_QUEUE 64
#define TEST2_ID 2
#define RESPONDER_TTN 11
#define QUEUE_TO_TEST 67
#define RESPONDER_QUEUE 65
typedef struct the_message
{

MESSAGE_HEADER_STRUCT HEADER;
uint32_t DATA;

} THE_MESSAGE, * THE_MESSAGE_PTR;

3.7.4.5.2 Code for Processor One

/* ipc1.c */

#include <mqx.h>

#include <bsp.h>

#include <message.h>

#include <ipc.h>

#include <ipc_pcb.h>

#include <io_pcb.h>

#include <pcb_mqxa.h>

#include "..\ipc_ex.h"

extern void main_task(uint32_t);

IO_PCB_MQXA_INIT_STRUCT pcb_mqxa_init =
{

/* IO_PORT_NAME */ "ittyb:", /* must be set by the user */
/* BAUD_RATE */ 19200,
/* IS POLLED */ FALSE,
/* INPUT MAX LENGTH */ sizeof(THE_MESSAGE),
/* INPUT TASK PRIORITY */ 7,
/* OUPUT TASK PRIORITY */ 7

};

IPC_PCB_INIT_STRUCT pcb_init =

{

/* IO_PORT_NAME */ "pcb_mqxa_ittyx:",
/* DEVICE_INSTALL? */ _io_pcb_mqxa_install,
/* DEVICE_INSTALL_PARAMETER*/ (void *)&pcb_mqxa_init,
/* IN_MESSAGES_MAX_SIZE */ sizeof(THE_MESSAGE),
/* IN MESSAGES_TO_ALLOCATE */ 8,
/* IN MESSAGES_TO_GROW */ 8,
/* IN_MESSAGES_MAX_ALLOCATE */ 16,
/* OUT_PCBS_INITIAL */ 8,

96

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

/* OUT_PCBS_TO_GROW */ 8,
/* OUT_PCBS_MAX */ 16

};

const IPC_ROUTING_STRUCT ipc_routing_table[] =
{

{ TEST2_ID, TEST2_ID, QUEUE_TO_TEST2 },
{ 0, 0, 0 }

};

const IPC_PROTOCOL_INIT_STRUCT ipc_init_table[] =
{

{ _ipc_pcb_init, &pcb_init, "Pcb_to_test2", QUEUE_TO_TEST2 },
{ NULL, NULL, NULL, 0}

};

static const IPC_INIT_STRUCT ipc_init = {

ipc_routing_table,
ipc_init_table

};

const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{

/* Task Index, Function,Stack, Priority, Name, Attributes, Param, Time Slice */

{ IPC_TTN, ipc_task, IPC_DEFAULT_STACK_SIZE, 8, "_ipc_task", MQX_AUTO_START_TASK,

 (uint32_t)&ipc_init, 0 },
{ MAIN_TTN, main_task, 2000, 9, "Main", MQX_AUTO_START_TASK,

 0, 0 },
{ 0 }

};

MQX_INITIALIZATION_STRUCT MQX_init_struct =
{

/* PROCESSOR_NUMBER */ TEST_ID,
/* START_OF_KERNEL_MEMORY */ BSP_DEFAULT_START_OF_KERNEL_MEMORY,
/* END_OF_KERNEL_MEMORY */ BSP_DEFAULT_END_OF_KERNEL_MEMORY,
/* INTERRUPT_STACK_SIZE */ BSP_DEFAULT_INTERRUPT_STACK_SIZE,
/* TASK_TEMPLATE_LIST */ (void *)MQX_template_list,
/* MQX_HARDWARE_INTERRUPT_LEVEL_MAX */ BSP_DEFAULT_MQX_HARDWARE_INTERRUPT_LEVEL_MAX,
/* MAX_MSGPOOLS */ 8,
/* MAX_MSGQS */ 16,
/* IO_CHANNEL */ BSP_DEFAULT_IO_CHANNEL,
/* IO_OPEN_MODE */ BSP_DEFAULT_IO_OPEN_MODE

};

/*TASK*--
*
* Task Name : main_task
* Comments :
* This task creates a message pool and a message queue then
* sends a message to a queue on the second CPU.
* It waits for a return message, validating the message before
* sending a new message.
END-- */
void

main_task

(

uint32_t dummy
)

{

_pool_id msgpool;

THE_MESSAGE_PTR msg_ptr;

97

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_queue_id qid;
_queue_id my_qid;

uint32_t test_number = 0;

my_qid = _msgq_open(MAIN_QUEUE,0);

qid = _msgq_get_id(TEST2_ID,RESPONDER_QUEUE);
msgpool = _msgpool_create(sizeof(THE_MESSAGE), 8, 8, 16);

while (test_number < 64) {

msg_ptr =

(THE_MESSAGE_PTR)_msg_alloc(msgpool);

msg_ptr->HEADER.TARGET_QID = qid;

msg_ptr->HEADER.SOURCE_QID = my_qid;

msg_ptr->DATA = test_number++;

putchar('-');

_msgq_send(msg_ptr);
msg_ptr = _msgq_receive(MSGQ_ANY_QUEUE, 10000);

if (msg_ptr == NULL) {

puts("Receive failed\n");
_mqx_exit(1);

} else if (msg_ptr->HEADER.SIZE != sizeof(THE_MESSAGE)) {

puts("Message wrong size\n");

_mqx_exit(1);
} else if (msg_ptr->DATA != test_number) {

puts("Message data incorrect\n");
_mqx_exit(1);

}
__msg_free(msg_ptr);

}
puts("All complete\n");
_mqx_exit(0);

}

3.7.4.5.3 Code for Processor Two

/* ipc2.c */

#include <mqx.h>

#include <bsp.h>

#include <message.h>

#include <ipc.h>

#include <ipc_pcb.h>

#include <io_pcb.h>

#include <pcb_mqxa.h>

#include "ipc_ex.h"

extern void responder_task(uint32_t);

IO_PCB_MQXA_INIT_STRUCT pcb_mqxa_init =
{

/* IO_PORT_NAME */ "ittyb:", /* must be set by the user */
/* BAUD_RATE */ 19200,
/* IS POLLED */ FALSE,
/* INPUT MAX LENGTH */ sizeof(THE_MESSAGE),
/* INPUT TASK PRIORITY */ 7,
/* OUPUT TASK PRIORITY */ 7

};

IPC_PCB_INIT_STRUCT pcb_init =
{

/* IO_PORT_NAME */ "pcb_mqxa_ittyx:",

98

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

/* DEVICE_INSTALL? */ _io_pcb_mqxa_install,
/* DEVICE_INSTALL_PARAMETER*/ (void *)&pcb_mqxa_init,
/* IN_MESSAGES_MAX_SIZE */ sizeof(THE_MESSAGE),
/* IN MESSAGES_TO_ALLOCATE */ 8,
/* IN MESSAGES_TO_GROW */ 8,
/* IN_MESSAGES_MAX_ALLOCATE */ 16,
/* OUT_PCBS_INITIAL */ 8,
/* OUT_PCBS_TO_GROW */ 8,
/* OUT_PCBS_MAX */ 16

};

const IPC_ROUTING_STRUCT ipc_routing_table[] =
{

{ TEST_ID, TEST_ID, QUEUE_TO_TEST },
{ 0, 0, 0 }

};

const IPC_PROTOCOL_INIT_STRUCT ipc_init_table[] =

{

{ _ipc_pcb_init, &pcb_init, "Pcb_to_test", QUEUE_TO_TEST },
{ NULL, NULL, NULL, 0}

};

static const IPC_INIT_STRUCT ipc_init = {

ipc_routing_table,
ipc_init_table

};

const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{

/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time

Slice */

 { IPC_TTN, ipc_task,IPC_DEFAULT_STACK_SIZE, 8,"_ipc_task", MQX_AUTO_START_TASK,

 (uint32_t)&ipc_init, 0 },

 { RESPONDER_TTN, responder_task, 2000,9, "Responder",MQX_AUTO_START_TASK, 0, 0 },
{ 0 }

};

MQX_INITIALIZATION_STRUCT MQX_init_struct =
{

/* PROCESSOR_NUMBER */ TEST2_ID,
/* START_OF_KERNEL_MEMORY */ BSP_DEFAULT_START_OF_KERNEL_MEMORY,
/* END_OF_KERNEL_MEMORY */ BSP_DEFAULT_END_OF_KERNEL_MEMORY,
/* INTERRUPT_STACK_SIZE */ BSP_DEFAULT_INTERRUPT_STACK_SIZE,
/* TASK_TEMPLATE_LIST */ (void *)MQX_template_list,
/* MQX_HARDWARE_INTERRUPT_LEVEL_MAX */ BSP_DEFAULT_MQX_HARDWARE_INTERRUPT_LEVEL_MAX,
/* MAX_MSGPOOLS */ 8,
/* MAX_MSGQS */ 16,
/* IO_CHANNEL */ BSP_DEFAULT_IO_CHANNEL,
/* IO_OPEN_MODE */ BSP_DEFAULT_IO_OPEN_MODE

};

/*TASK*--
*
* Task Name : responder_task
* Comments :
* This task creates a message queue then waits for a message.
* Upon receiving the message the data is incremented before
* the message is returned to the sender.
END-- */
void responder_task(uint32_t dummy) {

THE_MESSAGE_PTR msg_ptr;

99

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_queue_id qid;
_queue_id my_qid;

puts("Receiver running. \n");

my_qid = _msgq_open(RESPONDER_QUEUE, 0);

while (TRUE) {

msg_ptr = _msgq_receive(MSGQ_ANY_QUEUE, 0);

if (msg_ptr != NULL) {

qid = msg_ptr->HEADER.SOURCE_QID;

msg_ptr->HEADER.SOURCE_QID = my_qid;

msg_ptr->HEADER.TARGET_QID = qid;

msg_ptr->DATA++;

putchar('+');
_msgq_send(msg_ptr);

} else {
puts("RESPONDER RECEIVE ERROR\n");
_mqx_exit(1);

}
}

}

3.7.4.5.4 Compiling the Application and Linking it with MQX RTOS
1. See the MQX™ RTOS Release Notes document for instructions on how to build and

run the application.

2. Go to this directory to compile for processor one:

mqx\examples\taskq

3. Build the project.
4. Go to this directory to compile for processor two:

mqx\examples\ipc\cpu2\

5. Build the project.
6. Connect ttyb: of processor one to ttyb: of processor two.
7. Run the application according to the instructions in the MQX™ RTOS Release Notes

document. Start processor two before processor one.

5.7.1.1 3.7.5 Endian Conversion of Message Headers

When a processor receives a message from a remote processor, the IPC input function
examines the CONTROL field in the message header to determine, whether the message
is from a processor that uses the other endian format. In that case the input function
converts the message header to the local processor's own endian format, and sets the

CONTROL field to specify its endian format.

MESSAGE_HEADER_STRUCT msg_ptr;
...
if (MSG_MUST_CONVERT_HDR_ENDIAN(msg_ptr->CONTROL)){

_msg_swap_endian_header(msg_ptr);}

100

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.8 Timing

MQX RTOS provides the core-time component, which can be extended with optional

timer and watchdog components.

3.8.1 Rollover of MQX RTOS Time

MQX RTOS keeps the time internally as a 64-bit count of the number of tick interrupts,

since the application started to run. This provides a very long time before MQX RTOS

time rolls over. For example, if the tick rate was once per nanosecond, the MQX RTOS

time rolls over when 584 years have passed.

3.8.2 Accuracy of MQX RTOS Time

MQX RTOS keeps the time internally as a 64-bit count of the number of tick interrupts,

but when an application requests the tick time, the time also includes a 32-bit number that

represents the number of hardware "ticks" that have occurred since the last tick interrupt.

Typically, MQX RTOS reads this value from the hardware counter that is used to

program the timer. As a result, the application receives the time as accurately, as it can

possibly be determined.

3.8.3 Time Component

Time is a core component that offers time as elapsed time and absolute time, expressed as

seconds and milliseconds time stamp and (second/millisecond time), as ticks (tick time),

or as a date (date time and tm struct).

Table 3-39. Summary: Using the Time Component

_ticks_to_time Converts tick time to second/millisecond time.

_time_add_day_to_ticks Adds days to tick time.

_time_add_hour_to_ticks Adds hours to tick time.

The IPC cannot convert the data portion of the message to the other endian format, because it does not

know the format of the data.

It is the responsibility of the application to convert the data portion of received messages to the other

endian format. To check whether conversion is necessary, use the macro

MSG_MUST_CONVERT_DATA_ENDIAN. To convert the message data, use

_msg_swap_endian_data(). Both functions are defined in message.h. For more information, see MQX

RTOS Reference Manual.

Note

101

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_time_add_min_to_ticks Adds minutes to tick time.

_time_add_msec_to_ticks Adds milliseconds to tick time.

_time_add_nsec_to_ticks Adds nanoseconds to tick time.

_time_add_psec_to_ticks Adds picoseconds to tick time.

_time_add_sec_to_ticks Adds seconds to tick time.

_time_add_usec_to_ticks Adds microseconds to tick time.

_time_delay Suspends the active task for the specified number of milliseconds.

_time_delay_for Suspends the active task for the specified tick-time period (including

hardware ticks).

_time_delay_ticks Suspends the active task for the specified number of ticks.

_time_delay_until Suspends the active task until the specified tick time.

_time_dequeue Removes a task (specified by its task ID) from the timeout queue.

_time_dequeue_td Removes a task (specified by its task descriptor) from the timeout
queue.

_time_diff Gets the second/millisecond time difference between two
second/millisecond time structures.

_time_diff_days Gets the time difference in days between two tick times.

_time_diff_hours Gets the difference in hours between two tick times.

_time_diff_microseconds Gets the difference in microseconds between two tick times.

_time_diff_milliseconds Gets the difference in milliseconds between two tick times.

_time_diff_minutes Gets the difference in minutes between two tick times.

_time_diff_nanoseconds Gets the difference in nanoseconds between two tick times.

_time_diff_picoseconds Gets the difference in picoseconds between two tick times.

_time_diff_seconds Gets the difference in seconds between two tick times.

_time_diff_ticks Gets the tick-time difference between two tick times.

_time_from_date Gets second/millisecond time from date time.

_time_get Gets the absolute time in second/millisecond time.

_time_get_ticks Gets the absolute time in tick time (includes ticks and hardware ticks).

_time_get_elapsed Gets the second/millisecond time that has elapsed, since the
application started on this processor.

_time_get_elapsed_ticks Gets the tick time that has elapsed, since the application started on
this processor.

_time_get_hwticks Gets the number of hardware ticks since the last tick.

_time_get_hwticks_ per_tick Gets the number of hardware ticks per tick.

_time_get_microseconds Gets the calculated number of microseconds, since the last periodic
timer interrupt.

_time_get_nanoseconds Gets the calculated number of nanoseconds, since the last periodic
timer interrupt.

_time_get_resolution Gets the resolution of the periodic timer interrupt.

_time_get_ticks_per_sec Gets the frequency (in ticks per second) of the clock interrupt.

_time_init_ticks Initializes a tick-time structure with a number of ticks.

102

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_time_notify_kernel Called by the BSP, when a periodic timer interrupt occurs.

_time_set Sets the absolute time in second/millisecond time.

_time_set_hwticks_per_tick Sets the number of hardware ticks per tick.

_time_set_ticks Sets the absolute time in tick time.

_time_set_resolution Sets the frequency of the periodic timer interrupt.

_time_set_timer_vector Sets the periodic timer interrupt vector that MQX RTOS uses.

_time_set_ticks_per_sec Sets the frequency (in ticks per second) of the clock interrupt.

_time_to_date Converts second/millisecond time to date time.

_time_to_ticks Converts second/millisecond time to tick time.

mktime Converts the broken-down time value, expressed as local time, to
calendar time representation.

gmtime_r Converts the calendar time to broken-down time representation,
expressed in Coordinated Universal Time (UTC).

timegm Converts the broken-down time structure, expressed as UTC time, to a
calendar time representation.

localtime_r Converts the calendar time to a broken-down time representation,
expressed in local time.

3.8.3.1 Second/Millisecond Time

Time is available in seconds and milliseconds. To process second/millisecond time is

more complex and CPU intensive, than processing tick time.

typedef struct time_struct
{

uint32_t SECONDS;

uint32_t MILLISECONDS;

} TIME_STRUCT, * TIME_STRUCT_PTR;

The fields are described in MQX RTOS Reference Manual.

3.8.3.2 Time Stamp

Time stamp is a system to describe instants in time, which are defined as the number of

seconds that have elapsed since the Epoch, 00:00:00 UTC, 1-1-1970.

typedef uint32_t time_t

3.8.3.3 Tick Time

Time is available in tick time. To process tick time is simpler and less CPU intensive,

than processing second/millisecond time.

103

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

typedef struct mqx_tick_struct
{

_mqx_uint TICKS[MQX_NUM_TICK_FIELDS];

uint32_t HW_TICKS;

} MQX_TICK_STRUCT, * MQX_TICK_STRUCT_PTR;

The fields are described in MQX RTOS Reference Manual.

3.8.3.4 Elapsed Time

Elapsed time is the amount of time since MQX RTOS started on the processor. A task
can get the elapsed time in second/millisecond time with _time_get_elapsed(), and in
tick time with _time_get_elapsed_ticks().

3.8.3.5 Time Resolution
When MQX RTOS starts, it installs the periodic timer ISR, which sets the time resolution

for the hardware. The resolution defines, how often MQX RTOS updates time, or how

often a tick occurs. The resolution is usually 200 ticks per second or five milliseconds. A

task can get the resolution in milliseconds with _time_get_resolution() and in ticks per

second with _time_get_resolution_ticks().

A task can get elapsed time in microsecond resolution by calling _time_get_elapsed(),

followed by _time_get_microseconds(), which gets the number of microseconds since

the last periodic timer interrupt.

A task can get elapsed time in nanosecond resolution by calling _time_get_elapsed()

followed by _time_get_nanoseconds(), which gets the number of nanoseconds since the

last periodic timer interrupt.

A task can also get the number of hardware ticks since the last interrupt by calling

_time_get_hwticks(). A task can get the resolution of the hardware ticks by calling

_time_get_hwticks_per_tick().

3.8.3.6 Absolute Time

So that the tasks on different processors can exchange information that is timestamped

from a common reference, the time component offers absolute time.

Initially, absolute time is the time since the reference date of 0:00:00.000 January 1,

1970. An application can change the absolute time by changing the reference date in

second/millisecond time with _time_set(), or in tick time with _time_set_ticks().

A task gets the absolute time in second/millisecond time with _time_get() or in tick time

104

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

with _time_get_ticks().

Unless an application changes the absolute time, the following pairs of functions return

the same values:

• _time_get() and _time_get_elapsed()

• _time_get_ticks() and _time_get_elapsed_ticks()

3.8.3.7 Time in Date Formats

To help you set and interpret absolute time that is expressed in second/millisecond time

or tick time, the time component offers time expressed in a date format and a broken-

down time structure (tm struct).

3.8.3.7.1 DATE_STRUCT

typedef struct date_struct
{

int16_t YEAR;
int16_t MONTH;
int16_t DAY;
int16_t HOUR;
int16_t MINUTE;
int16_t SECOND;
int16_t MILLISEC;
int16_t WDAY;
int16_t YDAY;

} DATE_STRUCT, * DATE_STRUCT_PTR;

The fields are described in MQX RTOS Reference Manual.

3.8.3.7.2 TM STRUCT
struct tm {

int32_t tm_sec;
int32_t tm_min;
int32_t tm_hour;
int32_t tm_mday;
int32_t tm_mon;
int32_t tm_year;
int32_t tm_wday;
int32_t tm_yday;
int32_t tm_isdst;

};

The fields are described in MQX RTOS Reference Manual.

A task should use elapsed time to measure an interval or implement a timer. This prevents the

measurement from being affected by other tasks that might call _time_set() or _time_set_ticks(), and

thereby change the absolute time.

Note

105

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.8.3.8 Timeouts
A task can supply the time as a timeout parameter to several MQX RTOS components,

for example, functions in the _msgq_receive, _lwmsgq_receive, _sem_wait,

_lwsem_wait, _event_wait and _lwevent_wait families. Note, that the resolution of all

time functions is always one tick.

_time_delay(), _event_wait_all(), _event_wait_any(), _sem_wait(), msgq_receive()

and _sched_set_rr_interval() functions wait at least the specified time in milliseconds.

This time is usually bigger than the requested time, depending on the tick length, on other

scheduled events and their priorities.

_time_delay_ticks() function waits at least the requested number of tick interrupts.

_time_delay_ticks(1) waits at least to the first tick interrupt.

_time_delay(0) and _time_delay_tick(0) cause shed_yield() function calling. For ticks
higher than zero, the actual waiting time is typically shorter than ticks multiplied by tick
time in milliseconds.

A task can also explicitly suspend itself by calling a function from the _time_delay

family. When the time expires, MQX RTOS puts the task in the task's ready queue.

3.8.4 Timers

Timers are an optional component that extends the core-time component. An application

can use timers:

• To cause a notification function to run at a specific time - when MQX RTOS creates

the timer component, it starts Timer task, which maintains timers and their

application-defined notification functions. When a timer expires, Timer Task calls

the appropriate notification function.
• To communicate that a time period has expired.

Note To optimize code and data memory requirements on some target platforms, the Timer

component is not compiled in the MQX kernel by default. To test this feature, you need to enable

it first in the MQX user configuration file and recompile the MQX PSP, BSP, and other core

components. See Rebuilding NXP MQX RTOS for more details.

A task can start a timer at a specific time or at some specific time after the current time.

Timers can use elapsed time or absolute time.

There are two types of timers:

106

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

• One-shot timers, which expire once.

• Periodic timers, which expire repeatedly at a specified interval. When a periodic

timer expires, MQX RTOS resets the timer.

Table 3-40. Summary: Using Timers

Timers use certain structures and constants, which are defined in timer.h.

_timer_cancel Cancels an outstanding timer request.

_timer_create_component Creates the timer component.

_timer_start_oneshot_after Starts a timer that expires once after a time delay in
milliseconds.

_timer_start_oneshot_after_ticks Starts a timer that expires once after a time delay in ticks.

_timer_start_oneshot_at Starts a timer that expires once at a specific time (in

second/ millisecond time).

_timer_start_oneshot_at_ticks Starts a timer that expires once at a specific time (in tick
time).

_timer_start_periodic_at Starts a periodic timer at a specific time (in

second/millisecond time).

_timer_start_periodic_at_ticks Starts a periodic timer at a specific time (in tick time).

_timer_start_periodic_every Starts a periodic timer every number of milliseconds.

_timer_start_periodic_every_ticks Starts a periodic timer every number of ticks.

_timer_test Tests the timer component.

3.8.4.1 Creating the Timer Component

You can explicitly create the timer component by calling _timer_create_component()
with the priority and stack size for Timer task, which MQX RTOS creates, when it
creates the timer component. Timer task manages timer queues and provides a context for
notification functions.

If you do not explicitly create the timer component, MQX RTOS creates it with default

values the first time an application starts a timer.

Table 3-41. Default Timer Task Parameters

Parameter Default

Priority of Timer task 1

Stack size for Timer task 500

3.8.4.2 Starting Timers

107

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

A task starts a timer with one of the following:

• _timer_start_oneshot_after(), _timer_start_oneshot_after_ticks()
• _timer_start_oneshot_at(), _timer_start_oneshot_at_ticks()

• _timer_start_periodic_at(), _timer_start_periodic_at_ticks()

• _timer_start_periodic_every(), _timer_start_periodic_every_ticks()

When a task calls one of these functions, MQX RTOS inserts a timer request into the

queue of outstanding timers. When the timer expires, the notification function runs.

3.8.4.3 Cancelling Outstanding Timer Requests

A task can cancel an outstanding timer request by calling _timer_cancel() with the timer
handle that was returned from one of the_timer_start family of functions.

3.8.4.4 Example: Using Timers

Simulate a LED being turned on and off every second. One timer turns the LED on, and

another turns it off. The timers expire every two seconds, offset by one second.

3.8.4.4.1 Code for Timer Example

/* main.c */

#include <mqx.h>

#include <bsp.h>

#include <fio.h>

#include <timer.h>
#define TIMER_TASK_PRIORITY 2
#define TIMER_STACK_SIZE 1000
#define MAIN_TASK 10
extern void main_task(uint32_t);

const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{
/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice*/
{ MAIN_TASK, main_task, 2000, 8, "Main", MQX_AUTO_START_TASK, 0, 0},
{ 0 }

};

/*FUNCTION*--
*
* Function Name : LED_on
* Returned Value : none
* Comments :
* This timer function prints "ON"

The stack space for Timer task should include the stack space that the notification function needs. Note

108

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

END-- */
void

LED_on

(

_timer_id id,

void * data_ptr,

MQX_TICK_STRUCT_PTR tick_ptr
)

{
printf("ON\n");

}

/*FUNCTION*--
*
* Function Name : LED_off

* Returned Value : none
* Comments :
* This timer function prints "OFF"
END-- */
void

LED_off

(

_timer_id id,

void * data_ptr,

MQX_TICK_STRUCT_PTR tick_ptr
)

{
printf("OFF\n");

}

/*TASK*--
*
* Task Name : main_task
* Comments :
* This task creates two timers, each of a period of 2 seconds,
* the second timer offset by 1 second from the first.
END-- */
void

main_task

(

uint32_t initial_data
)

{

MQX_TICK_STRUCT

ticks;

MQX_TICK_STRUCT

dticks;

_timer_id on_timer;
_timer_id off_timer;
/*
** Create the timer component with more stack than the default
** in order to handle printf() requirements:
*/
__timer_create_component(TIMER_DEFAULT_TASK_PRIORITY, 1024);
__time_init_ticks(&dticks, 0);
__time_add_sec_to_ticks(&dticks, 2);
__time_get_ticks(&ticks);
__time_add_sec_to_ticks(&ticks, 1);

 on_timer = _timer_start_periodic_at_ticks(LED_on, 0,

 TIMER_ELAPSED_TIME_MODE,&ticks, &dticks);

__time_add_sec_to_ticks(&tick, 1);

109

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

 off_timer = _timer_start_periodic_at_ticks(LED_off, 0,

 TIMER_ELAPSED_TIME_MODE, &ticks, &dticks);

_time_delay_ticks(600);

printf("\nThe task is finished!");

_timer_cancel(on_timer);
_timer_cancel(off_timer);
_mqx_exit(0);

}

3.8.4.4.2 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mqx\examples\timer

2. See the MQX™ RTOS Release Notes for instructions on how to build and run the
application.

A message is printed each time the timer notification function runs.

3.8.5 Lightweight Timers

Lightweight timers are an optional component that extends the core time component.

Lightweight timers provide periodic notification to the application.

A task can create a periodic queue and add timers to it. The timers expire at the same rate

as the queue's period, but offset from the period's expiry time.

Table 3-42. Summary: Using Lightweight Timers

Lightweight timers use certain structures

and constants, which are defined in

lwtimer.h.

Lightweight timers use certain structures and constants,

which are defined in lwtimer.h.

_lwtimer_add_timer_to_queue Adds a lightweight timer to a periodic queue.

_lwtimer_cancel_period Removes all the timers from a periodic queue.

_lwtimer_cancel_timer Removes a timer from a periodic queue.

_lwtimer_create_periodic_queue Creates a periodic queue (with a period of a specified number

of ticks), to which lightweight timers can be added.

_lwtimer_test Tests all the periodic queues and their timers.

3.8.5.1 Starting Lightweight Timers
A task starts a lightweight timer by first creating a periodic queue by calling

_lwtimer_create_periodic_queue() with a pointer to a variable of type

LWTIMER_PERIOD_STRUCT, which specifies the queue's period (in ticks). It then

110

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

adds a timer to the queue by calling _lwtimer_add_timer_to_queue() with the address

of the periodic queue variable and a pointer to a variable of type LWTIMER_STRUCT,

which specifies the function that is called when the timer expires.

When the timer expires, the notification function specified by the timer runs.

3.8.5.2 Cancelling Outstanding Lightweight Timer Requests

A task can cancel an outstanding lightweight timer request by calling

_lwtimer_cancel_timer() with the address of the LWTIMER_STRUCT.

A task can cancel all the timers on a lightweight timer queue by calling

_lwtimer_cancel_period() with the address of the LWTIMER_PERIOD_STRUCT.

3.8.6 Watchdogs

Most embedded systems have a hardware watchdog timer. If the application does not

reset the timer within a certain time (perhaps because of deadlock or some other error

condition), the hardware generates a reset operation. As such, a hardware watchdog timer

monitors the entire application on a processor; it does not monitor individual tasks.

Note To optimize code and data memory requirements on some target platforms, the Watchdog

component is not compiled in the MQX RTOS kernel by default. To test this feature, you need to

enable it first in the MQX RTOS user configuration file and recompile the MQX RTOS PSP, BSP,

and other core components. See Rebuilding NXP MQX RTOS dfor more details.

The MQX RTOS watchdog component provides a software watchdog for each task. If a

single task starves or runs beyond certain timing constraints, the watchdog provides a

way to detect the problem. Initially, the task starts its watchdog with a specific time

value, and if the task fails to stop or restart the watchdog before that time expires, MQX

RTOS calls a processor-unique, application-supplied expiry function that can initiate

error recovery.

Table 3-43. Summary: Using Watchdogs

Because the notification function runs in the context of the kernel timer ISR, it is subject to the same

restrictions as the ISR (see page Restrictions on ISRs).

The MQX RTOS interrupt stack size should include the stack space that the notification function needs.

Note

111

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Watchdogs use certain structures and

constants, which are defined in watchdog.h.

Watchdogs use certain structures and constants, which are
defined in watchdog.h.

_watchdog_create_component Creates the watchdog component.

_watchdog_start Starts or restarts the watchdog (time is specified in milliseconds).

_watchdog_start_ticks Starts or restarts the watchdog (time is specified in ticks).

_watchdog_stop Stops the watchdog.

_watchdog_test Tests the watchdog component.

3.8.6.1 Creating the Watchdog Component

Before a task can use the watchdog component, the application must explicitly create it
by calling _watchdog_create_component() with the interrupt vector of the periodic
timer device and a pointer to the function that MQX RTOS calls if a watchdog expires.

3.8.6.2 Starting or Restarting a Watchdog

A task starts or restarts its watchdog by calling either:

• _watchdog_start() with the number of milliseconds, before the watchdog expires.

• _watchdog_start_ticks() with the number of ticks, before the watchdog expires.

If the task does not restart or stop its watchdog before the watchdog expires, MQX RTOS

calls the expiration function.

3.8.6.3 Stopping a Watchdog

A task can stop its watchdog with _watchdog_stop().

3.8.6.4 Example: Using Watchdogs

A task creates the watchdog component on the periodic timer interrupt vector and
specifies the expiry function (handle_watchdog_expiry()). Then it starts a watchdog that
expires after two seconds. To prevent its watchdog from expiring, the task must either

stop or restart the watchdog within two seconds.

/*watchdog.c */

#include <mqx.h>

#include <bsp.h>

#include <watchdog.h>

#define MAIN_TASK 10
extern void main_task(uint32_t);
extern void handle_watchdog_expiry(void *); const

TASK_TEMPLATE_STRUCT MQX_template_list[] =

112

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

{
/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice*/
{ MAIN_TASK, main_task, 2000, 8, "Main", MQX_AUTO_START_TASK, 0, 0},
{ 0 }

};

/*FUNCTION*--
*
* Function Name : handle_watchdog_expiry
* Returned Value : none
* Comments :
* This function is called when a watchdog has expired.
END-- */
void handle_watchdog_expiry(void * td_ptr)
{

printf("\nwatchdog expired for task: %p", td_ptr);
}

/*FUNCTION*--
*
* Function Name : waste_time
* Returned Value : input value times 10
* Comments :
* This function loops the specified number of times,
* essentially wasting time.

END-- */
_mqx_uint

waste_time (

_mqx_uint n
)

{

_mqx_uint i;

volatile _mqx_uint result;

result = 0;

for (i = 0; i < n; i++) {

result += 1;

}
return result*10;

}

/*TASK*--
*
* Task Name : main_task
* Comments :
* This task creates a watchdog, then loops, performing
* work for longer and longer periods until the watchdog fires.
END-- */

void

main_task

(

uint32_t initial_data
)

{
MQX_TICK_STRUCT ticks;
_mqx_uint result;
_mqx_uint n;
_time_init_ticks(&ticks, 10);

result = _watchdog_create_component(BSP_TIMER_INTERRUPT_VECTOR,

handle_watchdog_expiry);

if (result != MQX_OK) {

113

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

printf("\nError creating watchdog component");
_mqx_exit(0);

}
n = 100;
while (TRUE) {

result = _watchdog_start_ticks(&ticks);

n = waste_time(n);

_watchdog_stop();

printf("\n %d", n);

}
}

3.8.6.4.1 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mqx\examples\watchdog

2. See the MQX™ RTOS Release Notes for instructions on how to build and run the
application.

When the watchdog expires, the Main task prints a message to the output device.

3.9 Handling Interrupts and Exceptions

MQX RTOS handles hardware interrupts and exceptions with interrupt service routines

(ISRs). An ISR is not a task; it is a small, high-speed routine that reacts quickly to

hardware interrupts or exceptions. ISRs are usually written in C. The duties of an ISR

might include:

• servicing a device

• clearing an error condition

• signaling a task

When MQX RTOS calls an ISR, it passes a parameter, which the application defines,

when the application installs the ISR. The parameter might, for example, be a pointer to a

configuration structure that is specific to the device.

The ISR might run with some interrupts disabled, depending on the priority of the

interrupt being serviced. Therefore, it is important that the ISR performs a minimal

number of functions. The ISR usually causes a task to become ready. It is the priority of

The parameter should not point to data on a task's stack, because this memory might not be available to

the ISR.

Note

114

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

this task that then determines, how quickly the information gathered from the interrupting

device can be processed. The ISR can ready a task in a number of ways: through

lightweight events, events, lightweight semaphores, semaphores, messages, lightweight

message queues or task queues.

MQX RTOS provides a kernel ISR, which is written in assembly language. The kernel

ISR runs before any other ISR, and does the following:

• It saves the context of the active task.

• It switches to the interrupt stack.

• It calls the appropriate ISR.

• After the ISR has returned, it restores the context of the highest-priority ready task.

When MQX RTOS starts, it installs the default kernel ISR (_int_kernel_isr()) for all

possible interrupts.

When the ISR returns to the kernel ISR, the kernel ISR performs a task dispatch

operation if the ISR readied a task that is of higher priority, than the one that was active

at the time of the interrupt. This means that the context of the previously active task is

saved, and the higher-priority task becomes the active task.

The following diagram shows, how MQX RTOS handles interrupts.

Figure 3-3. Handling Interrupts

Table 3-44. Summary: Handling Interrupts and Exceptions

115

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_int_disable Disables hardware interrupts.

_int_enable Enables hardware interrupts.

_int_get_isr Gets the ISR for a vector number.

_int_get_isr_data Gets the data pointer associated with an interrupt.

_int_get_isr_depth Gets the current ISR nesting depth.

_int_get_kernel_isr Gets the kernel ISR for an interrupt.

_int_get_previous_vector_table Gets a pointer to the interrupt vector table that is stored when

MQX RTOS starts.

_int_get_vector_table Gets a pointer to the current interrupt vector table.

_int_install_isr Installs an application-defined ISR.

_int_install_kernel_isr Installs a kernel ISR.

_int_install_unexpected_isr Installs _int_unexpected_isr() as the default ISR.

_int_kernel_isr The default kernel ISR.

_int_set_isr_data Sets the data associated with a specific interrupt.

_int_set_vector_table Changes the location of the vector table.

3.9.1 Initializing Interrupt Handling

When MQX RTOS starts, it initializes its ISR table, which has an entry for each interrupt

number. Each entry consists of:

• A pointer to the ISR to call.

• Data to pass as a parameter to the ISR.

• A pointer to an exception handler for that ISR.

Initially, the ISR for each entry is the default ISR _int_default_isr(), which blocks the
active task.

3.9.2 Installing Application-Defined ISRs

With _int_install_isr(), an application can replace the ISR with an application-defined,
interrupt-specific ISR, which MQX RTOS calls, when the interrupt occurs. The
application should do the replacement before it initializes the device.

The parameters for _int_install_isr() are:

• interrupt number

• pointer to the ISR function

• ISR data
• An application-defined ISR usually signals a task, which can be done by:

• Setting an event bit (_event_set()).

116

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

• Posting a lightweight semaphore (_lwsem_post()).

• Posting a non-strict semaphore (_sem_post()).
• Sending a message to a message queue. An ISR can also receive a message from a

system message queue (_msgq_send family).

• dequeuing a task from a task queue, which puts the task in the task's ready queue.

Task queues let you implement signaling methods that are customized for your

application (_taskq_resume()).

3.9.3 Restrictions on ISRs

The following table contains information about ISR restrictions.

3.9.3.1 Functions That the ISR Cannot Call

MQX RTOS returns an error, if the ISR calls any of the following functions.

Table 3-45. Functions That the ISR Cannot Call

Component Function

Events _event_close() _event_create() _event_create_auto_clear()

_event_create_component() _event_create_fast()

_event_create_fast_auto_clear() _event_destroy()
_event_destroy_fast()

_event_wait_all family _event_wait_any family

Lightweight events _lwevent_destroy() _lwevent_test() _lwevent_wait family

Lightweight logs _lwlog_create_component()

Lightweight message queue _lwmsgq_send()

(when LWMSGQ_SEND_BLOCK_ON_FULL

or LWMSGQ_SEND_BLOCK_ON_SEND

flags used)

_lwmsgq_receive()

Lightweight semaphores _lwsem_test() _lwsem_wait()

Logs _log_create_component()

Messages _msg_create_component() _msgq_receive family

Mutexes _mutex_create_component() _mutex_lock()

The most efficient way to allocate a message from an ISR is to use _msg_alloc(). Note

117

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Names _name_add() _name_create_component() _name_delete()

Partitions _partition_create_component()

Semaphores _sem_close() _sem_create() _sem_create_component()
_sem_create_fast()

_sem_destroy() _sem_destroy_fast() _sem_post() (for strict
semaphores only)

_sem_wait family

Task queues _taskq_create() _taskq_destroy() _taskq_suspend()
_taskq_suspend_task()

_taskq_test()

Timers _timer_create_component() _timer_cancel()

Watchdogs _watchdog_create_component()

3.9.3.2 Functions That ISRs should not call

ISRs should not call MQX RTOS functions that might block or take a long time to run.

These include:

• most functions from the _io_ family

• _event_wait family

• _int_default_isr()
• _int_unexpected_isr()

• _klog_display()

• _klog_show_stack_usage()

• _lwevent_wait family

• _lwmsgq_send() (when LWMSGQ_SEND_BLOCK_ON_FULL or
LWMSGQ_SEND_BLOCK_ON_SEND flags used)

• _lwmsgq_receive()

• _lwsem_wait family

• _msgq_receive family

• _mutatr_set_wait_protocol()

• _mutex_lock()

• _partition_create_component()

• _task_block()

• _task_create() and _task_create_blocked()

• _task_destroy()

• _time_delay family

• _timer_start family

118

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.9.3.3 Non-Maskable Interrupts

Non-Maskable Interrupts (NMI) are defined as interrupts that cannot be disabled

(masked) by software. It is possible to use such interrupts in MQX RTOS applications,

but NMI service routines must be installed directly to vector table as kernel ISRs (use

_int_install_kernel_isr() instead of _int_install_isr()). The NMI service routines are not
allowed to call any MQX RTOS API function.

Note that _int_install_kernel_isr() call is only enabled if the vector table is located in

RAM memory (see MQX_ROM_VECTORS configuration option in section Configuring

MQX RTOS at Compile Time).

3.9.3.4 MQX_HARDWARE_INTERRUPT_LEVEL_MAX Configuration
Parameter

On some processor platforms an internal concept of disabling "all interrupt levels" may

be re-configured in a way that only interrupt levels up to the

MQX_HARDWARE_INTERRUPT_LEVEL_MAX (field in the

MQX_INITIALIZATION_STRUCT) are disabled. This effectively enables critical

interrupt requests above that maximum level to be serviced asynchronously to MQX

RTOS kernel execution and with minimum possible latency. From the MQX RTOS

perspective, such an interrupt is considerred as a non-maskable interrupt and the same

restrictions as for NMI apply.

Tables below summarize values written into the SR/BASEPRI register when switching to

the task withthe defined priority, considering the value of the

MQX_HARDWARE_INTERRUPT_LEVEL_MAX.

As an example for ColdFire platform, when

MQX_HARDWARE_INTERRUPT_LEVEL_MAX is set to 7 switching to the task with

the priority of 4 causes the SR register is loaded by the value of 2. It means that this task

cannot be interrupted by the interrupts with the priority lower than 3.

Table 3-46. SR Register Values for Different Task Priorities and Different
Values of MQX_HARDWARE_INTERRUPT_LEVEL_MAX valid
for ColdFire platforms

MQX_HARDWARE_INTER

RUPT_LEVEL_MAX

Task
Priority

0 1 2 3 4 5 6 7

119

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

0 NOT ALLOWED. EFFECTIVELY CHANGES TO

MQX_HARDWARE_INTERRUPT_LEVEL_MAX=1

1 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 2 1 0 0 0 0 0 0

4 3 2 1 0 0 0 0 0

5 4 3 2 1 0 0 0 0

6 5 4 3 2 1 0 0 0

7 6 5 4 3 2 1 0 0

8 NOT ALLOWED. EFFECTIVELY CHANGES TO

MQX_HARDWARE_INTERRUPT_LEVEL_MAX=70

On Cortex®-M4® and Cortex®-A5® core based platforms, the MQX RTOS interrupt

processing is designed this way. Kinetis K family MCUs support 16 hardware interrupt

priority levels. Internally MQX RTOS maps even levels (0, 2, 4, .., 14) for MQX RTOS

applications while odd levels (1, 3, .., 15) are used internally. MQX RTOS application

interrupt levels are 0 to 7, the mapping from MQX RTOS application levels 0 to 7 to

hardware priority levels (0, 2 to 14) is implemented in the _bsp_int_init() function.

To install an MQX RTOS application defined ISR on Kinetis K, use the following code:

_int_install_isr(vector, isr_ptr, isr_data);
_bsp_int_init(vector, priority, subpriority, enable);

vector - number of non-core vector (for example, 37 for LLWU, defined in

IRQInterruptIndex in the MCU header file).

priority - priority of the interrupt source. Allowed values: any integer between

MQX_HARDWARE_INTERRUPT_LEVEL_MAX and 7 (including both values), the

lower number, the higher priority is expected.

subpriority - omitted on Kinetis K.

enable - TRUE to enable the interrupt vector source in NVIC.

To install a kernel ISR on Kinetis K (to bypass MQX RTOS), use the following code:

_int_install_kernel_isr(Vector, isr_ptr); /* works only for vector table located in the
RAM */
_bsp_int_init(vector, priority, subpriority, enable);

vector - number of non-core vector (for example, 79 for FTM1, defined in

IRQInterruptIndex in the MCU header file).

120

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

priority - priority of the interrupt source. Allowed values: 0 (for the highest priority

interrupt) up to 7.

subpriority - omitted on Kinetis K.

enable - TRUE to enable the interrupt vector source in NVIC.

Notice that due to the ARM® hardware interrupt stacking feature, the kernel isr can be

any C function with declaration void my_kernel_isr(void).

ARM Cortex®-M4 BASEPRI register values for different task priorities and different

values of MQX_HARDWARE_INTERRUPT_LEVEL_MAX are shown in the image

below. Note the most significant nibble is used to set-up the priority. Refer the ARM

Reference Manual for BASEPRI register description.

Example: BASEPRI=0x20, the most significant nibble is 0x2, which means only

interrupt with hardware priority level 1 or 0 can interrupt this task.

Table 3-47. SR Register Values for Different Task Priorities and Different
Values of MQX_HARDWARE_INTERRUPT_LEVEL_MAX valid
for ARM Cortex®-M4 core based platforms

MQX_HARDWARE_INTERRU

PT_LEVEL_MAX

Task Priority

0 1 2 3 4 5 6 7

0 NOT ALLOWED. EFFECTIVELY CHANGES TO

MQX_HARDWARE_INTERRUPT_LEVEL_MAX=1

1 0x20 0x40 0x60 0x80 0xA0 0xC0 0xE0 0

2 0x40 0x60 0x80 0xA0 0xC0 0xE0 0 0

3 0x60 0x80 0xA0 0xC0 0xE0 0 0 0

4 0x80 0xA0 0xC0 0xE0 0 0 0 0

5 0xA0 0xC0 0xE0 0 0 0 0 0

6 0xC0 0xE0 0 0 0 0 0 0

7 0xE0 0 0 0 0 0 0 0

8 NOT ALLOWED. EFFECTIVELY CHANGES TO

MQX_HARDWARE_INTERRUPT_LEVEL_MAX=70

ARM Cortex-A5 interrupt priority mask register (GICC_PMR – GIC register) values for

different task priorities and different values of

MQX_HARDWARE_INTERRUPT_LEVEL_MAX are shown in the following table.

Note the most significant nibble is used to set-up the priority. Refer to the ARM Generic

Interrupt Controller Architecture Specification for GICC_PMR register description.

121

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Table 3-48. SR Register Values for Different Task Priorities and Different
Values of MQX_HARDWARE_INTERRUPT_LEVEL_MAX valid
for ARM® Cortex®-A5 core based platforms

MQX_HARDWARE_INTERRU

PT_LEVEL_MAX

Task Priority

0 1 2 3 4 5 6 7

0 NOT ALLOWED. EFFECTIVELY CHANGES TO

MQX_HARDWARE_INTERRUPT_LEVEL_MAX=1

1 0x20 0x40 0x80 0xA0 0xC0 0xE0 0xFF 0xFF

2 0x40 0x80 0xA0 0xC0 0xE0 0xFF 0xFF 0xFF

3 0x80 0xA0 0xC0 0xE0 0xFF 0xFF 0xFF 0xFF

4 0xA0 0xC0 0xE0 0xFF 0xFF 0xFF 0xFF 0xFF

5 0xC0 0xE0 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

6 0xE0 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

7 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF

8 NOT ALLOWED. EFFECTIVELY CHANGES TO

MQX_HARDWARE_INTERRUPT_LEVEL_MAX=7

For NXP PowerPC® devices and ARM® Cortex®-M0+ devices, there is no support for
automatic switching of interrupt levels based on priority of running task and all
peripheral interrupts are always disabled by _int_disable regardless of
MQX_HARDWARE_INTERRUPT_LEVEL_MAX setting.

3.9.4 Changing Default ISRs

When MQX RTOS handles an interrupt, it calls _int_kernel_isr(), which calls a default
ISR with the interrupt number, if either of these conditions is true:

• The application has not installed an application-defined ISR for the interrupt number.

• The interrupt number is outside the range of the ISR table.

The application can get a pointer to the default ISR with _int_get_default_isr().

The application can change the default ISR as described in the following table.

Table 3-49. Default ISRs

Default ISR Description Modify or install with

122

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_int_default_isr MQX RTOS installs it as the default

ISR, when MQX RTOS starts. It blocks

the task.

To modify: _int_install_default_ isr()

_int_exception_isr Implements MQX RTOS exception
handling.

To install: _int_install_exception_ isr()

_int_unexpected_ isr Similar to _int_default_isr(), but also

prints a message to the default console,

identifying the unhandled interrupt.

To install: _int_install_unexpected_
isr()

3.9.5 Handling Exceptions
To implement MQX RTOS exception handling, an application should call

_int_install_exception_isr(), which installs _int_exception_isr() as the default ISR.

Thus, _int_exception_isr() is called, when an exception or unhandled interrupt occurs.

The function _int_exception_isr() does the following when an exception occurs:

• If the exception occurs when a task is running and a task exception ISR exists, MQX

RTOS runs the ISR; if a task exception ISR does not exist, MQX RTOS aborts the

task by calling _task_abort().
• If the exception occurs when an ISR is running and an ISR exception ISR exists,

MQX RTOS aborts the running ISR and runs the ISR's exception ISR.

• The function walks the interrupt stack looking for information about the ISR or task

that was running before the exception occurred.

3.9.6 Handling ISR Exceptions

An application can install an ISR exception handler for each ISR. If an exception occurs

while the ISR is running, MQX RTOS calls the handler and terminates the ISR. If the

application has not installed an exception handler, MQX RTOS simply terminates the

ISR.

When MQX RTOS calls the exception handler, it passes:

• current ISR number

• data pointer for the ISR

• exception number

• address on the stack of the exception frame

If the MQX RTOS exception ISR determines that the interrupt stack contains incorrect information, it

calls _mqx_fatal_error() with error code MQX_CORRUPT_INTERRUPT_STACK.

Note

123

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Table 3-50. Summary: Handling ISR Exceptions

_int_get_exception_handler Gets a pointer to the current exception handler for the ISR.

_int_set_exception_handler Sets the address of the current ISR exception handler for the
interrupt.

3.9.7 Handling Task Exceptions

A task can install a task-exception handler, which MQX RTOS calls, if the task causes an

exception that is not supported.

Table 3-51. Summary: Handling Task Exceptions

_task_get_exception_handler Gets the task-exception handler.

_task_set_exception_handler Sets the task-exception handler.

3.9.8 Example: Installing an ISR

Install an ISR to intercept the kernel timer interrupt. Chain the ISR to the previous ISR,

which is the BSP-provided periodic timer ISR.

/* isr.c */

#include <mqx.h>

#include <bsp.h>

#define MAIN_TASK 10
extern void main_task(uint32_t);

extern void new_tick_isr(void *);

const TASK_TEMPLATE_STRUCT MQX_template_list[] =
{
/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice*/
{ MAIN_TASK, main_task, 2000, 8, "Main", MQX_AUTO_START_TASK, 0, 0},
{ 0 }

};

typedef struct
{

void * OLD_ISR_DATA;

INT_ISR_FPTR OLD_ISR;

_mqx_uint TICK_COUNT;
} MY_ISR_STRUCT, * MY_ISR_STRUCT_PTR;

/*ISR*---
*
* ISR Name : new_tick_isr
* Comments :
* This ISR replaces the existing timer ISR, then calls the
* old timer ISR.
END-- */
void

new_tick_isr

(

void * user_isr_ptr

124

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

)
{

MY_ISR_STRUCT_PTR isr_ptr;
isr_ptr = (MY_ISR_STRUCT_PTR)user_isr_ptr;

isr_ptr->TICK_COUNT++;
/* Chain to previous notifier */
(*isr_ptr->OLD_ISR)(isr_ptr->OLD_ISR_DATA);

}

/*TASK*--
*
* Task Name : main_task
* Comments :
* This task installs a new ISR to replace the timer ISR.
* It then waits for some time, finally printing out the
* number of times the ISR ran.
END-- */

void

main_task

(

uint32_t initial_data
)

{

MY_ISR_STRUCT_PTR isr_ptr;

isr_ptr = _mem_alloc_zero(sizeof(MY_ISR_STRUCT));

isr_ptr->TICK_COUNT = 0;

isr_ptr->OLD_ISR_DATA =

int_get_isr_data(BSP_TIMER_INTERRUPT_VECTOR);

isr_ptr->OLD_ISR = int_get_isr(BSP_TIMER_INTERRUPT_VECTOR);

_int_install_isr(BSP_TIMER_INTERRUPT_VECTOR, new_tick_isr, isr_ptr);

_time_delay_ticks(200);
printf("\nTick count = %d\n", isr_ptr->TICK_COUNT);
_mqx_exit(0);

}

3.9.8.1 Compiling the Application and Linking it with MQX RTOS

1. Go to this directory:

mqx\examples\isr

2. See the MQX™ RTOS Release Notes document for instructions on how to build and
run the application.

Main task displays the number of times the application ISR was called.

3.10 Instrumentation

Instrumentation includes the following components:

• logs

125

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

• lightweight logs

• kernel log

• stack usage utilities

3.10.1 Logs

Many real-time applications need to record information about significant conditions, such

as events, state transitions, or function entry and exit information. If the application

records the information as it occurs, you can analyze the sequence to determine whether

the application processed conditions correctly. If each piece of information has a

timestamp (in absolute time), you can determine, where the application spends processing

time, and therefore, which code should be optimized.

Note To optimize code and data memory requirements on some target platforms, the Log component

is not compiled in the MQX RTOS kernel by default. To test this feature, you need to enable it

first in the MQX RTOS user configuration file and recompile the MQX RTOS PSP, BSP, and

other core components. See Rebuilding NXP MQX RTOS for more details.

With the log component, you can store data into and retrieve it from a maximum of 16

logs. Each log has a predetermined number of entries. Each entry contains a timestamp

(in absolute time), a sequence number, and application-defined data.

Table 3-52. Summary: Using Logs

Logs use certain structures and

constants, which are defined in

log.h.

Logs use certain structures and constants, which are defined in log.h.

_log_create Creates a log.

_log_create_component Creates the log component.

_log_destroy Destroys a log.

_log_disable Disables logging.

_log_enable Enables logging.

_log_read Reads from a log.

_log_reset Resets the contents of a log.

_log_test Tests the log component.

_log_write Writes to a log.

3.10.1.1 Creating the Log Component

You can explicitly create the log component with _log_create_component(). If you do

126

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

not explicitly create it, MQX RTOS creates it the first time an application creates a log or
kernel log.

3.10.1.2 Creating a Log

To create a log, a task calls _log_create() and specifies:

• Log number, in range of zero through 15.
• Maximum number of _mqx_uint quantities to be stored in the log (this includes

headers).

• What happens when the log is full. The default behavior is that no additional data is

written. Another behavior is that new entries overwrite the oldest ones.

3.10.1.3 Format of a Log Entry

Each log entry consists of a log header (LOG_ENTRY_STRUCT), followed by
application-defined data.

typedef struct
{
_mqx_uint SIZE;
_mqx_uint SEQUENCE_NUMBER;

uint32_t SECONDS;

uint16_t MILLISECONDS;

uint16_t MICROSECONDS;

} LOG_ENTRY_STRUCT, * LOG_ENTRY_STRUCT_PTR;

The fields are described in MQX RTOS Reference Manual.

3.10.1.4 Writing to a Log

Tasks write to a log with _log_write().

3.10.1.5 Reading From a Log

Tasks read from a log by calling _log_read(), and specifying, how to read the log.
Possible ways to read the log are:

• To read the newest entry.

• To read the oldest entry.

• To read the next entry from the previous one read (used with read oldest).

• To read the oldest entry and delete it.

3.10.1.6 Disabling and Enabling Writing to a Log

127

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Any task can disable logging to a specific log with _log_disable(). Any task can

subsequently enable logging to the log with _log_enable().

3.10.1.7 Resetting a Log

A task can reset the contents of a log to its initial state of no data with _log_reset().

3.10.1.8 Example: Using Logs

/* log.c */

#include <mqx.h>

#include <bsp.h>

#include <log.h>

#define MAIN_TASK 10
#define MY_LOG 1

extern void main_task(uint32_t initial_data);

const TASK_TEMPLATE_STRUCT MQX_template_list[] =

{
/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice*/
{ MAIN_TASK, main_task, 2000, 8, "Main", MQX_AUTO_START_TASK, 0, 0},
{ 0 }

};

typedef struct entry_struct
{

LOG_ENTRY_STRUCT HEADER;
_mqx_uint C;
_mqx_uint I;

} ENTRY_STRUCT, * ENTRY_STRUCT_PTR;

/*TASK*--
*
* Task Name : main_task
* Comments :
* This task logs 10 keystroke entries then prints out the log.
END-- */
void

main_task

(

uint32_t initial_data
)

{
ENTRY_STRUCT entry;
_mqx_uint result;
_mqx_uint i;
uchar c;

/* Create the log component. */

result = _log_create_component();

if (result != MQX_OK) {

printf("Main task - _log_create_component failed!");
_mqx_exit(0);

}
/* Create a log */
result = _log_create(MY_LOG, 10 * (sizeof(ENTRY_STRUCT)/sizeof(_mqx_uint)), 0);
if (result != MQX_OK) {

128

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

printf("Main task - _log_create failed!");
_ _mqx_exit(0);

}
/* Write data into the log */

printf("Please type in 10 characters:\n");

for (i = 0; i < 10; i++) {

c = getchar();
result = _log_write(MY_LOG, 2, (_mqx_uint)c, i);

if (result != MQX_OK) {
printf("Main task - _log_write failed!");

}
}

/* Read data from the log */

printf("\nLog contains:\n");

while (_log_read(MY_LOG, LOG_READ_OLDEST_AND_DELETE, 2,

(LOG_ENTRY_STRUCT_PTR)&entry) == MQX_OK)

{
printf("Time: %ld.%03d%03d, c=%c, i=%d\n",

entry.HEADER.SECONDS,

(_mqx_uint)entry.HEADER.MILLISECONDS,

(_mqx_uint)entry.HEADER.MICROSECONDS,

(uchar)entry.C & 0xff,

entry.I);
}
/* Delete the log */
_log_destroy(MY_LOG);

_ _mqx_exit(0);

}

3.10.1.8.1 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mqx\examples\log

2. See the MQX™ RTOS Release Notes for instructions on how to build and run the
application.

3. Type ten characters on the input console.

The program logs the characters, and displays the log entry on the console.

3.10.2 Lightweight Logs

Lightweight logs are similar to logs (see Logs), but with the following differences:

• All entries in all lightweight logs are the same size.

• You can create a lightweight log at a particular memory location.

• Lightweight logs can be timestamped in tick time or second/millisecond time,

depending on how MQX RTOS was configured at compile time (for more

129

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

information, see Configuring MQX RTOS at Compile Time).

Note To optimize code and data memory requirements on some target platforms, the LWLog

component is not compiled in the MQX RTOS kernel by default. To test this feature, you need to

enable it first in the MQX RTOS user configuration file and recompile the MQX RTOS PSP, BSP,

and other core components. See Rebuilding NXP MQX RTOS for more details.

Table 3-53. Summary: Using Lightweight Logs

Lightweight logs use certain structures

and constants, which are defined in

lwlog.h.

Lightweight logs use certain structures and constants, which are
defined in

lwlog.h.

_lwlog_calculate_size Calculates the size needed for a lightweight log with a specified

maximum number of entries.

_lwlog_create Creates a lightweight log.

_lwlog_create_at Creates a lightweight log at a location.

_lwlog_create_component Creates the lightweight log component.

_lwlog_destroy Destroys a lightweight log.

_lwlog_disable Disables logging to lightweight logs.

_lwlog_enable Enables logging to lightweight logs.

_lwlog_read Reads from a lightweight log.

_lwlog_reset Resets the contents of a lightweight log.

_lwlog_test Tests the lightweight log component.

_lwlog_write Writes to a lightweight log.

3.10.2.1 Creating the Lightweight Log Component

You can explicitly create the lightweight log component with
_lwlog_create_component(). If you do not explicitly create it, MQX RTOS creates it the
first time an application creates a lightweight log or kernel log.

3.10.2.2 Creating a Lightweight Log
A task can create a lightweight log at a particular location (_lwlog_create_at()), or let

MQX RTOS choose the location (_lwlog_create()).

With either function, the task specifies:

• Log number in the range of one through 15 (zero is reserved for kernel log).

• Maximum number of entries in the log.

• What happens when the log is full. The default behavior is that no additional data is

written. Another behavior is that new entries overwrite the oldest ones.

130

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

In the case of _lwlog_create_at(), the task also specifies the address of the log.

3.10.2.3 Format of a Lightweight Log Entry

Each lightweight log entry has the following structure.

typedef struct lwlog_entry_struct
_mqx_uint SEQUENCE_NUMBER;

#if MQX_LWLOG_TIME_STAMP_IN_TICKS == 0

/* Time at which the entry was

written: */ uint32_t SECONDS;

uint32_t MILLISECONDS;
uint32_t MICROSECONDS;

#else
/* Time (in ticks) at which the entry was written: */

MQX_TICK_STRUCT TIMESTAMP;

#endif
_mqx_max_type DATA[LWLOG_MAXIMUM_DATA_ENETRIES];

struct lwlog_entry_struct * NEXT_PTR;

} LWLOG_ENTRY_STRUCT, * LWLOG_ENTRY_STRUCT_PTR;

The fields are described in MQX RTOS Reference Manual.

3.10.2.4 Writing to a Lightweight Log

Tasks write to a lightweight log with _lwlog_write().

3.10.2.5 Reading From a Lightweight Log

Tasks read from a lightweight log by calling _lwlog_read() and specifying, how to read
the log. Possible ways to read the log are:

• To read the newest entry.

• To read the oldest entry.

• To read the next entry from the previous one read (used with read oldest).

• To read the oldest entry and delete it.

3.10.2.6 Disabling and Enabling Writing to a Lightweight Log
Any task can disable logging to a specific lightweight log with _lwlog_disable(). Any

task can subsequently enable logging to the lightweight log with _lwlog_enable().

3.10.2.7 Resetting a Lightweight Log

131

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

A task can reset the contents of a lightweight log to its initial state of no data with
_lwlog_reset().

3.10.2.8 Example: Using Lightweight Logs

/* lwlog.c */

#include <mqx.h>

#include <bsp.h>

#include <lwlog.h>

#define MAIN_TASK 10

#define MY_LOG 1
extern void main_task(uint32_t initial_data);

const TASK_TEMPLATE_STRUCT MQX_template_list[] =

{
/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice*/
{ MAIN_TASK, main_task, 2000, 8, "Main", MQX_AUTO_START_TASK, 0, 0},
{ 0 }

};

/*TASK*--
*
* Task Name : main_task
* Comments :
* This task logs 10 keystroke entries in a lightweight log,
* then prints out the log.
END-- */
void

main_task

(

uint32_t initial_data
)

{
LWLOG_ENTRY_STRUCT entry;
_mqx_uint result;
_mqx_uint i;
uchar c;
/* Create the lightweight log component

*/ result = _lwlog_create_component();

if (result != MQX_OK) {
printf("Main task: _lwlog_create_component failed.");
__mqx_exit(0);

}
/* Create a log */
result = _lwlog_create(MY_LOG, 10,

0); if (result != MQX_OK) {

printf("Main task: _lwlog_create failed.");
_mqx_exit(0);

}
/* Write data to the log */

printf("Enter 10

characters:\n"); for (i = 0;

i < 10; i++) {

c = getchar();
result = _lwlog_write(MY_LOG, (_mqx_max_type)c,

(_mqx_max_type)i, 0, 0, 0, 0, 0);

if (result != MQX_OK) {

132

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

printf("Main task: _lwlog_write failed.");
}

}

/* Read data from the log */

printf("\nLog contains:\n");

while (_lwlog_read(MY_LOG,

LOG_READ_OLDEST_AND_DELETE, &entry) == MQX_OK)

{
printf("Time: ");

#if MQX_LWLOG_TIME_STAMP_IN_TICKS
_psp_print_ticks((PSP_TICK_STRUCT_PTR)&entry.TIMESTAMP);

#else
printf("%ld.%03ld%03ld", entry.SECONDS, entry.MILLISECONDS,

entry.MICROSECONDS);
#endif

printf(, c=%c, I=%d\n", (uchar)entry.DATA[0] &

0xff, (_mqx_uint)entry.DATA[1]);

}

/* Destroy the log */
_log_destroy(MY_LOG);
_mqx_exit(0);

}

3.10.2.8.1 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mqx\examples\lwlog

2. See the MQX™ RTOS Release Notes for instructions on how to build and run the
application.

3. Type ten characters on the input console.

The program logs the characters and displays the log entry on the console.

3.10.3 Kernel Log

Kernel log lets an application log any combination of:

• Function entry and exit information for all calls to MQX RTOS functions.

• Function entry and exit information for specific function calls.

• Context switches.

• Interrupts.

Note To optimize code and data memory requirements on some target platforms, the KLog component

is not compiled in the MQX RTOS kernel by default. To test this feature, you need to enable it

first in the MQX RTOS user configuration file, and recompile the MQX RTOS PSP, BSP, and

other core components. See Rebuilding NXP MQX RTOS for more details.

133

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Performance tool uses kernel log data to analyze, how an application operates and how it

uses resources. For more information, see the MQX RTOS Host Tools User's Guide .

Table 3-54. Summary: Using Kernel Log

Kernel log uses certain structures and

constants, which are defined in log.h,

lwlog.h, and klog.h.

Kernel log uses certain structures and constants, which are defined
in

log.h, lwlog.h, and klog.h.

_klog_control Control kernel logging.

_klog_create Creates kernel log.

_klog_create_at Creates kernel log at a specific location.

_klog_disable_logging_task Disables kernel logging for the specified task.

_klog_enable_logging_task Enables kernel logging for the specified task.

_klog_display Displays an entry in kernel log.

3.10.3.1 Using Kernel Log

To use kernel log, an application follows these general steps.

1. Optionally create the lightweight log component as described on page Creating the

Lightweight Log Component.

2. Create kernel log with _klog_create(). This is similar to creating a lightweight log,
which is described on page Creating the Lightweight Log Component. You can also
create kernel log at a specific location with _klog_create_at().

3. Set up control for logging by calling _klog_control(), and specifying any
combination of bit flags, as described in the following table.

Table 3-55. Logged Functions Overview

Select flags for:

• MQX RTOS
component

Select for: These functions are logged:

 Errors For example, _mqx_exit(), _task_set_error(),

_mqx_fatal_error().

 Events Most from the _event family.

 Interrupts Certain ones from the _int family.

 LWSems The _lwsem family.

 Memory Certain ones from the _mem family.

 Messages Certain ones from the _msg, _msgpool, and _msgq
families.

 Mutexes Certain ones from the _mutatr and _mutex families.

134

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

 Names The _name family.

 Partitions Certain ones from the _partition family.

 Semaphores Most from the _sem family.

 Tasking The _sched, _task, _taskq, and _time families.

 Timing The _timer family; certain ones from the _time family.

 Watchdogs The _watchdog family.

• Specific tasks

only (task

qualified)

For each task to log, call

one of:

For each task to log, call one of:

_klog_disable_logging_task()

 _klog_disable_logging_

task()
_klog_enable_logging_task()

 _klog_enable_logging_

task()

• Interrupts • Interrupts • Interrupts

• Periodic timer

interrupts

(system clock)

• Context switches

• Periodic timer

interrupts (system

clock)

• Context switches

• Periodic timer interrupts (system clock)

• Context switches

3.10.3.2 Disabling Kernel Logging

Kernel logging can make your application use more resources and run slower. After you

have tested and verified the application, you might want to create a version that does not

include the ability to log to kernel log. To remove kernel logging for any part of MQX

RTOS, you must recompile MQX RTOS with the MQX_KERNEL_LOGGING option
set to zero. For more information, see MQX RTOS Compile-Time Configuration Options.

The complete procedure for recompiling MQX RTOS is described in

Rebuilding NXP MQX RTOS.

3.10.3.3 Example: Using Kernel Log

Log all calls to the timer component and all periodic timer interrupts.

/* klog.c */

#include <mqx.h>

#include <bsp.h>

#include <log.h>

#include <klog.h>

extern void main_task(uint32_t initial_data);

const TASK_TEMPLATE_STRUCT MQX_template_list[] =

{
/* Task Index, Function, Stack, Priority, Name, Attributes, Param, Time Slice*/
{ 10 , main_task, 1500, 8, "Main", MQX_AUTO_START_TASK, 0, 0},

135

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

{ 0 }
};

/*TASK*--
*
* Task Name : main_task
* Comments :
* This task logs timer interrupts to the kernel log,
* then prints out the log.
END-- */
void

main_task

(

uint32_t initial_data
)

{
_mqx_uint result;
_mqx_uint i;

/* Create kernel log */
result = _klog_create(4096, 0);

if (result != MQX_OK) {

printf("Main task - _klog_create failed!");

 _mqx_exit(0);

}

/* Enable kernel log */
_klog_control(KLOG_ENABLED | KLOG_CONTEXT_ENABLED |

KLOG_INTERRUPTS_ENABLED|

KLOG_SYSTEM_CLOCK_INT_ENABLED |

KLOG_FUNCTIONS_ENABLED | KLOG_TIME_FUNCTIONS |

KLOG_INTERRUPT_FUNCTIONS, TRUE);

/* Write data into kernel log

*/ for (i = 0; i < 10; i++) {
__time_delay_ticks(5 * i);

}
/* Disable kernel log */
_klog_control(0xFFFFFFFF, FALSE);
/* Read data from kernel log */

printf("\nKernel log contains:\n");

while (_klog_display()){

}
__mqx_exit(0);

}

3.10.3.3.1 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mqx\examples\klog

2. See the MQX™ RTOS Release Notes for instructions on how to build and run the
application.

After about three seconds, Main_task() displays the contents of kernel log.

136

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.10.4 Stack Usage Utilities

MQX RTOS offers core utilities that let you examine and refine the size of the interrupt

stack and the size of each task's stack.

Table 3-56. Summary: Stack Usage Utilities

To use these utilities, you must have

configured MQX RTOS with

MQX_MONITOR_STACK. For

more information, see MQX RTOS Compile-

Time Configuration Options. The complete

procedure for recompiling MQX RTOS is

described in Rebuilding NXP MQX RTOS.

To use these utilities, you must have configured MQX RTOS with

MQX_MONITOR_STACK. For more information, see MQX RTOS

Compile-Time Configuration Options. The complete procedure for

recompiling MQX RTOS is described in Rebuilding NXP MQX

RTOS

_klog_get_interrupt_stack_ usage Gets the interrupt stack boundary and the total amount of stack
used.

_klog_get_task_stack_usage Gets the stack size and the total amount of the stack used for a

specific task.

_klog_show_stack_usage Calculates and displays the amount of stack used by each task

and the interrupt stack.

3.11 Utilities

Utilities include:

• queues

• name component

• run-time testing

• additional utilities

3.11.1 Queues

The queue component lets you manage doubly linked lists of elements.

Note To optimize code and data memory requirements on some target platforms, the Queue

component is not compiled in the MQX RTOS kernel by default. To test this feature, you need to

enable it first in the MQX RTOS user configuration file and recompile the MQX RTOS PSP, BSP,

and other core components. See Rebuilding NXP MQX RTOS for more details.

Table 3-57. Summary: Using Queues

_queue_dequeue Removes the element that is at the start of the queue.

_queue_enqueue Adds the element to the end of the queue.

_queue_get_size Gets the number of elements in the queue.

137

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_queue_head Gets (but doesn't remove) the element that is at the start of the queue.

_queue_init Initializes the queue.

_queue_insert Inserts the element in the queue.

_queue_is_empty Determines, whether the queue is empty.

_queue_next Gets (but doesn't remove) the next element in the queue.

_queue_test Tests the queue.

_queue_unlink Removes the specific element from the queue.

3.11.1.1 Queue Data Structures

The queue component requires two data structures, which are defined in mqx.h:

• QUEUE_STRUCT- keeps track of the size of the queue, and pointers to the start
and end of the queue. MQX RTOS initializes the structure, when a task creates the
queue.

• QUEUE_ELEMENT_STRUCT- defines the structure of a queue element. The
structure is the header structure of an application-defined object that the task wants to
queue.

3.11.1.2 Creating a Queue

A task creates and initializes a queue by calling _queue_init() with a pointer to a queue
object and the maximum size of the queue.

3.11.1.3 Adding Elements To a Queue

A task adds an element to the end of a queue by calling _queue_enqueue() with pointers
to the queue and to queue element object, which is the header structure of the object that
the task wants to queue.

3.11.1.4 Removing Elements From a Queue

A task gets and removes an element from the start of a queue by calling

_queue_dequeue() with a pointer to the queue.

3.11.2 Name Component

With the name component, tasks can associate a 32-bit number with a string or symbolic

138

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

name. MQX RTOS stores the association in a names database that all tasks on the

processor can use. The database avoids global variables.

Note To optimize code and data memory requirements on some target platforms, the Name

component is not compiled in the MQX RTOS kernel by default. To test this feature, you need to

enable it first in the MQX RTOS user configuration file and recompile the RTOS MQX PSP, BSP,

and other core components. See Rebuilding NXP MQX RTOS for more details.

Table 3-58. Summary: Using the Name Component

The name component uses certain
structures and constants, which are
defined in name.h

The name component uses certain structures and constants, which

are defined in name.h

_name_add Adds a name to the names database (a name is a NULL-

terminated string, max length 32 characters, including NULL).

_name_create_component Creates the name component.

_name_delete Deletes a name from the names database.

_name_find Looks up a name in the names database and gets its number.

_name_find_by_number Looks up a number in the names database and gets its name.

_name_test Tests the name component.

3.11.2.1 Creating the Name Component

An application can explicitly create the name component with
_name_create_component(). If you do not explicitly create it, MQX RTOS creates it
with default values the first time an application uses the names database.

The parameters and their default values are the same as for the event component, which is

described on page Creating the Event Component.

3.11.3 Run-Time Testing

MQX RTOS provides core run-time testing that tests the integrity of most MQX RTOS

components.

A test determines, whether the data that is associated with the component is valid and not

corrupted. MQX RTOS considers the data in a structure valid, if the structure's VALID

field is a known value. MQX RTOS considers data in a structure corrupted, if its

CHECKSUM field is incorrect or pointers are incorrect.

An application can use run-time testing during its normal operation.

139

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Table 3-59. Summary: Run-Time Testing

_event_test Events

_log_test Logs

_lwevent_test Lightweight events

_lwlog_test Lightweight logs

_lwmem_test Lightweight memory with variable-size blocks

_lwsem_test Lightweight semaphores

_lwtimer_test Lightweight timers

_mem_test Memory with variable-size blocks

_msgpool_test Message pools

_msgq_test Message queues

_mutex_test Mutexes

_name_test Name component

_partition_test Memory with fixed-size blocks (partitions)

_queue_test Application-implemented queue

_sem_test Semaphores

_taskq_test Task queues

_timer_test Timers

_watchdog_test Watchdogs

3.11.3.1 Example: Doing Run-Time Testing

The application uses all MQX RTOS components. A low-priority task tests all the

components. If it finds an error, it stops the application.

/* test.c */

#include <mqx.h>

#include <fio.h>

#include <event.h>

#include <log.h>

#include <lwevent.h>

#include <lwlog.h>

#include <lwmem.h>

#include <lwtimer.h>

#include <message.h>

#include <mutex.h>

#include <name.h>

#include <part.h>

#include <sem.h>

#include <timer.h>

#include <watchdog.h>

extern void background_test_task(uint32_t);
const TASK_TEMPLATE_STRUCT MQX_template_list[] =

140

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

{
/* Task Index,Function, Stack,Prio,Name, Attributes, Param,Time Slice */
{ 10 , background_test_task,2000, 8,
 "Main",MQX_AUTO_START_TASK,0, 0},
{ 0 }
};

/*TASK*--
*
* Task Name : background_test_task
* Comments :
* This task is meant to run in the background testing for
* integrity of MQX RTOS component data structures.
END-- */
void background_test_task

(

uint32_t parameter
)

{
_partition_id partition;

_lwmem_pool_id lwmem_pool_id;

void * error_ptr;

void * error2_ptr;

_mqx_uint error;
_mqx_uint result;

while (TRUE) {

result = _event_test(&error_ptr);

if (result != MQX_OK){

printf("\nFailed _event_test: 0x%X.", result);
_mqx_exit(1);

}

result = _log_test(&error);

if (result != MQX_OK){

printf("\nFailed _log_test: 0x%X.", result);
_mqx_exit(2);

}

result = _lwevent_test(&error_ptr, &error2_ptr);

if (result != MQX_OK){

printf("\nFailed _lwevent_test: 0x%X.", result);
_mqx_exit(3);

}

result =

_lwlog_test(&error);

if (result != MQX_OK){

printf("\nFailed _lwlog_test: 0x%X.", result);
_mqx_exit(4);

}

result = _lwsem_test(&error_ptr, &error2_ptr);

if (result != MQX_OK){

printf("\nFailed _lwsem_test: 0x%X.", result);
_mqx_exit(5);

}

result = _lwmem_test(&lwmem_pool_id, &error_ptr);

if (result != MQX_OK){

printf("\nFailed _lwmem_test: 0x%X.", result);
_mqx_exit(6);

}

result = _lwtimer_test(&error_ptr, &error2_ptr);

if (result != MQX_OK){

141

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

printf("\nFailed _lwtimer_test: 0x%X.", result);
_mqx_exit(7);

}

result = _mem_test_all(&error_ptr);

if (result != MQX_OK){

printf("\nFailed _mem_test_all,");

printf("\nError = 0x%X, pool = 0x%X.",

result,(_mqx_uint)error_ptr);

_mqx_exit(8);

}

/*
** Create the message component.
** Verify the integrity of message pools and message queues.
*/
if (_msg_create_component() != MQX_OK){

printf("\nError creating the message

component.");

_mqx_exit(9);

}

if (_msgpool_test(&error_ptr, &error2_ptr) != MQX_OK){

printf("\nFailed _msgpool_test.");

_mqx_exit(10);

}

if (_msgq_test(&error_ptr, &error2_ptr) != MQX_OK){

printf("\nFailed _msgq_test.");

_mqx_exit(11);

}

if (_mutex_test(&error_ptr) != MQX_OK){

printf("\nFailed _mutex_test.");

_mqx_exit(12);

}

if (_name_test(&error_ptr, &error2_ptr) != MQX_OK){

printf("\nFailed _name_test.");

_mqx_exit(13);

}

if (_partition_test(&partition, &error_ptr, &error2_ptr)
!= MQX_OK)

{
printf("\nFailed _partition_test.");

_mqx_exit(14);

}

if (_sem_test(&error_ptr) != MQX_OK){

printf("\nFailed _sem_test.");

_mqx_exit(15);

}

if (_taskq_test(&error_ptr, &error2_ptr) != MQX_OK){

printf("\nFailed _takq_test.");

_mqx_exit(16);

}

if (_timer_test(&error_ptr) != MQX_OK){

printf("\nFailed _timer_test.");

_mqx_exit(17);

}

if (_watchdog_test(&error_ptr, &error2_ptr) != MQX_OK){

printf("\nFailed _watchlog_test.");

_mqx_exit(18);

}

printf("All tests passed.");

142

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_mqx_exit(0);

}

}

3.11.3.1.1 Compiling the Application and Linking it with MQX RTOS
1. Go to this directory:

mqx\examples\test

2. See the MQX™ RTOS Release Notes document for instructions on how to build and
run the application.

3.11.4 Additional Utilities

Table 3-60. Summary: Additional Utilities

_mqx_bsp_revision Revision of the BSP.

_mqx_copyright Pointer to the MQX RTOS copyright string.

_mqx_date Pointer to the string that indicates, when MQX RTOS was built.

_mqx_fatal_error Indicates that an error has been detected that is severe

enough that MQX RTOS or the application can no longer

function properly.

_mqx_generic_revision Revision of the generic MQX RTOS code.

_mqx_get_counter Gets a processor-unique 32-bit number.

_mqx_get_cpu_type Gets the processor type.

_mqx_get_exit_handler Gets a pointer to the MQX RTOS exit handler, which MQX RTOS

calls when it exits.

_mqx_get_kernel_data Gets a pointer to kernel data.

_mqx_get_system_task_id Gets the task ID of System task descriptor.

_mqx_get_tad_data Gets the TAD_RESERVED field from a task descriptor.

_mqx_idle_task Idle task.

_mqx_io_revision I/O revision for the BSP.

_mqx_psp_revision Revision of the PSP.

_mqx_set_cpu_type Sets the processor type.

_mqx_set_exit_handler Sets the address of the MQX RTOS exit handler, which MQX

RTOS calls, when it exits.

_mqx_set_tad_data Sets the TAD_RESERVED field in a task descriptor.

_mqx_version Pointer to the string that indicates the version of MQX RTOS.

_mqx_zero_tick_struct A constant zero-initialized tick structure that an application

can use to initialize one of its tick structures to zero.

_str_mqx_uint_to_hex_string Converts an _mqx_uint value to a hexadecimal string.

143

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

_strnlen Calculates the length of a limited-length string.

3.12 Embedded Debugging

There are several ways to debug MQX RTOS-based applications:

• Using plain debugger environment, which is not aware about the MQX RTOS

operating system. This simple approach may work well, when using breakpoints and

single-stepping through application code.

• Using operating system awareness in the debugger (so called task-aware debugger

or TAD). This approach helps to see the debugged code in the context of individual

tasks. It also helps to examine the internal MQX RTOS data structures in a user-

friendly way.

3.13 Configuring MQX RTOS at Compile Time

MQX RTOS is built with certain features that you can include or exclude by changing the

value of compile-time configuration options. If you change any configuration value, you

must recompile MQX RTOS and relink it with your target application.

As the MQX RTOS library may also depend on some MQX RTOS configuration options,

it must be typically recompiled as well.

Like MQX RTOS library, there are also other code components that use the MQX OS

services (for example RTCS, MFS, USB). These components need to be re-compiled

after MQX RTOS.

Note Comparing with original ARC versions, NXP MQX RTOS introduces a different

method of compile-time configuration of the MQX OS and other components.

Original method used the compiler command-line -D options or source\psp\platform

\psp_cnfg.asm file.

In NXP MQX RTOS, there is a central user configuration file user_config.h in the

config/mcu/<mcu> directory, which can be used to override default configuration

options. The same configuration file is used by other system components like RTCS,

MFS, or USB.

3.13.1 MQX RTOS Compile-Time Configuration Options
This section provides a list of MQX RTOS configuration options. The default value of

any of these options can be overridden in the config/<board>/user_config.h file.

144

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

The default values are defined in the mqx/source/include/mqx_cnfg.h file.

Note Do not change the mqx_cnfg.h file directly. Always use the board-specific or project-
specific

user_config.h file in your config directory.

3.13.1.1 MQX_COMPONENT_DESTRUCTION

Default is one.

One: MQX RTOS includes the functions that allow MQX RTOS components (such as

the semaphore component or event component) to be destroyed. MQX RTOS reclaims all

the resources that the component allocated.

3.13.1.2 MQX_DEFAULT_TIME_SLICE_IN_TICKS

Default is one.

One: Default time slice in the task template structure is in units of ticks.

Zero: Default time slice in the task template structure is in milliseconds.

The value also affects the time-slice field in the task template, because the value is used

to set a task's default time slice.

3.13.1.3 MQX_EXIT_ENABLED

Default is one.

One: MQX RTOS includes code to allow the application to return from the _mqx() call.

3.13.1.4 MQX_HAS_TIME_SLICE

Default is one.

One: MQX RTOS includes code to allow time-slice scheduling of tasks at the same

priority.

3.13.1.5 MQX_HAS_DYNAMIC_PRIORITIES

Default is one.

One: MQX RTOS includes code to change task priorities dynamically by

_task_set_priority() call or by priority inheritance or priority boosting.

3.13.1.6 MQX_HAS_EXCEPTION_HANDLER

145

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Default is one.

One MQX RTOS includes code to handle exceptions (see psp/<psp>/int_xcpt.c) and to
set/get task exception handler routine by using the _task_set_exception_handler
and_task_get_exception_handler calls.

3.13.1.7 MQX_HAS_EXIT_HANDLER

Default is one.

One: MQX RTOS includes code to execute task exit handler before the task exits. Also
the _task_set_exit_handler and _task_get_exit_handler calls are included.

3.13.1.8 MQX_HAS_HW_TICKS

Default is one.

One: MQX RTOS includes support for hardware ticks and associated calls:
_time_get_hwticks, _time_get_hwticks_per_tick and _psp_usecs_to_ticks. Note that
hardware ticks also need to be supported by the BSP.

3.13.1.9 MQX_HAS_TICK

Default is one. It is recommended to leave this option enabled.

One: MQX RTOS includes support for tick time and all related functionality of delaying

tasks, waiting for synchronization objects with timeout etc.

3.13.1.10 MQX_TD_HAS_TEMPLATE_INDEX

Default is one.

One: The MQX RTOS task descriptors maintain the original index value coming from

the TASK_TEMPLATE_ STRUCT array. This value is maintained for backward

compatibility only and is not used by MQX RTOS kernel.

3.13.1.11 MQX_TD_HAS_STACK_LIMIT

Default is one.

One: The MQX RTOS task descriptors maintain the task limit value which is needed by
various stack overflow checking calls like _task_check_stack.

3.13.1.12 MQX_INCLUDE_FLOATING_POINT_IO

Default is zero.

One: _io_printf() and _io_scanf() include floating point I/O code.

146

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.13.1.13 MQX_IS_MULTI_PROCESSOR

Default is one.

One: MQX RTOS includes code to support multiprocessor MQX RTOS applications.

3.13.1.14 MQX_KERNEL_LOGGING

Default is one.

One: Certain functions in each component write to kernel log, when they are entered and

as they exit. The setting reduces performance, only if you enable logging for the

component. You can control, which component is logged with _klog_control().

3.13.1.15 MQX_LWLOG_TIME_STAMP_IN_TICKS

Default is one.

One: Timestamp in lightweight logs is in ticks.

Zero: Timestamp is in seconds, milliseconds, and microseconds.

3.13.1.16 MQX_MEMORY_FREE_LIST_SORTED

Default is one.

One: MQX RTOS sorts the freelist of memory blocks by address. This reduces memory

fragmentation, but increases the time MQX RTOS takes to free memory.

3.13.1.17 MQX_MONITOR_STACK

Default is one.

One: MQX RTOS initializes all task and interrupt stacks to a known value, so that MQX

RTOS components and debuggers can calculate how much stack is used. The setting

reduces performance, only when MQX RTOS creates a task.

You must set the option to one in order to make use of:

• _klog_get_interrupt_stack_usage()
• _klog_get_task_stack_usage()

• _klog_show_stack_usage()

147

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.13.1.18 MQX_MUTEX_HAS_POLLING

Default is one.

One: MQX RTOS includes code to support the mutex options MUTEX_SPIN_ONLY

and MUTEX_LIMITED_SPIN.

3.13.1.19 MQX_PROFILING_ENABLE

Default is zero.

One: Code to support an external profiling tool is compiled into MQX RTOS. Profiling

adds to the size of the compiled image, and MQX RTOS runs slower. You can use

profiling, only if the toolset that you are using supports profiling.

3.13.1.20 MQX_RUN_TIME_ERR_CHECK_ENABLE

Default is zero.

One: Code to support an external run-time error-checking tool is compiled into MQX

RTOS. This adds to the size of the compiled image, and MQX RTOS runs slower. You

can use run-time error checking, only if the toolset that you are using supports it.

3.13.1.21 MQX_ROM_VECTORS

Default is zero.

One: The interrupt vector table is not copied into RAM. The ROM-based table is set up

correctly to handle all interrupts by the default MQX RTOS interrupt dispatcher. The
application is still able to install interrupt service routine by using the _int_install_isr

call. However, the _int_install_kernel_isr call cannot be used to install the low-level
interrupt service routines directly in the vector table.

3.13.1.22 MQX_SPARSE_ISR_TABLE

Default is zero.

One: The MQX RTOS interrupt service routine table is allocated as an "array of linked

lists" instead of linear array. This option is independent on the MQX_ROM_VECTORS
as it deals with the "logical" table managed by the interrupt dispatcher in MQX RTOS.
With the sparse ISR table, only the ISRs installed by the _int_install_isr call consume
RAM memory. Interrupt latency increases as MQX RTOS needs to walk the list to find

user ISR to be invoked.

148

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

3.13.1.23 MQX_SPARSE_ISR_SHIFT

Default is 3.

When MQX_SPARSE_ISR_TABLE is defined as 1, this MQX_SPARSE_ISR_SHIFT

option determines the number of bits the vector number is shifted to get index of ISR

linked list root. For example, with 256 potential interrupt sources and with shift value of

3, it makes 256>>3=32 lists each with maximum depth of eight ISR entries. Shift value

of 8 would yield one big linked list of all ISR entries.

3.13.1.24 MQX_TASK_CREATION_BLOCKS

Default is one. The option applies to multiprocessor applications only.

One: A task blocks, when it calls _task_create() to create a task on another processor.
The creating task blocks, until the new task is created and an error code is returned.

3.13.1.25 MQX_TASK_DESTRUCTION

Default is one.

One: MQX RTOS allows tasks to be terminated. As a result, MQX RTOS includes code

that frees all the MQX RTOS-managed resources that terminated tasks own.

3.13.1.26 MQX_TIMER_USES_TICKS_ONLY

Default is zero.

One: Timer task processes periodic-timer and one-shot timer requests using tick time for

timeout reporting, rather than second/millisecond time.

3.13.1.27 MQX_USE_IDLE_TASK

Default is one.

One: the kernel creates the idle task which executes when no other tasks are ready,

otherwise, the processor stops when there are no tasks to run.

3.13.1.28 MQX_USE_IO

Default is one.

One: MQX RTOS implements the I/O subsystem calls needed by I/O drivers. Without the

I/O subsystem, no driver can be installed or used and tasks are not able to use stdin/

149

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

stdout/stderr handles.

3.13.1.29 MQX_USE_LWMEM_ALLOCATOR

Default is zero.

One: Calls to the _mem family of functions are replaced with calls to the corresponding
function in the _lwmem family.

3.13.1.30 MQXCFG_ENABLE_FP

Default value depends on the MQXCFG_MEM_COPY_NEON. If
MQXCFG_MEM_COPY_NEON is set, default value is 1. Otherwise, default value is
0.

If it is set, enables FPU support in MQX RTOS. Scheduler stores and restores the FPU

context and provides API for float point support in tasks and interrupts.

3.13.1.31 MQX_SAVE_FP_ALWAYS

Default value depends on the MQXCFG_MEM_COPY_NEON. If
MQXCFG_MEM_COPY_NEON is set, default value is 1. Otherwise, default value is
0.

Enables the MQX_FLOATING_POINT_TASK flag to be set at each task. MQX RTOS
stores and restores the FPU context in the scheduler. FPU context is stored in the
interrupt prologue and restored in the interrupt epilogue. The user cannot disable FPU
context storing during run time.

3.13.1.32 MQX_INCLUDE_FLOATING_POINT_IO

The default value is 0.

Enables floating point types, such as printf and scanf, in the MQX RTOS I/O function

and enables float point conversion API.

3.13.1.33 MQXCFG_MEM_COPY

Default value is 0.

If it is set, it enables MQX RTOS to have a unique memory copy. Otherwise, it uses

memcpy from the compiler library.

3.13.1.34 MQXCFG_MEM_COPY_NEON

Default value is 0.

If it is set, MQX RTOS uses special memory copy implementation with NEON

150

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

instructions. This feature requires FPU to be supported in MQX RTOS. The options

MQXCFG_ENABLE_FP, MQX_SAVE_FP_ALWAYS are set to 1.

3.13.2 Recommended Settings

The settings you choose for compile-time configuration options depend on the

requirements of your application.

Note The MQX RTOS build process and its compile-time configuration is specific for given target board

(set in config/<board>/user_config.h directory).

You may want to create your own configurations, specific to the custom board or even the

application.

The following table shows common settings you can use as you develop your application.

Table 3-63. Compile-time Configuration Setting

Option Default Debug Speed Size

MQX_ALLOW_TYPED_MEMORY 1 1 0 0,1

MQX_COMPONENT_DESTRUCTION 1 0*, 1 0* 0*

MQX_DEFAULT_TIME_SLICE_IN_TICKS 0 0, 1 1 1

MQX_EXIT_ENABLED 1 0, 1 0 0

MQX_HAS_DYNAMIC_PRIORITIES 1 0, 1 0 0

MQX_HAS_EXIT_HANDLER 1 0, 1 0 0

MQX_HAS_TASK_ENVIRONMENT 1 0, 1 0 0

MQX_HAS_TIME_SLICE 1 0, 1 0 0

MQX_INCLUDE_FLOATING_POINT_IO 0 0, 1 0 0

MQX_IS_MULTI_PROCESSOR 1 0, 1 0 0

MQX_KERNEL_LOGGING 1 1 0 0

MQX_LWLOG_TIME_STAMP_IN_TICKS 1 0 1 1

MQX_MEMORY_FREE_LIST_SORTED 1 1 0 0

MQX_MONITOR_STACK 1 1 0 0

MQX_MUTEX_HAS_POLLING 1 0, 1 0 0

MQX_PROFILING_ENABLE 0 1 0 0

MQX_ROM_VECTORS 0 0, 1 0, 1 1

MQX_RUN_TIME_ERR_CHECK_ENABLE 0 1 0 0

MQX_SPARSE_ISR_TABLE 0 0, 1 0 1

MQX_SPARSE_ISR_SHIFT (in range 1-8) 3 any lower higher

MQX_TASK_CREATION_BLOCKS (for

multiprocessor applications)

1 1 0 0, 1

MQX_TASK_DESTRUCTION 1 0, 1 0 0

MQX_TD_HAS_STACK_LIMIT 1 0, 1 0 0

151

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

MQX_TD_HAS_TEMPLATE_INDEX 1 0, 1 0 0

MQX_TIMER_USES_TICKS_ONLY 0 0,1 1 1

MQX_USE_IDLE_TASK 1 0, 1 0, 1 0

MQX_USE_LWMEM_ALLOCATOR 0 0, 1 1 1

MQX_VERIFY_KERNEL_DATA 1 1 0 0

152

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Chapter 4 Rebuilding NXP MQX RTOS

4.1 Why Rebuild MQX RTOS?

Starting at version 4.0, the factory-precompiled libraries are not available within MQX

RTOS distribution. To start working with the MQX RTOS you have to build all

necessary MQX RTOS libraries first. Read this chapter to find out how to do that and

what are the necessary steps.

In general, building or re-building the MQX RTOS libraries is required when you do any

of the following:

• After installing a fresh MQX RTOS package without factory-precompiled libraries.
• If you change compiler options (for example optimization level).

• If you change MQX RTOS compile-time configuration options in the config/

<board>/user_config.h file.
• If you develop a new BSP (for example by adding a new I/O driver).
• If you incorporate changes that you made to MQX RTOS source code.

4.2 Before You Begin

Before you compile or build MQX RTOS:

• Read the NXP MQX™ RTOS Release Notes that accompany NXP MQX RTOS,
to get information that is specific to your target environment.

• Ensure you have the required tools for your target environment:

• compiler

• assembler

• linker

• librarian

• Be familiar with the MQX RTOS directory structure and re-build instructions, as
they are described in the Getting Started with NXP MQX™ RTOS document and also
the instructions provided later in this section.

Note NXP MQX RTOS can be conveniently built by using one of the supported

development environments.

153

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

4.3 NXP MQX RTOS Directory Structure

The following figure shows the directory structure of a typical NXP MQX RTOS

distribution, however, since MQX is delivered as a package specific to a particular

processor and development tools, the layout of the package that you receive may vary

slightly.

Figure 4-1. Directory Structure of NXP MQX RTOS

4.3.1 MQX RTOS Directory Structure

The following figure shows the directory structure of the MQX RTOS component located
in the top-level mqx directory in more detail. In the build folder there is a sub-folder
called ‘mcux’. This contains the project files for building the BSP and PSP with the
MCUXpresso Development Tools. However, if your distribution of MQX contains
project files for a different set of development tools the the ‘mcux’ sub-folder would be
replaced with a sub-folder with a name representative of your set of development tools.
For example, a sub-folder called ‘iar’ would be located here if you were using the IAR
Embedded Work Bench development tools.

154

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Figure 4-2. MQX RTOS Directory Structure

4.3.2 PSP Subdirectories

The mqx\source\psp\ directory contains the platform-dependent code of the PSP library.
For example, a cortex_m subdirectory contains the MQX RTOS kernel parts specific to
the NXP processors that are based on the ARM Cortex M architecture (core
initialization, register save/restore code for interrupt handling, stack handling, cache
control functions, etc.). This directory also contains processor definition files for the
supported processor derivative.

4.3.3 BSP Subdirectories

The subdirectories in mqx\source\bsp typically follow the name of the board, and contain
low-level startup code, processor, and board initialization code. The BSP also contains
data structures used to initialize various I/O drivers in a way suitable for a given board.

This code compiles (together with the I/O drivers code) into the BSP library.

155

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

4.3.4 I/O Subdirectories

Subdirectories in the mqx\source\io contain source code for MQX RTOS I/O drivers.
Typically, source files in each I/O driver directory are further split to device-specific and
device-independent. The I/O drivers, suitable for given board, are part of the BSP build
project, and are compiled into the BSP library.

4.3.5 Other Source Subdirectories

All other directories in the source contain generic parts of the MQX RTOS. Together

with the platform-dependent PSP code, the generic sources are compiled into the PSP

library.

4.4 NXP MQX RTOS Build Projects

All necessary build projects are located in the mqx\build\<compiler> directory. For each
board, there are two build projects available, PSP and BSP. The BSP project contains
board-specific code, while PSP is platform-specific (for example Cortex M) only. The
PSP project does not contain any board-specific code. Despite this, both projects refer to

the board name in their file names, and both also generate the binary output file into the
same board-specific directory lib\<board>.<compiler>.

The board-independent PSP library is also compiled to board-specific output directory
because the compile-time configuration file is taken from board-specific directory config
\<board>. In other words, even if the PSP source code itself does not depend on the
board features, the user may want to build a different PSP for different boards.

4.4.1 PSP Build Project

The PSP project is used to build the PSP library, which contains the platform-dependent
parts from mqx\source\psp and also contains generic MQX RTOS code.

4.4.2 BSP Build Project

The BSP project is used to build the BSP library, which contains the board-specific code
from mqx\source\bsp\<board> and also the selected I/O drivers from mqx\source\io
directory.

156

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Figure 4-3. BSP Build Project

4.4.3 Post-Build Processing

All build projects are configured to generate the resulting binary library file in the top-
level lib\<board>.<compiler> directory.

Both BSP and PSP build projects are also set up to execute the post-build batch file,

which copies all the public header files to the destination lib directory. This makes the

output /lib folder the only place accessed by the MQX RTOS application code. The MQX

RTOS application build projects do not need to make any reference to the MQX RTOS

source tree at all.

4.4.4 Build Targets

All supported development environment enables you to have multiple build

configurations, called build targets.

• Debug target - Compiler optimizations are set low to enable easy debugging.
Libraries built using this target are copied into the respective folder of the lib
\<board>.<compiler>\debug directory.

157

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

• Release target - Compiler optimizations are set to maximum, to achieve the smallest
code size and fast execution. The resulting code is very hard to debug. Libraries built
using this target are copied into the respective folder of the lib\<board>.<compiler>

\release directory

4.5 Rebuilding NXP MQX RTOS

Rebuilding the MQX RTOS libraries is a simple task that involves opening the proper

build projects for PSP and BSP in the development environment and building them. Do

not forget to select the proper build target to be built or build all targets.

For specific information about rebuilding MQX RTOS and the examples that accompany

it, see the release notes document in the MQX RTOS installation directory.

158

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

Chapter 5 FAQs

6.1 General

My application stopped. How do I tell if MQX RTOS is still running?

If the time is being updated, MQX RTOS is processing the periodic timer interrupt. If

Idle task is running, MQX RTOS is running.

6.2 Events

Two tasks use an event group. The connection works for one task, but not for

the other. Why?

The tasks are probably sharing the same global connection, rather than having their own
local, individual connection. Each task should call _event_open() or _event_open_fast()
to get its own connection.

6.3 Global Constructors

I need to initialize some global constructors, which use the 'new' operator,

before I call 'main'; that is, before I start MQX RTOS. The 'new' operator calls

malloc(), which I redefine to call the MQX RTOS function _mem_alloc(). How

do I do this?

Initialize the constructors from _bsp_pre_init() (in init_bsp.c), which MQX RTOS calls
after it initializes the memory management component.

6.4 Idle Task

What happens if Idle task blocks because of an exception?

If Idle task blocks, System task, which is really a system task descriptor that has no code,

becomes the active task. System task descriptor sets up the interrupt stack, then re-

enables interrupts. As a result, the application can continue to run.

159

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

6.5 Interrupts

An interrupt comes at periodic intervals that my application must respond to

very quickly - quicker than MQX RTOS allows. What can I do?

Call _int_install_kernel_isr() to replace the kernel ISR (_int_kernel_isr()). Your

replacement ISR must:

• Save all registers on entry, and restore them on exit.

• It must not call any MQX RTOS functions.

• Pass information to other tasks (if required) by an application-implemented

mechanism (usually ring buffers with head and tail pointers and total size fields).

My application consists of several tasks that should run only when a certain

signal comes in by an interrupt. How can my ISR that handles the interrupt

communicate to the appropriate tasks?

If the target hardware allows it, set the priority of the interrupt to be higher than what

MQX RTOS uses, when it disables interrupts (see the
MQX_HARDWARE_INTERRUPT_LEVEL_MAX field in the

MQX_INITIALIZATION_STRUCT). If you do so, the interrupt is able to interrupt an
MQX RTOS-critical section. For example, on an ARCtangent processor, MQX RTOS

can be configured to never disable level-2 interrupts and to use only level-1 interrupts to

disable/enable in critical sections.

If the target hardware does not allow you to set the priority of the interrupt as described

in the preceding paragraph, use the event component to send a signal from the ISR to

several tasks. The tasks open connections to an event group, and one of the tasks gives

the ISR the connection. Each task calls _event_wait_any() or _event_wait_all() and

blocks. The ISR calls _event_set() to unblock the tasks.

When I save, and then restore an ISR for a specific interrupt, how do I get the

value of the data pointer that was associated with the original ISR?

Call _int_get_isr_data() before you install the temporary ISR. This function returns a
pointer to the data of the specific vector that you pass to it.

6.6 Memory

How does a task transfer a memory block that it does not own?

Although the task that owns the memory is the one that usually transfers it, a non-owner
can do so with _mem_transfer().

160

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

My task allocates a 10-byte memory block, but it always gets more. Why?

When MQX RTOS allocates a memory block, it aligns the block to the appropriate

memory boundary and associates an internal header with the block. It also enforces a

minimum size.

Can a task allocate a memory block for another task?

No. Tasks allocate their own memory. However, a task can subsequently transfer the

memory to another task.

If _partition_test() detects a problem, does it try to repair the problem?

No. This indicates that memory is corrupted. Debug the application to determine the

cause.

When I extend the default memory pool, must the additional memory be

contiguous with the existing end of the pool?

No. The additional memory can be anywhere.

What does _mem_get_highwater() return, if I extend the default-memory pool

with non-contiguous memory?

The highwater mark is the highest memory location, from which MQX RTOS has

allocated a memory block.

I have tasks on several processors that need to share memory. How can I

provide mutual exclusion to the memory?

Depending on your hardware, you might be able to use a spin mutex to protect the shared

memory. Spin mutexes call _mem_test_and_set(), which is multiprocessor safe, when

the hardware supports locking shared memory.

6.7 Message Passing

How can I guarantee that target message queue IDs are associated with the

correct task?

Create one task that uses the names database to associate each message queue number

with a name. Each task then gets the queue number by specifying the name.

Can I send messages between a PC and my target hardware?

Yes. Create a program to run on your PC that sends and receives data packets to/from the

application either serially, over PCI, or over ethernet. As long as the packets are

161

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

formatted correctly, MQX RTOS passes on any that it receives.

My task successfully calls _msgq_send() several times with a newly allocated

message each time. Eventually _msgq_send() fails.

You have probably run out of messages. Each time you allocate a new message to send,

check whether the return is NULL. If it is, the receiving task is probably not freeing the

messages, or is not getting an opportunity to run.

6.8 Mutexes

What happens, when the task that owns a mutex data structure is destroyed? Do

tasks that are waiting to lock the mutex wait forever?

No. All components have cleanup functions. When a task is terminated, the cleanup

function determines what resources the task is using and frees them. If a task has a mutex

locked, MQX RTOS unlocks the mutex when it terminates the task. A task should not

own the mutex structure memory; it should create the structure as a global variable or

allocate it from a system memory block.

6.9 Semaphores

What happens if I "force destroy" a strict semaphore?

If the force destroy flag is set when you destroy a strict semaphore, MQX RTOS does not

destroy the semaphore, until all the waiting tasks get and post the semaphore. (If the

semaphore is non-strict, MQX RTOS immediately readies all the tasks that are waiting

for the semaphore.)

Two tasks use a semaphore. The connection works for one task, but not for the

other. Why?

The tasks are probably sharing the same global connection, rather than having their own
local, individual connection. Each task should call _sem_open() or _sem_open_fast() to
get its own connection.

6.10 Task Exit Handler Versus Task Exception Handler

What is the difference between the two?

MQX RTOS calls the task exit handler when a task calls _task_abort(), or when a task
returns from its task body. If MQX RTOS exception handling is installed, MQX RTOS

162

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

calls the task exception handler, if the task causes an exception that is not supported.

6.11 Task Queues

My application puts several tasks of the same priority in a priority task queue?

How are they ordered?

Tasks are in FIFO order within a priority.

6.12 Tasks

Do I always need at least one autostart task?

Yes. In an application, at least one autostart application task is required in order to start

the application. In a multiprocessor application (the application can create tasks

remotely), each image need not have an autostart application task; however, each image

must include IPC task as an autostart task in the task template list. If no application task

is created on a processor, Idle task runs.

One autostart task creates all my other tasks and initializes global memory. Can

I terminate it without affecting the child tasks?

Yes. When MQX RTOS terminates the creator, it frees the creator's resources (memory,

partitions, queues, and so on) and stack space. The resources of the child tasks are

independent of the creator and are not affected.

Does the creator task own its child task?

No. The only relationship between the two is that the child can get the task ID of its

creator. The child has its own stack space and automatic variables.

What are tasks, and how are they created?

Tasks share the same code space, if they execute the same root function. A task always

starts executing at the entry point of the root function even if the function is its creator's

root function. This is not the same behavior as fork() in UNIX.

Can I move a created task to another processor?

No.

163

MQX RTOS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 – 07/2020

UUuser G

NXP Semiconductors MQX RTOS User’s Guide
Guide

6.13 Time Slices

How does MQX RTOS measure a time slice? Is the time slice absolute or

relative? That is, if a task has a 10 ms time slice and starts at time = 0 ms, does it

give up the processor at time = 10 ms, or does it give up the processor after 10

ms of execution?

With a 10 ms time slice, MQX RTOS counts the number of periodic timer interrupts that

have occurred, while the task is active. If the equivalent of ten or more milliseconds have

expired, MQX RTOS effectively runs _sched_yield() for the task. As a result, a task does

not get 10 ms of linear time since higher-priority tasks will preempt it. Also, if the task calls

a scheduling function (for example _task_block() or _sched_yield()), MQX RTOS sets the

task's time-slice counter back to zero.

As with timeouts, the time that MQX RTOS allocates is plus or minus

BSP_ALARM_FREQUENCY ticks per second.

6.14 Timers

My application is on more than one processor. I have a master processor that

sends a synchronization message to the other processors that causes them to

reset their time. How can I make sure that the reset messages don't interfere

with the timers that the application uses?

So that timers are not affected by changes to absolute time (_time_set()), start timers

with relative time (TIMER_ELAPSED_TIME), rather than absolute time

(TIMER_KERNEL_TIME_MODE).

What happens if _timer_start_oneshot_at() is given an expiry time that is in the

past?

MQX RTOS puts the element in the timer queue. When the next periodic timer interrupt

occurs, MQX RTOS determines that the current time is greater than, or equal to the

expiry time, so the timer triggers and MQX RTOS calls the notification function.

	Chapter 1 Before You Begin
	1.1 About MQX™ RTOS
	1.2 About This Book
	1.3 Conventions
	1.3.1 Tips
	1.3.2 Notes
	1.3.3 Cautions

	Chapter 2 MQX RTOS at a Glance
	2.1 Organization of MQX RTOS
	2.1 Initialization
	2.2 Task Management
	2.3 Scheduling
	2.4 Managing Memory with dynamic memory allocators
	2.5 Managing Memory with Fixed-Size Blocks (Partitions)
	2.6 Controlling Caches
	2.7 Controlling an MMU
	2.8 Lightweight Memory Management
	2.9 Lightweight Events
	2.10 Events
	2.11 Lightweight Semaphores
	2.12 Semaphores
	2.13 Mutexes
	2.14 Lightweight Message Queue
	2.15 Messages
	2.16 Task Queues
	2.17 Inter-Processor Communication
	2.18 Time Component
	2.19 Lightweight Timers
	2.20 Timers
	2.21 Watchdogs
	2.22 Interrupt and Exception Handling
	2.23 I/O Drivers
	2.24.1 Formatted I/O
	2.24.2 I/O Subsystem

	2.24 Logs
	2.25 Lightweight Logs
	2.26 Kernel Log
	2.27 Stack Usage
	2.28 Task Error Codes
	2.29 Exception Handling
	2.30 Run-Time Testing
	2.31 Queue Manipulation
	2.32 Name Component

	Chapter 3 Using MQX RTOS
	3.1 Before You Begin
	3.2 Initializing and Starting MQX RTOS
	3.2.1 MQX RTOS Initialization Structure
	3.2.1.1 Default MQX RTOS Initialization Structure

	3.2.2 Task Template List
	3.2.2.1 Assigning Task Priorities
	3.2.2.2 Assigning Task Attributes
	3.2.2.3 Default Task Template List
	3.2.2.4 Example: A Task Template List
	world_task
	hello_task
	Float_task

	3.2.2.5 Example: Creating an Autostart Task
	Compiling the Application and Linking it with MQX RTOS

	3.3 Managing Tasks
	3.3.1 Creating Tasks
	3.3.2 Getting Task IDs
	3.3.3 Setting a Task Environment
	_task_get_environment().

	3.3.4 Managing Task Errors
	• _task_get_error()

	3.3.5 Restarting Tasks
	3.3.6 Terminating Tasks
	_task_abort().
	_task_get_exit_handler().

	3.3.7 Example: Creating Tasks
	3.3.7.1 Code for the Creating Tasks Example
	3.3.7.2 Compiling the Application and Linking it with MQX RTOS

	3.4 Scheduling Tasks
	3.4.1 FIFO Scheduling
	3.4.2 Round Robin Scheduling
	3.4.2.1 Preemption

	3.5 Managing Memory with Variable-Size Blocks
	3.5.1 Managing Lightweight Memory with Variable-Size Blocks
	3.5.2 Managing Memory with Fixed-Size Blocks (Partitions)
	3.5.2.1 Creating the Partition Component for Dynamic Partitions
	3.5.2.2 Creating Partitions
	3.5.2.3 Allocating and Freeing Partition Blocks
	3.5.2.4 Destroying a Dynamic Partition
	3.5.2.5 Example: Two Partitions

	3.5.3 Controlling Caches
	3.5.3.1 Flushing Data Cache
	3.5.3.2 Invalidating Data or Instruction Cache

	3.5.4 Controlling the MMU (Virtual Memory)
	3.5.4.1 Example: Initializing the MMU with Virtual Memory
	3.5.4.2 Example: Setting Up a Virtual Context
	3.5.4.3 Example: Creating Tasks with a Virtual Context

	3.6 Synchronizing Tasks
	3.6.1 Events
	3.6.1.1 Creating the Event Component
	3.6.1.2 Creating an Event Group
	3.6.1.3 Opening a Connection to an Event Group
	3.6.1.4 Waiting for Event Bits (Events)
	3.6.1.5 Setting Event Bits
	3.6.1.6 Clearing Event Bits
	3.6.1.7 Closing a Connection to an Event Group
	3.6.1.8 Destroying an Event Group
	3.6.1.9 Example: Using Events
	3.6.1.9.1 Code for the Using Events Example
	3.6.1.9.2 Compiling the Application and Linking it with MQX RTOS

	3.6.2 Lightweight Events
	3.6.2.1 Creating a Lightweight Event Group
	3.6.2.2 Waiting for Event Bits
	3.6.2.3 Setting Event Bits
	3.6.2.4 Clearing Event Bits
	3.6.2.5 Destroying a Lightweight Event Group

	3.6.3 About Semaphore-Type Objects
	3.6.3.1 Strictness
	3.6.3.2 Priority Inversion
	3.6.3.3 Example: Priority Inversion
	3.6.3.4 Avoiding Priority Inversion with Priority Inheritance
	3.6.3.5 Avoiding Priority Inversion with Priority Protection

	3.6.4 Lightweight Semaphores
	3.6.4.1 Creating a Lightweight Semaphore
	3.6.4.2 Waiting for and Posting a Lightweight Semaphore
	3.6.4.3 Destroying a Lightweight Semaphore
	3.6.4.4 Example: Producers and Consumer
	3.6.4.4.1 Definitions and Structures for the Example
	3.6.4.4.2 Task Templates for the Producers and Consumers Example
	3.6.4.4.3 Code for a Write Task
	3.6.4.4.4 Code for Read Task
	3.6.4.4.5 Compiling the Application and Linking It with MQX RTOS

	3.6.5 Semaphores
	3.6.5.1 Using a Semaphore
	3.6.5.2 Creating the Semaphore Component
	3.6.5.3 Creating a Semaphore
	3.6.5.4 Opening a Connection to a Semaphore
	3.6.5.5 Waiting for a Semaphore and Posting a Semaphore
	3.6.5.6 Closing a Connection to a Semaphore
	3.6.5.7 Destroying a Semaphore
	3.6.5.8 Example: Task Synchronization and Mutual Exclusion
	3.6.5.8.1 Definitions and Structures for the Example
	3.6.5.8.2 Task Templates for the Task Synchronization and Mutual Exclusion Example
	3.6.5.8.3 Code for Main Task
	3.6.5.8.4 Code for the Read Task
	3.6.5.8.5 Code for the Write Task
	3.6.5.8.6 Compiling the application and linking it with MQX RTOS

	3.6.6 Mutexes
	3.6.6.1 Creating the Mutex Component
	3.6.6.2 Mutex Attributes
	3.6.6.3 Waiting Protocols
	3.6.6.4 Scheduling Protocols
	3.6.6.5 Creating and Initializing a Mutex
	3.6.6.6 Locking a Mutex
	3.6.6.7 Unlocking a Mutex
	3.6.6.8 Destroying a Mutex
	3.6.6.9 Example: Using a Mutex
	3.6.6.9.1 Code for Using a Mutex Example
	3.6.6.9.2 Compiling the Application and Linking it with MQX RTOS

	3.6.7 Messages
	3.6.7.1 Creating the Message Component
	3.6.7.2 Using Message Pools
	3.6.7.3 Allocating and Freeing Messages
	3.6.7.4 Sending Messages
	3.6.7.5 Message Queues
	3.6.7.6 Using Private Message Queues to Receive Messages
	3.6.7.7 Using System Message Queues to Receive Messages
	3.6.7.8 Determining the Number of Pending Messages
	3.6.7.9 Notification Functions
	3.6.7.10 Example: Client/Server Model
	3.6.7.10.1 Message Definition
	3.6.7.10.2 Task Templates for the Client/Server Model Example
	3.6.7.10.3 Code for Server Task
	3.6.7.10.4 Code for Client Task
	3.6.7.10.5 Compiling the Application and Linking it with MQX RTOS

	3.6.8 Lightweight Message Queue
	3.6.8.1 Initialization of a Lightweight Message Queue
	3.6.8.2 Sending Messages
	3.6.8.3 Receiving Messages
	3.6.8.4 Example: Client/Server Model
	3.6.8.4.1 Message Definition
	3.6.8.4.2 Task Templates for the Client/Server Model
	3.6.8.4.3 Code for Server Task
	3.6.8.4.4 Code for Client Task
	3.6.8.4.5 Compiling the application and linking it with MQX RTOS

	3.6.9 Task Queues
	3.6.9.1 Creating and Destroying Task Queues
	3.6.9.2 Suspending a Task
	3.6.9.3 Resuming a Task
	3.6.9.4 Example: Synchronizing Tasks
	3.6.9.4.1 Code as an Example
	3.6.9.4.2 Compiling the Application and Linking it with MQX RTOS

	3.7 Communication Between Processors
	3.7.1 Sending Messages to Remote Processors
	3.7.1.1 Example: Four-Processor Application
	3.7.1.1.1 Routing Table for Processor 1

	3.7.2 Creating and Destroying Tasks on Remote Processors
	3.7.3 Accessing Event Groups on Remote Processors
	3.7.4 Creating and Initializing IPC
	3.7.4.1 Building an IPC Routing Table
	3.7.4.1.1 Routing Table for Processor One
	3.7.4.1.2 Routing Table for Processor Two
	3.7.4.1.3 Routing Table for Processor Three
	3.7.4.1.4 Routing Table for Processor Four

	3.7.4.2 Building an IPC Protocol Initialization Table
	3.7.4.3 IPC Using I/O PCB Device Drivers
	3.7.4.4 Starting IPC Task
	3.7.4.5 Example: IPC Initialization Information
	3.7.4.5.1 IPC Initialization Information
	3.7.4.5.2 Code for Processor One
	3.7.4.5.3 Code for Processor Two
	3.7.4.5.4 Compiling the Application and Linking it with MQX RTOS

	5.7.1.1 3.7.5 Endian Conversion of Message Headers

	3.8 Timing
	3.8.1 Rollover of MQX RTOS Time
	3.8.2 Accuracy of MQX RTOS Time
	3.8.3 Time Component
	3.8.3.1 Second/Millisecond Time
	3.8.3.2 Time Stamp
	3.8.3.3 Tick Time
	3.8.3.4 Elapsed Time
	3.8.3.5 Time Resolution
	3.8.3.6 Absolute Time
	• _time_get() and _time_get_elapsed()

	3.8.3.7 Time in Date Formats
	3.8.3.7.1 DATE_STRUCT
	3.8.3.7.2 TM STRUCT

	3.8.3.8 Timeouts

	3.8.4 Timers
	3.8.4.1 Creating the Timer Component
	3.8.4.2 Starting Timers
	• _timer_start_oneshot_after(), _timer_start_oneshot_after_ticks()

	3.8.4.3 Cancelling Outstanding Timer Requests
	3.8.4.4 Example: Using Timers
	3.8.4.4.1 Code for Timer Example
	3.8.4.4.2 Compiling the Application and Linking it with MQX RTOS

	3.8.5 Lightweight Timers
	3.8.5.1 Starting Lightweight Timers
	3.8.5.2 Cancelling Outstanding Lightweight Timer Requests

	3.8.6 Watchdogs
	3.8.6.1 Creating the Watchdog Component
	3.8.6.2 Starting or Restarting a Watchdog
	3.8.6.3 Stopping a Watchdog
	3.8.6.4 Example: Using Watchdogs
	3.8.6.4.1 Compiling the Application and Linking it with MQX RTOS

	3.9 Handling Interrupts and Exceptions
	3.9.1 Initializing Interrupt Handling
	3.9.2 Installing Application-Defined ISRs
	3.9.3 Restrictions on ISRs
	3.9.3.1 Functions That the ISR Cannot Call
	3.9.3.2 Functions That ISRs should not call
	• _int_default_isr()
	• _lwmsgq_receive()
	• _mutatr_set_wait_protocol()

	3.9.3.3 Non-Maskable Interrupts
	3.9.3.4 MQX_HARDWARE_INTERRUPT_LEVEL_MAX Configuration Parameter

	3.9.4 Changing Default ISRs
	3.9.5 Handling Exceptions
	3.9.6 Handling ISR Exceptions
	3.9.7 Handling Task Exceptions
	3.9.8 Example: Installing an ISR
	3.9.8.1 Compiling the Application and Linking it with MQX RTOS

	3.10 Instrumentation
	3.10.1 Logs
	3.10.1.1 Creating the Log Component
	3.10.1.2 Creating a Log
	3.10.1.3 Format of a Log Entry
	3.10.1.4 Writing to a Log
	3.10.1.5 Reading From a Log
	3.10.1.6 Disabling and Enabling Writing to a Log
	3.10.1.7 Resetting a Log
	3.10.1.8 Example: Using Logs
	3.10.1.8.1 Compiling the Application and Linking it with MQX RTOS

	3.10.2 Lightweight Logs
	3.10.2.1 Creating the Lightweight Log Component
	3.10.2.2 Creating a Lightweight Log
	3.10.2.3 Format of a Lightweight Log Entry
	3.10.2.4 Writing to a Lightweight Log
	3.10.2.5 Reading From a Lightweight Log
	3.10.2.6 Disabling and Enabling Writing to a Lightweight Log
	3.10.2.7 Resetting a Lightweight Log
	3.10.2.8 Example: Using Lightweight Logs
	3.10.2.8.1 Compiling the Application and Linking it with MQX RTOS

	3.10.3 Kernel Log
	3.10.3.1 Using Kernel Log
	3.10.3.2 Disabling Kernel Logging
	3.10.3.3 Example: Using Kernel Log
	3.10.3.3.1 Compiling the Application and Linking it with MQX RTOS

	3.10.4 Stack Usage Utilities

	3.11 Utilities
	3.11.1 Queues
	3.11.1.1 Queue Data Structures
	3.11.1.2 Creating a Queue
	3.11.1.3 Adding Elements To a Queue
	3.11.1.4 Removing Elements From a Queue

	3.11.2 Name Component
	3.11.2.1 Creating the Name Component

	3.11.3 Run-Time Testing
	3.11.3.1 Example: Doing Run-Time Testing
	3.11.3.1.1 Compiling the Application and Linking it with MQX RTOS

	3.11.4 Additional Utilities

	3.12 Embedded Debugging
	3.13 Configuring MQX RTOS at Compile Time
	3.13.1 MQX RTOS Compile-Time Configuration Options
	3.13.1.1 MQX_COMPONENT_DESTRUCTION
	3.13.1.2 MQX_DEFAULT_TIME_SLICE_IN_TICKS
	3.13.1.3 MQX_EXIT_ENABLED
	3.13.1.4 MQX_HAS_TIME_SLICE
	3.13.1.5 MQX_HAS_DYNAMIC_PRIORITIES
	3.13.1.6 MQX_HAS_EXCEPTION_HANDLER
	3.13.1.7 MQX_HAS_EXIT_HANDLER
	3.13.1.8 MQX_HAS_HW_TICKS
	3.13.1.9 MQX_HAS_TICK
	3.13.1.10 MQX_TD_HAS_TEMPLATE_INDEX
	3.13.1.11 MQX_TD_HAS_STACK_LIMIT
	3.13.1.12 MQX_INCLUDE_FLOATING_POINT_IO
	3.13.1.13 MQX_IS_MULTI_PROCESSOR
	3.13.1.14 MQX_KERNEL_LOGGING
	3.13.1.15 MQX_LWLOG_TIME_STAMP_IN_TICKS
	3.13.1.16 MQX_MEMORY_FREE_LIST_SORTED
	3.13.1.17 MQX_MONITOR_STACK
	• _klog_get_interrupt_stack_usage()

	3.13.1.18 MQX_MUTEX_HAS_POLLING
	3.13.1.19 MQX_PROFILING_ENABLE
	3.13.1.20 MQX_RUN_TIME_ERR_CHECK_ENABLE
	3.13.1.21 MQX_ROM_VECTORS
	3.13.1.22 MQX_SPARSE_ISR_TABLE
	3.13.1.23 MQX_SPARSE_ISR_SHIFT
	3.13.1.24 MQX_TASK_CREATION_BLOCKS
	3.13.1.25 MQX_TASK_DESTRUCTION
	3.13.1.26 MQX_TIMER_USES_TICKS_ONLY
	3.13.1.27 MQX_USE_IDLE_TASK
	3.13.1.28 MQX_USE_IO
	3.13.1.29 MQX_USE_LWMEM_ALLOCATOR
	3.13.1.30 MQXCFG_ENABLE_FP
	3.13.1.31 MQX_SAVE_FP_ALWAYS
	3.13.1.32 MQX_INCLUDE_FLOATING_POINT_IO
	3.13.1.33 MQXCFG_MEM_COPY
	3.13.1.34 MQXCFG_MEM_COPY_NEON

	3.13.2 Recommended Settings

	Chapter 4 Rebuilding NXP MQX RTOS
	4.1 Why Rebuild MQX RTOS?
	4.2 Before You Begin
	4.3 NXP MQX RTOS Directory Structure
	4.3.1 MQX RTOS Directory Structure
	4.3.2 PSP Subdirectories
	4.3.3 BSP Subdirectories
	4.3.4 I/O Subdirectories
	4.3.5 Other Source Subdirectories

	4.4 NXP MQX RTOS Build Projects
	4.4.1 PSP Build Project
	4.4.2 BSP Build Project
	4.4.3 Post-Build Processing
	4.4.4 Build Targets

	4.5 Rebuilding NXP MQX RTOS

	Chapter 5 FAQs
	6.1 General
	6.2 Events
	6.3 Global Constructors
	6.4 Idle Task
	6.5 Interrupts
	6.6 Memory
	6.7 Message Passing
	6.8 Mutexes
	6.9 Semaphores
	6.10 Task Exit Handler Versus Task Exception Handler
	6.11 Task Queues
	6.12 Tasks
	6.13 Time Slices
	6.14 Timers

