MCUez HC12 Debugger User's Manual
MCUEZDBG12/D
Rev. 1

@ MOTOROLA

h -

P N

ZZZZZZZZZZZZ

MCUez
HC12 Debugger

User’s Manual

@ MOTOROLA

User’s Manual

Important Notice to Users

While every effort has been made to ensure the accuracy of all information
in this document, Motorola assumes no liability to any party for any loss or
damage caused by errors or omissions or by statements of any kind in this
document, its updates, supplements, or special editions, whether such errors
are omissions or statements resulting from negligence, accident, or any other
cause. Motorola further assumes no liability arising out of the application or
use of any information, product, or system described herein; nor any liability
for incidental or consequential damages arising from the use of this
document. Motorola disclaims all warranties regarding the information
contained herein, whether expressed, implied, or stattitading implied
warranties of merchantability or fitness for a particular purposéotorola
makes no representation that the interconnection of products in the manner
described herein will not infringe on existing or future patent rights, nor do
the descriptions contained herein imply the granting or license to make, use
or sell equipment constructed in accordance with this description.

The computer program contains material copyrighted by Motorola, Inc., first
published in 1997, and may be used only under a license such as the License
For Computer Programs (Article 14) contained in Motorola’s Terms and
Conditions of Sale, Rev. 1/79.

Trademarks

This document includes these trademarks:
MCUez is a trademark of Motorola, Inc.
WinEdit is a trademark of Wilson WindowWare.

Windows is a registered trademark of Microsoft Corporation.

© Motorola, Inc., and HIWARE AG., 1999; All Rights Reserved

User’'s Manual

MCUez HC12 Debugger

4

MOTOROLA

User’'s Manual — MCUez HC12 Debugger

MCUez HC12 Debugger

List of Sections

Section 1. General Information 21
Section 2. Graphical User Interface (GUI)............ 27
Section 3. ComponentWindows 45
Section 4. Operating Procedures 71
Section 5. Command Reference 89
Section 6. D-Bug12 Monitor Target Component 179
Section 7. FLASH Programming 193
Appendix A. Register Description File 215
Appendix B. C Source-Level Debugging 219

Appendix C. Extended Backus-Naur Form (EBNF) . . .235

User’'s Manual

MOTOROLA

List of Sections

5

List of Sections

User's Manual MCUez HC12 Debugger

6 List of Sections MOTOROLA

User’'s Manual — MCUez HC12 Debugger

MCUez HC12 Debugger

11
1.2

1.3

13.1
1.3.2
1.3.3

1.4
15

2.1
2.2
2.3

2.4
241
24.2

2.5

2.6

26.1
2.6.2
2.6.3
26.4
2.6.5
2.6.6
2.6.7

Table of Contents

Section 1. General Information

CONtENtS . . 21
INtrodUCtioN. 21
Document Conventions.ottt 23
General Term 23
Mouse Operationst 23
Typographic Stylesin ThisManual. 23
Functional Descriptiont 24
Component WindowsSottt 25

Section 2. Graphical User Interface (GUI)

CONtENTS . . o 27
INtrodUCtioN. 28
Toolbar 29
Status Bar 29
Debugger Status. 30
MCU Error Messages. oo e e 30
Information Bar. 31
Drag and Drop.o e 32
Dragging from the Assembly Component. 33
Dragging into the Assembly Component. 33
Dragging from the Data Component 34
Dragging into the Data Component. 35
Dragging from the Source Component 35
Dragging into the Source Component 36
Dragging from the Memory Component. 36

User’'s Manual

MOTOROLA

Table of Contents 7

Table of Contents

2.6.8
2.6.9
2.6.10
2.6.11

2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.74.1
2.7.5
2.7.6
2.7.7

3.1
3.2

3.3
3.3.1
3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3.3.3
3.3.3.1
3.34
3.34.1
3.34.2
3.3.4.3
3.3.5
3.35.1
3.3.5.2
3.3.5.3

User’'s Manual

MCUez HC12 Debugger

8

Table of Contents MOTOROLA

Dragging into the Memory Component. 37
Dragging from the Register Component 37
Dragging into the Register Component. 38
Dragging from the Module Component. 38
MCUez Debugger MainMenu. 39
File Menu. 39
VIEW MENU. . . e 39
Run Menu. 40
Target Menu. e 41
ESL Target 41
Component MeNU. 42
Window Menu 43
Help Menu e 43
Section 3. Component Windows
CONtENES . .o 45
INtrodUCHiON. 46
COMPONENTS . . .o 46
ComponentWindow Menus i 47
Source ComponentWindow 49
Breakpoints 52
Decoding Instructions i 52
Find DialogBox 53
Assembly ComponentWindow 53
Retrieving Source Statements. 57
Register ComponentWindow 57
Status RegisterBits. 58
Editing Reqgisters. 58
Register Display OptionsMenu 58
Memory Component Window 59
Memory Component Operations. 60
Memory Component Pop-upMenu. 60
Memory Update Mode 63

g |

MCUez HC12 Debugger

3.3.6
3.3.6.1
3.3.6.2
3.3.6.3
3.3.7
3.3.7.1
3.3.8

4.1
4.2

4.3
43.1

4.4
4.5
4.6
4.7

4.8

48.1
4.8.2
4.8.3
4.8.4
4.8.5

4.9
49.1
4.9.2

4.10

4.10.1
4.10.2
4.10.3
4.10.4
4.10.5

Table of Contents

Data Component Window, 63
Expression Editor 64
Data Component Pop-upMenus. 66
DataUpdate Mode 67
Command Line ComponentWindow 67
Command Line Component Operations 68
Module Component Window. 69
Section 4. Operating Procedures
CONtENtS . .. e 71
Introduction. 72
Configuring the MCUez Debugger. 73
Configuring for Use with Editors. 73
Automating the MCUez Startup Process 74
Loading an Application. 74
Starting an Application. 76
Stopping an Application. 76
Breakpoints. 77
Breakpoint Symbols. 78
Identifying All Positions to Define a Breakpoint. 79
DefiningaBreakpoint, 79
Deleting a Breakpoint 80
Breakpoints Menu 81
Stepping inthe Application 82
Stepping on Assembly Level 82
Stepping Overa FunctionCall. 82
Working with Variables 83
Displaying Global Variables froma Module. 83
Changing the Variable Value Display Format. 83
Modifying a Variable Value 84
Displaying an Allocated Variable Address 85
Loading an Address Register with a Variable Address 85

User’'s Manual

MOTOROLA

Table of Contents 9

Table of Contents

User’'s Manual

411

411.1
4.11.2
4.11.3
4114

412
412.1
4.12.2

5.1
5.2

5.3

53.1
5.3.2
5.3.3

5.4

5.5
5.5.1

5.6

5.6.1
5.6.2
5.6.3
5.6.4

5.7
5.8
5.9
5.10

Working with Registers 85
Changing the Register Display Format 85
Modifying the Content of an Index or Accumulator Register. . . . 86
Modifying Bit Register Contents. 86
Retrieving a Memory Dump Starting at

a Register-Indicated Address 87

Working with Memory 88
Changing the Memory Display Format 88
Modifying Memory Address Content 88

Section 5. Command Reference

CONtENtS . o 89

Introduction. 90

List of Available Commands, 90
Kernel Commands i 91
TargetCommands 92
ComponentCommands 94

Definitionof Terms. 95

Register Description File 96
File Format. 96

EXPresSsSioNS 96
Expression Definition inEBNF. 97
SEeMaANtCS 98
Scope Examples. 99
Constant Standard Notation. 100

KernelCommands i 100

Target Commands. 118

ComponentCommands.t 151

Command Files. 178

MCUez HC12 Debugger

10

Table of Contents MOTOROLA

MCUez HC12 Debugger

Table of Contents

Section 6. D-Bug12 Monitor Target Component

6.1 CONteNtS . . . 179
6.2 INtroduCtion. 180
6.3 General Description i e 180
6.4 Interfacing Host Computer and EvaluationBoard 181
6.4.1 Evaluation Board Configuration 181
6.4.2 Hardware Connection 181
6.5 Loading the D-Bugl12 Target Component 181
6.6 Startup Command File 183
6.7 D-Bugl2 Menu ENtries. 183
6.8 Status Bar 186
6.9 D-Bugl2 Default Environment. 186
6.10 D-Bugl2 Target ComponentCommands..................... 186
6.10.1 PROTOCOL. e 186
6.10.2 BAUDRATE 187
6.10.3 P .. 187
6.10.4 VER 187
6.10.5 DEVICE. 188
6.11 Communication SCEeNArOo i it 188
6.11.1 Stop PrograminEVBMode 188
6.11.2 User-Defined Vectorsc. .. 188
6.12 MG68EVB912B32 EvaluationBoard. 189
6.12.1 Operating Modes 189
6.12.2 Memory Mapo 190
6.13 M68HC12A4EVB EvaluationBoard 191

Section 7. FLASH Programming
7.1 CONtENES . . e e 193
7.2 INtroduction. 194

User’'s Manual

MOTOROLA

Table of Contents 11

Table of Contents

User’'s Manual

7.3

7.3.1
7.3.2
7.3.3

7.4
7.4.1

7.5
7.5.1
7.5.2

7.6

7.6.1
7.6.2
7.6.3

7.7
7.7.1
71.7.2

Al
A.2
A.3
A4

B.1
B.2
B.3

B.4

B.4.1
B.4.2
B.4.3

NVMC Graphical User Interface 194
Handling FLASHModule 197
FLASH Programming ParameterFile 198
Loading an Application in FLASH 199

NVMC Commands. . ..ot 200
FLASH . .. 201

Prepare and Program FLASHMemory 204
Non-Banked Memory Model. 204
Banked Memory Model 206

FLASH Memory Mappingo oo 208
M68EVB912B32 Evaluation Board Characteristics 208
M68HC12A4 Evaluation Board Characteristics 208
HC12DG128/HC12DA128 Evaluation Board Characteristics . . 209

FLASH Programming Examples, 211
FromaCommandLineo .. 211
FromaCommandFile.......... 213

Appendix A. Register Description File

CONtENES . . 215
INtroduction. 215
File Format 215
Description Using Extended Backus—Naur Form (EBNF). 216

Appendix B. C Source-Level Debugging

CONtEeNtS . . . 219
INntroduction. 220
Source CompoNeNntottt 220
Procedure Component.t e 221
Operations e 222
Drag OUL. 222
Drop Into 223

MCUez HC12 Debugger

12

Table of Contents MOTOROLA

MCUez HC12 Debugger

Table of Contents

B.5 DataComponent. 223
B.6 Breakpoints SettingDialog. 224
B.7 General Rule for Halting on a Control Point 226
B.8 Configuring the Default Layout 226
B.9 Loading an Application. 226
B.10 Stopping an Application. i 226
B.11 Defining Counting Breakpoints 227
B.12 Stepping inthe Application 227
B.12.1 Steppingat SourceLevel......... 227
B.12.2 Stepping Over a Function Call (Flat Step). 229
B.12.3 Stepping Outofa FunctionCall 229
B.13 Displaying a Local Variable from a Function. 230
B.14 Miscellaneous C Source-Level Commands 230

Appendix C. Extended Backus-Naur Form (EBNF)

C.1 CONteNntS 235
C.2 EBNFFileFormat 235
C.3 EBNFExample. 235
Cd EBNFSYNAX . .o oooeee e ettt e 237
C.5 EXIENSIONS. . .. 237

Appendix D. Serial Device Interface (SDI)

D.1 COoNtENES . .. 239
D.2 IntroducCtion. 240
D.3 OVEIVIEW. . . . o e 240
D.3.1 System POWEr. 242
D.4 Communication Configuration., 242

D4.1 Data Format. e 243

User’'s Manual

MOTOROLA

Table of Contents 13

Table of Contents

User’'s Manual

D.5 Default TargetSetup. e 243
D.6 Settingthe Target 244
D.6.1 SDIStatus Bar 244
D.7 Advanced SDI Environment Setup. 245
D.7.1 SDI Default Environment, 245
D.7.2 IMODULE e e 245
D.7.3 COMDEY ... 245
D.7.4 SDI Target Startup File 246
D.7.5 SDIResetCommand File 246
D.8 SDITargetMenu e 246
D.8.1 Loading an application. i 246
D.8.2 CommunicationsBaudRate. 246
D.8.3 MCU Selection. 247
D.8.4 MCU E-Clock Frequencyciiiiiiinn.. 248
D.8.5 Memory Configuration 249
D.9 SDIOperationsoui e 250
D.9.1 On-Chip Hardware Breakpoint 250
D.9.2 EEPROM Programmingc0 ... 250
D.10 OperatingEVBWIithSDI 251
D.10.1 Operating the SDI with the MC68HC812A4EVB. 251
D.10.2 Operating the SDI with the M68HC912B32EVB 251
D.10.3 Demo Programst 251
D.11 PeriodicUpdates. 252
D.12 SDICOMMANGS.ottt 253
Index
DX . o 255

MCUez HC12 Debugger

14

Table of Contents MOTOROLA

User’'s Manual — MCUez HC12 Debugger

MCUez HC12 Debugger

Figure

2-1
2-2
2-3

2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15

List of Figures

Title Page

MCUez Debugger Toolbar 29
MCUez Debugger StatusBar 29
Infformation Bar. 31
Dragand Drop Example. 32
Debugger Main MenuU.t 39
File Menu 39
VIeW MENU . . .o 39
RUNMENU 40
Target Menu: Load and Reset. i, 41
SDland ESL TargetMenuso i, 42
Component MenuUt 42
Window Menu 43
Help Menu 43
Open Window Component Dialog Box 46
Active Component Menu i 47
Source Component Pop-upMenus. i 48
Source Component Window. 49
Source Component Main Menu and Pop-upMenu 50
Online Disassembly 52
Find Dialog BOX 53
Assembly ComponentWindow 54
Assembly Component Main Menu and Associated Pop-up Menu. . . 55
Register Component Window. 57
Register Display OptionsMenu, 58
Memory Component Window, 59
Memory Component Pop-upMenu, 60
Memory Component Display Address 61
Memory Component Fill Memory DialogBox 62

User’'s Manual

MOTOROLA

List of Figures 15

List of Figures

User’'s Manual

Figure

3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23

4-1
4-2
4-3
4-4
4-5
4-6
4-7

6-1
6-2
6-3
6-4
6-5
6-6

7-1
7-2
7-3
7-4

B-1
B-2
B-3
B-4
B-5
B-6

Title Page

Update Rate: Memory Component. 63
Data Component Window. e 64
Accessing the Expression Editor 64
Using the Edit Expression BoxX. 65
Data Component Pop-upMenus. 66
Update Rate: Data Component. 67
Command Line ComponentMenuoiiunn.... 68
Module Component Window i 69
Loading an Application. 75
Breakpoints Setting Dialog Window 77
Identifying Breakpoint Positions 79
Breakpoints Menu. 81
Modifying a Variable Value 84
Modifying the Content of an Index or Accumulator Register 86
Choosinga Memory Address 87
General Setup 180
Loading D-Bugl2. 182
Communication Device Dialog Box. 182
D-BUgl2 MenU. 183
MCU SelectionDialog BOXt 184
Memory Configuration DialogBox 185
SDITarget Menu e 194
NVMC Dialog BOX. oo 195
Loading Executable File. 199
FLASH Commands Display. 200
Source Component Window. i 221
Procedure ComponentWindow 221
Procedure ComponentWindow Menu 222
Data Component Window. 223
Breakpoints Setting Dialog Window 225
Stepping-at-Source Level Window. 228

MCUez HC12 Debugger

16

List of Figures MOTOROLA

MCUez HC12 Debugger

List of Figures

Figure Title Page

D-1 Serial Device Interface (SDI) o 240
D-2 Serial Port Connector forthe HC12 241
D-3 Serial Port Connector for the CPU16/32 241
D-4 Communication Device Dialog Box. 242
D-5 Example oproject.iniFile. 243
D-6 Selecting MotoESL Target Component 244
D-7 SDITarget Menu e 244
D-8 SDIStatusBar. 244
D-9 Communication Device Dialog Box. 247
D-10 MCU SelectionDialog BoX 247
D-11 Settingthe MCU Speed 248
D-12 Memory Configuration DialogBox 249

User’'s Manual

MOTOROLA

List of Figures 17

List of Figures

User's Manual MCUez HC12 Debugger

18 List of Figures MOTOROLA

User’'s Manual — MCUez HC12 Debugger

MCUez HC12 Debugger

Table

2-1
2-2
2-3

2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12

3-2
3-3
4-1
4-2
4-3

6-1

6-2
6-3

B-1
B-2

List of Tables
Title Page
Dragging from the Assembly Component 33
Dragging into the Assembly Component 33
Dragging from the Data Component. 34
Dragging into the Data Component 35
Dragging from the Source Component. 35
Dragging into the Source Component. 36
Dragging from the Memory Component 36
Dragging into the Memory Component 37
Dragging from the Register Component. 37
Dragging into the Register Component 38
Dragging from the Module Component 38
RUuUNMeNU 40
Memory Component Pop-upMenu 61
Data Component Operations.ttt 66
Command Line Operations. 68
Breakpoints Pop-up Menu Definitions. 81
Changing the Variable Value Display Format 84
Memory Display Format Options. 88

MCUez Debugger Functions and Related D-Bug12

Monitor Commands. 189
M68EVB912B32 Memory Map. 190
MG6B8HC12A4EVB Memory Map oo 191
Procedure Component Drag and Drop Operations. 222
Data Component Menu Options

for C Source-Level Debugging i 224

User’'s Manual

MOTOROLA

List of Tables 19

List of Tables

User's Manual MCUez HC12 Debugger

20 List of Tables MOTOROLA

User’'s Manual — MCUez HC12 Debugger

1.1 Contents

1.2 Introduction

MCUez HC12 Debugger

Section 1. General Information

1.2 Introduction.

1.3 Document ConVveNntioNnS.t
1.3.1 General Term o
1.3.2 Mouse Operations

1.3.3 Typographic Stylesin ThisManual.

1.4 Functional Description

15 Component Windows it

Motorola’s MCUez debugger incorporates a powerful GUI (graphical user

interface) and command line that enables the user to debug assembly files,

correlate them with the data, manipulate register contents, and read and
manipulate memory contents.

Additional functionality for C source-level debugging is available with the
corresponding license key. ReferAppendix C. Extended Backus-Naur
Form (EBNF) for additional information.

User’'s Manual

MOTOROLA

General Information 21

General Information

This manual describes how to use the debugger application. This chapter
presents information on documentation conventions and provides a functional
description of operation. The manual is divided into seven chapters, four
appendices, and an index:

» Section 1. General Informationprovides a functional description of
operation and support information.

» Section 2. Graphical User Interface (GUI)provides information on the
toolbar, status bar, object information bar, drag and drop capability, and
the debugger menus.

» Section 3. Component Windowgrovides detailed information on each
basic debugger window component.

» Section 4. Operating Proceduresontains procedures on how to use the
MCUez debugger.

» Section 5. Command Referencprovides detailed information on all
MCUez commands. Each description also includes a usage example.

» Section 6. D-Bug12 Monitor Target Componenprovides information
as it relates to the MCUez debugger environment.

» Section 7. FLASH Programmingprovides information on controlling
on-chip FLASH devices.

* Appendix A. Register Description Fileprovides definitions of the I/O
registers used when loading a MCUez target.

* Appendix B. C Source-Level Debuggingrovides information on how
to use the debugger when debugging C code at the source level.

» Appendix C. Extended Backus-Naur Form (EBNF)describes file
formats and syntax rules.

* Appendix D. Serial Device Interface (SDI)provides information on the
serial device interface.

User's Manual MCUez HC12 Debugger

22 General Information MOTOROLA

General Information
Document Conventions

1.3 Document Conventions

This section describes terms and styles used throughout the manual.

1.3.1 General Term

The following general term is used in this document:

Keyl + Key2

The + (plus) sign means that Keyl is held down while Key?2 is pressed.

1.3.2 Mouse Operations

This bulleted list describes the terminology used in this manual to define mouse
operations.

Click — Implies to click the left mouse button once
Right click — This click operation is done with the right mouse button.
Double click — This indicates to double click the left mouse button.

Drag — Press and hold down the left mouse button while dragging the
mouse. The object will move with the mouse cursor and drop when the
mouse button is released.

Unclick — Release the mouse button.

1.3.3 Typographic Styles in This Manual

These typographic conventions are used in this manual:

MCUez HC12 Debugger

Bold facetype is used for literal strings that must be used exactly as
shown in the example and for the names of menus, windows, dialog
boxes, icons, and buttons.

Courier type face is used for all C-code program listings, command
lines, and directories.

Italics are used where the string is a place holder that may be substituted
for a string of the user’s own design.

User’'s Manual

MOTOROLA

General Information 23

General Information

» Variable user inputs are @ourier italics.

» Filenames are in italics with all lower case letters, for example,
proj.ext.

These styles are used in this manual to define notational conventions:

* Numeric constants —Numeric constants are displayed in the C
language format. Constants that are in the Ox format are hexadecimal.
Constants that have no prefix are assumed to be decimal. The notation k,
unless to denote a frequency setting in kilohertz, defines a number
multiplied by 1024.

» Function prototypes — Structures and function call descriptions are
given in terms of the C language. This does not limit the implementation
of calling programs to C, but it is the calling routine’s responsibility to
provide the correct link to these routines.

1.4 Functional Description

The MCUez debugger is a multipurpose tool used for various tasks in the
embedded systems and industrial control world. Some typical tasks are:

* Emulation and/or cross-debugging of an embedded application or
hardware design using a graphical user interface

» Building a target application using an object-oriented approach

The MCUez debugger consists of the engine and a set of subwindow
components bound to the task they perform (for example, a debugging session).
The debugger engine is the heart of the system. It monitors and coordinates the
tasks of the component windows. Each component window provides a separate
function.

User's Manual MCUez HC12 Debugger

24 General Information MOTOROLA

General Information
Component Windows

1.5 Component Windows

A component window can be inserted or removed from the debugger main
window. Component windows are titled:

» Assembly

« Command

e Data
* Memory
* Module
* Register
* Source
MCUez HC12 Debugger User’'s Manual

MOTOROLA General Information 25

General Information

User's Manual MCUez HC12 Debugger

26 General Information MOTOROLA

User’'s Manual — MCUez HC12 Debugger

2.1 Contents

MCUez HC12 Debugger

Section 2. Graphical User Interface (GUI)

2.2 INtroducCtion. 28
2.3 Toolbar ... 29
24 Status Bar 29
2.4.1 Debugger Status. 30
24.2 MCU Error Messages.t 30
2.5 Information Bar. 31
26 Dragand Drop. 32
2.6.1 Dragging from the Assembly Component. 33
2.6.2 Dragging into the Assembly Component. 33
2.6.3 Dragging from the Data Component 34
264 Dragging into the Data Component. 35
2.6.5 Dragging from the Source Component 35
2.6.6 Dragging into the Source Component 36
2.6.7 Dragging from the Memory Component. 36
2.6.8 Dragging into the Memory Component. 37
2.6.9 Dragging from the Register Component 37
2.6.10 Dragging into the Register Component. 38
2.6.11 Dragging from the Module Component. 38
2.7 MCUezDebuggerMainMenu.cciiiiiiieeno... 39
2.7.1 File Menu. 39
2.7.2 VIieW MEeNU. 39
2.7.3 Run Menu. 40
274 Target MenuU. 41
2.74.1 ESL Target 41
2.7.5 Component MenuU. 42
2.7.6 Window Menu 43
2.7.7 HelpMenu e 43

User’'s Manual

MOTOROLA

Graphical User Interface (GUI)

27

Graphical User Interface (GUI)

2.2 Introduction

All components are accessed from the MCUez debugger main window. The
main window provides a menu bar, toolbar, and status information bar.

The main window manages the layout of the different component windows. The
component windows are organized as follows:

Multiple windows can be tiled or cascaded in the debugger window.

Component windows are automatically resized when the main window
is resized.

Windows can be overlapped.
Windows can be minimized.

Several windows for the same component can be open.

This chapter provides information on the:

User’'s Manual

Toolbar

Status bar

Component window object information bar
Drag and drop among component windows

Menus

MCUez HC12 Debugger

28

Graphical User Interface (GUI) MOTOROLA

Graphical User Interface (GUI)
Toolbar

2.3 Toolbar

A brief description appears on the screen when the mouse pointer is pointed at
an icon. The toolbar is illustrated Figure 2-1

S, Y. S, U '%
2 Q/) L@ “ @ % OO[© Qf&c\Q@@ G/)) 4 \9@/
0, b, &
%)
% % ¢
Q,
.

Figure 2-1. MCUez Debugger Toolbar

2.4 Status Bar

The status bar at the bottom of the debugger window contains a help line that
displays a brief explanation when the mouse cursor is positioned over a button
or menu item. Also shown is target-specific information. Sgare 2-2

For Help, press F1 9'600 Backgnd 8'000°000 MCGEBHCI12B32 SDI ready |
Brief Jelp for Baud Rate Processing Clock Target Evaluation Debugger
Buttons and Menu ltems State Speed Board Status

(MH2z)

Figure 2-2. MCUez Debugger Status Bar

MCUez HC12 Debugger User’'s Manual

MOTOROLA Graphical User Interface (GUI) 29

wr
PRt

Graphical User Interface (GUI)

2.4.1 Debugger Status

SDI Ready

Halt

Running

Halted

Single_Step

Traced

Breakpoint

2.4.2 MCU Error Messages

User’'s Manual

The debugger is ready and waits until a new target or
application is loaded. This message is generated once the
debugger has been started.

The application has been stopped by a request from the
application.

The application currently is executing in the debugger.

The application has been stopped by the user. The menu
entryRun | Halt or theHALT icon in the toolbar has
been selected.

The application stops after a single step through the
source code. The menu enRyn | Assembly Stepor
the Assembly Stepicon in the toolbar initiates a step.

Displayed after subsequent steps through code or when
Assembly Step Overhas been initiated

Indicates that application has stopped at a defined
breakpoint

Some error messages depend on the MCU being used. These messages are
related to exceptions. The debugger makes a distinction between predefined
exceptions and user-defined exceptions. A user-defined exception has this

format;

Exception <string>|<number>

Where:

e string

describes the reason for the exception. This string is only

specified when a predefined exception is detected.

* number isthe entry in the vector table that generates the exception. This
number is only specified when a user-defined exception is detected.

MCUez HC12 Debugger

30

Graphical User Interface (GUI) MOTOROLA

g |

Graphical User Interface (GUI)
Information Bar

The address error and bus error exceptions are treated differently.

Address Error Indicates that an address error exception for the target
processor has been generated. Check the hardware
manual for the reason of the address error exception.

Bus Error Indicates that a bus error exception for the target
processor has been generated. Check the hardware
manual for the reason of the bus error exception.

Other Exceptions An exception has been generated for a vector that is not
associated with an interrupt function. Possible reasons
are:

* Interrupt source was not disabled.

» Entry in vector table that corresponds with the
address of the function associated with interrupt
was not initialized.

2.5 Information Bar

The information bar provides information about an item selected iDdtee
component window. Seégure 2-3.

Information
Bar ——P»H| [&ddress: 400 Size: 2 |Fibo.dbg | Auta |Symb | Global
counter 23 int j
£ibl 0 int
Eibz 1 int
fibo 17711 int Bl
Figure 2-3. Information Bar
MCUez HC12 Debugger User’'s Manual

MOTOROLA Graphical User Interface (GUI) 31

wr
PRt

Graphical User Interface (GUI)

2.6 Drag and Drop

The user can drag objects from one component window to another. This is
defined as “drag and drop.” For example, the user can display the memory
layout corresponding to the address held in a register by dragging the address
from the register component to the memory component. See the example in

Figure 2-4.
il Begister =] F
HC12
D =11 iy] E |30
Ix 17 IY |DE46
PC a3Cc

3F | BCF CCR | 8XHINZVC

= =10 x|
main 83C - BEE Ao
05358 08 1B S22 3D MMOE FF SE ...=l..: :J
0540 C7 87 7C 0& 00 C7 87 70 L. leewal —J

0545 04 02 6C 80 20 13 FC O& ..1. ...
0850 02 C3 00 01 7C 0& 02 070...
0gss 47 7C 04 00 EE 80 03 6E h
0ge0 80 EC 80 8C 00 30 2F E& 0s.
0ged Z0 DB 34 3D 00 04 02 04 SISl i

Figure 2-4. Drag and Drop Example

To perform drag and drop operations:
1. Select the component window containing the object to drag.
2. Ensure that the destination component window is visible.
3. Select the object with the left mouse button and hold down the button.
4

Drag the object into the destination component window and release the
mouse button.

The following sections describe the possible drag and drop combinations
between component windows and the resulting operations.

If the destination of a dragged item is not possible, the cursor is displayed as a
circle with a line through it.

User's Manual MCUez HC12 Debugger

32 Graphical User Interface (GUI) MOTOROLA

Graphical User Interface (GUI)
Drag and Drop

2.6.1 Dragging from the Assembly Component

Drag and drop actions shownTmable 2-1are possible from the assembly
component.

Table 2-1. Dragging from the Assembly Component

Destination

Component Operation

The command line component appends the address of the

Command Line pointed to instruction to the current command.

Dumps memory starting at the selected instruction program

Memory counter (PC). The PC location is selected in the memory
component.
. Loads the destination register with the address of the
Register

selected instruction

Source component scrolls to the corresponding source

Source statement and highlights it.

2.6.2 Dragging into the Assembly Component

The events shown ihable 2-2occur when dragging and dropping into the
assembly component.

Table 2-2. Dragging into the Assembly Component

Source

Component Operation

Displays disassembled instructions starting at the first high

level language instruction selected. The assembler
Source instructions corresponding to the selected high level
language instructions are highlighted in the assembly
component.

Displays disassembled instructions starting at the first
address selected. Instructions corresponding to the
selected memory area are highlighted in the assembly
component.

Memory

Displays disassembled instructions starting at the address
Register stored in the source register. The instruction starting at
the address stored in the register is highlighted.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Graphical User Interface (GUI) 33

Graphical User Interface (GUI)

2.6.3 Dragging from the Data Component

Table 2-3shows what occurs when dragging from the data component.

Table 2-3. Dragging from the Data Component

Destination

Component Operation
Dragging the name appends the address range of the
variable to the current command in the command line
Command Line window. Dragging the value appends the variable
value to the current command in the command line
window.

Dumps memory starting at the address where the

selected variable is located. The memory area where
Memory the variable is located is selected in the memory
component. Dragging from a data value in the
memory component is not allowed.

Dragging the name loads the destination register with
the address of the selected variable. Dragging the
value loads the destination register with the value of
the variable.

Register

NOTE: The user can drag either a variable name or a variable value. Both operations
are possible. Dragging the variable name drags the address of the variable.

Expressions are evaluated at run time; therefore, they do not have a location
address associated with them. Without a location address, the user cannot drag
an expression name into another component, although expression values can be
dragged to other components.

User's Manual MCUez HC12 Debugger

34 Graphical User Interface (GUI) MOTOROLA

Graphical User Interface (GUI)
Drag and Drop

2.6.4 Dragging into the Data Component

Table 2-4shows all options available when dragging into the data component.

Table 2-4. Dragging into the Data Component

Source Component Operation

A selection in the source window is considered as an
expression in the data window, as if it had been entered

Source through the expression editor of the data component
(refer to 3.3.6.1 Expression Editor).
Module Displays global variables from the selected module in the

data component

2.6.5 Dragging from the Source Component

Table 2-5describes the actions taken when dragging from the source
component.

Table 2-5. Dragging from the Source Component

Destination

Component Operation

Displays disassembled instructions starting at the first

high level language instruction selected. The
Assembly assembler instructions corresponding to the
selected high level language instructions are
highlighted in the assembly component.

Loads the destination register with the PC of the first

Register instruction selected
A selection in the source window is considered as an
Data expression in the data window, as if it had been
entered through the expression editor of the data
component (refer to 3.3.6.1 Expression Editor).
MCUez HC12 Debugger User’'s Manual

MOTOROLA Graphical User Interface (GUI) 35

Graphical User Interface (GUI)

2.6.6 Dragging into the Source Component

Table 2-6decribes the action taken when dragging into the source component.

Table 2-6. Dragging into the Source Component

Source Operation
Component P
Source component scrolls to the source statements
Assembly corresponding to the pointed to assembly instruction and
highlights it.
Displays high level language source code starting at the first
address selected. The instructions corresponding to the
Memory .
selected memory area are greyed in the source
component.
Module Displays source code from the selected module

2.6.7 Dragging from the Memory Component

Table 2-7describes the action taken when dragging from the memory
component.

Table 2-7. Dragging from the Memory Component

Destination .
Operation
Component
Displays disassembled instructions starting at the first
address selected. The instructions corresponding to
Assembly

the selected memory area are highlighted in the
assembly component.

Appends the selected memory range to the command

Command Line) -
line window

Loads the destination register with the start address of

Register the selected memory block

Displays high level language source code starting at the
first address selected. Instructions corresponding to
the selected memory area are greyed in the source
component.

Source

User's Manual MCUez HC12 Debugger

36 Graphical User Interface (GUI) MOTOROLA

Graphical User Interface (GUI)
Drag and Drop

2.6.8 Dragging into the Memory Component

Table 2-8describes the action taken when dragging into the memory
component.

Table 2-8. Dragging into the Memory Component

Source

Component Operation

Dumps memory starting at the selected instruction PC. The

Assembly PC location is selected in the memory component.

Dumps memory starting at the address of the selected
Data variable. The memory area where the variable is located
is selected in the memory component.

Dumps memory starting at the address stored in the
Register selected register. The corresponding address is selected
in the memory component.

Dumps memory starting at the address of the first global
Module variable in the module. The memory area where this
variable is located is selected in the memory component.

2.6.9 Dragging from the Register Component

The options shown iffable 2-9are available when dragging from the register
component.

Table 2-9. Dragging from the Register Component

Destination .
Operation
Component
Assembly Assembly component receives an address range, scrolls

to the corresponding instruction, and highlights it.

Dumps memory starting at the address stored in the
Memory selected register. The corresponding address is
selected in the memory component.

The address stored in the pointed to register is appended

Command Line to the current command.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Graphical User Interface (GUI) 37

Graphical User Interface (GUI)

2.6.10 Dragging into the Register Component

The options shown iffable 2-10are available when dragging into the register
component.

Table 2-10. Dragging into the Register Component

Source Operation
Component P
Loads the destination register with the address of the
Assembler) .
selected instruction
Dragging the name loads the destination register with the
Data start address of the selected variable. Dragging the value
loads the destination register with the value of the
variable.
Loads the destination register with the PC of the first
Source . :
instruction selected
Loads the destination register with the start address of the
Memory
selected memory block

2.6.11 Dragging from the Module Component

User’'s Manual

NOTE:

The options shown ifable 2-11are available when dragging from the module
component.

Table 2-11. Dragging from the Module Component

Destination Operation
Component P
Data | Global Displays the global variables from the selected module in
the data component
Dumps memory starting at the address of the first global
variable in the module. The memory area where this
Memory
variable is located is selected in the memory
component.
Source Displays source code from the selected module

Nothing can be dragged into the module component.

MCUez HC12 Debugger

38

Graphical User Interface (GUI) MOTOROLA

g |

Graphical User Interface (GUI)
MCUez Debugger Main Menu

2.7 MCUez Debugger Main Menu

The main window acts as a container for the other component windows.
Additionally, it provides a global menu bar, toolbar, status bar, and an
information bar for individual component windowsgure 2-5shows the
debuggeMain menu.

File iew Bun 501 Component Window Help

C|w|d]| #|=|@] 2|%| =»|=|=(2] 2

Figure 2-5. Debugger Main Menu

2.7.1 File Menu

TheFile menu is dedicated to the debugger. Usd-ileemenu to exit the
debugger, as shown kigure 2-6.

File
E xit E

Figure 2-6. File Menu

2.7.2 View Menu

TheView menu contains two options:

* Check / uncheck toolbar to display or hide it.

» Check / uncheck status bar to display or hide it.

File BEEEN Bun SDI

ol ¥ T oolbar :
— v Statuz Bar

Figure 2-7. View Menu

MCUez HC12 Debugger User’'s Manual

MOTOROLA Graphical User Interface (GUI) 39

Graphical User Interface (GUI)

2.7.3 Run Menu

TheRun menu is used for debug operatiomsble 2-12defines alRun menu

commands.

Table 2-12. Run Menu

Menu Entry

Description

Start/Continue

Starts or continues execution of the loaded application until

a breakpoint is reached, a runtime error is detected, or
the user stops the application using Halt.

Halt

Interrupts and halts a running application enabling

examination of the state of each variable in the
application, set breakpoints, and inspect the source code.

Assembly Step

If the application is halted, this command performs a single

step; for example, execution continues for one CPU
instruction from the point it was halted.

Assembly Step
Over

Similar to the Assembly Step command, but does not step

into called functions (steps over subroutine call
instructions)

Breakpoints

Opens the Breakpoints Setting dialog, which lists

breakpoints defined in the application and allows their
properties to be modified. Breakpoints also can be set in
the Source and Assembly component windows.

The menu entries (except breakpoints) have an associated toolbar button.
Figure 2-8illustrates thdRun menu.

User’'s Manual

I S0l Component Wi
Start/Continue

Azzembly Step
e Agzembly Step Ower

Breakpoints. ..

Figure 2-8. Run Menu

MCUez HC12 Debugger

40 Graphical User Interface (GUI) MOTOROLA

2.7.4 Target Menu

2.7.4.1 ESL Target

MCUez HC12 Debugger

Graphical User Interface (GUI)
MCUez Debugger Main Menu

TheTarget menu appears between fRen andComponentmenus when no
target is specified in theroject.inifile and no target has been set. Select
Target | Load...to display the Load Executable File message. When connected
to a target, th@arget menu is replaced by a new menu with the name of the
target, for example D-Bug12.

Also selectComponent | Set Target..to connect to a target.

Load Executable File E
Component
- Load.. @ There is currently no Target installed.
- Do you want to install it now?
-
Mo

Figure 2-9. Target Menu: Load and Reset

If the Load Executable File message is displayed, the target is not set and no
application files @bg can be loaded. ClicKesto display theSet Target
listbox, enabling selection of a target.

Initially, ESL (emulator server library) is the default target in gheject.inifile.

When communication is established between another target and the debugger,
theESL Target menu is replaced by the new target name, for example SDI
(serial device interface). If the target is not identified, 8¢ menu remains.
Figure 2-10depicts theSDI andESL menus.

User’'s Manual

MOTOROLA

Graphical User Interface (GUI) 41

Graphical User Interface (GUI)

|
Component wind 1 Lomponen
Load...
Reszet

Communication...

Set MCU Type...

Set MCU Speed...
termaon Map...

Elazh...

Figure 2-10. SDI and ESL Target Menus

2.7.5 Component Menu

User’'s Manual

Open additional component windows by selectingGbenponent | Open...

menu entry. Select a window component from the list of components and click
OK. SeeSection 3. Component WindowsThe display font and background
color for the debugger environment can also be charfggdre 2-11illustrates

the Componentmenu.

LComponent AT g =

= Open...
= SetTarget..

Fontsz...
B ackground Caolaor...

Figure 2-11. Component Menu

SelectComponent | Set Target..to set the preferred target.

SelectComponent | Fonts..to open a standafebnt Selectiondialog and
select the font to use in the component windows.

SelectComponent | Background Color..1o open the color selection dialog.
Select a background color for component windows.

MCUez HC12 Debugger

42

Graphical User Interface (GUI) MOTOROLA

Graphical User Interface (GUI)
MCUez Debugger Main Menu

2.7.6 Window Menu

TheWindow menu sets the general arrangement of component windows and
loads or stores arrangements.

window MRl
Cazcade
=) Options Layout
Airange lcons
Options B[v Autosize Load
Lawout 3 v Component Menu Sl

1 Saource
2 Bzzembly
2 Command
4 Reqister
& Memaony
G Data

v 7 Module

Figure 2-12. Window Menu

CheckAutosizeto automatically resize component windows when the
debugger main window is resized. Ché&xdmponent Menuto display the

menu associated with the currently selected component window. For example,
if the Sourcewindow is selected, thBourcemenu is displayed in the main
menu.

SelectWindow | Layout to load or store arrangements irhavl file.

2.7.7 Help Menu

TheHelp menu provides on-line help and specific information about a topic.

. |
Help

i Help Topicz
= About MClez. ..

Figure 2-13. Help Menu

MCUez HC12 Debugger User’'s Manual

MOTOROLA Graphical User Interface (GUI) 43

Graphical User Interface (GUI)

User's Manual MCUez HC12 Debugger

44 Graphical User Interface (GUI) MOTOROLA

User’'s Manual — MCUez HC12 Debugger

3.1 Contents

MCUez HC12 Debugger

Section 3. Component Windows

3.2 INtroducCtion. 46
3.3 COMPONENTS 46
3.3.1 ComponentWindow Menus a7
3.3.2 Source ComponentWindow 49
3.3.2.1 Breakpoints 52
3.3.2.2 Decoding Instructions 52
3.3.2.3 FINdDialog BOX 53
3.3.3 Assembly ComponentWindow 53
3.3.3.1 Retrieving Source Statements. 57
3.34 Register Component Window, 57
3.34.1 Status Register Bits 58
3.34.2 Editing Registers. 58
3.34.3 Register Display OptionsMenu 58
3.35 Memory ComponentWindow 59
3.35.1 Memory Component Operations. 60
3.35.2 Memory Component Pop-upMenu. 60
3.3.5.3 Memory Update Mode 63
3.3.6 Data Component Windowiiiieen.... 63
3.3.6.1 Expression Editor 64
3.3.6.2 Data Component Pop-upMenu. 66
3.3.6.3 DataUpdate Mode 67
3.3.7 Command Line Component Window 67
3.3.7.1 Command Line Component Operations 68
3.3.8 Module Component Window. 69

User’'s Manual

MOTOROLA

Component Windows 45

V¥ ¢
i

Component Windows

3.2 Introduction

3.3 Components

User’'s Manual

This section describes the various component windows and how to use them.

The MCUez debugger operates in an environment constructed of windows that
represent components of the target system. Component windows are
applications loaded at run-time and have access to the target interface, the
symbol table, and other global facilities. Additional component windows can be
opened by selecting t@omponent|Open.. menu optionFigure 3-1shows

the Open Window Componentdialog box. Component windows are
implemented as dynamic link library files with the extenswnd

Open Window Component

Azzembly
Select a Command

component E,l;t;my

and click OK I |Module Cancel

Reqister
Source

Figure 3-1. Open Window Component Dialog Box

CPU (central processor unit) components handle processor-specific operations
such as register naming, instruction decoding (disassembly), and stack tracing.
CPU components are reflected in BegisterandMemory component

windows. Applicable CPU components are loaded when connection with the
target is established.

The target is connected by an emulator, a ROM monitor, or any other supported
connection device. Only one target can be loaded at any time, such as SDI or
D-Bugl2.

MCUez HC12 Debugger

46

Component Windows MOTOROLA

h o
g |

Component Windows
Components

3.3.1 Component Window Menus

MCUez HC12 Debugger

Each component window has two menus. One menu is on the main menu bar
and the other is a pop-up menu that is opened by clicking the right mouse button
in the active component window.

On the main menu bar, the active component menu is located between the
Componentmenu andVindow menu. For example, if thBourcecomponent
window is activated, th8ourcemenu will appear. If th®ata component
window is activated, thBata menu will appear as shownkiigure 3-2

MClUez
File iew Bun 501 Component Bsiiis=8 ‘Aindow Help

Dlﬁlnl '}I°||¥|EI ?I' Open Module... gl

Find...
CEE
\C:AMCUEZ4demaoihe] 24Fibo DEG Marks
LD fihZ ;I
3Tx fihl
aTD fihZ
_
LD i
INX
aTH i
I i e =
. [nhal P Jé
MCUez
File Wiew Hun S0 Enmpunentﬂindnw Help
] p A NEEI N ?]Zaamjn | @
| |E| | | | | Zoom out J—I _I
[mbata e EEE
Format... »
l Fibos | Auto [Spmb | Global
LI } -
fiboCount Mode... j
counter Z5 int
fibl 9 int
fib2 39 int
fibo 144 int ;I

Figure 3-2. Active Component Menu

User’'s Manual

MOTOROLA

Component Windows 47

Component Windows

The pop-up menu is a dynamic context-sensitive menu. It contains entries for
the currently active component window. Pop-up menu entries differ to reflect
operations that can be performed on the object pointed to by the mouse. For
example, if a breakpoint is pointed to, additional options are available to delete
or disable the breakpoirfigure 3-3 shows theSourcecomponent pop-up

menus.
Set Breakpoint
Fun Tao Curgor
Show Breakpointz
Dpen Module... —— Source component window
= pop-up menu
Find...
Markz
Delete Breakpoint I
Dizable Breakpoint
Run To Cursor
Show Breakpointz
—— Source component window
Open Module... pop-up menu with cursor
_ pointed at a breakpoint
Find...
Mark s —_
Figure 3-3. Source Component Pop-up Menus
User's Manual MCUez HC12 Debugger

48 Component Windows MOTOROLA

Component Windows
Components

3.3.2 Source Component Window

TheSourcecomponent window displays the program source code (application
file). It enables the user to view, change, monitor, and control the current
execution location in the program. A word is selected by placing the mouse
pointer on the word, then double clicking the left mouse button. A section of
code is selected by holding down the left mouse button and dragging the mouse
across the code to highlight the selected area.

NOTE: Textdisplayed in th8ourcecomponent window cannot be edited. Boarce
component window is a file viewer only.

If breakpoints have been set in the program, they will be marked with a special
symbol to indicate the nature of the breakpoint. (58€.1 Breakpoints)

If execution has stopped, the current position is marked i8dhece

component window by highlighting the corresponding statement. The complete
path of the displayed source file is displayed in the informationfigure 3-4
shows theSourcecomponent window.

_ O] =
Information bar —/C-4MEUEZdema’he 24Fibo. DEG
LD £iba ﬂ
AT fihl
Highlighted >
statement |
LI i
TN
AT i
) ranid: Llﬂ

Figure 3-4. Source Component Window

Figure 3-5shows theSourcecomponent menu and its associated pop-up menu
obtained by clicking the right mouse button.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Component Windows 49

Component Windows

MClUez
File “iew Bun 5SDI

Component BEfal¥==8 "Afindow Help

Dlﬁlnl '}I°||¥|EI ?I' Open Module... gl

I Source _ O] x|

| T fiba Show Breakpaints
.
y LD i Open kaodule. ..
THX :

al rrmd k - jé

| CAMCUEZNdemothcl 24Fibo DEG Marks

Main Menu

\C:AMCUEZ demothcl 24Fibo. DEG

LD fib2 ;I
4T f£ibl Set Breakpoint
Bun Ta Curzor

A
A

v Marks

Pop-up Menu

Figure 3-5. Source Component Main Menu and Pop-up Menu

The following describes ea@ourcecomponent menu entry.

« Main menu

User’'s Manual

Open Module— Opens a dialog which lists all source files bound to
the application currently loaded. Double click on the module to be
viewed in the source window.

Find — Opens a dialog box prompting for a string and then searches
the file displayed in the source component for the specified string

To start searching, clickind Next. The search begins at the current
selection or firstline visible in the source componéig/down radio
buttons enable the search backward or forward. If the string is found,
the source component selection is positioned at the string. If the
string is not found, a message will be displayed.

Marks — Toggles the display of source positions where breakpoints
may be set. If this menu entry is checked, the positions where a
breakpoint can be set are marked by small triangles.

MCUez HC12 Debugger

50

Component Windows MOTOROLA

MCUez HC12 Debugger

Component Windows
Components

Pop-up menu

Set Breakpoint— Appears in th&ource pop-up menu if no
breakpoint is set or disabled at the nearest code position (visible with
marks). When selected, it sets a permanent breakpoint at this
position. If program execution reaches this statement, the program is
halted and the current program state is displayed in all window
components.

Delete Breakpoint— Appears in the pop-up menu if a breakpointis
set or disabled at the nearest code position (visible with marks).
When selected, it deletes the breakpoint.

Enable Breakpoint— Appears if a breakpoint is disabled at the
nearest code position (visible with marks). When selected, enables
the breakpoint.

Disable Breakpoint— Appears if a breakpoint is set at the nearest
code position (visible with marks). When selected, it disables the
breakpoint.

Runto Cursor — When selected, sets a temporary breakpoint at the
nearest code position and continues program execution. When
program execution reaches this instruction, the program is halted and
the current program state is displayed in all window components.

If there is a disabled breakpoint at this position, the temporary
breakpoint will be disabled also and the program will not halt.
Temporary breakpoints are automatically removed as soon as they
are reached.

Show Breakpoints— Opens th@&reakpoints Settingdialog box
and allows viewing of the list of breakpoints defined in the
application and modification of their properties.

Open Module— Opens a dialog which lists all source files bound to
the application currently loaded. Double click on the module to be
viewed in the source window.

Find — Opens a dialog box prompting for a string and then searches
the file displayed in the source component for the specified string

Marks — Toggles the display of source positions where breakpoints
may be set. If checked, positions where a breakpoint can be set are
marked by upside down check marks.

User’'s Manual

MOTOROLA

Component Windows 51

Component Windows

3.3.2.1 Breakpoints

If breakpoints have been set in the program, they will be marked with a special
symbol, depending on the kind of breakpoint.

» Atemporary breakpoint has this symt _H A lighter color encased
by a darker color with the lighter color usually being yellow and the
darker being red.

* A permanent breakpoint has this syml:-H The color is solid red.

* A disabled breakpoint looks Iike*@é The breakpoint is half normal
density and a light red color.

If execution has stopped, the current position is marked in the source component
by highlighting the corresponding statement. The path of the displayed source
file is shown in the information bar.

3.3.2.2 Decoding Instructions

To disassemble code, select arange of instructions in the source component and
drag it into the assembly component. The corresponding range of code is
highlighted in theAssemblycomponent window. Sdegure 3-6.

il Source =] B | - O] x|
C:AMCUEZ \demothc] 24Fibo, DB G Fibonacei
LI fib:2 :I 051F FEOALOR LD Ox0&06 i‘
aTx fibl 0522 7E0AODS aT= 0x0&404
0525 7C0A06 ATD 0x0A06
ATD fibz 0328 FEOAOL 4 Ox0A02
J 0832ZEB 08 T
082C 7TEQAQDL aTx Ox0A0L
082ZF FCOAOL LoD 0040
0832 ACSO0 CFD 0,3F
05834 23E0 EL3 *-30 ;abz = 0&l6
nrmid: ~ 0536 FCOAODS LLD Ox04a05
ll_l LIJ ne==20 1ra> TR O 2 oon j
Figure 3-6. Online Disassembly
User’s Manual MCUez HC12 Debugger

52 Component Windows MOTOROLA

Component Windows
Components

3.3.2.3 Find Dialog Box

Enter the string to search for in tkénd what edit box. To start searching, click
Find Next. The search begins at the current selection or first line visible in the
source component when nothing is selected.

Figure 3-7 shows thd=ind dialog box.

Find

Fird wihat: |fi|:|u| Find Mext

i

[Match whole ward only Diirection Cancel

[Match caze " Up @ Down

Figure 3-7. Find Dialog Box

The dialog box enables the following options to be specified:

» Match whole word only: If this box is checked, only strings that are
separated by special characters are recognized.

* Match case If this box is checked, the search is case sensitive.

* TheUp / Down buttons will enable the search backward or forward. If
the string is found, the source component selection is positioned at the
string. If the string is not found, a message is displayed.

NOTE: |If anitem (single word or source section) has been selected in the source
component before opening thend dialog, the first line of the selection will be
automatically copied into théind what edit box.

3.3.3 Assembly Component Window

The assembly component displays program code in disassembled form. The
assembly component function is similar to that of the source component,
enabling the user to view, change, monitor, and control the current location of
program execution.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Component Windows 53

Component Windows

The assembly component contains all the on-line disassembled instructions
generated by the application. Each disassembled line shows this information:

User’'s Manual

 Address
*« Machine code

* |nstruction

* Absolute address in case of a branch instruction

Per default, the instruction and absolute address for a branch instruction are
visible. The program instruction and absolute address also can be viewed by

selecting the corresponding menu entry.

If breakpoints have been set in the application, they are marked in the assembly

component with a special symbol, depending on the type of breakpoint. If
execution has stopped, the current position is marked in the assembly

component by highlighting the corresponding instruction. The information bar
displays the procedure name that contains the currently selected instruction.

Figure 3-8 shows theAssemblycomponent window.

i Azzembly Hi=]

mair

0&83C CFOEFF LD3

033F 3B P3HD
o340 cy CLEE
054l 57 CLEA
0542 7C0a00

0345 .7 CLEE
nsde 57 CLE&
0847 TC0a0:z 3T

0sdd aCs0 3TD

0s4Cc 2013 ERL

034E FCO&oz LoD

035l C30001 ADDD
0354 TCO0ADZ 3T

0357 0747 B3R

-, v

#3071

O 0a00

Ox0A02
0,5P
#3421
0x0A0Z
#1
0x0A0Z
*_§7

.~

sabs

=l
_
0861
0800

Figure 3-8. Assembly Component Window

MCUez HC12 Debugger

54

Component Windows

MOTOROLA

g |

Component Windows
Components

Figure 3-9shows theAssemblycomponent main menu and associated pop-up
menu. The bulleted list that follows describes each menu selection.

MClUez
File “iew Bun SDI Component Window Help

Dlﬁlnl Jﬁl%lal ?l] fddress...

v Dizplay Code

il Azzembly v Display &dr = 0]

v Display Abzolute Address

|Fi|:u:unau:u:i
051F FEOLODG LD Ox04A0& i’
0522 TEOLDA STY Ox0404
0525 7COLDG STD Ox0A0G
0526 FEOAODL)y Main Menu
NE2F NR T
|Fi|:u:|na|:|:i
051F FEOADS LIY Ow0in” _ ﬂ
0822 7E0A04 sTw oxnz oot Breakpoint
0825 7COLOG STh om0 FAun To Cursor
0828 FEOLDA 2 M Show Breakpointz
0&ZE 08 T
0820 TEOADA STX Oxns Sddess. <&—T1——— Pop-up Menu
0&2F FCOADA DD 0x0Z ¥ Display Code (right mouse button)
0532 ACED CPD 0,3E v Displap Adr
0334 Z3E0 BEL3 *-30 v Digplay Absolute Address
0536 FCOADS LID Ox0ATE
n=22a 1re> TRIE 2 2D d

Figure 3-9. Assembly Component Main Menu and Associated Pop-up Menu

« Main menu

— Address...— Opens a dialog box prompting for an address. If a
hexadecimal address is entered, memory contents are interpreted and
displayed as assembler instructions starting at the specified address.

— Display Code— Displays the machine code in front of each
disassembled instruction

— Display Address— Displays the location address at the beginning
of each disassembled instruction. If b@tsplay CodeandDisplay
Addressare selected at the same time, the absolute address is
displayed first, then the hexadecimal code, and finally the
disassembled instruction.

— Display Absolute Address— Displays the absolute address at the
end of the disassembled instruction for a branch instruction

MCUez HC12 Debugger User’'s Manual

MOTOROLA Component Windows 55

Component Windows

Pop-up menu

User’'s Manual

Set Breakpoint— Appears only in the pop-up menu if no breakpoint
is set or disabled on the pointed to instruction. When selected, it sets
a permanent breakpoint on this instruction. When program execution
reaches this instruction, the program is halted and the current
program state is displayed in all window components.

Delete Breakpoint— Appears only in the pop-up menu if a
breakpoint is set or disabled on the pointed to instruction. When
selected, deletes this breakpoint.

Enable Breakpoint— Appears in the pop-up menu if a breakpoint

is disabled on the pointed to instruction. When selected, it enables
this breakpoint.

Disable Breakpoint— Appears in the pop-up menu if a breakpoint

is set on the pointed to instruction. When selected, it disables this
breakpoint.

Runto Cursor — When selected, sets a temporary breakpoint on the
pointed to instruction and continues program execution. When
program execution reaches this instruction, the program is halted and
the current program state is displayed in all window components. If
there is a disabled breakpoint at this position, the temporary
breakpoint will also be disabled and the program will not halt.
Temporary breakpoints are removed automatically as soon as they
are reached.

Show Breakpoints— Opens th@reakpoints Settingdialog box

and lists breakpoints defined in the application. Breakpoint
properties can then be modified.

Address— Opens a dialog box prompting for an address. If a
hexadecimal address is entered, memory contents are interpreted and
displayed as assembler instructions starting at the specified address.
Display Code— Displays the machine code in front of each
disassembled instruction

Display Address— Displays the location address at the beginning

of each disassembled instruction. If b@tsplay CodeandDisplay
Addressare selected, the absolute address is displayed first, then the
hexadecimal code, and finally the disassembled instruction.

Display Absolute Address— For a branch instruction, displays the
absolute address at the end of the disassembled instruction

MCUez HC12 Debugger

56

Component Windows MOTOROLA

3.3.3.1 Retrieving Source Statements

Component Windows
Components

Point to an instruction in thAssemblycomponent window and drag and drop
it into theSourcecomponent window. The source component scrolls to the
source statement that generates this assembly instruction and highlights it.

3.3.4 Register Component Window

MCUez HC12 Debugger

TheRegistercomponent window displays the content of registers and status
register bits of the target processor. Registerwindow changes to reflect the
target processor being accessed. Register values are displayed in binary or
hexadecimal format. The system allows editing of all valbiggire 3-10

shows theRegister component window.

il Begister _ O] x|
|HE12 |

D [zs511 & (25 B[LL

I¥ E520 IV DE46

PC | aza

SP | BF9 CCR | SXHINZVC

Figure 3-10. Register Component Window

User’'s Manual

MOTOROLA

Component Windows

57

wr
PRt

Component Windows

3.3.4.1 Status Register Bits

All status register bits that are set, are displayed dark. All reset status register
bits are displayed gray. A bitis toggled by placing the mouse pointer on the bit,
then double clicking the left mouse button. Contents of registers that have
changed since the last display refresh are shown in red (except for status register
bits) during application execution.

3.3.4.2 Editing Registers

Double clicking on a register opens an edit box over the register enabling
modification of the register value.

The modified value is not validated if the Escape key is pressed. If Esc is
pressed, the content of the register remains unchanged. If the Enter key is
pressed or if selected outside the edited register, the input value is validated and
the register content is changed.

If the Tab key is pressed, the register content is changed and validated, and the
next register value is selected for modification. Double clicking a bit in the
status register toggles the selected bit.

Click and hold the left mouse button and press the A key to view the source code
as well as the changed contents of the assembly and memory components. The
source component shows the source code located at the address stored in the
register. The assembly component shows the disassembled code starting at the
address stored in the register. The memory component dumps memory starting
at the address stored in the register. Clicking the right mouse button opens the
register component pop-up menu.

3.3.4.3 Register Display Options Menu

TheRegister Display Optionsmenu Figure 3-11) provides the option to
display code in either binary or hexadecimal format.

Cptionz... * Bin
v Hex

Figure 3-11. Register Display Options Menu

User's Manual MCUez HC12 Debugger

58 Component Windows MOTOROLA

Component Windows
Components

3.3.5 Memory Component Window

NOTE:

MCUez HC12 Debugger

The memory component displays unstructured memory contents or memory
dumps (continuous memory words without distinction between variables).
Various word sizes (byte, word, double) and data formats (binary, octal,
hexadecimal, decimal, unsigned decimal) can be specified for memory display.

To specify the start address for the memory dump, usAdaeessmenu entry.

A memory area can be initialized with a fill pattern usingRhledialog box.

An ASCII dump can be added/removed on the right side of the numerical dump
when checking/unchecking ASCII in tibesplay menu entry. The location
address also can be added/removed on the left side of the numerical dump when
checking/uncheckingddressin theDisplay menu entry.

Memory values that have changed since the previous program halt are
displayed in red. If a memory item is edited or rewritten with the same value,
the memory item display remains black.

The object information bar contains the procedure or variable name, structure
field, and memory range matching the first selected memory wWogdre 3-12
shows theMemory component window.

Auto
0400 D9 73 00 1D BS 20 25 11 .3... %. -ﬂ
0408 25 11 00 19 00 00 00 00 %....... —J

0410 00 00 00 oo 0o ao oo oo
0415 00 00 00 0o 0o a0 oo oo
0L=0 00 00 00 oo 0o a0 oo oo
0&25 00 00 00 0o 00 a0 oo oo
0430 00 00 00 oo 0o ao oo oo

Figure 3-12. Memory Component Window

User’'s Manual

MOTOROLA

Component Windows 59

Component Windows

3.3.5.1 Memory Component Operations

Memory component operations are:
» Double click a memory position to edit it.
» Drag the mouse in the memory dump to select a memory range.

* Press and hold the left mouse button and press the A key to jump to a
memory address. The selected value is interpreted as an address. The
memory component dumps memory starting at this address.

3.3.5.2 Memory Component Pop-up Menu

TheMemory component pop-up menki@ure 3-13 is displayed by placing
the cursor in the active (selectddgmory component window and clicking the
right mouse button.

Ward Size »
Format k
Mode r
Dizplay »
Fill...
Address.

Figure 3-13. Memory Component Pop-up Menu

User's Manual MCUez HC12 Debugger

60 Component Windows MOTOROLA

g |

Component Windows
Components

Table 3-1defines the entries in tidemory component pop-up menu.

Table 3-1. Memory Component Pop-up Menu

Menu Entry Description

Word Size size. The three available sizes are byte, word (= 2 bytes), and

Opens a submenu enabling the user to specify the display unit

longword (= 4 bytes).

Format

Selects the format in which the items are to be displayed.
Available formats are hexadecimal, binary, octal, signed, and
unsigned decimal.

Display

Opens a submenu enabling the user to toggle the display of
addresses and ASCII dump

Mode

Switches between automatic, periodical, and frozen update
modes (See Section 3.3.5.3 Memory Update Mode .)

Address

Opens the memory dialog and prompts for an address. The
memory component dumps memory starting at the specified
address.

Fill

Opens the Fill dialog to fill a memory range with a bit pattern

Address

MCUez HC12 Debugger

..opens a dialog as shownFkigure 3-14

il Memory =]

| | Auta
08AS 73 65 20 6F 66 20 &D se of off =
0SB0 63 72 6F 73 00 10 20 48 cros.. H [

03Ed 058 94 00 81 00 00 09 9C

E Dizplay Address

[
L Address: g e
[

E ¥ Hex Format Ok, Cancel | Help |

Figure 3-14. Memory Component Display Address

User’'s Manual

MOTOROLA

Component Windows 61

Component Windows

TheFill menu entry opens a dialogi@ure 3-15) to fill a memory range with a

bit pattern.
] = |0] x|
Ato

0800 A3 A3 A3 A3 A3 A3 UG -
0805 A3 43 A% A3 A3 A% |
0810 A3 A3 A3 A3 A3 A3 [(omAddess: (200 hes
0815 A3 A3 A3 A3 A3 A3 to Address: |83EI e
0620 A3 A5 A% AS A3 A

0625 A3 A3 A% A3 A3 A3

0830 A3 OA AC 80 23 EO Walue: |43 hex
0835 08 1B 82 30 CF OB

0840 C7 87 7C 04 0o c7 ¥ HexFamat OF. | Cancel |
0845 04 02 6C 80 20 153 i

Figure 3-15. Memory Component Fill Memory Dialog Box

Click OK in theFill Memory dialog box to initialize all memory positions from
$800 to $830 with the value $A3.

NOTE: If Hex Format is checked, numbers and letters are considered to be
hexadecimal numbers. Otherwise, expressions can be typed and hex numbers
must be prefixed with Ox or $.

User's Manual MCUez HC12 Debugger

62 Component Windows MOTOROLA

Component Windows
Components

3.3.5.3 Memory Update Mode
The memory component can be updated in three different modes:

1. Inautomatic mode (default), memory dump is updated when the target is
stopped.

2. Infrozen mode, memory dump displayed in the memory component is
not updated when the target is stopped.

3. In periodical mode, memory dump is updated at regular time intervals
when the application is running. The default update rate is 1 second, but
it can be modified by steps up to 100 ms using the associated dialog box.

Update Rate

Rate: i) * 100 g

ok | Canizel |

Figure 3-16. Update Rate: Memory Component

NOTE: The periodic mode is not available for all targets. Additional configurations
may be required to make it work. Refer to the specific target manual.

3.3.6 Data Component Window

The data component contains the names, values, and types of variables. The
Data component window shows all variables present in the current source
module. Display formats, such as symbolic representation, (depending on the
variable types), as well as hexadecimal, octal, binary, signed, and unsigned
formats are selectable.

The information bar contains the address and size of the selected variable. It
also contains the module name where the displayed variables are defined, the
display mode (automatic, frozen, etc.), and the display format (symbolic, hex,
bin, etc.).

MCUez HC12 Debugger User’'s Manual

MOTOROLA Component Windows 63

Component Windows

Values can be edited by double clic

king on a value or the line containing a
value. Arrays can be expanded by clicking on the plus (+) symbol preceding an

array namekFigure 3-17shows thdata component window.

i Data =]

|ddress: A03 Size: 1

index u]
HMatch 2
FH ztrl TETRING™
H atcrz TSTRING™

|Stremp.dbg | At |Symb | Global

-

unsigned

unsighed char

unsigmed char _
array[7] of unsigned char

array[7] of unsigned char

Figure 3-17. Data Component Window

3.3.6.1 Expression Editor

User’'s Manual

To add an expression, double click
open theExpression Editor dialog or
selectAdd Expression...in the pop-u

on a blank line in the data component to

point to a blank line and right click to
p menu-{gure 3-18.

il Data =]
|address; 404 Size: 2 |Fibo.dbg | Auto |Symb | Global
fibaCount 0 int
counter 0 int
fibz 4 int
fibo 0 int
i 0 int
Open kodule. ..
Add Expreszion...
1 Z000 jh
£ oo aut
1
Eormat.. »
Made. .. »

Figure 3-18. Accessing the Expression Editor

MCUez HC12 Debugger

64

Component Windows

MOTOROLA

h o
g |

Component Windows
Components

Enter a logical or numerical expression in ot Expression box using
ANSI C syntax. This expression is a function of one or several variables from
the current data componehRigure 3-19shows the expression editor.

= EE = [O]]
| |Fibo.dbg | futo |Symb | Global
fiboCount 0 int
cCounter 0 int
£ibl 2 int
£ibhZ 4 int
fibo 0 int
i 0 int
fihl+£fib2 &
Edit Expression | %] |
I . .
|f|b1 +ibd
|
Ok, Cancel

Figure 3-19. Using the Edit Expression Box

Example:
With two variables variable 1, variable_2;

» Expression entered:
(variable_1<<variable_2)+ OxFF <= 0x1000
will result as a Boolean type

» Expression entered:
(variable_1>>~variable_2)* 0x1000
will result as an integer type

NOTE: ltis not possible to drag an expression defined with the expression editor.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Component Windows 65

Component Windows

3.3.6.2 Data Component Pop-up Menus

Figure 3-20shows thédata component pop-up menus andble 3-2identifies
data component operations.

Open Module... Open Module. .. Opeh Module...
£00m in Add Expreszion... Delete Exprezsion
Zoom out ; Edit Expreszion...
£00m jn
Eormat.... 4 oo ouk £00m jn
Zoorm out
Mode... r Eormat... » -
Format... »
Mode. . k -
Mode. . r

Figure 3-20. Data Component Pop-up Menus

Table 3-2. Data Component Operations

Menu Entry Description

Opens a dialog that lists all source files bound to the application. The global
Open Module... variables from the selected module are displayed in the data component. This
is only supported when the component is in global scope mode.

Expands the selected structure. For example, members of an array are displayed

Zoom In : o
when selecting an array name and zooming in.

Zoom Out Returns to the previous level

Switches between Symbolic (display format depends on the variable type), Hex
Format... (hexadecimal), Oct (octal), Bin (binary), Dec (signed decimal), UDec (unsigned
decimal) display formats

Mode... Switches between automatic, periodical, locked, and frozen update modes

Appears only in the data pop-up menu when right clicking on an empty line.
Add Expression... When selected, a user-defined expression in the data component can be
added through the Edit Expression dialog.

Appears only in the data pop-up menu when right clicking on a line containing a
Edit Expression... user-defined expression. When selected, allows the user to edit the pointed to
user-defined expression through the Edit Expression dialog.

Appears only in the pop-up menu when right clicking on a line containing a
Delete Expression user-defined expression. When selected, it deletes the pointed to user-defined
expression.

User's Manual MCUez HC12 Debugger

66 Component Windows MOTOROLA

Component Windows
Components

3.3.6.3 Data Update Mode

The data component can be updated in three different modes:

1. Inautomatic mode (default), variables are updated when the target is
stopped. Variables from the currently executed module are displayed in
the data component.

2. Inlocked and frozen mode, variables from a specific module are
displayed in the data component. In locked mode, data component
variable values are updated when the target is stopped. In frozen mode,
variables are not updated when the target is stopped.

3. Inperiodical mode, variables are updated at regular time intervals when
the target is running. The default update rate is 1 second. The update rate
can be modified in steps of up to 100 ms.

Update Rate

Fate: *100 mz

ok | Catizel |

Figure 3-21. Update Rate: Data Component

3.3.7 Command Line Component Window

MCUez commands are entered on the right side ofrike terminal prompt in
theCommand Line component window. To recall a command (as in the DOS
window), use the up arrow key, down arrow key, or special function key F3.
The component executes the command entered and displays results or error
messages. The 10 previous commands can be recalled using the up or down
arrow keys. Commands are displayed in blue. Prompts and command responses
are displayed in black. Error messages are displayed in red.

NOTE: Memory ranges, addresses, and values can be dropped into the command line
component. Nothing can be dragged from the command line component. The
command line component accesses corresponding items of the current
command. Refer t8ection 5. Command Referenéer more detailed
information regarding MCUez commands.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Component Windows 67

Component Windows

3.3.7.1 Command Line Component Operations

User’'s Manual

Figure 3-22shows th&Command Line component menu arthble 3-3
describes the menu functions.

Execute File

Copy
Paste

Figure 3-22. Command Line Component Menu

Table 3-3. Command Line Operations

Menu Entry Description

When selected, opens a dialog where the user can select a

Execute File file containing MCUez commands to be executed

Appears only in the pop-up menu when something is
Copy selected in the command line component. When selected,
copies the selected text to the clipboard.

Appears only in the pop-up menu when something is stored
in the clipboard. When selected, the first line of text
currently stored in the clipboard is appended to the
current command.

Paste

Selected text from the command line component can also be copied to the
clipboard using the standard window key combination CTRL + C.

The first line of text currently stored in the clipboard can be appended to the
current command using the standard window key combination CTRL + V.

MCUez HC12 Debugger

68

Component Windows MOTOROLA

Component Windows
Components

3.3.8 Module Component Window

NOTE:

MCUez HC12 Debugger

TheModule component window lists source modules used to build the
application. It displays all source files (source modules) bound to the
application. The module component displays all modules in the order they
appear in the absolute fileabg. Figure 3-23shows the module component.

i Module _ O]

fibomain.dbg
fibonacc.dbg

Figure 3-23. Module Component Window

Double clicking a module name forces all open windows to display information
about the module. The source component shows the module's source and the
data component displays the module's global variables.

The module component has no associated menu.

User’'s Manual

MOTOROLA

Component Windows 69

Component Windows

User's Manual MCUez HC12 Debugger

70 Component Windows MOTOROLA

User’'s Manual — MCUez HC12 Debugger

4.1 Contents

MCUez HC12 Debugger

4.2

4.3
43.1

4.4
4.5
4.6
4.7

4.8

48.1
4.8.2
4.8.3
4.8.4
4.8.5

4.9
49.1
4.9.2

4.10

4.10.1
4.10.2
4.10.3
4.10.4
4.10.5

Section 4. Operating Procedures

INtroducCtion. 72
Configuring the MCUez Debugger. 73
Configuring for Use with Editors. 73
Automating the MCUez Startup Process 74
Loading an Application. 74
Starting an Application. 76
Stopping an Application 76
Breakpoints. 77
Breakpoint Symbols. 78
Identifying All Positions to Define a Breakpoint. 79
DefiningaBreakpoint, 79
Deleting a Breakpoint 80
Breakpoints Menu 81
Stepping in the Application 82
Stepping on Assembly Level 82
Stepping Overa FunctionCall. 82
Working with Variables 83
Displaying Global Variables froma Module. 83
Changing the Variable Value Display Format. 83
Modifying a Variable Value 84
Displaying an Allocated Variable Address 85
Loading an Address Register with a Variable Address 85

User’'s Manual

MOTOROLA

Operating Procedures 71

Operating Procedures

4.11 Working with Registers 85
4.11.1 Changing the Register Display Format 85
4.11.2 Modifying the Content of an Index or Accumulator Register. . . . 86
4.11.3 Modifying Bit Register Contents. 86
4.11.4 Retrieving a Memory Dump Starting

at a Register-Indicated Address 87
412 Working With MemOoryt e 88
4.12.1 Changing the Memory Display Format 88
4.12.2 Modifying Memory Address Content 88

4.2 Introduction

The MCUez debugger can be started fromMi@UJez Shellor an external
editor. This chapter provides procedures on:

User’'s Manual

Configuring the debugger

Configuring the debugger for use with various editors
Starting the debugger from editors, desktop, and shell
Configuring a default layout

Loading, starting, and stopping an application
Defining and setting breakpoints

Stepping through code within an application

Working with variables

Working on registers

Accessing memory contents

MCUez HC12 Debugger

72

Operating Procedures MOTOROLA

Operating Procedures
Configuring the MCUez Debugger

4.3 Configuring the MCUez Debugger

The debugger must be associated with a project directory to find all requested
configuration and component files.

The project (working) directory is defined in thecutools.infile located in the
Windows® directory (for exampl€:\winnt). The working directory
(including path) is defined in the environment varigbdéaultDir in the
[Options] group orWorkDir in the[WorkingDirectory] group.

4.3.1 Configuring for Use with Editors

Perform the following steps to define an editor. Additional information about
theMCUez ShellandConfiguration dialog settings are explained in the
MCUez Installation and Configuration User’'s Manullotorola document
order number MCUEZINS/D.

1. Start theviCUez Shell

2. Click on theezMCU icon (first icon) in the shell. Th€onfiguration
dialog is displayed.

Click Change ...to open th&Current Configuration dialog.
Select thé&ditor tab.

In theEditor list box, select an editor.

o g M W

For Codewright (from Premia Corporation) or WinEdit™, enter a
filename in theProject File edit box. Codewright project files have the
extensionpjt and WinEdit files have the extensiawpj. The editor
project file is created automatically in the project directory.

7. In theExecutableedit box, enter or browse to the editor's executable
file.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Operating Procedures 73

wr
PRt

Operating Procedures

4.4 Automating the MCUez Startup Process

Often the same tasks have to be performed after starting the debugger. Tasks
can be automated by writing a command file that contains all commands to be
executed after startup. Most target components will execute the command file
startup.cmdonce the target component is loaded and initialized. By inserting
the call command in the startup command file (for examgdd,init.cmd), the
user-defined command filen{t.cmd also will be executed when the target
component is loaded.

Example ofstartup.cmdile:

call init.cmd

Example ofinit.cmdfile:

load fibo.abs
bs &main t

g

Theinit.cmdfile will load the applicatiorfibo.abs then set a temporary
breakpoint at the start of the functiorain and start the application. The
application will then stop ahain after executing the startup and initialization
code.

4.5 Loading an Application

User’'s Manual

Follow these steps to load an application:

1. Selectioad in the target menu (for instance, SDI) to openLibad
Executable Filedialog box. The target menu s located betweerRhe
andComponentmenus.

2. Select an application (for exampii®o.abg.

3. Click OK to close the dialog box and load the application into the
debugger.

MCUez HC12 Debugger

74

Operating Procedures MOTOROLA

h

Operating Procedures
Loading an Application

File “iew Bun SO0l Component Memaory Window Help
D] %@ 2% =|«|z]1]

|C:AMCUEZ N demathc] 24Fibo. DEG | main
2 083C CFOBFF 1S 307 il
083F 3B PSHD
mwain: oa40 c7 CLRE
LIS #S0EFF ; initialize Stack 084l &7 CLEA
PSHD 0642 7COADD STD Ox0A00
CLEE = 0645 7 CLEE
CLEA 0846 &7 CLEA
$TD fiboCount 0647 7COADZ STD Ox0ADZ
wainLoop: 084a 6C50 3TD o,5Fp
r1oR = 0840 2013 BER4 421 :ahs = 086l
;I'—I E ‘é N2 "CNAN2 T M N2 ;I
E Data !E- il Register =13
|F|b0 dbg | Auto |Spmb | Global [HC12 [
fihoCount -9869 int i’ D 2511 & 25 B |Ll
counter 29 int IX |B52Z0 IY DEd4&
fibl -19168 int PC aac
fiha 3485 int sp | BFS CCR | sxHINZUC
fibo 9439 intc ;l
fml Command A =] B3| | Memony =l
GetTargetMemory A0D, 49 => SERVER_COMFLETE Bl | Ao
=k D2 73 00 1D BS 20 25 11 25 11 ... 0500 3B C7 87 7C OA 04 52 7C ;..l..RI =l
_ 0606 OA 06 EE 80 7E OA 08 C6 w... _
irc- EI 0610 02 7C OA O& 20 19 FC O& .|.. ...

0515 04 F53 0& 06 YC 04 O3 FE ]...
- ||0GEi5 FE 0A 04 05 VE 04 04 FC ~...
Fiba. dhg 0530 04 0A AC 80 25 EO FC 04#...
0533 08 1B gz 3D CF OB FF 3B ...=...:
o540 C7 87 7C 04 00 CY 87 YC 0 L. f....]

L

Figure 4-1. Loading an Application

The source component displays the source from the module containing the entry
point for the application. The highlighted statement is the entry point.

The assembly component contains the corresponding disassembled code. The
highlighted statement is the entry point from the application. The code is
disassembled directly from the target board memory.

The global data component contains the list of global variables defined in the
module containing the application entry point.

The PC (program counter) in the register component is initialized with the
initial value from the application entry point.

MCUez HC12 Debugger User's Manual

MOTOROLA Operating Procedures 75

Operating Procedures

4.6 Starting an Application
The two ways to start an application are:

1. Select th&kun| Start/Continue menu option.

2. Click theStart/Continue button in the MCUez toolbe_l

The messagBRUNNINGN the status bar indicates that the application is
running.

The application will continue until:
e Itis manually halted.

* A breakpoint has been reached.

* An exception has been detected.

4.7 Stopping an Application
The two ways to stop an application are:

1. ChoosdRrun | Halt.

2. Click on theHalt button in the MCUez toolba|i| HALTEDis
displayed in the status bar to indicate that program execution has
stopped.

The highlighted line in the source component is the source statement where the
program was stopped (for example, the next statement that will be executed).

The highlighted line in the assembly component is the assembler statement
where the program was stopped (for example, the next assembler instruction
that will be executed).

The data component displays the names and values of global variables defined
in the currently executed module. The name of the module is specified in the
data component information bar.

User's Manual MCUez HC12 Debugger

76 Operating Procedures MOTOROLA

b -

g |

Operating Procedures
Breakpoints

4.8 Breakpoints

Breakpoints are control points associated with a program counter (PC) value
(for instance, program execution is stopped as soon as the PC reaches the value
defined in a breakpoint). The MCUez debugger supports different types of
breakpoints:

* Run-to-cursor breakpoints (temporary breakpoints), which are deleted
as soon as they are reached. This type of breakpoint is activated the next
time the corresponding instruction is executed.

» Set breakpoints (permanent breakpoints), which remain active until the
user deletes them. This type of breakpoint will be activated each time the
corresponding instruction is executed.

Breakpoints can be set in either a source or assembly comp6éigemé 4-2
shows theéBreakpoints Settingdialog window.

Il Source _ |0 il Azzembly
|C:AMCUEZ N demokhc] 24Fibo. DEG | mait
;I ELl055C CFOEFF LD3 #3071
= 083F SE PSHD
main: ~%i 0840 C7 CLRE
== LD'3 #5§0BEFF ; initialize 3Stack | og4a1 57 CLEL
= PEHD A RRAT BCnAnn O 0A00
Cree T N -~
] CLREL —
v STD Libolour - faor Flb.dbg.maln+ ET TD 0x0AD2
mainkoop: 2400; Fibo.dbg.main+4 ; D; P o 0,5F
| rreR 841: Fibo.dbg. mair+5 : E; T FL *+Zl
aA42; Fibo.dba.main+G ; 0 T hT nenane
L
|
fiboCount ; E 11
J - — Breakpoint :
fihl .ﬁ.ddress:IEEC [T Disable
fibz ¥ Hex format [~ Temporamn FVe
fiho .
MHame: main
|
GetTargetMemory AO(&dd | Delete | Update | ak. Cancel Help
== D9 73 00 1D BS |l 52 7C i,

Figure 4-2. Breakpoints Setting Dialog Window

MCUez HC12 Debugger

User’s Manual

MOTOROLA

Operating Procedures

77

Operating Procedures

TheBreakpoint Setting dialog consists of:

A list box which displays a list of currently defined breakpoints

Breakpoint: group box which displays the address of the currently
selected breakpoint, the name of the procedure in which the breakpoint
has been set, the state of the breakpoint (disable or not), and type of
breakpoint (temporary or permanent)

Deletebutton: ClickDeleteto remove the currently selected breakpoint.
OK button: ClickOK to accept all modifications.
Cancelbutton: ClickCancelto retain all previous settings.

Help button: ClickHelp to open the help file and associated information.

The list box allows multiple consecutive breakpoints to be selected. Select a
breakpoint, then hold the Shift key, and select another breakpoint.

Select multiple non-consecutive breakpoints by selecting a breakpoint, then
holding the control (Ctrl) key, and selecting other breakpoints.

When selecting multiple breakpoints, the name of the grouBhbeakpoint:
changes t&elected breakpointsand the associated contrédlddress (hex)
andName: are disabled.

4.8.1 Breakpoint Symbols

A temporary breakpoint has this symbc -[::I

A permanent breakpoint has this symb-H :

A disabled breakpoint looks like

User’'s Manual

MCUez HC12 Debugger

78

Operating Procedures MOTOROLA

g |

Operating Procedures
Breakpoints

4.8.2 ldentifying All Positions to Define a Breakpoint

Some compound statements (a statement that can be split into several base
instructions) can be generated when using a high level language. The MCUez
debugger helps detect all positions where a breakpoint can be set:

1. Right click in the source component. The source pop-up menu is
displayed.

2. CheckMarks from the pop-up menu. All statements where a breakpoint
can be set are identified by a special m1k: .Pegere 4-3.

3. Toremove the breakpoint marks, right click in the source component and
uncheckMarks.

= Assombly HSTES
|C:AMCUEZ demoihe] 24Fibo. DEG main
p LD3 #50BFF ; initialize Stack -] 033C CFOEFF ﬂ
PEHD 0aaF 3B PSHD
A CLEE ogdao Cc7 CLEE
-ﬁ CLE&A =¥ 054l &7 CLE&
STD fiboCount 0542 TC0AO0O STD 00400
g mainLoop: r nsds Cv CLEE
CLEE = oade &7 CLEL
'ﬁ CLEL 0s47 TCOoAQZ 3TD x0a02
3TD counter 054a 6C80 5TD 0,37
/" 2T FE - = og4c 2013 ERAL T+21 rabs = 0861
o | Hl n2AF ®COAAT TTm M M0 ﬂ

Figure 4-3. Identifying Breakpoint Positions

4.8.3 Defining a Breakpoint
The debugger provides two ways to define a breakpoint:

1. Using the pop-up menu:

— Point at a statement in tf8ourceor Assemblycomponent window
and click the right mouse button to display the pop-up menu.

— SelectSet Breakpointor Run to Cursor from the pop-up menu. A
breakpoint mark is displayed in front of the selected statement.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Operating Procedures 79

Operating Procedures

2. Using the keyboard:

— Point at a statement in tf8urcecomponent window, hold the left
mouse button, and press the P key for a permanent breakpoint or T
for a temporary breakpoint.

— A breakpoint mark is displayed in front of the selected statement.
Once a breakpoint has been defined, program execution can continue. The

application stops before executing the statement. Permanent breakpoints remain
active until they are disabled or deleted.

4.8.4 Deleting a Breakpoint

The MCUez debugger provides four ways to delete a breakpoint.
1. UsingDelete Breakpointfrom pop-up menu:

— In the source or assembly component, point at a statement where a
breakpoint has been defined and right click.

— SelectDelete Breakpointfrom the pop-up menu.
2. Using the keyboard:

— In the source or assembly component, point at a statement where a
breakpoint has been defined, hold down the left mouse button, and
press the D key.

3. SelectShow Breakpoints...from Sourcepop-up menu:

— Place the mouse pointer in tBeurceor Assemblycomponent
window and right click.

— SelectShow Breakpointsfrom the pop-up menu. Thereakpoints
Setting dialog is displayed.
— Inthe list of defined breakpoints, select the breakpoint to delete.

— Click Delete The selected breakpoint is removed from the list of
defined breakpoints.

— Click OK to close théreakpoints Settingdialog box.
4. SelecRun | Breakpoints ..:
— ChooseRun | Breakpoints ...to display theBreakpoints Setting
dialog.
— Select the breakpoint to delete.
— Click Delete
— Click OK to close théreakpoints Settingdialog box.

User's Manual MCUez HC12 Debugger

80 Operating Procedures MOTOROLA

Operating Procedures
Breakpoints
4.8.5 Breakpoints Menu

Figure 4-4 shows théBreakpoints pop-up menu.

Set Breakpaint
Fun To Curgor
Show Breakpaints:

Open Module...

Find...

bl ark.z

Figure 4-4. Breakpoints Menu

Table 4-1defines all entries in the breakpoints pop-up menu.

Table 4-1. Breakpoints Pop-up Menu Definitions

Menu Entry Description

Set Breakpoint Selects the permanent breakpoint option

When selected, sets a temporary breakpoint at the nearest
code position and continues execution of the program
immediately. If a disabled breakpoint is at this position,
the temporary breakpoint will also be disabled and the
program will not halt. Temporary breakpoints are removed
automatically when they are reached.

Run To Cursor

Opens the Breakpoints Setting dialog box and allows the
Show Breakpoints user to consult the list of breakpoints defined in the
application and to modify their properties.

Toggles the display of source positions where breakpoints
Marks may be set. If this switch is on, source positions are
marked by upside down check marks.

NOTE: If some statements do not show marks although the mark display is switched on,
the following may be at fault:

» The statement did not produce code due to compiler optimization.

* The entire procedure or section is not linked in the application because
of smart linking.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Operating Procedures 81

wr
PRt

Operating Procedures

4.9 Stepping in the Application

The MCUez debugger provides stepping functions at the assembler level. The
following sections describe how to implement stepping functions.

4.9.1 Stepping on Assembly Level

The debugger provides two ways of stepping to the next assembler instruction:

1. SeleciRun | Assembly Step
2. Click theAssembly Stepbutton on the toolbar|i| .

The messagd,RACEDIn the status line indicates that the application is
stopped by an assembly step function. The application stops at the next
assembler instruction.

The display in the source component is always synchronized with the display in
the assembly component. The highlighted instruction in the source component
is the source instruction that has generated the highlighted instruction in the
assembly component.

Elements from the register, memory, or data components (displayed in red) are
values that have changed during execution of the assembly instruction.

4.9.2 Stepping Over a Function Call

User’'s Manual

The debugger provides two ways of stepping over a function call:

1. SeleciRun | Step Over
2. Click theStep Overbutton on the toolbaEI .

The messageSTEPPED OVERn the status line indicates that the application

is stopped by a step over function. If the application was stopped previously on
afunction invocation (a JSR (jump to subroutine) or BSR (branch to subroutine)
instruction), aStep Overstops the application on the source instruction
following the function invocation.

Elements from the register, memory, or data components (displayed in red) are
values that have changed after 8tep Overfunction was invoked.

MCUez HC12 Debugger

82

Operating Procedures MOTOROLA

Operating Procedures
Working with Variables

4.10 Working with Variables

The following sections describe how to work with variables in the MCUez
debugger.

4.10.1 Displaying Global Variables from a Module

The debugger provides two ways to view a list of global variables defined in a
module:

1. Using drag and drop:
— Drag a module name from the module component to a data
component.
2. Using pop-up menu:
— Place the mouse pointer in the data component and right click.

— SelecOpen Modulein the pop-up menu. A dialog box that contains
the list of all modules used to build the application opens.

— Double click on a module name. The data component with a global
attribute that is neither frozen nor locked is the destination
component.

The destination data component displays the list of variables and their values
that are defined in the selected module.

4.10.2 Changing the Variable Value Display Format

The debugger can display variable values in different formatskdimeat
entry in the pop-up menu provides several options. The selected format affects
all data component variables. Sksble 4-2

MCUez HC12 Debugger User’'s Manual

MOTOROLA Operating Procedures 83

Operating Procedures

Table 4-2. Changing the Variable Value Display Format

Menu Entry

Description

Hex

Variable values are displayed in hexadecimal format.

Oct

Values are displayed in octal format.

Dec

Values are displayed in signed decimal format.

UDec

Values are displayed in unsigned decimal format.

Bin

Values are displayed in binary format.

Symbolic

Displayed format depends on the variable type.

Values for character variables are displayed in ASCII
character and decimal format.

Values for other variables are displayed in signed or
unsigned decimal format depending on the variable being
signed or not.

4.10.3 Modifying a Variable Value

The debugger allows variable values to be changed. Double click on a variable.

The current value is highlighted and can be editgufe 4-5).

fiboCount
counter
fibhl

fibZ

fibo

i

= Data Mi=] E3
[FIED.dbg | Auta [Symb | Glo
int :fi
YER| int
int
int
int
int _:J

Figure 4-5. Modifying a Variable Value

The following procedure describes how to modify a variable value:

1. Formats for the input value follow the rule for ANSI C constant values.
Values are prefixed b§x for a hexadecimal value @rfor octal values.
All other values are treated as decimal values. For example, if the data
componentisin decimal format and the variable input value is 0x20, then
the variable is initialized with 32. If a variable input value is 020, the

variable is initialized with 16.

User’'s Manual

MCUez HC12 Debugger

84 Operating Procedures

MOTOROLA

Operating Procedures
Working with Registers

2. To accept the input value, press either the Enter key or Tab key. To
restore the previous value, press the escape (Esc) key or select another
variable before pressing the Enter or Tab keys.

3. If aninput value has been validated by pressing the Tab key, the next
variable value in the component is highlighted automatically.

4.10.4 Displaying an Allocated Variable Address

The start address and variable size are displayed in the data information bar
when a variable name is clicked.

4.10.5 Loading an Address Register with a Variable Address

To load a register with the address of a variable, drag a variable name from the
data component to the register component. The destination register is updated
with the start address of the selected variable.

4.11 Working with Registers

The following sections describe how to work with registers.

4.11.1 Changing the Register Display Format

The debugger allows the register content to be displayed in hexadecimal or
binary format. To do so:

1. Right click in the register component to display the pop-up menu.
2. SelecOptions ...

3. Select either binary or hexadecimal format.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Operating Procedures 85

Operating Procedures

4.11.2 Modifying the Content of an Index or Accumulator Register

The following procedure describes how to modify the content of an index or
accumulator register. The register window changes to reflect the MCU used in
specific systems.

1. Double click on a register. The current register content is highlighted
(Figure 4-6) and can be edited.

il Beqgister M= E3
HC12

D (2511 A g Bl

IX |BSz0 IY |DE46

PC | B3C

5P | BFY CCR | SXHINZVC

Figure 4-6. Modifying the Content of an Index
or Accumulator Register

2. The format of the input value depends on the format selected for the
register component. If the format is hex, the input value is treated as a hex
value. If the input value is 10, the variable will be se@xt®0 = 16

3. To accept the input value, press either the Enter key or Tab key or select
another register. To restore the previous value, press the escape (Esc) key
or select another variable before pressing the Enter or Tab keys.

4. If aninput value has been validated by pressing the Tab key, the content
of the next register is highlighted automatically.

4.11.3 Modifying Bit Register Contents

In a bit register, each bit has a specific meaning, for example, a status register
(SR) or condition code register (CCR) bit from a processor. Mnemonic
characters for bits set to 1 (one) are displayed in black. Mnemonic characters
for bits reset to O (zero) are displayed in grey. Each bit inside the bit register is
toggled by double clicking on the corresponding mnemonic character.

User's Manual MCUez HC12 Debugger

86 Operating Procedures MOTOROLA

g |

Operating Procedures
Working with Registers

4.11.4 Retrieving a Memory Dump Starting at a Register-Indicated Address

The MCUez debugger provides two ways to dump the memory starting at the
address a register is pointing to:

1. Using drag and drop:

— Drag a register from the register component to the memory
component.

2. SelectAddress...menu entry:
— Right click in the memory component to display the pop-up menu.
— SelectAddress ...to open théVlemory dialog box.

— Enter the register content in tAeldress:field and clickOK to close
the dialog box.

The memory component scrolls until it reaches the address specified in the
dialog box. This feature allows the display of a memory dump from the
application stack.

i Memory =]
| | Auto

oza0 EEll73 00 74 68 65 20 75 [s.the u L
0848 73 65 20 6F 66 20 6D 61 se of ma _
L Display Address

03B3

05C0

0808 Addess: IM hex

asoo

080G ¥ Hex Format Ok, Cancel | Help |
O3EQD

03ES 00 02 00 44 80 10 22 20 ...D.." =l

Figure 4-7. Choosing a Memory Address

NOTE: If Hex Formatis checked in thBisplay Addressdialog box, numbers and
letters are treated as hexadecimal numbers. Otherwise, expressions can be
typed and hex numbers should be prefixed @ittor $.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Operating Procedures 87

Operating Procedures

4.12 Working with Memory

The following sections describe how to work with and modify memory content.

4.12.1 Changing the Memory Display Format

TheFormat menu entry in themory component pop-up menu provides
several optionsTable 4-3defines the display format options.

Table 4-3. Memory Display Format Options

Menu Entry Description
Hex Memory dump is displayed in hexadecimal format.
Dec Memory dump is displayed in sighed decimal format.
UDec Memory dump is displayed in unsigned decimal format.
Oct Memory dump is displayed in octal format.
Bin Memory dump is displayed in binary format.

4.12.2 Modifying Memory Address Content
The debugger allows the content of a memory address to be changed. To do so:

1. Double click the memory location to be modified. The content of the
memory location is highlighted and can be edited.

2. The format for the input value depends on the format selected for the
memory component. If the format is hex, the input value is treated as a
hex value. For example, if the input value is 10, the memory address will
be set to 0x10 = 16.

3. Once avalue has been allocated to a memory word, it is validated and the
next memory address is selected automatically.

4. To validate the new value, press Enter or Tab or select another memory
position. To restore the previous value, press the escape (Esc) key before
pressing the Enter or Tab key.

User's Manual MCUez HC12 Debugger

88 Operating Procedures MOTOROLA

User’'s Manual — MCUez HC12 Debugger

Section 5. Command Reference

5.1 Contents

52 Introduction. 90
53 List of Available Commands 90
5.3.1 KernelCommands 91
5.3.2 TargetCommands 92
5.3.3 ComponentCommands 94
54 Definition of Terms. e 95
5.5 Register Description File 96
55.1 File Format. 96
5.6 EXPreSSIONS. . ..ottt 96
5.6.1 Expression Definition inEBNF., 97
5.6.2 SEMaANICS . . . oo 98
5.6.3 Scope Examples. 99
5.6.4 Constant Standard Notation. 100
57 Kernel Commands 100
5.8 TargetCommands. 118
59 Component Commands.t 151
510 Command Files. 178
MCUez HC12 Debugger User’'s Manual
MOTOROLA Command Reference 89

wr
PRt

Command Reference

5.2 Introduction

This section provides a detailed list of all MCUez debugger commands. All
commands and component names are case insensitive. The EBNF (Extended
Backus-Naur Form) command syntax is:

[ccomponent name> [:<component number>] <] <command>
wherecomponent name is the name of the component.

Thecomponent number isthe number of the component. This number does
not exist in the component window title if only one component of this type is
open. When two instances of the data component are open, each data
component is titled numerically aslrata:1 andData:2 . A number is
automatically associated with a component if more than one instance of the
component exists.

The redirect left symbol (<) redirects a command to a specific component.
Some commands are valid for several or all components. If the command is not
redirected to a specific component, all concerned components will be affected.
Also a mismatch could occur due to the fact that command parameters could
differ from one component to another for the same command name.

5.3 List of Available Commands

User’'s Manual

The following sections list and define each available MCUez debugger
command.

MCUez HC12 Debugger

90

Command Reference MOTOROLA

Command Reference
List of Available Commands

5.3.1 Kernel Commands

Kernel commands are used to build command files. Therefore, they can be used
only in an MCUez command file. The command line component accepts one
command at a time. It is possible to build powerful files, combining kernel
commands with target commands and component commands.

Command Syntax Short Description

AT time Sets a time condition for a
command execution

ELSE Alternate operation associated
with IF command

ELSEIF condition Alternate conditional operation
associated withF

ENDFOCUS Resets the current focus
(seeFOCUSommand)

ENDFOR Exits aFORIloop

ENDIF Exits anlF condition

ENDWHILE Exits aWHILE loop

FOCUS componentName Sets the focus on a specified
component

FOR[variable =Jrange [“,” step] FOR loop instruction

GOTO label Unconditional branch to a label
in a command file

GOTOIF condition Label Conditional branch to a label
in a command file

IF condition Conditional execution

REPEAT REPEAToop instruction

RETURN Returns from &€ALL command

UNTIL condition Condition of aREPEATIoop

WHILE condition WHILE loop instruction

WAIT [time] [;s] Command file execution pause

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 91

wr
PRt

Command Reference

5.3.2 Target Commands

Target commands are used to monitor the hardware target execution. Target
input/output files, target execution control, direct memory editing, breakpoint
management, and CPU register setup are handled by these commands. Target

User’'s Manual

commands are executed independent of open components.

Command Syntax

BC <address | *>
BD

BS <address> [P|T]
CALL [filename] [;C][;NL]
CD [path]

CF [filename] [;C] [;NL]

CR [filename][;A]

DASM [address|range][;0BJ]
DB [address|range]

DEFINE <symbol> [=]
<expression>

DL [address|range]
DW [address | range]
G [address]

LF [filename][;A]

LOG <type>[=]<state>
{l.1<type>[=]<state>}

LS [symbol | *I[;(C | S)]
MEM

MS <range> <list>

NB [base]

NOCR

NOLF

P [address]

RD [list | *]

RS <register>[=]<value>
{[.]<register>[=]<value>}

Short Description

Deletes a breakpoint
Displays list of all breakpoints

Sets a breakpoint
Executes a command file

Changes the current working
directory

Executes a command file
Opens a record file
Disassembles

Displays memory bytes

Defines a user symbol

Displays memory bytes as longwords
Displays memory bytes as words

Starts execution of the loaded application
Opens a log file

Sets options for the log file

Displays the list of symbols

Displays the memory map

Sets memory bytes

Sets the base of arithmetic operations

Closes the record file

Closes the log file

Single assembly steps into the program
Displays content of registers

Sets a register

MCUez HC12 Debugger

92

Command Reference

MOTOROLA

MCUez HC12 Debugger

Command Syntax

S

SAVE <range> <filename>
[<offset>][;A]

SREC <filename> [<offset>]

T [address][,count]

UNDEF [symboal | *]
WB <range> <list>
WL <range> <list>
WW <range> <list>

Command Reference
List of Available Commands

Short Description

Stops application execution

Savesamemoryblockin S-record
format

Loads a memory block in S-record
format

Traces instructions at specified
address

Undefines a user symbol
Writes bytes

Writes longwords

Writes words

User’'s Manual

MOTOROLA

Command Reference

93

User’'s Manual

Command Reference

5.3.3 Component Commands

Component commands monitor the debugger environment, component
windows, component window layouts, and load component windows and user

applications.

Command Syntax

ACTIVATE <component name>
ATTRIBUTES list

AUTOSIZE on|off

BCKCOLOR color

CLOSE <component name> | *
E <expression> [;(O|D|X|C|B)]
FILL <range> <value>

FIND <string> [;B] [;MC] [;WW)]
FONT ‘fontName’ [size][color]
HELP

LOAD applicationName

OPEN <component name>
[x y width height][;i|;max]

SLAY <filename>
SMEM range
SMOD module
SPC address

SPROC level

UPDATERATE rate
VER

ZOOM <address in | out>

Short Description

Activates a component window

Sets up the display inside
a component window

Autosizes windows in main window
Sets the background color

Closes a component

Evaluates a given expression

Fills a memory range with a value
Finds and highlights a pattern

Sets text font

Displays a list of available commands

Loads user’s application

Opens a component

Saves the general window layout
Shows a memory range

Shows a module

Shows the specified address in
a component window

Shows information associated
with a specific procedure

Sets the data update mode

Displays version number of
components and MCUez

Zooms in/out on an array

MCUez HC12 Debugger

Command Reference

MOTOROLA

5.4 Definition of Terms

NOTE:

MCUez HC12 Debugger

Command Reference
Definition of Terms

A definition and explantion of how certain words are used in command syntax
descriptions follows.

address— A number matching a memory address. This number can be
specified in the ANSI C format (for instand®x for hexadecimal value,

O for octal) or in the MCUez assembler format ($ for hexadecimal, @ for
octal, % for binary).

Example: 255, 0377, OxFF, $FF

address can also be an “expression” if “constant address” is not specifically
mentioned in the command description. An “expression” can be: Global
application variables, 1/0O register definitions defineddBFAULT.REG
definitions in the command line, and numerical constants.

Example: DEFINE I0_PORT = 0x210
WB 10_PORT OxFF

range — A composition of two addresses that define a memory address
range. The syntax is shown as:

address..address
or
address, size

wheresize is an ANSI format numerical constant.

Example: Ox2F00..0x2FFF

Refers to a memory range startingda2FOOand ending aDx2FFF
(256 bytes).

Example: 0x2F00,256
Refers to a memory range startingdaRF00 , which is 256 bytes wide.
Both previous examples are equivalent.

filename — A DOS filename and path that identifies a file and its
location. The command interpreter does not assume the filename
extension. Use backslash (\) or slash (/) as a directory delimiter. The

User’'s Manual

MOTOROLA

Command Reference 95

Command Reference

parser is case insensitive. If no path is specified, it looks for the file or
writes the file into the current project directory; for instance, when no
path is specified, the default directory is the project directory.

» component— Name of a component window
Example: Memory

5.5 Register Description File

5.5.1 File Format

5.6 Expressions

User’'s Manual

When loading an MCUez target, the definition of the I/O registers is loaded
from afile. This allows the names of these registers to be used as parameters for
commands or as operands in an expression. The syntax of the file is defined in
the Appendix C. Extended Backus-Naur Form (EBNF)

There may be several different files depending on the MCU used. The name of
the correct file is derived from the MCU identification number (MCU Id) in the
following way:

Mcuioxxx.reg

xxxis the MCU Id in hexadecimal representation. This file is expected to be
found in the directory where the program files are located (for instance,
.\PROG\REG® If this file is not found, corresponding information will be
missing and related commands may not deliver the complete results.

A header contains the name, identification number, and location of the register
block of the MCU. The header is followed by a list of module descriptors. Each
descriptor contains register definitions and (optionally) a memory map
specification. The register definitions can be grouped under a group name. Each
register definition defines the name, address, and size of an I/O register. The
memory map specification is used by MEMcommand to display the

configured memory of that module.

Many commands accept expressions as parameters. Expression syntax and
semantics descriptions follow.

MCUez HC12 Debugger

96

Command Reference MOTOROLA

Command Reference
Expressions

5.6.1 Expression Definition in EBNF

MCUez HC12 Debugger

Example:
expression = lorExpr
lorExpr = landExpr {"||" landExpr} // logical OR
landExpr = orExpr {"&&" orExpr} //'logical AND
orExpr = xorExpr {"|" xorExpr} I/ bitwise OR
XorExpr = andExpr {"*" andExpr} /I bitwise XOR
andExpr = eqExpr {"&" eqExpr} I bitwise AND
egExpr = relExpr {("=="|"I=") relExpr}
relExpr = shiftExpr {("<" | ">" | "<=" | ">="
shiftExpr}
shiftExpr = addExpr {("<<" | ">>") addExpr}
addExpr = mulExpr {("+" | "-") mulExpr}
MulExpr = castExpr {("™" | "I" | "%") castExpr
castExpr = ["~"|""|"+"|"-"] parenExpr
parenExpr = "(" expression")"
| cObject
| symbol
| register
| variable
| string
| number
symbol defined with the DEFINE command found
in ANSI C
register = IOReg
variable = ObjectReg

ObjectReg = ['OBJPOOL::"] ObjectSpec

ObjectSpec = ObjectName ["." FieldName].

ObjectName = ident [":" Index].

FieldName IdentNum ([".." IdentNum] | ["." Size]).
IdentNum ident | "#" HexNumber.

Size = "B"|"W"|"L".

ident is an identifier as defined in ANSI C

IOReg = ["IOREG::"] group | regName

group refer to the Motorola I/O register file definition Appendix A. Register
Description File

regName refer to the Motorola register name definitiorAippendix A.
Register Description File

User’'s Manual

MOTOROLA

Command Reference 97

Command Reference

5.6.2 Semantics

User’'s Manual

itemName = module |[[[module] ":"] procedure |
[[module] ":" [procedure] ":"] variable

variable = ident {"." ident | number }

module = ident ["." extension]

procedure = ident

extension is an identifier as defined in ANSI C
number is a number as defined in ANSI C
ident is an identifier as defined in ANSI C

Module names can have an extension. If no extension is specified, the parser
will look for the first module that has the same name (without extension).

A scope represents either a module or procedure. A scope is recognized by the
presence of the double colon which terminates the scope. If the scope
identification contains at least one colon, it is assumed to represent a procedure;
otherwise, it represents a module.

Empty module or procedure names represent the current module or procedure,
respectively. The current procedure is the procedure that the program counter
of the debugger points to. The current module is the module that contains the

current procedure.

Items are identified as absolute or relative, corresponding to the presence or
absence of a scope.

An item is identified as absolute by specifying its scope, for instance, the
module and/or procedure where the item is located.

An item is identified as relative if a scope is omitted. In this case, the item is
assumed to be located in the current procedure.

MCUez HC12 Debugger

98

Command Reference MOTOROLA

5.6.3 Scope Examples

fibo.dbg:Fibonacci:fibl

:main

startl2.c:_Startup

..counter

:Fibonacci:fibl

fibo.dbg::counter

fibl

startupData.flags

MCUez HC12 Debugger

Command Reference
Expressions

Matches the local variabfbl of the
procedurd=ibonacci in the module
fibo.dbg

Matches the procedureain inthe current
module

Matches the procedureStartup in the
modulestartl2.c

Matches the global variabtmunter of
the current module

Matches the local variabféol of the
procedurd-ibonacci of the current
module

Matches the global variabt®unter of
the moduldibo

Matches the local variable of the current
procedure or a global variable of any
module

Matches the field flags of the local or
global variablestartupData (whichisa
structure) of the current module or
procedure

User’'s Manual

MOTOROLA Command Reference 99

wr
PRt

Command Reference

5.6.4 Constant Standard Notation

Inside an expression, the ANSI C standard notation for constant is supported.
This means that independent of the current number base, hexadecimal or octal
constants can be specified using standard ANSI C notation.

Example:
Notation Meaning
0x---- Hexadecimal constant
0---- Octal constant

Similarly, the assembler notation for constant is supported. This means that
independent of the current number base, hexadecimal, octal, or binary constants
can be specified using the assembler prefixes.

Example:
Notation Meaning
$---- Hexadecimal constant
@ Octal constant
% Binary constant

When the default number base is 16, constants starting with aAetBeIC, D,
E, orF must be prefixed b§x or$. Otherwise, the command line detects a
symbol and not a number.

Example:
Notation Meaning
5AFD Hexadecimal consta5AFD
AFD Symbol name
$AFD Hexadecimal constant

5.7 Kernel Commands

Kernel commands are commands that build command files. Command files can
be built by combining kernel, base, common, and component-specific
commands.

User's Manual MCUez HC12 Debugger

100 Command Reference MOTOROLA

Command Reference
Kernel Commands

AT
Short description:

Time delay for executing a command in a command file

Syntax:
AT <time>

Argument:

time Expression interpreted in milliseconds

Description:

The AT command temporarily suspends a command from executing for a
specified delay in milliseconds. The delay is measured from the time the
command file is started. In the event that command files are chained (one
calling another), the delay is measured from the time the first command file
is started. This command can be executed only from a command file. The
time specified is relative to the start of the command file.

Example:
AT 10 OPEN Command

This command opens a command line component 10 ms after execution of
the command file.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 101

Command Reference

CALL
Short description:
Executes a command file
Syntax:
CALL [FileName] [;C][;NL]
Description:
The CALL command is an alias of ti@gF command. Refer to theF
command in the base commands section for a description and examples.
DEFINE

User’'s Manual

Short description:

Defines a user symbol

Syntax:
DEFINE symbol [=] expression

Arguments:
symbol User-defined name

expression User-defined expression assigned to symbol name

Description:

TheDEFINE command creates a symbol and associates the value of an
expression with the symbol. Arithmetic expressions are evaluated when the
command is interpreted. The symbol represents the expression until the
symbol is redefined or undefined using tiBIDEFcommand. A symbol is a
maximum of 31 text characters. In a command line, all symbol occurrences
(after the command name) are substituted by their values before processing.
A symbol cannot represent a command name. A symbol definition precedes
(and therefore conceals) a program variable with the same name. Defined
symbols remain valid when a new application is loaded.

MCUez HC12 Debugger

102

Command Reference MOTOROLA

Command Reference
Kernel Commands

Use this command to assign meaningful names to expressions that are used
in other commands. This increases the readability of command files and
avoids re-evaluation of complex expressions. An application variable or /O
register can be overwritten withDEFINE command.

Example:
DEFINE addr $1000

DEFINE limit = addr + 15

Firstaddr is defined as a constant equivalen$1®00. Thenlimit is
defined and assigned the val@&i000 + 15). A symbol can be redefined
on the command line using t¥EFINE command. The original value of the
symbol defined in the application is not accessible untiUdNDERSs issued
on the symbol name.

Example:

The symbol nametéstCase is defined in the application test.

/* Loads application test.abs */

LOAD test.abs

/* Display value of the variable testCase from
the loaded*/

[* application. */

DB testCase

/* Redefine symbol testCase. */

DEFINE testCase = $800

[*Display value stored at address $800.*/

DB testCase

/* Undefine symbol testCase. */

UNDEF testCase

/* Display value of the variable testCase from
the loaded*/

[* application. */

DB testCase

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 103

Command Reference

ELSE

Short description:

Alternate operation associated wWikh command

Syntax:
ELSE

Description:
The ELSE keyword is associated with tihlé command.

ELSEIF

User’'s Manual

Short description:

Alternate conditonal operation associated Withcommand

Syntax:
ELSEIF condition

Argument:

condition User-defined code

Description:
TheELSEIF keyword is associated with tiié command.

MCUez HC12 Debugger

104

Command Reference

MOTOROLA

Command Reference
Kernel Commands

ENDFOCUS
Short description:
Resets the current focus (refeROCUSommand)
Syntax:
ENDFOCUS
Description:
TheENDFOCUSommand resets the current focus. It is associated with the
FOCUSommand. The following commands are broadcast to all currently
open components. This command is only valid in a command file.
Example:
FOCUS Assembly
ATTRIBUTES code on
ENDFOCUS
FOCUS Source
ATTRIBUTES marks on
ENDFOCUS
The ATTRIBUTEScommand is first redirected to the assembly component
by theFOCUS Assembly command. The code is displayed next to
assembly instructions. Then the assembly component is released by the
ENDFOCU8ommand and the secoAd TRIBUTEScommand is redirected
to the source component by tR®OCUS Source command. Marks are
displayed in the source window.
MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 105

Command Reference

ENDFOR
Short description:
End of aFORIoop
Syntax:
ENDFOR
Description:
TheENDFOReyword is associated with tt®®Rcommand and terminates
aFORloop.
ENDIF
Short description:
End of anlF condition
Syntax:
ENDIF
Description:
The ENDIF keyword is associated with tile command and terminates a
conditional block.
ENDWHILE

User’'s Manual

Short description:
End of awHILEloop

Syntax:
ENDWHILE

Description:

The ENDWHILEeyword is associated with tNéHILE command and
terminates &VHILE loop.

MCUez HC12 Debugger

106

Command Reference MOTOROLA

Command Reference
Kernel Commands

FOCUS
Short description:
Sets the focus on a specified component
Syntax:
FOCUS component
Argument:
component Component window
Description:
TheFOCUSommand sets the given compon&uinjponent) as the
destination for all subsequent commands up to theERFFOCUS
command. The focus command eliminates having to repeatedly specify the
same command redirection, especially in the case where command files are
edited manually. It is not possible to visually notice that a component is
“FOCUZd". Use theACTIVATE command to activate a component
window. This command is valid only in a command file.
Example:
FOCUS Assembly
ATTRIBUTES code on
ENDFOCUS
FOCUS Source
ATTRIBUTES marks on
ENDFOCUS
The ATTRIBUTEScommand is first redirected to the assembly component
by theFOCUS Assembly command. The code is displayed next to
assembly instructions. Then the assembly component is released by the
ENDFOCU8ommand and the secoAd TRIBUTEScommand is redirected
to the source component by tR®OCUS Source command. Marks are
displayed in the source window.
MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 107

Command Reference

FOR
Short description:

FORIoop instruction

Syntax:
FOR|[variable =Jrange [*,” step]

Arguments:

variable Name of a defined variable. During execution of the loop,
the iteration value is stored variable

range Address range constant that specifies the start and end
condition for the loop

step Constant number defining the increment for the iteration
value

Description:

The FORIloop allows all commands to be executed, up to the trailing
ENDFORa predefined number of times. The bounds of the range and
optional steps are evaluated only at the beginning. A variable (either a
symbol or a program variable) may be optionally specified, which is
assigned to all values in the range during execution di@loop. If a
variable is used, it must be defined witbBFINE command before
executing th&FORcommand.

Assignment happens immediately before comparing the iteration value with
the upper boundary. The variable is a copy of the internal iteration value.
Modifications on the variable do not impact the number of iterations.

This command is halted by pressing the Esc key.

Example:

DEFINE loop =0
FOR loop=1..6,1
T

ENDFOR

The trace command is performed six times.

User's Manual MCUez HC12 Debugger

108 Command Reference MOTOROLA

Command Reference
Kernel Commands

GOTO
Short description:
Unconditional branch to a label in a command file
Syntax:
GOTO <Label>
Argument:
Label User-defined label used to mark a place in code
Description:
TheGOTGcommand diverts command file execution to the command that
follows Label . Label must be defined in the current command file. The
GOT@ommand fails iLabel is notfound. A label can be followed on the
same line only by a comment.
No MCUez command is allowed on the same line as a label.
Example:
GOTO MyLabel
MyLabel: // comments
When the instructio®OTO MyLabelis reached, the program pointer
jumps toMyLabel and follows program execution from this position.
MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 109

Command Reference

GOTOIF

User’'s Manual

Short description:

Conditional branch to a label in a command file

Syntax:

GOTOIF <condition> <Label>

Arguments:

condition User-defined expression

label User-defined label used to mark a place in code
Description:

The GOTOIFcommand diverts execution of the command file to the
command line that follows the label if the condition is true; otherwise,
execution continues on the next line in the command file GG&OIF
command fails if the condition is true and the label is not found.

A label can be followed on the same line only by a comment. No MCUez
command is allowed on the same line as a label.

Example:

DEFINE jump =0
DEFINE jump =jump + 1

GOTOIF jump == 10 MyLabel
T

MyLabel: // comments
The program pointer jumps tdyLabel only if jump == 10 . Otherwise,
the next instructio (trace command) is executed.

MCUez HC12 Debugger

110

Command Reference MOTOROLA

Command Reference
Kernel Commands

MCUez HC12 Debugger

Short description:

Conditional execution in a command file

Syntax:
IF condition

Argument:

condition User-defined expression

Description:

The conditional command#, ELSEIF, ELSE, andENDIF
subcommands) allow different command sections to be executed depending
on the result of the corresponding conditions.

Conditional blocks may be nested. A conditional block can be specified to
start inside atF , ELSEIF, or ELSE command block.

The conditions of théF andELSEIF commands encompass all commands
up to the nexELSEIF, ELSE, or ENDIF command on the same nesting
level. TheELSE command encompasses all commands up to the next
ENDIF command on the same nesting level.

Example:
DEFINE jump =0

DEFINE jump = jump + 1

IF jump ==10

T

DEFINE jump =0
ELSEIF jump == 100

DEFINE jump =1
ELSE

DEFINE jump = 2
ENDIF

Thejump ==10 condition is evaluated as in ANSI C and depending
on the test result, the trace instructidn i€ executed or thELSEIF
jump == 100 testis evaluated.

User’'s Manual

MOTOROLA

Command Reference 111

Command Reference

REPEAT
Short description:

REPEATIoop instruction

Syntax:
REPEAT

Description:

TheREPEATcommand enables a command sequence to be executed until a
specified condition is truéeREPEATblocks can be nested. REPEATblock
can be started insideREPEATblock.

Example:
DEFINE var =0

REPEAT
DEFINE var=var + 1

UNTIL var ==
The REPEAT-UNTIL loop is identical to the ANSI C loop. The operation

DEFINE var = var + 1 isexecutedtwice, themar == 2 is executed
and the loop exits.

This command can be halted by pressing the Esc key.

User's Manual MCUez HC12 Debugger

112 Command Reference MOTOROLA

Command Reference
Kernel Commands

RETURN

MCUez HC12 Debugger

Short description:

Returns from &ALL or CFcommand
Syntax:
RETURN

Description:

TheRETURNommand terminates the current command processing level. If
executed within a command file, control is returned to the caller of the
command file (for example, the first instance which did not chain execution).

Example:

in file d:\demo\cmd1.txt:

EALL d:\demo\cmd2.txt
T

Example:

in file d:\demo\cmd2.txt:

RETURN // returns to the cal ler

The command filemd1.txtcalls a second command fdend2.txt It is
necessary to insert tiRETURNNSstruction to return to the caller file. Then
the trace instructionTl() is executed.

User’'s Manual

MOTOROLA

Command Reference 113

Command Reference

UNDEF

User’'s Manual

Short description:

Undefines a user-defined symbol

Syntax:
UNDEF <symbol | *>

Arguments:
symbol User-defined symbol defined by tBe&EFINE command
* If * is specified, all symbols previously defined by the
DEFINE command are undefined.
Description:

The UNDEFcommand removes a symbol definition from the symbol table.
UNDERoes not undefine symbols that have been defined in the loaded
application.

Program variables whose names were redefined usingERENE
command become visible again.

Undefining an undefined symbol is not considered an error.
Example: DEFINE test =1

UNDEF test

When thetest variable is no longer needed, it can be undefined and
removed from the list of symbols. AftedNDEF test , thetest variable
cannot be used unless it is redefined.

Example:

The value of a user-defined symbol can be changed by applyingERENE
command again. In this case, the previous value is replaced and lost. It is not
put on a stack. Then whésNDEFRs applied to the symbol, it no longer exists

even if the value of the symbol has been replaced several times.
in>UNDEF *
in>DEFINE apple O
in>LS
apple 0x0 (0) // apple is equal to O
in>DEFINE apple = apple + 1
in>LS
apple 0x1 (1) [/l appleisequalto 1

MCUez HC12 Debugger

114

Command Reference MOTOROLA

MCUez HC12 Debugger

Command Reference
Kernel Commands

in>DEFINE apple = apple + 1

in>LS
apple 0x2 (2) [/l appleis equal to 2
in>UNDEF apple

in>LS // apple does not exist

In the next example, assume thatfibe.abssample is loaded. At the
beginning, no user symbol is defined.

in>UNDEF *

in>LS

User Symbols: // there is no user symbol
Application Symbols: // symbols of the loaded
application

fiboCount 0x800 (2048)

counter 0x802 (2050)

_startupData 0x84D (2125)

Fibonacci 0x867 (2151)

main 0x896 (2198)

Init 0x810 (2064)

_Startup 0x83D (2109)

in>DEFINE counter =1

in>LS

User Symbols: // there is one user symbol: counter
counter 0x1 (1)

Application Symbols: // symbols of the loaded
application

fiboCount 0x800 (2048)

counter 0x802 (2050)

_startupData 0x84D (2125)

Fibonacci 0x867 (2151)

main 0x896 (2198)

Init 0x810 (2064)

_Startup 0x83D (2109)

in>undef counter

in>LS

User Symbols: // there is no user symbol
Application Symbols: // symbols of the loaded
application

fiboCount 0x800 (2048)

counter 0x802 (2050)

_startupData 0x84D (2125)

Fibonacci 0x867 (2151)

main 0x896 (2198)

Init 0x810 (2064)

_Startup 0x83D (2109)

User’'s Manual

MOTOROLA

Command Reference 115

Command Reference

When the firsLS command is issuedpunter has the value 0x802.
After execution of the commarldEFINE counter =1 ,counter takes
the value 1.

After execution of the commandNDEF counter , counter has the
value 0x802 again, the value it held before@ig=INE command was
issued.

UNTIL
Short description:
Specifies the condition of REPEATIoop in a command file
Syntax:
UNTIL <condition>
Argument:
condition User-defined expression
Description:
TheUNTIL keyword is associated with tiREPEATcommand.
Refer to th(REPEAT command.
User's Manual MCUez HC12 Debugger

116 Command Reference MOTOROLA

Command Reference
Kernel Commands

WAIT
Short description:

Insert a pause in a command file execution

Syntax:
WAIT [time] [;s]

Arguments:
time Delay time in tenths of a second
'S Pauses execution of command file until target is halted

Description:

The WAIT command pauses command file execution for a spe¢ifred
in tenths of a second or until the target is halted wheis specified.

When no parameter is specified, the command file pauses for five seconds.
If time is specified, the command file pauses for the specified time interval.

If ;s is specified, the command file is paused until the target is halted (on a
breakpoint, exception, etc.). If the target is already halted, the command file
continues execution immediately.

If time and;s are both specifiedjme is used as a timer. The command
file pauses until the target is halted. If the target is not halted within the
specified time interval, execution continues as soon as the specified time
elapses. If the target is already halted, the command file continues
immediately.

Example:

WAIT 100
T

Pauses for 10 seconds before executing the {facastruction.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 117

Command Reference

WHILE
Short description:

WHILE loop instruction

Syntax:
WHILE condition

Argument:

condition User-defined expression

Description:

TheWHILE command executes a sequence of commands as long as
condition s true.

WHILEDblocks can be nested.

This command can be stopped by pressing the Esc key.

Example:
DEFINE jump =0

WHILE jump < 100
DEFINE jump = jump + 1

ENDWHILE

T

While jump < 100 , the jump variable is incremented by the expression:
DEFINE jump =jump + 1
When the loop is exited, the trad® (nstruction is executed.

5.8 Target Commands

Target commands monitor target execution. Target input/output files, target
execution control, direct memory editing, and CPU register setup are handled
by these commands.

User's Manual MCUez HC12 Debugger

118 Command Reference MOTOROLA

Command Reference
Target Commands

BC

NOTE:

MCUez HC12 Debugger

Short description:
Deletes a breakpoint. BC stands for breakpoint clear.

Syntax:
BC <address|*>

Arguments:
address Address of breakpoint to be deleted
* Deletes all breakpoints

Description:

BCdeletes a breakpoint at the specified address. This address must be in
ANSI or MCUez assembler format. The address can be replaced by an
expression as shown in the example.

When* is specifiedBCdeletes all breakpoints.

Example:
BC 0x8000

This command deletes the breakpoint set at the adak8860 . The
breakpoint symbol is removed from tB®urceandAssemblywindows and
from the breakpoint list.

Correct module names (for exampiiko.dbg) are displayed in the module
component window.

BC &FIBO.DBG:Fibonacci

In this example, an expression replaces the addiessibg is the

module name anBibonacci is the function where the breakpoint is
cleared. This example deletes the breakpoint set at the start address of the
symbolFibonacci , defined in the modulgbo.dbg

Equivalent operation:

Point to the breakpoint in thessemblyor Sourcecomponent window, click
right mouse button, and chod3elete Breakpointin the pop-up menu.

User’'s Manual

MOTOROLA

Command Reference 119

Command Reference

BD
Short description:
Displays a list of all breakpoints currently defined. BD stands for breakpoint
display.
Syntax:
BD
Description:
In the command line component, BB command displays a list of all
breakpoints with addresses and types (temporary, permanent).
For each breakpoint, the following information is displayed:
<SymbolName> <address> <type>
SymbolName is the name of the symbol (or function) where the breakpoint
is defined.
address is the address where the breakpoint is set.
type isthe type of breakpoint. stands for temporary breakpoints &tbr
permanent breakpoints.
Example:
in>BD
Fibonacci 0x805c T
Fibonacci 0x8072 P
Fibonacci 0x8074 T
main 0x8099 T
Currently, one permanent and two temporary breakpoints are set in the
functionFibonacci , and one temporary breakpoint is set inrttan
function.
NOTE: This list will not display whether a breakpoint is disabled or active.
User's Manual MCUez HC12 Debugger

120 Command Reference MOTOROLA

Command Reference
Target Commands

BS
Short description:
Sets a breakpoint. BS stands for breakpoint set.
Syntax:
BS address [P|T]
Arguments:
address A ddress in which to set a breakpoint
P Specifies a permanent breakpoint
T Specifies a temporary breakpoint
Description:
BSsets atemporaryl{) or permanentf) breakpoint at the specified address.
If no P orT is specified, the default is a permanddtifreakpoint. The
address can be specified in ANSI C or MCUez assembler format. The
address can also be replaced by an expression as shown in the example.
Example:
BS 0x8000 T
This command sets a temporary breakpoint at the adaik8660 .
BS $8000 P
This command sets a permanent breakpoint at the adik@380 .
BS &FIBO.DBG:Fibonacci
In this example, an expression replaces the addfégssdbg is the
module name anBibonacci is the function where the breakpoint is set.
NOTE: Correct module names (for exampfio.dbg) are displayed in the module
component window.
The example above set8®& on the symboFibonacci defined in
fibo.dbg
Equivalent operation:
Point to a statement directly in the assembly or source component window,
right click, and choos8et Breakpointin the pop-up menu.
MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 121

Command Reference

CD
Short description:

Changes the current working directory

Syntax:
CD [path]

Argument:

path Path to a new working directory

Description:

TheCDcommand changes the current working directory to the directory
specified inpath . When the command is entered with no parameter, the
current directory is displayed.

The directory specified in theDcommand must be a valid directory. It
should exist and be accessible from B@ When specifying a relative path
in theCDcommand, make sure the path is relative to the current project
directory.

NOTE: When no path is specified, the default directory is the project directory.

Example:

in>cd
C:\mcuez\demo
in>cd ..\prog
C:\mcuez\prog

The new project directory i8:\mcuez\prog

User's Manual MCUez HC12 Debugger

122 Command Reference MOTOROLA

Command Reference
Target Commands

CF
Short description:

Executes another command file

Syntax:
CF [filename] [;C] [;NL]

Arguments:
filename Name of command file to be called to execute its commands

:C Terminates command file after called command file
has executed its commands

'NL Commands in the called file are not logged in@@mmand
Line window

Descriptions:

The CFcommand enables commands in the specified command file to be
executed. The command file contains ASCII text commands.

Command files can be nesteck-(or CALL) can be used in a command file
to start another command file. By default, once execution of the called
command file is complete, the remaining commands in the calling file are
executed. If the optiorC is specified, the calling file terminates as soon as
the called command file finishes execution. Commands following kel

or CFcommand in the calling file are not executed.

When the option is omitted, remaining commands in the calling file are
executed after commands in the called file have been executed.

Any error halts execution &@F file commands.

If the command is entered with no parameterQpen File dialog is
displayed. Use this dialog to select the command file to execute.

Example:

in > CF commands.txt

Thecommands.t¥ile is executed from the working directory. The
command file must contain MCUez debugger commands.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 123

Command Reference

without ;C option:
If acommandl.txtile contains:
bckcolor green

cf command?2.txt

bckcolor white
If a command?2.txtile contains:
bckcolor red

Enter command:
in> cf command1.txt
Il executingcommand1l.txt
Ibckcolor green
Icf command2.txt
Il executingcommand?2.txt
1'bckcolor red
donecommand2.txt
I/l resume executingpmmandl.txt
Ibckcolor white
donecommandl.txt

with ;C option:

If commandl.txtile contains:

bckcolor green

cf command2.txt :C

bckcolor white
If command2.txtile contains:
bckcolor red

Enter command:
in> cf command1.txt
Il executingcommandl.txt
Ibckcolor green
Icf command2.txiC
Il executingcommand2.txt
1'bckcolor red
1!
1!
donecommand?2.txt

donecommandl.txt

User's Manual MCUez HC12 Debugger

124 Command Reference MOTOROLA

Command Reference
Target Commands

CR
Short description:
Opens a record file
Syntax:
CR [filename][;A]
Arguments:

filename Name of record file. If file is not specified, a standard
Open Filedialog is displayed.

A Opens file in append mode. Commands are recorded and
appended to the end of an existing record file. Iffe
option is omitted anéllename is an existing file, the file
is cleared before records are written to it.

Description:

TheCRcommand archives executed commands. Commands are listed in the

specified or selected file. Commands are recorded until a close record file

(NOCRcommand is executed.

Example:
in>cr /mcuez/demo/myrecord.txt ;A

Themyrecord.txfile is opened in append mode.

If no path is specified, the path is assumed to be the current working

directory.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 125

Command Reference

DASM
Short description:
Disassembles source code
Syntax:
DASM [<address>|<range>][;0BJ]
Arguments:
address Constant expression representing the address where
disassembly begins
range Address range constant that specifies the addresses to be
disassembled. When range is omitted, a maximum of 16
instructions are disassembled.
;OBJ Displays assembler code in hexadecimal
Description:
TheDASMcommand displays the disassembled code of an application,
starting at the address given as a parameter. \eltldress andrange are
both omitted, disassembly begins at the address of the instruction that
follows the last instruction disassembled by the previdbASMcommand. If
this is the firsDASMcommand of a session, disassembly occurs at the
current address in the program counter.
Press the Esc key to stop this command.
Command line example:
in>DASM 0x8000
LDX 0x8045
LDY 0x8043
BEQ *+18 ;abs = 8018
PSHY
LDY 2, X+
LDD 2, X+
CLR 1Y+
SUBD #1
BNE *-5 ;abs = 800D
PULY
The disassembled instructions are displayed ifCttamand Line
component window.
Equivalent operation:
Right click in theAssemblycomponent window, seleétddress...and enter
the address to start disassembly inShew PCdialog.
User's Manual MCUez HC12 Debugger

126 Command Reference MOTOROLA

Command Reference
Target Commands

DB
Short description:
Displays memory bytes
Syntax:
DB [<address>|<range>]
Arguments:
address Constant expression representing the address to be
displayed
range Memory address range to display
Description:
TheDBcommand displays hexadecimal and ASCII byte values for a
specified range of memory. The command displays one or more lines,
depending on the address or range specified. Each line shows the address of
the first byte displayed in the line, followed by the number of specified
hexadecimal byte values. The hexadecimal byte values are followed by the
corresponding ASCII characters, separated by spaces. Between the eighth
and ninth values, a hyphen (-) replaces the space character as the separator.
Each non-displayable character is represented by a period (.).
Whenaddress andrange are both omitted, the first byte displayed is
taken from the address following the last memory position displayed by the
most recenDB, DWor DL command or from addre€x0000 (for the first
DB DWDL command entered).
This command can be halted by typing the Esc key.
Example:
in>DB 0x8000..0x800F
8000: FE 80 45 FD 80 43 27 10-35 ED 31 EC 31 69 70 83
in>DB 0x8000,8
8000: FE 80 45 FD 80 43 27 10
Memory bytes are displayed with matching ASCII characters.
The following example displays the byte at the address of the TCR 1/O
register. 1/0 registers are defined imauioxxx.redile.
Example:
in>DB &TCR
0012:5A Z
MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 127

Command Reference

DL
Short description:

Displays memory bytes as longword

Syntax:
DL [<address>|<range>]

Arguments:

address Constant expression representing the address to be
displayed
range Memory address range to display

Description:

The DL command displays the hexadecimal values of the longwords in a
specified range of memory. The command displays one or more lines,
depending on the address or range specified. Each line shows the address of
the first longword displayed in the line, followed by the number of specified
hexadecimal longword values.

When a size is specified in the range, this size represents the number of
longwords to be displayed in the command line window.

Whenaddress andrange are both omitted, the first longword displayed
is taken from the address following the last memory position displayed by
the previou®B DWor DL command or from addre€x0000 (for the first

DB DWDL command entered).

This command can be halted by typing the Esc key.

Example:
in>DL 0x8000,2
8000: FE8045FD 80432710
The content of two longwords starting@@8000 is displayed as longword
(4-byte) values. Memory longwords are displayed in the command line
component.

User's Manual MCUez HC12 Debugger

128 Command Reference MOTOROLA

Command Reference
Target Commands

DW

MCUez HC12 Debugger

Short description:

Displays a word

Syntax:
DW [<address> | <range>]

Arguments:
address Constant expression representing the address of the first
word to be displayed
range Memory address range to display
Description:

The DWcommand displays the hexadecimal values of the words in a
specified range of memory. The command displays one or more lines,
depending on the address or range specified. Each line shows the address of
the first word displayed in the line, followed by the number of specified
hexadecimal word values.

When a size is specified in the range, this size represents the number of
words that should be displayed in the command line window.

Whenaddress andrange are both omitted, the first word displayed is
taken from the address following the last memory position displayed by the
previousDB DWor DL command or from addre€x0000 (for the firstDB,
DWDL command entered).

This command can be stopped by typing the Esc key.

Example:

in>dw 0x8000..0x8007

8000: FE80 45FD 8043 2710
The content of memory range startinddaB000 and ending adx8007 is
displayed as word (2-byte) values.

in>DW 0x8000,4

8000: FE80 45FD 8043 2710
The content of four words starting @8000 is displayed as word (2-byte)
values. Memory words are displayed in @@mmand Line component
window.

User’'s Manual

MOTOROLA

Command Reference 129

Command Reference

Short description:
Evaluates a given expression

Syntax:
E <expression>[;O|D|X|C|B]

Arguments:
expression User-defined expression
;O Octal — base 8

Decimal — base 10

D

Hexadecimal — base 16
B Binary — base 2
C

Displays the value of expression as an ASCII character.
That is, the remainder resulting from dividing the number
by 256 is displayed.

All values are displayed in the current font. Control characters (<32) are
displayed as decimal.

Description:

The E command evaluates an expression and displays the result in the
Command Line component window. When the expression is the only
parameter entered (no option specified), the value of the expression is
displayed in the default number base. The result is displayed as a signed
number in decimal format and as an unsigned number in all other formats.

Example:

in> define a=0x12

in> define b=0x10

in>e ath =234
The addition operation of the two previously defined variadlasdb is
evaluated and the result is displayed inG@oenmand Line window. The
output can be redirected to a file by using tHecommand (refer tb.F and
LOGcommand descriptions).

User's Manual MCUez HC12 Debugger

130 Command Reference MOTOROLA

Command Reference
Target Commands

Short description:

Begins execution of the currently loaded application
Syntax:

G [address]

Argument:

address Address constant expression. This value is loaded into the
program counter before execution starts. When no
address is entered, the address in the program counter is
not altered and execution begins at the address in the
program counter.

Description:

TheGcommand starts code execution in the emulated system at the current
address in the program counter or at the specified address. The user can
specify the program entry point, skipping execution of the previous code.

Example:
G 0x8000

Program execution is started at the addfe&000 . RUNNINGIs displayed
in the status bar. The application runs until a breakpoint is reached or
manually stopped.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 131

Command Reference

LF
Short description:

Opens a log file

Syntax:
LF [filename][;A]

Arguments:

filename DOS filename that identifies the file or device to which the
log is written. The command interpreter does not assume a
filename extension.

A Opens the specified file in append mode. Logged lines are
appended to the end of an existing log file.

If the ;A option is omitted anfllename is an existing file, the file is
cleared before logging begins.

Description:

TheLF command logs commands and responses to an external file or device.
While logging remains in effect, any line that is appended to the command
line component window is also written to the log file. Logging continues
until a close log file NOLH command is executed. When thE command

is entered with no filename, ti@pen File dialog box is displayed.

Use the logging option commanddQ to specify the information to be
logged.

Example:
LF LOGFILE.TXT ;A

The filelogfile.txtis opened as a log file in append mode. This example
assumes the log file is in the working directory.

User's Manual MCUez HC12 Debugger

132 Command Reference MOTOROLA

Command Reference
Target Commands

LOG
Short description:

Enables or disables logging of specific information

Syntax:

LOG <type> [=] <state> {[,] <type> [=] <state>}

Arguments:

type is one of the following types:

CMDLINE
CMDFILE
RESPONSES

ERRORS

NOTICES

State

Description:

Commands entered on the command line
Commands read from a command file

Command responses are written in the log file.
Responses are results of commands. For example, for
theDBcommand, the displayed memory dump is the
response of the command. Protocol messages are not
responses, but are controlled by RESPONSES
parameter.

Error messages. Errors are displayed in red in the
command line component. Protocol messages are not
errors.

Asynchronous event notices, such as breakpoints.
Notices are displayed in green in the command line
component. They denote status information returned
asynchronously by the target interface.

Value ison oroff .

TheLOGcommand enables or disables logging of user-specified information
in the command line component (and to the log file, when opened witlran

command).

By default, when the OGcommand is not specified, all types are on. All
information types are logged in the command line componenbagride.

Example:

LOG ERRORS = OFF, CMDLINE = on

MCUez HC12 Debugger

User’'s Manual

MOTOROLA Command Reference 133

Command Reference

Error messages are not recorded in the log file. Commands entered in the
command line component are recorded.

LogginglF , FOR WHILE, andREPEAT

When command logging is enabled from a command file (command file
executed with th€F or CALL command without thBIL option), all

commands executed in #~ block are logged. Allcommands in a block that

are not executed because the corresponding condition is not verified are also
logged but preceded with-a(hyphen).

Example:

When executing this command file:
define truth =1
IF truth
bckcolor blue
at 2000 bckcolor white
else
bckcolor yellow
at 1000 bckcolor white
ENDIF

This log file is generated:

Idefine truth = 1

IIF truth

I bckcolor blue

I at 2000 bckcolor white
lelse

I- bckcolor yellow

I- at 1000 bckcolor white
IENDIF

When command logging is enabled from a command file, all commands
executed in th&ORIloop are logged each time they are executed.

Example:

When executing this file:
definei=1
FORi=1..3

Is
ENDFOR

User's Manual MCUez HC12 Debugger

134 Command Reference MOTOROLA

Command Reference
Target Commands

This log file is generated:
Idefinei=1
IFORi=1..3
I s
i 0x1 (1)
IENDFOR
I s
i 0x2 (2)
IENDFOR
I s
i 0x3 (3)
IENDFOR

Also, all commands executed iVEHILEIloop are logged each time they are
executed.

Example:

When executing this file:
definei=1
WHILE i< 3
definei=i+1
Is
ENDWHILE

This log file is generated:
ldefinei=1
IWHILE i< 3
| definei=i+1
lls
i 0x2 (2)
IENDWHILE
! definei=i+1
lls
i 0x3 (3)
IENDWHILE

All commands executed inREPEATIoop are logged each time they are
executed.

Example:

When executing this file:
definei=1
REPEAT
definei=i+1
Is
UNTIL i ==

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 135

Command Reference

This log file is generated:

ldefinei=1
IREPEAT

| definei=i+1
I'ls

i 0x2 (2)
IUNTIL i ==

| definei=i+1
lls

i 0x3 (3)
IUNTILi==4

! definei=i+1
l'ls

i 0x4 (4)
IUNTIL i ==

LS
Short description:

Displays the list of symbols

Syntax:
LS [<symbol> | *][;(C |S)]

Arguments:

symbol Restricted regular expression that specifies the symbol
whose values are to be listed. This argument is
case sensitive.

* Lists all symbols

,C Lists symbols in accepted format, which consists of a
DEFINE command for each symbol

'S Lists symbol table statistics following the list of symbols

Description:

In the command line component, th® command lists the values of
symbols defined in the symbol table and defined by the user. There is no
limit to the number of symbols that can be listed. The memory size
determines the symbol table size. UseDiE#-INE command to define
symbols and theINDEFcommand to delete symbols.

User's Manual MCUez HC12 Debugger

136 Command Reference MOTOROLA

Command Reference
Target Commands
Symbols that are listed with th& command are split in two parts:
application symbols (symbols defined in the application currently loaded)
and user symbols (symbols defined on the command line usirgERENE
command). For application symbolsS displays the address of the symbol.
For user-defined symbolkS displays the value of the symbol.
Example:
in>ls
User Symbols:
j 0x2 (2)
Application Symbols:
counter 0x80 (128)
fiboCount 0x81 (129)
i 0x83 (131)
n 0x84 (132)
fibl 0x85 (133)
fib2 0x87 (135)
fibo 0x89 (137)
Fibonacci 0xF000 (61440)
Entry 0xF041 (61505)
WhenLS is performed on a single symbol (for exampiesls counter)
that is an application variable as well as a user symbol, the application
variable is displayed.
Example withj being an application symbol as well as a user symbol:
in>ls j
i 0x83 (131)
MEM
Short description:
Displays the memory map
Syntax:
MEM
Description:
TheMEMommand displays a representation of the current memory mapping
of the system and the lower and upper boundaries of the internal module that
contains the MCU registers.
MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 137

Command Reference

MS

Short description:
Sets memory bytes

Syntax:
MS <range> <list>

Arguments:
range Address range constant that defines the block of memory

to be set to the values of the bytes in the list

list List of byte values to be stored in the block of memory

Description:
TheMScommand initializes a specified block of memory to a specified list
of byte values. When theange is wider than thdist of byte values, the
list of byte values is repeated as many times as necessary to fill the
memory block.
When therange is not an integer multiple of the length of tle¢ | the
last copy of thdist is truncated appropriately. This command is identical
to the write bytesWB command.

Example:

MS 0x1000..0x100F OxFF
The memory range between addre€»e€000 and 0x100F is filled with
the OXFF value.
NB

User’'s Manual

Short description:
Sets the base of arithmetic operations

Syntax:
NB <base>

Argument:
base New number base: 2, 8, 10, or 16

MCUez HC12 Debugger

138

Command Reference MOTOROLA

Command Reference
Target Commands

Description:

TheNBcommand changes or displays the default nurbase for the
constant values in expressions. The initial default number base is 10
(decimal) and can be changed to 16 (hexadecimal), 8 (octal), 2 (binary) or
reset to 10 with this commaniolase is always specified as decimal
constant.

If base is omitted, the current default number base is displayed in the
command line window.

Independent of the default base number, the ANSI C standard notation for
constant is supported inside an expression. That means that independent of
the current number base, hexadecimal or octal constants can be specified
using standard ANSI C notation.

Notation Meaning

Ox---- Hexadecimal constant

0---- Octal constant
Example:

0x2F00, /* Hexadecimal Constant */
043, /* Octal Constant */
255 /[* Decimal Constant */

In the same way, assembler notation for constant is also supported. That
means that independent of the current number base, hexadecimal, octal, or
binary constants can be specified using the assembler prefixes.

Notation Meaning

$---- Hexadecimal constant

@ Octal constant

% Binary constant
Example:

$2F00, /* Hexadecimal Constant */
@43, /* Octal Constant */

255 [* Decimal Constant */
%210011 /* Binary Constant */

When the default number base is 16, constants starting with a letter A, B, C,
D, E, or F must be prefixed either by Ox or by $. Otherwise, the command
line interpreter cannot detect if an integer constant or a symbol is specified.

Example:
in>NB 16

The number base is hexadecimal.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 139

Command Reference

NOCR
Short description:

Closes the record file

Syntax:
NOCR

Description:

The NOCRommand closes the current record file. The record file is opened
with the CRcommand.

Example:
NOCR

The current record file is closed.

NOLF
Short description:

Closes the log file
Syntax:
NOLF

Description:
TheNOLFcommand closes the current log file. The log file is opened with
theLF command.
Example:
NOLF
The current log file is closed.

User's Manual MCUez HC12 Debugger

140 Command Reference MOTOROLA

Command Reference
Target Commands

P
Short description:
Steps into the program using assembly step over
Syntax:
P <address>
Argument:
address Address constant expression where execution begins
If address is omitted, execution begins with the instruction
pointed to by the current value of the program counter.
Description:
TheP command executes a CPU instruction either at a specified address or
at the current instruction (the one pointed to by the program counter). This
command traces through subroutine calls, software interrupts, and
operations involving the following instructions:
* Branch to SubRoutindBSR
* Long Branch to SubRoutinéBSR
e Jump to SubRoutinel ER)
e SoftWare InterruptgWiI)
* Repeat Multiply and AccumulatRMAQ
For example, if the current instruction i8&Rinstruction, the subroutine is
executed, and execution stops at the first instruction aft&@3Re
instruction. For instructions that are not in this list,BrendT commands
are equivalent.
When the instruction specified in tRecommand has been executed, the
software displays the content of the CPU registers, the instruction bytes at
the new value of the program counter, and a mnemonic disassembly of that
instruction.
Example:
in>P 0x2808
pA=$B5 B=$20 CCR=$48 D=$B520 IX=$6FF1 1Y=$0
SP=$BEF
PC=%$886 PPAGE=%$0 DPAGE=%$0 EPAGE=%0 |IP=$886
000886 EE8O LDX 0,SP
Register contents are displayed and the current instruction is disassembled.
MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 141

Command Reference

RD
Short description:

Displays register contents

Syntax:
RD [<list>] *]
Arguments:

list List of registers to be displayed. Registers to be displayed
are separated by a space. WREWCPU is specified, all
CPU registers are displayed. If no CPU is loaded, No CPU
loaded is displayed as an error message.

* Lists the content of the register file that is currently loaded.
The address and size of each register is displayed. If no
register file is loaded, an error message is displayed: No
register file loaded.

Description:

TheRDcommand displays the content of specified registers. The display of
a register includes both the mnemonic and the hexadecimal value of the
register. If the specified register is not a CPU register, it is considered to be
an 1/O register. The debugger looks for the specified register in the loaded
register file. This file is calleinCuioxXXX.reg@wherexxxis a number related

to the MCU).

If list is omitted, the list and any other parameters of the preiRBus
command are used.

For the firstRDcommand of a session, all CPU registers are displayed.

Example:
in>RD A X
A =0x1
X = 0xF

Contents of registers A and X are displayed.

Example:
in>RD CPU // will display all CPU registers.

User's Manual MCUez HC12 Debugger

142 Command Reference MOTOROLA

Command Reference
Target Commands

RS
Short description:

Sets a register

Syntax:

RS <register>[=]<value>{ [,]<register>[=]<value>}

Arguments:

register Specifies the name of a register to be changed. The register
string is any of the CPU register names or the name of a
register in the register file.

value Integer constant expression (in ANSI C or MCUez
assembler format)

Description:

TheRScommand places specified values into specified regifR&is
followed by register name and new value.

An equal sign (=) may be used to separate the register name from the value
to be assigned to the register; otherwise, they must be separated by a space.
The contents of any number of registers may be set using aRigle
command. If the specified register is not a CPU register, it is considered to
be an I/O register. The debugger looks for the specified register in the loaded
register file. This file is calledncuioxxx.regwherexxxis a number related

to the MCU).

Example:
in>rs A=$0 B=$5
The new content of register A) and B register i$5. The display in the
Registerwindow is updated with the new values.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 143

Command Reference

Short description:

Stops execution of the loaded application

Syntax:
S

Description:

TheS command stops execution of the application. Us€xbéG) command
to start or continue execution.

Example:
in>s
STOPPING
HALTED

The current application is halted.

User's Manual MCUez HC12 Debugger

144 Command Reference MOTOROLA

Command Reference
Target Commands

SAVE
Short description:

Saves a memory block in S-record format

Syntax:
SAVE <range> <filename> [offset][;A]

Arguments:

range Address range constant that defines the block of memory
to be saved in a Motorola S-record file

filename DOS filename that specifies the file to which the records
are written

offset Optional offset to add or subtract from addresses when
writing S-records. The default @x0000 .

A Appends the saved S-records to the end of an existing file. If
this option is omitted and the specified file exists, the file is
cleared before saving the S-records.

Description:

TheSAVEcommand saves a specified block of memory to a specified file in
Motorola S-record format. The memory block can be reloaded later using the
load S-record§REQ command.

Example:

SAVE 0x1000..0x2000 DUMP.SX ;A
The memory rang@x1000 to 0x2000 is appended to trdump.sXile.

NOTE: |If no path is specified, the path is assumed to be the current working directory.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 145

Command Reference

SET
Short description:

Sets a new target

Syntax:
SET <targetName>
Argument:

targetName Name of target (without extension) to be set

Description:
Sets a new target for the debugger and loads the target interface component.
The target file .tgt) must be available in tHeROGdirectory.

Example:
SET D-Bug12

The D-Bugl2 target is set in the debugger.

SREC
Short description:

Loads the S-record file in memory

Syntax:
SREC <filename> [offset]

Arguments:
filename S-record file
offset A signed value added to the addresses stored in the file when
loading the file contents
Description:
The SRECcommand loads Motorola S-records from a specified file.

Example:
SREC DUMP.SX

Thedump.sXile is loaded into memory.

NOTE: |If no path is specified, the path is assumed to be the current working directory.

User's Manual MCUez HC12 Debugger

146 Command Reference MOTOROLA

Command Reference
Target Commands

MCUez HC12 Debugger

Short description:

Traces program instructions. Program trace begins at a specified address.

Syntax:
T [<address>][,<count>]

Arguments:
address Address constant expression at which execution begins. If
address is omitted, the instruction pointed to by the
current value of the program counter is the first instruction
traced.
count Integer constant expression, in the decimal integer
interval [1, 65,535], that specifies the number of instructions
to be traced. IEount is omitted, one instruction is traced.
Description:

TheT command executes one or more instructions starting at a specified
address or at the currentinstruction (the address in the program counter). The
T command traces into subroutine calls and software interrupts. For
example, if the current instruction is a branch to subroutBteR), theBSR

is traced, and execution stops at the first instruction of the subroutine. After
executing the last (or only) instruction, theeommand displays the contents

of the CPU registers, the instruction bytes at the new address in the program
counter, and a mnemonic disassembly of the current instruction.

This command can be stopped by pressing the Esc key.

Example:
in>T OxFO30
TRACED
A=0x0 HX=0x7F02 SR=0x62 PC=0xF032 SP=0x44D
00F032 B787 STA 0x8 7

Contents of registers are displayed and the current instruction is
disassembled.

User’'s Manual

MOTOROLA

Command Reference 147

Command Reference

WB

User’'s Manual

Short description:

Sets a specified block of memory to a specified list of byte values

Syntax:
WB <range> <list>

Arguments:
range Address range constant that defines the block of memory
to be initialized to the values of the bytes in the list
list List of byte values to be stored in the block of memory
Description:

TheWBcommand initializes a specified block of memory with a specified
list of byte values. When the range is wider than the list of byte values, the
list of byte values is repeated as many times as necessary to fill the memory
block. When the range is not an integer multiple of the length of the list, the
last copy of the list is truncated accordingly. This command is identical to
the memory setM§ command.

Example:
WB 0x0401 0x0419 0x69

This command fills the memory ran@g0401..0x0419 with the byte
valueOx69 .

Example:
WB 0x0205..0x0220 OxFF OXEE O0xDD 0xCC 0xBB 0xAA

This command fills the memory ran@g0205..0x0220 with the byte
value of the list.

MCUez HC12 Debugger

148

Command Reference MOTOROLA

Command Reference
Target Commands

WL
Short description:

Sets a specified block of memory to a specified list of longword values

Syntax:
WL <range> <list>

Arguments:

range Address range constant that defines the block of memory
to be initialized to the longword values in the list

list List of longword values to be stored in the block of
memory

Description:

TheWLcommand initializes a specified block of memory with a specified

list of longword values. When the range is wider than the list of longword
values, the list of longword values is repeated as many times as necessary to
fillthe memory block. When the range is not an integer multiple of the length
of the list, the last copy of the list is truncated accordingly.

Example:
WL 0x2000 OxOFFFFFOF

This command fills the memory addrés<2000..0x2003 with the
longword valueDxOFFFFFOF .

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 149

Command Reference

WWwW

User’'s Manual

Short description:

Sets a specified block of memory to a specified list of word values

Syntax:
WW <range> <list>

Arguments:
range Address range constant that defines the block of memory
to be initialized to the word values in the list
list List of word values to be stored in the block of memory
Description:

TheWWcommand initializes a specified block of memory with a specified
list of word values. When the range is wider than the list of word values, the
list is repeated as many times as necessary to fill the memory block. When
the range is not an integer multiple of the length of the list, the last copy of
the list is truncated accordingly.

Example:
WW 0x2000..0x200F OxAFO00

This command fills the memory ran@g2000..0x200F with the word
valueOxAF00 .

MCUez HC12 Debugger

150

Command Reference MOTOROLA

Command Reference
Component Commands

5.9 Component Commands

The commands listed in this section monitor the MCUez debugger
environment, component operation, component window layouts, and loads
component windows.

ACTIVATE

MCUez HC12 Debugger

Short description:

Activates a component window

Syntax:
ACTIVATE <component>

Argument:

component Component window

Description:

ACTIVATE enables a component window. The window is displayed in the
foreground and its title bar is highlighted.

If the component was previously iconized, it is opened and displayed in the
foreground and its title bar is highlighted.

Example:
ACTIVATE Memory

This command will make the memory component the top most window and
activate it.

User’'s Manual

MOTOROLA

Command Reference 151

Command Reference

ATTRIBUTES
Short description:
Sets the display and formatting attributes for a component window. Usually,
this command is not specified interactively by the user. However this
command can be written in a session record file or in a configuration file to
save and reload component window layouts. An interactive equivalent
operation is possible by using MCUez menus and operations (drag and drop,
etc.), as described in the following equivalent operations sections.
In the Assembly Component
Syntax:
ATTRIBUTES <list>
Arguments:
list=command{,command}
command = ADR OMOFF | SMEMrange | SPC address
|CODE(ONOFH | ABSADR (ONOFR | TOPPCaddress
address Address to be located
range Memory range to be located
module Specified module
CODE on Switches on the machine code display
CODE off Switches off the display
ADR on Switches on display of addresses in front of
disassembly instruction
ADR off Switches off display of addresses in front of
disassembly instruction
ABSADR on Switches on display of absolute address for
destination of branch instructions
ABSADR off Switches off display of absolute address for
destination of branch instructions
SPC address PC address location
TOPPC address Address location of the first line of the PC
User's Manual MCUez HC12 Debugger

152 Command Reference MOTOROLA

Command Reference
Component Commands

Description:
The ATTRIBUTEScommand sets the display and state options for the
Assemblycomponent window.
The ADRcommand displays or hides the address of a disassembled
instruction.

SMEMshow memory range) ar8PC(show PC address) scroll the assembly
component to the corresponding address or range code location and
select/highlight the corresponding assembler instructions or set of
instructions.

TheCODEommand displays or hides the machine code of the disassembled
instruction.

TheABSADRommand shows or hides the destination absolute address in a
disassembled instruction, such as branch to.

The TOPPCcommand specifies the PC of the first visible line.

Example:

Assembly < ATTRIBUTES ADR ON,CODE ON, SMEM
0x800,16

Addresses and hexadecimal codes are displayed Asttemblycomponent
window, and assembly instructions at addresses 0x800,16 are highlighted

Equivalent operations:
ATTRIBUTES ADR Select menu entrnAssembly| Display Adr.

ATTRIBUTES SMEM Select a range in memory component window
and drag it to thé&ssemblycomponent
window.

ATTRIBUTES SPC Drag a register to thessemblycomponent
window.

ATTRIBUTES CODE Select menu entr)Assembly| Display Code

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 153

Command Reference

User’'s Manual

In the Register Component

Syntax:

ATTRIBUTES <list>

Arguments:

list =command{,command}
command=ORMAT (heXbin) |VSCROLLPOSposition |
HSCROLLPOS&position
vposition= expression
hposition= expression
VSCROLLPOSposition =1
The second line of registers is on top of the register component.

VSCROLLPOSposition =0
Returns to the default display. The first line of registers is on top of the
register component.

HSCROLLPOS8position = 1
The second column of registers is on the left hand side of the register
component.

HSCROLLPOS8position =0
Returns to the default display. The first column of registers is on the left
hand side of the register component. HEBCROLLPOSommand sets
the position of the horizontal scroll box (in column: a column is about a
tenth of the greatest register or bitfield width).

hex — Sets format representation to hexadecimal
bin — Sets format representation to binary

Description:

The ATTRIBUTEScommand sets the display and state options of the
Registercomponent window. ThHEORMATommand sets the display
format of register values. TReSCROLLPOSommand sets the position of
the vertical scroll box.

The attribute/SCROLLPOS®nables vertical scrolling in the register
component. The expression specified is an absolute and positive value for
scrolling. This command is used when a vertical scroll bar is present at the
right of the register component.

MCUez HC12 Debugger

154

Command Reference MOTOROLA

Command Reference
Component Commands

The attributeHSCROLLPOS®nables horizontal scrolling in the register
component. The expression specified is an absolute and positive value for
scrolling. This command is used when a horizontal scroll bar is present at the
bottom of the register component.

Example:
Register < ATTRIBUTES FORMAT BIN

Contents of registers are displayed in binary format irRingister
component window.
Register < ATTRIBUTES VSCROLLPOS 3

Scrolls three positions down. The fourth line of registers is displayed at the
top of the register component.
Register < ATTRIBUTES VSCROLLPOS 0

Returns to the default display. The first line of registers is displayed at the
top of the register component.
Register < ATTRIBUTES HSCROLLPOS 5

Scrolls five positions right. The sixth column of registers is displayed at the
left of the register component.
Register < ATTRIBUTES HSCROLLPOS 0

Returns to the default display. The first column of registers is displayed to
the left of the register component.

Equivalent operations:
ATTRIBUTES FORMAT Select menu entryrRegister | Options

ATTRIBUTES VSCROLLPOS Scroll vertically in theRegister
component window.

ATTRIBUTES HSCROLLPOS Scroll horizontally in thdregister
component window.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 155

Command Reference

In the Source Component

Syntax:
ATTRIBUTES <list>

Arguments:
list=command{,command}

commandSPC address | SMEMange [SMODnodule|
SPROGwmberAssociatedToProcedufeMARKS (ONOFR

address Address to be located
range Memory range to be located
module Specified module

MARKS ON Displays breakpoint marks
MARKS OFF Hides breakpoint marks

Description:

The ATTRIBUTEScommand sets the display and state options of the
Sourcecomponent window.

The SMEMshow memory range) command &C(show PC address)
command displays the corresponding module’s source text, scrolls to the
corresponding text range location or text address location, and highlights the
corresponding statements.

The SMODOQshow module) command displays the corresponding module’s
source text. If the module is not found, a message is displayed in the
Command Line component window. ThEPROJshow procedure)

command loads the corresponding module’s source text, scrolls to the
corresponding procedure, and selects the statement that is in the procedure
chain of this procedure.

TheSPRO@ommand is applicable only for C source-level debugging. The
numberAssociatedToProcedure is the level of the procedure in the
procedure chain.

The MARKSommandONor OFFdisplays or hides the breakpoint marks.
Marks are visible in th&ourcecomponent window.

Example:
Source < ATTRIBUTES MARKS ON

User's Manual MCUez HC12 Debugger

156 Command Reference MOTOROLA

MCUez HC12 Debugger

ATTRIBUTES SMEM

ATTRIBUTES SMOD

Command Reference
Component Commands

Equivalent operations:
ATTRIBUTES SPC

Dag and drop from register component to
source component.

Drag and drop from memory component to
source component.

Drag and drop from module component to
source component.

ATTRIBUTES SPROC Drag and drop from procedure component to

source component.

ATTRIBUTES MARKS Select menu entrource | Marks

Syntax:

In the Data Component

ATTRIBUTES <list>

Arguments:

list=command{,command}
command#ORMAT(bin |oct |hex |signed |unsigned |

symb)
frozen)

hex

oct

bin

symb
signed
unsigned
periodical
locked
frozen
automatic
module

rate

| MODE(automatic |periodical | locked |
| SMODmodule| UPDATERATEate

Sets format representation to hexadecimal

Sets format representation to octal

Sets format representation to binary

Sets format representation as a symbol
Displays value in signed decimal format
Displays value in unsigned decimal format

Sets data component to periodical update mode
Sets data component to locked update mode
Sets data component to frozen update mode
Sets data component to automatic update mode
Specified module

Update rate in tenth of a second. Valid value for the
rate is O .. 600.

User’'s Manual

MOTOROLA

Command Reference 157

Command Reference

Description:

The ATTRIBUTEScommand sets the display and state options oD
component window.

TheFORMATommand selects the representation used for the list of
variables. The representation is one of the following: binary, octal,
hexadecimal, signed decimal, unsigned decimal, or symbolic.

The MODEommand selects the display mode of variables.

In automatic mode (default), variables are updated when the target is
stopped. Variables from the currently executed module or procedure are
displayed in the data component.

In locked and frozen mode, variables from a specific module are displayed

in the data component. In that case, the same variables are always displayed
in the data component.

In locked mode, values from variables displayed in the data component are
updated when the target is stopped.

In frozen mode, values from variables displayed in the data component are
not updated when the target is stopped.

In periodical mode, variables are updated at regular time intervals when the
target is running. The default update rate is 1 second, but it can be modified
by steps of 100 ms using the associated dialog box @WREBATERATE
command.

The UPDATERATEcommand sets the update rate for the data component.
This command is only relevant when the update mode for the data
component is set to periodical (refeld@DATERATEommand).

The SMOLshow module) command displays global variables of the
corresponding module.

Equivalent operations:
ATTRIBUTES FORMAT Select menu entrpata | Format...
ATTRIBUTES MODE Select menu entrpata | Mode...
ATTRIBUTES SMOD Drag and drop from module component
to data component.
ATTRIBUTES UPDATERATE Select menu entry
Data | Mode | Periodical

Example:
Data < ATTRIBUTES MODE FROZEN

In the data component, the frozen mode is set for global variables. Variables
are not refreshed when the application is halted.

User's Manual MCUez HC12 Debugger

158 Command Reference MOTOROLA

Command Reference
Component Commands

In the Memory Component

Syntax:
ATTRIBUTES <list>

Arguments:

list=command{,command}

commandfORMAT (bin|oct |hex|signed |[unsigned) |
WORD number | ADR (ON |OFF) | ASC (ON |OFF) |
ADDRESS address | SPC address | SMEM range |
SMOD module | MODE (Automatic |
Periodical | Frozen) | UPDATRATE rate

hex Sets format representation to hexadecimal

oct Sets format representation to octal

bin Sets format representation to binary

signed Displays value in signed decimal format

unsigned Displays value in unsigned decimal format

number Requested word size. The word size can be 1, 2, or 4
bytes.

address Memory address to be located

range Memory range to be located

module Specified module

periodical Set component to periodical update mode

frozen Set component to frozen update mode

automatic Set component to automatic update mode

rate Update rate in tenth of a second. Valid value for the rate
is 0 .. 600.

Description:

The ATTRIBUTEScommand sets the display and state options of the
Memory component window.

TheFORMATommand selects the display format in emory window.
Format can be set to binary, octal, hexadecimal, signed decimal, unsigned
decimal, or symbolic.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 159

Command Reference

User’'s Manual

TheWORRommand selects the word size of the memory dump window.
The word size can be 1, 2, or 4 bytes.

The ADRcommandONor OFFdisplays or hides the address in front of the
memory dump lines.

The ASCcommandONor OFFdisplays or hides the ASCII dump at the end

of the memory dump lines.

The ADDRESSommand scrolls thelemory component window to the
specified address and displays the corresponding memory address (memory
WORIs not selected).

The SPC(Show PC) anéMEMShow Memory) commands scroll the

memory component window to the specified address or range of memory.

The SMOLShow Module) command scrolls the memory component
window to the address of the first global variable in the specified module.

TheMODEommand selects the display mode for the memory component.

In automatic mode (default mode), the memory component is updated when
the target is stopped.

In frozen mode, memory dump displayed in the memory component is not
updated when the target is stopped.

In periodical mode, the content of the memory component is updated at
regular time intervals when the target is running. The default update rate is 1
second, but it can be modified by steps of 100 ms using the associated dialog
box or thetUPDATERATEommand.

The UPDATERATEommand sets the update rate for the memory
component. This command is only relevant when the update mode is set to
periodical.

Equivalent operations:

ATTRIBUTES FORMAT Select menu entriylemory | Format.

ATTRIBUTES WORD Select menu entrylemory | Word Size
WORD 1 The content is displayed in byte format.
WORD 2 The content is displayed in word (2-byte) format.
WORD 4 The content is displayed in long (4-byte) format.
ATTRIBUTES ADR elect menu entrilemory | Display | Address

ATTRIBUTES ASC Select menu entrylemory | Display | ASCII

MCUez HC12 Debugger

160

Command Reference MOTOROLA

Command Reference
Component Commands

ATTRIBUTES ADDRESS Select menu entriylemory | Address...

ATTRIBUTES SMEM Drag and drop from data component (variable)
to memory component.

ATTRIBUTES SMOD Drag and drop from source component to
memory component.

Example:
Memory < ATTRIBUTES ASC OFF, ADR OFF
ASCII dump and addresses are removed fronMémory component
window.

AUTOSIZE
Short description:

Autosizes the component windows in the main window layout

Syntax:
AUTOSIZE <on>|<off>

Arguments:
on Enables autosizing of windows
off Disables autosizing

Description:
AUTOSIZE enables/disables windows autosizing.

When enabledaf) , the size of component windows is automatically
adapted to the MCUez main window when it is resized.

Example:

AUTOSIZE on

Windows autosizing is enabled.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 161

Command Reference

BCKCOLOR

User’'s Manual

Short description:

Sets the background color

Syntax:

BCKCOLOR <color>

Argument:

color Available colorsBLACK, GREY, LIGHTGREY, WHITE,
RED, YELLOW, BLUE, CYAN, GREEN, PURPLE, LIGHTRED,
LIGHTYELLOW, LIGHTBLUE, LIGHTCYAN, LIGHTGREEN,
LIGHTPURPLE

Description:

BCKCOLOREets the background color. Ensure that the text will always be
visible by using different colors for the font and the background. Do not use
colors that have a specific meaning in @@mmand Line window. These
colors are:

» Red — To display error messages

* Blue — To echo commands
» Green — To display asynchronous events

WhenWHITEIs specified as an argument, the default setting is set for the
background of all component windows; for instance, the register component
is LIGHTGREY

Example:

BCKCOLOR LIGHTCYAN

In this example, the background color for all currently opened windows is set
to LIGHTCYAN ExecuteBCKCOLOR WHITHEo return to the original
display.

MCUez HC12 Debugger

162

Command Reference MOTOROLA

Command Reference
Component Commands

CLOSE

MCUez HC12 Debugger

Short description:

Closes a component

Syntax:
CLOSE <component> | *

Arguments:

component Component window

* Closes all component windows
Description:

CLOSEcloses a component window or all windows.

Example:

CLOSE Memory

TheMemory component window will be closed.

User’'s Manual

MOTOROLA

Command Reference 163

Command Reference

FILL

User’'s Manual

Short description:

Fills a memory range with a value

Syntax:
FILL <range> <value>

Arguments:
range Address range
value S ingle byte value
Description:

In the memory component, thdLL command fills a corresponding range
with the defined value. Thealue must be a single byte pattern (higher
bytes ignored).

Equivalent operation:
TheFill Memory dialog is available from thielemory component pop-up
menu or from théemory | Fill... menu entry.

Example:
in>FILL 0x8000..0x8008 OxFF

The memory rang@x8000..0x8008 s filled with the valuéxFF.

MCUez HC12 Debugger

164

Command Reference MOTOROLA

Command Reference
Component Commands

FIND
Short description:

Finds and highlights a pattern

Syntax:
FIND “<string>" [;B] [;MC] [;WW]

Arguments:
string Pattern to match
B Search backward, default is forward
;MC Match case sensitive
WW Match whole word

Description:

In the source component, tRND command is used to search for a
specified pattern in the source file currently loaded. The search is forward
(default), backward;B), match caseNC) or match whole word (\VW.

The operation starts at the currently highlighted statement or beginning of
file (if nothing is highlighted). If the pattern is found, tis®urcewindow is
scrolled to the item and highlighted.

Equivalent operation:

SelectSource | Find...or open the&Sourcecomponent pop-up menu and
selectFind... to open thd-ind dialog.

Example:
in>FIND “thing” ;B ;WW
The string‘thing” is searched in thBourcecomponent window. The
search is performed backward and for a complete word, not part of a word.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 165

Command Reference

FONT
Short description:
Sets the text font

Syntax:
FONT ‘FontName’ [size][color]

Arguments:

FontName Name of a valid font installed on the system. If the
specified font is not found, the operating system will try to
find the available font that best fits the specification.

size Defines the font size to use. This parameter must be a
positive numerical constant representing a point size.
color Defines the color to use. This parameter can be one of the
following: BLACK, GREY, LIGHTGREY, WHITE,
RED, YELLOW, BLUE, CYAN, GREEN, PURPLE,
LIGHTRED, LIGHTYELLOW, LIGHTBLUE,
LIGHTCYAN, LIGHTGREEN, LIGHTPURPLE.
The color specified in thEONTcommand will be used to
display text in all component windows. Do not use the same
color for the font and background; otherwise, the content of
the component window will not be visible.

Description:
TheFONTcommand enables the font type, color, and size to be changed.

Font Color Exceptions— The only exceptions apply to the command line
component and source component. The color used in the command line
component is fixed and cannot be changed. The prompt and response are
always displayed in black, the commands in blue, and error messages in red.
The color used in the source component for chroma encoding is also fixed.
ANSI C keywords are displayed in blue, comments in green, and strings in
red. The rest of the code is displayed using the color specified HOINg
command.

Example:
in>FONT *Arial’ 8 BLUE Text is written in blue
using Arial, 8 point font.

Equivalent operation:
TheFont dialog is available by selecting ti®mponent | Fonts..menu
entry.

User's Manual MCUez HC12 Debugger

166 Command Reference MOTOROLA

Command Reference
Component Commands

HELP

MCUez HC12 Debugger

Short description:

Displays a list of primary commands

Syntax:
HELP

Description:

In the command line component, thiELPcommand displays all available
primary commands. Subcommands fromAFERIBUTEScommand are
not listed. Component specific commands for components that are not
opened will not be listed.

Example:

in>help

MCUez:
VER Shows the version of all loaded

commands

AUTOSIZE Selects window sizing mode
OPEN Opens a component window
SET Loads a target component

User’'s Manual

MOTOROLA

Command Reference 167

Command Reference

LOAD

User’'s Manual

Short description:
Loads an application

Syntax:
LOAD [applicationName]

Argument:
applicationName Name of an application. If thabsfile is not
located in the project directory, the complete path
must be specified in front of the filename.
Description:

LOADIoads an applicationgbsfile) for a debugging session. If no

parameter is specified, th®ad Executable Filedialog is opened. This

error is displayed when no target is installed: Error: No target is installed.
This error message is displayed when no target is connected: Error: No target
is connected.

Example:

in>LOAD FIBO.ABS
Loads the applicatiofibo.abs

MCUez HC12 Debugger

168

Command Reference MOTOROLA

Command Reference
Component Commands

OPEN

Short description:
Opens a component window

Syntax:
OPEN <componentName> [x y width height][;1]

Arguments:
componentName Name of component window to be opened
X X axis of the component window upper-left corner
y Y axis of the component window upper-left corner
width Component window width
height Component window length
I Reduces the component window to an icon
X, Y, width, andheight are specified in percentages of the main
window.

Description:
OPENopens a component.lifis set, the component window is iconized.

Example:

in>OPEN Terminal 0 78 60 22
The terminal component and corresponding window are opened at specified
positions and with specified width and height.
MCUez HC12 Debugger User’'s Manual

MOTOROLA Command Reference 169

Command Reference

SLAY
Short description:
Saves the general window layout
Syntax:
SLAY <filename>
Argument:
filename Name of file (with full path) where the layout is saved
Description:
TheSLAY command is used to save the format and layout of all component
windows in ahwl file.
Example:
in> slay /mcuez/demo/mylayout.hwl
The current debugger layout is saved in therfijdayout.hwi
Layout files usually have amwlextension. However, any file extension can
be specified. If no path is specified, the destination directory is the current
project directory.
User's Manual MCUez HC12 Debugger

170 Command Reference MOTOROLA

Command Reference
Component Commands

SMEM

MCUez HC12 Debugger

Short description:

Shows a memory range

Syntax:
SMEM <range>

Argument:

range Address range

Description:

This command applies to tlsource Assembly, andMemory component
windows.

In the source component, tBMEMommand displays the corresponding
module’s source text, scrolls to the corresponding text location (the code
address), and highlights the statements which correspond to this code
address range.

In the assembly component, tBMEMommand scrolls the assembly
component, shows the location (the assembler address), and select/highlights
the memory lines of the address range given as an argument.

In the memory component, tiiMMEMommand scrolls the memory dump
component, shows the locations (memory address) of the address range
given as the argument.

Example:
in>Source < SMEM 0x8000..0x8008

The Sourcecomponent window scrolls to the source code corresponding to
the instruction located at address 0x8000. The source code generating code
between addre€8000 and0x8008 is highlighted.

in>Memory < SMEM 0x8000,8

TheMemory component window scrolls to the address 0x8000 and the
memory rang®x8000..0x8007 is highlighted.

in>SMEM 0x8000..0x8008
Without redirection, this command applys to all source, assembly, and
memory components.

User’'s Manual

MOTOROLA

Command Reference 171

Command Reference

SMOD

User’'s Manual

Short description:

Shows a module

Syntax:

SMOD <module>

Argument:
module Name of a module bound to the application. The module
name should contain no path. The module extensitg (
for assembly sources arfor C sources) must be specified.
Description:

This command can be redirected to 8mirce Assembly, andMemory
component windows. Without redirection, this command applys to all three
component windows.

In the source component, tBOommand displays the corresponding
module’s source text. If the module is not found, a message is displayed in
theCommand Line window.

In the data component, tliEMOR@Rommand loads the corresponding module
global variables.

In the memory component, tBVOzommand scrolls the memory dump
component and highlights the first global variable of the module.

The module is searched for in the directories specified iGENPATH
environment variable. An error message is displayed:

» If the specified module is not bound to the application currently
loaded

* If no application is loaded

Example:

in>Data < SMOD fibo.dbg

Global variables defined in tH#do.dbgmodule are displayed in the data
component window.

Themodule argument must be a module filename given inMioelule
component window.

MCUez HC12 Debugger

172

Command Reference MOTOROLA

Command Reference
Component Commands

SPC

MCUez HC12 Debugger

Short description:

Shows the specified address in a component window

Syntax:

SPC <address>

Argument:

address User-specified address

Description:

This command can be redirected to 8mirce Assembly, andMemory
component windows. Without redirection, this command applys to all three
component windows.

In the source component, tB®Ccommand loads the corresponding
module’s source text, scrolls to the corresponding text location (the code
address), and highlights the statement that corresponds to this code address.

In the assembler component, ieCcommand scrolls the assembly
component, shows the location (assembler address), and selects/highlights
the assembler instruction of the address given as the parameter.

In the memory component, tiCcommand scrolls the memory dump
component and shows the location (memory address) of the address given as
the parameter.

Example:

in>Assembly < SPC 0x8000

The Assemblycomponent window scrolls to the address 0x8000 and the
instruction located there is highlighted.

User’'s Manual

MOTOROLA

Command Reference 173

Command Reference

SPROC

User’'s Manual

Short description:

Shows information associated with the specified procedure. This command
is available only when performing C source-level debugging using the
MCUez compiler. Refer tppendix B. C Source-Level Debuggindor
information on C source debugging.

Syntax:
SPROC <level>

Argument:
level Stack level

Description:

In the data component, ti?ROQommand shows local variables of the
corresponding procedure stack level.

In the source component, tB®ROGommand loads the corresponding
module’s source text, scrolls to the corresponding procedure and highlights
the statement of this procedure that is in the procedure chain.

Example:
in>Data < SPROC 0

MCUez HC12 Debugger

174

Command Reference MOTOROLA

Command Reference
Component Commands

UPDATERATE

MCUez HC12 Debugger

Short description:

Sets the data update mode

Syntax:
UPDATERATE <rate>

Argument:
rate Constant number representing time in tenths of a second
(1 — 600 = 0.1 to 60 seconds)
Description:

In the data and memory components, tHeDATERATEommand is used to
set the data refresh update rate. URDATERATEommand is in effect
only when the data or memory component is set to periodical mode.

Example:
in>Memory <updaterate 30

Sets memory to update every three seconds

User’'s Manual

MOTOROLA

Command Reference 175

Command Reference

VER
Short description:
Displays the version number
Syntax:
VER
Description:
TheVERcommand displays the MCUez version number and currently
loaded components in tl@mmand Line component window.
Example:
in>ver
MCUez 2.0.26
MCUez Engine 2.0.48
Source 2.0.19
Assembly 2.0.13
Register 2.0.13
Memory 2.0.18
Data 2.0.26
Command Line 2.0.15
Module 204
ElfLoader 2.0.16
User's Manual MCUez HC12 Debugger

176 Command Reference MOTOROLA

Command Reference
Component Commands

ZOOM

MCUez HC12 Debugger

Short description:

Zooms in/out on a variable

Syntax:

ZOOM (address in| [address] out)

Argument:
address The address of the structure or pointer variable that should be
zoomed-in or zoomed-out
Description:

In the data component, tdH®©OM in command is used to display the
member fields of structures. Member fields are not expanded in place. The
member fields display replaces the previous view. ZG8©M out

command is used to return to the nesting level indicated by the given
identifier. Addresses are not needed to zoom out. SimplyZ¢geM out.

Example:
in>ZOOM 0x1FEOQ in

The variable structure located at addi@sE-EO is zoomed in.

This command is relevant when C source debugging.
in>zoom & _StartupData

The previous example zooms in on th8tartupData structure and
displays member fields and values.

User’'s Manual

MOTOROLA

Command Reference 177

wr
PRt

Command Reference

5.10 Command Files

The command filestartup.cmdreset.cmgdpreload.cmdandpostload.cmdére
MCUez system command files. These command files do not exist
automatically. They could be installed when installing a new target. However,
the debugger is able to recognize these command files and execute them.

» startup.cmds executed when a target interface is loaded (the target
defined in theproject.inifile or whenComponent | Set Targein the
menu is selected).

* reset.cmds executed when thEarget Name | Resetnenu entry is
selectedrarget Nameis the name of the target, such as D-Bug12, SDI,
etc..

» preload.cmds executed before loading absapplication file (when
Target Name | Load...is selected.

» postload.cmds executed after loading aabsapplication file.

User's Manual MCUez HC12 Debugger

178 Command Reference MOTOROLA

User’'s Manual — MCUez HC12 Debugger

Section 6. D-Bug12 Monitor Target Component

6.1 Contents

MCUez HC12 Debugger

6.2 INtroduction. 180
6.3 General Descriptiono 180
6.4 Interfacing Host Computer and Evaluation Board 181
6.4.1 Evaluation Board Configuration 181
6.4.2 Hardware Connection 181
6.5 Loading the D-Bugl12 Target Component 181
6.6 Startup CommandFile 183
6.7 D-Bugl2z Menu ENtries. 183
6.8 Status Bar 186
6.9 D-Bugl2 Default Environment. 186
6.10 D-Bugl2 Target ComponentCommands..................... 186
6.10.1 PROTOCOL. . . . e 186
6.10.2 BAUDRATE 187
6.10.3 PT .. 187
6.10.4 VER 187
6.10.5 DEVICE. 188
6.11 Communication SCeNariouuineeennnnenn.s 188
6.11.1 Stop PrograminEVBMode, 188
6.11.2 User-Defined Vectors 188
6.12 M68EVB912B32 EvaluationBoard. 189
6.12.1 OperatingModes 189
6.12.2 Memory Map 190
6.13 M68HC12A4EVB EvaluationBoard 191

User’'s Manual

MOTOROLA

D-Bug12 Monitor Target Component 179

wr
PRt

D-Bugl2 Monitor Target Component

6.2 Introduction

This section describes the D-Bug12 monitor target component as it relates to the
MCUez debugger environment.

The D-Bug12 monitor target component is an interface used to communicate
with Motorola’s M6BEVB912B32 and M6BEVB812A4 evaluation boards.

6.3 General Description

User’'s Manual

The MCUez D-Bug12 monitor target component establishes the connection to
the D-Bug12 monitor. The D-Bugl12 monitor is the program code that resides
in the FLASH of the MCU chip on the evaluation board. The MCUez debugger
GUI (graphical user interfacer) functions abdmmand Line component

window provide the user interface necessary to submit commands to the
D-Bugl2 monitor.

Commands entered on the command line or selected from the D-Bugl2 menu
options are translated into D-Bugl12 monitor commands and sent to the
D-Bug12 monitor code on the evaluation board. The D-Bug12 monitor code
processes commands received from the MCUez debugger. Results are sent back
to the MCUez debugger and displayed in the appropriate component windows,
such as th&emory, Register, or Command Line component windows.

Figure 6-1shows a general setup between the MCUez debugger software
running on the host computer and the evaluation boards.

B Serial Link

= P el

frorr

Host Computer Evaluation Board

Figure 6-1. General Setup

MCUez HC12 Debugger

180

D-Bug12 Monitor Target Component MOTOROLA

NOTE:

D-Bug12 Monitor Target Component
Interfacing Host Computer and Evaluation Board

The MCUez debugger will control and monitor the MCU on the evaluation
board. The MCUez debugger can read and write in internal/external memory,
single-step/run/stop the CPU, and set breakpoints in the code.

Memory can be accessed while the CPU is running, by stopping the application,
accessing memory, and then resume execution.

MCUez for the D-Bug12 supports only EVB mode for all HC12 EVB boards.

6.4 Interfacing Host Computer and Evaluation Board

6.4.1 Evaluation Board Configuration

Evaluation boards must be properly configured to activate the D-Bug12
monitor. Refer to the appropriate manual, such aMgEVB912B32
Evaluation Board User’'s ManuaMotorola document order number
68EVB912B32UM/D, oM68HC12A4EVB Evaluation Board User’'s Marua
Motorola document order number HC12A4EVBUM/D, for proper
configuration.

6.4.2 Hardware Connection

The M68BEVB912B32 or M6BEVB812A4 evaluation board must be connected
to the host computer COM port with a standard serial communication cable. The
cable is connected to the P1 port on the M68EVB912B32 or J3 port on the
M68EVB812A4. Press the reset button on the evaluation board to prepare the
EVB board for a connection.

6.5 Loading the D-Bug12 Target Component

MCUez HC12 Debugger

If D-Bugl12 is not defined as the target component irptbgct.inifile, load

the D-Bug12 monitor target component by selectimgnponent | Set Target...
as shown irFigure 6-2from the list box to load the D-Bug12 target component.
The target is set in th@roject.inifile, for examplerarget=D-Bug12

User’'s Manual

MOTOROLA

D-Bug12 Monitor Target Component 181

User’'s Manual

File “iew Bun Target Eeyaa=gl findow Help

Dl ﬁ|E| c'i'El |32|| Open...

Set Target...

gl
1
L

Fonts. ..
Background Calor....

Figure 6-2. Loading D-Bug12

The D-Bug12 monitor target component automatically detects that the
evaluation board is connected to the host computer. If the board is not detected,
the Communication Devicedialog box Figure 6-3) pops up, indicating that

the board is not connected, is attached to a different port, or the jumpers on the
evaluation board are not set correctly.

Commumication Device Specification

— Communication Device

Baud Rats: | 9600 =l

¥ Show Protocal

Connect Cancel | Help

Figure 6-3. Communication Device Dialog Box

Enter an available communication device (port) in@mmmunication Device

edit box, select a baud rate and cliddnnect If a connection cannot be
established for the selected baud rate, the debugger automatically tries 57,600,
38,400, 28,800, 19,200, 9600, ... 1200. The specified communication device
(for example COM2) is saved in tipeoject.inifile. The default device is COM1

and the default speed is 9600 baud.

If Show Protocolis checked, all commands and responses sent and received are
displayed in th&€ ommand Line window. This feature is used by Motorola
personnel for diagnostic purposes.

MCUez HC12 Debugger

182

D-Bug12 Monitor Target Component MOTOROLA

D-Bug12 Monitor Target Component
Startup Command File

6.6 Startup Command File

The startup command filstartup.cmdlis executed by the MCUez debugger

after the D-Bug12 target component has been loaded. This file must be located
in the working directory. The user can put any MCUez debugger command in
this file to set up the evaluation board hardware before loading an application.

Example of astartup.cmdile:

wb 0x0035 0x00
wb 0x0012 0Ox11
baudrate 19200

protocol off

6.7 D-Bugl2 Menu Entries

After loading the D-Bug12 monitor target component, Taeget menu is
replaced by th®-Bugl12menu as shown iRigure 6-4.

ARl Component |
Load...
Hezet
Communication...
Set MCU Type...
Mermory Map...

Figure 6-4. D-Bug12 Menu

SelectD-Bugl2 | Load...to load the application to be debugged .@bsfile).
D-Bug12 | Resets not supported for EVB mode.

SelectD-Bug12 | Communication..to display theCommunication Device
dialog box. If the target is not connected, themmunication...menu entry is
replaced with th€onnectmenu entry. Sele€@onnectto display the
Communication Devicedialog box and re-establish the connection.

MCUez HC12 Debugger User’'s Manual

MOTOROLA D-Bug12 Monitor Target Component 183

D-Bugl2 Monitor Target Component

CAUTION:

User’'s Manual

SelectD-Bugl2 | Set MCU Type..to open the dialog box shown kfigure 6-5.

MCU Selection =]

[MCesHCa12B32 v| MCLMD: [fi¥iEny

| order b perform zome operationsg, the MCL bppe
connected ko the interface has to be zet comrecty.
Pleaze zelect the MCU which fits the connected
FCU. If pour MCL iz not listed in the box above, agk
for the updated configuration files.

)4 Cancel Help

Figure 6-5. MCU Selection Dialog Box
This dialog box allows the user to select the MCU. The currently selected MCU
and MCU Id are shown in the dialog box.

Information is taken from the filendsemcu.inilf a specific MCU is not found
in this file, the user is advised to update their installation.

The selection will be saved and used as the default for the next session.

Due to a design limitation on the EVB boards, if an incorrect MCU or MCU Id

is selected for the evaluation board, the connection will be established but the
memory map will be misrepresented and writing to the EEPROM may fail. The
user must verify that the MCU selected matches the MCU on the evaluation
board.

SelectD-Bug12 | Memory Map...to open the dialog box shown kigure 6-6.

MCUez HC12 Debugger

184

D-Bug12 Monitor Target Component MOTOROLA

D-Bug12 Monitor Target Component
D-Bug12 Menu Entries

Memory Configuration |

— Configuration ;

File : ' \HIWwAYESDEB U GYME MSO0ZCTW 0T ME R Load...

W isuta zelect according to MCU-dE 0301 Save...
— Memon

Type Start - End Comment

nooo - MEMORY TOF

HOME 0200 - 0FFF <MOME>

Riabd 0300 - OBFF MERMORY_RAb

MOME 0C00 - OCFF <MOME>

EEPROM 0DO0 - OFFF MEMORY_EEPROM

MOME 1000 - FFFF <MOME>

RAk 2000 - FFFF MERMORY_RAM

Start:ln End: |1FF Type: |||:| j

Camrment : |I'-.-1EI'-.-1EIHY_TEIF'

Add Update Delete] 4 Cancel | Help

Figure 6-6. Memory Configuration Dialog Box

TheMemory Configuration dialog displays the default memory layout for the
configured MCU. This is for memory map display only. Any changes will not
affect memory configuration.

Information about the memory layout is read from the MCU-specific
personality file. The personality filename is constructed like this:

00OnnnVvv.MEM

wherennnis the hexadecimal representation of the MCU Id (three digits) and
vvis the version number. This file is searched for iIlRROG\MEM
subdirectory.

MCUez HC12 Debugger User’'s Manual

MOTOROLA D-Bug12 Monitor Target Component 185

D-Bugl2 Monitor Target Component

6.8 Status Bar

Information about the D-Bug12 monitor target component is displayed in the
debugger status bar. The baud rate, current evaluation board mode, the MCU
and the current status are displayed from left to right in the status bar.

57E00 |EVE Mode |MCESHCI12B32 |D-Bugl2 ready .

6.9 D-Bugl2 Default Environment

The next example indicates the parameter indisiault.envfile that pertains to
the D-Bugl2 target.

Example:
MCUID=0x3C1

If this parameter is specified, the corresponding register file is loaded from the
current working directory.

6.10 D-Bugl2 Target Component Commands

6.10.1 PROTOCOL

User’'s Manual

The following commands can be entered in the command line component or
specified in any command script file (suchstetup.cmil

ThePROTOCOEtommand displays the communication protocol between the
MCUez debugger and D-Bug12 monitor in tBemmand Line window. This
feature is used by Motorola personnel for diagnostic purposes. The default is
OFF

Syntax:
PROTOCOL < ON | OFF >

Example:
PROTOCOL ON

MCUez HC12 Debugger

186

D-Bug12 Monitor Target Component MOTOROLA

D-Bug12 Monitor Target Component
D-Bug12 Target Component Commands

6.10.2 BAUDRATE

This command is used to change the baud rate fro@dhenand Line
window. Possible rates are 9600, 19,200, 28,800, 38,400, and 57,600.

Syntax:
BAUDRATE < RATE >

Example:
BAUDRATE 19200

6.10.3 PT

With thePT (pass through) command, it is possible to use D-Bug12 monitor
commands from th€Eommand Line component window. This command is
intended for use by Motorola personnel only.

6.10.4 VER

The VERcommand displays the version of the D-Bug12 monitor target
component, followed by output from the D-Bugl12 monidevice command.

Syntax:
VER

Example:

D-Bugl2 Target 5.3.2
Device: 912B32
EEPROM: $0DO00 - $0FFF
FLASH: $8000 - $FFFF
RAM: $0800 - $0BFF

I/0 Regs: $0000

MCUez HC12 Debugger User’'s Manual

MOTOROLA D-Bug12 Monitor Target Component 187

D-Bugl2 Monitor Target Component

6.10.5 DEVICE

If the user remaps the EEPROM to another location, this command must be
used to inform the MCUez debugger and D-Bug12 monitor where the
EEPROM now resides. Refer to tM68EVB912B32 Evaluation Board User’s
Manual Motorola document order number 68EVB912B32UM/D, for
parameters.

Syntax:
DEVICE <parameters>

Example:
DEVICE DG128 800 FFF 4000 FFFF 1000 1bFF O

6.11 Communication Scenario

The MCUez debugger communicates with the M6SBEVB912B32 evaluation
board. The debugger uses commands interpreted by the D-Bug12 monitor to
perform specific functions.

Table 6-1lists the MCUez debugger functions (left column) that correspond
with the D-Bug12 monitor commands (right column).

6.11.1 Stop Program in EVB Mode

The D-Bug12 monitor does not support stopping the program. To stop the
program, the SCl receiver interrupt is used. Before the application is started, the
receiver interrupt enable flag is set by the MCUez debugger. If a character is
sent to the target, an SCIO interrupt occurs and the message SCIO Exception is
sent to the MCUez debugger.

6.11.2 User-Defined Vectors

User-defined interrupts cannot be used because the interrupt jump table is
located in FLASH EEPROM (0xF7CO0..0xF7CF). Therefore, it is not possible
to initialize the vector table.

User's Manual MCUez HC12 Debugger

188 D-Bug12 Monitor Target Component MOTOROLA

D-Bug12 Monitor Target Component
M68EVB912B32 Evaluation Board

Table 6-1. MCUez Debugger Functions
and Related D-Bug12 Monitor Commands

Function D-Bug12 Command
read memory upload <startadr> <endadr>
write memory load <adr>
read register rd
write register <register> <value>
read PC rd
write PC pc <value>
set breakpoint br <adr> ...

delete breakpoint nobr <adr> ...

start program g
single step t
halt program EVB mode: see 6.11.1 Stop Program in EVB Mode

EVB mode: Not supported by software; can be manually

reset reset by S1 reset button on EVB

6.12 M6BEVB912B32 Evaluation Board

The D-Bug12 monitor supports several operating modes of the evaluation
board. However, MCUez for D-Bug12 only supports EVB mode for the
M68EVB912B32.

In EVB mode, the application loaded into RAM on the evaluation board is
executed and controlled through the MCUez debugger.

6.12.1 Operating Modes

The D-Bug12 monitor is an on-chip (HC912B32) FLASH EEPROM program
located in $8000-$F67F. It is started automatically when the board is
powered-up or reset in EVB mode.

MCUez HC12 Debugger User’'s Manual

MOTOROLA D-Bug12 Monitor Target Component 189

D-Bugl2 Monitor Target Component

If the D-Bug12 monitor is accidentally removed or overwritten, the MCUez
debugger will no longer monitor the board.

NOTE: From a dumb terminal, the user can reprogram the D-Bug12 monitor through
the bootload mode (refer to Appendix E in the M6BEVB912B32 Evaluation
Board User’'s Manual, Motorola document order number
68EVB912B32UM/D).

6.12.2 Memory Map

In EVB mode, the application must be loaded into the memory area
0x800..0x9FF. The memory area 0xA00..0xBFF is used by the D-Bugl12
monitor program and must not be used.

It is not possible to define user vectors because the interrupt vector jump table
is located in the FLASH EEPROM area.

Table 6-2. M6BEVB912B32 Memory Map

Address -
Range Usage Description

$0000-01FF | CPU registers On-chip registers
$0800-$09FF | User code/data 1-K on-chip RAM
$0A00-$0BFF | Reserved for D-Bug12
$0D00-$0FFF | user code/data 768 bytes on-chip EEPROM
$8000-$F67F | D-Bugl2 code 32-Kbytes on-chip FLASH
$F680-$F6BF | User-accessible functions EEPROM

$F6CO-$F6FF | D-Bugl2 customization data
$F700-$F77F | D-Bugl2 startup code
$F780-$F7FF | Interrupt vector jump table
$F800-$FBFF | Reserved for bootloader expansion
$FCO00-$FFBF | EEPROM bootloader
$FFCO-$FFFF | Reset and interrupt vectors

User's Manual MCUez HC12 Debugger

190 D-Bug12 Monitor Target Component MOTOROLA

D-Bug12 Monitor Target Component
M68HC12A4EVB Evaluation Board

6.13 M68BHC12A4EVB Evaluation Board

Table 6-3. M6BHC12A4EVB Memory Map

Asg;egses Description Location
$0000-$01FF | CPU registers On-chip (MCU)
$0800—$09FF | User code/data 1-K on-chip RAM (MCU)
$0A00-$0BFF | Reserved for D-Bugl12
$1000-$1FFF | User code/data 4-K on-chip EEPROM (MCU)
$4000-$7FFF | User code/data 16-K external RAM (U4, UBA)

Available for user programs* 32-K external EPROM (U7, U9A)
D-Bugl2 program
D-Bug12 startup code*
User-accessible functions
D-Bug12 customization data*
Available for user programs*
Reserved for interrupt

and reset vectors

$8000-$9FFF
$A000-$FD7F
$FDBO-$FDFF
$FE00-$FETF
$FES0-$FEFF
$FFO0-$FF7F
$FF80-$FFFF

* Code in these areas may be modified. Requires reprogramming of the EPROMs;
refer to Appendix E Customizing the EPROMs in the M6BHC12A4EVB Evaluation
Board User’s Manual.

Ensure that jumper settings are default settings (D-Bug12) and not SDI settings
(background debug mode).

For more information, refer to thd68HC12A4EVB Evaluation Board User’s
Manual Motorola document order number HC12A4EVBUM/D.

MCUez HC12 Debugger User’'s Manual

MOTOROLA D-Bug12 Monitor Target Component 191

D-Bugl2 Monitor Target Component

User's Manual MCUez HC12 Debugger

192 D-Bug12 Monitor Target Component MOTOROLA

User’'s Manual — MCUez HC12 Debugger

7.1 Contents

MCUez HC12 Debugger

7.2

7.3

7.3.1
7.3.2
7.3.3

7.4
7.4.1

7.5
7.5.1
7.5.2

7.6

7.6.1
7.6.2
7.6.3

7.7
7.7.1
7.7.2

Section 7. FLASH Programming

INtroduction. 194
NVMC Graphical User Interface 194
Handling FLASHModule 197
FLASH Programming Parameter File 198
Loading an Application in FLASH 199
NVMC Commands.o it e 200
FLASH . .. 201
Prepare and Program FLASHMemory 204
Non-Banked Memory Model. 204
Banked Memory Model 206
FLASH Memory Mapping oo v et 208
M68EVB912B32 Evaluation Board Characteristics 208
M68HC12A4 Evaluation Board Characteristics 208
HC12DG128/HC12DA128 Evaluation
Board Characteristics 209
FLASH Programming Examples 211
FromaCommandlLine 211
FromaCommandFile.......... 213

User’'s Manual

MOTOROLA

FLASH Programming 193

wr
PRt

FLASH Programming

7.2 Introduction

The non-volatile memory control (NVMC) component specified in this section
is an extension for the MCUez debugger and allows the user to control on-chip
FLASH devices.

The FLASH component is designed to be flexible and support a large number
of MCUs and FLASH modules. This is achieved by the MCUez debugger,
which loads an MCU parameter fildigp). The parameter file provides all MCU
details (structure, access algorithms, location).

Special algorithms are used to write into the MCU FLASH, EEPROM, or other
non-volatile memory modules. FLASH devices have to be erased before they
can be written and may need some initialization to be accessible.

The NVMC component lists all non-volatile memory modules and associated
details (structure, state, and location). The user can change the state
(enabled/disabled, blank, programmed, protected, unprotected, arm, or disarm)
and program data into these modules.

7.3 NVMC Graphical User Interface

User’'s Manual

The NVMC component is integrated with the MCUez debugger as an extension
of the SDI target component. If the NVMC component is available, the
FLASH... menu entry appears in ti8DI menu located on thBebuggermenu

bar.

Component Commé
Load...
Bezet

Communication. ..
Set MCU Type...
Set MCU Speed...
Memaon Map...
Flazh...

Figure 7-1. SDI Target Menu

MCUez HC12 Debugger

194

FLASH Programming MOTOROLA

FLASH Programming
NVMC Graphical User Interface

SelectFLASH... from the menu to display thieVMC dialog box. This dialog
consists of &onfiguration group and aModuleslistbox that lists all FLASH

or EEPROM blocks. If a module consists of several blocks, each block is listed.
Operations performed on a module will affect all blocks in the module.

Each block has a line containing this information:

1
2
3.
4

Name of block (according to CPU: B32, A4, etc.)
Start address of block
End address of block

State of the block (disabled, enabled, blank, programmed, protected, or
unprotected)

Mon Yolatile Memory Control Dialog |

— Configuration

File: CAMCUEZNPROGNFPPYmcul2C1 fpp
¥ Auto select according to MCU-d: 0x03C1 Browse...

[T Save and restore work, space content

J

—Modules
Mame Start End State
FLASH_B32 Q0002000 - OO00FFFF - Enabled/Programmed/Protected

Erakle
[izable

Eratect

[nprotest

Erase

Load...

[oo
=
[eprses
BE=N
[(et

k. Cancel Help |

MCUez HC12 Debugger

Figure 7-2. NVMC Dialog Box

User’'s Manual

MOTOROLA

FLASH Programming 195

FLASH Programming

Available state combinations are:

» Bad device (correct device not detected)
» Disabled

» Enabled/blank/protected

» Enabled/blank/unprotected

* Enabled/programmed/protected

* Enabled/programmed/unprotected

Enabled A block that is currently active on-chip. It can be read (as
ROM) and programmed. For CPUs that consist of blocks
that are always active, the state is not displayed irStiage
field of the dialog box.

Disabled The block is not active. It cannot be programmed and read-
ing it will return invalid values.

Blank A block is empty. All bytes are OxFF or 0x00, (depending
on hardware) and can be programmed on its full address
range.

Programmed A block is fully or partially programmed (not all bytes are
OxFF or 0x00) and cannot be programmed or can be pro-
grammed only in some areas. The user must know which
areas are available for programming.

Protected A block is partially or fully protected from erasing and pro-
gramming.

Unprotected Protection is off. This allows the block to be erased or pro-
grammed. For CPUs that consist of blocks that are always
unprotected, the state is not displayed inStege field of
the dialog box.

NOTE: A state is displayed if it is applicable. For exammabled is displayed only
if it is possible taDisablea block andUnprotectedis displayed if a block can
be Protected

User's Manual MCUez HC12 Debugger

196 FLASH Programming MOTOROLA

FLASH Programming
NVMC Graphical User Interface

In theConfiguration group, the name of the current FLASH parameter file
(.fpp) is shown. Checluto select according to MCU-Idto automatically load
the parameter file associated with the MCU.

CheckSave and restore workspace conterfequivalent to commands
SAVECONTEX@andLOADCONTEXTo save the current RAM data, since
FLASH programming applications are loaded into RAM and will overwrite the
data. Saving the data will slow down the NMVC.

Blocks can be selected with the mouse. Use the shift or Ctrl key with the left
mouse button to select multiple blocks. Use the Ctrl key and left mouse button
to unselect a block. Selections made inN\IC dialog box or in the
Command Line component window with thELASH select orunselect
commands are equivalent.

7.3.1 Handling FLASH Module

NOTE:

MCUez HC12 Debugger

FLASH operations can be executed also from the deb@mamand Line
window. Corresponding commands are described4drNVMC Commands

TheEnable, Disable Protect, Unprotect, andErase buttons in theNVMC

dialog box apply to each block. All buttons are dynamic, which means they are
active if the function is possible for at least one of the blocks selected.
Otherwise, buttons are disabled.

TheSelect All...button will select all blocks listed in the list box.

The Enable button enables all selected blocks that are currently disabled. The
Disable button disables all selected blocks currently enabled. It is not always
possible to enable or disable a FLASH block; this depends on the MCU features
and context.

TheProtect button will protect all selected blocks that are currently
unprotected. It is not always possible to protect or unprotect a FLASH block;
this depends on the MCU features and context. Protection is provided by a block
protection bit internal to the MCU. Thénprotect button will unprotect all
selected blocks currently protected.

For some MCUs, FLASH blocks are only partially protectable. The boot block
and boot routines are protected, not the whole module.

User’'s Manual

MOTOROLA

FLASH Programming 197

FLASH Programming

TheErasebutton is enabled if a selected block is not blank. When a block is
erased, the block state will be blank.

ThelLoad... button will arm all selected blocks, executt@ADcommand, and
disarm the blocks again. If no FLASH block is selected, clicktbad... button
to select all blocks to be loaded into FLASH.

7.3.2 FLASH Programming Parameter File

FLASH operations (enable, protect, etc.) are defined by code applets provided
in FLASH parameter files. Thdppfiles contain MCU- dependent parameters
and programs to handle internal FLASH modules.

When theNVMC dialog box is opened, thippfile is loaded as follows:

1. The check boxAuto select according to MCU Idis automatically
checked and the file associated with the MCU Id is loaded frorkRR@
subdirectory created during installation. If this file is not found, an error
message is displayed.

2. If the file is found but has the wrong format, an error message is
displayed.

3. Inall cases, the MCU Id will be displayed if it is available from the
target.

In theNVMC dialog box, checluto select according to MCU Id to
automatically load the corresponding parameter file.

After the parameter file is loaded, unchekitto select according to MCU Id:
then select th©K button. The parameter file will then be assigned to the
NV_PARAMETER_FILEariable in theproject.inifile. If the option is checked,
the parameter file will not be assigned in the project file.

Select thBrowse...button to manually find the desirefpp parameter file. If a
valid file is loaded, the check ba@wto select according to MCU Id is
automatically unchecked. If an error occurs, an error message is displayed.

User's Manual MCUez HC12 Debugger

198 FLASH Programming MOTOROLA

FLASH Programming
NVMC Graphical User Interface

7.3.3 Loading an Application in FLASH

ThelLoad... button allows selection of an application file to be loaded (program
into FLASH EEPROM). If no block is selected before clicking tlead button,
then all blocks will be selected. Otherwise, only selected blocks will be affected.

Load Executable File
Lokin: |3 hol2

fibo, abs
fiboorg. abs
rmacrodern. abs
raxi.abs
strcrnp. abs

File narne: || Open I
Filez af type: IE:-:eu:utaI:uIes [*.abz) j Cancel |

" Load Options

% Load Code + Symbols € Load Symbolz only € Load Code only

Figure 7-3. Loading Executable File

If a problem occurs while attempting to load an application into FLASH, an
error message is displayed. If no programming voltage is available, the
following programming error message appears.

FLASH programming error |

& Mo programming voltage.

MCUez HC12 Debugger User’'s Manual

MOTOROLA FLASH Programming 199

FLASH Programming

If an attempt is made to load a program into a block that was not selected, an
error message will appear indicating which block is not armed.

FLASH Writing Error E

& The FLASH_PAGED module iz nat armed.
Cannot write at addrezs Dx00003000.

7.4 NVMC Commands

Figure 7-4illustrates FLASH information listed in tt@ommand Line
window of the debugger.

i Command Hi=]
inxflash :I

HMCO clock speed: 8165000

HModule Name Addreszs Fange Jtatus
FLASH E32 G000 - FFFF Enabled/Programmed/Protected - Thselected
ins _
=
Figure 7-4. FLASH Commands Display
User's Manual MCUez HC12 Debugger

200 FLASH Programming MOTOROLA

7.4.1 FLASH

MCUez HC12 Debugger

FLASH Programming
NVMC Commands

If a FLASH parameter file is loaded, tRkASHcommand performs FLASH
operations or displays all available FLASH blocks with their name, location,
and state.

If no parameter file is loaded, a file that corresponds to the current MCU Id or
the last usedppfile is loaded.

Syntax:

FLASH

[(SELECT|UNSELECT|ERASE|ENABLE|DISABLE|PROTECT]|
UNPROTECT) [<blockNo>]]
[[ARM|DISARM|SAVECONTEXT|LOADCONTEXT]

[[INIT <fileName>|<mculd>]

FLASH INIT <fileName>|AUTOID loads the specified parameter file
(including path). IFAUTOIDis specified, the file will be based on the MCU Id.

FLASH ENABLEnables the specified blocks. If no parameter is specified, all
disabled blocks are enabled. Not all blocks can be disabled and, therefore,
cannot be enabled.

FLASH DISABLE disables the specified blocks. If no parameter is specified,
all enabled blocks are disabled. Not all blocks can be disabled. Disabling of
such modules will be ignored.

FLASH ERASE erases the specified blocks. If no parameter is specified, all
programmed blocks are erased.

FLASH UNPROTECTnprotects the specified blocks. If no parameter is
specified, all protected blocks are unprotected. Not all blocks can be
unprotected. Unprotecting of such blocks will be ignored.

FLASH PROTECTprotects the specified blocks. If no parameter is specified,
all unprotected blocks are protected. Not all blocks can be protected. Protecting
of such blocks will be ignored.

FLASH SELECTwill select specified blocks for FLASH programming. If no
parameter is specified, all unselected blocks are selected.

User’'s Manual

MOTOROLA

FLASH Programming 201

FLASH Programming

FLASH UNSELECWill unselect specified blocks. If no parameter is specified,
all selected blocks are unselected. Note that the unselected state is protection
against accidental FLASH programming.

FLASH ARMprepares the blocks to be loaded by the NMVC withLth&D
command. Theppon.cmdile is executed. This command is necessary before
programming the FLASH.

FLASH DISARMends the programming process. Mpgoff.cmdile is
executed.

FLASH SAVECONTEXS¥aves the current SRAM data into a buffer.

FLASH LOADCONTEXTestores the current buffer data into the MCU'’s
SRAM.

blockNo s a list of FLASH block/module numbers. Blocks are sequentially
numbered, beginning with 0. For example 0, 1, 2, etc. The syntax is:

blockNo = {number[-number][,]}

Examples:
FLASH ERASE 2,7 ;erases memory blocks 2 and 7
FLASH ERASE 2,4-6 8;erases memory blocks 2, 4, 5, 6 and 8
FLASH ERASE ;erases all available memory blocks

The typical sequence to program a FLASH block fromQbmmand Line
window is:

Select the FLASH blocks.
Enable the blocks.
Unprotect the blocks.
Erase the blocks.

Arm the blocks.

Load (program) the blocks.

N o o bk~ 0w DdBE

Disarm the blocks.

NOTE: IntheNVMC dialog box, thé_oad... button automatically arms and disarms
the FLASH blocks to program the blocks.

User's Manual MCUez HC12 Debugger

202 FLASH Programming MOTOROLA

FLASH Programming
NVMC Commands

While FLASH blocks are armed, debugger functions are not possible and will
be ignored (running, stepping, etc.). If such a command is entered, a message
box will be displayed, asking the user to cli@K to disarm the blocks and
execute the command or to cli@ANCEL to abort the command.

An example of FLASH commands entered on the command line is:

in>FLASH INIT mcu03c4.fpp

FLASH parameters loaded for M6BHC912DG128 from
C:\MCUEZ\PROG\FPP\mcu03c4.fpp

MCU clock speed: 7982000

Module Addr RangeStatus
FLASH_40004000-7FFFEnabled/Programmed/Protected - Unselected
FLASH_PAGEQ8000-BFFFEnabled/Programmed/Protected - Unselected
FLASH_CO000C000-FFFFEnabled/Programmed/Protected - Unselected
FLASH_ PAGE118000-1BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE228000-2BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE338000-3BFFFEnabled/Blank/Protected - Unselected
FLASH_ PAGE448000-4BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE558000-5BFFFEnabled/Blank/Protected - Unselected
FLASH_ PAGE668000-6BFFFENnabled/Blank/Protected - Unselected
FLASH_PAGE778000-7BFFFEnabled/Programmed/Protected-Unselected
Halted

in>FLASH select 1
in>FLASH enable 1
in>FLASH unprotect 1

Operation passed on FLASH_ PAGEO FLASH module

MCU clock speed: 7978000

Module Addr RangeStatus
FLASH_40004000-7FFFEnabled/Programmed/Protected - Unselected
FLASH_ PAGEO08000-BFFFEnabled/Programmed/Unprotected - Selected
FLASH_CO000C000-FFFFEnabled/Programmed/Protected - Unselected
FLASH_ PAGE118000-1BFFFEnabled/Blank/Unprotected - Unselected
FLASH_PAGE228000-2BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE338000-3BFFFEnabled/Blank/Protected - Unselected
FLASH_ PAGE448000-4BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE558000-5BFFFEnabled/Blank/Protected - Unselected
FLASH_ PAGE668000-6BFFFENnabled/Blank/Protected - Unselected
FLASH_PAGE778000-7BFFFEnabled/Programmed/Protected-Unselected
Halted

in>FLASH erase 1

MCUez HC12 Debugger User’'s Manual

MOTOROLA FLASH Programming 203

FLASH Programming

Operation passed on FLASH_PAGEO FLASH module

MCU clock speed: 7982000

Module Addr RangeStatus
FLASH_40004000-7FFFEnabled/Programmed/Protected - Unselected
FLASH_PAGEO08000-BFFFEnabled/Blank/Unprotected - Selected
FLASH_CO000C000-FFFFEnabled/Programmed/Protected - Unselected
FLASH_PAGE118000-1BFFFEnabled/Blank/Unprotected - Unselected
FLASH_PAGE228000-2BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE338000-3BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE448000-4BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE558000-5BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGEG668000-6BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE778000-7BFFFEnabled/Programmed/Protected-Unselected
Halted

in>FLASH arm

Arm FLASH for loading

in>load my_appli.sx

Operation passed on FLASH_PAGEO FLASH module
Halted

in>FLASH disarm

FLASH disarmed

7.5 Prepare and Program FLASH Memory

7.5.1 Non-Banked Memory Model

When programming in the normal memory model (non-banked memory range
from 0x0000 to OXFFFF), create@mfile as usual and place code in the
FLASH block area.

User's Manual MCUez HC12 Debugger

204 FLASH Programming MOTOROLA

MCUez HC12 Debugger

FLASH Programming
Prepare and Program FLASH Memory

An example of programming in the assembler is:

LINK fibo_b32.abs

NAMES
fibo.o
END
SEGMENTS
MY_RAM = READ_ WRITE 0x800 TO 0x87F;
MY_FLASH = READ_ONLY 0x8000 TO OxFBFF;
MY_STK = READ_WRITE 0x880 TO Ox8FF;
END
PLACEMENT
.data INTO MY_RAM,;
text INTO MY_FLASH;
.stack INTO MY _STK;
END
INIT main

VECTOR ADDRESS 0xFFFE main
An example when programming in C/C++ is:
LINK fibo_b32.abs

NAMES fibo.o start12s.0 ansis.lib END
SECTIONS
MY_RAM = READ_ WRITE 0x800 TO 0x87F;
MY_FLASH = READ_ONLY 0x8000 TO OxFBFF;
MY_STK = READ_WRITE 0x880 TO Ox8FF;
PLACEMENT
DEFAULT_ROM INTO MY_FLASH,;
DEFAULT _RAM INTO MY_RAM,;
SSTACK INTO MY_STK;
END
VECTOR ADDRESS OxFFFE _Startup

User’'s Manual

MOTOROLA

FLASH Programming 205

FLASH Programming

7.5.2 Banked Memory Model

When programming in the assembler, implement code in sections that will be
mapped in theprmfile to the appropriate page. An example of source file
code is:

XDEF Funcl, Func2, main
PagelCode: section
Funcl:

RTS
Page2Code: section
Func2:

RTS
UnpagedCode: section
main:

CALL Funcl,PAGE(Funcl)
CALL Func2,PAGE(Func2)

Assemble the file with thBanked Memory Model option selected in the
MCUez assembler program. This option is located inGbde Generationtab
of theOption Settingsdialog box.

In the.prmfile, sections (PagelCode, Page2Code) are placed in the PAGE_1
and PAGE_2 bank windows.

LINK my_appli.abs
NAMES

my_appli.o
END

SECTIONS
MY_RAM = READ_WRITE 0x2010 TO 0x23FF;
MY_STK = READ_WRITE 0x2400 TO 0x24FF;
NO_BANKED_ ROM = READ_ONLY 0xC000 TO OxFEFF;
PAGE_1 = READ_ONLY 0x18000 TO Ox1BFFF;
PAGE_2 = READ_ONLY 0x28000 TO 0x2BFFF;
PLACEMENT
.data INTO MY_RAM,;
.text INTO NO_BANKED_ROWM,;
.stack INTO MY _STK;
PagelCode INTO PAGE_1;
Page2Code INTO PAGE_2;
UnpagedCode INTO NO_BANKED_ROM,;
END
INIT main
VECTOR ADDRESS OxFFFE main

User's Manual MCUez HC12 Debugger

206 FLASH Programming MOTOROLA

FLASH Programming
Prepare and Program FLASH Memory

For banked memory model, when programming in C/C++, link the application
with theansib.libandstart12b.olibraries.

The next example showsarmfile for an HC12DG128 application, where the
default ROM is in page 2 and page 4. Ensure that the code is properly located
in a FLASH address range.

LINK my_appli.abs

NAMES my_appli.o ansib.lib start12b.o END
SECTIONS
MY_RAM = READ_WRITE 0x2010 TO 0x23FF;
MY_ROM = READ_ONLY 0xC000 TO OxFEFF;
PAGE_2 = READ_ONLY 0x28000 TO 0x2BFFF;
PAGE_4 = READ_ONLY 0x48000 TO 0x4BFFF;
PLACEMENT
_PRESTART, STARTUP,
ROM_VAR, STRINGS,
NON_BANKED, COPY INTO MY_ROM,;
DEFAULT_RAM INTO MY_RAM;
MyPage, DEFAULT_ROM INTO PAGE_2, PAGE_4;
END
STACKSIZE 0x50
VECTOR ADDRESS OxFFFE _Startup /* set reset vector IN FLASH on
_ Startup */

Toload, selecELASH... in theSDI target menu to open tidvVMC dialog box.

If the user is sure about the application’s absolute location, there is no need to
select a block. However, if part or all of the program goes in a protected memory
area (boot block), ensure that the matching block is unprotected (after reset,
blocks are protected). For security reasons, unprotection is not done
automatically and must be performed with theprotect button.

Click theLoad... button (all blocks are automatically selected), then select the
.absfile to load into FLASH. When loading has finished, the dialog box is
refreshed with the new states of the blocks.

Close the dialog and run the application. On some hardware, it might be
necessary to reset the target.

MCUez HC12 Debugger User’'s Manual

MOTOROLA FLASH Programming 207

FLASH Programming

7.6 FLASH Memory Mapping

This section contains hardware-specific information about currently delivered
MCU parameter files.fpp).

7.6.1 M68EVB912B32 Evaluation Board Characteristics

» fppfile name:mcu03cl.fpp

FLASH blocks: 1

* FPP code loaded at 0x800, using 0x400 bytes
* Block name: FLASH_B32

e Block number: 0

» 32 Kbytes of FLASH located in 0x8000—0xFFFF or in 0x0000-0x7FFF
(both handled according to MAPROM bit in MISC register)

* Boot sector unprotectable/protectable (2 Kbytes in range
OXF800—0xFFFF or in 0x7800—-0x7FFF) (via BOOTP bit in FEEMCR
register and LOCK bit in FEELCK register)

* FLASH enable/disable via ROMON bit in MISC register

7.6.2 M68HC12A4 Evaluation Board Characteristics

o .fppfile name:mcu03c3.fpp
* FLASH blocks: 2
* FPP code loaded at 0x400, using 0x400 bytes

Block name: FEE28
e Block number: 0

» 28 Kbytes of FLASH located in 0x1000—-0x7FFF or in 0xX9000—0xFFFF
(both handled according to MAPROM bit in MISC register)

* Boot sector unprotectable/protectable (8 Kbytes in range
0x6000—0x7FFF or OXEOOO—-OxFFFF) (via BOOTP bit in FEE28MCR
register and LOCK bit in FEE28LCK register)

* FLASH enable/disable via ROMONZ28 bit in MISC register

User's Manual MCUez HC12 Debugger

208 FLASH Programming MOTOROLA

FLASH Programming
FLASH Memory Mapping

Block name: FEE32

* Block number: 1

* 32 Kbytes of FLASH located in 0x8000—0xFFFF or 0x0000-0x7FFF
(both handled according to MAPROM bit in MISC register)

* Boot sector unprotectable/protectable (8 Kbytes in range
OXEOO0O0—-OxFFFF or 0x6000—-0x7FFF) (via BOOTP bit in FEE32MCR
register and LOCK bit in FEE32LCK register)

* FLASH enable/disable via ROMONS32 bit in MISC register

7.6.3 HC12DG128/HC12DA128 Evaluation Board Characteristics

MCUez HC12 Debugger

» .fppfilename:mcu03c4.fpp
* FLASH blocks: 10
* FPP code loaded at 0x2000, using 0x400 bytes

« All FLASH blocks enable/disable at the same time via ROMON bit in
MISC register.

Block name: FLASH_4000

e Block number: 0

* 16 Kbytes unpaged FLASH located in 0x4000-0x7FFF and matches
32-K FLASH even page (6), (FLASH_PAGE®G)

Block name: FLASH_PAGEO
* Block number: 1

» 16 Kbytes paged FLASH accessed in bank window 0x8000—0xBFFF,
equivalent to FLASH 32-K even page (0)

Block name: FLASH_CO000
* Block number: 2

» 16 Kbytes unpaged FLASH located in 0OxCO00-0xFFFF, and matches
32-K FLASH odd page (7), (FLASH_PAGE7?)

* Boot sector unprotectable/protectable (8 Kbytes in range
OXEOO00-OxFFFF or paged range 0XxA000—0xBFFF) (via BOOTP bit in
FEEMCR register and LOCK bit in FEELCK register)

User’'s Manual

MOTOROLA

FLASH Programming 209

FLASH Programming

Block name: FLASH_PAGE1

Block number: 3

16 Kbytes paged FLASH accessed in bank window 0x8000—0xBFFF,
equivalent to FLASH 32-K odd page (1)

Boot sector unprotectable/protectable (8 Kbytes in range
0xA000—-0xBFFF) (via BOOTP bit in FEEMCR register and LOCK bit
in FEELCK register)

Block name: FLASH_PAGE2

Block number: 4

16 Kbytes paged FLASH accessed in bank window 0x8000—0xBFFF,
equivalent to FLASH 32-K even page (2)

Block name: FLASH_PAGE3

Block number: 5

16 Kbytes paged FLASH accessed in bank window 0x8000—0xBFFF,
equivalent to FLASH 32-K odd page (3)

Boot sector unprotectable/protectable (8 Kbytes in range
0xA000—-0xBFFF) (via BOOTP bit in FEEMCR register and LOCK bit
in FEELCK register)

Block name: FLASH_PAGE4

Block number: 6

16 Kbytes paged FLASH accessed in bank window 0x8000—0xBFFF,
equivalent to FLASH 32-K even page (4)

Block name: FLASH_PAGE5

User’'s Manual

Block number: 7

16 Kbytes paged FLASH accessed in bank window 0x8000—0xBFFF,
equivalent to FLASH 32-K odd page (7)

Boot sector unprotectable/protectable (8 Kbytes in range
0xA000—0xBFFF) (via BOOTP bit in FEEMCR register and LOCK bit
in FEELCK register)

MCUez HC12 Debugger

210

FLASH Programming MOTOROLA

FLASH Programming
FLASH Programming Examples

Block name: FLASH_PAGEG6

Block number: 8

16 Kbytes paged FLASH accessed in bank window 0x8000—0xBFFF,
equivalent to FLASH 32-K even page (6). Also equivalent to
FLASH_4000 block

Block name: FLASH_PAGE7

Block number: 9

16 Kbytes paged FLASH accessed in bank window 0x8000—0xBFFF,
equivalent to FLASH 32-K odd page (7). Also equivalent to
FLASH_CO000 block.

Boot sector unprotectable/protectable (8 Kbytes in range
O0xA000-0xBFFF) (via BOOTP bit in FEEMCR register and LOCK bit
in FEELCK register)

7.7 FLASH Programming Examples

7.7.1 From a Command Line

In the

following example, a program calley_page5.sis loaded in the

FLASH_PAGES block of an M68HC912DG128 CPU. EnterkFh&SH
command without parameters to display blocks and status.

in>FLASH

FLASH parameters loaded for M68HC912DG128 from
C:\MCUEZ\PROG\FPP\mcu03C4.fpp

MCU clock speed: 8025000

Module Addr RangeStatus

FLASH_40004000-7FFFEnabled/Blank - Unselected
FLASH_PAGEO08000-BFFFEnabled/Blank - Unselected
FLASH_CO000C000-FFFFEnNabled/Blank/Protected - Unselected
FLASH_PAGE118000-1BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE228000-2BFFFEnabled/Blank - Unselected
FLASH_PAGE338000-3BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE448000-4BFFFEnabled/Blank - Unselected
FLASH_PAGE558000-5BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGEG668000-6BFFFEnabled/Blank - Unselected
FLASH_PAGE778000-7BFFFEnabled/Blank/Protected - Unselected
HALTED

MCUez HC12 Debugger

User’'s Manual

MOTOROLA

FLASH Programming 211

FLASH Programming

Unprotect block number 7 (FLASH_PAGES) to load the application in this
block.

in>FLASH unprotect 7

MCU clock speed: 8025000

Module Addr RangeStatus

FLASH_40004000-7FFFEnabled/Blank - Unselected
FLASH_PAGE08000-BFFFEnabled/Blank - Unselected
FLASH_CO000C000-FFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE118000-1BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE228000-2BFFFEnabled/Blank - Unselected
FLASH_PAGE338000-3BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE448000-4BFFFEnabled/Blank - Unselected
FLASH_PAGE558000-5BFFFEnabled/Blank/Unprotected - Unselected
FLASH_PAGE668000-6BFFFEnabled/Blank - Unselected
FLASH_PAGE778000-7BFFFEnabled/Blank/Protected - Unselected

FLASH_PAGES is unprotected and ready to be selected and armed for
programming.

in>FLASH select 7
in>FLASH arm

Next, load the application.

in>load a:\\my_page5.sx
RUNNING

Stop loading and disarm.

in>FLASH disarm
FLASH disarmed
Halted

Finally, display the state of the blocks with tleASHcommand.

in>FLASH

MCU clock speed: 8025000

Module Addr RangeStatus

FLASH_40004000-7FFFEnabled/Blank - Unselected

FLASH_ PAGEOQ8000-BFFFEnabled/Blank - Unselected
FLASH_C000C000-FFFFEnabled/Blank/Protected - Unselected
FLASH_ PAGE118000-1BFFFEnabled/Blank/Protected - Unselected
FLASH PAGE228000-2BFFFEnabled/Blank - Unselected
FLASH_PAGE338000-3BFFFEnabled/Blank/Protected - Unselected
FLASH PAGE448000-4BFFFEnabled/Blank - Unselected

FLASH_ PAGE558000-5BFFFEnabled/Programmed/Unprotected-Selected
FLASH PAGE668000-6BFFFEnabled/Blank - Unselected
FLASH_PAGE778000-7BFFFEnabled/Blank/Protected - Unselected
HALTED

User's Manual MCUez HC12 Debugger

212 FLASH Programming MOTOROLA

FLASH Programming
FLASH Programming Examples

The FLASH_PAGES block is programmed. Protect the block and unselect

in>FLASH protect 7

MCU clock speed: 8025000

Module Addr RangeStatus

FLASH_40004000-7FFFEnabled/Blank - Unselected
FLASH_PAGEO08000-BFFFEnabled/Blank - Unselected
FLASH_CO000C000-FFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE118000-1BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE228000-2BFFFEnabled/Blank - Unselected
FLASH_PAGE338000-3BFFFEnabled/Blank/Protected - Unselected
FLASH_PAGE448000-4BFFFEnabled/Blank - Unselected
FLASH_PAGE558000-5BFFFEnabled/Programmed/Protected - Selected
FLASH_PAGE668000-6BFFFEnabled/Blank - Unselected
FLASH_PAGE778000-7BFFFEnabled/Blank/Protected - Unselected

in>FLASH unselect 7

7.7.2 From a Command File

MCUez HC12 Debugger

This example automatically programs an application cdfled 32.absn
FLASH on the HC12B32.

Create a command file (for examppgpgram.cmdithat contains the following
commands:

baud 57600
FLASH

FLASH select
FLASH unprotect
FLASH erase
FLASH arm

load ffibo_32.abs
FLASH disarm
FLASH protect
FLASH unselect

Call this file with thecall command from the command line or in a debugger
command file, such agartup.cmd

An example is:

in>call program.cmd
executing program.cmd

Ibaud 57600

IFLASH
FLASH parameters loaded for M68HC912B32 from

User’'s Manual

MOTOROLA

FLASH Programming 213

FLASH Programming

c\MCUEZ\PROG\FPP\mcu03C1.fpp

MCU clock speed: 8023000

Module Name Address Range Status

FLASH_B32 8000 - FFFF Enabled/Programmed/Protected -
Unselected

HALTED

IFLASH select

IFLASH unprotect

MCU clock speed: 8023000

Module Name Address Range Status

FLASH_B32 8000 - FFFF Enabled/Programmed/Unprotected -
Selected

IFLASH erase

MCU clock speed: 8023000

Module Name Address Range Status

FLASH_B32 8000 - FFFF Enabled/Blank/Unprotected - Selected
IFLASH arm

Arm FLASH for loading.

lload ffibo_32.abs

executing ffibo_32.bpt

1!savebp off
RUNNING
done ffibo_32.bpt

IFLASH disarm
FLASH disarmed.
Halted

IFLASH protect

MCU clock speed: 8023000

Module Name Address Range Status

FLASH_B32 8000 - FFFF Enabled/Programmed/Protected-Selected
HALTED

IFLASH unselect

|

done program.cmd

in>Help

User's Manual MCUez HC12 Debugger

214 FLASH Programming MOTOROLA

User’'s Manual — MCUez HC12 Debugger

A.1 Contents

A.2 Introduction

A.3 File Format

MCUez HC12 Debugger

Appendix A. Register Description File

A2 Introduction. 215
A3 FileFormat 215
A.4 Description Using Extended Backus—Naur Form (EBNF). 216

When loading a MCUez target, definitions of the I/O (input/output) registers are
loaded from aregfile. This allows the names of these registers to be used as
parameters for commands or as operands in an expression. The syntax of the file
is defined inA.4 Description Using Extended Backus—Naur Form (EBNF)

There may be several different files depending on the MCU used. The name of
the correct file is derived from the MCU identification number (MCU Id) in the
following way:

MCUxxxx.REG

wherexxxxis the MCU Id in hexadecimal representation. This file is expected
to be found in the directory where the program files are located (for example,
.\PROG\REG® If this file is not found, théefault.redfile is searched for and
loaded. If this file is not found, corresponding information will be missing and
related commands may not deliver the complete results.

A header contains the name, identification number, and location of the register
block of the MCU. The header is followed by a list of module descriptors. Each
descriptor contains register definitions and (optionally) a memory map
specification. The register definitions can be grouped under a group name. Each

User’'s Manual

MOTOROLA

Register Description File 215

Register Description File

register definition defines the name, address and size of an I/O register. The
memory map specification is used by MEMcommand to display the
configured memory of that module.

A.4 Description Using Extended Backus—Naur Form (EBNF)

The syntax of the register file is described here in EBNF.

MCUDescription = Header {Module}.

Header = "MCU" McuName Mculd RegBase
RegSize.

Module = "MODULE" ModuleName {RegDef}

{GroupDef | MapDef}.

GroupDef = "GROUP" GroupName {RegDef}.

RegDef = RegName RegOffset Size.

MapDef = "MEMMAP" BlkName BaseMapDef
{MapSecifier}.

BaseMapDef = "BASE" Exp "SIZE" Exp
"ENABLED" Exp.

MapSpecifier = "SPECIFIER" [Label] Exp.

Exp = CExpression | SwitchExpr.

SwitchExpr = CExpression ":" {CaseSpec}.

CaseSpec = "["ConstValue ":"
(CExpression | StringDef) "".

McuName = StringDef.//name of the MCU

Mculd = ConstValue.//identification
number of the MCU

RegBase = ConstValue.//base address of
the registers after reset

ModuleName = Name.//name of the module

GroupName = Name.//name of a group of
registers

RegName = Name.//name of the register

RegOffset = ConstValue.//offset from the
register base address

Size = ConstValue.//size of the
register in bits

BlkName = Name.//name of the memory
block

Label = StringDef.//[lname to be used to

label the specifier
Il expression defined in
ANSI-C that contains integers

CExpression

ConstValue = [/ constant value as defined
in ANSI-C

Name = [/l identifier as defined
in ANSI-C

StringDef = /I any number of printable

characters in double quotes

[1] Evaluation of expressions are done with signed 32-bit arithmetic.
[2] Non-printable characters are interpreted as white spaces.

User's Manual MCUez HC12 Debugger

216 Register Description File MOTOROLA

Register Description File
Description Using Extended Backus—Naur Form (EBNF)

Example: This example describes a hypothetical MCU. It contains the
modules ABC, SQIM, and FLASH. The SQIM module has two
groups of registers, PORTS and CHIPSELECTS.

MCU "MY_MCU" 0x07A5 OxFFF000 0x1000
MODULE ABC
ABCMCR 0x700 16
PORTABC 0x706 16
MODULE SQIM
SQIMCR 0xA00 16
SYNCR O0xA04 16
GROUP PORTS
PORTA 0xA10 8
PORTB O0xAll 8
GROUP CHIPSELECTS
CSPARO O0xA44 16
CSBARA OxA60 16
CSORA 0xA62 16
MEMMAP CSA
BASE (CSBARA & OxFFF8) << 8
SIZE CSBARA & 7 :
[0:0x800] [1:0x2000] [2:0x4000]
[3:0x10000] [4:0x20000] [5:0x40000]
[6:0x80000] [7:0x80000]
ENABLED (CSPARO & 3) >= 2
SPECIFIER "ACCESS" (CSORA >> 11) & 3

[0:"None"][1:"Read"]
[2:"Write"][3:"Both"]
SPECIFIER "BYTE" (CSORA >>13) & 3 :
[0:"None"][1:"Lower"]
[2:"Upper"][3:"Both"]
SPECIFIER (CSORA >>4) & 3:
[0:"None"][1:"Lower"]
[2:"Upper"][3:"Both"]
MODULE FLASH
FEEMCR 0x820 16
FEEBAH 0x824 16
FEEBAL 0x826 16
MEMMAP FLASH
BASE (FEEBAH << 16)
SIZE 0x8000
ENABLED (FEEMCR & 0x8000) ==
<eof>

MCUez HC12 Debugger User’'s Manual

MOTOROLA Register Description File 217

Register Description File

User's Manual MCUez HC12 Debugger

218 Register Description File MOTOROLA

User’'s Manual — MCUez HC12 Debugger

B.1 Contents

MCUez HC12 Debugger

Appendix B. C Source-Level Debugging

B.2 Introduction. 220
B.3 Source Component 220
B.4 Procedure Component. 221
B.4.1 Operations 222
B.4.2 Drag Out. 222
B.4.3 Drop Into 223
B.5 DataComponent. 223
B.6 Breakpoints Setting Dialog. 224
B.7 General Rules for Halting on a Control Point. 226
B.8 Configuring the Default Layout 226
B.9 Loading an Application. 226
B.10 Stopping an Application. 226
B.11 Defining Counting Breakpoints 227
B.12 Steppinginthe Application 227
B.12.1 SteppingatSourcelevel.............. 227
B.12.2 Stepping Over a Function Call (Flat Step). 229
B.12.3 Stepping Outof a FunctionCall 229
B.13 Displaying a Local Variable from a Function. 230
B.14 Miscellaneous C Source-Level Commands 230

User’'s Manual

MOTOROLA

C Source-Level Debugging 219

wr
PRt

C Source-Level Debugging

B.2 Introduction

NOTE:

This appendix provides information on performing C source-level debugging
(CSLD) with the MCUez debugger. The C source-level debugging capability is
applicable only for applications that are compliant withEh&/DWARF 2.0
object format standard. The user’s compiler must support this standard.

A license key is required to activate this feature. Contact HIWARE AG for
information on CSLD pricing and how to obtain the license key.

B.3 Source Component

NOTE:

User’'s Manual

The Sourcecomponent window displays the source code of the program
(application file). It enables the user to view, change, monitor, and control the
current execution location in the program. The text displayed iSdbece
component window is chroma-coded. Language, keywords, comments, and
strings are emphasized with different colors (respectively, blue, green, red). A
word is selected by double clicking it.

Select a section of code by holding the left mouse button and dragging the
mouse over the appropriate source code range. By clicking on the selection
again and dragging it with the mouse to the assembly component, the
corresponding assembly instructions are highlighted in the assembly
component. Marks are displayed at all locations where breakpoints have been
set. If execution has stopped, the current position is marked in the source
component with the corresponding statement highlighted.

The text visible in th&ourcecomponent window cannot be edited. The source
component is a file viewer only.

MCUez HC12 Debugger

220

C Source-Level Debugging MOTOROLA

C Source-Level Debugging
Procedure Component

= Source =]

|E:ADEMODMfibo.c

unsigned int Fibonacci(unsigned int n) il
| E

unsigned f£ikl, f£ibZ, fibo;

int i:

fibl
fibh2
fibo
i=2;

while {i <= n) {[

n;
¥ -

n;

fibo = fibl + fibkZ:
fibl = fihZ:
fibz = fibho:
i++;
Q)
return(fibao) ;

=}

wold mainiwoid)
{3} LI

Figure B-1. Source Component Window

B.4 Procedure Component

MCUez HC12 Debugger

The procedure component displays the list of procedure or function calls that
were performed up to the moment the program was halted. This is the procedure
chain also known as the call chain. Entries in the procedure chain are displayed
in reverse order from the last call (most recent on top) to the first call (on
bottom).

Procedure parameter values and types can be displayed. The object information
bar contains the source module and the address of the selected procedure.

B Procedure _ O]

llibo.c Address; 8055

main [j

_Atartup ()

| |

Figure B-2. Procedure Component Window

User’'s Manual

MOTOROLA

C Source-Level Debugging 221

C Source-Level Debugging

B.4.1 Operations

Double clicking on a procedure name forces some open windows to display
information about that procedure. TBeurcecomponent window shows the
procedure's source. Tibata component window displays the local variables
and parameters of the selected procedtitrire B-3 shows thd’rocedure
component window menu.

v Show Values
Show Types

Figure B-3. Procedure Component Window Menu

» Show Values—Displays function parameter values in the procedure
component

* Show Types—Displays function parameter types in the procedure
component

B.4.2 Drag Out

The drag and drop actionsTable B-1 are possible from the procedure
component.

Table B-1. Procedure Component Drag and Drop Operations

Destination .
Action
Component
Displays local variables from the selected procedure in the data
Data | Local
component
Displays source code of the selected procedure. Current
Source instruction inside the procedure is highlighted in the source
component.
Assembl The current assembly statement inside the procedure is
y highlighted in the assembly component.
User's Manual MCUez HC12 Debugger

222 C Source-Level Debugging MOTOROLA

C Source-Level Debugging
Data Component

B.4.3 Drop Into

Nothing can be dropped into tReocedure component window.

B.5 Data Component

The Data component window contains the names, values, and types of global
or local variables. ThBata component window (ifrigure B-4) shows all
variables that are present in the current source module or procedure.

= Data:1 =]
|Addiess: 8030 Size: 24 |startup.c | Aute |Symb | Global
startuplata <24 tagitartup
flags 0 unzigned int
main 0x5084 _FFunc
stacklffzet 5190 unzigned int
nofzZeroluts 1l unzigned int
B pZerolut 0x304f * Range
*pZerolut <4 Range
toCopylDourBeg Oxdlas * _Copy
noflibInits 32851 unsigned int ;I

Figure B-4. Data Component Window

The objectinfo bar contains the address and size of the selected variable. It also
contains the module name or procedure name where the displayed variables are
defined, the display mode (automatic, locked, etc.), the display format
(symbolic, hex, bin, etc.), and the current scope (global or local).

Various display formats such as symbolic representation, hexadecimal, octal,
binary, signed, and unsigned can be selected. Structures can be unfolded to
display their member fields. Pointers can be traversed to display the data they
are pointing toTable B-2lists the menu options for the data component.

MCUez HC12 Debugger User’'s Manual

MOTOROLA C Source-Level Debugging 223

C Source-Level Debugging

Table B-2. Data Component Menu Options
for C Source-Level Debugging

Menu Entry Description

Develops the selected structure. The member field of the structure

Zoomin replaces the variable list.
Zoom out Returns to previous level of development
Scope... Switches between local or global variable display

Switches between Symbolic (display depends on type of variable),
Format... Hex (hexadecimal), Oct (octal), Bin (binary), Dec (signed
decimal), UDec (unsigned decimal) display format

Switches between automatic, periodical, locked, or frozen update

Mode... mode

In automatic mode (default), variables are updated when the target is stopped.
Variables from the currently executed module or procedure are displayed in the
data component.

In locked and frozen mode, variables from a specific module are displayed in
the data component. In that case, the same variables are always displayed in the
data component.

In locked mode, variable values displayed in the data component are updated
when the target is stopped.

In frozen mode, values displayed in the data component are not updated when
the target is stopped.

In periodical mode, variables are updated at regular time intervals when the
target is running. The default update rate is 1 second.

B.6 Breakpoints Setting Dialog

User’'s Manual

TheBreakpoints setting dialog box consists of:

» Alist box that displays currently defined breakpoints

* A Breakpoint: group box that displays the address of the currently
selected breakpoint, name of the procedure in which the breakpoint has
been set, state of the breakpoint (disabled or not), and type of breakpoint
(temporary or permanent)

MCUez HC12 Debugger

224

C Source-Level Debugging MOTOROLA

g |

= Source - O] x|

C Source-Level Debugging
Breakpoints Setting Dialog

A Counter: group box that displays the current value and interval value
of the counter. This group allows the user to define a counting breakpoint
(SeeB.10 Stopping an Applicatior).

A Deletebutton to remove the currently selected breakpoint
OK button to validate all modifications
Cancelbutton to disregard all modifications and retain previous values

Help button to open the help file

[E-BIMSTESTS b o

{E
unsigrned £ibl, £ibZ,
int i:

fibl
| £ihz
| fibo
Mi = z:

while (i <= n) {&E

nmnon
=
LTI

fiho = fibl + fibZ;
=¥ fibl = fibZ:
= £ibo;

fibhz

unsigned int Fibonacci{unsimed int n)

£iba: 305F ; fibo.c. Fibonacci+10 ;E; T

Breakpointz zetting E

B05C; fibo.c.Fibonacci+7 ;E; 3, 3

B063; fibo.c.Fibonacoi+14 (E: 1, 1; Fib2==13; E; 5P 0xC200; E
B0GE ; fibo. o Fibonacci+25 ;E: 1.1

— Breakpaint :
Address (hex] : Igggg [™ Dizable
Mame : Fibonacci M Ty
— Condition ;
Condtion: [Fib2==13 I Disahle
— Command :
Command : ISF’E OxC200 [™ Dizable
— Counter :

Cumert ; |-|— Irterval ; |-|—
Qeletel Ok | Eancell Help |

Figure B-5. Breakpoints Setting Dialog Window

MCUez HC12 Debugger

User’'s Manual

MOTOROLA

C Source-Level Debugging 225

wr
PRt

C Source-Level Debugging

B.7 General Rule for Halting on a Control Point

Counting Control Pointlf the interval is greater than one (1), a counting control
point has been defined. When the target application is running, its current value
is decremented each time the control point is reached. The debugger will halt on
this control point if the control point counter is equal to zero (0). The interval
must be greater than zero.

B.8 Configuring the Default Layout

This line must be in thproject.inifile to establish a default layout for the
MCUez debugger:

Window9=Procedure 0 30 50 15

B.9 Loading an Application

The global data component contains the list of global variables defined in the
module that contains the application entry point. The local data component
might be empty.

B.10 Stopping an Application

TheData component window (assigned the global attribute) displays the name
and value of all global variables defined in the module where the currently
executed procedure is implemented. The module name is specified in the data
component information bar. THata component window (assigned the local
attribute) displays the name and value of the local variables defined in the
current procedure. The name of the procedure is specified in the data
information bar.

User's Manual MCUez HC12 Debugger

226 C Source-Level Debugging MOTOROLA

C Source-Level Debugging
Defining Counting Breakpoints

B.11 Defining Counting Breakpoints

Counting breakpoints are activated after the instruction has been executed a
specified number of times. This section describes breakpoint operations.

A counting breakpoint is recognized by this ice: .

A counting breakpoint is set by tigreakpoints Settingdialog. To access this
dialog box:

* Point to a C statement in the source component window, hold the left
mouse button, and press thé&ey.

» Point at a C statement in tBeurcecomponent window and click the
right mouse button to open tB®urcepop-up menu, then selesét
BreakPoint or Show BreakPoints

» SelectRun | Breakpointsfrom the main menu bar.

If program execution continues, tirrent field is decremented each time the
instruction containing the counting breakpoint is reached. \Wherent is
equal to 0, the application stops. If the check Demporary is not checked
(not a temporary breakpointfurrent is reloaded with the value stored in
Interval to enable the counting breakpoint again.

B.12 Stepping in the Application

The MCUez debugger provides stepping functions at the application source
level and assembler level.

B.12.1 Stepping at Source Level

Figure B-6 shows a typical stepping-at-source-level operation.

MCUez HC12 Debugger User’'s Manual

MOTOROLA C Source-Level Debugging 227

C Source-Level Debugging

User’'s Manual

File iew Bun Simulator Component Aszsembly Window Help

oSl el @lepe] o la]=ls]e])

m Source P (=] B3| o Ascembly |[EHETIN=] B3
|E:ADEMONfibo.c |Fibonacci
‘- Al 2l
while {1 <= n) {[E [|
fibo = fibl + fibZ:;
fibZ = fibao;
i++;
&}
return(fibo) ; - ;abs = §
KNI M 4 |

Figure B-6. Stepping-at-Source Level Window

The debugger provides two ways of stepping to the next source instruction:

1. SelectRun | Single Step
2. Click theSingle Stepicon on the debugger toolbela'l

STEPPEDdisplayed in the status line indicates that the application is stopped
by a step function.

If the application was previously stopped on a function invocati®@mgle
Stepstops the application at the beginning of the invoked function.

The display in the assembly component is always synchronized with the display
in the source component. The highlighted instruction in the assembly
component is the first assembler instruction generated by the highlighted
instruction in the source component.

Elements from the register, memory, or data components that are displayed in
red are the register, memory position, and local or global variables. The
indicated variables are those whose values have changed during execution of
the source statement.

MCUez HC12 Debugger

228

C Source-Level Debugging MOTOROLA

C Source-Level Debugging
Stepping in the Application

B.12.2 Stepping Over a Function Call (Flat Step)

The debugger provides two ways of stepping over a function call:

1. SelectRun | Step Over
2. Click theStep Overicon on the tooIbadEI :

STEPPED OVERisplayed in the status line indicates that the application was
stopped by a step over function.

If the application was previously stopped on a function invocati@tea Over
halts the application on the source instruction directly following the function
invocation.

The display in the assembly component is always synchronized with the display
in the source component. The highlighted instruction in the assembly
component is the first assembler instruction generated by the highlighted
instruction in the source component.

Elements from the register, memory, or data components that are displayed in
red are the register, memory position, and local or global variables. The
indicated variables are those whose values have changed during execution of
the source statement.

B.12.3 Stepping Out of a Function Call

MCUez HC12 Debugger

The debugger provides two ways of stepping out of a function call:

1. SeleciRun | Step Out
2. Click theStep Outicon on the toolbar-2|

STOPPEDQIisplayed in the status line indicates that the application is stopped
by a step out function.

If the application was previously stopped on a function invocati@tea Over
halts the application on the source instruction directly following the function
invocation.

User’'s Manual

MOTOROLA

C Source-Level Debugging 229

C Source-Level Debugging

B.13 Displaying a Local Variable from a Function

The debugger provides two methods to view the local variable list defined in a
function.

1. Using drag and drop — Drag a function name from the procedure
component to a data component with attribute local.

2. Using double click — Double click a function name in the procedure
component.

The data component (with attribute local that is neither frozen nor locked)
displays the list of variables (with their values and type) defined in the selected

function.

B.14 Miscellaneous C Source-Level Commands

This section describes all debugger commands associated with C source-level
debugging.

User's Manual MCUez HC12 Debugger

230 C Source-Level Debugging MOTOROLA

C Source-Level Debugging
Miscellaneous C Source-Level Commands

SPROC

Short description:
Shows information associated with the specified procedure

Syntax:
SPROC level

Description:
In the data component, tiEPROQommand shows local variables of the
corresponding procedure stack level.
In the source component, tB®ROCGommand shows the corresponding
module’s source text, scrolls to the corresponding procedure, and highlights
the statement that is in the procedure chain.
level = 0 isthe current procedure levétvel = 1 s the caller stack
level and so on.

Data component example:

in>Data:2 < SPROC 0

This command displays the local variables defined in the caller function
number 1 in the call chain.

Source component example:

in>Source < SPROC 1
MCUez HC12 Debugger User’'s Manual

MOTOROLA C Source-Level Debugging 231

C Source-Level Debugging

ATTRIBUTES
Short description:
Sets the display inside a component window
In the Procedure Component
Syntax:
ATTRIBUTES list
Syntax:
wherelist=command{,command}
commandVALUES (ON|OFF)| TYPES (ON|OFF)
Description:
The ATTRIBUTEScommand sets the display and state options of the
Procedure component window.
The VALUESandTYPEScommandONor OFFindicates if the values or
types should be displayed in tReocedure window. This command is
applicable for the procedure component only when performing C
source-level debugging.
Example:
Procedure < ATTRIBUTES VALUES ON,TYPES ON
Parameter types and values are displayed iRtbeedure component
window.
In the Data Component
Syntax:
ATTRIBUTES list
Arguments:
list=command{,command})
commandf#ORMAT(bin |oct |hex |signed |unsigned |
symb) | MODE(automatic | periodical |locked |
frozen) |SCOPHglobal | local) SPROGNodule [SMODnodule |
UPDATERATIEate
User's Manual MCUez HC12 Debugger

232 C Source-Level Debugging MOTOROLA

MCUez HC12 Debugger

C Source-Level Debugging
Miscellaneous C Source-Level Commands

Description:

The ATTRIBUTEScommand sets the display and state options oD
component window.

TheFORMATommand indicates how variables will be represented. Display
formats are binary, octal, hexadecimal, signed decimal, unsigned decimal, or
symbolic.

The SCOPEcommand selects and displays global or local variables.
The MODEommand selects the display mode of variables.

In automatic mode (default mode), variables are updated when the target is
stopped. Variables from the currently executed module or procedure are
displayed in the data component.

In locked and frozen mode, variables from a specific module are displayed
in the data component.

In locked mode, values from variables are updated when the target is
stopped.

In frozen mode, values are not updated when the target is stopped.

In periodical mode, variables are updated at regular time intervals when the
target is running. The default update rate is 1 second.

The UPDATERATEommand sets the update rate for the data component.
This command is only relevant when the update mode for the data
component is set to periodical.

The SMODshow module) command displays global variables of the
corresponding module.

The SPRO(show procedure) command displays local variables of the
procedure.

Arguments:
Hex Sets format representation to hexadecimal
Oct Sets format to octal
Bin Sets format to binary
Symb Sets format as a symbol
Signed Displays value in signed decimal format
Unsigned Displays value in unsigned decimal format
Periodical Set data component to periodical update mode.

User’'s Manual

MOTOROLA

C Source-Level Debugging 233

C Source-Level Debugging

Locked Set data component to locked update mode.
Frozen Set data component to frozen update mode.
Automatic Set data component to automatic update mode.
Module Specified module

Rate Update rate in tenths of a second. Valid values for the rate
are 0 to 600.

Equivalent operations:
ATTRIBUTES FORMAT Select menu entrata | Format...
ATTRIBUTES MODE Select menu entripata | Mode...
ATTRIBUTES SCOPE Select menu entripata | Scope...

ATTRIBUTES SPROC Drag and drop from procedure
component to data component.

ATTRIBUTES SMOD Drag and drop from module component to
data component.

ATTRIBUTES UPDATERATE Select menu entry
Data | Mode | Periodical

Example:
Data < ATTRIBUTES MODE FROZEN

In the data component, the mode for updating global variables is set to
frozen. Variables are not refreshed when the application is halted.

User's Manual MCUez HC12 Debugger

234 C Source-Level Debugging MOTOROLA

User’'s Manual — MCUez HC12 Debugger

Appendix C. Extended Backus-Naur Form (EBNF)

C.1 Contents

C.2 EBNF File Format

C.3 EBNFExample. e

C.4 EBNFSyntax e

C.5 EXIeNSIONS. o

C.2 EBNF File Format

This section gives a short introduction to EBNF and an overview of EBNF
notation.

Extended Backus—Naur Form (EBNF) is frequently used in this user’'s manual

to describe file formats and syntax rules.

C.3 EBNF Example

MCUez HC12 Debugger

This is an example of EBNF notation:
ProcDecl=PROCEDURE "(" ArgList ")".
ArgList=Expression {"," Expression}.
Expression=Term ("*"|"/") Term.
Term=Factor AddOp Factor.
AddOp="+"|"-".

Factor=(["-"] Number)|"(" Expression ")".

The EBNF language can be used to express the syntax of context-free
languages. EBNF is a set of rules cajpedductionsof the form:

LeftHandSide=RightHandSide

User’'s Manual

MOTOROLA

Extended Backus-Naur Form (EBNF) 235

Extended Backus-Naur Form (EBNF)

The left hand side is a non-terminal symbol, and the right hand side describes
how it is composed.

User’'s Manual

EBNF consists of the following symbols:

Terminal symbols (terminals for short) are the basic symbols which form
the language described. In the previous example, the RROCEDURE

is aterminal. Punctuation symbols of the language described (not EBNF)
are quoted (they are terminals, too), while other terminal symbols are
printed inboldface

Non-terminal symbols (non-terminals) are syntactic variables and have
to be defined in a production, for example, they have to appear on the left
hand side of a production. In the previous example, there are many
non-terminals, for instancéygList or AddOp.

The vertical bar|] denotes an alternative, for example, either the left or
right side of the bar must appear in the language described. For example,
the third production above means “an expression is a term followed by
either an asterisg) or a slaslf/) followed by another term.”

Parts of an EBNF production enclosed by square bragketand])

are optional. They may appear one time in the language, or they may be
skipped. The minus sign in the last production is optional, b@tAnd7

are allowed.

The repetition is another useful construct. Any part of a production
enclosed by curly bracket and}) may appear any number of times

in the language described (including 0, for example, it may also be
skipped).ArgList is an example. An argument list is a single
expression or list of expressions separated by commas. (Note that the
syntax in the example does not allow empty argument lists.)

For readability, normal parentheses may be used for grouping EBNF
expressions, as done in the last production of the example. Note the
difference between the first and second left bracket. The first one is part
of EBNF itself, the second one is a terminal symbol (it is quoted) and,
therefore, may appear in the language described.

A production is always terminated by a period (.).

MCUez HC12 Debugger

236

Extended Backus-Naur Form (EBNF) MOTOROLA

C.4 EBNF Syntax

C.5 Extensions

MCUez HC12 Debugger

Extended Backus-Naur Form (EBNF)
EBNF Syntax

The following defines EBNF syntax:
Production=NonTerminal "=" Expression ".".
Expression=Term {"|" Term}.

Term=Factor {Factor}.

Factor=NonTerminal

| Terminal

| "(" Expression)"

| "[* Expression "]"

| “{"* Expression "}".
Terminal=Identifier | “"“ <any char> “"“.
NonTerminal=Identifier.

The identifier for a non-terminal can be any name. Terminal symbols are either
identifiers appearing in the language described or any character sequence that
iS quoted.

In addition to this standard definition of EBNF, the following notational
conventions are used:

» Count repetition — Anything enclosed by curly brackets ({ and }) and
followed by a superscripted expressiomust appear exactlytimes.x
may also be a non-terminal. In this example, exactly four stars are
allowed:

Stars={"*"} 4

» The size in bytes — Any identifier immediately followed by a number
in square brackets ([and]) may be assumed to be a binary number with
the most significant byte stored first, having exantlytes. Example:
Struct=RefNo FilePos[4]

* Insome examples, text is enclosed by greater than and less than symbols
(<and>) . This text is a meta—literal. Whatever the text says may be
inserted in place of the text. <any char> in the example4rEBNF
Syntax means any character can be inserted.

User’'s Manual

MOTOROLA

Extended Backus-Naur Form (EBNF) 237

Extended Backus-Naur Form (EBNF)

User's Manual MCUez HC12 Debugger

238 Extended Backus-Naur Form (EBNF) MOTOROLA

User’'s Manual — MCUez HC12 Debugger

D.1 Contents

MCUez HC12 Debugger

Appendix D. Serial Device Interface (SDI)

D.2 Introduction. e
D.3 OVeIVIEW. . . .
D.3.1 System POWer.
D.4 Communication Configuration.
D41 Data Format. e
D.5 Default TargetSetup. e
D.6 SettingtheTarget
D.6.1 SDIStatus Bar
D.7 Advanced SDI Environment Setup.
D.7.1 SDI Default Environment
D.7.2 IMODULE e
D.7.3 COMDEY ...
D.7.4 SDI Target Startup File
D.7.5 SDIResetCommand File
D.8 SDITargetMenu
D.8.1 Loading an application.
D.8.2 CommunicationsBaud Rate.
D.8.3 MCU Selection.
D.8.4 MCU E-Clock Frequencyc. ...
D.8.5 Memory Configuration
D.9 SDIOperationsoui e e
D.9.1 On-Chip Hardware Breakpoint
D.9.2 EEPROM Programming,
D.10 OperatingEVBWIithSDI
D.10.1 Operating the SDI with the MC68HC812A4EVB. 251
D.10.2 Operating the SDI with the M68BHC912B32EVB 251

User’'s Manual

MOTOROLA

Serial Device Interface (SDI) 239

Serial Device Interface (SDI)

D.2 Introduction

D.3 Overview

User’'s Manual

D.10.3 Demo Programso 251
D.11 PeriodicUpdates. 252
D.12 SDICOMMANGS.o 253

The serial device interface (SDI) is an interface developed by Motorola and
used by MCUez to communicate with an external target system.

With this interface, an executable program is downloaded from the MCUez
environment to an external target system based on a Motorola MCU, which will
execute the program. Feedback from the target system to MCUez is provided.

SERIAL DEVICE
INTERFACE (SDI)

HOST SYSTEM
TARGET SYSTEM

Figure D-1. Serial Device Interface (SDI)

MCUez supervises and monitors the target system’s MCU. The user can read
and write to internal/external memory (even when the CPU is running),
single-step, run and stop the CPU, and set breakpoints in the code.

The SDl interface is designed around a serial communication link. The interface
is supported by any communication device on the system. The SDI target driver
handles the communication protocol between the SDI and the system. However,
the user can adapt the target system to the SDI interface. The SDI serial port

MCUez HC12 Debugger

240

Serial Device Interface (SDI) MOTOROLA

Serial Device Interface (SDI)
Overview

6-pin connector for the HC12 target system is showignre D-2. The SDI
interface includes two 6-pin serial port connectors.

BGND

NOT CONNECTED

=3 NOT CONNECTED
oy o

Vee
RESET
GROUND

Figure D-2. Serial Port Connector for the HC12

NOTE: The serial port connector for the CPU16/32 is showfigure D-3. The HC16

and 683xxx chip series use a 10-pin connector.

10

6 8
0 o

2 4
nfnll=
[DSO
DSI
FREEZE
BKPT

BERR

Figure D-3. Serial Port Connector for the CPU16/32

The communication protocol is defined in Section 8 Development and Debug

Support of theCPU12 Reference ManyaWotorola document order number
CPU12RM/AD.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Serial Device Interface (SDI) 241

Serial Device Interface (SDI)

D.3.1 System Power

The target system supplies power to the SDI. This power supply must conform
to the TTL (transistor transistor logic) standard. If it does not conform to the
standard, the SDI must have its own power supply.

D.4 Communication Configuration

Communication between the MCUez debugger and SDI interface is set
automatically.

If the host and target are not connected, a dialog box pops up in the debugger as
shown inFigure D-4.

Commumnication Device Specification

— Communication Device

Baud Rate: | 9600 =l

[~ Show Frotocal

Connect Cancel | Help

Figure D-4. Communication Device Dialog Box
Enter an available port in tHeommunication Deviceedit box. Select the baud
rate and clickConnect

If the connection is not established, an error message is displayed Kitk
close the error message and try another port. Once a connection is made, the
settings are saved. The default device is COM1.

NOTE: The communication device and baud rate saved by this dialog box override the
BAUDRATENd COMDE®nvironment variables in the default.env file.

User's Manual MCUez HC12 Debugger

242 Serial Device Interface (SDI) MOTOROLA

Serial Device Interface (SDI)
Default Target Setup

D.4.1 Data Format

The data format used is eight data bits, one stop bit, no parity, and variable baud
rate. The default speed is 9600 baud unless redefined by selectBlthe
Communication... menu option in th&arget menu.

D.5 Default Target Setup

TheTarget menu loads the SDI target component. It can also be set as the
default target in theroject.inifile. Theproject.inifile is located in the working
directory.Figure D-5 shows an example ofaoject.inifile.

[DEFAULTS]

WindowO=Source 0 0 50 40
Windowl=Assembly 50 0 50 40
Window2=Register 50 40 50 30
Window3=Memory 50 70 50 30
Window4=Data 0 40 50 25
Window5=Command 0 65 50 20
Window6=Module 0 85 50 15

Target=MotoESL

Figure D-5. Example of project.ini File

MCUez HC12 Debugger User’'s Manual

MOTOROLA Serial Device Interface (SDI) 243

Serial Device Interface (SDI)

D.6 Setting the Target

Load the SDI target component by opening@wmponentmenu and selecting
Set Target Then select the MotoESL target component.

File “iew Bun Target ERyaa=g findow Help

B EE

Set Target...

gl
1
L

Fonts. ..
Background Calor....

Figure D-6. Selecting MotoESL Target Component

After loading the MotoESL target component, Terget menu itemis replaced
by theSDI menu.

Set...
Load...
Bezet

Communication...
SetMCL. .
SetMCL Speed...
Memam Map...

Figure D-7. SDI Target Menu

D.6.1 SDI Status Bar

After the SDI target component has been loaded, the debugger status bar
displays the current status of the SDI target. Reading from left to right is the
baud rate, debugger running mode, clock frequency of target, power mode,
current MCU Id, and SDI operation.

For Help, press F1 | 9'600 |Backgnd | vrned |Prar: On |MCEZHCTE41 | Goftware Resst 2

Figure D-8. SDI Status Bar

User's Manual MCUez HC12 Debugger

244 Serial Device Interface (SDI) MOTOROLA

Serial Device Interface (SDI)
Advanced SDI Environment Setup

D.7 Advanced SDI Environment Setup

Communication between MCUez and SDI is automatically set at startup.
However, it is possible to manually set communication and other parameters as
described in the following sections.

D.7.1 SDI Default Environment

Parameters for the SDI target component are set idetfailt.envfile located
in the working directory. The user can change the default values as needed.

D.7.2 IMODULE

The MCU Id provides the default values for the integration module. To override
these values, specify one of the following module types withMI@DULE
parameter.

SIM, SCIM, RPSCIM, SCIM2, LIM_N_MUX, LIM_MUX,
SLIM_N_MUX, SLIM_MUX

Example:
IMODULE=SIM

D.7.3 COMDEV

This parameter specifies the communication device to use between the host and
SDI. COM1s the default communication device for PCs. If necessary, another
valid device can be set to establish communications.

Example:
COMDEV=COM3

MCUez HC12 Debugger User’'s Manual

MOTOROLA Serial Device Interface (SDI) 245

wr
PRt

Serial Device Interface (SDI)

D.7.4 SDI Target Startup File

Thestartup.cmdile is executed by the MCUez debugger after the SDI target
driver is loaded. This file must be located in the working directory. The user can
specify any MCUez debugger command in this file.

Example of astartup.cmdile:

wb 0x0035 0x00
wb 0x0012 O0x11

D.7.5 SDI Reset Command File

Thereset.cmdile is executed when the debugger is launched or wResetis
selected in the SDI menu. This file must be located in the working directory.
The user can specify any MCUez debugger command in this file.

D.8 SDI Target Menu

D.8.1 Loading an Application

Select thesDI | Load...menu option to load the application to be debugged (for
example, anabsfile).

D.8.2 Communications Baud Rate

The baud rate is set automatically when the debugger starts to communicate
with the SDI. However, the user can modify this baud rate.

Select thesDI | Communication...menu option to display the
Communicationdialog box shown ifrigure D-9. If the maximum rate the host
computer supports is known, select it from the drop down menu (115,200 is not
supported with SDI); otherwise, select 57600. If communication fails, the baud
rate reduces automatically until communication is established.

User's Manual MCUez HC12 Debugger

246 Serial Device Interface (SDI) MOTOROLA

Serial Device Interface (SDI)
SDI Target Menu

Communication Device Specification

— Commumnication Device

|I:IIIM2

Baud Rate: 33400 =l

k. Cancel | Help

Figure D-9. Communication Device Dialog Box

The maximum baud rate depends on the speed and interrupt load of the host
computer. On slow notebook computers or on computers running on a network,
the maximum baud rate can be as low as 19,200. A buffered I/O card allows the
maximum rate of 57,600 on any host computer. The default value is 9600.

If the Show Protocolbox is checked, all commands and responses sent and
received are reported in t@®mmand Line window. This feature is used by
support personnel from Motorola.

D.8.3 MCU Selection

Select thesDI | Set MCU...menu option to open this dialog box.

MCU Selection M|
[McesHCmzeaz =] MoudD:fosct =]

| order ko perform some operations, the MCL ppe
connected to the SO has to be set comectly, Please
zelect the MCL which fits the connected MCL. [f
your MCL iz nat lizked in the box above, azk for the
updated configuration files.

Cancel | Help |

Figure D-10. MCU Selection Dialog Box

MCUez HC12 Debugger User’'s Manual

MOTOROLA Serial Device Interface (SDI) 247

Serial Device Interface (SDI)

In this dialog box, select the MCU currently used. There are two drop down
menus. They show the currently selected MCU name and MCU Id. Information
is taken from thendsemcu.infile. If a specific MCU is not found in this file,

the user must obtain the latest version of this file.

D.8.4 MCU E-Clock Frequency

Select thesSDI | Set MCU Speed..menu option to open this dialog.

Set MCU Speed

E-Clack Frequency

IEEIEIEIEIEIEI Hz Search |

Ilze 'Search’ to zearch

I™ Auto detect for a walid frequency

Cancel | Help |

Figure D-11. Setting the MCU Speed

This dialog shows the current setting of the E-clock frequency to be used by the
MCU. This frequency must be known by the SDI for proper communication
through the BDM (background debug mode). This is typically half of the crystal
oscillator frequency for the CPU12.

In the edit box, specify the frequency to be used. Gielirchto verify
communication. If it fails, a valid frequency is searched for in the following
order:

16 MHz, 8 MHz, 4 MHz, 2 MHz, 1 MHz, 12 MHz, 6 MHz, 3 MHz, 1.5 MHz,
14 MHz, 10 MHz, 7 MHz, 5 MHz

At startup, the debugger uses the specified frequency. If the debugger fails and
Auto detectis checked, a valid frequency is searched. If communication is not
established, an error message is displayed.

User's Manual MCUez HC12 Debugger

248 Serial Device Interface (SDI) MOTOROLA

Serial Device Interface (SDI)
SDI Target Menu

D.8.5 Memory Configuration

Select thesDI | Memory Map... menu option to open this dialog.

Memory Configuration &
— Configuration ;
File : w:A\projecthBINSO03CH 0T . mem Dpen...
¥ Auto select according to MO 0=3C0 Save...
— Meman ;
Type Start - End Caomment
I 0000 - 01FF MERORY TOF

iRAM 300 - OBFF MEMOR' Fiih

EEPROM 1000 - 1FFF EMEIFW_EEP'HEIM
RAM 8000 - FFEF MEMORY_RaM
1a FFCO - FFFF MEMORY_TOF

Start:IEDD End: IEFF Type IH,.-:-.,M j

Carnmett : |M EMORY_RAK

add | Update | Delete | oK Cancel | Help |

Figure D-12. Memory Configuration Dialog Box

The memory configuration dialog contains the physical setup of the target. This
setup loads automatically if thuto selectbox is checked. MCUez identifies

the setup through the MCU Id given in the previous dialog. However, the user
can modify this configuration, save it, or load a different one. The user can also
add new fields, edit, or remove fields.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Serial Device Interface (SDI) 249

wr
PRt

Serial Device Interface (SDI)

D.9 SDI Operations

D.9.1 On-Chip Hardware Breakpoint

An on-chip hardware breakpoint module can be used to implement breakpoints.
To invoke this module, initialize the environment variabBld/BPMODULEADR

in thedefault.envfile with the address of the hardware breakpoint module. If
hardware breakpoints and the associated module are not being used, comment
out the line shown in this example.

Example:
HWBPMODULEADR=0x20

The SDI hardware can only handle two breakpoints at the same time. Additional
breakpoints will be considered as software breakpoints. When debugging code
in FLASH, do not set more than two breakpoints.

Some actions like “stepping over” or “stepping out” use one internal breakpoint.
For efficient operation, reduce the number of hardware breakpoints to one.

D.9.2 EEPROM Programming

To download code or data into the EEPROM, MCUez needs the location of this
EEPROM. To identify the location, define these two environment variables.

EEPROM_START Defines the address of the first byte of the
EEPROM memory

EEPROM_END Defines the address of the last byte of the
EEPROM memory

Example:
EEPROM_START=0x0D00
EEPROM_END=0xFFF

This specifies the memory range of the EEPROM as 0xD000 to OXOFFF. When
writing to these addresses, the EEPROM is automatically programmed to
download a program or modify the memory or variables interactively.

User's Manual MCUez HC12 Debugger

250 Serial Device Interface (SDI) MOTOROLA

Serial Device Interface (SDI)
Operating EVB with SDI

D.10 OperatingeVBwithSDI

The SDI can be used with any target system equipped with background debug
mode (BDM). The SDI also operates with the M6BHC812A4EVB and
M68HC912B32EVB HC12 evaluation boards (EVB). The evaluation boards
support the HC124A and HC129B32 controllers.

D.10.1 Operating the SDI with the MC68HC812A4EVB

To operate the SDI with the M6BHC12A4EVB, remove the BGND jumper in
the EVB and disable the ROM chip (monitor program) by removing the chip
select jumper from the ROM socket. Also ensure that both operating modes
(MODA and MODB) are set to low.

However, the user can replace the default ROM chips with RAM chips. Consult
theM68HC12A4EVB User’'s Manualjotorola document order number
HC12A4EVBUM/D, to get the correct setup for the chip select jumper and
other jumpers on the EVB.

NOTE: When connecting the SDI cable to the EVB, ensure that the red-colored side of
the cable is aligned with the odd-numbered connector pins on the board.

D.10.2 Operating the SDI with the M68HC912B32EVB

To run the SDI with the M68BHC912B32EVB, connect the SDI cable to the
BDM IN connector on the evaluation board. Set the operating mode as EVB or
PAD. When selecting the PAD operating mode, the SDI can be used in
debugging procedures on the target system. For detailed information, see the
M68HC912B32EVB User’'s ManydWiotorola document order number
68EVB912B32UM/D.

D.10.3 Demo Programs

To run the MCUez demo with the M6BHC12A4EVB, place the jumper in the
CSPO pins 2 and 3 on the RAM socket to allocate memory from $8000. All
demo programs delivered on the SDI installation disk can be loaded and run
with SDI on the EVB board.

MCUez HC12 Debugger User’'s Manual

MOTOROLA Serial Device Interface (SDI) 251

Serial Device Interface (SDI)

D.11 Periodic Updates

The debugger can be configured to periodically refresh the data and memory
components while the application is running. Since the emulator ensures
non-intrusive access on emulated RAM, the application continues to run in real
time.

For the debugger to periodically update data in the memory or data component
window:

» Click the right mouse button in the memory or data component window
and selecMode | Periodicalto open théJpdate Ratedialog box.

» Enter 10inthe rate edit box and cli€K. Information will refresh every
second.

» Start the application. The memory or data component is periodically
refreshed during program execution.

NOTE: Duetohardware restrictions, periodic updates are not possible when hardware
breakpoints or triggers are used in the emulator.

User's Manual MCUez HC12 Debugger

252 Serial Device Interface (SDI) MOTOROLA

Serial Device Interface (SDI)
SDI Commands

D.12 SDI Commands

SDI incorporates two command3AUDandRESET

BAUD

Short: baud rate

Syntax: BAUD [rate]

rate: Specifies the new baud rate. It must be one of the following
values:

1200, 2400, 4800, 9600, 19200, 28800, 38400, 57600

Description:

TheBAUDcommand sets or displays the communication baud rate between
the system controller and host computer. For maximum performance, set the
baud rate as high as the host computer can accommodate. The maximum rate
is 57,600; the default baud rate is 9600.

Enter theBAUDcommand without specifying a value to display the
Communications Specificationdialog box. If the host is unable to support

the requested baud rate, an “Out of synchronization” message is displayed.
SelectABORT to exit orRETRY to use the default baud rate.

Example:
BAUD 57600

RESET

Short: target reset

Syntax: RESET

Description:

Resets the SDI target and executegdiset.cmdile

MCUez HC12 Debugger User’'s Manual

MOTOROLA Serial Device Interface (SDI) 253

Serial Device Interface (SDI)

User's Manual MCUez HC12 Debugger

254 Serial Device Interface (SDI) MOTOROLA

User’'s Manual — MCUez HC12 Debugger

MCUez HC12 Debugger

Index
Symbols
abs .. 183
fppfileloading. 198
A
ACTIVATE. . . 151. .
ADDRESS ERROR 31...
Application
Assembly Step 82 ...
Loading.o 74 ...
Starting 76 ...
Step IN. .. 82,227
Step OUL 229, ..
Step OVer .. 82,229
StOPPING - . 76,.226
Target . .. 24. ...
ARM . L 201
AT 101 ..
ATTRIBUTES . . . e e e e e 152. .
Auto select accordingtoMCU Id. 198. .
AutomatiC 61,66, 224
AUTOSIZE. . . . 161. .
AULOSIZE . . 43. ...
B
Background Color. 42 ...
BAUD 190.191
Baud Rate 243 246
BAUDRATE. 183.187, 242
B . . 119
BCKCOLOR. ... e 162
B . e 164

User’'s Manual

MOTOROLA

255

User’'s Manual

BiN. .. 84, 88.
Binary 84,.85, 88
blank 195
BIOCKNO. 201 ..
BIOCKS 195 ..
Breakpoint. 52, 54.
BREAKPOINT . ..o e 30. ..
Countingo i 80, 226, 227
Deleting. . ..o 80...
Multiple selection 78. ..
Permanent. e 79. ...
POSItION e 79 ...
SettiNg. . .o 7. ...
BS . 121. ..
BUS ERROR 31
C
CALL ... e 102
CallChain. 221
5 5 122,
CF e 123.
CLOSE . .. e 163.
(0] [P & A
COMDEV 242,245
Command
Base. e e 118
MCUEBZ . .. 151..
SYNMAX . . vt 90. ...
Communication.t 24Q . .
Communication deviCe e 182.242
Component
Assembly. 75,.76
CPU. L e 46. . ..
Data. e 75,76, 83, 226
MEMOIY. . . 88
Procedure 221. ..
Register. 75, 85.
SOUICE . . .t e 75 76.
CONNECHION 181. ..

MCUez HC12 Debugger

256

MOTOROLA

MCUez HC12 Debugger

CPU Message
ADDRESS ERROR

BUSERROR

DEVICE i
disabled..........................
Disabling.
DISARM.

DW ..

EBNF

End

Index

User’'s Manual

MOTOROLA

257

User’'s Manual

ENDWHILE e 106
Environmentvariables o L. 186,.245
ERASE . . . 201
Erasing 198
EVB. . 189.251
EVB examples 251 ..
EVB Mode. 189 ..
EXECUTE ... e e 130..
Expression definition (EBNF) 96. ..

Extended Backus-Naur Form, see EBNF

F
flleName e 201
FILL .. 164
Fill. e 59,.61
FIND . ..o e 165
FLASH ... e 201 ..
Module selecting. 197..
Operations. 198 ..
FOCUS ... e 107. ..
FONT . 166
FOR. .. e 108 134
Format. 83, 85, 88
FPP browse. e 198. ..
FPP directory e e 198. ..
FRAMES e 167 ..
Frozen. e 61,66, 224
G
G o 131
Global e 224
Global Variable
Displaying. 83
GOT O . .t 109
GOTOIF . . 110
H
HALTED. e e 30
Hardware Connection. it 181

MCUez HC12 Debugger

258

MOTOROLA

MCUez HC12 Debugger

Index

Hardware reset e e e 253
HeX . 84, 88
Hexadecimal i 84, 88
HI-WAVE
Application 24
COMPONENT . . . 24. ...
ENgine. 24,
ToOltiP ..o 29
Using on Windows 95 or Windows NT 4.0 73
HSCOLLPOS e e 167
I
IE 111,134
IMODUL. . .. 245
INIT . 201
L
LayoUL. . . 28, 43.
B 132 .
LiSthOX . . 195
LOADD . . . 168
LOADCONTEX . . oo e 201
Loadingan application 226
Loading €Iror o e 199
Loading problem. 199
LoCal . .. 224,
Local variable
Displaying. 230. .
LocKed. 224. . .
LOG .o 133 ..
M
MARKS . 136
MCU . o 240 . .
MCU freqUENCYo e 248 . .
MCU selection e 247 . .
MCUez
PrOjJECLINI . .. 226. .
MCUBZ.INI. o o ottt e e 243 ..

User’'s Manual

MOTOROLA

259

User’'s Manual

MCUId. ... 96,.198 201, 215
MCUIONNN.REG 96, 215
MCUTOOLSL.INI . . e 73
MEM. . . 136
Memory

UM, . 89

WOrd . .. 99...
Memory Map e 190..
Memory Map... ... 184,249
Menu

Simulator. 41. ..

Target e AL
MENUS 243
MOOES . . o 189
Module 69,.195
MONIOT . . . 180..

CONNECHIONot 182 ..

Interfacing. 181..

Loadingot 181..

MeNU BNIESt 183 ..

Startupfile. 183..

Targetconfiguration i 183..
MOtOESL. 243 ..
S, 138

N
Name. . . 195
N . 138
NOCR . . 140
NOLF . o 14Q
O

o 84, 88
Octal . .. 84, 88
OPEN . 169. ..
Operating MOdesS.o ottt 189. ..
OPtIONS . . 73....

MCUez HC12 Debugger

260

MOTOROLA

MCUez HC12 Debugger

Index

P
P 141. ..
Periodical 61,.66, 224
postload.cmd. 177. ..
preload.cmd. 177. ..
PRIORITY . e 183..
Procedure Chain 221. ..
programmed 195. ..
PROJECT.INI. . . e e 41,181
PROTECT . . . e e e e 201 ..
protected 195. ..
Protecting 197. ..
PROTOCOL . ..o e 186 ..
Protocol. 240, 241
o 187
R
R . . 142. ..
RegiSter. . . 57....
Registers
Descriptionfile 96, 215
REPEAT . . e 112,134
reset.Cmd. 177, 246
RETURN. . .. 113 ..
RS 143
S
S 144. ..
SAVE . . 137
SAVECONTEXT . ..o e e 201
SCI0 188
SCIOEXCEpPLioN.o o 188 ..
Sl L 240. . .
CONNECLIONot 242 . .
Defaulttarget 243 ..
Loading.o 250. .
Memory configuration 184, 249
MENU . .. 244
MENUS . . . 243

User’'s Manual

MOTOROLA

261

PoOrt . 240 . .
Power supply. 242 . .
Resetcommandfile.............. 246 . .
SetUD . . o 245. ..
Startup file. 246 . .
Status bar. 244. . .
S ANVEr . . 240 . .
SELECT . . 201 ..
SeleCtingo 197. ..
Serial communication 24Q . .
SET . 170
SLAY 170
SMEM. . . 171
SMODD . . . 172
SPC . 173
SPROC . . 174,231
SREC . 170
Start. . o 195
Starting an application 76. . ..
startup.Cmd 177,246
Stale. . . 195
StaleS. . .. 196
Status message
HALTED.o e 30. ..
Statusregister bits. 57
StEP IN. o 82, 227
Assembly instruction 82
StEP OUL . . 82, 227
Functioncall 229. .
StEep OVer . 82, 227
Stepping Message
STEPPED . . . 30....
Stopping an application. 16,226
Symbolic. 84 ...
User's Manual MCUez HC12 Debugger

262 MOTOROLA

Index

T
T 147. . .
Target . .. 240
TS . o o 188

U
UDEC. . . o e 84, 88
UNDEF 114 ..
UNPROTECT . . . e 201
UNProteCted 195. ..
UNprotecting o oot e 197 ..
UNSELECT . .. 201..
Unsigned Decimal. 84, 88
UNTIL. .o e e 116
UPDATERATE . .. s 175
Vv
VALUES. . .. 176. .
Variable. 186,.245
Displaying global variables. 83. ..
Displaying local variables. 230. .
EditingValue 84...
Format. e 63,.223
Localandglobal 63,223
Mode. ... 66,.224
SCOP i 223
T P o 63
Value. . .. a3
VECIOIS . . o 188
VER. . o 187
W
W AT 117..
Wait Priority 181..
Watchpoint
CoUNtING . . . oo 226 . .
WB .. 148 ..
WHILE . . . 118 134
WL 149
MCUez HC12 Debugger User’'s Manual

MOTOROLA 263

User’'s Manual

WORD .. 175 ..
WOTKDIr . . 73
WorkingDIreCtor. 73
W L 150

Z
ZOOM. . . 176

MCUez HC12 Debugger

264

MOTOROLA

Need to know more? That’s ez, too.

Technical support for MCUez development tools is available through your regional
Motorola office or by contacting:

Motorola, Inc.

6501 William Cannon Drive West
MD:0E17

Austin, Texas 78735

Phone (800) 521-6274

Fax (602) 437-1858
CRC@CRC.email.sps.mot.com

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any prod-
uct or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which
may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey
any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unin-
tended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death as-
sociated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the
part. Motorola and ®) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or 1-303-675-2140.
Customer Focus Center: 1-800-521-6274

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4-32-1, Nishi-Gotanda, Shinagawa—ku, Tokyo, Japan, 03-5487-8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dal King Street, Tai Po Industrial Estate, Tai Po, New Territories,
Hong Kong, 852-26668334

Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/; TOUCHTONE, 1-602-244-8609;
US & Canada ONLY, 1-800-774-1848

HOME PAGE: http://motorola.com/sps/
Mfax is a trademark of Motorola, Inc.

MOTOROLA

Semiconductor Products Sector

	List of Sections
	Table of Contents
	List of Figures
	List of Tables
	Section 1. General Information
	1.1 Contents
	1.2 Introduction
	1.3 Document Conventions
	1.3.1 General Term
	1.3.2 Mouse Operations
	1.3.3 Typographic Styles in This Manual

	1.4 Functional Description
	1.5 Component Windows

	Section 2. Graphical User Interface (GUI)
	2.1 Contents
	2.2 Introduction
	2.3 Toolbar
	2.4 Status Bar
	2.4.1 Debugger Status
	2.4.2 MCU Error Messages

	2.5 Information Bar
	2.6 Drag and Drop
	2.6.1 Dragging from the Assembly Component
	2.6.2 Dragging into the Assembly Component
	2.6.3 Dragging from the Data Component
	2.6.4 Dragging into the Data Component
	2.6.5 Dragging from the Source Component
	2.6.6 Dragging into the Source Component
	2.6.7 Dragging from the Memory Component
	2.6.8 Dragging into the Memory Component
	2.6.9 Dragging from the Register Component
	2.6.10 Dragging into the Register Component
	2.6.11 Dragging from the Module Component

	2.7 MCUez Debugger Main Menu
	2.7.1 File Menu
	2.7.2 View Menu
	2.7.3 Run Menu
	2.7.4 Target Menu
	2.7.4.1 ESL Target

	2.7.5 Component Menu
	2.7.6 Window Menu
	2.7.7 Help Menu

	Section 3. Component Windows
	3.1 Contents
	3.2 Introduction
	3.3 Components
	3.3.1 Component Window Menus
	3.3.2 Source Component Window
	3.3.2.1 Breakpoints
	3.3.2.2 Decoding Instructions
	3.3.2.3 Find Dialog Box

	3.3.3 Assembly Component Window
	3.3.3.1 Retrieving Source Statements

	3.3.4 Register Component Window
	3.3.4.1 Status Register Bits
	3.3.4.2 Editing Registers
	3.3.4.3 Register Display Options Menu

	3.3.5 Memory Component Window
	3.3.5.1 Memory Component Operations
	3.3.5.2 Memory Component Pop-up Menu
	3.3.5.3 Memory Update Mode

	3.3.6 Data Component Window
	3.3.6.1 Expression Editor
	3.3.6.2 Data Component Pop-up Menus
	3.3.6.3 Data Update Mode

	3.3.7 Command Line Component Window
	3.3.7.1 Command Line Component Operations

	3.3.8 Module Component Window

	Section 4. Operating Procedures
	4.1 Contents
	4.2 Introduction
	4.3 Configuring the MCUez Debugger
	4.3.1 Configuring for Use with Editors

	4.4 Automating the MCUez Startup Process
	4.5 Loading an Application
	4.6 Starting an Application
	4.7 Stopping an Application
	4.8 Breakpoints
	4.8.1 Breakpoint Symbols
	4.8.2 Identifying All Positions to Define a Breakpoint
	4.8.3 Defining a Breakpoint
	4.8.4 Deleting a Breakpoint
	4.8.5 Breakpoints Menu

	4.9 Stepping in the Application
	4.9.1 Stepping on Assembly Level
	4.9.2 Stepping Over a Function Call

	4.10 Working with Variables
	4.10.1 Displaying Global Variables from a Module
	4.10.2 Changing the Variable Value Display Format
	4.10.3 Modifying a Variable Value
	4.10.4 Displaying an Allocated Variable Address
	4.10.5 Loading an Address Register with a Variable Address

	4.11 Working with Registers
	4.11.1 Changing the Register Display Format
	4.11.2 Modifying the Content of an Index or Accumulator Register
	4.11.3 Modifying Bit Register Contents
	4.11.4 Retrieving a Memory Dump Starting at a Register-Indicated Address

	4.12 Working with Memory
	4.12.1 Changing the Memory Display Format
	4.12.2 Modifying Memory Address Content

	Section 5. Command Reference
	5.1 Contents
	5.2 Introduction
	5.3 List of Available Commands
	5.3.1 Kernel Commands
	5.3.2 Target Commands
	5.3.3 Component Commands

	5.4 Definition of Terms
	5.5 Register Description File
	5.5.1 File Format

	5.6 Expressions
	5.6.1 Expression Definition in EBNF
	5.6.2 Semantics
	5.6.3 Scope Examples
	5.6.4 Constant Standard Notation

	5.7 Kernel Commands
	5.8 Target Commands
	5.9 Component Commands
	5.10 Command Files

	Section 6. D-Bug12 Monitor Target Component
	6.1 Contents
	6.2 Introduction
	6.3 General Description
	6.4 Interfacing Host Computer and Evaluation Board
	6.4.1 Evaluation Board Configuration
	6.4.2 Hardware Connection

	6.5 Loading the D-Bug12 Target Component
	6.6 Startup Command File
	6.7 D-Bug12 Menu Entries
	6.8 Status Bar
	6.9 D-Bug12 Default Environment
	6.10 D-Bug12 Target Component Commands
	6.10.1 PROTOCOL
	6.10.2 BAUDRATE
	6.10.3 PT
	6.10.4 VER
	6.10.5 DEVICE

	6.11 Communication Scenario
	6.11.1 Stop Program in EVB Mode
	6.11.2 User-Defined Vectors

	6.12 M68EVB912B32 Evaluation Board
	6.12.1 Operating Modes
	6.12.2 Memory Map

	6.13 M68HC12A4EVB Evaluation Board

	Section 7. FLASH Programming
	7.1 Contents
	7.2 Introduction
	7.3 NVMC Graphical User Interface
	7.3.1 Handling FLASH Module
	7.3.2 FLASH Programming Parameter File
	7.3.3 Loading an Application in FLASH

	7.4 NVMC Commands
	7.4.1 FLASH

	7.5 Prepare and Program FLASH Memory
	7.5.1 Non-Banked Memory Model
	7.5.2 Banked Memory Model

	7.6 FLASH Memory Mapping
	7.6.1 M68EVB912B32 Evaluation Board Characteristics
	7.6.2 M68HC12A4 Evaluation Board Characteristics
	7.6.3 HC12DG128/HC12DA128 Evaluation Board Characteristics

	7.7 FLASH Programming Examples
	7.7.1 From a Command Line
	7.7.2 From a Command File

	Appendix A. Register Description File
	A.1 Contents
	A.2 Introduction
	A.3 File Format
	A.4 Description Using Extended Backus–Naur Form (EBNF)

	Appendix B. C Source-Level Debugging
	B.1 Contents
	B.2 Introduction
	B.3 Source Component
	B.4 Procedure Component
	B.4.1 Operations
	B.4.2 Drag Out
	B.4.3 Drop Into

	B.5 Data Component
	B.6 Breakpoints Setting Dialog
	B.7 General Rule for Halting on a Control Point
	B.8 Configuring the Default Layout
	B.9 Loading an Application
	B.10 Stopping an Application
	B.11 Defining Counting Breakpoints
	B.12 Stepping in the Application
	B.12.1 Stepping at Source Level
	B.12.2 Stepping Over a Function Call (Flat Step)
	B.12.3 Stepping Out of a Function Call

	B.13 Displaying a Local Variable from a Function
	B.14 Miscellaneous C Source-Level Commands

	Appendix C. Extended Backus-Naur Form (EBNF)
	C.1 Contents
	C.2 EBNF File Format
	C.3 EBNF Example
	C.4 EBNF Syntax
	C.5 Extensions

	Appendix D. Serial Device Interface (SDI)
	D.1 Contents
	D.2 Introduction
	D.3 Overview
	D.3.1 System Power

	D.4 Communication�Configuration
	D.4.1 Data Format

	D.5 Default�Target�Setup
	D.6 Setting the Target
	D.6.1 SDI Status Bar

	D.7 Advanced SDI Environment Setup
	D.7.1 SDI Default Environment
	D.7.2 IMODULE
	D.7.3 COMDEV
	D.7.4 SDI Target Startup File
	D.7.5 SDI Reset Command File

	D.8 SDI�Target�Menu
	D.8.1 Loading an application
	D.8.2 Communications Baud Rate
	D.8.3 MCU Selection
	D.8.4 MCU E-Clock Frequency
	D.8.5 Memory Configuration

	D.9 SDI�Operations
	D.9.1 On-Chip Hardware Breakpoint
	D.9.2 EEPROM Programming

	D.10 Operating�EVB�with�SDI
	D.10.1 Operating the SDI with the MC68HC812A4EVB
	D.10.2 Operating the SDI with the M68HC912B32EVB
	D.10.3 Demo Programs

	D.11 Periodic Updates
	D.12 SDI�Commands

	Index

