[]

2 |

Freescale Semiconductor, Inc.

MCUEZLNKO0508/D

February 1998

MCUez
LINKER
USER'S MANUAL

© Copyright 1998 MOTOROLA and HIWARE AG,; All Rights Reserved

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

Important Notice to Users

While every effort has been made to ensure the accuracy of all information in this document,
Motorola assumes no liability to any party for any loss or damage caused by errors or omissions
or by statements of any kind in this document, its updates, supplements, or special editions,
whether such errors are omissions or statements resulting from negligence, accident, or any other
cause. Motorola further assumes no liability arising out of the application or use of any
information, product, or system described herein; nor any liability for incidental or consequential
damages arising from the use of this document. Motorola disclaims all warranties regarding the
information contained herein, whether expressed, implied, or statiriohyding implied

warranties of merchantability or fitness for a particular purpotorola makes no

representation that the interconnection of products in the manner described herein will not
infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this
description.

Information contained in this document applies to
REVision (0) MCUez.

The computer program contains material copyrighted by Motorola Inc., first published 1997,yand ma

be used only under a license such as the License For Computer Programs (Article 14) contained in

Motorola's Terms and Conditions of Sale, Rev. 1/79.

Trademarks

This document includes these trademarks:

MCUez is a trademark of Motorola Inc.
EXORciser is a trademark of Motorola Inc.

The MCUez development, emulation, and debugging application is based on HI-WAVE; a
software technology developed by HIWARE. HI-WAVE is a registered trademark of HIWARE
AG.

AIX, IBM, and PowerPC are trademarks of International Business Machines Corporation.
SPARC is a trademark of SPARC international, Inc.

Sun and SunOS are trademarks of Sun Microsystems, Inc.

UNIX is a trademark of Novell, Inc., in the United States and other countries, licensed
exclusively through X/Open Company, Ltd.

X Window System is a trademark of Massachusetts Institute of Technology.

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA

CONTENTS
CONTENTS
CHAPTER 1 GENERAL INFORMATION
1.1 INTRODUCTION . . e e e e e 1-1
1.2 FUNCTIONAL DESCRIPTION e e 1-1
1.3 FEATURES e 1-1
1.4 SUPPORT INFORMATION e e 2...1
CHAPTER 2 USER INTERFACE
2.1 INTRODUCTION ..o e e e e 2-1
2.2 INTERACTIVE USER INTERFACE e 2-1
2.2.1 Startingthe MCUez LinKer e e 2-1
2.2.2 Starting from WinEdit or Codewright 2-2
2.2.3 Linker Graphical Interface 2-2 .
2.2.3.1 Window Title 2:3.
2.2.3.2 CONtENt ArCa . . . o o e 2-3.
2.2.3.3 TOOI Bar 2-4
2.2.3.4 Status Bar 2-5
2.2.35 Linker Menu Bar 2-6 ..
2.2.3.6 File MENU e, 2-6
2.2.3.6.1 Importantremarks 2-11
2.2.3.6.2 Save Configuration Dialog.o 2-11
2.2.3.7 Linker MeNUo 2-12 .
2.2.3.8 VIEW MENUo 2-13 .
2.2.3.9 Advanced Options Dialog BOX 2-13
2.2.4 Message Settings Dialog BOX 14... 2-
2.2.4.1 Changing the Class Associated WithaMessage 2-15
2.2.4.2 Specifyingthe InputFile 16 .. 2-
2.2.4.2.1 Using the Editable Combo Box inthe ToolBar. 2-16
2.2.4.2.2 Usingthe Entry File | Link 2-16
2.2.4.2.3 UsingDrag and Dropo oo 2-16
2.2.5 Error Feedback 2-16
2.2.5.1 Error Feedback Using Information From the Linker Window 2-17
2.2.5.2 Error Feedback Using a User-Defined Editor 2-17
2.2.5.2.1 Line Number Can be Specified onthe Command Line.................. 2-17
2.2.5.2.2 Line Number Cannot be Specified on the Command Line 2-17
MCUEZLNK0508/D iii

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.
CONTENTS @ MOTOROLA
CHAPTER 3 ENVIRONMENT VARIABLES
3.1 INTRODUCTION ...ttt e e e e 3-1
3.2 SETTING PARAMETERSttt e 31...
3.3 PATHVARIABLES\ttt 3-2
3.3.1 LINKOPTIONS .. e e e e e 3:2.
3.3.2 GENPATH . . . 3-3
3.3.3 OBIPATH ... 3-3
3.3.4 ABSPATH . .. 3-3
3.3.5 TEXTPATH . .. e e e 3:4
3.3.6 SRECORD 3-5
3.3.7 ERRORFILE e, 3-5
CHAPTER 4 FILES
4.1 INTRODUCTION .. e e e e e e e e e 4-1
4.2 PARAMETER FILE: INPUT e e e e e e e 4-1. ..
4.3 ABSOLUTE FILES: OUTPUT ... e e e e e e e 1...
4.4 MOTOROLA S FILES: OUTPUT e e e e e e e
45 MAP FILES i a 4-2
CHAPTER 5 LINKER OPTIONS AND ISSUES
5.1 INTRODUCTION ... e e e e e e e -1
5.2 -E LINKER OPTION . .. e e e e e e e e 5:2
5.3 -OLINKER OPTION . .. e e e e e e e e e e 5:2
5.4 -M LINKER OPTION e e e e e e e 5-3
55 S LINKER OPTION ... e e e e e e e e e iaaa s 5-3
5.6 -V LINKER OPTION e e e e e e e e e 5-4
5.7 -W1 LINKER OPTION ... e e e e e e e e 5-4.
5.8 -W2 LINKER OPTION ... e e e e e e e 5-4.
5.9 LINKING ISSUES e e e e e e e i 5:5
5.9.1 Object Allocation, 5:5
5.9.1.1 The SEGMENTS BIOCK e
Y MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

Freescale Semiconductor, Inc.
@ MOTOROLA

5.9.1.1.1 SegmentQualifier 5-6
5.9.1.1.2 Segment AlignmeNnt 5-7
5.9.1.1.3 Segment Fill Pattern. 5-9
5.9.1.2 PLACEMENT BIOCKt e e e e 5-9
5.9.1.2.1 SpecifyingaListof Sections 5-10
5.9.1.2.2 SpecifyingalListof Segments 5-10
5.9.2 Allocating User-Defined Sections 5-11

CHAPTER 6 OPERATING PROCEDURES

6.1 INTRODUCTION ... e e e e aa e 6-1
6.2 INITIALIZING THE VECTOR TABLE e 6-1
6.2.1 VECTOR Command e 6-1....
6.2.1.1 Initializing the Vector Table in the Linker PRM File 6-1
6.2.1.2 Initializing the Vector Table in the Assembly Source File
Using a Relocatable Section 6-3
6.2.1.3 Initializing the Vector Table in the Assembly Source File Using
an AbSolUute SECHION 6-6
6.3 SMART LINKING e e s 6-8
6.3.1 Mandatory Linking From an Object 6-8
6.3.2 Mandatory Linking From All Objects DefinedinaFile 6-8
6.3.3 Switching OFF Smart Linking for the Application 6-8
6.4 BINARY FILES BUILDING AN APPLICATION e 6-9
6.4.1 NAMES BIOCK e 6-9
6.4.2 ENTRIES Block 6-9
6.4.3 Linking an Assembly Application 6-10
6.4.4 Warning MESSAgES oot 6-11 .
6.5 THE PARAMETER FILE e 6-13. .
6.5.1 The Syntax of the ParameterFile 13... 6-
6.5.2 Mandatory Parameter File Linker Commands 6-15
6.6 LINKER COMMANDS e 6-16. .
6.6.1 ENTRIES: List of Objects to Link With the Application 6-16
6.6.2 INIT: Specify the Application Entry Point 6-17
6.6.3 LINK - Specify Name ofthe Output File 6-18
6.6.4 MAIN ... 6-19
6.6.5 MAPFILE: Configure the MAP File Content, 6-19
6.6.6 NAMES: List the Files building the Application. 6-21
6.6.7 PLACEMENT: Place Sections Into Segments, 6-22
6.6.8 SEGMENTS: Define Memory Map e 6-23
MCUEZLNK0508/D v

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

Freescale Semiconductor, Inc.
CONTENTS @ MOTOROLA
6.6.8.1 Definingan AlignmentRule 6-25
6.6.8.2 Defininga Fill Pattern 6-26 . .
6.6.9 STACKSIZE: Define Stack Size e 6-27
6.6.10 STACKTOP: Define Stack Pointer Initial Value 6-28
6.6.11 VECTOR: Initialize Vector Table 6-29
6.7 SECTIONS ... e 6-30
6.7.1 Terms: Segments and SeCtionNSst 31.... 6-
6.7.2 Definition of Section e 6-:31
6.7.3 Predefined SeCtions i e 6:31
6.8 EXAMPLES e i, 6-33
6.9 PROGRAM STARTUP e e e e e e 6-34
6.9.1 The Startup DesCriptort e 6-34
6.9.2 User-Defined Startup Structure:civvveen.....236...6
6.9.3 User-Defined Startup ROULINES 37... 6-
6.10 THE MAP FILE e e 6-38
CHAPTER 7 LINKER MESSAGES
7.1 INTRODUCTION .. e e e e e e e e e e 7-1
7.2 LINKER MESSAGES REFERENCE e e e 7-1
Vi MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

Freescale Semiconductor, Inc.

@ MOTOROLA CONTENTS
FIGURES

Figure 2-1. MCUez Linker Tip of The Day Window. i 2-1
Figure 2-2. MCUez Linker Graphical User Interface. 2-2
Figure 2-3. MCUez Linker Tool Bar e e 2:4 ..
Figure 2-4. MCUez Linker Status Bar e o 2-5. ..
Figure 2-5. Configuration Dialog - Global Editor 1...2-
Figure 2-6. Configuration Dialog - Local Editor 8...2
Figure 2-7. Configuration Dialog - Editor Started With Command Line. 2-9
Figure 2-8. Configuration Dialog - Editor Started WithDDE 2-10
Figure 2-9. Save Configuration Dialog Window e 2-11
Figure 2-10. Advanced Options Dialog Window e 2-13
Figure 2-11. Message Settings Dialog WINdOW 2-14
Figure 4-1. Link Process Conceptual Diagram. 2....4-
MCUEZLNK0508/D vii

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

Freescale Semiconductor, Inc.

@ MOTOROLA CONTENTS
TABLES

Table 2-1. Message Group Definitions 2-15. ..
Table 5-1. MCUez Linker Options DeSCIPLiONSo e
Table 5-2. Segment Qualifier Descriptions 5-7. ..
Table 5-3. Segment Alignment Rule Format 8....
Table 6-1. VECTOR Command SYNtaXottt e e 1....
Table 6-2. ENTRIES Block Supported -16. ..
Table 6-3. MAP File Specifiers e e 6-20
Table 6-4. Segment Alignment ltems LiSt -25. ..
Table 6-5. Setting Startup Descriptor Flags 6-35...
Table 6-6. MAP File SeCtions e 6-38
MCUEZLNK0508/D viii

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

CONTENTS

Freescale Semiconductor, Inc.
@ MOTOROLA

For More Information On This Product, MCUEZLNKO508/D

Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA GENERAL INFORMATION

CHAPTER 1
GENERAL INFORMATION

1.1 INTRODUCTION

This manual describes the MCUez Linker. The Linker merges the various object files of an
application into one file; an “absolute file”ABS file for short). The file is termed an
“absolute file” because it contains absolute code (not relocatable code) that can be burnt onto
an EPROM or loaded into the target using the MCUez Debugger.

1.2 FUNCTIONAL DESCRIPTION

Linking is the process of assigning memory to all global objects (functions, global data,
strings and initialization data) needed for a given application and combining these objects into
a format suitable for downloading into a target system or an emulator.

The Linker is a smart linker. It only links those objects actually used by the application.
Various optimization capablities ensure low memory requirements for the linked program.
Unused functions and variables will not occupy memory in the target system. Also,
initialization of global variables is stored in compact form and memory is reserved only once
for equivalent strings.

1.3 FEATURES
The most important features supported by the Linker are:

» Complete control over placement of objects in memory: It is possible to allocate different
groups of functions or variables to different memory areas (Segmentation, please see
section orSectiony

* [|nitialization of vectors.

When linking High level Language modules (C, C++, ...), the linker should support the
following features:

» User defined startup: The application startup script is in a separate file written in “inline
assembly” and can be easily modified. The startup file is nataeip.c /
startup.o . This is a generic file name that has to be replaced by the real target startup
file name given in th&L IB\COMPILER directory; as mentioned in tiREADME.TXT
file. Usually the file name istart*.c / start*.o , where* is the name or part of the
MCU name and might also contain an abbreviation of the memory model.

MCUEZLNKO0508/D 1-1

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

GENERAL INFORMATION @ MOTOROLA

* Mixed language linking: Modula-2, Assembly, and C object files can be mixed in the
same application.

1.4 SUPPORT INFORMATION
For information about a Motorola sales or distribution office near you call:

AUSTRALIA, Melbourne — (61-3)887-0711 JAPAN, Fukuoka — 81-92-725-7583
Sydney — 61(2)906-3855 Gotanda — 81-3-5487-8311

_) Nagoya — 81-52-232-3500
BRAZIL, Sao Paulo — 55(11)815-4200 Osaka — 81-6-305-1802

CANADA, B. C., Vancouver — (604)606-8502 Sendai — 81-22-268-4333
ONTARIO, Toronto — (416)497-8181 Takamatsu — 81-878-37-9972
ONTARIO, Ottawa — (613)226-3491 Tokyo — 81-3-3440-3311

EBEC, M | - (514)333-
QUEBEC, Montreal - (514)333-3300 | yoea pusan — 82(51)4635-035

CHINA, Beijing — 86-10-68437222 Seoul — 82(2)554-5118

DENMARK — (45)43488393 MALAYSIA, Penang — 60(4)2282514

FINLAND, Helsinki — 358-9-6824-400 MEXICO, Mexico City — 52(5)282-0230

FRANCE, Paris — 33134 635900 Guadalajara — 52(36)21-8977

PUERTO RICO, San Juan — (809)282-2300

GERMANY,

Langenhagen/Hannover — 49(511)786889INGAPORE — (65)4818188

Munich — 49 89 92103-0 SPAIN, Madrid — 34(1)457-8204

Nuremberg — 49 911 96-3190

Sindelfingen — 49 7031 79 710 SWEDEN, Solna — 46(8)734-8800

Wiesbaden — 49 611 973050 SWITZERLAND, Geneva — 41(22)799 11 11
HONG KONG, Kwai Fong — 852-6106888 Zurich — 41(1)730-4074

Tai Po — 852-6668333 TAIWAN, Taipei — 886(2)717-7089

INDIA, Bangalore — (91-80)5598615 THAILAND, Bangkok — 66(2)254-4910

ISRAEL, Herzlia — 972-9-590222 UNITED KINGDOM, Aylesbury — 441(296)395-252

ITALY, Milan — 39(2)82201 UNITED STATES, Phoenix, AZ — 1-800-441-2447

For a list of the Motorola sales offices and distributors:
http://www.mcu.motsps.com/sale off.html

1-2 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

Freescale Semiconductor, Inc.

@ MOTOROLA

USER INTERFACE

CHAPTER 2
USER INTERFACE

2.1 INTRODUCTION

This chapter describes:

e The MCUez Linker User Interface
 How to start the Linker
* Environment variables

2.2 Interactive User Interface

Click theLinkericon on the shell tool bar to run the linker.

2.2.1 Starting the MCUez Linker

When the linker is started, a standdid of the Daywindow containing features about the

linker is displayed.

Tip of the Day |

@ Did yvou knows...

manager or explorer to the linker window.

“'ou can alzo link a file by simply dragaing it from the file

[+ Show Tips on Startdp

LCloze I

Figure 2-1. MCUez Linker Tip of The Day Window

MCUEZLNKO0508/D

For More Information On This Product,

Go to: www.freescale.com

2-1

[]
2 |

Freescale Semiconductor, Inc.

USER INTERFACE @ MOTOROLA

Click Next Tip to view more information about the linker. Cli€koseto close thdlip of the
Day dialog. If you do not want to view thiep of the Daywindow when the linker is started,
uncheckShow Tips ofstartUp

To re-enable the automatic display, chobisdp|Tip of the Day ...TheTip of the Daydialog
will display and you can chec&how Tips oistartUp

2.2.2 Linker Graphical Interface
Starting the MCUez Linker without specifying a filename will display the following window.

= ELF Linker Default Configuration * +|+|| <-— Menu Bar

File Linker ¥Yiew Help
D= 2[x|] [¢] &| #|=|| <« Tool Bar

-«— Content Area

Ready 15:56:54 7 < Status Bar

Figure 2-2. MCUez Linker Graphical User Interface
The Linker Window provides a Menu Bar, Tool Bar, Content Area, and Status Bar.

2221 Window Title

The window title displays the linker name and project name. If no project is loaded, “Default
Configuration” is displayed. A “*” after the configuration name indicates that some values
have been changed. Changes in options, editor configuration, and appearance (Window
position, size, font, ...) will cause the “*” to appear.

2.2.2.2 Content Area

The Content Areadisplays logging information about the link session. This logging
information consists of:

* The name of the PRM file being linked.

2-2 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.
@ MOTOROLA USER INTERFACE

» The name (including full path) of the files building the application.

* Thle list of errors, warnings, and information messages.

When a file name is dropped into the Linker window content area, the corresponding file is

either loaded as configuration data or linked. It is loaded as configuration data if the file

extension is “ini”. If not, the file is linked with the current option settings Geifying the

Input File below).

The Linker window content area can have context information consisting of two items:

» afile name including a position inside of a file

* amessage number

File context information is available for all output lines where a file name is displayed. If a file

context is available for a line, double-clicking on this line opens the appropriate file in the

editor specified in your MCUez configuration. Double-clicking the right mouse button alos

opens a context menu. The menu contains an “Open ..” entry if a file context is available. If a

file can not be opened although a context menu entry is present, see the section Editor Settings

Dialog.

Note that under Win32s the context menu is not available. If a file can not be opened although

a context menu entry is present, see the section on “Editor Settings” below.

The message number is available for any message output. To open the corresponding entry in

the help file, do one of the following.

» Select one line of the message and press FL1. If the selected line does not have a message
number, the main help is displayed.

* Press Shift-F1 and then click on the message text. If the clicked point does not have a
message number, the main help is displayed.

 Click the right mouse button at the message text and select “Help on ...". This entry is only
available if a message number is available. The context menu is not available under
Win32s.

Once a link session has completed,Earor Feedbackcan be performed automatically by

double clicking on the message in the content area. To &lowr Feedbackthe desired

editor must be configured (S&eror Feedbaclkbelow).

MCUEZLNK0508/D 2-3

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

USER INTERFACE @ MOTOROLA

2.2.2.3 Tool Bar

The following illustrates the MCUez Linker Tool Bar.

ELF Linker M=] E3
Filz Linker “iew Help
D|E|E| (8] R =
by d A A A A Azdks3 b,
‘ | Lists Last Command Executed Message
(command line) Setting
_ Context Help _ Ovens
Displays Progr:.glm Inf_ormatlon Advanced
Saves Current Configuration Dialog Box
Loads a Configuration Link: Executes
New Configuration Link Process

2-4

Figure 2-3. MCUez Linker Tool Bar

* TheNew Load andSave buttons are linked to the corresponding entries ofFtleemenu.
* The? andContext Helpouttons are linked to the corresponding entries oHglp menu.

+ The editable combo box contains a list of the last commands executed. Once a command
line has been selected or entered in this combo box, tlitkto execute this command.

* TheOpen Advanced Optiormitton opens the corresponding dialog.
* TheMessage Settingutton opens the corresponding dialog.

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA USER INTERFACE

2224 Status Bar

Point at a menu entry or button in theol Barto display the corresponding description in the
message field. The following illustration shows the MCUez Linker Status Bar.

ELF Linker Default Configuration * _ [O] %]
50 Linker Wiew Help
Link. - k=
Mew & Default Configuration Crrl+M J ﬁl | |
Load Canfiguration Chrl+L
5 ave Configuration Ctrl+5
Save Configuration be. .. Chrld,
Configuratiar ...
1 project.ini
E xit
Loads a configuration file |'IE:EE|:EI3 o
Message Field Status Bar Current Time

Figure 2-4. MCUez Linker Status Bar

MCUEZLNKO0508/D 2-5

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

USER INTERFACE @ MOTOROLA

2.2.25 Linker Menu Bar

The following entries are available in tNeenu Bar

Menu entry Description
File Linker Configuration Filemanagement.
Linker Linker option settings.
View Linker Windowsettings.
Help Standard Windows Help menu.

2.2.2.6 File Menu

2-6

A typical linker Configuration Filecontains the following information:

» The linker option settings specified in tAdvanced Options SettingadMessage
Settingdialogs.

+ List of commands executed.
* Window position, size and font used.
+ The editor associated with the Linker.

Linker Configuration information is stored in section [ELF_LINKER] in the specified
configuration file.

Configuration Filesare ASCII files with a .ini extension. You can define as many of these
files as you need for any given project. You can switch between difféceritguration Files

by choosing-ile|Load ConfiguratiorandFile|Save Configuratioim the Linker Menu Bar, or

by clicking the corresponding tool bar buttons.

» ChooseFile|Linkerto open a standafdpen Filedialog box that displays a list of all
.PRM files in the project directory. Select the input file to be linked and Glick

» ChooseFile|New/Default Configuratiomo reset the linker settings to the default values.
Default linker options are specified in the Command Line Options chapter in the Linker
manual.

» ChooseFile|Load Configuratiorto open thé@pen Filedialog box and display a list of all
NI files in the project directory. Select a configuration file containing the data to be
loaded.

* ChooseFile|Save Configuratiomo store the current settings in the configuration file
specified on the title bar.

» ChooseFile|Save Configuration as 1o open a standafave Aslialog box and display a
list of all .INI files. Specify the name or location of the configuration file to store the
current settings. ClicloK.

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

@ MOTOROLA USER INTERFACE

» ChooseFile|Configuration ...to specify an editor to be used for error feedback and
information to be saved in the configuration file.

» Global Editor (Configured by the Shell)

S |

Editar Settings | 5 ave Configuration I

% Global Editar [Configured by the Shell}
" Local Editor [Configured by the Shell]
™ Editor started with Command Line

™ Editor started with DDE

E ditor M ame "WinE dit

Editar Executable C:AWINAPPSMWIRE difa2\WinEdit.e

Editor &rguments =F

uze 2f far the filename and %I far the ine number

] Cancel el | Help

Figure 2-5. Configuration Dialog - Global Editor

This entry is enabled when an editor is configured in the [Editor] section of the global initial-
ization file "MCUTOOLS.INI" .

MCUEZLNKO0508/D 2-7

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.
USER INTERFACE @ MOTOROLA
» Local Editor (Configured by the Shell)
Configuwaton |
Editar Settings | 5 ave Configuration I
¢ Global Editor [Configured by the Shell]
& Local Editor [Configured by the Shellf
¢ Editor started with Comrmand Line
" Editor started with DDE
E ditar Mame WwinEdit
E ditar E xecutable C:ANWIMNAPPSYWIRE dit32%winE dit. e
E ditar Arguments S
wze Xf for the filename and %1 for the line nurmber
] Cancel 1 Help
Figure 2-6. Configuration Dialog - Local Editor
This entry is enabled when an editor is configured in the local configuration file; usually
"project.ini” in the project directory.
The Global and Local Editor can be configured with the Shell (see separate Manual for the
Shell Tool).
2-8 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\
4

y
A

Freescale Semiconductor, Inc.
@ MOTOROLA USER INTERFACE
» Editor started with Command Line
Configuration |
Editar Settings | 5 ave Configuration |

" Global Editor [Configured by the Shell]

&~ Local Editor [Configured by the Shell]

& Editar started with Command Line

& Editor started with DDE

Command Line
C:\winappsyWwWinedt324WinE dit exe 2f A% |
uze Zf tar the filename and 2 for the line number
] 4 Cancel S Help
Figure 2-7. Configuration Dialog - Editor Started With Command Line
When this editor type is selected, a separate editor is associated with the Linker for error
feedback. Enter the command line to start the editor. Modifiers can be specified on the
command line.
Example:
For Winedit 32-bit version use (with an adapted path to the winedit.exe file)
C:\WinEdit32\WinEdit.exe %f /#:%l
For Write.exe (with an adapted path to the Write.exe file, note that Write does not support line
numbers).
C:\Winnt\System32\Write.exe %f
For Motpad.exe use (with an adapted path to the Motpad.exe file, note that Motpad supports
line number).
CATOOLS\MOTPAD\MOTPAD.exe %f::%I
MCUEZLNK0508/D 2-9

For More Information On This Product,
Go to: www.freescale.com

[]

Freescale Semiconductor, Inc.

@ MOTOROLA

USER INTERFACE

+ Editor started with DDE

Configuration K|

Editar Settings | 5 ave Eu:unfiguratin:nnl

™ Global Editor [Configured by the Shell]

" Local Editor [Configured by the Shell]

" Editor started with Command Line

" ‘Editor started with DDE:

Service Mame
T opic Mame

Client Command

uze Zf for the filename and =1 for the line number

msdey

zyztem

[open(ZH]

Ok,

Cancel

Al

Help

Figure 2-8. Configuration Dialog - Editor Started With DDE

Enter the service, topic and client name to be used for a DDE connection to the editor. Al
entries can have modifiers for file name and line number as explained below.

Example:

For Microsoft Developer Studio use the following setting :

Service Name : "msdev"
Topic Name : "system"

ClientCommand : "[open(%f)]"

* Modifiers

When either entry ‘Editor Started with the Command line’ or ‘Editor started with DDE’ is
selected, the configurations may contain some modifiers to tell the editor which file to open

and at which line.

* The %f modifier refers to the file name (including path) where the error has been detected.
* The %Il modifier refers to the line number where the message has been detected.

2-10

For More Information On This Product,

Go to: www.freescale.com

MCUEZLNKO0508/D

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA USER INTERFACE

The format from the editor command depends on the syntax used to start the editor. Some
modifiers can be specified in the editor command line. Please check your editor manual to
define the command line which should be used to start the editor.

2.2.2.6.1 Important remarks

Caution should be taken using %l. This modifier can only be used with an editor that can be
started with a line number as a parameter. Editors such as WinEdit version 3.1 or lower,
Notepad, and Motpad do not allow this kind of parameter. This kind of editor can be started
using the file name as a parameter. Ch@séoto jump to the line containing the error.

The Command Lindooks like:
C:\WINAPPS\WINEDIT\Winedit. EXE %f

Check your editor manual to define tiemmand Lineised to start the editor.

MCUEZLNKO0508/D 2-11

For More Information On This Product,
Go to: www.freescale.com

[]

Freescale Semiconductor, Inc.

USER INTERFACE @ MOTOROLA

NOTE

If you are using a word processing editor (Microsoft Word, Wordpad, ...),
save your input file as akSClI text file.

2.2.2.6.2 Save Configuration Dialog

The second page of the configuration dialog contains options for the save operation. In the
save configuration dialog, configure the parts to be stored in a project file.

Configuration | x| |

Editor Settings Sawve Configuration |

[tems to Save
.................. Save
WV Dptions
v Editar Configuration Save As

W Appearance [Position, Size, Fort]

W Save on Exit

Al marked items are zaved. Already contained, not
changed items remain walid

QK. Cancel Sl Help

Figure 2-9. Save Configuration Dialog Window

This dialog box contains:

* Options: When set, the current option and message settings are stored in the configuration
file. Disable this option to retain the data last saved.

» Editor Configuration: When set, the current editor settings are stored in a configuration
file. Disable this option to retain the data last saved.

* Appearance: Saves the window position (only loaded at startup time) and the command
line content and history. When this mark is set, these settings are saved in the
configuration file.

2-12 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA USER INTERFACE

NOTE

By disabling selective options only parts of a configuration file can be
written. For example when the suitable editor is found, the save option
mark can be removed. Then future save commands will not modify the
editor setting.

» Save on Exit: If set, the Linker will write the configuration on exit. No confirmation
prompt will appear. If options have changed, the Linker will not write the configuration
unless this option is set.

NOTE

Almost all settings are stored in the configuration file, except for the recently
used configuration list and all settings in this dialog.

These settings are stored in the [ELF_LINKER] section of the MCUTOOLS.INI
initialization file.

NOTE

Linker configurations can coexist in the same file as the project

configuration of the shell and other MCUez tools. When an editor is

configured by the shell, the linker can read the content from the project file,
if present. The project configuration file of the shell is named project.ini.

This file name is therefore also suggested (but not mandatory) to the
Linker.

2.2.2.7 Linker Menu

This menu allows you to customize the linker and set or reset linker options. Choose
Linker|Optionsto define the options for linking an input file (See section 2.2A8i9anced
Options Dialog Boxin this chapter).

2.2.2.8 View Menu

This menu enables you to customize ltirker Window You can define whether to display or
hide theStatus Baror Tool Bar You can also define the font used in the window or clear the
window.

* ChooseView|Tool Barto switch on/off theLinker WindowTool Bat

» ChooseView|Status Bato switch on/off theLinker WindowStatus Bar

* ChooseView|Log ..to customize the output in théenker WindowContent Area

* ChooseView|Log ...|Change Forib open a standafebnt Selectiordialog box. Options
selected in this dialog are applied to the Linker Window Content Area.

* ChooseView|Log ...|Clear Logo clear the Linker Window Content Area.

MCUEZLNKO0508/D 2-13

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

USER INTERFACE @ MOTOROLA

2.2.2.9 Advanced Options Dialog Box

This dialog box allows you to set/reset linker options. The options available are arranged in
different groups. A register card is available for each group. The following figure shows the
Advanced Options Dialog window.

= Advanced Options Settings

 Hutput | [nput I Messagesl

[[Add a path to the zearch path
[[]Generate a map file

[(]15pecify the name of the autput file
[15trp symbaolic infarmations
[[Generate a crogzs reference listing

Lok || Abbrechen Hilfe

Figure 2-10. Advanced Options Dialog Window

The content of the list box depends on the selected sheet:

Option Group Description
Output Lists options related to generated output files (type of files to
be generated).
Input Lists options related to input files.
Messages Lists options controlling generation of error messages.

A linker option is set when the corresponding check box is checked.

2-14 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

@ MOTOROLA

USER INTERFACE

NOTE

When options requiring additional parameters are selected, an edit box or

another window can be opened to set the additional parameters.

2.2.3 Message Settings Dialog Box

The following figure shows the Message Settings Dialog window.

Disal:uledl Infnrmatinnl ‘Warning Error |Fatal |

L1000; {ﬁie} ot foynd

L1007: <Object> multiply defined

L1003 Only a zingle SEGMEMTS ar SECTIOMS block iz allowe
L1004: <Tokenr expected

L1006: <Token: not allowed

L1007: <Character: not allowed in file name [restriction)

L1008: anly gsingle object allmwed at abzolut address

L100%: Segment Name <Segments: unknown

« | "

= Message Settings

4| Move bo

Dizabled

[rfarmatian

W arning

Errar

Lok]| abbrechen Hife

Figure 2-11. Message Settings Dialog Window

This dialog box allows you to map messages to a different message class. A sheet is available
for each error message class and the content of the list box depends on the selected sheet.

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

USER INTERFACE @ MOTOROLA

The table below identifies and defines each message group.

Table 2-1. Message Group Definitions

Message Group Description

Disabled Lists all disabled messages. Messages displayed in the list box will
not be generated by the Linker.

Information Lists all information messages. Information messages depict action
taken by the Linker.

Warning Lists all warning messages. When such a message is generated,
linking continues and an absolute file is generated.

Error Lists all error messages. When such a message is generated, linking
of the input application continues but no absolute file will be
generated.

Fatal Lists all fatal error messages. When such a message is generated,

linking stops immediately.

Each message has its own character (‘L' for Linker message) followed by a 4-5 digit number.
This number allows an easy search for the message both in the manual or online help.

2.2.3.1 Changing the Class Associated With a Message

2-16

You can configure your own mapping of messages in the different classes by using one of the
buttons located on the right hand side of the dialog box. Each button refers to a message class.
To change the class associated with a message, select the message in the list box and click the
button associated with the class where you want to move the message.

Example

To define the message ‘L1201: No stack defined' (warning message) as an error message:
1. Click the Warning sheet to display the list of all warning messages in the list box.

2. Click on the string ‘L1201: No stack defined' in the list box to select the message.

3. Click Error to define this message as an error message.

Click on the 'OK' button to validate the modification to the error message mapping. If you
close the dialog box with the 'Cancel’ button, the previous message mapping remains valid.

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

vy
4\

Freescale Semiconductor, Inc.

@ MOTOROLA USER INTERFACE

2.2.3.2 Specifying the Input File

The input file to be linked can be specified in several ways. During the link session, the
options will be set according to the configuration set by the user iAdhianced Options
Settingdialog box. Before linking a file, ensure that you have assocideedj@ct Directory

with your linker.

2.2.3.2.1 Using the Editable Combo Box in the Tool Bar

» Linking a New File - A new file name and additional linker options can be entered in the
editable combo box. Click tHank button in the tool bar to link the specified file.

* Linking a File Which Has Already Been Linked - The command executed previously
can be displayed using the arrow on the right side of the editable combo box. Click a
command line to select it and display it in the combo box. Click the Link button in the tool
bar to assemble the specified file.

2.2.3.2.2 Using the EntryFile | Link ...

ChooseFile|Link .., to open a standai@pen Filedialog box. The desired file can then be
browsed. ClickOK to link the selected file.

2.2.3.2.3 Using Drag and Drop

A file name can be dragged from another program (e.gFitbéManage) and dropped into
theLinker Window The dropped file will be linked as soon as the mouse button is released in
theLinker WindowA dragged file with a .ini extension is considered to be a configuration file
and it is loaded and not linked. To link a parameter file with a .ini extension use another
method.

2.2.4 Error Feedback
After a parameter file has been linked, you can detect error or warning locations with the
following error message format.
‘>> <FileName>, line <line number>, col <column number>, pos
<absolute position in file>
<Portion of code generating the problem>
<message class> <message number>: <Message string>*
Example
>> in "placemen\tstpla8.prm", line 23, col 0, pos 668
fpm_data_sec INTO MY_RAMZ2;
END
ERROR L1110: MY_RAM2 appears twice in PLACEMENT block
MCUEZLNK0508/D 2-17

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

USER INTERFACE @ MOTOROLA

2241

Error Feedback Using Information From the Linker Window

Once a file has been linked, thenker WindowContent Area displays a list of all errors or
warnings detected. Any editor can then be used to open the source file and correct the errors.

2.2.4.2

Error Feedback Using a User-Defined Editor

The editor forError Feedbackmust first be configured using either the MCUez Shell or the
Configurationdialog box.

2.2.4.2.1 Line Number Can be Specified on the Command Line

Motpad, WinEdit V95 or higher, Codewright, or Motpad can be started with a line number in
the command line. Properly configured editors will start automatically by double clicking on
an error message. The configured editor will start and open the file containing the error and
place the cursor on the line where the error occurred.

2.2.4.2.2 Line Number Cannot be Specified on the Command Line

WinEdit V31 or lower, Notepad, and Wordpad cannot be started with a line number in the
command line. When correctly configured, these editors can be activated automatically by
double clicking on an error message. The configured editor will start and open the file
containing the error. To scroll to the error:

2-18

Activate the linker again

Click the line on which the message was generated. This line is highlighted on the screen.
Copy the line to the clipboard pressing CTRL + C

Activate the editor again.

Select Search|Findthe standard Find dialog box is opened.

Press CTRL + V to paste the line in the Edit box.

Click Forward to jump to the detected error position.

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA ENVIRONMENT VARIABLES

CHAPTER 3
ENVIRONMENT VARIABLES

3.1 INTRODUCTION

This chapter describes environment variables used by the MCUez Linker. Some of the
environment variables are also used by other tools (e.g. Macro Assembler, Compiler, ...).
Consult their respective manuals for more information.

3.2 SETTING PARAMETERS

Various linker parameters may be set with environment variables. The syntax is:

KeyName=ParamDefinition

NOTE

No blanks are allowed in the definition of an environment variable.

Example:

GENPATH=CAINSTALL\LIB;D:\PROJECTS\TESTS;\usr\localllib;

These parameters may be defined in several ways:

* Using system environment variables supported by your operating system.

» Putting the definitions in a file called DEFAULT.ENV (.hidefaults for UNIX) in the
project directory.

» Putting the definitions in a file given by the value of the system environment variable
ENVIRONMENT.

NOTE

The default directory mentioned above can be set via the system environment
variableDEFAULTDIR

When looking for an environment variable, all programs first search the system environment,
then the DEFAULT.ENV (.hidefaults for UNIX) file and finally the global environment file
given by ENVIRONMENT. If no definition can be found, a default value is assumed.

MCUEZLNKO0508/D 3-1

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

ENVIRONMENT VARIABLES @ MOTOROLA

3.3

3.3.1

3-2

PATH VARIABLES

Most environment variables contain path lists indicating where to look for files. A path list is
a list of directory names separated by semicolons; as follows:

DirSpec;DirSpec;DirSpec
*DirectoryName

Example:

GENPATH=CAINSTALL\LIB;D:\PROJECTS\TESTS;\usr\local\lib;

If a directory name is preceded by an asterisk), the programs recursively search the
whole directory tree for a file, not just the given directory. Directories are searched in the
order they appear in the path list.

Example:

LIBPATH=*C\INSTALL\LIB

NOTE

Some DOS/UNIX environment variables (IIKBENPATHLIBPATH, etc.) are
used. For further details refer to “Environment” chapter.

We strongly recommend working with MCUez Shell and setting the environment by means of
aDEFAULT.ENV file in your project directory. This project directory can be set in the MCUez
Shell 'Configure..." dialog box. This way, you can have different projects in different
directories, each with its own environment.

For some environment variables a synonym also exists. These synonyms may be used for
older releases of the linker and will be removed in the future.

LINKOPTIONS

Synonym: None

Syntax: "LINKOPTIONS=" {<option>}.

Arguments: <option>: Linker command line option

Description: If this environment variable is set, the linker appends its contents to its
command line each time a file is linked. It can be used to globally
specify certain options that should always be set, so you don’t have to
specify them each time a file is linked.

Example: LINKOPTIONS=-W2

See also: Linker options

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA ENVIRONMENT VARIABLES

3.3.2 GENPATH

Synonym: HIPATH

Syntax: "GENPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.
Description: The linker will look for the PRM file in the project directory, then in the

directories listed in the environment variable GENPATH. The object
and library files specified in the linker PRM file are searched for in the
project directory, then in directories listed in the environment variable
OBJPATH and finally in directories specified in GENPATH.

NOTE

If a directory specification in this environment variable starts with an asterisk
(™*”), the whole directory tree is searched recursively, i.e. all subdirectories are
also searched. Within one level in the tree, the search order of the subdirectories
is indeterminate (not valid for Win32).

Example: GENPATH=\obj;..\..\lib;

See also: None

3.3.3 OBJPATH

Synonym: None

Syntax: "OBJPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Description: When this environment variable is defined, the linker searches the

project directory for the object and library files specified in the linker
PRM file. The linker then searches the directories listed in the
environment variable OBJPATH and GENPATH.

Example: OBJPATH=\sources\bin;..\.\headers;\usr\local\bin

3.3.4 ABSPATH

Synonym: None

Syntax: "ABSPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Description: When this environment variable is defined, the linker will store the

absolute files it produces in the first directory specified. If ABSPATH is
not set, the generated absolute files will be stored in the directory where
the parameter file was found.

MCUEZLNKO0508/D 3-3

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

ENVIRONMENT VARIABLES

Freescale Semiconductor, Inc.

@ MOTOROLA

3.3.5

3-4

Example: ABSPATH=\sources\bin;..\..\headers;\usr\local\bin
See also: None
TEXTPATH
Synonym: None
Syntax: "TEXTPATH=" {<path>}.
Arguments: <path>: Paths separated by semicolons, without spaces.
Description: When this environment variable is defined, the linker will store the

MAP file it produces in the first directory specified. If TEXTPATH is
not set, the generated MAP file will be stored in the directory where the
PRM file was found.

Example: TEXTPATH=\sources ..\..\headers;\usr\local\txt

See also: None

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA ENVIRONMENT VARIABLES

3.3.6 SRECORD

Synonym: None
Syntax: SRECORD=<RecordType>.
Arguments: <Record Type>: Force the type for the Motorola S record that must be

generated. This parameter value can be ‘S1’, ‘S2’ or ‘S3'.

Description: When this environment variable is defined, the linker will generate a
Motorola S file containing records from the specified type (S1 records
when S1 is specified, S2 records when S2 is specified and S3 records
when S3 is specified).

NOTE

If the environment variable SRECORD is set, it is the user responsibility to

specify the appropriate S record type. If you specify S1 while your code is

loaded above OXFFFF, the Motorola S file generated will not be correct, as the
addresses will all be truncated to 2-byte values.

NOTE

When this variable is not set, the type of S record generated will depend on the
size of the address loaded. If the address can be coded on two bytes, a S1 record
is generated. If the address is coded on three bytes, a S2 record is generated.
Otherwise, a S3 record is generated.

Example: SRECORD=S2

See also: None

3.3.7 ERRORFILE

Synonym: None.

Syntax: ERRORFILE=<fillename>

Arguments: <filename>: File name with format specifiers.

Description: The environment variable ERRORFILE specifies the name of the error

file (used by the Linker).

Possible format specifiers are:

%n: Substitute with the file name, without the path.
%p: Substitute with the path of the source file.

%f: Substitute with the full file name, i. e. with the path and name
(same as %p%n).

In case of an illegal error file name, a notification box is displayed.

MCUEZLNKO0508/D 3-5

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

ENVIRONMENT VARIABLES

Freescale Semiconductor, Inc.

@ MOTOROLA

Example:

Example:

See also:

3-6

ERRORFILE=MyErrors.err

Lists all errors in the file “MyErrors.err” in the project directory.
ERRORFILE=\tmp\errors

Lists all errors in the file “errors” in the directory \tmp.
ERRORFILE=%f.err

Lists all errors in a file with the same name as the source file, but with
extension .err. The error file is placed in the same directory as the
source file. For example, if we link a file \sources\test.prm, an error list
file \sources\test.err will be generated.

ERRORFILE=\dir1\%n.err

For a source file test.prm, an error list file \dirl\test.err will be
generated.

ERRORFILE=%p\errors.txt

For a source file \dir1\dir2\test.prm, an error list file \dir1\dir2\errors.txt
will be generated.

If the environment variable ERRORFILE is not set, the errors are
written to the default error file. The default error file name is dependent
upon how the assembler is configured and started. If a file name is
provided in the assembler command line, errors are written to the
EDOUT file (to the name-specified file) in the project directory. If no
file name is provided, errors are written to the ERR.TXT file in the
project directory.

Another example shows the usage of this variable to support correct
error feedback with the WinEdit Editor which looks for an error file
called EDOUT:

Installation directory: EAINSTALL\PROG
Project sources: DAMEPHISTO
Common Sources for projects: EACLIB

Entry in default.env (D:\MEPHISTO\DEFAULT.ENV):
ERRORFILE=ENINSTALL\PROG\EDOUT

Entry in WINEDIT.INI (in Windows directory):
OUTPUT=E\INSTALL\PROG\EDOUT

None

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

vy
4\

Freescale Semiconductor, Inc.

@ MOTOROLA FILES

4.1

4.2

4.3

4.4

CHAPTER 4
FILES

INTRODUCTION

The following sections describe the files used and generated by the MCUez Linker.

PARAMETER FILE: INPUT

The linker takes any file as input. No special extension is required. However, we suggest that
parameter file names have the extenspm . Parameter files will be searched first in the
project directory and then in the GENPATH directories. The parameter file must be an ASCII
text file.

ABSOLUTE FILES: OUTPUT

After a successful link session, the linker generates an absolute file containing the target code
as well as some debugging information. This file is written to the directory given in the
environment variabl&BSPATHIf the variable contains more than one path, the absolute file

is written to the first directory specified. If this variable is not set, the absolute file is written to
the directory where the parameter file was found. Absolute files always get the extension
.abs .

MOTOROLA S FILES: OUTPUT

After a successful link session, the linker generates a Motorola S record file, which can be
burnt into an EPROM. This file contains information stored in all the READ ONLY sections
in the application. The extension for the generated Motorola S record file depends on the
setting from the SRECORD variable.

* If SRECORD = S1, the Motorola S record file gets the extensibn
» If SRECORD = S2, the Motorola S record file gets the extensibn
» If SRECORD = S3, the Motorola S record file gets the extensi®n
* If SRECORD is not set, the Motorola S record file gets the extersion

This file is written to the directory given in the environment varidd8PATHIf the variable
contains more than one path, the S record file is written to the first directory specified. If this
variable is not set, the S record file is written to the directory where the parameter file was
found.

MCUEZLNKO0508/D 4-1

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

FILES @ MOTOROLA

45 MAP FILES

After a successful link session, the linker generates a MAP file containing information about
the link process (see figure below). This file is written to the directory given in the
environment variabl@EXTPATH If the variable contains more than one path, the MAP file is
written to the first directory specified. If this variable is not set, the MAP file is written to the
directory where the parameter file was found. MAP files always get the extemsipn

.prm| 1.current dir 0" | 1.current dir
2.GENPATH ,‘-"g, 2. OBJPATH
-abS| 3 GENPATH
Linker
/ ERRORFILE
.abs| 1.ABSPAT 1. TEXTPAT
X | H .map ¥
ERR.TXT| O |EDOUT
2.Source 2.Source

Figure 4-1. Link Process Conceptual Diagram

4-2 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥4
i

Freescale Semiconductor, Inc.

@ MOTOROLA LINKER OPTIONS AND ISSUES

CHAPTER 5
LINKER OPTIONS AND ISSUES

5.1 INTRODUCTION
The MCUez Linker offers a number of options to control linker operation. Options are
composed of a minus/dash (‘-’) followed by one or more letters or digits. Anything not
starting with a dash/minus is assumed to be the name of a parameter file to be linked. Linker
options may be specified on the command line or in the LINKOPTIONS variable. Typically,
each option is specified once per linking session.
NOTE
Arguments for an option must not exceed 128 characters.
Command line options are not case sensitive. For exampletest.abs " is the same as
"—O=TEST.ABS.
When the LINKOPTIONS variable is sdhe linker appends the variable settings to its
command line each time a new file is linked. This variable can be used to globally specify
options that should always be set. The remainder of this section describes each of the linker
options. The options are listed in alphabetical order and divided into the following sections.
Table 5-1. MCUez Linker Options Descriptions
Topic Description
Syntax Specifies the syntax of the option in an EBNF format.
Arguments Describes and lists optional and required arguments.
Default Shows the default setting for the option.
Description Provides a detailed description of the option and how to use it.
Example Gives an example of usage and effects where possible. Linker
settings, source code and/or Linker PRM files are displayed where
applicable. The examples show an entry in the default.env file
for PC or in the .hidefaults for UNIX.
See also Names related options.
MCUEZLNKO0508/D 5-1

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

LINKER OPTIONS AND ISSUES

Freescale Semiconductor, Inc.

@ MOTOROLA

5.2

5.3

5-2

-E:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

-O:
Syntax:

Arguments:

Default:

Description:

Example:

See also:

-E LINKER OPTION

Define Application Entry Point
"-E=" <FunctionName>.

<FunctionName>: Name of the function, which is considered to be the
entry point in the application.

none.

This option specifies the name of the application entry point. When the
entry point is located in an assembly object file, the corresponding
symbol must be a global symbol (Specified in an XDEF directive).

LINKOPTIONS=-E=entry
This is the same as using the command:
INIT entry
in the PRM file
Command INIT

-O LINKER OPTION

Define Absolute File Name
"-O=" <FileName>

<fileName>: Name of the absolute file to be generated by the linking
session.

None.
This option defines the name of the ABS file that must be generated.
LINKOPTIONS=-O=test.abs
This is the same as using the command:
LINK test.abs
in the PRM file
Command LINK

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA LINKER OPTIONS AND ISSUES

5.4 -MLINKER OPTION

-M: Generate MAP File

Syntax: "-M"

Arguments: None.

Default: None.

Description: This option forces generation of a MAP file after a successful link
session.

Example: LINKOPTIONS=-M
This is the same as using the command:
MAPFILE ALL
in the PRM file

See also: Command MAPFILE

5.5 -SLINKER OPTION

-S: Do not generate DWARF Information
Syntax: "-S"
Arguments: None.
Default: None.
Description: This option disables the generation of DWARF sections in the absolute
file. This will reduce the amount of memory used on your PC.
Example: LINKOPTIONS=-S
See also: None
NOTE
If the absolute file does not contain DWARF information, you will not be able to
debug it.
MCUEZLNK0508/D 5-3

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

LINKER OPTIONS AND ISSUES @ MOTOROLA

5.6

5.7

5.8

5-4

-V LINKER OPTION

-V:

Syntax:
Arguments:
Default:
Description:

Example:

Prints the Linker Version

V"

None.

None.

Prints the Linker version and the project directory.

-V produces the following list:

Directory: D:\mcuez\PROG
MCUez ELF Linker V-1.0.29
CCPP User Interface Module, V-1.0.4, Date Jul 18 1997

See also:

None.
NOTE

This option can be used to determine the project directory.

-W1 LINKER OPTION

-W1:
Syntax:
Arguments:
Default:

Description:

Example:

See also:

No Information Messages
WL
None.
None.

Suppresses all INFORMATION messages; WARNING and ERROR
messages are printed.

LINKOPTIONS=-W1

None

-W2 LINKER OPTION

-W2:
Syntax:
Arguments:
Default:

Description:

Example:

See also:

No Information and Warning Messages
"-W2".
None.
None.

Suppresses all INFORMATION and WARNING messages, only
ERRORs are printed.

LINKOPTIONS=-W2

None

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

@ MOTOROLA LINKER OPTIONS AND ISSUES

5.9 LINKING ISSUES

The following sections identify specific application issues for the MCUez Linker.

5.9.1 Object Allocation
Object allocation is performed through the SEGMENTS and PLACEMENT blocks.

59.1.1 The SEGMENTS Block

The segments block is optional. It increases readability of the linker input file by assigning
meaningful names to contiguous memory areas on the target board. Memory within such an
area share common attributes:

e Qualifier

» Alignment Rules

* Filling Character

Two types of segments can be defined:

* Physical Segments
* Virtual Segments

Physical segments are closely related to hardware memory areas.

For example, there may be one READ_ONLY segment for each bank of the target board
ROM area and another one covering the RAM area.

Example:

Using the small memory model you can define a segment for the RAM area and another one
for the ROM area.

LINK test.abs

NAMES test.o startup.o END

SEGMENTS
RAM_AREA = READ_WRITE 0x00000 TO Ox07FFF;
ROM_AREA = READ_ONLY 0x08000 TO OxOFFFF;

END
PLACEMENT
.data INTO RAM_AREA,;
text INTO ROM_AREA;
END

STACKSIZE 0x50

Using the banked memory model you can define a segment for the RAM area, another for the
non-banked ROM area, and one for each target processor bank.

LINK test.abs
NAMES test.o startup.o END

MCUEZLNKO0508/D 5-5

For More Information On This Product,
Go to: www.freescale.com

[]

y
A Freescale Semiconductor, Inc.
LINKER OPTIONS AND ISSUES @ MOTOROLA
SEGMENTS
RAM_AREA = READ_WRITE 0x00000 TO OX07FFF;

NON_BANKED_AREA = READ_ONLY 0x0C000 TO OxOFFFF;
BANKO_AREA = READ_ONLY 0x08000 TO OxOBFFF;
BANK1_AREA = READ_ONLY 0x18000 TO Ox1BFFF;
BANK2_AREA = READ_ONLY 0x28000 TO 0x2BFFF;

END
PLACEMENT
.data INTO RAM_AREA;
.init, .startData,
.rodatal,
NON_BANKED, .copy INTO NON_BANKED_AREA,;
text INTO BANKO_AREA, BANK1 AREA,
BANK2_ AREA;
END

STACKSIZE 0x50

A physical segment may be split into several virtual segments, allowing a better structuring of
object allocation and taking advantage of some processor specific properties.

Example:

In the small memory model you can define a segment for the direct page area, another for the
rest of the RAM area, and another one for the ROM area.

LINK test.abs
NAMES test.o startup.o END

SEGMENTS
DIRECT_RAM = READ_WRITE 0x00000 TO Ox000FF;
RAM_AREA =READ_WRITE 0x00100 TO OX07FFF;
ROM_AREA =READ_ONLY 0x08000 TO OXOFFFF;

END

PLACEMENT
myRegister INTO DIRECT_RAM;
.data INTO RAM_AREA;
text INTO ROM_AREA;

END

STACKSIZE 0x50
59.1.1.1 Segment Qualifier

Different qualifiers are available for segments. The following table identifies and defines all
available qualifiers.

5-6 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA LINKER OPTIONS AND ISSUES

Table 5-2. Segment Qualifier Descriptions

Qualifier Meaning

READ_ONLY Qualifies a segment, where read only access is allowed. Objects within
such a segment are initialized at application loading time.

READ_WRITE Quialifies a segment, where read and write accesses are allowed. Objects
within such a segment are initialized at application startup. This is only
the case when linking a High Level Language (ANSI C or C++)
application.

NO_INIT Qualifies a segment, where read and write accesses are allowed. Objects
within such a segment remain unchanged during application startup. This
qualifier may be used for segments refering to a battery backed RAM.
Sections placed in a NO_INIT segment should not contain an initialized
variable (variable defined as ‘int ¢ = 8’).This is only the case when linking
a High Level Language (ANSI C or C++) application.

PAGED Qualifies a segment, where read and write accesses are allowed. Objects
within such a segment remain unchanged during application startup.
Additionally, objects located in two PAGED segments may overlap. This
qualifier is used for memory areas, where some user defined page
switching mechanism is required. Sections placed in a NO_INIT segment
should not contain an initialized variable (variable defined as ‘int ¢ =
8’).This is only the case when linking a High Level Language (ANSI C or
C++) application.

5.9.1.1.2 Segment Alignment

The default alignment rule depends on the processor and memory model used. The HC12,
HCO08, and HCO5 processors do not require alignment for code or data objects. One can
choose to define their own alignment rule for a segment. The alignment rule defined for a
segment block overrides the default alignment rules associated with the processor and
memory model.

MCUEZLNKO0508/D 5-7

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
LINKER OPTIONS AND ISSUES @ MOTOROLA
The alignment rule has the following format:
[defaultAlignment] {“[*ObjSizeRange”:"alignment”]"}
Table 5-3. Segment Alignment Rule Format
Item Description
defaultAlignment The alignment value for all objects that do not match the conditions of a range
defined afterward.
ObjSizeRange Defines a certain condition. The condition has the form:
size : rule applies to objects, where size is equal to ‘size’
< size : rule applies to objects, where size is smaller than ‘size’
> size: rule applies to objects, where size is bigger than ‘size’
<= size: rule applies to objects, where size is smaller or equal to ‘size’
>= size: rule applies to objects, where size is bigger or equal to ‘size’
From sizel to size2: the rule applies to objects, where size is greater or equal
to ‘sizel’ and smaller or equal to ‘size2’.
alignment Defines the alignment value for objects matching the condition defined in the
current alignment block (enclosed in square brackets).
Example:
LINK test.abs
NAMES test.o startup.o END
SEGMENTS
DIRECT_RAM = READ_WRITE 0x00000 TO 0xO000FF
ALIGN 2 [< 2: 1];
RAM_AREA = READ_WRITE 0x00100 TO OxO07FFF
ALIGN [1:1] [2..3:2] [>=4:4],
ROM_AREA = READ_ONLY 0x08000 TO OxOFFFF;
END
PLACEMENT
myRegister INTO DIRECT_RAM,;
.data INTO RAM_AREA,;
text INTO ROM_AREA,;
END
STACKSIZE 0x50
In previous example:
* Insegment DIRECT_RAM, objects whose size is 1 byte are aligned on byte boundary, all
other objects are aligned on 2-byte boundary.
5-8 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA LINKER OPTIONS AND ISSUES

* In segment RAM_AREA, 1 byte objects are aligned on byte boundary, objects equal to 2
or 3 bytes are aligned on 2-byte boundary, all other objects are aligned on 4-byte
boundary.

» Default alignment rule applies to the ROM_AREA segment.

5.9.1.1.3 Segment Fill Pattern

The default fill pattern for code and data segments is the null character. You can define your
own fill pattern for a segment. The fill pattern definition in the segment block overrides the
default fill pattern. A fill pattern can be defined for the READ_WRITE memory area only
when linking a high level language (ANSI C, C++) application.

Example:

LINK test.abs
NAMES test.o startup.o END

SEGMENTS
DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF
FILL OXAA;
RAM_AREA =READ_WRITE 0x00100 TO Ox07FFF
FILL 0x22;
ROM_AREA = READ_ONLY 0x08000 TO OXOFFFF;
END
PLACEMENT
myRegister INTO DIRECT_RAM;
.data INTO RAM_AREA;
text INTO ROM_AREA;
END

STACKSIZE 0x50
In previous example:

* In segment DIRECT_RAM, alignment bytes between objects are initialized with OxAA.
* In segment RAM_AREA, alignment bytes between objects are initialized with 0x22.
* In segment ROM_AREA, alignment bytes between objects are initialized with 0x00.

5.9.1.2 PLACEMENT Block

The placement block allows you to physically place each section in a specific memory area
(segment). The sections specified in a PLACEMENT block may be linker-predefined sections
or user sections specified in one of the source files used to build the application.

A programmer may decide to organize data into sections:

» to enhance application structure

» to ensure that common purpose data is grouped together

» to take advantage of target processor specific addressing mode.

MCUEZLNKO0508/D 5-9

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

LINKER OPTIONS AND ISSUES @ MOTOROLA

5.9.1.2.1 Specifying a List of Sections

When several sections are specified on a PLACEMENT statement, the sections are allocated
in the sequence they are listed.

Example:

LINK test.abs
NAMES test.o startup.o END

SEGMENTS
RAM_AREA = READ_WRITE 0x00100 TO 0x002FF;
STK_AREA = READ_WRITE 0x00300 TO 0x003FF;
ROM_AREA = READ_ONLY 0x08000 TO OxOFFFF;
END
PLACEMENT
.data, dataSec1,
dataSec?2 INTO RAM_AREA,;
text, myCode INTO ROM_AREA;
.stack INTO STK_AREA,;
END

In previous example:
* Inside of segment RAM_AREA, the objects defined in the .data section are allocated first,
then objects defined in section dataSec1 and finally objects defined in section dataSec2.

* Inside of segment ROM_AREA, objects defined in the .text section are allocated, then
objects defined in section myCode.

NOTE

Since the linker is case sensitive, section names specified in the PLACEMENT
block must be valid predefined or user defined sections. Sections DataSecl and
dataSec1 are different sections.

5.9.1.2.2 Specifying a List of Segments

When several segments are specified on a PLACEMENT statement, the segments are used in
the sequence they are listed. Allocation is performed for the first segment in the list, until this
segment is full. Then allocation continues for the next segment in the list, an so on until all
objects are allocated.

Example:

LINK test.abs
NAMES test.o startup.o END

SEGMENTS
RAM_AREA = READ_WRITE 0x00100 TO 0x002FF;
STK_AREA = READ_WRITE 0x00300 TO 0x003FF;

NON_BANKED_AREA = READ_ONLY 0x0C000 TO OxOFFFF;

5-10 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

vy
4\

Freescale Semiconductor, Inc.

@ MOTOROLA LINKER OPTIONS AND ISSUES

BANKO_AREA = READ_ONLY 0x08000 TO OxOBFFF;
BANK1_AREA = READ_ONLY 0x18000 TO Ox1BFFF;
BANK2_AREA = READ_ONLY 0x28000 TO 0x2BFFF;

END
PLACEMENT
.data INTO RAM_AREA;
.stack INTO STK_AREA,;
.init, .startData,
.rodatal,
NON_BANKED, .copy INTO NON_BANKED_AREA,;
text INTO BANKO_AREA, BANK1 AREA,
BANK2_ AREA;
END

In previous example:

Functions implemented in section .text are allocated first in segment BANKO_AREA.
When memory for this segment is filled, allocation continues in segment
BANK_1_AREA, then in BANK2_AREA.

NOTE

Since the linker is case sensitive, segment names specified in the PLACEMENT
block must be valid segment names defined in the SEGMENTS block. Segments
Ram_Area and RAM_AREA are different segments.

5.9.2 Allocating User-Defined Sections
Not all sections need to be listed in the PLACEMENT block. Segments in which sections are
allocated, depends on the type of section.
» Sections containing data are allocated next to the .data section.
» Sections containing code, constant variables, or string constants are allocated next to the
.text section.
In the segment where .data is placed, allocation is performed as follows:
* Objects from section .data are allocated
* Objects from section .bss are allocated (if .bss is not specified in the PLACEMENT
block).
» Objects from the first user defined data section, which is not specified in the
PLACEMENT block, are allocated.
» Objects from the next user defined data section, which is not specified in the
PLACEMENT block, are allocated.
» and so on until all user defined data sections are allocated.
MCUEZLNK0508/D 5-11

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

LINKER OPTIONS AND ISSUES

@ MOTOROLA

5-12

» If the section .stack is not specified in the PLACEMENT block and is defined with a
STACKSIZE command, the stack is allocated.

.data

.bss

user

section

dataiser data
Isection 2

user dat;
section 1

la.stack

Allocation in the segment where .text is placed is performed as follows:

* Objects from section .

block).

* Objects from section .

PLACEMENT block).

* Objects from section .
* Objects from section .

block).

* Objects from section .

PLACEMENT block).

» Objects from the first user defined code section, which is not specified in the
PLACEMENT block, are allocated.

» Objects from the next user defined code section, which is not specified in the
PLACEMENT block, are allocated.

+ and so on until all user defined code sections are allocated.

text are allocated.
rodata are allocated (if .rodata is not specified in the PLACEMENT

init are allocated (if .init is not specified in the PLACEMENT

startData are allocated (if .startData is not specified in the

rodatal are allocated (if .rodatal is not specified in the

* Objects from section .copy are allocated (if .copy is not specified in the PLACEMENT
block).

.init

.Start-
Data

text

.rodat

arodata

user
SecC.

1

user
Sec. n

.copy

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

CHAPTER 6
OPERATING PROCEDURES

6.1 INTRODUCTION

This chapter defines operating procedures for the MCUez Linker application.

6.2 INITIALIZING THE VECTOR TABLE

The following sections describe how to initialize the vector table. The vector table can be
initialized in the assembly source file or in the linker parameter file. Initialization in the PRM
file is recommended.

6.2.1 VECTOR Command

This command initializes the vector table. The syntax “VECTOR <Number>" is only valid
when the vector table starts at address 0x0000. The syntax VECTOR ADDRESS is valid in
any case. The size of entries in the vector table depends on the target processor. Different
syntaxes are available for the VECTOR command (Table 6-1).

Table 6-1. VECTOR Command Syntax

Command Meaning

VECTOR ADDRESS 0xFFFE 0x1000 Indicates that the value 0x1000 must be stored at
address OxXFFFE

VECTOR ADDRESS 0xFFFE FName Indicates that the address of the FName function must
be stored at address OxFFFE

VECTOR ADDRESS OxFFFE FName + 2 | Indicates that the address of the FName function
incremented by 2 must be stored at address OxFFFE

The last syntax may be very useful, when working with a common interrupt service routine.

6.2.1.1 Initializing the Vector Table in the Linker PRM File

Initializing the vector table from the PRM file allows you to initialize single entries in the
table (shown in the example below). The user can decide whether to initialize all entries in the
vector table or not. The labels or functions, must be inserted in the vector table and
implemented in the assembly source file. All labels must be published otherwise they cannot
be addressed in the linker PRM file.

MCUEZLNKO0508/D 6-1

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

Example for HCO8:

XDEF IRQFunc, SWIFunc, ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments another element of table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQ1Func:
LDA #0
BRA int
SWIFunc:
LDA #4
BRA int
ResetFunc:
LDA #8
BRA entry
int:
PSHH
LDHX #Data ; Load address of symbol Data in X
; X <- address of the appropriate element in the table
Ofset: TSTA
BEQ Ofset3
Ofset2:
AIX #3$1
DECA
BNE Ofset2
Ofset3:
INC 0, X ; The table element is incremented
PULH
RTI
entry:
LDHX #$0EOQO ; Init Stack Pointer to $E00-$1=3$DFF
TXS
CLRX
CLRH

CLlI ; Enables interrupts

loop: BRA loop

6-2 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

NOTE

The functions ‘IRQFunc’, ‘XIRQFunc’, ‘SWIFunc’, ‘OpCodeFunc’, and
‘ResetFunc’ are published. This is required, because they are referenced in the
linker PRM file.

The HCO8 processor automatically pushes the PC, X, A, and CCR registers on the stack when
an interrupt occurs. The interrupt function does not need to save and restore the registers it is
using. To maintain compatibility with the M6805 Family, the H register is not stacked, it is the
user’s responsibility to save and restore it prior to returning. All interrupt functions must be
terminated with an RTI instruction. The vector table is initialized using the linker command
VECTOR ADDRESS.

Example:

LINK test.abs
NAMES
test.o
END
SEGMENTS
MY_ROM =READ_ONLY 0x0800 TO Ox08FF;
MY_RAM = READ_WRITE 0x0B0OO TO 0xOCFF;
MY_STACK = READ_WRITE 0x0D00 TO OxODFF;
END
PLACEMENT
.data INTO MY_RAM,;
text INTO MY_ROM,;
.stack INTO MY_STACK;
END
INIT ResetFunc
VECTOR ADDRESS 0xFFF8 IRQ1Func
VECTOR ADDRESS 0xFFFC SWIFunc
VECTOR ADDRESS 0xFFFE ResetFunc

The statement ‘INIT ResetFunc’ defines the application entry point. Usually, this entry point
is initialized with the same address as the reset vector. The statement 'VECTOR ADDRESS
OxFFF2 IRQFunc’ specifies that the address of function ‘IRQFunc’ should be written at
address OxFFF2.

6.2.1.2 Initializing the Vector Table in the Assembly Source File Using a Relocatable Section

Initializing the vector table in the assembly source file requires that all entries in the table be
initialized. Unused interrupts must be associated with a standard handler.

The labels or functions, which should be inserted in the vector table, must be implemented in
one of the assembler source files. The vector table can be defined in an assembly source file in
an additional section containing constant variables.

MCUEZLNKO0508/D 6-3

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

Example for HCO8:

XDEF ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the
table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQ1Func:
LDA #0
BRA int
SWIFunc:
LDA #4
BRA int
ResetFunc:
LDA #8
BRA entry
DummyFunc:
RTI
int:
PSHH
LDHX #Data ; Load address of symbol Data in X
; X <- address of the appropriate element in the tab
Ofset: TSTA
BEQ Ofset3
Ofset2:
AIX #3$1
DECA
BNE Ofset2
Ofset3:
INC 0, X ; The table element is incremented
PULH
RTI
entry:
LDHX #$0EOQO ; Init Stack Pointer to $E00-$1=$DFF
TXS
CLRX
CLRH
CLlI ; Enables interrupts
loop: BRA loop
VectorTable: SECTION
; Definition of the vector table.
IRQ1Int: DC.W IRQ1Func
IRQOInt: DC.W DummyFunc
SWiint: DC.W SWIFunc
Resetint: DC.W ResetFunc

6-4 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

Each constant in the section ‘VectorTable’ is defined as a word (2 Byte constant). Each word
entry in the vector table is 16 bits wide. In the previous example, the constant ‘IRQ1Int’ is
initialized with the address of the label IRQ1Func’. The constant ‘SWIInt' is initialized with
the address of the label ‘SWIFunc’. All labels specified as an initialization value must be
defined, published (using XDEF), or imported (using XREF) before the vector table section.
Forward referencing is not allowed in the DC directive.

When developing a banked application, ensure that interrupt functions are located in the non-
banked memory area.

The section should now be placed at the expected address. This is performed in the linker
parameter file, shown in the example below.

Example:

LINK test.abs

NAMES
test.o

END

SEGMENTS
MY_ROM = READ_ONLY 0x0800 TO Ox08FF;
MY_RAM = READ_WRITE 0x0B00 TO 0xOCFF;
MY_STACK = READ_WRITE 0x0D00 TO OxODFF;

/* Define the memory range for the vector table */
Vector = READ_ONLY OxFFF8 TO OxFFFF;

END

PLACEMENT
.data INTO MY_RAM;
text INTO MY_ROM;
.stack INTO MY_STACK;

/* Place the section 'VectorTable' at the appropriated address. */
VectorTable INTO Vector;

END

INIT ResetFunc

ENTRIES

*

END

The statement ‘Vector = READ_ONLY OxFFF8 TO OxFFFF’ defines the memory range for
the vector table. The statement ‘VectorTable INTO Vector specifies that the vector table
should be loaded in the read only memory area Vector. The constant ‘IRQ1Int will be
allocated at address OxFFF8, the constant ‘XIRQOInt” will be allocated at address OxFFFA,
and so on. The constant ‘Resetint’ will be allocated at address OXFFFE. The statement
‘ENTRIES * END’ switches smart linking OFF. If this statement is missing from the PRM
file, the vector table will not be linked with the application; because it is never referenced. The
smart linker only links the objects referenced in the absolute file.

MCUEZLNKO0508/D 6-5

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

6.2.1.3 Initializing the Vector Table in the Assembly Source File Using an Absolute Section

6-6

Initializing the vector table in the assembly source file requires that all entries in the table be
initialized. Unused interrupts must be associated with a standard handler. Labels or functions
inserted in the vector table must be implemented in one of the assembly source files. The
vector table can be defined in an assembly source file in an additional section containing
constant variables, shown in the example below.

Example for HCO8:

XDEF ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the
table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQ1Func:
LDA #0
BRA int
SWIFunc:
LDA #4
BRA int
ResetFunc:
LDA #8
BRA entry
DummyFunc:
RTI
int:
PSHH
LDHX #Data ; Load address of symbol Data in X
; X <- address of the appropriate element in the tab
Ofset: TSTA
BEQ Ofset3
Ofset2:
AIX #3$1
DECA
BNE Ofset2
Ofset3:
INC 0, X ; The table element is incremented
PULH
RTI
entry:
LDHX #$0EOQO ; Init Stack Pointer to $E00-$1=3$DFF
TXS
CLRX
CLRH
CLlI ; Enables interrupts

loop: BRA loop

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.
@ MOTOROLA OPERATING PROCEDURES
ORG $FFF8

; Definition of the vector table in an absolute section
; starting at address $FFF8.
IRQLInt: DC.W IRQ1Func
IRQOInt: DC.W DummyFunc
SWiint: DC.W SWIFunc
Resetint: DC.W ResetFunc
Each constant in the section ‘VectorTable’ is defined as a word (2 Byte constant). Each entry
in the vector table is 16 bits wide. In the previous example, the constant ‘IRQ1Int’ is
initialized with the address of the label ‘IRQ1Func’. In the previous example, the constant
‘SWIInt’ is initialized with the address of the label ‘SWIFunc'. All labels specified as an
initialization value must be defined, published (using XDEF), or imported (using XREF)
before the vector table section. Forward referencing is not allowed in DC directive. The
statement ‘ORG $FFF8' specifies that the following section must start at address $FFF8.
When developing a banked application, ensure that interrupt functions are located in the non-
banked memory area. The section should now be placed at the expected address. This is
performed in the linker parameter file, shown in the following example.
Example:
LINK test.abs
NAMES

test.o
END
SEGMENTS

MY_ROM = READ_ONLY 0x0800 TO Ox08FF;

MY_RAM = READ_WRITE 0x0A00 TO Ox0BFF;
END
PLACEMENT

.data INTO MY_RAM;

text INTO MY_ROM,;
END
INIT ResetFunc
ENTRIES

*
END
The statement ‘ENTRY * END’ switches smatrt linking OFF. If this statement is missing in the
PRM file, the vector table will not be linked with the application. The vector table is not a
referenced entity. The linker links referenced objects only in the absolute file.

MCUEZLNK0508/D 6-7

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

6.3

6.3.1

6.3.2

6-8

SMART LINKING
Smart linking links referenced objects with the application. Application entry points are:

» The application init function

» The functions or constants located in an absolute section (section defined with ORG in the
assembly source file)

» The function specified in a VECTOR command.

All previously listed entry points and the objects they referenced are automatically linked with
the application. You can specify additional entry points usingEMERIES command in the
PRM file.

Mandatory Linking From an Object

You can choose to link non-referenced objects in your application. This may be useful to
ensure that a software version number is linked with the application and stored in the final
product EPROM. This may also be useful to ensure that a vector table, which has been
defined as a constant table of function pointers or as a constant section, is linked with the
application.

Example :

ENTRIES
myVarl myVar2 myProcl myProc2
END

In this example, the variables myVarl and myVar2, and functions myProcl and myProc2 are
specified to be additional entry points in the application.

Mandatory Linking From All Objects Defined in a File
You can choose to link all objects defined in a specified object file.

Example :

ENTRIES
myFilel.o:* myFile2.0:*
END

In this example, all objects (functions, variables, constant variables or string constants)
defined inmyFilel.o and myFile2.o are specified as additional entry points in the
application.

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

Freescale Semiconductor, Inc.

MOTOROLA OPERATING PROCEDURES

6.3.3

Switching OFF Smart Linking for the Application
Switch smart linking off to link all objects in the application.

Example :
ENTRIES

*

END
In this example:

Smart linking is switched OFF for the whole application. All objects, defined in one of the
binary files that builds the application, are linked with the application.

6.4 BINARY FILES BUILDING AN APPLICATION
Specify binary file names in the NAMES block or ENTRIES block. Usually a NAMES block
is sufficient.
6.4.1 NAMES Block
All binary files building the application are usually listed in the NAMES block. This is the
only place where absolute, library, or object library files may be specified.
Example :
NAMES
myFilel.o myFile2.0
END
In this example, the binary filesyFilel.o andmyFile2.o build the application.
6.4.2 ENTRIES Block
If a file name is specified in the ENTRIES block, the corresponding file is considered to be
part of the application, even if it does not appear in the NAMES block. The file specified in
the ENTRIES block may also be present in the NAMES block (shown in the example below).
Names of absolute, ROM library or library files are not allowed in the ENTRIES block.
Example:
LINK test.abs
NAMES test.o startup.o END
SEGMENTS
DIRECT_RAM = READ_WRITE 0x00000 TO 0xO00FF;
STK_AREA = READ_WRITE 0x00200 TO 0x002FF;
RAM_AREA = READ_WRITE 0x00300 TO OxO07FFF;
ROM_AREA = READ_ONLY 0x08000 TO OxOFFFF;
MCUEZLNK0508/D 6-9

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

END

PLACEMENT
myRegister INTO DIRECT_RAM;
.data INTO RAM_AREA;
text INTO ROM_AREA;
.stack INTO STK_AREA;

END

ENTRIES

testl.o:* test.o:*
END

6.4.3

6-10

In previous example, the filesst.o ,testl.o, andstartup.o build the application. All
objects defined in the modules testl.0 and test.o will be linked with the application.

Linking an Assembly Application
The following example shows how to link an application.

When an application consists only of assembly files, the linker PRM file can be simplified.

* No startup structure is required.

* No stack initialization is required, because the stack is directly initialized in the source
file.

* No main function is required.
* An entry point in the application is required.

* All symbols referenced in the PRM file must be published (specified in a XDEF
directive). There is no local symbol defined in the assembler.

Example:

LINK test.abs

NAMES test.o test2.0 END

SEGMENTS
DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF;
RAM_AREA = READ_ WRITE 0x00300 TO Ox07FFF;
ROM_AREA = READ_ONLY 0x08000 TO OxOFFFF;

END

PLACEMENT
myRegister INTO DIRECT_RAM,;
.data INTO RAM_AREA;
text INTO ROM_AREA,;

END

INIT Start ; Application entry point

VECTOR ADDRESS OxFFFE Start ; Initialize Reset Vector
In the previous example:

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

» All data sections defined in the assembly input files are allocated in the segment
RAM_AREA.

» All code and constant sections defined in the assembly input files are allocated in the
segment ROM_AREA.

» The START function defines an application entry point and a reset vector. START must be
a global symbol defined in one of the assembly modules.

6.4.4 Warning Messages
An assembly application does not need a startup structure or root function.

The two warnings:

‘WARNING: _startupData not found’

and

‘WARNING: Function main not found'

can be ignored.

* Smart Linking - When an assembly application is linked, smart linking is performed on
section level instead of object level. Sections containing referenced objects are linked with
the application.

Example for HCO8:

Assembly source file

XDEF entry
dataSecl: SECTION SHORT
datal: DSW1
dataSec2: SECTION SHORT
data2: DS.W 2
codeSec: SECTION
entry:
NOP
NOP
LDX #datal
LDA #$45
STA 0, X
loop: BRA loop

Linker PRM file

LINK test.abs
NAMES test.o END

MCUEZLNKO0508/D 6-11

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

SEGMENTS
RAM_AREA = READ_WRITE 0x00050 TO 0x000FF;
ROM_AREA = READ_ONLY 0x08000 TO OxOFFFF;
END
PLACEMENT
.data INTO RAM_AREA,;
text INTO ROM_AREA;
END
INIT entry
VECTOR ADDRESS OxFFE entry

In the previous example:

* The ENTRY function is defined as an application entry point and also specified as
reset vector.

* The data section ‘dataSecl’ defined in the assembly input file is allocated in the
segment RAM_AREA at address 0x50. This section is linked with the application,
because the label ‘datal’ is referenced in the function ‘entry’.

* The code section ‘codeSec’ defined in the assembly input file is allocated in the
segment ROM_AREA at address 0x8000. It is linked with the application, because
‘entry’ is the application entry point.

* The data section ‘dataSec2’ defined in the assembly input file is not linked with the
application, because the symbol ‘data2’ is never referenced.

You can choose to switch smart linking OFF, so that assembly code and objects will be linked
with the application.

For the previous example, the PRM file used to switch smart linking OFF will look as follows:

LINK test.abs
NAMES test.o END

SEGMENTS
RAM_AREA = READ_WRITE 0x00050 TO 0x000FF;
ROM_AREA = READ_ONLY 0x08000 TO OxOFFFF;
END
PLACEMENT
.data INTO RAM_AREA,;
text INTO ROM_AREA;
END
INIT entry
VECTOR ADDRESS OxFFE entry
ENTRIES * END

In the previous example:

» The ENTRY function is defined as an application entry point and also specified as a
reset vector.

6-12 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

* The data section ‘dataSecl’ defined in the assembly input file is allocated in the
segment RAM_AREA at address 0x50.

* The data section ‘dataSec2’ defined in the assembly input file is allocated next to the
section ‘dataSecl’ at address 0x52.

* The code section ‘codeSec’ defined in the assembly input file is allocated in the
segment ROM_AREA at address 0x8000.

6.5 THE PARAMETER FILE

The linker parameter file is an ASCII text file that is required for each application. It contains
linker commands that define the linking process. This section describes the parameter file in
detail, giving examples you may use as templates for your own parameter files. You might
also want to take a look at the example parameter files included in your installation version.

6.5.1 The Syntax of the Parameter File
Following is the EBNF syntax of the parameter file.

ParameterFile={Command}

Command= LINK NameOfABSFile

| NAMES ObjFile {ObjFile} END

| SEGMENTS {SegmentDef} END

| PLACEMENT {Placement} END

| (STACKTOP | STACKSIZE) exp

| MAPFILE MapSecSpecList

| ENTRIES EntrySpec {EntrySpec } END

| VECTOR (InitByAddr | InitByNumber)

| INIT FuncName

| MAIN FuncName

NameOfABSFile= FileName

ObjFile= FileName ['+]

ObjName= Ident

Quallden = FileName “.” Ident

FuncName= ObjName | Qualldent
MapSecSpecList= MapSecSpec “,” { MapSecSpec }
EntrySpec= [FileName™”] (* | ObjName)
MapSecSpec= ALL | NONE | TARGET | FILE | STARTUP | SEC_ALLOC |

MCUEZLNKO0508/D 6-13

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

6-14

OBJ_ALLOC | OBJ_DEP | OBJ_UNUSED | COPYDOWN |
STATSTIC

SegmentDef= SegmentName “=" SegmentSpec ;"

SegmentName= Ident

SegmentSpec= StorageDevice Range [Alignment] [FILL CharacterList]

StorageDevice= READ_ONLY | READ_WRITE | PAGED | NO_INIT

Range=exp (TO | SIZE) exp

Alignment= ALIGN [exp] {'['ObjSizeRange”:” exp"’}

ObjSizeRange= Number | Number TO Number | CompareOp Number

CompareOp= (<" | “>="| “>*| ">=*

CharacterList= HexByte { HexByte}

Placement= SectionList INTO SegmentList “;”

SectionList= SectionName {",” SectionName}

SectionName=Ident

SegmentList= Segment {*,” Segment}

Segment= SegmentName | SegmentSpec

InitByAddr= ADDRESS Address Vector

InitByNumber= VectorNumber Vector

Address= Number

VectorNumber= Number

Vector= (FuncName [OFFSET exp] | exp) [, exp]

Ident= <any C style identifier>

FileName= <any file name>

exp= Number

Number= DecimalNumber | HexNumber | OctalNumber

HexNumber= OxHexDigit{HexDigit}

DecimalNumber= DecimalDigit{DecimalDigit}

HexByte= HexDigit HexDigit

HexDigit="0" | “1"| “2" | “3"| “4” | “5" | “6" | “7"| “8" | “9"|
“A'|“B"|“C"|“D"| “E” | “F|
b’ “c’|“d"| “e”|

DecimalDigit="0" | “1"| “2"| “3"| “4” | 5" | “6" | “7" | “8” |

MCUEZLNK0508/D

For More Information On This Product,
Go to: www.freescale.com

vy
4\

Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

6.5.2

“9" |
» Comments may appear anywhere in a parameter file, except where file names are
expected. You may use either C style comments (/* */) or C++(//) style comments.

* File names should not contain paths. This keeps your sources portable. Otherwise, if you
copy the sources to another directory, the linker might not find all files needed. The linker
uses the paths in the environment varialESIPATHOBIJPATH TEXTPATHand
ABSPATHo decide where to look for files and where to write output files.

* The order of commands in the parameter file does not matter. However, ensure that the
SEGMENTS block is specified before the PLACEMENT block.

* There are default sections nameata , .text ,.stack ,.copy ,.rodatal ,.rodata |,
StartData and.init

Mandatory Parameter File Linker Commands

A linker parameter file always contains at least the entriddif¢, NAMESandPLACEMENT
All other commands are optional. The following example shows the minimal parameter file:

LINK mini.abs /* Name of resulting ABS file */

NAMES

mini.o startup.o /* Files to link */
END
STACKSIZE 0x20 * in bytes */
PLACEMENT

text INTO READ_ONLY O0xAO00 TO OxBFF;
.data INTO READ_WRITE 0x800 TO Ox8FF;
END

The first placement statement

textINTOREAD_ONLY OxAO0O TO OxBFF ;

reserves the address range froxAOO to OxBFF for allocation of read-only objects (hence
the qualifier READ_ONL)Y The .text section includes all linked functions, constant
variables, string constants and initialization parts of variables copied to RAM at startup.

The second placement statement

.data INTO READ_WRITE 0x800 TO Ox8FF ;
reserves the address range fi@x@800 to Ox8FF for allocation of variables.

MCUEZLNKO0508/D 6-15

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

6.6

6.6.1

LINKER COMMANDS
The following sections describe all Linker commands.

ENTRIES: List of Objects to Link With the Application

Syntax:
ENTRIES [Filename™.”] (*|objName)

Description:
The ENTRIES block is optional in a PRM file.

Use the ENTRIES block to list objects (referenced or not) that are always linked with the
application. The specified objects are used as additional entry points in the application. All
objects referenced within these objects will also be linked with the application.

The table below identifies the notation supported in the ENTRIES block.

Table 6-2. ENTRIES Block Supported

Notation Meaning

<Object Name> The specified global object will be linked with the application.

<File Name>:<Object Name> The local object defined in the binary file will be linked with the

application. This notation is only valid when referring to a symbol
defined in a high level language (ANSI C or C++) module.

<File Name>:* All objects defined within the specified file will be linked with the

application.

* All objects will be linked with the application. This switches OFF

smart linking for the application.

6-16

If a file name specified in the ENTRIES block is not present in the NAMES block, the file
name will be inserted in the list of binary files building the application.

Symbols defined in an assembly module, which are used as additional entry points, must be
published (specified in a XDEF directive).

Example:

NAMES
startup.o
END

ENTRIES
fibo.o:*
END

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

In the previous example, the application is built from the fileso andstartup.o

Example:

NAMES
fibo.o startup.o
END

ENTRIES
fibo.o:*
END

In the previous example, the application is built from the fiteso andstartup.o . The

file ‘fibo.o ' specified in the NAMES block is the same as the one specified in the ENTRIES
block.

NOTE

We strongly recommend to avoid switching smart linking OFF, when the ANSI
library is linked with the application. The ANSI library contains the
implementation of all run time functions and standard functions. This generates a
large amount of code, which is not required by the application.

6.6.2 INIT: Specify the Application Entry Point

Syntax:
INIT FuncName

Description:

The INIT command is mandatory for an assembly application and cannot be specified several
times in the PRM file. This command defines the entry point for the application. When INIT
is not specified in the PRM file, the linker looks for a function named ‘_Startup’ and uses it as
the application entry point. If an INIT command is specified in the PRM file, the linker uses
the specified function as the application entry point.

MCUEZLNKO0508/D 6-17

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

6.6.3

6-18

You can specify any static or global function as an entry point.

Example:

INIT MyGlobStart /* Specify a global variable as
application entry point.*/
INIT myFile.o:myLocStart /* Specify a local variable
as application entry point.*/

Local symbols defined in an assembly module cannot be specified as an entry point for an
application.

LINK - Specify Name of the Output File

Syntax:
LINK <NameOfABSFile>

Description:

The LINK command defines the file to be generated by the link session. This command is
mandatory and can only be specified once in a PRM file. After a successful link session the
file “NameOfABSFile” is created. If the environment variab8SPATHis defined, the
absolute file is generated in the first directory listed. Otherwise, it is written to the directory
where the parameter file was found. If a file with this name already exists, it is overwritten.

A successful link session also creates a MAP file with the same base name as
“NameOfABSFile” and with extension .MAP. If the environment variaBlEEXTPATHIs
defined, the MAP file is generated in the first directory listed. Otherwise, it is written to the
directory where the parameter file was found. If a file with this name already exists, it is
overwritten.

A successful link session also creates an S record file with the same base name as
“NameOfABSFile” and with extension .Sx. If the environment variaddlB SSPATHSs defined,

the S Record file is generated in the first directory listed. Otherwise, it is written to the
directory where the parameter file was found. If a file with this name already exists, it is
overwritten.

The LINK command is mandatory in a PRM file. If the LINK command is missing, the linker
generates an error message unless the option -O is specified on the command line.

Example:
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x1000 TO O0x18FF;

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

MY_ROM = READ_ONLY 0x8000 TO Ox8FFF;
MY _ STK = READ_ WRITE 0x1900 TO Ox1FFF;
PLACEMENT
DEFAULT _ROM INTO MY_ROM,;
DEFAULT _RAM INTO MY_RAM;
SSTACK INTO MY_STK;
END
VECTOR ADDRESS OxFFFE _Startup /* set reset vector */

The files fibo.abs, fibo.sx and fibo.map are generated after a successful link process from the
previous PRM file.

6.6.4 MAIN

Syntax:
MAIN FuncName

Description:

The MAIN command is optional. This command defines the root function for an ANSI C or
C++ application (function invoked at the end of startup function). When MAIN is not
specified in the PRM file, the linker looks for a function named ‘main’ and uses it as root.

Assembly applications do not require a MAIN function.

If a MAIN command is specified in the PRM file, the linker uses the specified function as
root. You can specify any static or global function as the application root function.

Example:

MAIN MyGlobMain /* Specify a global variable as
application root.*/
MAIN myFile.o:myLocMain /* Specify a local variable as
application root.*/

Local symbols defined in an assembly module cannot be specified as the root function.

6.6.5 MAPFILE: Configure the MAP File Content

Syntax:

MAPFILE (ALLINONE|TARGET|FILE|]STARTUP_STRUCT|SEC_ALLOC]|
OBJ_ALLOC|OBJ_DEP|OBJ_UNUSED|COPYDOWN|STATISTIC)
[{(ALLINONE|TARGET|FILE|]STARTUP_STRUCT|SEC_ALLOC]|
OBJ_ALLOC|OBJ_DEP|OBJ_UNUSED|COPYDOWN|STATISTIC)}]

MCUEZLNKO0508/D 6-19

For More Information On This Product,
Go to: www.freescale.com

[]
L |

OPERATING PROCEDURES

Freescale Semiconductor, Inc.

@ MOTOROLA

6-20

Description:

This command is optional and controls the generation of the MAP file. Per default, the
command MAPFILE ALL is activated. This indicates that a map file must be created and

contain all linking time information. The following table lists all available MAP file

specifiers.
Table 6-3. MAP File Specifiers
Specifier Meaning

ALL A map file will be generated containing all information available.

COPYDOWN Information about the initialization value for objects allocated in
RAM will be written to the MAP file (Section COPYDOWN in the
map file). This section is only relevant for High level language
(ANSI C or C++) applications.

FILE Information about application source files will be inserted in the
MAP file.

NONE No map file will be generated.

OBJ_ALLOC Information about allocated objects will be inserted in the map
file (Section OBJECT ALLOCATION in the map file).

OBJ_UNUSED List of all unused objects will be inserted in the map file (Section
UNUSED OBJECTS in the map file).

OBJ_DEP Dependencies between objects in the application will be
inserted in the map file (Section OBJECT DEPENDENCY in the
map file).

SEC_ALLOC Information about sections used in the application will be
inserted in the map file (Section SECTION ALLOCATION in the
map file).

STARTUP_STRUCT Information about the startup structure will be inserted in the
map file (Section STARTUP in the map file). This section is only
relevant for High level language (ANSI C or C++) applications.

STATISTIC Statistic information about the link session will be inserted in the
map file (Section STATISTICS in the map file).

TARGET Information about the target processor and memory model will
be inserted in the map file (Section TARGET in the map file).

Information generated for each specifier is described in the MAP file chapter.
specified in the MAPFILE command, all sections are inserted in the MAP file.

Example:

If ALL is

Following commands are all equivalent. A map file is generated, which contains all possible
information about the linking session.

MCUEZLNKO0508/D

For More Information On This Product,

Go to: www.freescale.com

vy
4\

Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

6.6.6

MAPFILE ALL
MAPFILE TARGET, ALL
MAPFILE TARGET, ALL, FILE, STATISTIC

If NONE is specified in the MAPFILE command, no map file is generated.

Example:

Following commands are all equivalent. No map file is generated.

MAPFILE NONE
MAPFILE TARGET, NONE
MAPFILE TARGET, NONE, FILE, STATISTIC

NOTE
The following map file commands are also supported:

* MAPFILE OFF is equivalent to MAPFILE NONE
* MAPFILE ON is equivalent to MAPFILE ALL

NAMES: List the Files building the Application.

Syntax:
NAMES <FileName>['+'] {<FileName>[‘+"]} END

Description:

The NAMES block contains the list of all binary files building the application. This block is
mandatory and can only be specified once in a PRM file. The linker reads all files given
betweenNAMESand END The files are searched for in the project directory, then in the
directories specified in the environment variables OBJPATH and GENPATH. The files may be
either object files, absolute, or ROM library files or libraries.

Since the linker is a smart linker, only referenced objects (variables and functions) are linked
to the application.

A plus sign after a file name.g.FileName+) switches OFF smart linking for the specified
file. No blank is allowed between the file name and the plus sign. All objects defined in this
file will be linked with the application, regardless of whether they are used or not. This is
equivalent to specifying the file name followed by a * (fleName:*) in the ENTRIES block.

Example:
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x1000 TO O0x18FF;

MCUEZLNKO0508/D 6-21

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

6.6.7

6-22

MY_ROM = READ_ONLY 0x8000 TO Ox8FFF;
MY _ STK = READ_ WRITE 0x1900 TO Ox1FFF;
PLACEMENT
DEFAULT _ROM INTO MY_ROM,;
DEFAULT _RAM INTO MY_RAM;
SSTACK INTO MY_STK;
END
VECTOR ADDRESS OxFFFE _Startup /* set reset vector */

In this example, the application fibo is built from the files ‘fibo.o’ and ‘startup.o’.

PLACEMENT: Place Sections Into Segments

Syntax:

PLACEMENT
SectionName{,sectionName} INTO SegSpec{,SegSpec};
{SectionName{,sectionName} INTO SegSpec{,SegSpec};}
END

Description:

The PLACEMENT block is mandatory in a PRM file. Each placement statement between the
PLACEMENT and END defines a relation between logical sections and physical memory
ranges called segments.

Example:

SEGMENTS
MY RAM = READ WRITE 0x1000 TO Ox18FF;
ROM_1 = READ ONLY 0x8000 TO Ox8FFF;
END
PLACEMENT
.text, .rodata INTO ROM_1;
END

In the previous example, objects from section “.text’ are allocated first and then objects from
section ‘.rodata’.

Starting with the first section, objects are allocated in the first memory range in the list. If a
segment is full, allocation continues in the next segment.

Example:

SEGMENTS
MY_RAM = READ_WRITE 0x1000 TO O0x18FF;
ROM_1 = READ_ONLY 0x8000 TO Ox8FFF;
ROM_2 = READ_ONLY 0xA000 TO OxAFFF;
END

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

PLACEMENT
text INTO ROM_1, ROM_2;
END

In the previous example, objects from section ‘.text’ are allocated first in segment ‘ROM_1’
and continues in section ‘ROM_2’". A statement inside the PLACEMENT block can be split
over several lines and terminated with a semicolon. The SEGMENTS block must always be
defined before the PLACEMENT block, because segments referenced in the PLACEMENT
block must previously be defined in the SEGMENTS block.

Some restrictions apply to commands specified in the PLACEMENT block:
* The .copy section should be the last section in the section list to be specified in the

PLACEMENT block.

* When the .stack section is specified in the PLACEMENT block along with other sections,
an additional STACKSIZE command is required in the PRM file.

* Predefined sections .text and .data must always be specified in the PLACEMENT block.
They are used to retrieve the default placement for code or variable sections. All code or
constant sections, which do not appear in the PLACEMENT block, are allocated in the
same segment list as the .text section. All variable sections, which do not appear in the
PLACEMENT block, are allocated in the same segment list as the .data section.

6.6.8 SEGMENTS: Define Memory Map

Syntax:

SEGMENTS {(READ_ONLY|READ_WRITE|NO_INIT|PAGED)
<startAddr> (TO <endAddr> | SIZE <size>)
[ALIGN <alignmentRule>] [FILL <fillPattern>]}

END

Description:

The SEGMENTS8Iock is optional in a PRM file. TRSEGMENT8ommand allows the user to
assign meaningful names to address ranges. These names can then be used in subsequent
placement statements, thus increasing the readability of the parameter file.

Each address range you define is associated with:

* A qualifier.

* Astart and end address or a start address and a size.
* An optional alignment rule.

* An optional fill pattern.

The following qualifiers are available for segments:

» READ_ONLY: Used for address ranges, where read only accesses are allowed.

MCUEZLNKO0508/D 6-23

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

» READ_WRITE: Used for address ranges, where read write accesses are allowed. Memory
area defined with this qualifier will be initialized with O at application stafis is
only the case when linking a High Level Language (ANSI C or C++) application.

* NO_INIT: Used for address ranges, where read write accesses are allowed. Memory area
defined with this qualifier will not be initialized with 0 at application startup. This may be
useful if your target has a battery buffered RAMis is only the case when linking a
High Level Language (ANSI C or C++) application.

» PAGED: Used for address ranges, where read write accesses are allowed. Memory area
defined with this qualifier will not be initialized with O at application startup. Additionally,
the linker will not maintain control if there is an overlap between segments. When
overlapped segments are used, it is the user’s responsibility to select the correct page
before accessing data allocated on a p&lgs.is only the case when linking a High
Level Language (ANSI C or C++) application.

Example:

SEGMENTS
ROM =READ_ONLY 0x1000 SIZE 0x2000;
CLOCK =NO_INIT OxFFOO TO OxFFFF;
RAM = READ_WRITE 0x3000 TO Ox3EFF;
Page0 = PAGED 0x4000 TO Ox4FFF;
Pagel = PAGED 0x4000 TO Ox4FFF;
END

In the previous example:

* Segment 'ROM’ is a READ_ONLY memory area. It starts at address 0x1000 and is
0x2000 bytes (from address 0x1000 to Ox2FFF).

* Segment 'RAM’ is a READ_WRITE memory area. It starts at address 0x3000 and ends at
Ox3FFF (size = 0x1000 bytes).

* Segment 'CLOCK’ is a READ_WRITE memory area. It starts at address 0xFF00 and
ends at OXFFFF (size = 100 bytes).

» Segments 'Page0’ and ‘Pagel’ are READ_WRITE memory areas. These are overlapping
segments. It is the user responsibility to select the correct page before accessing data from
these segments.

6.6.8.1 Defining an Alignment Rule

6-24

An alignment rule can be associated with each segment in the application. This may be useful
when specific alignment rules are expected on a certain memory range due to hardware
restrictions.

An alignment rule can be specified as follows:

ALIGN [<defaultAlignment>] [{' [(<Number>|

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES
<Number>* TO’ <Number>|
(¢ < |7 > |’ <= | >=)<Number>)"]’ <alignment>}]
defaultAlignment : Used to specify the alignment factor for objects that do not match a

condition in the following alignment list. If no alignment list is specified, the default
alignment factor applies to all objects allocated in the segment. The default alignment factor is
optional.

The alignment list contains items of the following forhe specified alignment applies to each
object inside the segment.

Table 6-4. Segment Alignment Items List

Notation Meaning
[<size>:<align.>] Size is equal to <size>.
[<sz1> TO <sz2>:<align.>] Size is bigger or equal to <sz1> and smaller or equal to <sz2>.
[<<size>:<align.>] Size is smaller than <size>.
[<=<size>:<align.>] Size is smaller or equal to <size>.
[><size>:<align.>] Size is bigger than <size>.
[>=<size>:<align.>] Size is bigger or equal to <size>.
Example:
SEGMENTS
RAM_1 = READ_WRITE 0x800 TO Ox8FF
ALIGN 2 [1:1];

RAM_2 = READ_WRITE 0x900 TO Ox9FF
ALIGN [2 TO 3:2] [>= 4:4];
RAM_3 = READ_WRITE 0xA00 TO OxAFF
ALIGN 1 [>=2:2];
END

In the previous example:

* Inside of segment RAM_1, all objects with size equal to 1 byte are aligned on a 1 byte
boundary and all other objects are aligned on a 2 byte boundary.

* Inside of segment RAM_2, all objects with size equal to 2 or 3 bytes are aligned on a 2
byte boundary and all objects bigger or equal to 4 are aligned on a 4 byte boundary. One
byte objects follow the default processor alignment rule.

MCUEZLNKO0508/D 6-25

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

6.6.8.2

6-26

* Inside of segment RAM_3, all objects bigger or equal to 2 bytes are aligned on a 2 byte
boundary and all other objects are aligned on a 1 byte boundary.

Defining a Fill Pattern

A fill pattern can be associated with each segment in the application. This may be useful to
automatically initialize uninitialized variables in the segments with a predefined pattern. For
assembly applications, the fill pattern can only be used in READ_ONLY segments.

A fill pattern can be specified as follows:

FILL <HexByte> {<HexByte>}

Example:

SEGMENTS
ROM_1 = READ_ONLY 0x800 TO Ox8FF
FILL OXAA 0x55;
END

In the previous example, fill bytes are initialized with the pattern OXAA55.

If the size of an object to initialize is higher than the size of the specified pattern, the pattern is
repeated as many times as required to fill the objects. In the previous example, an object of
four bytes will be initialized with OXAA55AA55.

If the size of an object to initialize is smaller than the size of the specified pattern, the pattern
is truncated to match the size of the object. In the previous example, an object of one byte will
be initialized with OxAA.

When the value specified in an element of a fill pattern does not fit in a byte, it is truncated to
a byte value.

Example:

SEGMENTS
ROM_1 = READ_ONLY 0x800 TO Ox8FF
FILL OXAASS5;
END

In the previous example, fill bytes are initialized with the pattern 0x55. The specified fill
pattern is truncated to a 1-byte value. Fill patterns provide an initial value to the padding bytes
inserted between two objects during object allocation. This marks the unused position with a
specific marker and can be detected inside the application. For example, an unused position
inside a code section can be initialized with the hexadecimal code for the NOP instruction.

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

6.6.9

STACKSIZE: Define Stack Size

Syntax:
STACKSIZE Number

Description:

The STACKSIZE command is optional in a PRM file. Additionally, you cannot specify both
STACKTOP and STACKSIZE commands in a PRM file. The STACKSIZE command defines
the stack size. We recommend using this command if you do not care where the stack is
allocated but only how large it is. When the stack is defined by a STACKSIZE command
alone, the stack is placed next to iiea section.

Example:

SEGMENTS
MY_RAM = READ_WRITE 0xA00 TO OxAFF;
MY_ROM = READ_ONLY 0x800 TO Ox9FF;
END
PLACEMENT
text IN MY_ROM,;
.data IN MY_RAM;
END
STACKSIZE 0x60

In the previous example, if the sectiafata is four bytes wide (from address OxAQ0O to
0xA03), the sectionstack is allocated next to it from address 0xA63 down to address
O0xAO04. The stack initial value is set to OxA62.

When the stack is defined by a STACKSIZE command associated with the placement of the
.stack section, the stack should start at the segment start address. It is incremented by the
specified value and defined to the start address of the segment, atheke has been
placed.

Example:

SEGMENTS
MY _STK =NO_INIT 0xB0O TO O0xBFF;
MY_RAM = READ_WRITE 0xA00 TO OxAFF;
MY_ROM = READ_ONLY 0x800 TO Ox9FF;
END
PLACEMENT
text IN MY_ROM,;
.data IN MY_RAM;
.stack IN MY_STK;
END
STACKSIZE 0x60

MCUEZLNKO0508/D 6-27

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

In the previous example, the sectiamack is allocated from address OxB5F down to
address 0xB0O0. The stack initial value is set to OXB5E.

In an assembly application, the stack pointer must be initialized in the source code. Defining
the stack in the PRM file only ensures no overlap between your stack and the code or data
sections in your application.

6.6.10 STACKTOP: Define Stack Pointer Initial Value

Syntax:
STACKTOP Number

Description:

The STACKTOP command is optional in a PRM file. Additionally, you cannot specify both
STACKTOP and STACKSIZE commands in a PRM file. The STACKTOP command defines
the initial value for the stack pointer.

Example:
If STACKTOP is defined as:

STACKTOP 0xBFF
the stack pointer will be initialized with OxBFF at application startup.

When the stack is defined by a STACKTOP command alone, a default size is assigned to the
stack. This size depends on the processor and is big enough to store the target processor PC.
When the stack is defined by a STACKTOP command associated with the placement of the
.stack section, the stack should start at the specified address. It is defined down to the start
address of the segment, whestack has been placed.

Example:

SEGMENTS
MY_STK =NO_INIT 0xB0O TO O0xBFF;
MY_RAM = READ_WRITE 0xA00 TO OxAFF;
MY_ROM = READ_ONLY 0x800 TO Ox9FF;
END
PLACEMENT
text IN MY_ROM,;
.data IN MY_RAM;
.stack IN MY_STK;
END
STACKTOP 0xB7E

In the previous example, the stack pointer will be defined from address OxB7E down to
address 0xBOO.

6-28 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

In an assembly application, the stack pointer must be initialized in the source code. Defining
the stack in the PRM file only ensures no overlap between your stack and the code or data
sections in your application.

6.6.11 VECTOR: Initialize Vector Table

Syntax:
VECTOR (InitByAddr | InitByNumber)

Description:
The VECTOR command is optional in a PRM file.

A vector is a small amount of memory about the size of a function address. This command
allows the user to initialize the processor vectors while downloading the absolute file. A
VECTOR command consists of a vector location part (containing vector location) and a
vector target part (containing the value to store in the vector).

The vector location part can be specified:

» Through a vector number (only valid when the processor vector table starts at address 0).
The address where the vector is allocated is evaluated as <Number> * <Sijze of a Function
Pointer>.

* Through a vector address. The keyword ADDRESS must be specified in the vector
command.

The vector target part can be specified:

* As a function name
¢ As an absolute address

Example:

VECTOR ADDRESS OxFFFE _Startup
VECTOR ADDRESS 0OxFFFC 0xA00
VECTOR 0 _Startup

VECTOR 1 0xA00

In the previous example, if the size of a function pointer is coded on two bytes:
* The vector located at address OxFFFE is initialized with the address of the function
‘ Startup’.
* The vector located at address OxFFFC is initialized with the absolute address 0xAOQO.

* Vector number O (located at address 0x000) is initialized with the address of the function
‘ Startup’.

* Vector number 1 (located at address 0x002) is initialized with the absolute address 0xAQO.

MCUEZLNKO0508/D 6-29

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

6.7

6.7.1

6.7.2

6.7.3

6-30

You can specify an additional offset when the vector target is a function name. In this case, the
vector will be initialized with the address of the object plus the specified offset.

Example:
VECTOR ADDRESS OxFFFE CommonISR + 0x10

In the previous example, the vector located at address OXFFE is initialized with the address of
the function ‘CommonISR’ plus 0x10 bytes. If ‘CommonISR’ starts at address 0x800, the
vector will be initialized with 0x810. This notation is useful for the common interrupt handler.
All objects specified in a VECTOR command are entry points in the application. They are
always linked with the application, as well as the objects they refer to.

SECTIONS

The concept section gives you complete control over allocation of objects in memory. A
section is a named group of global objects (variables or functions) associated with a memory
area that may be non-contiguous. Objects belonging to a section are allocated in its associated
memory range. This chapter describes the use of segmentation in detail.

There are many ways to make use ofdiveept section, the most important being:

» Distribution of two or more groups of functions and other read-only objects to different
ROMs.

» Allocating a single function or variable to a fixed absolute address (e.g. to access
processor ports using high level language variables).

» Allocating variables in memory locations where special addressing modes may be used.

Terms: Segments and Sections

A Sectionis a hamed group of global objects declared in the source file, i.e. functions and
global variables. ASegmenis not necessarily a contiguous memory range. In the linker
parameter file, each section is associated with a segment so the linker knows where to allocate
objects belonging to a section.

Definition of Section

A section definition always consists of two parts: the definition of objects belonging to it, and
the memory area(s) associated with it, called segments. The first is done in the source files
using pragmas or directives, s€empiler or Assemblevlanual. The second is done in the
parameter file using th&&EGMENTSand PLACEMENTcommands (see section drhe
Semantics of the Linker Commahds

Predefined Sections

When linking a high level language (ANSI C or C++) application, a couple of predefined
section hames can be grouped into sections named by the run-time routines.

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

» Sections for things besides variables and functioodatal , .copy , .stack

» Sections for grouping large sets of objects:
data , .text

» A section for placing objects initialized by the linkestartData
* A Section to allocate read-only variablesdata

NOTE
The sectionsdata and.text provide default sections for allocating objects.

Subsequently we will discuss each of these predefined sections.

rodatal All string literals (e.g. “This is a string”) are allocated in sectiodgatal . If this
section is associated with a segment qualifie®RBAD_WRITEthe strings are copied from
ROM to RAM at startup.

If this section is not mentioned in tHLACEMENTDlock in the parameter file, the string
litterals are allocated next to the sectitaxt

rodata Any constant variable declared@sst in a C module or as DC in an assembler
module, which is not allocated in a user-defined section, is allocated in sectiata
Usually, therodata section is associated with tREAD_ONLY¥egment.

If this section is not mentioned in tiREACEMENDIock in the parameter file, the constant
variables are allocated next to the sectiert

.copy Initialization data belongs to secti@opy . If a source file contains the declaration

intaf] = {1, 2, 3}

the hex stringd00100020003 (6 bytes), which is copied @ location in RAM at program
startup, belongs to segmeacdpy .

If the rodatal or rodata section is allocated toREAD_WRITESegment, all strings or
constants also belong to tleepy section. Objects in this section are copied at startup from
ROM to RAM.

stack The runtime stack has its own segment nastadk . It should always be allocated
to aREAD_WRITEegment.

If this section is not mentioned in tiREACEMENDIock in the parameter file, the constant
variables are allocated next to the sectaata

MCUEZLNKO0508/D 6-31

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

data This is the default section for all objects normally allocated to RAM. It is used for
variables not belonging to any section or to a section not assigned a segment in the
PLACEMENDlock. If the.bss or.stack sections are not associated with a segment, they
are included in thedata memory area in the following structure.

.data .bss .Stack

text This is the default section for all functions. If a function is not assigned to a certain
section in the source code or if its section is not associated with a segment in the parameter
file, it is automatically added to sectidext . If the .rodata, .rodatal, .startData

or.int sections are not associated with a segment, they are includedt@éxtthememory

area in the following structure.

.init .StartData text .-rodata .rodatal

StartData The startup description data initialized by the linker and used by the startup
routine is allocated to segmestartData . This section must be allocated tRBAD_ONLY
segment.

init The application entry point is stored in tiret ~ section. This section also has to be
associated with READ_ONLY¥egment.

NOTE

The.data and.text sections must always be associated with a segment.

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

6.8 EXAMPLES

Examples 1 and 2 illustrate the use of sections to control allocation of variables and functions
precisely.

Example 1:

Distributing code into two different ROMs:

LINK first. ABS
NAMES first.o strings.o startup.o END
STACKSIZE 0x200
SECTIONS

ROM1 = READ_ONLY 0x4000 TO Ox4FFF;

ROM2 = READ_ONLY 0x8000 TO Ox8FFF;
PLACEMENT

text INTO ROM1, ROM2;

.data INTO READ_WRITE 0x1000 TO Ox1FFF;
END

Example 2:
Allocation in battery buffered RAM:

/* Extract from source file "bufram.c" */
#pragma DATA_SEG Buffered_RAM
int done;
int status[100];
#pragma DATA_SEG DEFAULT
/* End of extract from "bufram.c" */

Linker parameter file:

LINK bufram.ABS
NAMES
bufram.o startup.o
END
STACKSIZE 0x200
SECTIONS
BatteryRAM = NO_INIT 0x1000 TO Ox13FF;
MyRAM = READ_WRITE 0x5000 TO Ox5FFF;
PLACEMENT
text INTO READ_ONLY 0x2000 TO 0x2800;
.data INTO MyRAM;
Buffered_RAM INTO BatteryRAM;
END

MCUEZLNKO0508/D 6-33

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

6.9

6.9.1

6-34

PROGRAM STARTUP

This section deals with advanced material and is only relevant for high level language (ANSI
C or C++) applications. First time users of MCUez may skip this section. Standard startup
modules are delivered with the MCUez programs and examples. Include startup modules to
link the parameter file. For more information about startup modules see the file
Startup. TXT in directoryLIB.

Prior to calling root functionngain):

* initialize the processor registers
* zero out memory
* copy initialization data from ROM to RAM.

Depending on the processor and application needs different startup routines may be necessary.
In MCUez, there are standard startup routines for every processor and memory model. Startup
routines are based on a startup descriptor containing all information.

The Startup Descriptor
The linker startup descriptor is declared as:

typedef struct{
unsigned char *far beg;int size;
} _Range;
typedef struct{
int size; unsigned char * far dest;
} _Copy;
typedef void (*_PFunc)(void);
typedef struct{
_PFunc *startup; /* address of startup desc */
} _Liblinit;
typedef struct{
_PFunc *initFunc; /* address of init function */
} _Cpp;
extern struct _tagStartup {
unsigned short flags;
_PFunc main;
unsigned short stackOffset;
unsigned short nofZeroOuts;
_Range *pZeroOut;
_Copy *toCopyDownBeg;
unsigned short nofLiblnits;
_LiblInit *libInits;
unsigned short noflnitBodies;
_PFunc *initBodies;
} _startupData;

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

The linker expects the _startupData variable to be declared somewhere in your
application.

struct _tagStartup _startupData;

Fields of thisstruct are initialized by the linker argtruct is allocated in ROM in section
StartData . If this variable is not declared, the linker does not create a startup descriptor. In
this case, there is noopy section and the stack is not initialized. Furthermore, the global
C++ constructor and ROM libraries are not initialized.

The fields have the following semantics:

flags Contains flags to detect special conditions at startup. Currently two bits are used.

Table 6-5. Setting Startup Descriptor Flags

Bit Number SetIf ...
0 The application has been linked as a ROM Library
1 There is no stack specification.

This flag is tested in the startup code, to determine if the stack pointer should be initialized.

main is a function pointer set to the application’s root function. In a C program, this is usually
functionmain unless aMAINentry in the parameter file specifies another function as root. In a
ROM library, this field is zeroed out. The standard startup code jumps to this address once
initialization completes.

stackOffset is valid only ifflags == . This field contains the initial value of the stack
pointer.

nofZeroOuts is the number dREAD_WRITESegments to fill with zero bytes at startup.

This field is not required if you do not have a RAM memory area that should be initialized at
startup. Be careful, if this field is not present in the startup structure, thepHeldOut
must not be present either.

pZeroOut is a pointer to a vector with elements of typRange. It has exactly
nofZeroOuts elements, each describing a memory area to be cleared. This field is not
required if you do not have a RAM memory area that should be initialized at startup. Be
careful, if this field is not present, the fieldfZeroOuts = must not be present either.

toCopyDownBeg contains the address of the first item to be copied from ROM to RAM at
runtime. All data to be copied is stored in a contiguous piece of ROM memory and has the
following format:

CopyData={Size ~ py TargetAddr {Byte} SiZe 10x0 g -

MCUEZLNKO0508/D 6-35

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

OPERATING PROCEDURES @ MOTOROLA

6.9.2

6-36

The size is a binary number whose most significant byte is stored first. This field is not
required if you do not have a RAM memory area that should be initialized at startup.

nofLibInits is the number of ROM libraries linked with the application that must be
initialized at startup. This field is not required if you do not link any ROM libraries with your
application. Be careful, if this field is not present in the startup structure, thédlalts

must not be present.

libInits is a vector of pointers to thestartupData records of all ROM libraries in the
application. It has exactlyofLibinits elements. These addresses are needed to initialize
the ROM libraries. This field is not required if you do not link any ROM libraries with your
application. Be careful, if this field is not present, the fietdLiblnits must not be
present.

nofinitBodies is the number of C++ global constructors that must be executed prior to
invoking the application root function. This field is not required if your application does not
contain any C++ modules. If this field is not present in the startup structure, the field
initBodies must not be present.

initBodies is a pointer to a vector of function pointers containing addresses of the global
C++ constructors. They are sorted in the order they need to be called. It has exactly
nofinitBodies elements. If an application does not contain any C++ modules, the vector is
empty. This field is not required if your application does not contain any C++ modules. If this
field is not present in the startup structure, the frefinitBodies must not be present.

User-Defined Startup Structure:

The user can define a startup structure. If you change the startup structure, adapt the startup
function to match the modifications.

Example:

If there is no RAM area to initialize at startup and no ROM libraries and C++ modules, you
can define the startup structure as follows:

extern struct _tagStartup {
unsigned short flags;
_PFunc main;
unsigned short stackOffset;
} _startupData;

The startup code must be adapted accordingly:

extern void near _Startup(void) {
[* purpose: 1) initialize the stack
2) call main;
parameters: NONE */
do { /* forever: initialize the program; call the root-procedure
*

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA OPERATING PROCEDURES

asm({
LDD _startupData.flags
BNE Initialize
LDS _startupData.stackOffset
Initialize:
}
/* Here user defined code could be inserted,
the stack can be used
*/
* call main() */
(*_startupData.main)();
} while(1); /* end loop forever */

}
NOTE

Field names in the startup structure should not be changed. You can remove
fields inside the structure, but do not change the names of the different fields.

6.9.3 User-Defined Startup Routines
Two ways to replace the standard startup routine with one of your own:

1. Provide a startup module containing a function nan&atup and link it with the
application.

2. Implement your own function and define it as an entry point for your application using the
command INIT.

INIT function_name

MCUEZLNKO0508/D 6-37

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

OPERATING PROCEDURES

@ MOTOROLA

6.10 THE MAP FILE

If linking succeeds, a protocol of the link process is written to a list file; referred to as the
MAP file. The name of the map file is the same asAlBSfile, but with extensionMAP The
map file is written to the directory given by the environment variaBeTPATH

6-38

The map file consists of up to 9 sections. The following table lists and defines each section.

Table 6-6. MAP File Sections

Alignment Item

Description

sed
b same

)

TARGET This section names the target processor and memory model.

FILE This section lists the names of all files from which objects were u
or referenced during the link process. In most cases, these are thg
names that are also listed in the linker parameter file between th
keywordsNAMESndEND

STARTUP This section lists the prestart code and the values used to initialiZ

startup descriptorstartupData . The startup descriptor is listed
member by member with the initialization data at the right hand sig
the member name.

e the

le of

SEGMENT ALLOCATION

This section lists segments, in which at least one object was
allocated. At the right hand side of the segment name there is a
pair of numbers, which gives the address range the objects
belonging to the segment were allocated.

OBJECT ALLOCATION

This section contains the names of all allocated objects and their
addresses. The objects are grouped by module. If an address of
an object is followed by the “@” sign, the object comes from a
ROM library. In this case the absolute file contains no code for
the object (if it is a function), but the object’s address was used
for linking. If an address of a string object is followed by a dash
“~" the string is a suffix of some other string. As an example, if
the strings "abc" and "bc" are present in the same program, the
string "bc" is not allocated and its address is the address of "abc™"

plus one.

OBJECT DEPENDENCY

This section lists the names of global objects used by functions
and variables.

UNUSED OBJECTS This section lists all objects found in the object files that were not
linked.

COPYDOWN This section lists all blocks that are copied from ROM to RAM at
program startup.

STATISTICS This section generates information about the size or code

generated.

NOTE

No map file is written when objects can not be found in an object file and the

linking process fails.

MCUEZLNKO0508/D

For More Information On This Product,

Go to: www.freescale.com

vy
4\

Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

7.1

7.2

CHAPTER 7
LINKER MESSAGES

INTRODUCTION

This chapter lists and defines all messages generated by the MCUez Linker.

LINKER MESSAGES REFERENCE

Three kinds of messages are generated by the linker.

* WARNING - A message is printed and linking continues. Warning messages are used to
indicate possible programming errors.

» ERROR - A message is printed and linking is stopped. Error messages are used to
indicate illegal syntax in the PRM file.

* FATAL - A message is printed and linking is aborted. A fatal message indicates a severe
error.

If the linker prints a message, the message contains a message code (‘L for Linker) and a four
to five digit number. Error message numbers are referenced in the manual and documented in
increasing order. Each message has a description and if available a short example with a
possible solution or tips to fix a problem. The type of message is also noted, (e.g. ERROR).

L1000 <Command Name> Not Found

Type: [ERROR]
Description

This message is generated when a mandatory linker command is missing from the PRM file.
Mandatory commands are:

* LINK, which contains the name of the absolute file to generate. If the option —O is
specified on the command line and the LINK command is missing from the PRM file, this
message is not generated.

* NAMES, lists the files building the application.

» PLACEMENT, associates at least the predefined sections ‘.text’ and ‘.data’ with a
memory range.

When the LINK command is missing the messag& itk not found °.

When the NAMES command is missing the messagBAMES not found'.

MCUEZLNKO0508/D 7-1

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

When the PLACEMENT command is missing the messagBlgCEMENT not found'.
Example:

NAMES fibo.o startl12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Insert the missing command in the PRM file.

Example

LINK fibo.abs
NAMES fibo.o start12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO 0xBFF;
PLACEMENT
ext INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

L1001 <Command Name> Multiply Defined
Type: [ERROR]

Description:
This message is generated when a linker command is detected more than once in the PRM file.
The following linker commands cannot be specified more than once in a PRM file.

» LINK, which contains the name of the absolute file to generate.

* NAMES, where files building the application are listed.

» SEGMENTS, where a name can be associated with a memory area.

» PLACEMENT, where sections used in the application are assigned to a memory range.

7-2 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA

LINKER MESSAGES

* ENTRIES, where objects linked with the application are listed.
* MAPFILE, where information stored in the MAP file is specified.

* MAIN, defines the application main function.

* INIT, defines the application entry point.
» STACKSIZE, defines the stack size.
» STACKTOP, defines the stack pointer initial value.

When the LINK command is detected more than once, the message will be:

‘LINK multiply defined

Example:

Tips

LINK fibo.abs
NAMES fibo.o start12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
ext INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
LINK fibo.abs
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Remove one of the duplicated commands.

Example:

LINK fibo.abs
NAMES fibo.o start12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

7-3

[]
2 |

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

L1002 Command <Command Name> Overwritten by Option <Option Name>

Type: [WARNING]

Description

This message is generated when a command line option overrides a command in the PRM file.
<command name>: Name of the command in the PRM file

<option name>: Linker command line option

Commands that may be overridden by a command line option are:

* LINK, overridden by the option —O (defines the output file name)
* MAPFILE, overridden by the option —M (enables generation of the MAP file)
* INIT, overridden by the option —E (defines the application entry point)

When the LINK command is detected in the PRM file and the option —O is specified on the
command line, the following message is generated:

‘Command LINK overwritten by option -O
Tips

Remove either the command in the PRM file or the command line option.

L1003 Only a Single SEGMENTS or SECTIONS Block is Allowed

7-4

Type: [ERROR]
Description

This error occurs when the PRM file contains both a SECTIONS and a SEGMENTS block. The
SECTIONS block is a synonym for the SEGMENTS block. It is supported for compatibility
with an old style MCUez PRM file.

Example

LINK fibo.abs
NAMES fibo.o startl2s.o ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY _ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
SECTIONS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
PLACEMENT
text INTO MY_ROM;

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

.data INTO MY_RAM,;

.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Remove either the SEGMENTS or SECTIONS block.

L1004 <Separator> Expected
Type: [ERROR]

Description

This message is generated when the specified <separator> is missing from an expected
position.

<separator>: character or expression expected
Example 1:

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO Ox8FF
ALIGN [2TO 4, 4]
N

ERROR: : expected.
Tips
Insert the specified separator at the expected position.

L1005 Fill Pattern Will Be Truncated (>0xFF)
Type: [WARNING]

Description

This message is generated when the constant specified as a fill pattern cannot be coded on a
byte. The constant truncated to a byte value will be used as the fill pattern.

Example

SEGMENTS
MY_RAM = READ_WRITE 0x0800 TO Ox8FF FILL OxA34;
END

Tips
To avoid this message, split the constant into two byte constants.
Example

MCUEZLNKO0508/D 7-5

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA
SEGMENTS
MY_RAM = READ_WRITE 0x0800 TO Ox8FF FILL OxA 0x34;
END

L1007 <Character> Not Allowed in File Name (Restriction)

Type: [ERROR]

Description

A file name specified in the PRM file contains an illegal character.
<character>: characters not allowed in a file name at the indicated position.
Following characters are not allowed in a file name:

» Colon (:), Used as separator to specify a local object (function or variable) in a PRM file.

» Semi-colon(;), Used as delimiter for a command line in a LAYOUT or
OBJECT_ALLOCATION block.

» Greater than symbol (>), Used as separator to refer to an object located in a section inside
a LAYOUT or OBJECT_ALLOCATION block.

Avoid putting characters ‘+' and *-* in a file name. This may cause a problem when used as a
file name suffix in the NAMES block.

Example

NAMES

file:1.0;
N

ERROR: "' or '>' not allowed in file name (restriction)

END
or
NAMES
filel.o file>2.lib;
N
ERROR: "' or '>' not allowed in file name (restriction)
END
Tips

Change the file name and avoid the illegal characters.

L1009 Segment Name <Segment Name> Unknown

7-6

Type: [ERROR]

Description

Segment specified in a PLACEMENT or LAYOUT command line was not previously defined
in the SEGMENTS block.

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

<segment name>: name of the segment, which is not known
Example

LINK fibo.abs
NAMES fibo.o startl12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
text INTO ROM_AREA,;
N
ERROR: Segment Name ROM_AREA unknown
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Define the segment names in the SEGMENTS block.

Example

LINK fibo.abs
NAMES fibo.o start12s.0 ansis.lib END
SEGMENTS
RAM_AREA = READ_ WRITE 0x800 TO 0x80F;
ROM_AREA = READ ONLY 0x810 TO OxAFF;
STK_AREA = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
text INTO ROM_AREA,;
.data INTO RAM_AREA;
.stack INTO STK_AREA;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

L1011 Incompatible Segment Qualifier: <Qualifierl> in Previous Segment and
<Qualifier> in <Segment Name>
Type: [ERROR]

Description

Two segments specified in the same statement in the PLACEMENT block are not defined with
the same qualifier.

MCUEZLNKO0508/D 7-7

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

<qualifierl>: Segment qualifier associated with the previous segment in the list. This qualifier
may be READ_ONLY, READ_WRITE, NO_INIT, or PAGED.

<qualifier2> Segment qualifier associated with the current segment in the list. This qualifier
may be READ_ONLY, READ_WRITE, NO_INIT, or PAGED.

<segment name >: Name of the current segment in the list.
Example

LINK fibo.abs
NAMES fibo.o startl12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
SEC_RAM= READ_WRITE 0x020 TO 0x02F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
.data INTO MY_RAM,;
text INTO MY_ROM, SEC_RAM,;
N
ERROR: Incompatible segment qualifier: READ_ONLY in previous
segment and READ_WRITE in SEC_RAM
.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Modify the qualifier associated with the specified segment.

Example

LINK fibo.abs
NAMES fibo.o start12s.0 ansis.lib END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
SEC_ROM= READ_ONLY 0x020 TO 0x02F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
.data INTO MY_RAM;
text INTO MY_ROM, SEC_ROM,;
.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

7-8 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA

LINKER MESSAGES

L1015 No Binary Input File Specified
Type: [ERROR]

Description
No file names specified in the NAMES block.
Example

LINK fibo.abs
NAMES END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Specify at least one file name in the NAMES block.

L1016 File <File Name> Found Twice in The NAMES Block
Type: [ERROR]

Description

A file name is detected twice in the NAMES block.

<file name >: Name of file detected twice in the NAMES block.
Example

LINK fibo.abs
NAMES fibo.o startup.o fibo.o END
N
ERROR: File fibo.o found twice in the NAMES block
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
text INTO MY_ROM;

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

7-9

O
]

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

.data INTO MY_RAM,;

.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Remove the second occurrence of the specified file.

L1100 Segments <Segmentl Name> and <Segment2 Name> Overlap
Type: [ERROR]

Description

Two segments defined in the PRM file overlap each other.
<segmentl name >: Name of the first overlapping segment.
<segment2 name >: Name of the second overlapping segment.

Example

AN

Segments MY_RAM and MY_ROM overlap
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x805 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Modify the segment definition to remove the overlap.

Example

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;

7-10 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥4
i

Freescale Semiconductor, Inc.

@ MOTOROLA

LINKER MESSAGES

MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

L1102 Out of Allocation Space in Segment <Segment Name> at Address <First
Address Free>
Type: [ERROR]

Description

The specified segment is not big enough to contain all objects from sections placed in it.

<segment name> : Name of the undersized segment.

<first address free>: First address free in this segment (i.e. address following the last address
used).

Example

In the following example, assume the section ‘.data’ contains a character variable and a
structure of 5 bytes.

Tips

Set the end address of the specified segment to a higher value.

AN

Out of allocation space in segment MY_RAM at address 0x801

LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x803;
MY_ROM = READ_ONLY 0x805 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

7-11

[]

2 |

Freescale Semiconductor, Inc.
LINKER MESSAGES @ MOTOROLA
L1103 <Section Name> Not Specified in The PLACEMENT Block
Type: [ERROR]
Description

Indicates that a mandatory section is not specified in the placement block. Sections always
specified in the PLACEMENT block are .text and .data.

Example

AN

ERROR: .text not specified in the PLACEMENT block
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
.nit, .rodata INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Insert the missing section in the PLACEMENT block.

Note:

The section DEFAULT_RAM is a synonym for .data and DEFAULT_ROM is a synonym for
text. These two section names have been defined for compatibility with the old MCUez
Linker.

L1106 <Object Name> Not Found

7-12

Type: [ERROR|WARNING]
Description

An object referenced in the PRM file or in the application is not found. This message is
generated when:

* An object specified in a VECTOR or VECTOR ADDRESS command is not found
(ERROR).
* No startup structure detected in the application (WARNING).

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

* An object (function or variable) referenced in another object is not found in the
application (ERROR).

* An object (function or variable) specified in the ENTRIES block is not found (ERROR).

Example

AN

ERROR: globint not found
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY _ROM = READ_ONLY 0x810 TO OxAFF;
MY _STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
text, .rodata INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;
END

ENTRIES
globint;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
The missing object must be implemented in one of the modules building the application.

Ensure that your definition of OBJPATH and GENPATH is correct and the linker uses the
latest version of the object files.

Check the NAMES block to ensure all binary files building the application are listed.

L1109 <Segment Name> Appears Twice in SEGMENTS Block
Type: [ERROR]

Description

A segment name is specified twice in a PRM file. This is not allowed. When this segment name
is referenced in the PLACEMENT block, the linker cannot detect which memory area is
referenced.

Example
LINK fibo.abs

MCUEZLNKO0508/D 7-13

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

LINKER MESSAGES

@ MOTOROLA

Tips

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
MY_RAM = READ_WRITE 0xC00 TO 0xCFF;
AN
ERROR: MY_RAM appears twice in SEGMENTS block
END
PLACEMENT
text, .rodata INTO MY_ROM,;
.data INTO MY_RAM,;
.Sstack INTO MY_STK;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Change one of the segment names, to generate unique segment names. If the same memory area
is defined twice, you can remove one of the definitions.

L1110 <Segment Name> Appears Twice in PLACEMENT Block

Type:

[ERROR]

Description

The specified segment appears twice in a PLACEMENT block, and one of the PLACEMENT
lines is part of a segment list. A segment name may appear in several lines in the PLACEMENT
block, if it is the only segment specified in the segment list. Sections specified in both
PLACEMENT lines are merged into one list of sections, which are allocated in the specified
segment.

Example

7-14

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
ROM_2 = READ_ONLY 0x500 TO Ox7FF;
END

PLACEMENT
text, .rodata INTO MY_ROM,;
.data INTO MY_RAM,;

For More Information On This Product,

Go to: www.freescale.com

MCUEZLNKO0508/D

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

.stack INTO MY_STK;
codeSecl, codeSec2 INTO ROM_2, MY_ROM,;

N

ERROR: MY_ROM appears twice in PLACEMENT block
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Remove one instance of the segment from the PLACEMENT block.

L1111 <Section Name> Appears Twice in PLACEMENT Block
Type: [ERROR]

Description
The specified section appears multiple times in a PLACEMENT block.
Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
ROM_2 = READ_ONLY 0x500 TO Ox7FF;

END

PLACEMENT
text, .rodata INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;
text INTO ROM_2;

AN

ERROR: .text appears twice in PLACEMENT block
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup
Tips

Remove one occurrence of the specified section from the PLACEMENT block.

MCUEZLNKO0508/D 7-15

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.
LINKER MESSAGES @ MOTOROLA
L1112 The <Section name> Section Has Segment Type <Segment Qualifier> (ll-
legal)
Type: [ERROR]
Description

A section is placed in a segment defined with an incompatible qualifier. This message is
generated when:

* The section ‘.stack’ is placed in a READ_ONLY segment.

* The section ‘.bss’ is placed in a READ_ONLY segment.

* The section ‘.startData’ is placed in a READ_WRITE, NO_INIT or PAGED segment.
* The section “.init’ is placed in a READ_WRITE, NO_INIT or PAGED segment.

» The section ‘.copy’ is placed in a READ_WRITE, NO_INIT or PAGED segment.

* The section ‘.text’ is placed in a READ_WRITE, NO_INIT or PAGED segment.

* The section ‘.data’ is placed in a READ_ONLY segment.

» A data section is placed in a READ_ONLY segment.

* A code section is placed in a READ_WRITE segment.

Example

AN

ERROR: The .data section has segment type READ_ONLY (illegal)
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
ROM_2 = READ_ONLY 0x500 TO Ox7FF;

END

PLACEMENT
text, .rodata INTO MY_ROM,;
.data INTO ROM_2;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips

Place the specified section in a segment that has been defined with an appropriate qualifier.

7-16 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
ROM_2 = READ_ONLY 0x500 TO Ox7FF;
END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM;
.Stack INTO MY_STK;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

L1114 The <Section Name> Section Has Segment Type <Segment Qualifier>
(Initialization Problem)
Type: [WARNING]

Description

The specified section is loaded in a segment that has been defined with the qualifier NO_INIT
or PAGED. This may generate a problem because the section contains some initialized
constants, which will not be initialized at application startup. This message is generated when:

» The section “.rodata’ is placed in a NO_INIT or PAGED segment.
» The section “.rodatal’ is placed in a NO_INIT or PAGED segment.

Example

AN

WARNING: The .rodata section has segment type NO_INIT (initial-
ization problem)

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
RAM_2 = NO_INIT 0x500 TO Ox7FF;
END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM;

MCUEZLNKO0508/D 7-17

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

.stack INTO MY_STK;
.rodata INTO RAM_2;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips

Place the specified section in a segment defined with the READ_ONLY or READ_WRITE
qualifier.

Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY _ROM = READ_ONLY 0x810 TO OxAFF;
MY _STK = READ_WRITE 0xB00 TO 0xBFF;
RAM 2 = NO_INIT 0x500 TO Ox7FF;
END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM,;
.stack INTO MY_STK;
rodata INTO MY_ROM,;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

L1115 Function <Function Name> Not Found
Type: [ERROR|WARNING]

Description
The specified function is not found in the application. This message is generated when:

* No main function is available in the application. This function is not required for an
assembly application. For ANSI C applications, if no main function is available, the
programmer must ensure that application startup is performed correctly. Usually the main
function is called ‘main’, but you can define your own main function using the linker
command MAIN.

* No init function is available. The init function defines the entry point in the application.
This function is required for ANSI C and assembly applications. Usually the init function
is called *_Startup’, but you can define your own init function using the linker command
INIT.

7-18 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

Tips
Provide the application with the requested function.

L1118 Vector Allocated at Absolute Address <Address> Overlaps With Another

Vector or an Absolutely Allocated Object
Type: [ERROR]

Description

A vector overlaps with an absolute object or another vector.

Example

AN

ERROR: Vector allocated at absolute address OXFFFE overlaps with
another vector or an absolutely allocated object

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
END
PLACEMENT
text, .rodata INTO MY_ROM,;
.data INTO MY_RAM;
.stack INTO MY_STK,;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup
VECTOR ADDRESS 0OxFFFF 0x000A

Tips
Move the object or vector to a free position.

L1119 Vector Allocated at Absolute Address <Address> Overlaps With Sections
Placed in Segment <Segment Name>
Type: [ERROR]

Description

The specified vector is allocated inside a segment, which is specified in the PLACEMENT
block. This is not allowed because the vector may overlap with objects defined in the sections.

A vector may be allocated inside a segment that does not appear in the PLACEMENT block.

MCUEZLNKO0508/D 7-19

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

Example

AN

ERROR: Vector allocated at absolute address OXFFFE overlaps with
sections placed in segment ROM_2

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY _ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB0O0 TO O0xBFF;
ROM 2 = READ_ONLY O0xFFO00 TO OxFFFF;
END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM;
.stack INTO MY_STK;
.rodata INTO ROM_2;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Define the specified segment outside the vector table.

Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY _ROM = READ_ONLY 0x810 TO OxAFF;
MY _STK = READ_WRITE 0xB00 TO 0xBFF;
ROM 2 = READ_ONLY 0xC00 TO OxCFF;
END
PLACEMENT
text INTO MY_ROM;
.data INTO MY_RAM;
.stack INTO MY_STK;
.rodata INTO ROM_2;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

7-20

For More Information On This Product,
Go to: www.freescale.com

MCUEZLNKO0508/D

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

L1120 Vector Allocated at Absolute Address <Address> Placed in Segment

<Segment Name>, Which Has No READ_ONLY qualifier.
Type: [ERROR]

Description

The specified vector is defined inside a segment not defined with the qualifier READ_ONLY.
The vector table should be initialized at application load time during the debug phase. It should
be burned into the EPROM when application development is terminated. For this reason, the
vector table must always be located in a READ_ONLY memory area.

Example

AN

ERROR: Vector allocated at absolute address OxFFFE placed in
segment RAM_2 which has not READ_ONLY qualifier

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB0O0O TO OxBFF;
RAM_2 = READ_WRITE 0xFFOO0 TO OXFFFF;
END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM;
.stack INTO MY_STK;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Define the specified segment with the READ_ONLY qualifier.

L1121 Out of Allocation Space at Address <Address> for .copy Section
Type: [ERROR]

Description
Insufficient memory to store information for initialized variables in the ‘.copy’ section.
Tips

Specify a higher end address for the segment, where the ‘.copy’ section is allocated.

MCUEZLNKO0508/D 7-21

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.
LINKER MESSAGES @ MOTOROLA
L1122 Section .copy Must be The Last Section in The Section List
Type: [ERROR]
Description

The ‘.copy’ section is not specified at the end of a section list from the PLACEMENT block.
Since the size of this section cannot be evaluated before all initialization values are written, the
.copy section must be the last section in a section list.

Example

AN

ERROR: Section .copy must be the last section in the section list
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB0O0O TO OxBFF;

END

PLACEMENT
.copy, .text INTO MY_ROM;
.data INTO MY_RAM;
stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips

Move the section .copy to the last position in the section list or define it on a separate
PLACEMENT line in a separate segment.

Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;
ROM_2 = READ_ONLY 0xCO00 TO OxDFF;
END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM;
.Stack INTO MY_STK;

7-22 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

.copy INTO ROM_2;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

L1123 Invalid Range Defined For Segment <Segment Name> - End Address
Must Be Bigger Than Start Address
Type: [ERROR]

Description

The memory range specified in the segment definition is not valid. The segment end address is
smaller than the segment start address.

Example

LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO Ox7FF;

N

ERROR: Invalid range defined forsegmentMY_RAM. End address must
be bigger than start address

MY_ROM = READ_ONLY 0x810 TO OxAFF;

MY_STK = READ_WRITE 0xBO0 TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips

Change the segment start or end address to define a valid memory range.
L1124 '+ or'-' Should Directly Follow The File Name

Type: [ERROR]

Description

The ‘+" or ‘-* suffix specified after a file name in the NAMES block does not directly follow
the file name. A space probably exists between the file name and suffix.

Example

MCUEZLNKO0508/D 7-23

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

LINK fibo.abs
NAMES fibo.o + startup.o END
N

ERROR: '+ or - should directly follow the file name
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB00 TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Remove the extra space after the file name.

Example

LINK fibo.abs

NAMES fibo.o+ startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xBO0 TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

L1125 In Small Memory Model, Code and Data Must Be Located on Bank O
Type: [ERROR]
Description

The application has been assembled or compiled in a small memory model and the memory
area specified for a segment is not located on the first 64K (0x0000 to OXFFFF).

7-24 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

Example

AN

ERROR: In small memory model, code and data must be located on
bank 0
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x10810 TO O0x10AFF;
MY_STK = READ_WRITE 0xBO0 TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips

If memory higher than OxFFFF is required for the application, the application must be
assembled or compiled using the banked memory model. If no memory above OXFFFF is
required, modify the memory range and place it on the first 64K of memory.

L1200 Both STACKTOP and STACKSIZE Defined
Type: [ERROR]

Description

The STACKTOP and STACKSIZE commands are specified in the PRM file. This is not
allowed, because it generates ambiguity for the definition of the stack.

Example

AN

ERROR: Both STACKTOP and STACKSIZE defined
LINK fibo.abs
NAMES fibo.o startup.o END

STACKTOP OxBFE

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;

END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
MCUEZLNKO0508/D 7-25

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

END

STACKSIZE 0x60

[* Set reset vector on _Startup */

VECTOR ADDRESS OxFFFE _Startup
Tips

Remove either the STACKTOP or STACKSIZE command from the PRM file.

L1201 No Stack Defined

7-26

Type: [WARNING]
Description

The PRM file does not contain a stack definition. In that case, it is the programmer
responsibility to initialize the stack pointer inside the application code. The stack can be
defined in the PRM file in one of the following ways:

* Through the STACKTOP command in the PRM file.

* Through the STACKSIZE command in the PRM file.
» Through the specification of the .stack section in the placement block.

Example

AN

WARNING: No stack defined
LINK fibo.abs
NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;

END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Define the stack in one of the three ways specified above.

Note that if the programmer initializes the stack pointer inside the source code, initialization
from the linker will be overridden.

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

vy
4\

Freescale Semiconductor, Inc.

@ MOTOROLA

LINKER MESSAGES

L1202 Stack Cannot Be Allocated on More Than One Segment
Type: [ERROR]

Description

The section .stack is specified on a PLACEMENT line where several segments are listed. This
is not allowed, because the memory area reserved for the stack must be contiguous and cannot
be split over different memory ranges.

Example

Tips

AN

ERROR: stack cannot be allocated on more than one segment

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
STK_1 = READ_WRITE 0xB0OO TO OxBFF;
STK_2 = READ_WRITE 0xD0O0O TO OxDFF;

END

PLACEMENT
text INTO MY_ROM:;
.data INTO MY_RAM:
stack INTO STK_1, STK_2;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Define a single segment with the READ_WRITE or NO_INIT qualifier to allocate the stack.

L1203 STACKSIZE Command Defines a Size of <Size> But .stack Specifies a

Stacksize of <Size>
Type: [ERROR]

Description

The stack is defined through both a STACKSIZE command and placement of the .stack section
in a READ_WRITE or NO_INIT segment. However, the size specified in the STACKSIZE
command is bigger than the size of the segment where the stack is allocated.

Example

AN

ERROR: STACKSIZE command defines a size of 0x120 but .stack

specifies a stacksize of 0x100
LINK fibo.abs

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

7-27

O
]

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
STK_1 = READ_WRITE 0xBOO TO OxBFF;
END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO STK_1,;
END

STACKSIZE 0x120
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips

To avoid this message you can either adapt the size specified in the STACKSIZE command to
fit into the segment where .stack is allocated or simply remove the command STACKSIZE.

If you remove the command STACKSIZE from the previous example, the linker will initialize
a stack from 0x100 bytes. The stack pointer initial value will be set to OXBFE.

Example

LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xBO0 TO OxBFF;
END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM;
.stack INTO MY_STK;
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

If the size specified in a STACKSIZE command is smaller than the size of the segment where
the section .stack is allocated, the stack pointer initial value will be evaluated as follows:

<segment start address> + <size in STACKSIZE> -
<Additional Byte Required by the processor.>

Example

LINK fibo.abs
NAMES fibo.o startup.o END

7-28 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB0O0O TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;

END

STACKSIZE 0x60
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

In the previous example, the initial value for the stack pointer is evaluated as:

0xBOO0 + 0x60s —2 = OxBSE

L204 STACKTOP Command Defines an Initial Value of <Stack Top> But

.stack Specifies an Initial Value of <Initial Value>
Type: [ERROR]

Description

The stack is defined through both a STACKTOP command and placement of the .stack section
in a READ_WRITE or NO_INIT segment. However, the value specified in the STACKTOP
command is bigger than the end address of the segment where the stack is allocated.

Example

AN

ERROR: STACKTOP command defines an initial value of OXCFE but
.stack specifies an initial value of OXBFF
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY _ROM = READ_ONLY 0x810 TO OxAFF;
STK 1 = READ_WRITE 0xB0O0 TO 0xBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO STK_1;

END

STACKTOP 0xCFE
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

MCUEZLNKO0508/D 7-29

For More Information On This Product,
Go to: www.freescale.com

[]

]

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

Tips

To avoid this message you can either adapt the address specified in the STACKTOP command
to fit into the segment where .stack is allocated, or simply remove the command STACKTOP.

If you remove the command STACKTOP from the previous example, the stack pointer initial
value will be set to OXBFE.

Example

LINK fibo.abs

NAMES fibo.o startup.o END

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xBO0 TO OxBFF;

END

PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
.stack INTO MY_STK;

END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

L1205 STACKTOP Command Incompatible With .stack Being Part of a List of

Sections
Type: [ERROR]

Description

The stack is defined through both a STACKTOP command and placement of the .stack section
in a READ_WRITE or NO_INIT segment. The .stack section is specified in a list of sections
in the PLACEMENT block.

Example

AN

ERROR: STACKTOP command incompatible with .stack being part of a
list of sections
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
STK_1 = READ_WRITE 0xBOO TO OxBFF;
END
PLACEMENT
text INTO MY_ROM,;

7-30 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

.data, .stack INTO STK 1,
END

STACKTOP OxBFE
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Specify the .stack section in a placement line, where the stack alone is specified.

L1206 Stack Overlaps With a Segment Which Appears in The PLACEMENT

Block
Type: [ERROR]

Description

The stack is defined through the command STACKTOP and the initial value is inside a
segment, which is used in the PLACEMENT block.

This is not allowed because the stack may overlap with allocated objects.

Example

AN

ERROR: .stack overlaps with a segment which appears in the
PLACEMENT block
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
STK_1 = READ_WRITE 0xBOO TO OxBFF;

END
PLACEMENT
text INTO MY_ROM,;
.data INTO STK_1;
END

STACKTOP OxBFE
[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Define the stack initial value outside all segments specified in the PLACEMENT block.

Example

LINK fibo.abs
NAMES fibo.o startup.o END

MCUEZLNKO0508/D 7-31

For More Information On This Product,
Go to: www.freescale.com

O
]

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxAFF;
MY_STK = READ_WRITE 0xB0O0O TO OxBFF;

END
PLACEMENT
text INTO MY_ROM,;
.data INTO MY_RAM,;
END

STACKTOP OxBFE

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

L1207 STACKSIZE Command is Missing
Type: [ERROR]

Description

The stack is defined by placing the .stack section in a READ_WRITE or NO_INIT segment,
although the .stack section is not alone in the section list. In this case, a STACKSIZE command
is required to specify the stack size.

Example

AN

ERROR: STACKSIZE command is missing
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
MY_RAM = READ_WRITE 0x800 TO 0x80F;
MY_ROM = READ_ONLY 0x810 TO OxXAFF;
STK_1 = READ_WRITE 0xB0OO TO OxBFF;
END
PLACEMENT
text INTO MY_ROM,;
.data, .stack INTO STK 1,
END

[* Set reset vector on _Startup */
VECTOR ADDRESS OxFFFE _Startup

Tips
Specify the stack size in a STACKSIZE command.

L1301 Cannot Open File <File Name>
Type: [ERROR]

7-32 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

Description

The linker is unable to open the application map file, absolute file or one of the binary files used
to build the application.

Tips

If the abs or map file cannot be found, ensure that memory is available for the directory to store
the file and the directory has read/write access.

If the environment variable TEXTPATH is defined, the MAP file is stored in the first directory
specified, otherwise it is created in the directory where the source file is detected.

If the environment variable ABSPATH is defined, the absolute file is stored in the first
directory specified, otherwise it is created in the directory where the PRM file is detected.

If a binary file cannot be found, make sure the file exists and spelled correctly. Check if paths
are defined correctly. The binary files must be located in one of the paths listed in the
environment variables OBJPATH or GENPATH, or in the working directory.

L1302 File <File Name> Not Found

Type: [ERROR]

Description

A file required during the link session cannot be found. This message is generated when:
* The parameter file specified on the command line cannot be found.

Tips

Make sure the file really exists and spelled correctly.

Check if paths are defined correctly. The PRM file must be located in one of the paths listed in
the environment variable GENPATH or in the project directory.

L1303 <File Name> Is Not a Valid ELF File

Type: [ERROR]

Description

The specified file is not a valid ELF binary file. The linker is only able to link ELF binary files.
Tips

Check that you have compiled or assembled the specified file with the correct option to
generate an ELF binary file.

Check if paths are defined correctly. The binary files must be located in one of the paths listed
in the environment variables OBJPATH or GENPATH, or in the project directory.

MCUEZLNKO0508/D 7-33

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

L1400 Incompatible Processor: <Processor Name> in Previous Files and <Pro-
cessor Name> in Current File
Type: [ERROR]

Description

The binary files building the application have been generated for a different target processor.
In this case, the linked code cannot be compatible.

Tips
Make sure you are compiling or assembling all your sources for the same processor.

Check if paths are defined correctly. The binary files must be located in one of the paths listed
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1401 Incompatible Memory Model: <Memory Model Name> in Previous Files

and <Memory Model Name> in Current File
Type: [ERROR]

Description

The binary files building the application have been generated for a different memory model. In
this case, the linked code cannot be compatible.

Tips
Make sure you are compiling or assembling all sources in the same memory model.

Check if paths are defined correctly. The binary files must be located in one of the paths listed
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1403 Unknown Processor <Processor Constant>
Type: [ERROR]

Description
The processor encoded in the binary object file is not a valid processor constant.
Tips

Check if paths are defined correctly. The binary files must be located in one of the paths listed
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1404 Unknown Memory Model <Memory Model Constant>
Type: [ERROR]

Description

The memory model encoded in the binary object file is not valid for the target processor.

7-34 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

Tips

Check if paths are defined correctly. The binary files must be located in one of the paths listed
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1600 Main Function Detected in ROM Library

Type: [WARNING]
Description

A main function has been detected in a ROM library. A main function is not required in a ROM
library since they are not self executable applications.

Tips
Remove the MAIN command from the PRM file.

If the application contains a ‘main’ function, rename it.

L1601 Startup Function detected in ROM library

Type: [WARNING]
Description

An application entry point has been detected in a ROM library. An application entry point is
not required in a ROM library.

Tips
Remove the INIT command from the PRM file.

If the application contains a ‘_Startup’ function, rename it.

L1700 File <File Name> Should Contain DWARF Information

Type: [ERROR]
Description

The binary file that defines the startup structure does not contain DWARF information. This is
required because the type of startup structure is not fixed by the linker and depends on the field
and field position inside the user defined structure.

Tips

Insert DWARF information and recompile the ANSI C file containing the startup structure
definition.

MCUEZLNKO0508/D 7-35

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

L1701 Start Up Data Structure is Empty
Type: [ERROR]

Description

The size of the user defined startup structure is 0 bytes.

Tips

Check if you actually need a startup structure.

If a startup structure is available, ensure that the correct field name is listed.

L1803 Out of Memory in <Function Name>
Type: [ERROR]

Description
Insufficient memory to allocate the internal structure required by the linker.

L1804 No ElIf Section Header Table Found in <File Name>
Type: [ERROR]

Description

Section header table not detected in the binary file.
Tips

Ensure that you are using the correct binary file.

Check if paths are defined correctly. The binary files must be located in one of the paths listed
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1806 EIf file <File Name> appears to be corrupted
Type: [ERROR]

Description

The specified binary file is not a valid ELF binary file.
Tips

Ensure that you are using the correct binary file.

Check if paths are defined correctly. The binary files must be located in one of the paths listed
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1808 String overflow in <Function Name>, contact vendor
Type: [ERROR]

7-36 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

\ ¥ 4
4\ Freescale Semiconductor, Inc.

@ MOTOROLA LINKER MESSAGES

Description

A section name detected in a section table is longer than 100 characters.
Tips

Ensure all section names are smaller than 100 characters.

L1809 Section <Section Name> located in a segment with invalid qualifier.
Type: [ERROR]

Description

Attributes associated with a section and used in several binary files are not compatible. In one
file, the section contains variables in the other it contains constants, variables, or code.

Tips

Check usage of the different sections in all binary files. A specific section should contain the
same type of information throughout the project.

L1811 Symbol <Symbol Number> - < Symbol Name> duplicated in <First File
Name> and <Second file Name>
Type: [ERROR]

Description

The specified global symbol is defined in two different binary files.
Tips

Rename the symbol defined in one of the specified files.

L1820 Weak symbol <Symbol Name> duplicated in <First File Name> and

<Second file Name>
Type: [WARNING]

Description
The specified weak symbol is defined in two different binary files.
Tips

Rename the symbol defined in one of the specified files.

L1822 Symbol <Symbol Name> in file <File Name> is Undefined
Type: [ERROR]

MCUEZLNKO0508/D 7-37

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

Freescale Semiconductor, Inc.

LINKER MESSAGES @ MOTOROLA

Description
The specified symbol is referenced in the file, but not defined anywhere in the application.
Tips

Check if an object file is missing in the NAMES block and if you are using the correct binary
file.

Check if paths are defined correctly. The binary files must be located in one of the paths listed
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1823 External Object <Symbol Name> in <File Name> Created by Default
Type: [WARNING]

Description

The specified symbol is referenced in the file, but not defined in the application. However, an
external declaration for this object is available in at least one of the binary files. The object
should be defined in the first binary file where it is externally defined.

This is only valid for ANSI C applications.
In this case an external definition for a variable var looks like:

extern int var;

The definition of the corresponding variable looks like:
int var;
Tips

Define the specified symbol in one of the files building the application.

7-38 MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

vy
4\

@ MOTOROLA

Freescale Semiconductor, Inc.

INDEX

Index

Symbols

.abs 1-1, 4-1
.copy 6-31, 6-35
.data 6-31, 6-32
ini 2-6

.init 6-32

.map 4-2, 6-37
prm 4-1

.rodata 6-31
.rodatal 6-31
.s14-1

.S2 4-1

s34-1

.stack 6-31, 6-32
.StartData 6-31, 6-32, 6-35
.Sx 4-1

text 6-31, 6-32

A

Absolute File 1-1, 4-1, 6-18, 6-21
ABSPATH 4-1, 6-15
Application

Startup (also see Startup) 6-34
Assembly

Application 6-10, 6-17

Smart Linking 6-11

C

Codewright 2-2

Command
ENTRIES 6-8, 6-9, 6-16
INIT 5-2, 6-17
LINK 5-2, 6-15, 6-18
MAIN 6-19
MAPFILE 5-3, 6-19
NAMES 6-9, 6-15, 6-21
PLACEMENT 5-9, 6-15, 6-22, 6-32
SEGMENTS 5-5, 6-15, 6-23
STACKSIZE 6-27
STACKTOP 6-28
VECTOR 6-1, 6-29

MCUEZLNKO0508/D

D

DEFAULT.ENV 3-1
Drag and Drop 2-16

E

-E option 5-2
ENTRIES 6-8, 6-9, 6-16
Environment
File 3-1
Environment Variable
ABSPATH 3-3, 4-1, 6-15, 6-18
ENVIRONMENT 3-1
ERRORFILE 3-5
GENPATH 3-3, 4-1, 6-15, 6-21
LINKPTIONS 3-2, 5-1
OBJPATH 3-3, 6-15, 6-21
SRECORD 3-5, 4-1
TEXTPATH 3-4, 4-2, 6-15, 6-18
Error feedback 2-16

F

File
Absolute 1-1, 4-1, 6-18, 6-21
Environment 3-1
Library 6-21
MAP 4-2, 6-18, 6-20, 6-37
Motorola S 4-1
Object 6-21
Parameter 4-1
Parameter (Linker) 6-13
File Menu 2-6

G

GENPATH 6-15, 6-21
Graphical Interface 2-2

INIT 5-2, 6-17
Input 2-14
Input File 2-16

L

Library File 6-21
LINK 5-2, 6-15, 6-18
Linker Menu 2-12

For More Information On This Product,
Go to: www.freescale.com

[]
2 |

INDEX

Freescale Semiconductor, Inc.

@ MOTOROLA

M

-M Option 5-3
MAIN 6-19
MAP File 4-2, 6-18, 6-20, 6-37
COPYDOWN 6-38
FILE 6-38
OBJECT ALLOCATION 6-38
OBJECT DEPENDENCY 6-38
SEGMENT ALLOCATION 6-38
STARTUP 6-38
STATISTICS 6-38
TARGET 6-38
UNUSED OBJECTS 6-38
MAPFILE 5-3, 6-19
MCUTOOLS.INI 2-7
Menu Bar 2-6
MESSAGE 2-14
Message
ERROR 7-1
FATAL 7-1
WARNING 7-1
Motorola S File 4-1

N

NAMES 6-9, 6-15, 6-21
NO_INIT 5-7, 6-24

@)

-O Option 5-2, 6-18
Object File 6-21
OBJPATH 6-15, 6-21
Option

-E 5-2

-M 5-3

-0 5-2, 6-18

-S 5-3

-V 54

-W15-4

-W2 5-4
Output 2-14

P

PAGED 5-7, 6-24
Parameter
File (Linker) 6-13

Parameter File 4-1

Path List 3-2

PLACEMENT 5-9, 6-15, 6-22, 6-32
Program Startup (also see Startup) 6-34

Q

Qualifier 5-5, 5-6, 6-23
NO_INIT 5-7, 6-24
PAGED 5-7, 6-24
READ_ONLY 5-7, 6-24
READ_WRITE 5-7, 6-24

R

READ_ONLY 5-7, 6-24
READ_WRITE 5-7, 6-24
ROM library 6-21, 6-35

S

-S Option 5-3
Section 6-31
.copy 6-31, 6-35
.copy] 6-31
.data 6-31, 6-32
init 6-32
.rodata 6-31
.rodatal 6-31
.stack 6-31, 6-32
.StartData 6-31, 6-32, 6-35
text 6-31, 6-32
rodata 6-31
Segment 6-31
Alignment 5-5, 5-7, 6-24, 6-25
Ffill pattern 6-24
Fill Pattern 5-5, 5-9, 6-26
Qualifier 5-5, 5-6, 6-23
SEGMENTS 5-5, 6-15, 6-23
Smart Linking 1-1, 6-8
STACKSIZE 6-27
STACKTOP 6-28
Starting 2-1
Startup
Application 6-34
Startup Function 6-37
User Defined 6-37
Startup Structure 6-34

MCUEZLNKO0508/D

For More Information On This Product,

Go to: www.freescale.com

|
y

y
A

Freescale Semiconductor, Inc.

@ MOTOROLA

INDEX

flags 6-35
initBodies 6-36
liblnits 6-36
main 6-35
noflnitBodies 6-36
nofLiblnits 6-36
nofZeroOuts 6-35
pZeroOut 6-35
stackOffset 6-35
toCopyDownBeg 6-35
User Defined 6-36
Startup.TXT 6-34
Status Bar 2-5

T

TEXTPATH 4-2, 6-15
Tip of the Day 2-1
Tool Bar 2-4

Vv

-V Option 5-4
VECTOR 6-1, 6-29
Vector 1-1

View Menu 2-13

w

-W1 option 5-4
-W2 Option 5-4
Win32s 2-3
Window 2-2
WinEdit 2-2
WINEDIT.INI 2-2

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

[]

2 |

INDEX

Freescale Semiconductor, Inc.
@ MOTOROLA

MCUEZLNKO0508/D

For More Information On This Product,
Go to: www.freescale.com

	chaptitle - general�information
	heading1 - 1.1 Introduction
	heading1 - 1.2 functional description
	heading1 - 1.3 FEATURES
	heading1 - 1.4 support information

	chaptitle - User�Interface
	heading1 - 2.1 introduction
	heading1 - 2.2 Interactive User Interface
	heading2 - 2.2.1 Starting the MCUez Linker
	figuretitle - Figure 2-1. MCUez Linker Tip of The Day Window

	heading2 - 2.2.2 Linker Graphical Interface
	figuretitle - Figure 2-2. MCUez Linker Graphical User Interface
	heading3 - 2.2.2.1 Window Title
	heading3 - 2.2.2.2 Content Area
	heading3 - 2.2.2.3 Tool Bar
	figuretitle - Figure 2-3. MCUez Linker Tool Bar

	heading3 - 2.2.2.4 Status Bar
	figuretitle - Figure 2-4. MCUez Linker Status Bar

	heading3 - 2.2.2.5 Linker Menu Bar
	heading3 - 2.2.2.6 File Menu
	figuretitle - Figure 2-5. Configuration Dialog - Global Editor
	figuretitle - Figure 2-6. Configuration Dialog - Local Editor
	figuretitle - Figure 2-7. Configuration Dialog - Editor Started With Command Line
	figuretitle - Figure 2-8. Configuration Dialog - Editor Started With DDE
	heading4 - 2.2.2.6.1 Important remarks
	heading4 - 2.2.2.6.2 Save Configuration Dialog
	figuretitle - Figure 2-9. Save Configuration Dialog Window

	heading3 - 2.2.2.7 Linker Menu
	heading3 - 2.2.2.8 View Menu
	heading3 - 2.2.2.9 Advanced Options Dialog Box
	figuretitle - Figure 2-10. Advanced Options Dialog Window

	heading2 - 2.2.3 Message Settings Dialog Box
	figuretitle - Figure 2-11. Message Settings Dialog Window
	tabletitle - Table 2-1. Message Group Definitions
	heading3 - 2.2.3.1 Changing the Class Associated With a Message
	heading3 - 2.2.3.2 Specifying the Input File
	heading4 - 2.2.3.2.1 Using the Editable Combo Box in the Tool Bar
	heading4 - 2.2.3.2.2 Using the Entry File | Link ...
	heading4 - 2.2.3.2.3 Using Drag and Drop

	heading2 - 2.2.4 Error Feedback
	heading3 - 2.2.4.1 Error Feedback Using Information From the Linker Window
	heading3 - 2.2.4.2 Error Feedback Using a User-Defined Editor
	heading4 - 2.2.4.2.1 Line Number Can be Specified on the Command Line
	heading4 - 2.2.4.2.2 Line Number Cannot be Specified on the Command Line

	chaptitle - Environment�variables
	heading1 - 3.1 introduction
	heading1 - 3.2 Setting Parameters
	heading1 - 3.3 Path Variables
	heading2 - 3.3.1 LINKOPTIONS
	heading2 - 3.3.2 GENPATH
	heading2 - 3.3.3 OBJPATH
	heading2 - 3.3.4 ABSPATH
	heading2 - 3.3.5 TEXTPATH
	heading2 - 3.3.6 SRECORD
	heading2 - 3.3.7 ERRORFILE

	chaptitle - Files
	heading1 - 4.1 introduction
	heading1 - 4.2 Parameter File: Input
	heading1 - 4.3 Absolute Files: Output
	heading1 - 4.4 Motorola S Files: Output
	heading1 - 4.5 MAP Files
	figuretitle - Figure 4-1. Link Process Conceptual Diagram

	chaptitle - Linker�Options�and�issues
	heading1 - 5.1 introduction
	tabletitle - Table 5-1. MCUez Linker Options Descriptions

	heading1 - 5.2 -E Linker Option
	heading1 - 5.3 -O Linker Option
	heading1 - 5.4 -M Linker Option
	heading1 - 5.5 -S Linker Option
	heading1 - 5.6 -V Linker Option
	heading1 - 5.7 -W1 Linker Option
	heading1 - 5.8 -W2 Linker Option
	heading1 - 5.9 Linking Issues
	heading2 - 5.9.1 Object Allocation
	heading3 - 5.9.1.1 The SEGMENTS Block
	heading4 - 5.9.1.1.1 Segment Qualifier
	tabletitle - Table 5-2. Segment Qualifier Descriptions

	heading4 - 5.9.1.1.2 Segment Alignment
	tabletitle - Table 5-3. Segment Alignment Rule Format

	heading4 - 5.9.1.1.3 Segment Fill Pattern

	heading3 - 5.9.1.2 PLACEMENT Block
	heading4 - 5.9.1.2.1 Specifying a List of Sections
	heading4 - 5.9.1.2.2 Specifying a List of Segments

	heading2 - 5.9.2 Allocating User-Defined Sections

	chaptitle - operating�procedures
	heading1 - 6.1 introduction
	heading1 - 6.2 Initializing the vector table
	heading2 - 6.2.1 VECTOR Command
	tabletitle - Table 6-1. VECTOR Command Syntax
	heading3 - 6.2.1.1 Initializing the Vector Table in the Linker PRM File
	heading3 - 6.2.1.2 Initializing the Vector Table in the Assembly Source File Using a Relocatable ...
	heading3 - 6.2.1.3 Initializing the Vector Table in the Assembly Source File Using an Absolute Se...

	heading1 - 6.3 Smart Linking
	heading2 - 6.3.1 Mandatory Linking From an Object
	heading2 - 6.3.2 Mandatory Linking From All Objects Defined in a File
	heading2 - 6.3.3 Switching OFF Smart Linking for the Application

	heading1 - 6.4 Binary Files building an Application
	heading2 - 6.4.1 NAMES Block
	heading2 - 6.4.2 ENTRIES Block
	heading2 - 6.4.3 Linking an Assembly Application
	heading2 - 6.4.4 Warning Messages

	heading1 - 6.5 The Parameter File
	heading2 - 6.5.1 The Syntax of the Parameter File
	heading2 - 6.5.2 Mandatory Parameter File Linker Commands

	heading1 - 6.6 Linker Commands
	heading2 - 6.6.1 ENTRIES: List of Objects to Link With the Application
	tabletitle - Table 6-2. ENTRIES Block Supported

	heading2 - 6.6.2 INIT: Specify the Application Entry Point
	heading2 - 6.6.3 LINK - Specify Name of the Output File
	heading2 - 6.6.4 MAIN
	heading2 - 6.6.5 MAPFILE: Configure the MAP File Content
	tabletitle - Table 6-3. MAP File Specifiers

	heading2 - 6.6.6 NAMES: List the Files building the Application.
	heading2 - 6.6.7 PLACEMENT: Place Sections Into Segments
	heading2 - 6.6.8 SEGMENTS: Define Memory Map
	heading3 - 6.6.8.1 Defining an Alignment Rule
	tabletitle - Table 6-4. Segment Alignment Items List

	heading3 - 6.6.8.2 Defining a Fill Pattern

	heading2 - 6.6.9 STACKSIZE: Define Stack Size
	heading2 - 6.6.10 STACKTOP: Define Stack Pointer Initial Value
	heading2 - 6.6.11 VECTOR: Initialize Vector Table

	heading1 - 6.7 Sections
	heading2 - 6.7.1 Terms: Segments and Sections
	heading2 - 6.7.2 Definition of Section
	heading2 - 6.7.3 Predefined Sections

	heading1 - 6.8 Examples
	heading1 - 6.9 Program Startup
	heading2 - 6.9.1 The Startup Descriptor
	tabletitle - Table 6-5. Setting Startup Descriptor Flags

	heading2 - 6.9.2 User-Defined Startup Structure:
	heading2 - 6.9.3 User-Defined Startup Routines

	heading1 - 6.10 The MAP File
	tabletitle - Table 6-6. MAP File Sections

	chaptitle - Linker�Messages
	heading1 - 7.1 introduction
	heading1 - 7.2 Linker Messages Reference

