h o

P

MQX™ RTOS MFS
User’s Guide

MQXMFSUG
Rev. 5.2
07/2020

Embedded

Access Inc

NXP Semiconductors MQX MFS User’s Guide

Contents
Section number Title Page
Chapter 1
Before You Begin
L1 ADOUL THIS BOOK. ...ttt ettt h bbbttt ettt eb e bt eb e bt sb et et nee e e e 7
1.2 Where to Look for More INfOIrmMAation.ceiriririniiiieeieeteete ettt ettt ettt sttt s 7
1.3 TypOgraphic CONMVENTIONS.eveeuieteeeieteeitestiestestteteesteseeeeesessaessesssesseessesseessesseansesssanssassasssessesseansesseensesseensesssesesssensenns 7
1.3.1 Example: Prototype Definition, Including Symbolic Parameters.c.cccevuerierieiieiiiiinincncncneneeeeseeseeenee 8
1.3.2 Example: Complex Data Types and their Field Names.cccoceviririniniininiiiicicteescsesese e 8
1.4 Other COMVENLIONS. ..eveitiieiititeiteit ettt ettt sttt ettt ettt et ea e st ebeebeeh e e bt e bt e bt sb e et et st e e eatemeeseeseeueebeebeebeebesbe et e e benaeneenaenee 8
LA T CAULIOMS. -eoutiutiiieiieitetteit ettt ettt ea bbbt bbbttt b et s et et e b et eat e st ebteb e ebeebeebeeb e e bt sae et e b e e et enn e 8
Chapter 2
Using MFS
2.1 MES At @ GIANCE. ...ttt et h et b et b e bt et b et sttt et et ea e bt e bt eh e e bt he bbb st b et neen 9
2.2 MS-DOS File SyStem CRAraCteriSTICS. . .uveuveruierteriierteeientieiesteetesteeeeeseessesstessessaessessaesseessasseessesseessesssensessessesssessesssesses 10
2.2.1 DIrectory Path INAMES.ccuieiiiieieiieie sttt ettt ettt e et et e s st ensesseensesseeseesseseesseseensenseensesseensennes 10
2.2.2 FILE AIIDULES. ..eoveitirtitetert ettt ettt ettt e et eet bbbt b e et b ettt et et e st e bt eb e ebeebeebesb e eb e bt st nee 10
2221 BIEINUITNIDET. ...ttt sttt ettt ettt eb e bt et s bt sttt s b st et et naens 10
2222 VOIUME LADCL. ..ottt ettt ettt sttt ettt 10
2.2.3 FILE TIIMIC. ettt ettt ettt ettt b e bbbt bbbttt et et eb bt bbbt sa e bt b et et nee 11
224 FILE DAL, ..ttt h b h b h ettt et h bbbt b e eh e sh bt st nee 11
2.2.5 File ATIOCAtION TaDIE. ...cc.ovviiiiiiiiiiiieiicet ettt ettt ettt eb e bbbt st be st et ne 11
2.2.6 Flename WILACATAS.coeriiriiiiiiiiiieteet sttt ettt ettt ettt eb e bt bt sb e st be st e nee 12
2.3 High-Level FOIMAtING.cccieeiieiiriieieeieie ettt ettt ettt et et e st estesse e aesaaeseesaesseenseseansesseensesseensesneensesnsensennsennean 12
2.4 VErsion OF MES. ..ottt h et h et b e bttt b e b ettt et e bt ebt e st eb e e bt eue st ebesbe st e naetenaens 13
2.5 CUSLOMIZING IMES. ...ttt ettt et et et e e at e e st et e e st ensesse e sessee s e esseseessenseansesseenseeseanseentensesnsenseeneennean 13
MQX MFS User’s Guide - Allinformation provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 ii

NXP Semiconductors MQX MFS User’s Guide

2.6 Partition Manager DEVICE DITVET.c.ccierieiieieiieiteeiesttete sttt et ete st e e s testesaesseesaesseessenseensesseenseeseensesneessesnsessennsensens 15
2.7 Working with REMOVADIE MEAIA.cc.eiuieiiiieieciieie ettt st et eae st e b et e ensesseenseeseensesnnessesneenseeneensean 16
2.7.1 Buffering and CACKING.ccoocieiirieieriiee ettt ettt et et et e aeetesseensesseensesssenseesseseesseseensesseensesseensennes 16

B I A v U o T v T3] T L TSRS 17
g I T = 10153 7o 011 RSP T 17
2.7.3.1 ExXample: HOtSWaAPPINEZ. ...ocveeieieriieieiiieiesiteteeitesteeitesteeste e eseesseessesseesaesseensesseensesseensesssensesssensesssensenns 18

Chapter 3
Reference: Functions

T B 0 T VTS O 4 3o TSRS 19
TN To Y 0¥ 1 1] 1 USSR SRS 19
3.3 10 MES UNINSTALL ...oouiiiiieit ettt ettt ettt et e s bt et e st e e st e e st e st e et e ens e e st e s e enee st enseeaeenseestenseeseenseennenseens 21
I To Y o 1 5 0T o 111 -1 USROS 22
TR T To Y o 0 e 014 U181 21 1 TSRO SRRRSRP 23
3u0 HCLOSE. ettt h e b a ettt ettt ettt ettt ne et ene 23
TN A o] o<1 s VUSRS 24
38 TOCHL etttk etk e bbbttt ettt ettt et et ne et neene 26
3.8.1 Input/Output Control Commands fOr MES.ccoiiiiiiiiei et sneas 27
3.8.1.1 IO _IOCTL_BAD_CLUSTERS.ccitiitiiicieiteetcttsteect ettt 27

3.8.1.2 10 _IOCTL_CHANGE_CURRENT DIR......ccociniiiiiiiiiiieiiininieicineietcittneieee ettt 27

3.8.1.3 IO _IOCTL_CREATE SUBDIR.ccceciiiiiiieiiiniieiciinieietteeie ettt ettt 28

3.8.1.4 IO _IOCTL_DEFAULT _FORMAT.ccootstitiiiiieieiinieectne ettt 28

3.8.1.5 IO _IOCTL_DELETE FILE. ...c.cciciiiiiiiiiiiiiiciiininietctnteect ettt ettt 29

3.8.1.6 IO _IOCTL_FAT CACHE OFF. ..ottt 30

3.8.1.7 IO _IOCTL_FAT CACHE ON...ccociiiiiiiiiiciiininicetteieett ettt 30

3.8.1.8 10 _IOCTL_FIND FIRST FILE, 10 IOCTL_FIND NEXT FILE.....ccccececcceomniiimeiinineccnnens 30

3.8.1.9 IO IOCTL_FLUSH FAT. ittt ettt 32

3.8.1.10 IO _TIOCTL _FORMATciiiiiieiiiiiteicttrte ettt ettt ettt ettt 32

MQX MFS Users Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. Al rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 iii

NXP Semiconductors MQX MFS User’s Guide

3.8.1.11 IO _IOCTL_FORMAT _TEST. ..ottt sttt ettt sttt 33
3.8.1.12 10 _IOCTL_FREE SPACE, IO IOCTL_FREE CLUSTERS.....ccccececcctmmieiimieeininieicenierereiceens 34
3.8.1.13 IO _IOCTL_GET CLUSTER _SIZE.....cccositiimieiiiinieieiineiectneeetettsaeaeie sttt 35
3.8.1.14 IO _IOCTL_GET_CURRENT DIR. ..c.ccootriiiiiiiniieiiiinieieicinieieiet ettt 35
3.8.1.15 IO _IOCTL_GET DATE TIME. ...c.ciiiiiiiiiiiiiiieiciineectneece ettt 35
3.8.1.16 10 _IOCTL_GET DEVICE HANDLE.cccootsiiiiiiiiiiiiineicctneetcittseieict ettt 36
3.8.1.17 10 _IOCTL_GET FAT CACHE MODE, IO IOCTL SET FAT CACHE MODE............c.ccc..... 37
3.8.1.18 10 _IOCTL_GET FILE ATTR, IO _IOCTL _SET FILE ATTR......ccccccotmiiiimieiinnccinrreieicene 37
3.8.1.19 IO TOCTL_GET _LEN. ..ottt ettt sttt ettt ettt 37
3.8.1.20 IO _IOCTL_GET _VOLUME.c.ccioiiiiiiiiiiiiininecttnteettr ettt ettt 38
3.8.1.21 10 IOCTL GET WRITE CACHE MODE, IO IOCTL SET WRITE CACHE MODE.............. 39
3.8.1.22 IO _IOCTL_LAST CLUSTER. ...c.ooitiitiiieictcirietetctt sttt ettt 39
3.8.1.23 IO _IOCTL_REMOVE _SUBDIR.c.cccciitmiiitiiiniieiciinieettreieete ettt et 39
3.8.1.24 IO _IOCTL_RENAME FILE. ...c.ccioiniiiiiiiiiiiiininieieiinieiecte ettt ettt 40
3.8.1.25 IO _IOCTL_SET DATE TIME. ...ccociiiiiiiiiiiiiectiriectte ettt 40
3.8.1.26 IO _IOCTL_SET VOLUME.c.ccioiiiiiiiiiiiiinicctinieect ettt 41
3.8.1.27 10 _IOCTL_TEST _UNUSED _CLUSTERS. ...ccocttttttirieiiirirecineetcctnieieict ettt 41
3.8.1.28 10 _IOCTL_WRITE CACHE ON, IO IOCTL WRITE CACHE OFF.......cccccccceotnniiinnniinnnns 42

3.8.2 Input/Output Control Commands for the Partition Manager Device DIiVer.c.cccvevvieieniiniieneiieeeeeeeeeeeen 42
3.82.1 IO _IOCTL_CLEAR _PARTITION.....c.ccootmiiitiiimiieiiiirieettreeieicee ettt 42
3.82.2 IO _IOCTL_GET PARTITION. ...cccositiiiiriiiciiininietetinteteict ettt ettt 42
3.8.2.3 IO _IOCTL_SET PARTITION....ccccsiiiiiiiieieinieietcittsteieict ettt ettt 43
3.82.4 IO _IOCTL_USE PARTITION. ..c.cciitiiiiiiiiiiinieietcttsteiect ettt ettt 44
3.8.2.5 IO _IOCTL_SEL PART. ..ciiiiiiiiiiiectirectctre ettt ettt ettt 45
3.8.2.6 IO IOCTL_VAL PART. c.coiiiiiiieetecctr ettt ettt ettt 45

3.8.3 Return €Codes for MES. ...ttt 46
3.8.4 Return Codes for the Partition Manager Device DITVET.........ccoceriiieriieieiieiesieeie et 48
MQX MFS Users Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. Al rights reserved.

USER GUIDE

Rev. 5.2 — 07/2020 v

NXP Semiconductors MQX MFS User’s Guide

3.8.5 Other EITOr COdES.oovimiiiieiiiciiicieiciec ettt aes 49
Chapter 4
Reference: Data Types

A1 T TRIS CRAPLET. ..ottt et eb e eh bbbt b e bt s bbb st et et et e st ebtebt e bt eb e e bt eue et e et e s bestesaenbenaens 51
4.2 MES CACKE POLICY. tutiiiiiiiiei ettt ettt h et b e b sttt st ettt et ea bt e bt eh e e bt bttt b e b st a et naen 51
4.3 MFS_DATE TIME PARAM.cociiitiiiiiiiiiineett ettt ettt ettt 51
4.4 MFS _FILE ATTR PARAM. ...ccooiiiiiiiieieieet ettt ettt ettt 52
4.5 MFS_GET _LFEN_STRUCTc.ioiitiiiiiieieitneett ettt ettt ettt ettt ettt ettt n et 52
4.6 MFS_IOCTL _FORMAT PARAM. ..ccooiiiiiiiiiietiiinie ettt ettt sttt 52
4.7 MFS_RENAME PARAM. ...c.cciiiiiiiiiiieceee etttk ettt ettt 53
4.8 MFS_SEARCH _PARAM.cociiiiiiiiteeeree ettt ettt ettt ettt 53
MQX MFS Users Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. Al rights reserved.

USER GUIDE Rev. 5.2 - 07/2020

\%

NXP Semiconductors

MQX MFS User’s Guide

Before You Begin

1.1 About This Book

This book is a guide and a reference manual for using the MQX™ RTOS MFS
Embedded File System which is a part of Freescale MQX Real-Time Operating System

distribution.

This document is written for experienced software developers who have a working

knowledge of the language and the target processor.

1.2 Where to Look for More Information
* Release Notes, accompanying Freescale MQX RTOS release, provide information
that was not available at the time this User Guide was published.

* The Freescale MOX™ RTOS User's Guide describes how to create embedded
applications that use MQX RTOS.

* The Freescale MOX™ RTOS Reference Manual describes prototypes for the MQX

RTOS API.

1.3 Typographic Conventions

Throughout this book, we use typographic conventions to distinguish terms.

Font style Usage Example
Bold Function families The _io_mfs family of functions.
Bold Function names _io_mfs_install()

Italic

Data types (simple)

uint32_t

Data types (complex)

See following example.

Constant-width

Code and code fragments

Data types in prototype definitions

See following example.

Directives

#include "mfs.h"

Code and code fragments

Italic

Filenames and path names

part_mgr.h

MQX MFS User’s Guide -

All information provided in this document is subject to legal disclaimers

2020 NXP Semiconductors. All rights reserved.

USER GUIDE

Rev. 5.2 - 07/2020

6

NXP Semiconductors MQX MFS User’s Guide

Italic Symbolic parameters that you substitute with See following example.
your values.
UPPERCASE ltalic Symbolic constants MFS_NO_ERROR

1.3.1 Example: Prototype Definition, Including Symbolic
Parameters

uint32 t io mfs install(
FILE PTR dev fd,
char * identifier,
uint32 t partition num)

1.3.2 Example: Complex Data Types and their Field Names

The structure MFS_DATE_TIME_PARAM contains the following fields:
» DATE_PTR
* TIME_PTR

1.4 Other Conventions

1.4.1 Cautions

Cautions tell you about commands or procedures that could have unexpected or
undesirable side effects or could be dangerous to your files or your hardware.

CAUTION If an application calls read and write functions with the partition manager, the file
system will be corrupted.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 7

NXP Semiconductors MQX MFS User’s Guide

Using MFS

2.1 MFS at a Glance

MES provides a library of functions that is compatible with the Microsoft MS-DOS file
system. The functions let an embedded application access the file system in a manner that
1s compatible with MS-DOS Interrupt 21 functions. All the functions guarantee that the
application task has a mutually exclusive access to the file system.

MES is a device driver that an application must install over a lower-level device driver.
Examples of lower-level drivers are drivers for memory devices, flash disks, floppy
disks, or partition-manager devices. MFS uses the lower-level driver to access the
hardware device.

MES functions do the following:
* Traverse MS-DOS directory structure.
* Create and remove subdirectories.
* Find files.
* Create and delete files.
* Open and close files.
* Read from files and write to files.

* View and modify file characteristics.

Get the amount of free space in the file system.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 8

NXP Semiconductors MQX MFS User’s Guide

2.2 MS-DOS File System Characteristics

2.2.1 Directory Path Names

MEFS allows an application to traverse a directory tree. When you specify a directory
path, you can use \ and / as directory separators.

You can specify a directory path in one of two ways:
* By starting with a directory separator — the path is assumed to be an absolute path.

By starting without a directory separator — the path is assumed to be relative to the
current directory.

2.2.2 File Attributes

Each file entry in the MS-DOS file system has an attribute byte associated with it. The
attribute byte is described in more detail in the following table.

2.2.21 Bit Number

7 6 5 4 3 2 1 0 Meaning if bit is set to one.

X Read-only file

X Hidden file

X System file

X Volume label

X Directory name

X Archived file

X X RESERVED

The volume-label and directory-name bits are mutually exclusive.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 9

NXP Semiconductors

MQX MFS User’s Guide

2.2.2.2 Volume Label

A file entry can be marked as a volume label. There can be only one volume label in a
file system and it must reside in the root directory. Also, that label cannot act as a
directory name.

2.2.3 File Time

Each file entry has a 16-bit write time field associated with it. In MFS, the time is written
into the field when the file entry is created, when the file is closed, and as a result of
calling IO_IOCTL_SET_DATE_TIME. The format of the time field is as follows:

Element Bits used Values
Seconds 0-4 0-29
(multiply by two for seconds)
Minutes 5-10 0-60
Hours 11-15 0-24
(24-hour clock)

2.2.4 File Date

Each file entry has a 16-bit write date field associated with it. In MFS, the date is written
into the field when the file entry is created, when the file is closed, and as a result of
calling IO_IOCTL_SET_DATE_TIME. The format of the date field is as follows:

Element Bits used Values
Days 0-4 1-31
Months 5-8 1-12
Year 9-15 0-119
(1980 — 2099)

In addition to mandatory write time and write date a FAT filesystem may contain also
optional creation time and date and last access time and date. These optional time stamps
are not supported by MFS.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 10

NXP Semiconductors MQX MFS User’s Guide

2.2.5 File Allocation Table

The MS-DOS file system can have multiple copies of the file allocation table. MFS
updates as many FATs as it is configured for. It only reads from the first FAT.

2.2.6 Filename Wildcards

The characters * and ? are treated as wildcards in a filename.

2.3 High-Level Formatting

An application can perform high-level formatting on a disk by calling ioctl(). The
function writes a new boot sector, deallocates all clusters in the file allocation table, and
deletes all entries in the root directory.

There is one input/output control command that formats the disk, and one that formats
and checks for bad clusters.

The MFS _IOCTL_FORMAT PARAM structure 1s used:

typedef struct mfs ioctl format
{

MFS_FORMAT DATA PTR FORMAT PTR;

uint32 t * COUNT PTR; /* To count bad clusters */
} MFS IOCTL FORMAT PARAM, * MFS IOCTL FORMAT PARAM PTR;

The first variable is a pointer to a MFS_FORMAT_DATA structure described below. The
second is uint32_t * that points to the uint32_t variable which is used to contain the
count of bad sectors. It is used only if the IO_IOCTL_FORMAT_TEST function is used.

typedef struct mfs format data
{

unsigned char PHYSICAL DRIVE;
unsigned char MEDIA DESCRIPTOR;
uintl6 t BYTES PER SECTOR;
uintl6 t SECTORS PER TRACK;
uintlé t NUMBER OF HEADS;
uint32 t NUMBER OF SECTORS;
uint32 t HIDDEN SECTORS;
uintl6 t RESERVED SECTORS;
} MEF'S FORMAT DATA, * MFS FORMAT DATA PTR;

The MFS_FORMAT _DATA structure has the following fields:

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 11

NXP Semiconductors MQX MFS User’s Guide

* PHYSICAL_DRIVE
* 0x00 for floppy disks; 0x80 for hard disks.

* MEDIA DESCRIPTOR
» OxFD for 5.25" 360 K diskettes.

0xF9 for 5.25" 1200 K diskettes.
0xF9 for 3.5" 720 K diskettes.

0xFO0 for 3.5" 1440 K diskettes and other removable media.

0xF8& for hard disk and other non-removable media.

* BYTES_PER_SECTOR
* Size of a block in bytes (usually 512).

* SECTORS_PER_TRACK

* Number of sectors in a track.

 NUMBER OF HEADS
* Number of disk heads.

* NUMBER_OF_SECTORS

 Total number of sectors on the disk including reserved sectors.

* HIDDEN_SECTORS

* For hard disks, it is the number of sectors from the beginning of the disk to the
beginning of the partition. This is the same number as the relative sectors field in
a hard disk partition table. For floppy disks, the field is zero.

* RESERVED_SECTORS

* Number of sectors from the beginning of the file system to the first FAT sector.
It is usually one.

2.4 Version of MFS

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 12

NXP Semiconductors MQX MFS User’s Guide

The constant MF'S_VERSION defines the version and revision numbers for MFS.

2.5 Customizing MFS

The following constant definitions can be overridden to customize MFS. To override any
of these definitions, simply define the desired value in the /config/<board>/user_config.h
file.

#define MFSCFG MINIMUM FOOTPRINT 1

* Normally not defined. Define to build MFS for small memory devices.

#define MFSCFG _READ ONLY 0

* Set to one to build MFS in read-only mode without create, write, or format
capability. This reduces the code size and may be useful in certain applications such
as bootloaders. Set to one to enable write functionality.

#define MFSCFG READ ONLY CHECK 1

» This compilation option is obsolete and does not have any effect on resulting code.
Runtime read-only checks are integral parts of write support so they are always
present unless MESCFG_READ_ ONLY compilation option is set.

#define MFSCFG READ ONLY CHECK ALLWAYS 0

* This compilation option is obsolete and it is not used.

#define MFSCFG_ENABLE FORMAT 1

» Set to one to build MFS with the format command, zero otherwise.

#define MFSCFG_CALCULATE FREE SPACE ON OPEN 1

+ Set to one to calculate the available free space on the drive when the drive is
mounted. Calculating the available free space is time-consuming on large drives, as
the entire FAT must be read. When set to zero, this operation is deferred until the
first time the free space is required which may be never.

#define MFSCFG _MINIMUM FOOTPRINT 1

* Set to one to build MFS for small-memory devices, zero otherwise.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 13

NXP Semiconductors MQX MFS User’s Guide

#define MFSCFG MAX READ RETRIES 1

#define MFSCFG MAX WRITE RETRIES 1

* Number of times MFS attempts to read or write to the device unsuccessfully before it
reports an error.

#define MFSCFG_FAT CACHE SIZE 2

 This compilation option is obsolete. Dedicated FAT cache is no longer used. Access
to FAT sectors is performed through common sector cache.

#define MFSCFG SECTOR CACHE SIZE

* Defines number of sectors which MFS is able to keep in cache at a time. Minimum is
2 sectors. Maximum recommended size of sector cache for typical embedded
applications is 16.

#define MFSCFG_NUM _OF FATS 2

* This parameter is only used when formatting and specifies the number of file
allocation tables that is placed on the drive. One is required. The first FAT is used by

MFS. The others are backups. Microsoft Windows® uses two as its standard. If you
choose one, MFS operates somewhat faster when it writes to the disk because it has
half the number of FAT write operations to do.

#define MFSCFG HANDLE INITIAL 4
#define MFSCFG_HANDLE GROW 4

#define MFSCFG_HANDLE MAX 0

* These compilation options are obsolete and they are no longer used.

#define MFSCFG _FIND TEMP TRIALS 300

* This compilation option is obsolete and it is no longer used. MFS no longer generates
file names for temporary files. The application must generate a unique file name for a
temporary file according to the use case.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 14

NXP Semiconductors MQX MFS User’s Guide

Table 2-1. Summary: MFS Functions

_io_mfs_install Installs MFS.
_io_mfs_uninstall Uninstalls MFS.
fclose Closes the file or device.
fopen Opens the file or device.
ioctl Issues a control command.

Functions are described in Reference: Functions.

2.6 Partition Manager Device Driver

The partition manager device driver is designed to be installed under the MFS device
driver. It lets the MFS work independently of the multiple partitions on a disk. It also
enforces mutually exclusive access to the disk which means that two concurrent write
operations from two different MFS devices cannot be in conflict. The partition manager
device driver can remove partitions as well as create new ones.

The partition manager device driver creates multiple primary partitions. It does not
support extended partitions.

The partition manager device driver is installed and opened like other devices. It must
also be closed and uninstalled when an application no longer needs it.

An application follows these steps to use the partition manager. Functions are described
in Reference: Functions.

Installs the partition manager (_io_part_mgr_install()).

Opens the partition manager (fopen()).

Issues input/output control commands (ioctl()).

Closes the partition manager (fclose()).

Uninstalls the partition manager device driver (_io_part_mgr_uninstall()).

RARESEE S

CAUTION If an application calls read and write functions with the partition manager, the file system will be
corrupted.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 15

NXP Semiconductors MQX MFS User’s Guide

Table 2-2. Summary: Partition Manager Device Driver Functions

_io_part_mgr_install Installs the partition manager device driver.
_io_part_mgr_uninstall Uninstalls the partition manager device driver.
fclose Closes the partition manager.
fopen Opens the partition manager.
ioctl Issues a control command to the partition manager.

2.7 Working with Removable Media

Removable-media devices are a class of device, in which the medium, upon which files
are written to and read from, can be inserted and removed. Examples include:

* USB mass storage devices (flast drives, and so on)
ATA PCMCIA (PC card) flash cards
* SD Cards

* removable hard drives

floppy-disk drives

An application that installs MFS on the removable media must take some standard
precautions.

2.7.1 Buffering and Caching

MES features scalable sector caching. The number of sectors which may be kept in the
memory at a moment is defined by MFSCFG_SECTOR_CACHE_SIZE compilation
option.

When writing, an application can control how the buffers are flushed. There are three
modes:

* WRITE_THROUGH — the buffer contents are immediately written to disk
when modified.

* WRITE_BACK — the buffer contents are written to disk on application command, or
when MFS device is closed.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 16

NXP Semiconductors MQX MFS User’s Guide

* MIXED_MODE — the buffer contents are written to disk on application command or
when a file 1s closed.

If MFS detects that the lower-layer device is removable, the FAT cache will be placed in
write through mode, and the directory and file caches will be placed in mixed mode. If
the lower-layer device is not removable, all caches will be placed in write back mode.

An application can modify the cache modes with the appropriate ioctl() calls. When using
removable media, the application must ensure that all files are closed and the MFS device
itself 1s closed before the media is removed. These steps ensure that the caches are
flushed and the media is updated.

2.7.2 Writing to Media

Writing to the media, either to partition the media, format the media, or write a file, must
be completed before the media is removed. If the media is removed during a write
operation, the media may be corrupted.

2.7.3 Hotswapping

With MFS, an application can implement hotswapping. To properly implement
hotswapping, however, the lower-layer device must support a mechanism for notifying
the application that the media is removed or inserted.

When an application detects that the media has been inserted, it must do the following:
1. Open the lower-layer device.
2. Optionally install the partition manager on the device.
3. If the partition manager is installed, open the partition manager.
4

. Install MFS on the device or on the partition manager if the partition manager is
installed.

5. Open the MFS device.

When an application detects that the media has been removed, it must do the following:

1. Close all files that are open on the device.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 17

NXP Semiconductors MQX MFS User’s Guide

Close the MFS device.
Uninstall the MFS device.
If the partition manager is installed, close it.

If the partition manager is installed, uninstall it.

S kLN

Close the lower-layer device.

2.7.3.1 Example: Hotswapping

F}r an gxample that demonstrates hotswapping with a USB flash drive, see: mfs/example/
mfs_usb.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 18

NXP Semiconductors MQX MFS User’s Guide

Chapter 3
Reference: Functions

3.1 In This Chapter

Alphabetically sorted prototype definitions for MFS and the partition manager device
driver.

3.2 _io_mfs_install

Install MFS.
Synopsis

uint32 t io mfs install(
/*[IN] the device on which to install MFS */

FILE PTR dev fd,

/*[IN] Name to be given to MFS (e.g., "C:", "MFS1l:") */
/* The name must end in a colon ":" */

char * identifier,

/*[IN] Partition number to install MFS on. */
/* 0 for no partitions */
uint32 t partition num)

Description

The function initializes MFS and allocates memory for all of the internal MFS data
structures. It also reads some required drive information from the disk, on which it is
installed. MFS supports FAT12, FAT16, and FAT32 file systems. If the disk has a
different file system or if it is unformatted, you can use MFS to format it to one of the
supported file systems.

If the application uses a partitioned disk, you must install MFS on a partition manager
device driver. The partition manager device driver can create partitions on the disk if
there are none. It can also remove partitions.

Usage of partition_num parameter is deprecated - _io_mfs_install should obtain handle to

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 19

NXP Semiconductors MQX MFS User’s Guide

partition manager associated with particular partition as dev_fd. partition_num parameter
should be set to 0 which instructs MFS to simply use the dev_fd as underlying device.

Return Codes
Returns a uint32_t error code.
 JO_EOF

* The FILE_PTR passed into _io_mfs_install() was NULL. The error is returned
by the input/output subsystem of the MQX Real-Time Operating System.

* MFS_ERROR_UNKNOWN_FS_VERSION

* MFS was installed on a disk using the FAT32 file system, and the FAT32
version is incompatible with the MFS FAT32 version (version zero).

* MFS_INSUFFICIENT_MEMORY

* MFS could not allocate memory for required structures.

* MFS_NO_ERROR

* The function call was successful.

* MFS_NOT_A_DOS_DISK

* The device, on which MFS is being installed is not a valid DOS device. The
device must be formatted (by an input/output control command).

* MFS_NOT _INITIALIZED
* The MFS device name did not end with colon ().

* MFS_READ_FAULT

* The lower-level device driver could not read from the disk. The error is returned
from the device, over which MFS is installed.

* MFS_SECTOR_NOT_FOUND

* The error is returned from the device, over which, MFS is installed.

* PGMR_INVALID_PARTITION

* The partition number specified was that of an invalid partition. The partition
does not exist.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 20

NXP Semiconductors MQX MFS User’s Guide

Example

Install MFS on a RAM disk with no partitions.

/* Install the memory device: */
error code = io mem install ("mfsram:",
NULL, MFS format.BYTES PER SECTOR * RAMDISK LENGTHI) ;
if (error code != MOX OK) {
printf ("Error installing device.\nError: %d\n", error code);
_mgx_exit(1); -

}

/* Open the device on which MFS will be installed: */
dev_handlel = fopen("mfsram:", 0);

if (dev_handlel == NULL) {
printf ("\nUnable to open RAM disk device");
_task block();

}

/* Install MFS: */

error code = 1o mfs install(dev_handlel, "MFS1:", 0);
if ((error code != MFS NO ERROR) &&
(error code != MFS NOT A DOS DISK)) {

printf ("FATAL error while initializing: \n");
mgx_exit(1l);

} else {
printf ("Initialized MFS1%s\n");

}

3.3 _io_mfs_uninstall
Uninstall MFS.
Synopsis

uint32 t io mfs uninstall(
/*[IN] String that identifies the device driver */
/* to uninstall. Must be identical to the string */
/* that was used to install the MFS device driver */
char * identifier)

Description

This function uninstalls the MFS device driver and frees the memory allocated for it.
Before you call the function, close the MFS device driver by calling fclose().

Return Codes
Returns a uint32_t error code.

* MFS_INVALID_PARAMETER

 The identifier passed to the function is invalid.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 21

NXP Semiconductors MQX MFS User’s Guide

* MFS_SHARING_VIOLATION

* There are files still open on the device, or the MFS device is still open.

Example

error code = io mfs uninstall ("MFS1:");

3.4 _io_part_mgr_install
Installs the partition manager device driver.
Synopsis

int32 t io part mgr install(
/*[IN] Handle of the device on which to install */
/* the partition manager */

FILE PTR dev fd,
/*[IN] New name of the partition manager device */
char * identifier,
/*[IN] Size of sectors in bytes on the lower level device */
uint32 t sector size)
Description

This function initializes the partition manager device driver and allocates the memory for
its internal structures.

The first parameter is the handle acquired by opening the lower-level device driver using
fopen() (for example, dev fd = fopen ("flashdisk",0)).

The second parameter is the identifier, under which the partition manager is to be
installed.

The third parameter is the sector size of the disk. If you specify zero, the partition
manager queries the disk for the sector size. If the query fails, the partition manager uses
a default sector size, as defined by PMGR_DEFAULT_SECTOR_SIZE. The default is
512 bytes.

Errors
e PMGR _INSUF _MEMORY

* Partition manager could not allocate memory for its internal data.

Example

Install the partition manager as "PM:" and let it determine the sector size.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 22

NXP Semiconductors MQX MFS User’s Guide

error code = 1o part mgr install(dev_fd, "PM:", 0);

Obtain the handle to the partition manager without selecting a particular partition, i.e.,
with access to the whole underlying device.

pm_fd = fopen("PM1:",0);

Obtain the handle to the partition manager with the first partition selected, i.e., the read/
write access is limited to the first partition.

part fd = fopen("PM1:1",0);

3.5 _io_part_mgr_uninstall

Uninstalls the partition manager.
Synopsis
int32 t 1o part mgr uninstall (

" /*[IN] Identifier string of the device */
char * identifier)

Description

Y ou must close the partition manager before you uninstall it. The first parameter is the
same identifier that is used with _io_part_mgr_install(). All handles associated with a
given partition manager have to be closed prior to calling the function. Otherwise, the
function fails.

Errors
* IO_EOF
* Incorrect identifier.
* IO_ERROR_DEVICE_BUSY

* There are still open handles associated with the partition manager instance.

Example
error code = 1o part mgr uninstall ("PM:");
3.6 fclose

Closes the device or file.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 23

NXP Semiconductors MQX MFS User’s Guide

Synopsis

int32 t io fclose(
/* [IN] Stream to close (MFS) */
/* or file pointer of the partition manager to close */
FILE PTR file ptr)

Description

This function frees the memory allocated for the given FILE_PTR (which was returned
when the application called fopen() on a file). It also updates the date, time, and size of
the file on the disk.

When the application no longer needs to use the device driver, it can close the device
driver and uninstall it. The function fclose() is used to close the device driver if the
device driver FILE_PTR is passed as a parameter. The function fails if any files are still
open on the device.

Return Codes for MFS
» JO_EOF
* file_ptr was invalid.

* _SHARING_VIOLATION

* Files are open on the device.

Example: MFS
See fopen().

Example: Partition Manager Device Driver
pmgr fd ptr = fopen ("PM:", NULL);

/* End of application. */
fclose (pmgr fd ptr);
_io part mgr uninstall ("PM:");

3.7 fopen

Opens the device or file.
Synopsis

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 24

NXP Semiconductors MQX MFS User’s Guide

FILE PTR io fopen(
/*[IN] Name of the device or file to open */
/* Must be identical to the name that was used */
/* to install the device driver */
char * open type ptr,
/*[IN] I/O parameter to pass to device initialization */
/* This parameter is for extra parameters. It is only */
/* used when opening files */
/* Must be NULL for the partition manager */
char * open mode ptr)

This function opens the specified device driver for MFS or the partition manager. You
must install the device driver before you call the function. Opening the device returns a
FILE_PTR for the device that can be used in input/output control commands (see ioctl).

The first time fopen() is called on the device driver, it opens the device driver. Each
subsequent call is used to open a file. This means that you must first call fopen() with the
device name (just once to open the device) with NULL as the open_mode_ptr, and then
every other call will be to open a file. Each of these other calls should include the device
name, along with a specific flag for the open_mode_ptr.

Opening a file returns a FILE_PTR for that file. This is used to read and write to the file.
All the standard read and write functions work on files such as write(), read(), fscanf(),
fputc(), and so on.

Here is a list of the standard MQX RTOS functions that can be used:

_io_clearerr(), _io_fclose(), _io_feof(), _io_ferror(), _io_fflush(), _io_fgetc(),
_io_fgetline(), _io_fgets(), _io_fopen(),_io_fprintf(), _io_fputc(), _io_fputs(),
_io_scanf(), _io_fseek(), _io_fstatus(), _io_ftell(), _io_fungetc(), _io_ioctl(),
_io_printf(), _io_putc(), _io_read(), _io_scanf(), _io_sprintf(), _io_sscanf(),
_io_vprintf(), _io_vfprintf(), _io_vsprintf(), _io_write().

To open a file, you must pass the name of the device followed by the name of the file. To
open the file data.txt in the current directory:

fd ptr = fopen ("MFSl:data.txt", "w");
To open the file March2000results data in the MFSI:\data\march directory:
fd ptr = fopen ("MFS1l:\data\march\March2000results.data");

Here is a list of different options for the second parameter:

Option | Description

NULL | Mode string is omitted when opening the device(either MFS or the partition manager).

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 25

NXP Semiconductors MQX MFS User’s Guide

"w" Open a file in "write-only" mode; overwrite an existing file.
"w+" Open a file in "read-write" mode; overwrite an existing file.

"r" Open an existing file in "read-only" mode.

"r+" Open an existing file in "read-write" mode.

"a" Open a file in "write-only" mode for appending; seek to the end of file is performed atomically prior each write.
"a+" Open a file in "read-write" mode for appending; seek to the end of file is performed atomically prior each write.
"n" Open a new file in "write-only" mode.
"n+" Open a new file in "read-write" mode. Returns an error if the file already exists.

"x" Deprecated. This open mode was previously used to create temporary files with auto-generated names, which is

not supported anymore. The application must generate a file name for a temporary file and to remove the
temporary file after it is not used anymore..

Returns

Returns a FILE _PTR to the new file or to the device on success.
Returns NULL on failure and calls _task_set_error() to set the task error code.

Example: MFS

Open the MFS device driver and open a file on the device.

char buffer[100] = "This a test file";

char buffer2[100];

/* Open the MFS device driver: */

mfs fd ptr = fopen("MFS1:", NULL);

if (mfs fd ptr == NULL) {
printf ("Error opening the MFS device driver!");
_mgx_exit (1);

/* Open file on disk in the current directory and write to it: */
fd ptr = fopen ("MFSl:myfile.txt", "w+");

write (fd ptr, buffer, strlen (buffer));

read (fd ptr, buffer2, strlen(buffer));

/* Close the file: */
error code = fclose(fd ptr);

/* Open other files, create directories, and so on. */

/* The application has done all it needs. */

/* Close the MFS device driver and uninstall it: */

error code = fclose(mfs fd ptr);

if (!error code) {
error code = io mfs uninstall ("MFS1:");

} else if (error code == MFS SHARING VIOLATION) {

printf ("There are open files on the device. Call fclose on their
handles before attempting to fclose the device driver");

}

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 26

NXP Semiconductors MQX MFS User’s Guide

Example: Partition Manager Device Driver
The example assumes that the partition manager is already installed.

pmgr fd ptr = fopen ("PM:",NULL) ;

3.8 ioctl

Issues a control command.
Synopsis

int32 t io ioctl(
/*[IN] Stream to perform the operation on */

FILE PTR file ptr,
/*[IN] I/O control command */
uint32 t cmd,

/*[IN] I/O control-command parameters */

uint32 t * param ptr)
The first parameter is a FILE_PTR, returned by calling fopen() for the device driver,
which can either be the handle of a specific file, or the handle of the device driver itself.
It varies depending on which command is used. The third parameter is a uint32_t *.

Depending upon the input/output control command, it is usually a different kind of
pointer cast to a uint32_t *. For example, it might be a char *, a pointer to a structure, or
even a NULL pointer.

|CAUTION |You must ensure that the _io_ioctl call is used correctly for the specified control command.

3.8.1 Input/Output Control Commands for MFS

Together with the MQX RTOS input/output control commands, MFS also includes the
following input/output control commands.

3.8.1.1 10_IOCTL_BAD_CLUSTERS

This command gets the number of bad clusters on the drive.

result = ioctl (mfs fd ptr,
I0_IOCTL BAD CLUSTERS,

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 27

NXP Semiconductors MQX MFS User’s Guide

(uint32 t *) g&bad clusters);

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the
MEFS device driver. The mfs_fd_ptr must correspond to the disk, on which the bad
clusters are to be counted. The third parameter is a pointer to unsigned 32 bit word where
number of bad clusters is to be stored.

3.8.1.2 10_IOCTL_CHANGE_CURRENT_DIR

This command changes the current directory.

error code = ioctl(mfs fd ptr,

IO IOCTL_ CHANGE CURRENT DIR,

(uint32 t *) pathname) ;
If pathname begins with a directory separator, it is assumed that pathname represents the
complete directory name. If pathname does not begin with a directory separator,
pathname 1s assumed to be relative to the current directory. The third parameter is a char
* (to a directory name) cast to a uint32_t *.

The directory path must exist for the change to succeed.
Errors
* MFS_INVALID_LENGTH_IN_DISK_OPERATION
* Path name is too long. The full path name, including the filename, cannot be

longer than 260 characters.

Example

char pathname = "\\docs";

error code = ioctl (mfs fd ptr,
IO IOCTL CHANGE CURRENT DIR,
(uint32 t *) pathname);

3.8.1.3 I10_IOCTL_CREATE_SUBDIR

This command creates a subdirectory in the current directory.

error code = ioctl(mfs fd ptr,
IO IOCTL_CREATE SUBDIR,
(uint32 t *) "\temp\newdir");

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 28

NXP Semiconductors MQX MFS User’s Guide

A path name can be specified to create the subdirectory in a different directory. The
parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the MFS
device driver corresponding to the disk on which to operate. The third parameter is a char
* (to a directory name) cast to a uint32_t *

All directories in the path, except the last one, must exist. The last directory in the path
must not exist as either a directory or a file.

Errors
e MFS CANNOT _CREATE DIRECTORY

* There was an error creating the subdirectory.

3.8.1.4 10_IOCTL_DEFAULT_FORMAT

This command formats the drive by using default parameters.

error code = ioctl(mfs fd ptr,
IO IOCTL DEFAULT FORMAT,
NULL) ;

The command deletes all files and subdirectories on the drive. The parameter mfs_fd_ptr
is the FILE_PTR returned when fopen() was called on the MFS device driver, which
corresponds to the disk on which to operate. The default parameters are:

* PHYSICAL_DRIVE = 0x80

* MEDIA_DESCRIPTOR = 0xf8

* BYTES_PER_SECTOR = device sector size

* SECTORS_PER_TRACK = 0x00

* NUMBER _OF_HEADS = 0x00

* NUMBER_OF_SECTORS = number of device sectors - RESERVED SECTORS

* HIDDEN_SECTORS =0

* RESERVED_SECTORS =1 if NUMBER_OF_SECTORS < 2097152, 32 otherwise

Errors
* MFS SHARING_VIOLATION

» Some files are open on the drive.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 29

NXP Semiconductors MQX MFS User’s Guide

Example

error code = ioctl (mfs fd ptr, IO IOCTL FORMAT,NULL);

3.8.1.5 I0_IOCTL _DELETE_FILE
This command deletes a file on the disk. Wildcard characters are not valid in the

filename.

error code = io ioctl(mfs fd ptr,
I0_IOCTL DELETE FILE,
(uint32 t *) "filename");

The mfs_fd_ptr is the FILE_PTR returned from fopen() that opened the MFS device. The
third parameter points to a filename which can include a path/ (for example /backup/
oldfiles/myfile .txt). Long filenames and long path names are supported. The file must
reside on the drive that corresponds to mfd_fd_ptr.

Any currently open handles to this file become invalid, that is, subsequent file operations
using a file handle of a deleted file result in an error.

Errors
e MFS OPERATION _NOT _ALLOWED

3.8.1.6 10_IOCTL_FAT_CACHE_OFF
Obsolete. MFS does not use dedicated FAT buffers anymore.

3.8.1.7 10_IOCTL_FAT_CACHE_ON
Obsolete. MFS does not use dedicated FAT buffers anymore.

3.8.1.8 I10_IOCTL_FIND_FIRST_FILE, IO_IOCTL_FIND_NEXT_FILE
The IO_IOCTL _FIND FIRST FILE command searches for a file on the disk.
The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 30

NXP Semiconductors MQX MFS User’s Guide

MES device driver. The third parameter is a pointer to the MFS_SEARCH_PARAM
structure. See structure definitions for details.

If a file is found, use the input/output control command,

I0 _IOCTL_FIND NEXT FILE, to keep searching for more files which match the same
criteria. The third parameter for the IO_IOCTL_FIND_NEXT_FILE is a pointer to the
MFS SEARCH_ DATA structure used in the IO_IOCTL_FIND_FIRST FILE command.

The filename can include wildcard search characters.

When searching for files, the file path search string that is passed in the
MFS_SEARCH_PARAM structure is used. Therefore, it must not be freed or changed if
you plan to subsequently use IO _IOCTL _FIND NEXT FILE.

The search criteria for the attribute field of the MFS SEARCH PARAM structure 1s
defined in the following table:

Attribute: Return these types of entries:
MFS_SEARCH_NORMAL Non-hidden non-system files and
directories
MFS_SEARCH_READ_ONLY Read only files and directories
MFS_SEARCH_HIDDEN Hidden files and directories
MFS_SEARCH_SYSTEM System files and directories
MFS_SEARCH_VOLUME Volume label only
MFS_SEARCH_SUBDIR Non-hidden non-system directories
MFS_SEARCH_ARCHIVE Archive files and directories
MFS_SEARCH_EXCLUSIVE Match exactly all remaining attributes
MFS_SEARCH_ANY All files and directories
MFS_SEARCH_LFN Extract long filename

The search bit mask can be a combination of all search attributes. The evaluation of the
bit mask is done in the following order:

1. If mask includes MFS SEARCH_ANY, then all disk entries match.

2. If mask includes MFS SEARCH_VOLUME, then only the volume label entry
matches.

3. If mask includes MFS SEARCH EXCLUSIVE, then there must be an exact match
of the remaining attributes.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 31

NXP Semiconductors MQX MFS User’s Guide

4. If mask is MFS_ SEARCH_NORMAL, then all non-system, non-hidden files and
directories, match.

5. If mask is MFS_ SEARCH_SUBDIR, then all non-system, non-hidden directories,
match.

6. Otherwise mask must be subset of disk entry attributes to produce a match.

The search results are written into the MFS_SEARCH_DATA structure addressed by
SEARCH_DATA_PTRmember of the MFS_ SEARCH PARAM structure. Results of
repetitive execution of IO_IOCTL_FIND_NEXT command are written over the previous
results.

The results of file searches are written into this data structure.
MFS SEARCH DATA Fields

ATTRIBUTE

File entry attribute byte.

TIME
File entry time, as described in /O_IOCTL_GET_DATE_TIME.

DATE
File entry date, as described in /IO_IOCTL_GET_DATE_TIME.

FILE_SIZE
Size of the file in bytes.

NAME|[24]

Short name of the file in the format filename filetype as null terminated string in UTF-8
encoding.

In addition to that, when MFS _SEARCH_LFN attribute is set the long filename is
extracted to the caller allocated buffer specified by LFN BUF and LFN BUF LEN of
the MFS SEARCH_PARAM structure. The long filename is stored as null terminated
string in UTF-8 encoding. If the buffer is not of sufficient length, the long filename is not
extracted.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 32

NXP Semiconductors MQX MFS User’s Guide

Errors
e MFS INVALID MEMORY BLOCK ADDRESS
* The MFS _SEARCH DATA_PTR in the MFS SEARCH_ PARAM is invalid.

Example

List all files and subdirectories in a directory.
MFS SEARCH DATA search data;

MFS SEARCH PARAM search;

char filepath = "*.*";

search.ATTRIBUTE = MFS SEARCH ANY;
search.WILDCARD = filepath;
search.SEARCH DATA PTR = &search data;
error code = ioctl(mfs fd ptr, IO IOCTL FIND FIRST FILE,
N (uint32 t *) &search); -
while (error code == MFS NO ERROR) {
printf ("$-12.12s %6lu %021u-%021u-%041u %021u:%021u:%021u
\n", search data.NAME, search data.FILE SIZE,
(uint32 t) (search data.DATE & MFS MASK MONTH) >>
MFS_SHIFT MONTH, B B
(uint32 t) (search data.DATE & MFS MASK DAY) >>
MFS SHIFT DAY,
(uint32 t) ((search data.DATE & MFS MASK YEAR) >>
MFS SHIFT YEAR) + 1980,
(uint32 t) (search data.TIME & MFS MASK HOURS) >>
MFS_SHIFT HOURS, B B
(uint32 t) (search data.TIME & MFS MASK MINUTES) >>
MFS SHIFT MINUTES,
(uint32 t) (search data.TIME & MFS MASK SECONDS) << 1);
error_code = ioctl (mfs_fd ptr, IO IOCTL FIND NEXT FILE,
(uint32 t *) &search data);

3.8.1.9 I0_IOCTL_FLUSH_FAT
Obsolete. MFS does not use dedicated FAT buffers anymore.

3.8.1.10 I10_IOCTL_FORMAT

This command formats the drive according to the given specifications.

error code = ioctl(mfs fd ptr,
I0_TOCTL_FORMAT,
(uint32 t *) &format struct);

The command deletes all files and subdirectories on the drive. The parameter mfs_fd_ptr

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 33

NXP Semiconductors MQX MFS User’s Guide

is the FILE_PTR returned when fopen() was called on the MFS device driver, which
corresponds to the disk on which to operate. The third parameter is a pointer to the
MFS_IOCTL_FORMAT_PARAM structure cast to the uint32_t *. The only field in the
MFS IOCTL_FORMAT PARAM structure that must be initialized 1s the FORMAT PTR
field. See the structure descriptions for details.

Errors
s MFS SHARING_VIOLATION

» Some files are open on the drive.

Example

MFS_IOCTL_FORMAT PARAM format struct;
MFS_FORMAT DATA MFS_format =
{
/* PHYSICAL DRIVE; */ PHYSICAL DRI,
/* MEDIA DESCRIPTOR; */ MEDIA DESC,
/* BYTES_PER SECTOR; */ BYTES PER SECT,
/* SECTORS PER TRACK; */ SECTS PER TRACK,

/* NUMBER OF HEADS; */ NUM OF HEADS,
/* NUMBER OF SECTORS; */ 1000, /* depends on drive */
/* HIDDEN SECTORS; */ HIDDEN SECTS,

/* RESERVEDisECTORS; */ RESERVEDfSECTS
bi
format struct.FORMAT PTR = &MFS format;
error code = ioctl(mfs fd ptr, IO IOCTL FORMAT,
(uint32 t *) &format struct);

3.8.1.11 10_IOCTL_FORMAT _TEST

This command formats the drive and counts the bad clusters on a disk.

error code = ioctl (mfs fd ptr,
I0_IOCTL FORMAT TEST,
(uint32 t *) &format struct);

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the
MES device driver, which corresponds to the device on which to operate. The third
parameter is a pointer to the MFS_IOCTL_FORMAT_PARAM structure cast to the
uint32_t *. Both fields of the MFS_IOCTL_FORMAT_PARAM structure must be
initialized (FORMAT_PTR and COUNT_PTR). See structure descriptions for details.

Errors
« MFS SHARING_ VIOLATION

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 34

NXP Semiconductors MQX MFS User’s Guide

* Files are open on the drive.

Example
uint32 t bad cluster count;
MFS IOCTL FORMAT PARAM format struct;
MFS_FORMAT DATA MFS_ format =
{

/* PHYSICAL DRIVE; */ PHYSICAL DRI,

/* MEDIA DESCRIPTOR; */ MEDIA DESC,
/* BYTES PER SECTOR; */ BYTES PER SECT,
/* SECTORS PER TRACK; */ SECTS PER TRACK,

/* NUMBER OF HEADS; */ NUM OF HEADS,
/* NUMBER OF SECTORS; */ 1000, /* depends on disk */
/* HIDDEN SECTORS; */ HIDDEN SECTS,

/* RESERVED SECTORS; */ RESERVED SECTS
i
format struct.FORMAT PTR = &MFS format;
format struct.COUNT PTR = &bad cluster count;
error code = ioctl (mfs fd ptr, IO IOCTL FORMAT,

(uint32 t *) &format struct);

if (l!error code)
printf ("The count of bad clusters is: %d\n", bad cluster count);

3.8.1.12 10_IOCTL_FREE_SPACE, I0_IOCTL_FREE_CLUSTERS

This command gets the count of free space on the disk in bytes or in clusters.

result = ioctl(mfs fd ptr,
I0_IOCTL FREE SPACE,
&space 64);

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the
MFS device driver. It should correspond to the disk on which the free space is to be
calculated. The third parameter is an pointer to uint64 t which is filled with 64-bit value
representing free space in bytes.

Alternatively, a combination of /O_IOCTL_FREE_CLUSTERS and
1O_IOCTL_GET_CLUSTER_SIZE may be used to determine the free space size of the
drive in bytes by using long (64-bit) arithmetic.

3.8.1.13 10_IOCTL_GET_CLUSTER_SIZE

This command gets the size of clusters in bytes.
result = ioctl (mfs fd ptr,

I0 IOCTL GET CLUSTER SIZE,

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 35

NXP Semiconductors MQX MFS User’s Guide

&cluster size);

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the
MES device driver. It should correspond to the disk for which the cluster size should be
returned. The third parameter is a pointer to a uint32_t * to pre-allocated space in which
to store the cluster size.

3.8.1.14 10_IOCTL_GET_CURRENT DIR

This command gets the path name of the current directory on the MFS device.

error code = ioctl(mfs fd ptr,

IO IOCTL GET CURRENT DIR,

(uint32 t *) pathname);
The drive and drive separator are not included in the filename (for example, "d:" is not
returned). The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called
on the MFS device driver corresponding to the disk on which to operate. The third
parameter is a char *, to the -allocated space in which to store the current directory, cast
to a uint32_t *.

Example

char pathname[261];

error code = ioctl(mfs fd ptr, IO IOCTL GET CURRENT DIR,
- (uint32 t *) pathname);

printf ("The current directory is: %s\n", pathname);

3.8.1.15 10_IOCTL_GET DATE_TIME

This command gets the current date and time associated with the file.

error code = ioctl(fd ptr,

IO IOCTL GET DATE TIME,

(uint32 t *) sdate);
The first parameter is the FILE_PTR of the file for which the date or time is to be
retrieved. The third parameter is a pointer to a MFS_DATE_TIME_PARAM structure
that 1s cast to a uint32_t *. Both fields of the structure must be filled in. See structure
definitions for details.

The bits of the date and time words are defined as follows:

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 36

NXP Semiconductors MQX MFS User’s Guide

Time word Date word
Bits Meaning Bits Meaning
4-0 0-29, 2 second 4-0 1-31days
increments
10-5 0 — 59 minutes 8-5 1-12 month
15-11 0 - 23 hours 15-9 0-119 year
(1980 — 2099)

Example
uint32 t error code;
uintl6 t date word, time word;

MFS DATE TIME PARAM date;
date.DATE PTR = &date word;
date.TIME PTR = &time word;

error code = ioctl(fd ptr, IO IOCTL GET DATE TIME,
(uint32 t *) &date);
if (!error code)
printf ("%$021u-%021u-%041u %021u:%021u:%021u \n",
(uint327t)(date7word & MFS MASK MONTH) >> MFS SHIFT MONTH,

(uint32 t) (date word & MFS MASK DAY) >> MFS SHIFT DAY,
(uint32 t) ((date word & MFS MASK YEAR) >> MFS SHIFT YEAR)
+ 1980,

(uint32 t) (time word.TIME & MFS MASK HOURS) >>
MFS SHIFT HOURS,

(uint32 t) (time word.TIME & MFS MASK MINUTES) >>
MFS SHIFT MINUTES,

(uint32 t) (time word.TIME & MFS MASK SECONDS) << 1);

3.8.1.16 10_IOCTL_GET_DEVICE_HANDLE

This command gets the handle of the low-level device which this instance of the file
system is operating on.

result = ioctl (mfs fd ptr,
IO IOCTL GET DEVICE HANDLE,
&handle) ;

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the
MEFS device driver. The third parameter is a pointer to a FILE_PTR (cast to a uint32_t *)
which points to pre-allocated space in which to store the device handle.

3.8.1.17 10_IOCTL_GET_FAT_CACHE_MODE,

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 37

NXP Semiconductors MQX MFS User’s Guide

I0_IOCTL_SET_FAT_CACHE_MODE
Obsolete. MFS does not use dedicated FAT buffers anymore.

3.8.1.18 10_IOCTL_GET _FILE_ATTR, I0_IOCTL_SET_FILE_ATTR

These commands get or set the attributes of a file on disk.

error code = ioctl(mfs fd ptr,
I0_IOCTL GET FILE ATTR,
(uint32 t *) g&attr);
error code = ioctl(mfs fd ptr,
I0_TOCTL SET FILE ATTR,
(uint32 t *) & attr);

An application cannot set the volume or directory bits of the attribute char. The first
parameter is the FILE_PTR of the MFS device driver that corresponds to the disk on

which the file whose attributes are to be read or written is located. The third parameter is
a pointer to a MFS_FILE_ATTR_PARAM structure. Both fields of the structure must
be filled in. See the structure definitions for details.

Example

MFS FILE ATTR PARAM attr;

uint32 t error code;

char =~ filepath = "\temp\myfile.txt";
unsigned char attribute;

attr.ATTRIBUTE PTR = &attribute;

attr.PATHNAME = filepath;

/* Get the attribute: */

error code = ioctl(mfs fd ptr, IO IOCTL GET FILE ATTR,
(uint32 t *) g&attr);

if (error code == MFS NO ERROR) {
printf ("Attributes of %s: %s%s%s%s%s%s\n",

filepath,

(attribute & MFS ATTR READ ONLY) ? "R/O ":"",
(attribute & MFS ATTR HIDDEN FILE) ? "HID ":"",
(attribute & MFS ATTR SYSTEM FILE) ? "Sys ":"",
(attribute & MFS ATTR VOLUME NAME) ? "VOL ":"",
(attribute & MFS ATTR DIR NAME) ? "DIR ":"",
(attribute & MFS_ATTR ARCHIVE) ? "ARC ":"");

}
/* Set file's attributes: */

if (!error code)

attribute = MFS ATTR READ ONLY | MFS ATTR HIDDEN FILE;
error code = ioctl(mfs fd ptr, IO IOCTL SET FILE ATTR,

}

MQX MFS User’s Guide -

(uint32 t *) & attr);

All information provided in this document is subject to legal disclaimers

2020 NXP Semiconductors. All rights reserved.

USER GUIDE

Rev. 5.2 - 07/2020

38

NXP Semiconductors MQX MFS User’s Guide

3.8.1.19 10_IOCTL_GET_LFN

This command gets the long filename where the path name is in 8.3 representation.

error code = ioctl (mfs fd ptr,
I0_TOCTL GET LFN,
(uint32 t *) &lfn struct);

The first parameter is the FILE_PTR of the MFS device driver that corresponds to the
disk on which the operation is to take place. The third parameter is the char * to the path
name of the of file which we want the long filename of. It is cast to the uint32_t *.

Example

MFS GET LFN STRUCT 1fn_struct;

char 1fn[FILENAME SIZE + 1];

char filepath = "\\temp\longfi~1.txt";
uint32 t error code;

1fn struct.PATHNAME = filepath;
1fn struct.LONG FILENAME = 1fn;

error code = ioctl(mfs fd ptr, IO IOCTL GET LFN,
(uint32 t *) &lfn struct);

if (!error code) {
printf ("$s\n", 1fn);
}

3.8.1.20 I10_IOCTL_GET_VOLUME

This command gets the volume label.

error code = ioctl(mfs fd ptr,
I0_TOCTL GET VOLUME,
(uint32 t *) label);

The first parameter is the FILE_PTR of the MFS device driver that corresponds to the
disk on which the operation is to take place. The third parameter is a char * to an

allocated space with 12 free bytes in which the volume label will be written. It is cast into
auint32 _t *.

Example

charlabel[12];

error code = ioctl (mfs fd ptr, IO IOCTL GET VOLUME,
B (uint32 t *) label);

if (l!error code) {

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 39

NXP Semiconductors MQX MFS User’s Guide

printf ("The volume label is: %d\n", label);

/* Now set the volume label */

strcpy (label, "newlabel");

error code = ioctl (mfs fd ptr, IO IOCTL SET VOLUME,
B T (uint32 t *) label);

}

3.8.1.21 10_IOCTL_GET_WRITE_CACHE_MODE,
IO_IOCTL_SET_WRITE_CACHE_MODE

This command gets or sets the current mode of the data and directory caches.

result = ioctl (mfs fd ptr,
IO IOCTL GET WRITE CACHE MODE,
&mode) ;

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the
MES device driver. The third parameter is a _mfs cache policy pointer (cast to a
uint32_t *) which points to a pre-allocated space in which to store (when using get) or
obtain (when using set) the mode of the write caches.

3.8.1.22 10_IOCTL_LAST_CLUSTER

This command gets the number of clusters on a drive.

result = ioctl(mfs fd ptr,
IO IOCTL LAST CLUSTER,
(uint32 t *) &last cluster);

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the
MFS device driver. The third parameter is a pointer to 32 bit word where the number of
last cluster is to be stored.

3.8.1.23 10_IOCTL_REMOVE_SUBDIR

This command removes a the subdirectory in the current directory.

error code = ioctl(mfs fd ptr,
IO IOCTL_REMOVE SUBDIR,
(uint32 t *) "\temp\deldir");

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 40

NXP Semiconductors MQX MFS User’s Guide

A path name can be specified to remove the subdirectory in a different directory. The
subdirectory must be empty and cannot be the current directory or the root directory. The
parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the MFS
device driver corresponding to the disk on which to operate. The third parameter is the
char * (to a directory name) cast into the uint32_t *.

Errors
e MFS ATTEMPT TO REMOVE CURRENT DIR

* The directory specified is the current directory. No changes took place.

3.8.1.24 10_IOCTL_RENAME_FILE

This command renames a file or moves a file if path names are specified.

error code = ioctl(mfs fd ptr,
I0_TOCTL RENAME FILE,
(uint32 t *) &rename struct);

No wildcard characters are allowed in the path names. The parameter mfs_fd_ptr is the
FILE_PTR returned, when fopen() was called on the MFS device driver corresponding to
the drive on which to operate. The third parameter is a pointer to the
MFS_RENAME_PARAM structure cast to the uint32_t *. Both fields in this structure
must be filled out. See structure definitions for details.

A file 1s moved if the directory paths are different and the file names are the same. A file
1s renamed if the directory paths are the same and the file names are different.

A directory can be renamed, but cannot be moved.

Example

MFS RENAME PARAM rename struct;

char o oldpath[PATHNAME SIZE + 1],
newpath [PATHNAME SIZE + 1];

uint32 t error code;

rename struct.OLD PATHNAME
rename struct.NEW PATHNAME

oldpath;
newpath;

/* Rename a file: */
strcpy (oldpath, "myfile.txt");

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 41

NXP Semiconductors MQX MFS User’s Guide

strcpy (newpath, "myfile.bak");
error code = ioctl(mfs fd ptr, IO IOCTL RENAME FILE,
(uint32 t *) &rename struct);

/* Move the file: */
if (!error code) {
strcpy (oldpath, "myfile.bak");
strcpy (newpath, "\temp\temp.tmp") ;
error code = ioctl (mfs fd ptr, IO IOCTL RENAME FILE,
N (uint32_t *) &rename struct);

3.8.1.25 10_IOCTL_SET DATE_TIME

This command sets the time and date of an open file.

error code = ioctl (fd ptr,

I0_IOCTL SET DATE TIME,
(uint32 t *) s&date);

The first parameter is the FILE_PTR of the file for which to set the date. The third
parameter is a pointer to the MFS_DATE_TIME_PARAM structure that is cast to the
uint32_t *. Both fields of the structure must be filled in. See the structure definitions for
more information.

Example
See IO_IOCTL_GET_DATE_TIME for details.

MFS DATE TIME PARAM date time;
uint32 t error code;
uintlé t date word, time word;

date.DATE PTR
date.TIME PTR

&date word;
&time word;

error code = ioctl(fd ptr, IO IOCTL GET DATE TIME,
(uint32 t *) &date);

3.8.1.26 10_IOCTL_SET_VOLUME

This command sets the volume label.

error code = ioctl(mfs fd ptr,
I0_TOCTL SET VOLUME,
(uint32 t *) label);

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 42

NXP Semiconductors MQX MFS User’s Guide

The first parameter is the FILE_PTR of the MFS device driver that corresponds to the
disk on which the operation is to take place. The third parameter is the char * to the new
volume name to be set with a maximum of 11 characters. It is cast to the uint32_t *.

3.8.1.27 10_IOCTL_TEST_UNUSED_CLUSTERS

This command tests the unused clusters on the drive for bad clusters.

error code = ioctl (mfs fd ptr,
IO IOCTL TEST UNUSED CLUSTERS,
&count of unused clusters);

The parameter mfs_fd_ptr is the FILE_PTR returned when fopen() was called on the
MEFS device driver corresponding to the drive, on which to test the unused clusters. The
third parameter is the uint32_t * to a variable, in which the count of bad clusters is stored.
The bad clusters are marked in the file allocation table so that they are not used to store
data.

3.8.1.28 10_IOCTL_WRITE_CACHE_ON,
I0_IOCTL_WRITE_CACHE_OFF

Deprecated: use IO_IOCTL_SET_WRITE_CACHE_MODE.

3.8.2 Input/Output Control Commands for the Partition Manager
Device Driver

In addition to the MQX RTOS input/output control commands, the partition manager
device driver includes the following.

3.8.2.1 10_IOCTL_CLEAR_PARTITION

This command removes a partition from the disk.

The third ioctl() parameter is a pointer to the uint32_t variable and contains the number
of the partition to remove. This IOCTL call is valid only if no partition is currently
selected, i.e., the handle allows for access to the whole underlying device.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 43

NXP Semiconductors MQX MFS User’s Guide

Example

Remove the third partition from the disk.

part num =
error code

’

uint32 t part num;
3

ioctl (pmgr fd ptr, IO IOCTL CLEAR PARTITION,
&part num) ;

3.8.2.2 10_IOCTL_GET_PARTITION

This command gets partition information to the disk.

The third ioctl() parameter is the PMGR_PART_INFO_STRUCT pointer that is cast to
uint32_t *. The only field in the structure that must be filled in is the SLOT field. It must
contain a value between zero and four and represents the partition number for which
information is requested. If the SLOT field is zero then information about currently
selected partition is retrieved. The other fields are overwritten with the retrieved data.
HEADS, CYLINDERS, and SECTORS are set to zero, because such information cannot
be retrieved from the disk.

3.8.2.3 I10_IOCTL_SET_PARTITION
This command sets partition information to the disk.

The third ioctl() parameter is the PMGR_PART_INFO_STRUCT pointer that is cast to
uint32_t *.

typedef struct pmgr part info struct

/* Partition slot (1 to 4) */

unsigned char SLOT;

/* Heads per Cylinder */
unsigned char HEADS;

/* Sectors per head */
unsigned char SECTORS;

/* Cylinders on the device */

uintlé t CYLINDERS;

/* Partition type (0 not used, 1 FAT 12 bit, 4 FAT 16 bit, */
/* 5 extended, 6 huge - DOS 4.0+, other = unknown 0S) */
unsigned char TYPE;

/* Start sector for partition, relative to beginning of disk */
uint32 t START SECTOR;

/* Partition length in sectors */

uint32 t LENGTH;

} PMGR PART INFO STRUCT, * PMGR PART INFO STRUCT PTR;

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 44

NXP Semiconductors MQX MFS User’s Guide

The SLOT field must be filled in with the partition number to set.

The HEADS, SECTORS, and CYLINDERS fields are optional. They represent data that
the partition manager uses to write the partition, but the data is used only by MS-DOS
operating systems. Because Microsoft Windows does not use the fields on the disk, fill in
the fields only if the disk is to be used with the MS-DOS operating system.

The TYPE field must be set to one of the following. Types that are marked with + are
recommended when you create a partition.

+ PMGR_PARTITION_FAT 12 BIT
PMGR_PARTITION_FAT 16 _BIT Old FAT16 (MS-DOS 3.3 and previous)
PMGR_PARTITION_HUGE Modern FAT16 (MS-DOS 3.3 and later)
PMGR_PARTITION_FAT32 Normal FAT32
+ PMGR_PARTITION_FAT32_LBA FAT32 with LBA
+ PMGR_PARTITION_HUGE_LBA FAT16 with LBA

The START_SECTOR field must be filled in. It is the physical sector on the device where
the partition should start. For the first partition, is it generally sector 32 (for FAT32) or
sector one (for FAT16 and FAT12). For partitions other than the first, it is the next sector
after the end of the previous partition. You can leave unused sectors between partition,
but they amount to wasted space.

The LENGTH field must be filled in. It contains the length in sectors of the new partition
that is to be created.

This IOCTL call is valid only if no partition is currently selected, i.e. the handle allows
for access to the whole underlying device and there is only a single open handle to the
partition manager instance. This is to prevent possible inconsistence of data if more than
one handle to the partition manager exists.

The partition manager checks validity of the partition table before writing it to the device.
It is thus impossible to create a partition which overlaps another partition. Partitions
which would collide with the new one have to be removed first.

Example

Create two partitions on a disk. The example assumes that the partition manager is
installed and open.

PMGR PART INFO_ STRUCT partiinfo ;
/* Create a 42-Megabyte partition: */
part info.SLOT = 1;

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 45

NXP Semiconductors MQX MFS User’s Guide

part info.TYPE = PMGR PARTITION HUGE LBA;
part info.START SECTOR = 32; B
part info.LENGTH = 84432;
error code = ioctl(pm fd ptr, IO IOCTL SET PARTITION,
(uint32 t *) &part info);
if (error code) {
printf ("\nError creating partition %d!\n Error code: %d",
1, error code);
mgx_exit(1l);
}/* Endif */
/* Create a 5-Megabyte partition: */
part info.SLOT = 2;
part_info.TYPE = PMGR PARTITION FAT 12 BIT;
part_info.START SECTOR = 84464;
part info.LENGTH = 10000;
error code = ioctl(pm fd ptr, IO IOCTL SET PARTITION,
N (uint32_t *) g&part info);
if (error code) {
printf ("\nError creating partition %d!\n Error code: %d",
2, error code);
mgx _exit(1l);
}/* Endif */

3.8.24 10_IOCTL_USE_PARTITION
This command directly sets partition parameters to use with the handle.

The third ioctl() parameter is the PMGR_PART_INFO_STRUCT pointer that is cast to
uint32_t *.

The information passed to this IOCTL call directly sets partition information associated
with the handle without touching the underlying device. This provides the possibility to
restrict access through the handle to certain parts of the underlying device, even for

media, without partition table in the first sector, i.e., the device may be partitioned in
software.

Seek to the beginning of the just defined partition is performed when this IOCTL gets
executed.

3.8.2.5 10_IOCTL_SEL_PART

This command selects partition to use with the handle.

The third ioctl() parameter points to uint32_t number, which has to be between zero and
four, and represents the number of partition to select. If zero is specified no partition is
selected, i.e., the whole device is accessible through the handle.

It is not possible to directly select another partition if there is a partition already selected.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 46

NXP Semiconductors MQX MFS User’s Guide

Partition has to be deselected first, 1.e., IO_IOCTL_SEL_PART has to be executed with
pointer to zero as third parameter.

Seek to the beginning of the just selected partition or the device is performed when this
IOCTL gets executed.

3.8.2.6 10_IOCTL_VAL_PART

This command validates partition table and checks partition type.

The third ioctl() parameter may be either NULL or pointer to uint32_t number which has
to be between zero and four.

The IOCTL call checks partition table for validity. Then, it optionally checks type of
partition whether it matches one of the FAT partition types. If the third parameter is
pointer to zero only the partition table validity check is performed. If the third parameter
is NULL, the type check is performed on a currently selected partition.

The IOCTL call with non-NULL third parameter is valid only if no partition is selected,
1.e., the whole device is accessible through the handle.

If the partition type is checked and does not match any of the FAT partition types,
PMGR_UNKNOWN_PARTITION is returned, which indicates that the partition is valid
but does not match any of the FAT types.

3.8.3 Return Codes for MFS

* MFS_ACCESS_DENIED

* Application attempted to modify a read-only file or a system file.
* MFS_ALREADY_ASSIGNED
* MFS_ATTEMPT_TO_REMOVE_CURRENT_DIR

* MFS_BAD_DISK_UNIT

* Operation on a file failed because that file is corrupted.

* MFS_BAD_LFN_ENTRY

* MFS failed to find a complete long file name within two clusters.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 47

NXP Semiconductors MQX MFS User’s Guide

* MFS_CANNOT_CREATE_DIRECTORY

* MFS was unable to create the requested long directory name, usually because an
invalid (illegal) directory name was specified.

* MFS_DISK_FULL
* Disk is full.

* MFS_DISK_IS_WRITE _PROTECTED

* Disk is write protected and could not be written to.

* MFS_EOF

* End of the file has been reached during a read. This is not a failure; it is only a
warning.

« MFS ERROR INVALID DRIVE HANDLE
 The MFS FILE PTR was invalid.

e MFS ERROR INVALID FILE HANDLE
 The MFS FILE PTR was invalid.

* MFS_ERROR_UNKNOWN_FS_VERSION

* The drive contains an advanced FAT32 version. The MFS FAT32 version is not
compatible. (There is currently only one FAT32 version, but this could change in
the future.)

* MFS_FAILED_TO_DELETE_LFN

* MFS failed to completely delete a long file name. This results when MFS can
not locate all of the long file name entries associated with a file.

* MFS_FILE EXISTS

* File already exists with the specified name.

* MFS_FILE NOT_FOUND

* File specified does not exist.

* MFS_INSUFFICIENT_MEMORY
* MFS memory allocation failed. (MQX RTOS is out of memory or it has a

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 48

NXP Semiconductors MQX MFS User’s Guide

corrupted memory pool.)

* MFS_INVALID_CLUSTER_NUMBER

* A cluster number was detected that exceeds the maxumum number of clusters on
the drive (or partition). This may be a result of a corrupted directory entry.

* MFS_INVALID_DEVICE

* The underlying block mode driver does not support the block size command, or
the block size is not legal (neither one of 512, 1024, 2048, or 4096 bytes).

* MFS_INVALID_FUNCTION_CODE

* Not currently used.

* MFS_INVALID_HANDLE
* One of the fields in a given FILE_PTR structure was invalid.

* MFS_INVALID_LENGTH_IN_DISK_OPERATION

* Requested directory exceeds maximum in change-directory operation.

e MFS INVALID MEMORY BLOCK ADDRESS
* SEARCH_DATA_PTR is NULL on find-first or fine-next file operation.

e MFS INVALID PARAMETER
* One or more of the parameters passed to _io_ioctl() is invalid.

* MFS_LOST_CHAIN

* This 1s not a critical error. It means there is a lost cluster chain which results in
some wasted space. Operations on the drive continue normally.

* MFS_NO_ERROR

* Function call was successful.

* MFS_NOT_A_DOS_DISK
* Disk is not formatted at FAT12, FAT16, or FAT32 file system.

* MFS_NOT_INITIALIZED

* Not currently returned.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 49

NXP Semiconductors MQX MFS User’s Guide

* MFSOPERATION_NOT_ALLOWED

* Returned when attempting a write operation when MFS is built in read-only
mode, or a format operation when MFS is built without format functionality, or
an attempt to rename a file to the same name.

* MFS_PATH_NOT_FOUND

 Path name specified does not exist.

* MFS_READ_FAULT

* An error occurred reading from the disk.

* MFS_ROOT_DIR_FULL

* Root directory on the drive has no more free entries for new files.

* MFS_SECTOR_NOT_FOUND

* An error occurred while writing to the disk. The drive was formatted with
incorrect parameters, or the partition table specified incorrect values.

* MFS_SHARING_VIOLATION

* Produced by one of:
* An attempt to close or format a drive that currently has files open.
« An attempt to open a file to write that is already opened.

* MFS_WRITE_FAULT

* An error occurred while writing to the disk.

3.8.4 Return Codes for the Partition Manager Device Driver

* PMGR_INVALID_PARTITION

 The specified partition slot does not describe a valid partition.

* PMGR_INSUF_MEMORY

+ Attempt to allocate memory failed. MQX RTOS is out of memory or has a
corrupt memory pool.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 50

NXP Semiconductors MQX MFS User’s Guide

3.8.5 Other Error Codes

An error was returned from the lower-level device driver.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 51

NXP Semiconductors MQX MFS User’s Guide

Chapter 4
Reference: Data Types

4.1 In This Chapter
Alphabetically sorted data-type descriptions for MFS.

4.2 _mfs_cache_policy

typedef enum {

MFS WRITE THROUGH CACHE=0, // No write caching (only read caching)
MFS MIXED MODE CACHE=1, // Write Caching allowed on file write only
MFS WRITE BACK CACHE=2 // Write Caching fully enabled

} mfs cache policy;

4.3 MFS_DATE_TIME_PARAM

typedef struct mfs date time param

{
uintl6é t * DATE PTR;

uintlé t * TIME PTR;
} MFS DATE TIME PARAM, * MFS DATE TIME PARAM PTR;
A pointer to the structure is used in IO_IOCTL_GET_DATE_TIME and
10 _IOCTL_SET DATE TIME commands.

The first field is the uint16_t * to uint16_t variable in which the date is to be stored (for
get) or read from (for set). The second field is the uint16 t * to uintl6_t variable, in
which the time is to be stored (for get) or read from (for set). See the ioctl description for
details.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 52

NXP Semiconductors MQX MFS User’s Guide

4.4 MFS_FILE_ATTR_PARAM

typedef struct mfs file attr param
{
char * PATHNAME ;
/* Path name and filename of the file */
unsigned char * ATTRIBUTE PTR;
/* pointer to the attribute variable */
} MFS FILE ATTR PARAM, * MFS FILE ATTR PARAM PTR;

A pointer to the structure is used in /IO_IOCTL_GET_FILE_ATTR and
10 _IOCTL_SET FILE ATTR commands.

The first field is the char * to the path name and filename of the file for which you want
to get or set the attribute. The second field is the unsigned char * to the char variable in
which the attribute is read from (for set), or in which the attribute is stored (for get).

4.5 MFS_GET LFN_STRUCT

typedef struct mfs get 1fn struct
{

char * PATHNAME;

/* Path name of the 8.3 name */

char * LONG_FILENAME;

/* pointer to memory block in which to store the long name */
} MFS GET LFN STRUCT, * MFS GET LFN STRUCT PTR;

A pointer to this structure is used in /O_IOCTL_GET_LFN commands.

The first field is the char * to the path name or file name of the file that we want to get
the long file name of. The second field is the char * to pre-allocated space in which to
store the long file name of the requested file.

4.6 MFS_IOCTL_FORMAT PARAM

typedef struct mfs ioctl format

MFS FORMAT DATA PTR FORMAT PTR; /* Points to format data */
uint32 t * COUNT PTR; /* Count the bad clusters */
} MFS IOCTL FORMAT PARAM, * MFS IOCTL FORMAT PARAM PTR;

A pointer to the structure is used in calls to IO_IOCTL_FORMAT and

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 53

NXP Semiconductors MQX MFS User’s Guide

10 _IOCTL_FORMAT TEST commands.

The first field is a pointer to the MFS_FORMAT_DATA structure, explained at the
beginning of this document. The second field is used only for the
1O_IOCTL_FORMAT_TEST command. It is a pointer to the uint32_t variable, in which
the count of bad clusters is stored.

4.7 MFS_RENAME_PARAM

typedef struct mfs rename param

{
char * OLD_ PATHNAME;
char * NEW PATHNAME;

} MFS RENAME PARAM, * MFS RENAME PARAM PTR;

A pointer to the structure used in /O_IOCTL_RENAME_FILE commands.

The first field is the char * to a string that contains the path name and file name of the file
to move or rename. The second field is the char * to the new path name or filename.

4.8 MFS_SEARCH_PARAM

typedef struct mfs search param

{

uint32 t ATTRIBUTE;
char *WILDCARD;
char *LFN_BUF;
uint32 t LFN BUF LEN;

MFS_SEARCH DATA PTR
} MFS_SEARCH PARAM, * MFS_SEARCH PARAM PTR;

A pointer to the structure is used in /IO_IOCTL_FIND_FIRST_FILE commands.

The attribute field unsigned char variable that contains the search attributes specifying
types of directory entries retrieved during the search. The WILDCARD field contains
path and specific filename or wildcard mask. See the /IO0_IOCTL_FIND_FIRST_FILE

command explanation for details.

MQX MFS User’s Guide - All information provided in this document is subject to legal disclaimers 2020 NXP Semiconductors. All rights reserved.

USER GUIDE Rev. 5.2 — 07/2020 54

