
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MQX™ RTOS MFS 
User’s Guide 

 
 
 
 
 
 
 
 
 
 
 
 

MQXMFSUG 
Rev. 5.2  
07/2020 

 
 
 
 
 
 
 
 
 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
ii 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

 
 

Contents 

Section number Title Page 
 

Chapter 1 
Before You Begin 

1.1 About This Book. ............................................................................................................................................................. 7 

1.2 Where to Look for More Information. ............................................................................................................................. 7 

1.3 Typographic Conventions. ............................................................................................................................................... 7 

1.3.1 Example: Prototype Definition, Including Symbolic Parameters. ........................................................................ 8 

1.3.2 Example: Complex Data Types and their Field Names. ....................................................................................... 8 

1.4 Other Conventions. .......................................................................................................................................................... 8 

1.4.1 Cautions. ............................................................................................................................................................... 8 

Chapter 2 
Using MFS 

2.1 MFS at a Glance. .............................................................................................................................................................. 9 

2.2 MS-DOS File System Characteristics. ............................................................................................................................. 10 

2.2.1 Directory Path Names. .......................................................................................................................................... 10 

2.2.2 File Attributes. ...................................................................................................................................................... 10 

2.2.2.1 Bit Number. ........................................................................................................................................... 10 

2.2.2.2 Volume Label. ....................................................................................................................................... 10 

2.2.3 File Time. .............................................................................................................................................................. 11 

2.2.4 File Date. ............................................................................................................................................................... 11 

2.2.5 File Allocation Table. ........................................................................................................................................... 11 

2.2.6 Filename Wildcards. ............................................................................................................................................. 12 

2.3 High-Level Formatting. ................................................................................................................................................... 12 

2.4 Version of MFS. .............................................................................................................................................................. 13 

2.5 Customizing MFS. ........................................................................................................................................................... 13 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
iii 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

2.6 Partition Manager Device Driver. .................................................................................................................................... 15 

2.7 Working with Removable Media. .................................................................................................................................... 16 

2.7.1 Buffering and Caching. ......................................................................................................................................... 16 

2.7.2 Writing to Media. .................................................................................................................................................. 17 

2.7.3 Hotswapping. ........................................................................................................................................................ 17 

2.7.3.1 Example: Hotswapping. ........................................................................................................................ 18 

Chapter 3 
Reference: Functions 

3.1 In This Chapter. ............................................................................................................................................................... 19 

3.2 _io_mfs_install. ................................................................................................................................................................ 19 

3.3 _io_mfs_uninstall. ............................................................................................................................................................ 21 

3.4 _io_part_mgr_install. ....................................................................................................................................................... 22 

3.5 _io_part_mgr_uninstall. ................................................................................................................................................... 23 

3.6 fclose. ............................................................................................................................................................................... 23 

3.7 fopen. ............................................................................................................................................................................... 24 

3.8 ioctl. ................................................................................................................................................................................. 26 

3.8.1 Input/Output Control Commands for MFS. .......................................................................................................... 27 

3.8.1.1 IO_IOCTL_BAD_CLUSTERS. ........................................................................................................... 27 

3.8.1.2 IO_IOCTL_CHANGE_CURRENT_DIR. ............................................................................................ 27 

3.8.1.3 IO_IOCTL_CREATE_SUBDIR. ......................................................................................................... 28 

3.8.1.4 IO_IOCTL_DEFAULT_FORMAT. ..................................................................................................... 28 

3.8.1.5 IO_IOCTL_DELETE_FILE. ................................................................................................................ 29 

3.8.1.6 IO_IOCTL_FAT_CACHE_OFF. ......................................................................................................... 30 

3.8.1.7 IO_IOCTL_FAT_CACHE_ON. ........................................................................................................... 30 

3.8.1.8 IO_IOCTL_FIND_FIRST_FILE, IO_IOCTL_FIND_NEXT_FILE. ................................................... 30 

3.8.1.9 IO_IOCTL_FLUSH_FAT. ................................................................................................................... 32 

3.8.1.10 IO_IOCTL_FORMAT. ......................................................................................................................... 32 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
iv 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

3.8.1.11 IO_IOCTL_FORMAT_TEST. ............................................................................................................. 33 

3.8.1.12 IO_IOCTL_FREE_SPACE, IO_IOCTL_FREE_CLUSTERS. ............................................................ 34 

3.8.1.13 IO_IOCTL_GET_CLUSTER_SIZE. .................................................................................................... 35 

3.8.1.14 IO_IOCTL_GET_CURRENT_DIR. .................................................................................................... 35 

3.8.1.15 IO_IOCTL_GET_DATE_TIME. ......................................................................................................... 35 

3.8.1.16 IO_IOCTL_GET_DEVICE_HANDLE. ............................................................................................... 36 

3.8.1.17 IO_IOCTL_GET_FAT_CACHE_MODE, IO_IOCTL_SET_FAT_CACHE_MODE. ....................... 37 

3.8.1.18 IO_IOCTL_GET_FILE_ATTR, IO_IOCTL_SET_FILE_ATTR. ....................................................... 37 

3.8.1.19 IO_IOCTL_GET_LFN. ........................................................................................................................ 37 

3.8.1.20 IO_IOCTL_GET_VOLUME. ............................................................................................................... 38 

3.8.1.21 IO_IOCTL_GET_WRITE_CACHE_MODE, IO_IOCTL_SET_WRITE_CACHE_MODE. ............. 39 

3.8.1.22 IO_IOCTL_LAST_CLUSTER. ............................................................................................................ 39 

3.8.1.23 IO_IOCTL_REMOVE_SUBDIR. ........................................................................................................ 39 

3.8.1.24 IO_IOCTL_RENAME_FILE. .............................................................................................................. 40 

3.8.1.25 IO_IOCTL_SET_DATE_TIME. .......................................................................................................... 40 

3.8.1.26 IO_IOCTL_SET_VOLUME. ............................................................................................................... 41 

3.8.1.27 IO_IOCTL_TEST_UNUSED_CLUSTERS. ........................................................................................ 41 

3.8.1.28 IO_IOCTL_WRITE_CACHE_ON, IO_IOCTL_WRITE_CACHE_OFF. .......................................... 42 

3.8.2 Input/Output Control Commands for the Partition Manager Device Driver. ....................................................... 42 

3.8.2.1 IO_IOCTL_CLEAR_PARTITION. ...................................................................................................... 42 

3.8.2.2 IO_IOCTL_GET_PARTITION. ........................................................................................................... 42 

3.8.2.3 IO_IOCTL_SET_PARTITION. ............................................................................................................ 43 

3.8.2.4 IO_IOCTL_USE_PARTITION. ........................................................................................................... 44 

3.8.2.5 IO_IOCTL_SEL_PART. ...................................................................................................................... 45 

3.8.2.6 IO_IOCTL_VAL_PART. ..................................................................................................................... 45 

3.8.3 Return Codes for MFS. ......................................................................................................................................... 46 

3.8.4 Return Codes for the Partition Manager Device Driver. ....................................................................................... 48 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
v 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

3.8.5 Other Error Codes. ................................................................................................................................................ 49 

Chapter 4 
Reference: Data Types 

4.1 In This Chapter. ............................................................................................................................................................... 51 

4.2 _mfs_cache_policy. ......................................................................................................................................................... 51 

4.3 MFS_DATE_TIME_PARAM. ........................................................................................................................................ 51 

4.4 MFS_FILE_ATTR_PARAM. ......................................................................................................................................... 52 

4.5 MFS_GET_LFN_STRUCT. ............................................................................................................................................ 52 

4.6 MFS_IOCTL_FORMAT_PARAM. ................................................................................................................................ 52 

4.7 MFS_RENAME_PARAM. ............................................................................................................................................. 53 

4.8 MFS_SEARCH_PARAM. .............................................................................................................................................. 53 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
6 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

Before You Begin 
 
1.1 About This Book 
This book is a guide and a reference manual for using the MQX™ RTOS MFS 
Embedded File System which is a part of Freescale MQX Real-Time Operating System 
distribution. 

This document is written for experienced software developers who have a working 
knowledge of the language and the target processor. 

 
 
1.2 Where to Look for More Information 

• Release Notes, accompanying Freescale MQX RTOS release, provide information 
that was not available at the time this User Guide was published. 

• The Freescale MQX™ RTOS User's Guide describes how to create embedded 
applications that use MQX RTOS. 

• The Freescale MQX™ RTOS Reference Manual describes prototypes for the MQX 
RTOS API. 

 
 
 
1.3 Typographic Conventions 
Throughout this book, we use typographic conventions to distinguish terms. 

 
Font style Usage Example 
Bold Function families The _io_mfs family of functions. 
Bold Function names _io_mfs_install() 
Italic Data types (simple) uint32_t 

 Data types (complex) See following example. 

Constant-width Code and code fragments — 

 Data types in prototype definitions See following example. 

 Directives #include "mfs.h" 

 Code and code fragments  
Italic Filenames and path names part_mgr.h 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
7 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

Italic Symbolic parameters that you substitute with 
your values. 

See following example. 

UPPERCASE Italic Symbolic constants MFS_NO_ERROR 
 

 
 

1.3.1 Example: Prototype Definition, Including Symbolic 
Parameters 

 
uint32_t _io_mfs_install( 
FILE_PTR dev_fd, 
char * identifier, 
uint32_t partition_num) 

 
 
 

1.3.2 Example: Complex Data Types and their Field Names 
The structure MFS_DATE_TIME_PARAM contains the following fields: 

• DATE_PTR 
• TIME_PTR 

 
 
 

1.4 Other Conventions 
 

1.4.1 Cautions 
Cautions tell you about commands or procedures that could have unexpected or 
undesirable side effects or could be dangerous to your files or your hardware. 

 
CAUTION If an application calls read and write functions with the partition manager, the file 

system will be corrupted. 

 
 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
8 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

Using MFS 
 
2.1 MFS at a Glance 
MFS provides a library of functions that is compatible with the Microsoft MS-DOS file 
system. The functions let an embedded application access the file system in a manner that 
is compatible with MS-DOS Interrupt 21 functions. All the functions guarantee that the 
application task has a mutually exclusive access to the file system. 

MFS is a device driver that an application must install over a lower-level device driver. 
Examples of lower-level drivers are drivers for memory devices, flash disks, floppy 
disks, or partition-manager devices. MFS uses the lower-level driver to access the 
hardware device. 

MFS functions do the following: 

• Traverse MS-DOS directory structure. 

• Create and remove subdirectories. 

• Find files. 

• Create and delete files. 

• Open and close files. 

• Read from files and write to files. 

• View and modify file characteristics. 

• Get the amount of free space in the file system. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
9 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

 
 
 

2.2 MS-DOS File System Characteristics 
 

2.2.1 Directory Path Names 
MFS allows an application to traverse a directory tree. When you specify a directory 
path, you can use \ and / as directory separators. 

You can specify a directory path in one of two ways: 

• By starting with a directory separator — the path is assumed to be an absolute path. 

• By starting without a directory separator — the path is assumed to be relative to the 
current directory. 

 
 

2.2.2 File Attributes 
Each file entry in the MS-DOS file system has an attribute byte associated with it. The 
attribute byte is described in more detail in the following table. 

 
 
2.2.2.1 Bit Number 

 
7 6 5 4 3 2 1 0 Meaning if bit is set to one. 

       x Read-only file 

      x  Hidden file 

     x   System file 

    x    Volume label 

   x     Directory name 

  x      Archived file 
x x       RESERVED 

 
The volume-label and directory-name bits are mutually exclusive. 

 
 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
10 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

2.2.2.2 Volume Label 
A file entry can be marked as a volume label. There can be only one volume label in a 
file system and it must reside in the root directory. Also, that label cannot act as a 
directory name. 

 
 

2.2.3 File Time 
Each file entry has a 16-bit write time field associated with it. In MFS, the time is written 
into the field when the file entry is created, when the file is closed, and as a result of 
calling IO_IOCTL_SET_DATE_TIME. The format of the time field is as follows: 

 
Element Bits used Values 
Seconds 0 – 4 0 – 29 

(multiply by two for seconds) 

Minutes 5 – 10 0 – 60 
Hours 11 – 15 0 – 24 

(24-hour clock) 

 
 
 
2.2.4 File Date 
Each file entry has a 16-bit write date field associated with it. In MFS, the date is written 
into the field when the file entry is created, when the file is closed, and as a result of 
calling IO_IOCTL_SET_DATE_TIME. The format of the date field is as follows: 

 
Element Bits used Values 
Days 0 – 4 1 – 31 
Months 5 – 8 1 – 12 

Year 9 – 15 0 – 119 

(1980 – 2099) 

 
In addition to mandatory write time and write date a FAT filesystem may contain also 
optional creation time and date and last access time and date. These optional time stamps 
are not supported by MFS. 

 
 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
11 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

2.2.5 File Allocation Table 
The MS-DOS file system can have multiple copies of the file allocation table. MFS 
updates as many FATs as it is configured for. It only reads from the first FAT. 

 
 

2.2.6 Filename Wildcards 
The characters * and ? are treated as wildcards in a filename. 

 
 
2.3 High-Level Formatting 
An application can perform high-level formatting on a disk by calling ioctl(). The 
function writes a new boot sector, deallocates all clusters in the file allocation table, and 
deletes all entries in the root directory. 

There is one input/output control command that formats the disk, and one that formats 
and checks for bad clusters. 
The MFS_IOCTL_FORMAT_PARAM structure is used: 

 
typedef struct mfs_ioctl_format 
{ 

MFS_FORMAT_DATA_PTR FORMAT_PTR; 
uint32_t * COUNT_PTR; /* To count bad clusters */ 

} MFS_IOCTL_FORMAT_PARAM, * MFS_IOCTL_FORMAT_PARAM_PTR; 
 

The first variable is a pointer to a MFS_FORMAT_DATA structure described below. The 
second is uint32_t * that points to the uint32_t variable which is used to contain the 
count of bad sectors. It is used only if the IO_IOCTL_FORMAT_TEST function is used. 

 
typedef struct mfs_format_data 
{ 

unsigned char PHYSICAL_DRIVE; 
unsigned char MEDIA_DESCRIPTOR; 
uint16_t BYTES_PER_SECTOR; 
uint16_t SECTORS_PER_TRACK; 
uint16_t NUMBER_OF_HEADS; 
uint32_t NUMBER_OF_SECTORS; 
uint32_t HIDDEN_SECTORS; 
uint16_t RESERVED_SECTORS; 

} MFS_FORMAT_DATA, * MFS_FORMAT_DATA_PTR; 
 

The MFS_FORMAT_DATA structure has the following fields: 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
12 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

• PHYSICAL_DRIVE 
• 0x00 for floppy disks; 0x80 for hard disks. 

• MEDIA_DESCRIPTOR 
• 0xFD for 5.25" 360 K diskettes. 

• 0xF9 for 5.25" 1200 K diskettes. 

• 0xF9 for 3.5" 720 K diskettes. 

• 0xF0 for 3.5" 1440 K diskettes and other removable media. 

• 0xF8 for hard disk and other non-removable media. 

• BYTES_PER_SECTOR 
• Size of a block in bytes (usually 512). 

• SECTORS_PER_TRACK 
• Number of sectors in a track. 

• NUMBER_OF_HEADS 
• Number of disk heads. 

• NUMBER_OF_SECTORS 
• Total number of sectors on the disk including reserved sectors. 

• HIDDEN_SECTORS 
• For hard disks, it is the number of sectors from the beginning of the disk to the 

beginning of the partition. This is the same number as the relative sectors field in 
a hard disk partition table. For floppy disks, the field is zero. 

• RESERVED_SECTORS 
• Number of sectors from the beginning of the file system to the first FAT sector. 

It is usually one. 
 
 
 
2.4 Version of MFS 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
13 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

The constant MFS_VERSION defines the version and revision numbers for MFS. 
 
 
2.5 Customizing MFS 
The following constant definitions can be overridden to customize MFS. To override any 
of these definitions, simply define the desired value in the /config/<board>/user_config.h 
file. 
#define MFSCFG_MINIMUM_FOOTPRINT 1 

• Normally not defined. Define to build MFS for small memory devices. 
  

#define MFSCFG_READ_ONLY 0 

• Set to one to build MFS in read-only mode without create, write, or format 
capability. This reduces the code size and may be useful in certain applications such 
as bootloaders. Set to one to enable write functionality. 

 
#define MFSCFG_READ_ONLY_CHECK 1 

• This compilation option is obsolete and does not have any effect on resulting code. 
Runtime read-only checks are integral parts of write support so they are always 
present unless MFSCFG_READ_ONLY compilation option is set. 

 
#define MFSCFG_READ_ONLY_CHECK_ALLWAYS 0 

• This compilation option is obsolete and it is not used. 
 
#define MFSCFG_ENABLE_FORMAT 1 

• Set to one to build MFS with the format command, zero otherwise. 
 
#define MFSCFG_CALCULATE_FREE_SPACE_ON_OPEN 1 

• Set to one to calculate the available free space on the drive when the drive is 
mounted. Calculating the available free space is time-consuming on large drives, as 
the entire FAT must be read. When set to zero, this operation is deferred until the 
first time the free space is required which may be never. 

 
#define MFSCFG_MINIMUM_FOOTPRINT 1 

• Set to one to build MFS for small-memory devices, zero otherwise. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
14 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

 
#define MFSCFG_MAX_READ_RETRIES 1 

 
#define MFSCFG_MAX_WRITE_RETRIES 1 

• Number of times MFS attempts to read or write to the device unsuccessfully before it 
reports an error. 

 
#define MFSCFG_FAT_CACHE_SIZE 2 

• This compilation option is obsolete. Dedicated FAT cache is no longer used. Access 
to FAT sectors is performed through common sector cache. 

 
#define MFSCFG_SECTOR_CACHE_SIZE 

• Defines number of sectors which MFS is able to keep in cache at a time. Minimum is 
2 sectors. Maximum recommended size of sector cache for typical embedded 
applications is 16. 

 

#define MFSCFG_NUM_OF_FATS 2 

• This parameter is only used when formatting and specifies the number of file 
allocation tables that is placed on the drive. One is required. The first FAT is used by 
MFS. The others are backups. Microsoft Windows® uses two as its standard. If you 
choose one, MFS operates somewhat faster when it writes to the disk because it has 
half the number of FAT write operations to do. 

 
#define MFSCFG_HANDLE_INITIAL 4 

 
#define MFSCFG_HANDLE_GROW 4 

 
#define MFSCFG_HANDLE_MAX 0 

• These compilation options are obsolete and they are no longer used. 
 
#define MFSCFG_FIND_TEMP_TRIALS 300 

• This compilation option is obsolete and it is no longer used. MFS no longer generates 
file names for temporary files. The application must generate a unique file name for a 
temporary file according to the use case. 

 

 
 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
15 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

Table 2-1. Summary: MFS Functions 
 

_io_mfs_install Installs MFS. 

_io_mfs_uninstall Uninstalls MFS. 
fclose Closes the file or device. 

fopen Opens the file or device. 

ioctl Issues a control command. 

 

Functions are described in Reference: Functions. 
 
 
2.6 Partition Manager Device Driver 
The partition manager device driver is designed to be installed under the MFS device 
driver. It lets the MFS work independently of the multiple partitions on a disk. It also 
enforces mutually exclusive access to the disk which means that two concurrent write 
operations from two different MFS devices cannot be in conflict. The partition manager 
device driver can remove partitions as well as create new ones. 

The partition manager device driver creates multiple primary partitions. It does not 
support extended partitions. 

The partition manager device driver is installed and opened like other devices. It must 
also be closed and uninstalled when an application no longer needs it. 

An application follows these steps to use the partition manager. Functions are described 
in Reference: Functions. 

1. Installs the partition manager (_io_part_mgr_install()). 
2. Opens the partition manager (fopen()). 
3. Issues input/output control commands (ioctl()). 
4. Closes the partition manager (fclose()). 
5. Uninstalls the partition manager device driver (_io_part_mgr_uninstall()). 

 

 
 
 
 
 

If an application calls read and write functions with the partition manager, the file system will be 
corrupted. 

CAUTION 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
16 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

Table 2-2. Summary: Partition Manager Device Driver Functions 
 

_io_part_mgr_install Installs the partition manager device driver. 

_io_part_mgr_uninstall Uninstalls the partition manager device driver. 
fclose Closes the partition manager. 

fopen Opens the partition manager. 

ioctl Issues a control command to the partition manager. 

 
 
 

2.7 Working with Removable Media 
Removable-media devices are a class of device, in which the medium, upon which files 
are written to and read from, can be inserted and removed. Examples include: 

• USB mass storage devices (flast drives, and so on) 

• ATA PCMCIA (PC card) flash cards 

• SD Cards 

• removable hard drives 

• floppy-disk drives 
 
An application that installs MFS on the removable media must take some standard 
precautions. 
 

2.7.1 Buffering and Caching 
MFS features scalable sector caching. The number of sectors which may be kept in the 
memory at a moment is defined by MFSCFG_SECTOR_CACHE_SIZE compilation 
option. 

When writing, an application can control how the buffers are flushed. There are three 
modes: 

• WRITE_THROUGH — the buffer contents are immediately written to disk 
when modified. 

• WRITE_BACK — the buffer contents are written to disk on application command, or 
when MFS device is closed. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
17 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

• MIXED_MODE — the buffer contents are written to disk on application command or 
when a file is closed. 

 
If MFS detects that the lower-layer device is removable, the FAT cache will be placed in 
write through mode, and the directory and file caches will be placed in mixed mode. If 
the lower-layer device is not removable, all caches will be placed in write back mode. 

An application can modify the cache modes with the appropriate ioctl() calls. When using 
removable media, the application must ensure that all files are closed and the MFS device 
itself is closed before the media is removed. These steps ensure that the caches are 
flushed and the media is updated. 

 
 
2.7.2 Writing to Media 
Writing to the media, either to partition the media, format the media, or write a file, must 
be completed before the media is removed. If the media is removed during a write 
operation, the media may be corrupted. 

 
 
2.7.3 Hotswapping 
With MFS, an application can implement hotswapping. To properly implement 
hotswapping, however, the lower-layer device must support a mechanism for notifying 
the application that the media is removed or inserted. 

When an application detects that the media has been inserted, it must do the following: 

1. Open the lower-layer device. 

2. Optionally install the partition manager on the device. 

3. If the partition manager is installed, open the partition manager. 

4. Install MFS on the device or on the partition manager if the partition manager is 
installed. 

5. Open the MFS device. 
 
When an application detects that the media has been removed, it must do the following: 

1. Close all files that are open on the device. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
18 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

2. Close the MFS device. 

3. Uninstall the MFS device. 

4. If the partition manager is installed, close it. 

5. If the partition manager is installed, uninstall it. 

6. Close the lower-layer device. 
 
 

2.7.3.1 Example: Hotswapping 
For an example that demonstrates hotswapping with a USB flash drive, see: mfs/example/ 
mfs_usb. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
19 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

 
 
 
 
 

Chapter 3 
Reference: Functions 
 
3.1 In This Chapter 
Alphabetically sorted prototype definitions for MFS and the partition manager device 
driver. 

 
 
3.2 _io_mfs_install 
Install MFS. 
Synopsis 

 
uint32_t _io_mfs_install( 

/*[IN] the device on which to install MFS */ 
FILE_PTR dev_fd, 
/*[IN] Name to be given to MFS (e.g., "C:", "MFS1:") */ 
/* The name must end in a colon ":" */ 
char * identifier, 
/*[IN] Partition number to install MFS on. */ 
/* 0 for no partitions */ 
uint32_t partition_num) 

 

Description 
The function initializes MFS and allocates memory for all of the internal MFS data 
structures. It also reads some required drive information from the disk, on which it is 
installed. MFS supports FAT12, FAT16, and FAT32 file systems. If the disk has a 
different file system or if it is unformatted, you can use MFS to format it to one of the 
supported file systems. 

If the application uses a partitioned disk, you must install MFS on a partition manager 
device driver. The partition manager device driver can create partitions on the disk if 
there are none. It can also remove partitions. 
 
Usage of partition_num parameter is deprecated - _io_mfs_install should obtain handle to 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
20 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

partition manager associated with particular partition as dev_fd. partition_num parameter 
should be set to 0 which instructs MFS to simply use the dev_fd as underlying device. 

Return Codes 
Returns a uint32_t error code. 

• IO_EOF 
• The FILE_PTR passed into _io_mfs_install() was NULL. The error is returned 

by the input/output subsystem of the MQX Real-Time Operating System. 

• MFS_ERROR_UNKNOWN_FS_VERSION 
• MFS was installed on a disk using the FAT32 file system, and the FAT32 

version is incompatible with the MFS FAT32 version (version zero). 

• MFS_INSUFFICIENT_MEMORY 
• MFS could not allocate memory for required structures. 

• MFS_NO_ERROR 
• The function call was successful. 

• MFS_NOT_A_DOS_DISK 
• The device, on which MFS is being installed is not a valid DOS device. The 

device must be formatted (by an input/output control command). 

• MFS_NOT_INITIALIZED 
• The MFS device name did not end with colon (:). 

• MFS_READ_FAULT 
• The lower-level device driver could not read from the disk. The error is returned 

from the device, over which MFS is installed. 

• MFS_SECTOR_NOT_FOUND 
• The error is returned from the device, over which, MFS is installed. 

• PGMR_INVALID_PARTITION 
• The partition number specified was that of an invalid partition. The partition 

does not exist. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
21 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

Example 
Install MFS on a RAM disk with no partitions. 

 
/* Install the memory device: */ 

error_code = _io_mem_install("mfsram:", 
NULL, MFS_format.BYTES_PER_SECTOR * RAMDISK_LENGTH1); 

if ( error_code != MQX_OK ) { 
printf("Error installing device.\nError: %d\n", error_code); 
_mqx_exit(1); 

} 
 

/* Open the device on which MFS will be installed: */ 
dev_handle1 = fopen("mfsram:", 0); 
if ( dev_handle1 == NULL ) { 

printf("\nUnable to open RAM disk device"); 
_task_block(); 

} 

/* Install MFS: */ 
error_code = _io_mfs_install(dev_handle1, "MFS1:", 0); 
if ((error_code != MFS_NO_ERROR) && 

(error_code != MFS_NOT_A_DOS_DISK)) { 
printf("FATAL error while initializing: \n"); 
_mqx_exit(1); 

} else { 
printf("Initialized MFS1%s\n"); 

} 
 
 
 

3.3 _io_mfs_uninstall 
Uninstall MFS. 
Synopsis 

 
uint32_t _io_mfs_uninstall( 

/*[IN] String that identifies the device driver */ 
/* to uninstall. Must be identical to the string */ 
/* that was used to install the MFS device driver */ 
char * identifier) 

Description 
This function uninstalls the MFS device driver and frees the memory allocated for it. 
Before you call the function, close the MFS device driver by calling fclose(). 

Return Codes 
Returns a uint32_t error code. 

• MFS_INVALID_PARAMETER 
• The identifier passed to the function is invalid. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
22 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

• MFS_SHARING_VIOLATION 
• There are files still open on the device, or the MFS device is still open. 

 

Example 
 
error_code = _io_mfs_uninstall("MFS1:"); 
 
 
 

3.4 _io_part_mgr_install 
Installs the partition manager device driver. 
Synopsis 

 
int32_t _io_part_mgr_install( 

/*[IN] Handle of the device on which to install */ 
/* the partition manager */ 
FILE_PTR dev_fd, 
/*[IN] New name of the partition manager device */ 
char * identifier, 
/*[IN] Size of sectors in bytes on the lower level device */ 
uint32_t sector_size) 

Description 
This function initializes the partition manager device driver and allocates the memory for 
its internal structures. 
The first parameter is the handle acquired by opening the lower-level device driver using 
fopen() (for example, dev_fd = fopen("flashdisk",0)). 
The second parameter is the identifier, under which the partition manager is to be 
installed. 

The third parameter is the sector size of the disk. If you specify zero, the partition 
manager queries the disk for the sector size. If the query fails, the partition manager uses 
a default sector size, as defined by PMGR_DEFAULT_SECTOR_SIZE. The default is 
512 bytes. 
Errors 

• PMGR_INSUF_MEMORY 
• Partition manager could not allocate memory for its internal data. 

Example 
Install the partition manager as "PM:" and let it determine the sector size. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
23 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

error_code = _io_part_mgr_install(dev_fd, "PM:", 0); 

Obtain the handle to the partition manager without selecting a particular partition, i.e., 
with access to the whole underlying device. 
pm_fd = fopen("PM1:",0); 

Obtain the handle to the partition manager with the first partition selected, i.e., the read/ 
write access is limited to the first partition. 
part_fd = fopen("PM1:1",0); 
 
 
 

3.5 _io_part_mgr_uninstall 
Uninstalls the partition manager. 
Synopsis 

 
int32_t _io_part_mgr_uninstall( 

/*[IN] Identifier string of the device */ 
char * identifier) 

Description 

You must close the partition manager before you uninstall it. The first parameter is the 
same identifier that is used with _io_part_mgr_install(). All handles associated with a 
given partition manager have to be closed prior to calling the function. Otherwise, the 
function fails. 

Errors 
• IO_EOF 

• Incorrect identifier. 
• IO_ERROR_DEVICE_BUSY 

• There are still open handles associated with the partition manager instance. 

Example 
error_code = _io_part_mgr_uninstall("PM:"); 
 
 
 

3.6 fclose 
Closes the device or file. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
24 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

Synopsis 
 
int32_t _io_fclose( 

/* [IN] Stream to close (MFS) */ 
/* or file pointer of the partition manager to close */ 
FILE_PTR file_ptr) 

 

Description 

This function frees the memory allocated for the given FILE_PTR (which was returned 
when the application called fopen() on a file). It also updates the date, time, and size of 
the file on the disk. 

When the application no longer needs to use the device driver, it can close the device 
driver and uninstall it. The function fclose() is used to close the device driver if the 
device driver FILE_PTR is passed as a parameter. The function fails if any files are still 
open on the device. 

Return Codes for MFS 
• IO_EOF 

• file_ptr was invalid. 

• _SHARING_VIOLATION 
• Files are open on the device. 

Example: MFS 
See fopen(). 

Example: Partition Manager Device Driver 
 
pmgr_fd_ptr = fopen("PM:", NULL); 
... 
... 
/* End of application. */ 
fclose(pmgr_fd_ptr); 
_io_part_mgr_uninstall("PM:"); 
 
 
 

3.7 fopen 
Opens the device or file. 
Synopsis 

 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
25 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

FILE_PTR _io_fopen( 
/*[IN] Name of the device or file to open */ 
/* Must be identical to the name that was used */ 
/* to install the device driver */ 
char * open_type_ptr, 
/*[IN] I/O parameter to pass to device initialization */ 
/* This parameter is for extra parameters. It is only */ 
/* used when opening files */ 
/* Must be NULL for the partition manager */ 
char * open_mode_ptr) 

 

This function opens the specified device driver for MFS or the partition manager. You 
must install the device driver before you call the function. Opening the device returns a 
FILE_PTR for the device that can be used in input/output control commands (see ioctl ). 

The first time fopen() is called on the device driver, it opens the device driver. Each 
subsequent call is used to open a file. This means that you must first call fopen() with the 
device name (just once to open the device) with NULL as the open_mode_ptr, and then 
every other call will be to open a file. Each of these other calls should include the device 
name, along with a specific flag for the open_mode_ptr. 

Opening a file returns a FILE_PTR for that file. This is used to read and write to the file. 
All the standard read and write functions work on files such as write(), read(), fscanf(), 
fputc(), and so on. 

Here is a list of the standard MQX RTOS functions that can be used: 
_io_clearerr(), _io_fclose(), _io_feof(), _io_ferror(), _io_fflush(), _io_fgetc(), 
_io_fgetline(), _io_fgets(), _io_fopen(),_io_fprintf(), _io_fputc(), _io_fputs(), 
_io_scanf(), _io_fseek(), _io_fstatus(), _io_ftell(), _io_fungetc(), _io_ioctl(), 
_io_printf(), _io_putc(), _io_read(), _io_scanf(), _io_sprintf(), _io_sscanf(), 
_io_vprintf(), _io_vfprintf(), _io_vsprintf(), _io_write(). 

To open a file, you must pass the name of the device followed by the name of the file. To 
open the file data.txt in the current directory: 

 
fd_ptr = fopen("MFS1:data.txt", "w"); 
To open the file March2000results.data in the MFS1:\data\march directory: 
fd_ptr = fopen("MFS1:\data\march\March2000results.data"); 

Here is a list of different options for the second parameter: 
 

Option Description 
NULL Mode string is omitted when opening the device(either MFS or the partition manager). 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
26 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

"w" Open a file in "write-only" mode; overwrite an existing file. 

"w+" Open a file in "read-write" mode; overwrite an existing file. 
"r" Open an existing file in "read-only" mode. 

"r+" Open an existing file in "read-write" mode. 
"a" Open a file in "write-only" mode for appending; seek to the end of file is performed atomically prior each write. 

"a+" Open a file in "read-write" mode for appending; seek to the end of file is performed atomically prior each write. 
"n" Open a new file in "write-only" mode. 

"n+" Open a new file in "read-write" mode. Returns an error if the file already exists. 

"x" Deprecated. This open mode was previously used to create temporary files with auto-generated names, which is 
not supported anymore. The application must generate a file name for a temporary file and to remove the 
temporary file after it is not used anymore.. 

 
Returns 
Returns a FILE_PTR to the new file or to the device on success. 
Returns NULL on failure and calls _task_set_error() to set the task error code. 

Example: MFS 
Open the MFS device driver and open a file on the device. 

 
char buffer[100] = "This a test file"; 
char buffer2[100]; 
/* Open the MFS device driver: */ 
mfs_fd_ptr = fopen("MFS1:", NULL); 
if (mfs_fd_ptr == NULL) { 

printf("Error opening the MFS device driver!"); 
_mqx_exit(1); 

} 
/* Open file on disk in the current directory and write to it: */ 
fd_ptr = fopen("MFS1:myfile.txt", "w+"); 
write(fd_ptr, buffer, strlen(buffer)); 
read(fd_ptr, buffer2, strlen(buffer)); 

 
/* Close the file: */ 
error_code = fclose(fd_ptr); 

 
/* Open other files, create directories, and so on. */ 

/* The application has done all it needs. */ 
/* Close the MFS device driver and uninstall it: */ 
error_code = fclose(mfs_fd_ptr); 
if (!error_code) { 

error_code = _io_mfs_uninstall("MFS1:"); 
} else if (error_code == MFS_SHARING VIOLATION) { 
printf("There are open files on the device. Call fclose on their 

handles before attempting to fclose the device driver"); 
} 
 
 
 
 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
27 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

Example: Partition Manager Device Driver 
The example assumes that the partition manager is already installed. 
pmgr_fd_ptr = fopen("PM:",NULL); 
 
 
 

3.8 ioctl 
Issues a control command. 
Synopsis 

 
int32_t _io_ioctl( 

/*[IN] Stream to perform the operation on */ 
FILE_PTR file_ptr, 
/*[IN] I/O control command */ 
uint32_t cmd, 
/*[IN] I/O control-command parameters */ 
uint32_t * param_ptr) 

The first parameter is a FILE_PTR, returned by calling fopen() for the device driver, 
which can either be the handle of a specific file, or the handle of the device driver itself. 
It varies depending on which command is used. The third parameter is a uint32_t *. 

Depending upon the input/output control command, it is usually a different kind of 
pointer cast to a uint32_t *. For example, it might be a char *, a pointer to a structure, or 
even a NULL pointer. 

 

 
 
 
 

3.8.1 Input/Output Control Commands for MFS 
Together with the MQX RTOS input/output control commands, MFS also includes the 
following input/output control commands. 

 
 
3.8.1.1 IO_IOCTL_BAD_CLUSTERS 
This command gets the number of bad clusters on the drive. 
result = ioctl(mfs_fd_ptr,  

IO_IOCTL_BAD_CLUSTERS,  

You must ensure that the _io_ioctl call is used correctly for the specified control command. CAUTION 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
28 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

(uint32_t *) &bad_clusters);  

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the 
MFS device driver. The mfs_fd_ptr must correspond to the disk, on which the bad 
clusters are to be counted. The third parameter is a pointer to unsigned 32 bit word where 
number of bad clusters is to be stored. 

 
 
3.8.1.2 IO_IOCTL_CHANGE_CURRENT_DIR 
This command changes the current directory. 

 
error_code = ioctl(mfs_fd_ptr, 

IO_IOCTL_CHANGE_CURRENT_DIR, 
(uint32_t *) pathname); 

If pathname begins with a directory separator, it is assumed that pathname represents the 
complete directory name. If pathname does not begin with a directory separator, 
pathname is assumed to be relative to the current directory. The third parameter is a char 
* (to a directory name) cast to a uint32_t *. 

The directory path must exist for the change to succeed. 

Errors 
• MFS_INVALID_LENGTH_IN_DISK_OPERATION 

• Path name is too long. The full path name, including the filename, cannot be 
longer than 260 characters. 

Example 
 
char pathname = "\\docs"; 
error_code = ioctl(mfs_fd_ptr,  

IO_IOCTL_CHANGE_CURRENT_DIR, 
(uint32_t *) pathname); 

 
 
 

3.8.1.3 IO_IOCTL_CREATE_SUBDIR 
This command creates a subdirectory in the current directory. 

 
error_code = ioctl(mfs_fd_ptr, 

IO_IOCTL_CREATE_SUBDIR, 
(uint32_t *) "\temp\newdir"); 

 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
29 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

A path name can be specified to create the subdirectory in a different directory. The 
parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the MFS 
device driver corresponding to the disk on which to operate. The third parameter is a char 
* (to a directory name) cast to a uint32_t * 

All directories in the path, except the last one, must exist. The last directory in the path 
must not exist as either a directory or a file. 

Errors 
• MFS_CANNOT_CREATE_DIRECTORY 

• There was an error creating the subdirectory. 
 
 

3.8.1.4 IO_IOCTL_DEFAULT_FORMAT 
This command formats the drive by using default parameters. 

 
error_code = ioctl(mfs_fd_ptr, 

IO_IOCTL_DEFAULT_FORMAT, 
NULL); 

The command deletes all files and subdirectories on the drive. The parameter mfs_fd_ptr 
is the FILE_PTR returned when fopen() was called on the MFS device driver, which 
corresponds to the disk on which to operate. The default parameters are: 

• PHYSICAL_DRIVE = 0x80 
• MEDIA_DESCRIPTOR = 0xf8 
• BYTES_PER_SECTOR = device sector size 
• SECTORS_PER_TRACK = 0x00 
• NUMBER_OF_HEADS = 0x00 
• NUMBER_OF_SECTORS = number of device sectors - RESERVED_SECTORS 
• HIDDEN_SECTORS = 0 
• RESERVED_SECTORS = 1 if NUMBER_OF_SECTORS < 2097152, 32 otherwise 

Errors 
• MFS_SHARING_VIOLATION 

• Some files are open on the drive. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
30 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

Example 
error_code = ioctl(mfs_fd_ptr, IO_IOCTL_FORMAT,NULL); 
 
 
 

3.8.1.5 IO_IOCTL_DELETE_FILE 
This command deletes a file on the disk. Wildcard characters are not valid in the 
filename. 

 
error_code = _io_ioctl(mfs_fd_ptr, 

IO_IOCTL_DELETE_FILE, 
(uint32_t *) "filename"); 

The mfs_fd_ptr is the FILE_PTR returned from fopen() that opened the MFS device. The 
third parameter points to a filename which can include a path/ (for example /backup/ 
oldfiles/myfile.txt). Long filenames and long path names are supported. The file must 
reside on the drive that corresponds to mfd_fd_ptr. 

Any currently open handles to this file become invalid, that is, subsequent file operations 
using a file handle of a deleted file result in an error. 

Errors 
• MFS_OPERATION_NOT_ALLOWED 

 
 
3.8.1.6 IO_IOCTL_FAT_CACHE_OFF 
Obsolete. MFS does not use dedicated FAT buffers anymore. 

 
 
3.8.1.7 IO_IOCTL_FAT_CACHE_ON 
Obsolete. MFS does not use dedicated FAT buffers anymore. 

 
 
3.8.1.8 IO_IOCTL_FIND_FIRST_FILE, IO_IOCTL_FIND_NEXT_FILE 
The IO_IOCTL_FIND_FIRST_FILE command searches for a file on the disk. 

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
31 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

MFS device driver. The third parameter is a pointer to the MFS_SEARCH_PARAM 
structure. See structure definitions for details. 

If a file is found, use the input/output control command, 
IO_IOCTL_FIND_NEXT_FILE, to keep searching for more files which match the same 
criteria. The third parameter for the IO_IOCTL_FIND_NEXT_FILE is a pointer to the 
MFS_SEARCH_DATA structure used in the IO_IOCTL_FIND_FIRST_FILE command. 

The filename can include wildcard search characters. 

When searching for files, the file path search string that is passed in the 
MFS_SEARCH_PARAM structure is used. Therefore, it must not be freed or changed if 
you plan to subsequently use IO_IOCTL_FIND_NEXT_FILE. 

The search criteria for the attribute field of the MFS_SEARCH_PARAM structure is 
defined in the following table: 

 
Attribute: Return these types of entries:  
MFS_SEARCH_NORMAL Non-hidden non-system files and 

directories 
 

MFS_SEARCH_READ_ONLY Read only files and directories 

MFS_SEARCH_HIDDEN Hidden files and directories 
MFS_SEARCH_SYSTEM System files and directories 

MFS_SEARCH_VOLUME Volume label only 
MFS_SEARCH_SUBDIR Non-hidden non-system directories 

MFS_SEARCH_ARCHIVE Archive files and directories 
 

MFS_SEARCH_EXCLUSIVE Match exactly all remaining attributes 
 

MFS_SEARCH_ANY All files and directories 
 

MFS_SEARCH_LFN Extract long filename 
 

 
 
 

The search bit mask can be a combination of all search attributes. The evaluation of the 
bit mask is done in the following order: 

1. If mask includes MFS_SEARCH_ANY, then all disk entries match. 

2. If mask includes MFS_SEARCH_VOLUME, then only the volume label entry 
matches. 

3. If mask includes MFS_SEARCH_EXCLUSIVE, then there must be an exact match 
of the remaining attributes. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
32 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

4. If mask is MFS_SEARCH_NORMAL, then all non-system, non-hidden files and 
directories, match. 

5. If mask is MFS_SEARCH_SUBDIR, then all non-system, non-hidden directories, 
match. 

6. Otherwise mask must be subset of disk entry attributes to produce a match. 
 
The search results are written into the MFS_SEARCH_DATA structure addressed by 
SEARCH_DATA_PTRmember of the MFS_SEARCH_PARAM structure. Results of 
repetitive execution of IO_IOCTL_FIND_NEXT command are written over the previous 
results. 

The results of file searches are written into this data structure. 
MFS_SEARCH_DATA Fields 

ATTRIBUTE 
File entry attribute byte. 

TIME 
File entry time, as described in IO_IOCTL_GET_DATE_TIME. 

DATE 
File entry date, as described in IO_IOCTL_GET_DATE_TIME. 

FILE_SIZE 
Size of the file in bytes. 

NAME[24] 
Short name of the file in the format filename.filetype as null terminated string in UTF-8 
encoding. 

In addition to that, when MFS_SEARCH_LFN attribute is set the long filename is 
extracted to the caller allocated buffer specified by LFN_BUF and LFN_BUF_LEN of 
the MFS_SEARCH_PARAM structure. The long filename is stored as null terminated 
string in UTF-8 encoding. If the buffer is not of sufficient length, the long filename is not 
extracted. 

 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
33 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

Errors 
• MFS_INVALID_MEMORY_BLOCK_ADDRESS 

• The MFS_SEARCH_DATA_PTR in the MFS_SEARCH_PARAM is invalid. 

Example 
 
List all files and subdirectories in a directory. 
MFS_SEARCH_DATA search_data; 
MFS_SEARCH_PARAM search; 
char filepath = "*.*"; 
search.ATTRIBUTE = MFS_SEARCH_ANY; 
search.WILDCARD = filepath; 
search.SEARCH_DATA_PTR = &search_data; 
error_code = ioctl(mfs_fd_ptr, IO_IOCTL_FIND_FIRST_FILE, 

(uint32_t *) &search); 
while (error_code == MFS_NO_ERROR) { 

printf ("%-12.12s %6lu %02lu-%02lu-%04lu %02lu:%02lu:%02lu 
\n", search_data.NAME, search_data.FILE_SIZE, 
(uint32_t)(search_data.DATE & MFS_MASK_MONTH) >> 
MFS_SHIFT_MONTH, 
(uint32_t)(search_data.DATE & MFS_MASK_DAY) >> 
MFS_SHIFT_DAY, 
(uint32_t)((search_data.DATE & MFS_MASK_YEAR) >> 
MFS_SHIFT_YEAR) + 1980, 
(uint32_t)(search_data.TIME & MFS_MASK_HOURS) >> 
MFS_SHIFT_HOURS, 
(uint32_t)(search_data.TIME & MFS_MASK_MINUTES) >> 
MFS_SHIFT_MINUTES, 
(uint32_t)(search_data.TIME & MFS_MASK_SECONDS) << 1); 

error_code = ioctl(mfs_fd_ptr, IO_IOCTL_FIND_NEXT_FILE, 
(uint32_t *) &search_data); 

} 
 
 
 

3.8.1.9 IO_IOCTL_FLUSH_FAT 
Obsolete. MFS does not use dedicated FAT buffers anymore. 

 

 

3.8.1.10 IO_IOCTL_FORMAT 
This command formats the drive according to the given specifications. 

 
error_code = ioctl(mfs_fd_ptr, 

IO_IOCTL_FORMAT, 
(uint32_t *) &format_struct); 

The command deletes all files and subdirectories on the drive. The parameter mfs_fd_ptr 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
34 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

is the FILE_PTR returned when fopen() was called on the MFS device driver, which 
corresponds to the disk on which to operate. The third parameter is a pointer to the 
MFS_IOCTL_FORMAT_PARAM structure cast to the uint32_t *. The only field in the 
MFS_IOCTL_FORMAT_PARAM structure that must be initialized is the FORMAT_PTR 
field. See the structure descriptions for details. 

Errors 
• MFS_SHARING_VIOLATION 

• Some files are open on the drive. 

Example 
 
MFS_IOCTL_FORMAT_PARAM format_struct; 
MFS_FORMAT_DATA MFS_format = 
{ 

/* PHYSICAL_DRIVE; */ PHYSICAL_DRI, 
/* MEDIA_DESCRIPTOR; */ MEDIA_DESC, 
/* BYTES_PER_SECTOR; */ BYTES_PER_SECT, 
/* SECTORS_PER_TRACK; */ SECTS_PER_TRACK, 
/* NUMBER_OF_HEADS; */ NUM_OF_HEADS, 
/* NUMBER_OF_SECTORS; */ 1000, /* depends on drive */ 
/* HIDDEN_SECTORS; */ HIDDEN_SECTS, 
/* RESERVED_SECTORS; */ RESERVED_SECTS 

}; 
format_struct.FORMAT_PTR = &MFS_format;  
error_code = ioctl(mfs_fd_ptr, IO_IOCTL_FORMAT, 

(uint32_t *) &format_struct); 
 
 
 

3.8.1.11 IO_IOCTL_FORMAT_TEST 
This command formats the drive and counts the bad clusters on a disk. 

 
error_code = ioctl(mfs_fd_ptr, 

IO_IOCTL_FORMAT_TEST, 
(uint32_t *) &format_struct); 

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the 
MFS device driver, which corresponds to the device on which to operate. The third 
parameter is a pointer to the MFS_IOCTL_FORMAT_PARAM structure cast to the 
uint32_t *. Both fields of the MFS_IOCTL_FORMAT_PARAM structure must be 
initialized (FORMAT_PTR and COUNT_PTR). See structure descriptions for details. 

Errors 
• MFS_SHARING_VIOLATION 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
35 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

• Files are open on the drive. 

Example 
 
uint32_t  bad_cluster_count; 
MFS_IOCTL_FORMAT_PARAM format_struct; 
MFS_FORMAT_DATA MFS_format = 
{ 

/* PHYSICAL_DRIVE; */ PHYSICAL_DRI, 
/* MEDIA_DESCRIPTOR; */ MEDIA_DESC, 
/* BYTES_PER_SECTOR; */ BYTES_PER_SECT, 
/* SECTORS_PER_TRACK; */ SECTS_PER_TRACK, 
/* NUMBER_OF_HEADS; */ NUM_OF_HEADS, 
/* NUMBER_OF_SECTORS; */ 1000, /* depends on disk */ 
/* HIDDEN_SECTORS; */ HIDDEN_SECTS, 
/* RESERVED_SECTORS; */ RESERVED_SECTS 

}; 
format_struct.FORMAT_PTR = &MFS_format; 
format_struct.COUNT_PTR = &bad_cluster_count; 
error_code = ioctl(mfs_fd_ptr, IO_IOCTL_FORMAT, 

(uint32_t *) &format_struct); 
if (!error_code) 
printf("The count of bad clusters is: %d\n", bad_cluster_count); 
 
 
 

3.8.1.12 IO_IOCTL_FREE_SPACE, IO_IOCTL_FREE_CLUSTERS 
This command gets the count of free space on the disk in bytes or in clusters. 

 
result = ioctl(mfs_fd_ptr, 

IO_IOCTL_FREE_SPACE, 
&space_64); 

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the 
MFS device driver. It should correspond to the disk on which the free space is to be 
calculated. The third parameter is an pointer to uint64_t which is filled with 64-bit value 
representing free space in bytes. 

Alternatively, a combination of IO_IOCTL_FREE_CLUSTERS and 
IO_IOCTL_GET_CLUSTER_SIZE may be used to determine the free space size of the 
drive in bytes by using long (64-bit) arithmetic. 

 
 
3.8.1.13 IO_IOCTL_GET_CLUSTER_SIZE 
This command gets the size of clusters in bytes. 

 
result = ioctl(mfs_fd_ptr, 

IO_IOCTL_GET_CLUSTER_SIZE, 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
36 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

&cluster_size); 

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the 
MFS device driver. It should correspond to the disk for which the cluster size should be 
returned. The third parameter is a pointer to a uint32_t * to pre-allocated space in which 
to store the cluster size. 

 
 
3.8.1.14 IO_IOCTL_GET_CURRENT_DIR 
This command gets the path name of the current directory on the MFS device. 

 
error_code = ioctl(mfs_fd_ptr, 

IO_IOCTL_GET_CURRENT_DIR, 
(uint32_t *) pathname); 

 

The drive and drive separator are not included in the filename (for example, "d:" is not 
returned). The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called 
on the MFS device driver corresponding to the disk on which to operate. The third 
parameter is a char *, to the -allocated space in which to store the current directory, cast 
to a uint32_t *. 

Example 
 
char pathname[261]; 
error_code = ioctl(mfs_fd_ptr, IO_IOCTL_GET_CURRENT_DIR, 

(uint32_t *) pathname); 
printf("The current directory is: %s\n", pathname); 
 
 
 

3.8.1.15 IO_IOCTL_GET_DATE_TIME 
This command gets the current date and time associated with the file. 

 
error_code = ioctl(fd_ptr, 

IO_IOCTL_GET_DATE_TIME, 
(uint32_t *) &date); 

The first parameter is the FILE_PTR of the file for which the date or time is to be 
retrieved. The third parameter is a pointer to a MFS_DATE_TIME_PARAM structure 
that is cast to a uint32_t *. Both fields of the structure must be filled in. See structure 
definitions for details. 

The bits of the date and time words are defined as follows: 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
37 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

 
Time word  Date word 

Bits Meaning  Bits Meaning 
4 – 0 0 – 29, 2 second 

increments 
 4 – 0 1 – 31 days 

10 – 5 0 – 59 minutes  8 – 5 1 – 12 month 

15 – 11 0 – 23 hours  15 – 9 0 – 119 year 

(1980 – 2099) 

 
Example 

 
uint32_t error_code; 
uint16_t  date_word, time_word; 
MFS_DATE_TIME_PARAM date; 
date.DATE_PTR = &date_word; 
date.TIME_PTR = &time_word; 

error_code = ioctl(fd_ptr, IO_IOCTL_GET_DATE_TIME, 
(uint32_t *) &date); 

if (!error_code ) 
printf ("%02lu-%02lu-%04lu %02lu:%02lu:%02lu \n", 

(uint32_t)(date_word & MFS_MASK_MONTH) >> MFS_SHIFT_MONTH, 
(uint32_t)(date_word & MFS_MASK_DAY) >> MFS_SHIFT_DAY, 
(uint32_t)((date_word & MFS_MASK_YEAR) >> MFS_SHIFT_YEAR) 
+ 1980, 
(uint32_t)(time_word.TIME & MFS_MASK_HOURS) >> 
MFS_SHIFT_HOURS, 
(uint32_t)(time_word.TIME & MFS_MASK_MINUTES) >> 
MFS_SHIFT_MINUTES, 
(uint32_t)(time_word.TIME & MFS_MASK_SECONDS) << 1); 

 
 
 

3.8.1.16 IO_IOCTL_GET_DEVICE_HANDLE 
This command gets the handle of the low-level device which this instance of the file 
system is operating on. 

 
result = ioctl(mfs_fd_ptr, 

IO_IOCTL_GET_DEVICE_HANDLE, 
&handle); 

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the 
MFS device driver. The third parameter is a pointer to a FILE_PTR (cast to a uint32_t *) 
which points to pre-allocated space in which to store the device handle. 

 
 
3.8.1.17 IO_IOCTL_GET_FAT_CACHE_MODE, 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
38 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

IO_IOCTL_SET_FAT_CACHE_MODE 
Obsolete. MFS does not use dedicated FAT buffers anymore. 

 
 
3.8.1.18 IO_IOCTL_GET_FILE_ATTR, IO_IOCTL_SET_FILE_ATTR 
These commands get or set the attributes of a file on disk. 

 
error_code = ioctl(mfs_fd_ptr, 

IO_IOCTL_GET_FILE_ATTR, 
(uint32_t *) &attr); 

error_code = ioctl(mfs_fd_ptr, 
IO_IOCTL_SET_FILE_ATTR, 
(uint32_t *) & attr); 

An application cannot set the volume or directory bits of the attribute char. The first 
parameter is the FILE_PTR of the MFS device driver that corresponds to the disk on 
which the file whose attributes are to be read or written is located. The third parameter is 
a pointer to a MFS_FILE_ATTR_PARAM structure. Both fields of the structure must 
be filled in. See the structure definitions for details. 
Example 

 
MFS_FILE_ATTR_PARAM attr; 
uint32_t error_code; 
char filepath = "\temp\myfile.txt"; 
unsigned char attribute; 

 
attr.ATTRIBUTE_PTR = &attribute; 
attr.PATHNAME = filepath; 
/* Get the attribute: */ 
error_code = ioctl(mfs_fd_ptr, IO_IOCTL_GET_FILE_ATTR, 

(uint32_t *) &attr); 

if (error_code == MFS_NO_ERROR) { 
printf ("Attributes of %s: %s%s%s%s%s%s\n", 

filepath, 
(attribute & MFS_ATTR_READ_ONLY) ? "R/O ":"", 
(attribute & MFS_ATTR_HIDDEN_FILE) ? "HID ":"", 
(attribute & MFS_ATTR_SYSTEM_FILE) ? "SYS ":"", 
(attribute & MFS_ATTR_VOLUME_NAME) ? "VOL ":"", 
(attribute & MFS_ATTR_DIR_NAME) ? "DIR ":"", 
(attribute & MFS_ATTR_ARCHIVE) ? "ARC ":""); 

} 
/* Set file's attributes: */ 
if (!error_code) { 
attribute = MFS_ATTR_READ_ONLY | MFS_ATTR_HIDDEN_FILE; 
error_code = ioctl(mfs_fd_ptr, IO_IOCTL_SET_FILE_ATTR, 

(uint32_t *) & attr); 
} 
 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
39 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

3.8.1.19 IO_IOCTL_GET_LFN 
This command gets the long filename where the path name is in 8.3 representation. 

 
error_code = ioctl(mfs_fd_ptr, 

IO_IOCTL_GET_LFN, 
(uint32_t *) &lfn_struct); 

The first parameter is the FILE_PTR of the MFS device driver that corresponds to the 
disk on which the operation is to take place. The third parameter is the char * to the path 
name of the of file which we want the long filename of. It is cast to the uint32_t *. 

Example 
 
MFS_GET_LFN_STRUCT lfn_struct; 
char lfn[FILENAME_SIZE + 1]; 
char filepath = "\\temp\longfi~1.txt"; 
uint32_t error_code; 

 
lfn_struct.PATHNAME = filepath; 
lfn_struct.LONG_FILENAME = lfn; 

 
error_code = ioctl(mfs_fd_ptr, IO_IOCTL_GET_LFN, 

(uint32_t *) &lfn_struct); 
 
if (!error_code) { 

printf("%s\n", lfn); 
} 
 
 
 

3.8.1.20 IO_IOCTL_GET_VOLUME 
This command gets the volume label. 

 
error_code = ioctl(mfs_fd_ptr, 

IO_IOCTL_GET_VOLUME, 
(uint32_t *) label); 

The first parameter is the FILE_PTR of the MFS device driver that corresponds to the 
disk on which the operation is to take place. The third parameter is a char * to an 
allocated space with 12 free bytes in which the volume label will be written. It is cast into 
a uint32_t *. 

Example 
 
charlabel[12]; 
error_code = ioctl(mfs_fd_ptr, IO_IOCTL_GET_VOLUME, 

(uint32_t *) label); 
if (!error_code) { 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
40 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

printf("The volume label is: %d\n", label); 
/* Now set the volume label */ 
strcpy(label, "newlabel"); 
error_code = ioctl(mfs_fd_ptr, IO_IOCTL_SET_VOLUME, 

(uint32_t *) label); 
} 
 
 

3.8.1.21 IO_IOCTL_GET_WRITE_CACHE_MODE, 
IO_IOCTL_SET_WRITE_CACHE_MODE 

This command gets or sets the current mode of the data and directory caches. 
 
result = ioctl(mfs_fd_ptr, 

IO_IOCTL_GET_WRITE_CACHE_MODE, 
&mode); 

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the 
MFS device driver. The third parameter is a _mfs_cache_policy pointer (cast to a 
uint32_t *) which points to a pre-allocated space in which to store (when using get) or 
obtain (when using set) the mode of the write caches. 

 
 
3.8.1.22 IO_IOCTL_LAST_CLUSTER 
This command gets the number of clusters on a drive. 

 
result = ioctl(mfs_fd_ptr, 

IO_IOCTL_LAST_CLUSTER, 
(uint32_t *) &last_cluster); 

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the 
MFS device driver. The third parameter is a pointer to 32 bit word where the number of 
last cluster is to be stored. 

 
 
3.8.1.23 IO_IOCTL_REMOVE_SUBDIR 
This command removes a the subdirectory in the current directory. 

 
error_code = ioctl(mfs_fd_ptr, 

IO_IOCTL_REMOVE_SUBDIR, 
(uint32_t *) "\temp\deldir"); 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
41 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

A path name can be specified to remove the subdirectory in a different directory. The 
subdirectory must be empty and cannot be the current directory or the root directory. The 
parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the MFS 
device driver corresponding to the disk on which to operate. The third parameter is the 
char * (to a directory name) cast into the uint32_t *. 

Errors 
• MFS_ATTEMPT_TO_REMOVE_CURRENT_DIR 

• The directory specified is the current directory. No changes took place. 
 
 

3.8.1.24 IO_IOCTL_RENAME_FILE 
This command renames a file or moves a file if path names are specified. 

 
error_code = ioctl(mfs_fd_ptr, 

IO_IOCTL_RENAME_FILE, 
(uint32_t *) &rename_struct); 

No wildcard characters are allowed in the path names. The parameter mfs_fd_ptr is the 
FILE_PTR returned, when fopen() was called on the MFS device driver corresponding to 
the drive on which to operate. The third parameter is a pointer to the 
MFS_RENAME_PARAM structure cast to the uint32_t *. Both fields in this structure 
must be filled out. See structure definitions for details. 

A file is moved if the directory paths are different and the file names are the same. A file 
is renamed if the directory paths are the same and the file names are different. 

A directory can be renamed, but cannot be moved. 

Example 
 
MFS_RENAME_PARAM rename_struct; 
char oldpath[PATHNAME_SIZE + 1], 

newpath[PATHNAME_SIZE + 1]; 
uint32_t error_code; 

 
rename_struct.OLD_PATHNAME = oldpath; 
rename_struct.NEW_PATHNAME = newpath; 

 
/* Rename a file: */ 
strcpy(oldpath, "myfile.txt"); 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
42 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

strcpy(newpath, "myfile.bak"); 
error_code = ioctl(mfs_fd_ptr, IO_IOCTL_RENAME_FILE, 

(uint32_t *) &rename_struct); 
 
/* Move the file: */ 
if (!error_code) { 
strcpy(oldpath, "myfile.bak"); 

strcpy(newpath, "\temp\temp.tmp"); 
error_code = ioctl(mfs_fd_ptr, IO_IOCTL_RENAME_FILE, 

(uint32_t *) &rename_struct); 
} 
 
 
 

3.8.1.25 IO_IOCTL_SET_DATE_TIME 
This command sets the time and date of an open file. 

 
error_code = ioctl(fd_ptr, 

IO_IOCTL_SET_DATE_TIME, 
(uint32_t *) &date); 

The first parameter is the FILE_PTR of the file for which to set the date. The third 
parameter is a pointer to the MFS_DATE_TIME_PARAM structure that is cast to the 
uint32_t *. Both fields of the structure must be filled in. See the structure definitions for 
more information. 

Example 
See IO_IOCTL_GET_DATE_TIME for details. 

 
MFS_DATE_TIME_PARAM date_time; 

uint32_t  error_code; 
uint16_t date_word, time_word; 

 
date.DATE_PTR = &date_word; 
date.TIME_PTR = &time_word; 

 
error_code = ioctl(fd_ptr, IO_IOCTL_GET_DATE_TIME, 

(uint32_t *) &date); 
 
 
 

3.8.1.26 IO_IOCTL_SET_VOLUME 
This command sets the volume label. 

 
error_code = ioctl(mfs_fd_ptr, 

IO_IOCTL_SET_VOLUME, 
(uint32_t *) label); 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
43 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

The first parameter is the FILE_PTR of the MFS device driver that corresponds to the 
disk on which the operation is to take place. The third parameter is the char * to the new 
volume name to be set with a maximum of 11 characters. It is cast to the uint32_t *. 

 
 
3.8.1.27 IO_IOCTL_TEST_UNUSED_CLUSTERS 
This command tests the unused clusters on the drive for bad clusters. 

 
error_code = ioctl(mfs_fd_ptr, 

IO_IOCTL_TEST_UNUSED_CLUSTERS, 
&count_of_unused_clusters); 

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the 
MFS device driver corresponding to the drive, on which to test the unused clusters. The 
third parameter is the uint32_t * to a variable, in which the count of bad clusters is stored. 
The bad clusters are marked in the file allocation table so that they are not used to store 
data. 

 
 
3.8.1.28 IO_IOCTL_WRITE_CACHE_ON, 

IO_IOCTL_WRITE_CACHE_OFF 
Deprecated: use IO_IOCTL_SET_WRITE_CACHE_MODE. 

 
 
3.8.2 Input/Output Control Commands for the Partition Manager 

Device Driver 
In addition to the MQX RTOS input/output control commands, the partition manager 
device driver includes the following. 

 
 
3.8.2.1 IO_IOCTL_CLEAR_PARTITION 
This command removes a partition from the disk. 

The third ioctl() parameter is a pointer to the uint32_t variable and contains the number 
of the partition to remove. This IOCTL call is valid only if no partition is currently 
selected, i.e., the handle allows for access to the whole underlying device. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
44 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

Example 
Remove the third partition from the disk. 

 
uint32_t part_num; 
part_num = 3; 
error_code = ioctl(pmgr_fd_ptr, IO_IOCTL_CLEAR_PARTITION, 

&part_num); 
 
 
 

3.8.2.2 IO_IOCTL_GET_PARTITION 

This command gets partition information to the disk. 

The third ioctl() parameter is the PMGR_PART_INFO_STRUCT pointer that is cast to 
uint32_t *. The only field in the structure that must be filled in is the SLOT field. It must 
contain a value between zero and four and represents the partition number for which 
information is requested. If the SLOT field is zero then information about currently 
selected partition is retrieved. The other fields are overwritten with the retrieved data. 
HEADS, CYLINDERS, and SECTORS are set to zero, because such information cannot 
be retrieved from the disk. 

 
 
3.8.2.3 IO_IOCTL_SET_PARTITION 
This command sets partition information to the disk. 
The third ioctl() parameter is the PMGR_PART_INFO_STRUCT pointer that is cast to 
uint32_t *. 

 
typedef struct pmgr_part_info_struct 
{ 

/* Partition slot (1 to 4) */ 
unsigned char SLOT; 
/* Heads per Cylinder */ 
unsigned char HEADS; 
/* Sectors per head */ 
unsigned char SECTORS; 
/* Cylinders on the device */ 
uint16_t CYLINDERS; 
/* Partition type (0 not used, 1 FAT 12 bit, 4 FAT 16 bit, */ 
/* 5 extended, 6 huge - DOS 4.0+, other = unknown OS) */ 
unsigned char TYPE; 
/* Start sector for partition, relative to beginning of disk */ 
uint32_t START_SECTOR; 
/* Partition length in sectors */ 
uint32_t LENGTH; 

} PMGR_PART_INFO_STRUCT, * PMGR_PART_INFO_STRUCT_PTR; 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
45 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

The SLOT field must be filled in with the partition number to set. 
The HEADS, SECTORS, and CYLINDERS fields are optional. They represent data that 
the partition manager uses to write the partition, but the data is used only by MS-DOS 
operating systems. Because Microsoft Windows does not use the fields on the disk, fill in 
the fields only if the disk is to be used with the MS-DOS operating system. 
The TYPE field must be set to one of the following. Types that are marked with + are 
recommended when you create a partition. 

 
+ PMGR_PARTITION_FAT_12_BIT  

 PMGR_PARTITION_FAT_16_BIT Old FAT16 (MS-DOS 3.3 and previous ) 

 PMGR_PARTITION_HUGE Modern FAT16 (MS-DOS 3.3 and later) 

 PMGR_PARTITION_FAT32 Normal FAT32 
+ PMGR_PARTITION_FAT32_LBA FAT32 with LBA 

+ PMGR_PARTITION_HUGE_LBA FAT16 with LBA 

 
The START_SECTOR field must be filled in. It is the physical sector on the device where 
the partition should start. For the first partition, is it generally sector 32 (for FAT32) or 
sector one (for FAT16 and FAT12). For partitions other than the first, it is the next sector 
after the end of the previous partition. You can leave unused sectors between partition, 
but they amount to wasted space. 

The LENGTH field must be filled in. It contains the length in sectors of the new partition 
that is to be created. 

This IOCTL call is valid only if no partition is currently selected, i.e. the handle allows 
for access to the whole underlying device and there is only a single open handle to the 
partition manager instance. This is to prevent possible inconsistence of data if more than 
one handle to the partition manager exists. 

The partition manager checks validity of the partition table before writing it to the device. 
It is thus impossible to create a partition which overlaps another partition. Partitions 
which would collide with the new one have to be removed first. 

Example 
Create two partitions on a disk. The example assumes that the partition manager is 
installed and open. 

 
PMGR_PART_INFO_STRUCT part_info; 
/* Create a 42-Megabyte partition: */ 
part_info.SLOT = 1; 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
46 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

part_info.TYPE = PMGR_PARTITION_HUGE_LBA; 
part_info.START_SECTOR = 32; 
part_info.LENGTH = 84432; 
error_code = ioctl(pm_fd_ptr, IO_IOCTL_SET_PARTITION, 

(uint32_t *) &part_info); 
if ( error_code ) { 

printf("\nError creating partition %d!\n Error code: %d", 
1, error_code); 

_mqx_exit(1); 
}/* Endif */ 
/* Create a 5-Megabyte partition: */ 
part_info.SLOT = 2; 
part_info.TYPE = PMGR_PARTITION_FAT_12_BIT; 
part_info.START_SECTOR = 84464; 
part_info.LENGTH = 10000; 
error_code = ioctl(pm_fd_ptr, IO_IOCTL_SET_PARTITION, 

(uint32_t *) &part_info); 
if ( error_code ) { 

printf("\nError creating partition %d!\n Error code: %d", 
2, error_code); 

_mqx_exit(1); 
}/* Endif */ 
 
 
 

3.8.2.4 IO_IOCTL_USE_PARTITION 
This command directly sets partition parameters to use with the handle. 
The third ioctl() parameter is the PMGR_PART_INFO_STRUCT pointer that is cast to 
uint32_t *. 

The information passed to this IOCTL call directly sets partition information associated 
with the handle without touching the underlying device. This provides the possibility to 
restrict access through the handle to certain parts of the underlying device, even for 
media, without partition table in the first sector, i.e., the device may be partitioned in 
software. 

Seek to the beginning of the just defined partition is performed when this IOCTL gets 
executed. 

 
 
3.8.2.5 IO_IOCTL_SEL_PART 
This command selects partition to use with the handle. 
The third ioctl() parameter points to uint32_t number, which has to be between zero and 
four, and represents the number of partition to select. If zero is specified no partition is 
selected, i.e., the whole device is accessible through the handle. 

It is not possible to directly select another partition if there is a partition already selected. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
47 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

Partition has to be deselected first, i.e., IO_IOCTL_SEL_PART has to be executed with 
pointer to zero as third parameter. 

Seek to the beginning of the just selected partition or the device is performed when this 
IOCTL gets executed. 

 
 
3.8.2.6 IO_IOCTL_VAL_PART 
This command validates partition table and checks partition type. 
The third ioctl() parameter may be either NULL or pointer to uint32_t number which has 
to be between zero and four. 

The IOCTL call checks partition table for validity. Then, it optionally checks type of 
partition whether it matches one of the FAT partition types. If the third parameter is 
pointer to zero only the partition table validity check is performed. If the third parameter 
is NULL, the type check is performed on a currently selected partition. 

The IOCTL call with non-NULL third parameter is valid only if no partition is selected, 
i.e., the whole device is accessible through the handle. 

If the partition type is checked and does not match any of the FAT partition types, 
PMGR_UNKNOWN_PARTITION is returned, which indicates that the partition is valid 
but does not match any of the FAT types. 

 
 

3.8.3 Return Codes for MFS 
• MFS_ACCESS_DENIED 

• Application attempted to modify a read-only file or a system file. 

• MFS_ALREADY_ASSIGNED 

• MFS_ATTEMPT_TO_REMOVE_CURRENT_DIR 

• MFS_BAD_DISK_UNIT 
• Operation on a file failed because that file is corrupted. 

• MFS_BAD_LFN_ENTRY 
• MFS failed to find a complete long file name within two clusters. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
48 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

• MFS_CANNOT_CREATE_DIRECTORY 
• MFS was unable to create the requested long directory name, usually because an 

invalid (illegal) directory name was specified. 
• MFS_DISK_FULL 

• Disk is full. 

• MFS_DISK_IS_WRITE_PROTECTED 
• Disk is write protected and could not be written to. 

• MFS_EOF 
• End of the file has been reached during a read. This is not a failure; it is only a 

warning. 

• MFS_ERROR_INVALID_DRIVE_HANDLE 
• The MFS FILE_PTR was invalid. 

• MFS_ERROR_INVALID_FILE_HANDLE 
• The MFS FILE_PTR was invalid. 

• MFS_ERROR_UNKNOWN_FS_VERSION 
• The drive contains an advanced FAT32 version. The MFS FAT32 version is not 

compatible. (There is currently only one FAT32 version, but this could change in 
the future.) 

• MFS_FAILED_TO_DELETE_LFN 

• MFS failed to completely delete a long file name. This results when MFS can 
not locate all of the long file name entries associated with a file. 

• MFS_FILE_EXISTS 
• File already exists with the specified name. 

• MFS_FILE_NOT_FOUND 
• File specified does not exist. 

• MFS_INSUFFICIENT_MEMORY 
• MFS memory allocation failed. (MQX RTOS is out of memory or it has a 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
49 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

corrupted memory pool.) 

• MFS_INVALID_CLUSTER_NUMBER 
• A cluster number was detected that exceeds the maxumum number of clusters on 

the drive (or partition). This may be a result of a corrupted directory entry. 

• MFS_INVALID_DEVICE 
• The underlying block mode driver does not support the block size command, or 

the block size is not legal (neither one of 512, 1024, 2048, or 4096 bytes). 

• MFS_INVALID_FUNCTION_CODE 
• Not currently used. 

• MFS_INVALID_HANDLE 
• One of the fields in a given FILE_PTR structure was invalid. 

• MFS_INVALID_LENGTH_IN_DISK_OPERATION 
• Requested directory exceeds maximum in change-directory operation. 

• MFS_INVALID_MEMORY_BLOCK_ADDRESS 
• SEARCH_DATA_PTR is NULL on find-first or fine-next file operation. 

• MFS_INVALID_PARAMETER 
• One or more of the parameters passed to _io_ioctl() is invalid. 

• MFS_LOST_CHAIN 
• This is not a critical error. It means there is a lost cluster chain which results in 

some wasted space. Operations on the drive continue normally. 

• MFS_NO_ERROR 

• Function call was successful. 

• MFS_NOT_A_DOS_DISK 
• Disk is not formatted at FAT12, FAT16, or FAT32 file system. 

• MFS_NOT_INITIALIZED 
• Not currently returned. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
50 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

• MFSOPERATION_NOT_ALLOWED 
• Returned when attempting a write operation when MFS is built in read-only 

mode, or a format operation when MFS is built without format functionality, or 
an attempt to rename a file to the same name. 

• MFS_PATH_NOT_FOUND 
• Path name specified does not exist. 

• MFS_READ_FAULT 
• An error occurred reading from the disk. 

• MFS_ROOT_DIR_FULL 
• Root directory on the drive has no more free entries for new files. 

• MFS_SECTOR_NOT_FOUND 
• An error occurred while writing to the disk. The drive was formatted with 

incorrect parameters, or the partition table specified incorrect values. 

• MFS_SHARING_VIOLATION 
• Produced by one of: 

• An attempt to close or format a drive that currently has files open. 
• An attempt to open a file to write that is already opened. 

• MFS_WRITE_FAULT 
• An error occurred while writing to the disk. 

 
 

3.8.4 Return Codes for the Partition Manager Device Driver 
• PMGR_INVALID_PARTITION 

• The specified partition slot does not describe a valid partition. 

• PMGR_INSUF_MEMORY 
• Attempt to allocate memory failed. MQX RTOS is out of memory or has a 

corrupt memory pool. 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
51 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

 
 

3.8.5 Other Error Codes 
An error was returned from the lower-level device driver. 

 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
52 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

 
 
 
 

Chapter 4 
Reference: Data Types 
 
4.1 In This Chapter 
Alphabetically sorted data-type descriptions for MFS. 

 
 
4.2 _mfs_cache_policy 

 
typedef enum { 

MFS_WRITE_THROUGH_CACHE=0, // No write caching (only read caching) 
MFS_MIXED_MODE_CACHE=1, // Write Caching allowed on file write only 
MFS_WRITE_BACK_CACHE=2 // Write Caching fully enabled 

} _mfs_cache_policy; 
 
 
 

4.3 MFS_DATE_TIME_PARAM 
 
typedef struct mfs_date_time_param 
{ 

uint16_t * DATE_PTR; 
uint16_t * TIME_PTR; 

} MFS_DATE_TIME_PARAM, * MFS_DATE_TIME_PARAM_PTR; 

A pointer to the structure is used in IO_IOCTL_GET_DATE_TIME and 
IO_IOCTL_SET_DATE_TIME commands. 

The first field is the uint16_t * to uint16_t variable in which the date is to be stored (for 
get) or read from (for set). The second field is the uint16_t * to uint16_t variable, in 
which the time is to be stored (for get) or read from (for set). See the ioctl description for 
details. 

 
 
 
 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
53 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

4.4 MFS_FILE_ATTR_PARAM 
 
typedef struct mfs_file_attr_param 
{ 

char * PATHNAME; 
/* Path name and filename of the file */ 
unsigned char * ATTRIBUTE_PTR; 
/* pointer to the attribute variable */ 

} MFS_FILE_ATTR_PARAM, * MFS_FILE_ATTR_PARAM_PTR; 

A pointer to the structure is used in IO_IOCTL_GET_FILE_ATTR and 
IO_IOCTL_SET_FILE_ATTR commands. 

The first field is the char * to the path name and filename of the file for which you want 
to get or set the attribute. The second field is the unsigned char * to the char variable in 
which the attribute is read from (for set), or in which the attribute is stored (for get). 

 
 
4.5 MFS_GET_LFN_STRUCT 

 
typedef struct mfs_get_lfn_struct 
{ 

char * PATHNAME; 
/* Path name of the 8.3 name */ 
char * LONG_FILENAME; 
/* pointer to memory block in which to store the long name */ 

} MFS_GET_LFN_STRUCT, * MFS_GET_LFN_STRUCT_PTR; 

A pointer to this structure is used in IO_IOCTL_GET_LFN commands. 

The first field is the char * to the path name or file name of the file that we want to get 
the long file name of. The second field is the char * to pre-allocated space in which to 
store the long file name of the requested file. 

 
 
4.6 MFS_IOCTL_FORMAT_PARAM 

 
typedef struct mfs_ioctl_format 
{ 

MFS_FORMAT_DATA_PTR  FORMAT_PTR; /* Points to format data */ 
uint32_t * COUNT_PTR; /* Count the bad clusters */ 

} MFS_IOCTL_FORMAT_PARAM, * MFS_IOCTL_FORMAT_PARAM_PTR; 

A pointer to the structure is used in calls to IO_IOCTL_FORMAT and 



MQX MFS User’s Guide -              All information provided in this document is subject to legal disclaimers   2020 NXP Semiconductors. All rights reserved. 

USER GUIDE              Rev. 5.2 – 07/2020 
 
UUuser G 

 
 

 
54 

NXP Semiconductors                 MQX MFS User’s Guide 
Guide 

IO_IOCTL_FORMAT_TEST commands. 

 

The first field is a pointer to the MFS_FORMAT_DATA structure, explained at the 
beginning of this document. The second field is used only for the 
IO_IOCTL_FORMAT_TEST command. It is a pointer to the uint32_t variable, in which 
the count of bad clusters is stored. 

 
 
4.7 MFS_RENAME_PARAM 

 
typedef struct mfs_rename_param 
{ 

char * OLD_PATHNAME; 
char * NEW_PATHNAME; 

} MFS_RENAME_PARAM, * MFS_RENAME_PARAM_PTR; 

A pointer to the structure used in IO_IOCTL_RENAME_FILE commands. 

The first field is the char * to a string that contains the path name and file name of the file 
to move or rename. The second field is the char * to the new path name or filename. 

 
 
4.8 MFS_SEARCH_PARAM 

 
typedef struct mfs_search_param 
{ 

uint32_t ATTRIBUTE; 
char *WILDCARD; 
char *LFN_BUF; 
uint32_t LFN_BUF_LEN; 
MFS_SEARCH_DATA_PTR 

} MFS_SEARCH_PARAM, * MFS_SEARCH_PARAM_PTR; 

A pointer to the structure is used in IO_IOCTL_FIND_FIRST_FILE commands. 

The attribute field unsigned char variable that contains the search attributes specifying 
types of directory entries retrieved during the search. The WILDCARD field contains 
path and specific filename or wildcard mask. See the IO_IOCTL_FIND_FIRST_FILE 
command explanation for details. 


