Yy
4\

Getting started with K32WO0x1 in Matter

NXP Semiconductors. Getting started with K32WOx1 in Matter 1

Rev. 1.0 NXP Semiconductors

|
2

CONTENTS

1 INTRODUCTION ...ovuvueeeeeeesesesesesessesesesesesesesssesssesssenenesesesenenenenesesenenesenensasaeas 3

2 HARDWARE SETUPucuiuiuuiueueueueueueueaeseaeseaeseataeseaeseaetaea e et et et et et et ee st e ettt et e et et et et et eb et et et et et et et ebetetesnsenan 4

3 MATTERENVIRONMENT SETUPcuuiuuiumiiieieiemeieiesesiseeseee sttt sttt 5
3.1 WSL UBUNTU 2004 LTS eevveeeeerreseseressssesesssssessssssessssssesessssesessssesessssssssesssessesssssssssesssssssssssssssassssssssssssssssesssesssssssssseee 5
3.2 LINUX VIRTUAL IMACHINE ...cutiuiitiietinieniesie sttt cb b s st a bbbt b st b bbb e b s b s b e b e b e s b e s b e e bt et e b e b e b e b e s b e s bt ebbenne

3.3 SETTING UP MATTER ENVIRONMENT

4 K32WOXL MATTER EXAIMPLEScccettttttieeeteeeeeeeeeeeessmssesssnnnnnnnnnsnnnnnnnnes 11
4.1 MATTER APPLICATION BUILDING INSTRUCTIONceieitteeiteeeereeeeteeeiseeeeeseeeaseeeasseesaseesasseeassssessssessssesssssessssesssesessssssasssssssessssesessssnsseesns 11
4.2 SECOND STAGE BOOTLOADER APPLICATION BUILD.....eeeveeiterteeieersesseesssesssessesssaseesssessesssssssessseessessseessesssssssesssssnsssssesssesssesssssnsessassnes 13
4.3 WRITING MATTER APPLICATION TO THE DKB-K32WOX1 BOARD......ccceeireetereeseesreeseessesseesseesseessesssesssesssessesssssssesssesssessasssesssennes 14
4.4 K32WOX1 MATTER APPLICATION DEBUG.....ccccuttieuieieiieiitieieiteesteesiseessssesssseesiseesasssaesssessssssssssssssssssssssnssssssessasesssssessssesssssesssssesnns 18
4.5 K32WOX1 MATTER APPLICATION USER INTERFACE.......eeictteeiteeeiteeesteeeetesaseesasessasesaseesasessssssssssssessssssssssssssesssssssessessssessssssssssessnne 23

5 MATTER NETWORK — CHIP TOOL COMISSIONGING AND CONTROLccccevtriereeeeeeeeeeeeeeeeesssmsssssmsssssssssssssssnsssnnnns 25

6 K32WOX1 - EXPLORING WITH IMATTER ...ettiiiiiiiriiuurteeeeeeessesssnunsteneeesessessnsestesessssessssssnssseesessssssesssnsensssseees 28
6.1 ADDING MANUFACTURING DATA TO THE APPLICATIONuttieitteeitteesieeeeiseeessreeseseessssesssesssssesssssssssssesssssssssssnsssssssssnssssssessssessssssssssaens 28
6.2 OVER THE AIR UPGRADE — FLASH CONFIGURATION.... 32
6.3 READING TOKENIZER LOGS ... uvteeitteeereesiseeeisreesseeaessssesssesssasssssssasssesssesssssssssssssssessssssssssssssssessnssssssssssssssssssssssssesesessssssssssesseeessssassnns 32
6.4 ZAP TOOL. UPDATE CLUSTER/ENDPOI NT FUNCTIONALITY Lettiiitiitee ettt erressestssssestasssesnasessessasssessnssssessnnsssessnnsssessnnsssssnssssensnnnnss 33

NXP Semiconductors. Getting started with K32WOx1 in Matter 2

Rev. 1.0 NXP Semiconductors

Yy
4\

1 INTRODUCTION

Matter (previously known as Project CHIP) is a new single, unified, application-layer connectivity standard
designed to enable developers to connect and build reliable, secure l1oT ecosystems and increase compatibility
among Smart Home and Building devices.

For enabling Matter devices, NXP offers scalable, flexible and secure platformsto enable the variety of use cases
Matteraddresses—from end nodes to gateways — so device manufacturers can focus on product innovation and
accelerating time to market.

This document focuses on NXP’s standalone solution for Matter end nodes/routers with Thread using the
K32WO0x1 wireless microcontroller family.

The K32WO0x1 portfoliois designed for ultra-low-current multiprotocol wireless loT devices with support for IEEE
802.15.4 mesh network protocols Zigbee® and Thread™ as well as Bluetooth® Low Energy 5.0. These wireless
MCUs include multiple low-power modes and ultra-low radio Tx and Rx power consumption which enables loT
products powered by K32WO0x1 to have extended battery life. With high Rx sensitivity and configurable Tx
output power, the K32W0x1 MCUs offer reliable and robust connectivity performance.

https://www.nxp.com/part/K32W061#/
https://www.nxp.com/part/K32W041#/

NXP Semiconductors. Getting started with K32WOx1 in Matter 3

Rev. 1.0 NXP Semiconductors

Yy
4\

2 HARDWARE SETUP

The minimum hardware required to create and run an end to end Matter setup with K32WO0x1 is listed below:

- i.MX8M Mini EVK - acting as a Thread Border Router and Chip Controller: SMMINILPD4-EVK

- USB-K32WO0x1 — acting as RCP for Thread Network: USB-K32WO0X1

- DK6-K32WO061 + Expansion board OM15082- acting as Matter Accessory Device: IOTZTB-DK006
- SEO51H - Secure Element- optional, to be used for cryptographic operations: SEQ51

Matter
(Thread, Bluetooth)

< L

DK6-K32W0x1 EVK

(DK6 board, K32W-001-T10 Mezzanine
Module, OM15082 Switches Expansion
board)

' 12C

CHEELTT

Secure element SE051H (optional)

NXP Semiconductors. Getting started with K32WO0x1 in Matter 4

Rev. 1.0 NXP Semiconductors

Yy
4\

3 MATTER ENVIRONMENT SETUP

Matter developmentrelies on open-source resources, leveraging Linux based operating systems like Ubuntu and
othertools like git, gcc and python. This also includes GN, a meta build system that generatesmakefilesand Ninja,
a build system meant to replace Make tool.

Matteris available as an open-source SDK containing all the necessary components from scripts to install required
tools to stack source code and vendor provided applications.

First step in developing a Matterapplication is to have Linux support forthe build. The recommendationis to have
a native Linux machine. If Windows is preferred operating system, support for the build can be set by using:

- Windows Subsystem for Linux (WSL);
- Linux Virtual Machine;

3.1 WSL Ubuntu 20.04 LTS

The Windows Subsystem for Linux (WSL) provides a GNU/Linux environment directly to Windows.

Use the following steps to install the WSL Ubunut 20.04 LTS:
1. On Windows 10, open PowerShell as administrator and run the following commands:
Enable the Windows Subsystem for Linux:

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart
Enable virtual machine feature:

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart

Restart your machine to complete the WSL installation

2. Install the Ubuntu 20.04 from Microsoft Store

Create a user account and password for your new Linux distribution

NXP Semiconductors. Getting started with K32WOx1 in Matter 5

Rev. 1.0 NXP Semiconductors

nter new UNIX username:

Afterinstallationis complete, run Ubuntu 20.04 LTS as administrator. Administrator rights are required on the
first run to install needed packages for Matter.

Al Apps Documents Settings Email More ¥

Best match

Ubuntu 20.04 LTS
Kl >
App

Apps Ubuntu 20.04 LTS

[l Ubuntu 18.04 LTS > App
Documents - This PC (4+)
Folders (2+) 7 Open
S Run as administrator
<= Pin to Start
<9 Pin to taskbar
%5 App settings
Y= Rate and review
|22 Share
[i] Uninstall
£ ubun

3.2 Linux Virtual Machine
The following steps guide you through virtualbox machine installation steps:

- Download and install virtual machine: https://www.virtualbox.org/wiki/Downloads

- Please consider that based on your operating system some extra steps will be required for enabling the
Virtualization support. These extra steps consist in settings that need to be done in the machine’s BIOS
regarding virtualization support and they depend on the machine type and manufacturer. For further
details, please consult your machine’s user manual.

- Download the desktop image for Ubuntu 20.04 Focal and create virtual machine using the downloaded
ISO.

- Configure the virtual machine:

- Linux Ubuntu 20.04 (64 bit);

- VM disk size — more than 20GB;

NXP Semiconductors. Getting started with K32WOx1 in Matter 6

Rev. 1.0 NXP Semiconductors

Yy
4\

- Enable USB controller -> USB 1.1(OHCI) Controller (supportfor USB 2.0 is recommended, if possible,
this being available via the Oracle VM VirtualBox Extension Pack);

- Enable network adapter-> Adapter 1-> Attached to Bridged Adapter;

- Otherrecommended settings are to increase the number of cores and the size of RAM to be dedicated
to the virtual machine. This depends on the user’s actual machine. Minimum recommendation is to
have 4 dedicated cores and 4 GB of RAM.

N O — [m} X
e
B General B preview
® :
10 R
L_,?. 20.04 - Sett gs X
M oo General Ubuntu 20.04
B | system Basic Advanced Description Dik Encryption
o oo tarme: [Ubuntu 20.04]
. Type: [t - g3
ﬂ storage Versen: | Ubuntu (§4-bit) -
(D,J Aud
!1- Network
S Serial Port:
o/\ use
_—J Shared Fold
E User Interf:
NXP Semiconductors. Getting started with K32WOx1 in Matter 7

Rev. 1.0 NXP Semiconductors

Yy
4\

3.3 Setting up Matter Environment
The following steps guide you through creating Matter build environment for K32W0x1 MCU.

1. Matter Dependencies:
Check for updates and install dos2unix (useful for WSL):
S sudo apt update
S sudo apt upgrade --y

S sudo apt-get install dos2unix # optional, required if using files having DOS style line endings that need to be
converted to Linux style line endings

Install Matter dependencies:

S sudoapt-get install git gcc g++ python pkg-config libssl-dev libdbus-1-dev libglib2.0-dev libavahi-client-dev
ninja-build python3-venv python3-dev python3-pip unzip libgirepository1.0-dev libcairo2-dev gcc-arm-none-eabi

S

$ sudo apt-get install git gcc g++ python pkg-config libssl-dev libdbus-1-dev libglib2.0-dev libavahi-client-
dev ninja-build python3-venv python3-dev python3-pip unzip libgirepositoryl.@-dev libcairo2-dev
Reading package lists... Done

Building dependency tree

Reading state information... Done

Note, selecting 'python-is-python2' instead of 'python'

g++ is already the newest version (4:9.3.0-1ubuntu2).

gcc is already the newest version (4: .0-1ubuntu2).

libcairo2-dev is already the newest version (1.16.0-4ubuntul).

pkg-config is already the newest version (©.29.1-8ubuntu4).

python3-dev is already the newest version (3.8.2-8ubuntu2).

unzip is already the newest version (6.0-25ubuntul).

ninja-build is already the newest version (1.10.0-1buildl).

python-is-python2 is already the newest version (2.7.17-4).

python3-venv is already the newest version (3.8.2-0ubuntu2).

git is already the newest version (1:2.25.1-1ubuntu3.5).

libavahi-client-dev is already the newest version (0.7-4ubuntu7.1).
libdbus-1-dev is already the newest version (1.12.16-2ubuntu2.2).
libgirepositoryl.8-dev is already the newest version (1.64.1-1~ubuntuze.04.1).
libglib2.0-dev is already the newest version (2.64.6-1~ubuntu20.04.4).
libssl-dev is already the newest version (1.1.1f-1ubuntu2.16).

python3-pip is already the newest version (20.0.2-5ubuntul.6).

0 upgraded, © newly installed, @ to remove and © not upgraded.

Restart the Linux machine/environment if required.

2. Getting the K32WO0x1 SDK:

The MCUXpresso SDK builder website allows the userto create SDKs for K32WO0x1 by choosingthe option
forHost OSto be Linux and selecting all middleware components. For the following steps used as example,
the SDK 2.6.8 for the K32W061 variant was used. Download and unzip into a predefined location onyour
PC (for example on Windows OS, C:/nxp or on Linux based OS, /home/user/Documents).

NXP Semiconductors. Getting started with K32WOx1 in Matter 8

Rev. 1.0 NXP Semiconductors

nxp.com/en/t hweK3ZW Kokre 43 @ =

* Internal Create Jira ticket

o8 et Build SDK for K32W061DK6

Host 08 A oo T e n SDK Version 26,8 (released 2022-07-12)

SOK Tag REL_SOK_IN_QN_K32W_268
SELECT ALL UNSELECT ALL
Name Category Description Dependencies
AWS loT Core Mddieware Amazon Web Service (AWS) loT Core SDK
CMSIS DSP Library CMSIS DSP Software Library
NTAG I2C Middleware NTAG 12C (plus) communication library «
Wireless BLE stack Maddieware 8LE
Wireiess OpenThread stack Maddieware OpenThread
Wireless zigboe stack Middleware ZIGBEE
FreeRTOS Reaktime operaling system or microcontrolles from Amazon

DOWNLOAD SDK

Can't find the middieware you are looking for?

Let's ry 1o use “Fitering Criteria” options! By clicking at Middleware selection page you can find and select desired middieware you are looking for. On Middieware selection page you can set it up as required for your configuration. When
Middieware is set as required, the right side under ‘Matched Hardware Platorms' section easily allows you 1o see results of HW platforms matching your criteria by one cick (not just for Middleware anly)

«

Web: 202220, Builder: 202220 Privacy Policy | Terms of t | Accessb © 2022 NXP Semiconductors. AR rights reserved.

If the downloaded SDK is not the Linux host variant, thenthe following command must be run to resolve
errors with the file formatting for the SDK intended for a non-Unix host system:

S find . -type f -print0 | xargs -0 dos2unix

3. Matter Building Setup instructions:
Clone the Matter SDK using the public repo:

S git clone https://github.com/NXPmicro/matter/
S cd matter

S git checkout v1.0-branch-nxp

S git pull

S git submodule update --init —recursive

Start build environment by running the activate script:
S source ./scripts/activate.sh

Note that the activate.sh script can take a long time to execute; this behavior is normal.

NXP Semiconductors. Getting started with K32WO0x1 in Matter 9

Rev. 1.0 NXP Semiconductors

NXP Semiconductors.

Rev. 1.0

patching file fsl_os_abstraction_free_rtos.c
Hunk #3 succeeded at 473 with fuzz 1.
Hunk #4 succeeded at 524 with fuzz 2.

patching file otautils.h
K32W SDK 2.6.6 was patched!

$
$

M TTer

source scripts/activate.sh

Downloading and installing packages into local source directory:

up CIPD package manager...

up Python environment.
up Host tools
Activating environment (setting
environment variables
environment variables
environment variables

environment variables

Checking the environmen

done (1m4.65)

..done (2m0.8s)
..skipped (8.1s)

done (0.1s)

environment variables):

for
for
for
for

CIPD package manager.
Python environment.
pw packages.

Host tools..

20220926 18:08:13] Environment passes all checks!

Environment looks good, you are ready to go!

.done
.done
.skipped
.done

To reactivate this environment in the future, run this in your

terminal:

To deactivate this environment, run this:

s i

Getting started with K32WOx1 in Matter

10

NXP Semiconductors

Yy
4\

4 K32WO0X1 MATTER EXAMPLES

In the current Matter SDK for K32WO0x1 platform we are providing reference examples forend nodes, Thread End
Device type applications, with support for low power, over the air update and cluster configuration and control.

The examples are listed in the matter-> examples:

$ 1s -1 -R | grep nxp/k32w/k32w0:
. fcontact-sensor-app/

./lighting-app/
./lock-app/

These applications provide support for persistence data storage (PDM) used for storing Matter and Thread
configuration data. These are stored in the external flash memory available on the DK6 board as Macronix
MX25R8035F connected through Quad SPIFl interface orthe stacked flash of the samevariantin the K32W041AM
part connected through Dual SPIFl interface. The available space on this memory is 8 Mbit (1 MB). The SPIFI
interface on the K32WO0x1 part supports up to 16 MB of external flash space.

4.1 Matter application building instruction
The following build steps are based on the lighting app reference for NXP K32WO0X1 - Building steps:
https://github.com/NXPmicro/matter/tree/v1.0-branch-nxp/examples/lighting-app/nxp/k32w/k32w0

e Set the environment variable NXP_K32W0 _SDK_ ROOT to where you extract the SDK. An example is
shown below, where the SDK is unzipped into the ~/Documents/SDK_2_6_8 K32WO061DK6 directory:
S export NXP_K32W0 _SDK_ROOT=~/Documents/SDK_2 6 8 K32WO061DK6

e Apply SDK patch from the Matter root directory using the following command:
S ./third_party/nxp/k32w0_sdk/sdk_fixes/patch_k32w_sdk.sh

e Build K32W0x1 example application. Adapt the gn command with the device configuration by
enabling/disabling the compile options:
o Chip type (061/041/041A/041AM) for example, for K32WO041AM, build_for_k32w041am

o OTArequestor feature: chip_enable_ota_requestor (true by default)

o Low power support: chip_with_low_power (available for contact sensor and lock apps)

o Secure element SEO15H usage: chip_with_se05x

o 0M15082 Expansion board attached to DK6 board: chip_with_OM15082

o OpenThread command line interface: chip_with_ot _cli

o Manufacturing data like DAC and PAIl certificates and other security related data:
chip_with_factory _data

o Support for pigweed tokenizer applied on the constant strings: chip_pw_tokenizer_logging

o Support for OpenThread CLI: chip_with_ot_cli

o Incasethe K32WO0x1 chip is used on a board withouta 32KHz crystal, there is the option of using
the internal 32KHz free running oscillator as a clock source. This can be enabled by setting
use_fro_32k=1

NXP Semiconductors. Getting started with K32WOx1 in Matter 11

Rev. 1.0 NXP Semiconductors

Yy
4\

S cd examples/lighting-app/nxp/k32w/k32w0

S gn gen out/debug --args="k32w0_sdk_root=\"S{NXP_K32W0_SDK_ROOT}\" chip_with_OM15082=1

chip_with_ot_cli=0is_debug=false chip_crypto=\"tinycrypt\" chip_with_se05x=0
chip_pw_tokenizer_logging=true
mbedtls_repo=\"//third_party/connectedhomeip/third_party/nxp/libs/mbedtis\""

e Compile the demo application with the following command:
S ninja -C out/debug

e Sign the image:
S SNXP_K32W0_SDK_ROOT/tools/imagetool/sign_images.sh out/debug/

e |f permission denied error is encountered, run the following command:
S chmod +x SNXP_K32W0_SDK_ROOT/tools/imagetool/sign_images.sh

e There might be also a Python error related to pycrypto which can be fixed by issuing:
S pip3install pycrypto
S pip3install pycryptodome

Recommended versions for these Python packages are:
S pip3list | grep -i pycrypto

pycrypto

2.6.1

pycryptodome 3.9.8

S gn gen out/debug --args="k32w0_sdk_root=\"S{NXP_K32W&_SDK_ROOT
J\" chip_with_0M15082=1 chip_with_ot_cli=0 is_debug=false chip_crypto=\"tinycrypt\" chip_with_se85x=0 chip_pw

_tokenizer_logging=true mbedtls_repo=\"//third_party/connectedhomeip/third_party/nxp/libs/mbedtls\""

device: K32W061
board: k32w061dké
ntag: 1
high power: @
Made 2484 targets from 205 files in 172ms
% ninja -C out/debug/
ninja: Entering directory ‘out/debug/’
[893/893] stamp obj/default.stamp
S SNXP_K32WO_SDK_ROOT/tools/imagetool/sign_images.sh out/debug/
bash: fhome/mihai/Documents/SDK_2_6_9 K32W061DK6//tools/imagetool/sign_images.sh: Permission denied
S
% SNXP_K32WO_SDK_ROOT/tools/imagetool/sign_1images.sh out/debug/
Python package ** pycrypto ** is not installed! Please install it then recompile.
Installation command: pip3 install pycrypto
% pip3 install pycrypto

Collecting pycrypto

Using cached pycrypto-2.6.1-cp38-cp38-linux_x86_64.whl
Installing collected packages: pycrypto
Successfully installed pycrypto-2.6.1

S pip3 install pycryptodome
Collecting pycryptodome
Using cached pycryptodome-3.15.08-cp35-abi3-manylinux2016_x86_64.whl (2.3 MB)
Installing collected packages: pycryptodome
Successfully installed pycryptodome-3.15.8
S SNXP_K32WO_SDK_ROOT/tools/imagetool/sign_images.sh out/debug/
No compatibility list
Boot Block Offset: eeegebfe
arm-none-eabi-objcopy: out/debug//stIHbA7j: section .bss lma ©x94be4 adjusted to 8x94c1@
Writing checksum fbfb756c to file out/debug//chip-k32wex-light-example
Writing CRC32 of header 2c933807 to file out/debug//chip-k32wex-light-example
Binary size is 0009%0c10 (592912) I
$

NXP Semiconductors. Getting started with K32WOx1 in Matter

Rev. 1.0

12

NXP Semiconductors

Yy
4\

e After build is complete, the results can be found in
examples/<application_name>/nxp/k32w/k32w0/out/debug folder, which contains the elf and bin files
for the application.

e Forexample, for the lighting app, in the examples/lighting-app/nxp/k32w/k32w0 folder, user can find
chip-k32wO0x-light-example as elf file and chip-k32wO0x-light-example.bin as binary file.

4.2 Second Stage Bootloader application build
Using the chip_enable_ota_requestor build option in the Matterapplication build will automatically enable over-
the-air update support. This means that the user must program two application binaries into the board, the first

being the Second Stage BootLoader (SSBL) and the second being the binary obtained in the Matter application
Building instructions step.

If chip_enable_ota_requestor is set to false, then only the Matter application binary is required; however, the
device will be unable to receive over-the-air firmware updates.

Below are are steps to build the SSBL application:

- Asa prerequisite, the user must have the MCUXpresso IDE installed for this step, and the K32W0x1
SDK imported in the IDE.

- The SSBL can be built from the SDK demo examples:

Import SDK example(s) -> select wireless->framework->ssbl application.

SDK Import Wizard o ®
i\ The source from the SDK will be copied into the workspace. 2
If you want to use linked files, please unzip the 'SDK_2.x_K32W061DK6' SDK. ‘ ‘ (—/
. Import projects

| Project name prefix: k32wos1dks Project name suffix:

[0 use default location

Project Type Project Options

CProject SDK Debug Console semihost () UART

(0 import other files

» [Edemo_apps
» | & driver_examples
rtos_examples
+ B £ wireless_examples
= bluetooth
~ @ E framework
» = nfc
~@=bm
ussbl The ssbl application
¢ hybrid
openthread

- The SSBL project must be compiled with the PDM_EXT_FLASH define:

NXP Semiconductors. Getting started with K32WOx1 in Matter 13

Rev. 1.0 NXP Semiconductors

|
2

Properties for k32w061dké_ssbl o &
|| typefilter text Settings b v o
» Resource
Builders Configuration: Debug [Active] ~ || Manage Configurations...
~ C/C++Build
l Build Variables -
ETonTeTk ®Tool Settings #Build steps Build Artifact [R)Binary Parsers @ Error Parsers
Logging ~ & MCU C Compiler Do not search system directories (-nostdinc)

MCU settings

Settings (2Dialect Preprocess only (-E)
Defined symbols (-0) AR

Tool Chain Editor

» C/C++General includes __REDLIB__
MCUXpresso Config T &Soptimization
Project Natures (2 Debugging CPU_K32WO61HN
Project References EWwarnings CPU_K32WO061HN_cm4
Run/Debug Settings @:}Misc.ellaneous CPU_K32W061
Task Tags (2 Architecture FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL
» Validation ~ ®MCU Assembler FSL_FEATURE_SPIFI_HAS_NO_RESET
(2 General CFG_BLE_PRJ=1

(2 Architecture & Headers ENABLE_RAM_VECTOR TABLE=1

~ ¥ MCU Linker
(B General Undefined symbols (-U)

*

1 (ELibraries
EMiscellaneous

| (B shared Library Settings
(2Architecture

ABMannnnd L inkar Corink

(;_’:‘ Cancel Applyand Close

- Nextstep is to build the project using MCUXpresso. The resulted binary file will be located in the
corresponding debug/release folder: k32w061dk6_ssbl.bin

4.3 Writing Matter application to the DK6-K32WO0x1 board

DK6 Hardware connections:

Application LEDs

User interface

Button

LPC Link2
USB

Jumpers FTDI USB
JP4 & JP7

Application Switches

The Matter application can be downloaded into the DK6 K32WO061 board either:

- viathe LPC-LINK2 USB port using an IDE debugger (for example, MCUXpresso, Jlink);
- via UARTO using the DK6 Flash Programmer;

NXP Semiconductors. Getting started with K32WO0x1 in Matter 14

Rev. 1.0 NXP Semiconductors

Yy
4\

Flashing the application using DK6Programmer:

- Connect the DK6 board using a mini-USB cable to the connector marked with FTDI USB.
- Setthe J4andJ7 jumpers to the middle position (JN UARTO - FTDI)

£ N NTRSTO pastar <, RN (- | = =
; . 70 i m h h
P ——— i, Ti IC1E = 37k 3
3 Ve Tt E 2 ick

YIN 2018 16 14 12 10 B8
GND'GND-ReTN21 18 17 15-13 11 g
= S L

- The DK6 Programmer installer is included in the {SDK path} -> tools folder:

<SDK_root>\tools\JN-SW-4407-DK6-Flash-Programmer

- Once the application is installed, the COM port for K32W061DK6 can be identified by running the
following command from a powershell terminal or command prompt:
DK6Programmer.exe --list
- Use the following commands to write to the board:
- Toerase the internal flash:
DK6Programmer.exe -V 5-P 1000000 -s <COM_PORT> -e Flash
- To write the SSBL at address 0xO0:
DK6Programmer.exe -V2 -s <COM_PORT> -P 1000000 -Y -p FLASH@0x00="k32w061dk6 ssbl.bin“
- To write the PSECT containing the image directory:
- First, image directory 0 must be written:
DK6Programmer.exe -V5 -s <COM_PORT> -P 1000000 -w image_dir_0=0000000010000000

Where the interpretation of the image directory O fields is:
00000000 -> start address 0x00000000

1000 -> size = 0x0010 pages of 512-bytes (= 8kB)
00 -> not bootable (only used by the SSBL to support SSBL update)
00 ->SSBL Image Type

- Second, image directory 1 must be written:
DK6Programmer.exe -V5-s <COM_PORT> -P 1000000 -w image_dir_1=00400000C9040101

NXP Semiconductors. Getting started with K32WO0x1 in Matter 15

Rev. 1.0 NXP Semiconductors

Yy
4\

Where the interpretation of the image directory 1 fields is:
00400000 -> start address 0x00004000

CD04 -> 0x4C9 pages of 512-bytes (= 612,5kB)
01 -> bootable flag
01 ->image type for the application

- To write the application at address 0x4000:
DK6Programmer.exe -V2 -s <COM_PORT> -P 1000000 -Y -p FLASH@0x4000="chip-k32wO0x-light-example.bin"

Flashing the application using LPC-Link2 — J-Link Firmware:

By default, the LPC-Link2 is configured with CMSIS-DAP firmware. The J-Link firmware is also supported by this
debugger and the following instructions can be used to change between the firmware versions.

- Puttheboard in DFU mode for debugger (JP5—DFU mode) and connect the board to the PCvia the LPC-
LINK2 USB

[Tk B s =

= —r—\ SW3
Gedieric Expansion Board x T

= CN3' CNa , PCB2461-

==

- Download LPC Script according to the host OS (Windows, Linux, etc.) and install.

For Windows:

- Gotothe installation folder (for example, by default, C:\nxp\LPCScrypt_2.1.2_57\)
- Inthe \scripts folder, open a Command Prompt and run the program_JLINK.cmd batch file.
- Make sure that the board is connected and press any key to continue.

- Unplug the board and switch the JP5 back to NORMAL.
- The firmware should be flashed to the LPC-Link2 LPC chip.

For Linux

- Gotothe download folder and install the LPC script:
S chmod +x Ipcscrypt-2.1.2_57.x86_64.deb.bin

NXP Semiconductors. Getting started with K32WOx1 in Matter 16

Rev. 1.0 NXP Semiconductors

Yy
4\

S ./lpcscrypt-2.1.2_57.x86_64.deb.bin

- Once installed, execute the script to reprogram your board with JLink firmware:
S <LPCScrypt_InstallDir>/scripts/program_JLINK

- Unplug the board and switch the JP5 back to NORMAL.

- The firmware should be flashed to the LPC-Link2 LPC chip.

- To revert to the CMSIS-DAP firmware, the program_CMSIS script needs to be run from the same folder

using the same procedure

LPCScrypt - J-Link firmware programming script v2.1.2 Nov 2020.

Connect an LPC-Link2 or LPCXpresso V2/V3 Board via USB then press Space.
Press any key to continue . . .

Booting LPCScrypt target with "LPCScrypt 24@.bin.hdr"
LPCScrypt target booted

Programming LPC-Link2 with "Firmware_JLink_ LPC-Link2_ 20190484 ._.bin"

LPC-Link2 programmed successfully:
- To use: make link JP1 (nearest USB) and reboot.

Connect Next Board then press Space (or CTRL-C to Quit)

Press any key to continue . . .

Note: To revert to the CMSIS-DAP firmware, the program_CMSIS script
needs to be run from the same folder using the same procedure.

- Download and install J-Link on your computer;
- Connect the board to the PC;
- Launch J-Link command to connect to the device from the installation folder:
- From Windows:
o InC:\Program Files (x86)\SEGGER\Jlink folder, open a Command Prompt and run:

S Jlink.exe -device K32W061 -if SWD -speed 4000 -autoconnect 1
- From Linux

S JLinkExe -device K32W061 -if SWD -speed 4000 -autoconnect 1
- Erase the image using erase command

S J-Link>erase

- Download new image using loadbin command (please consider that for example with SSBL, the start
address will be 0x4000, otherwise it is 0)

S J-Link>loadbin <path/to/binary/ k32w061dk6_ssbl.bin, 0x0000

NXP Semiconductors. Getting started with K32WOx1 in Matter 17

Rev. 1.0 NXP Semiconductors

Yy
4\

S J-Link>loadbin <path/to/binary/chip-k32wO0x-light-example.bin, 0x4000

Note: Please consider that the PSECT configuration using
DK6Programmer will be also required first time.

4.4 K32WO0x1 Matter Application Debug

The following steps can be applied for Windows as well as for Ubuntu host OS:

- Adebuggermustbe used here, whetherit’s the onboard LPC-Link2 debugger connected through the DK6
board’s LPC-LINK2 USB port, or an external debugger connected to the JTAG on the same board.

- Download and install the MCUXpresso IDE (version >= 11.0.0) and create a workspace.

- Import K32WO0x1 SDK into the IDE. This can be done by drag-and-drop the SDK archive into the
MCUXpresso IDEs Installed SDKs tab.

- Importconnectedhomeip repoin MCUXpresso IDE as Makefile Project. Use none as Toolchain forindexer
settings: File -> Import -> C/C++ -> Existing Code as Makefile Project

NXP Semiconductors. Getting started with K32WOx1 in Matter 18

Rev. 1.0 NXP Semiconductors

B New Project

Import Existing Code

Coeate 8 rew #rom exinsing code i that

Project Name.

mater

Enittin Coxte Loxation

Cmarter

Languages
Hc B

Towichain tos Indexer Settngs
Cygrwin GCC

G Autotoets Tookhain
NP MCL Tooks

7] Show cnly available tocichains that support his platiom

2 e =
- Configure MCU Settings:

Right click on the Project -> Properties -> C/C++ Build -> MCU Settings -> Select K32W061 ->Apply & Close
- Configure the toolchain editor:

Right click on the Project -> C/C++ Build-> Tool Chain Editor

Uncheck “Display compatible toolchains only” and select NXP MCU Tools from “Current toolchain” drop
box.

Apply & Close

B Propertes ac matier

B Propemes ormater o x
MCU settings - Hepe it et ool Chain Editar
B 2vsitabie parts
o Contgutcn: Detadt | Acte | Manage Contrsations..
- s B Peimated
MG e estaled S0 e chck b e it ML 0, et
" an W3aTORS SORS. e0p Logaieg [
[rp— Toeet tockhady NOPMCU ks
P 1081 Target = Semings
~ awost e
2o e Comet e G o e
K
(L™ [roreny
e MCu Ce - Compier Select Taoks.
PCH 1 MCU C Compier
(il MO Assemaser
L MOU G ik
e MG ek
Target archinecture: conesmd b
B Peverve memeey comtgueston
Memany detals (KIZWOS1)
et LinkServes Pt D sowme.
e tame oaaton e -
P PROGRAMF_ s a0 Gaton cpB0NSR
naw snam ecoon atsted
nant shan Rz]
st [hoaramson Doeie| [import| Mee.| Erpor Geneaie
fevemn wcy Coce
Ressore Detaus Apoly tesore et | Aoy
® Aoty i O] | Concet Rastramd Ouse] | Concel

Create a debug configuration:

NXP Semiconductors. Getting started with K32WO0x1 in Matter

19
Rev. 1.0

NXP Semiconductors

N

Right click on the Project -> Debug As->MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes -> OK ->
Select elf file

B Probes discovered o X

L] o x
Select binary for matter

168 binaries found in matter. Seect biary 1o use.

Connect to target: K32W061

1 probe found. Select the probe to use:

Available attached probes Launch Configuration Selection
Name Serial number / L. Type Manufacturer IDE Debug Mode - Image to Debug Location Launch Type
(B LPC-UNK2 CMSIS-DAPVS... CTAYAQR LinkSe.. NXP Semicon.. Non-Stop l

thied_party;

Supported Probes (tick/untick to enable/disable
(2] MCUXpresso IDE LinkServer (inc. CMSIS-DAP) probes
[P& Micro probes

(7] SEGGER J-Link probes

Probe search options

Search again |

2] Remember my selection (for this Launch configuration) |
|

| @ o

- Setthe Connect script for the debug configuration to QN9090connect.scp from the dropdown list:
Right click on the Project -> Debug As -> Debug configurations... -> LinkServer Debugger

) 0rbug Coniguintions o x

Create, manage, and run configurations o

ame: | macter nkServe Defaut

Man | ® GOB Detugger [LruServer Devugger 0 GUA Flash Toot Otmer Symisols. & Startup ' Source T Common
B -+ DO Somiconduetors WU Appics
Debug Configurations. e B LinkServer Debugger

Doty Options
Detrag Comection 5w0 [l
UnkServer Options

= Dty Cometion

Attach onty (21Rases on Comect [Oisable use of precomest srpt

Wonpace . e Sysiem_
Workspace_| Fie Sysem.

1 Insalled SDKs) Properies (£ Problers Temminal © Comale =1 4 image Info O Memory (@ Debugger Console 1}

COT Buiks Console [maier]

15:44:52 **** Build of configuration Default for project matter ===t P err— Rovsf g

- Set the Initialization Commands:
Right click on the Project -> Debug As -> Debug configurations... -> Startup
set non-stop on
set pagination off
set mi-async
set remotetimeout 60000
##target_extended_remote##
set mem inaccessible-by-default S{mem.access}
mon ondisconnect S{ondisconnect}
set arm force-mode thumb

Sfload}

NXP Semiconductors. Getting started with K32WO0x1 in Matter 20

Rev. 1.0 NXP Semiconductors

B8 Debug Configurations

Create, manage, and run configurations ﬁ\ t
Ceeex[e®~ Name: | matter LinkServer Default J
type filter text 5 Main| GDB Debugger I Linkserver Debugger | € GUI Fiash Tool Other Symbols > Startup - % Source | Common

~ B C/C++ (NP Semiconductors) MCU Applicat | nigalization Commands
matter LinkServer Defauit

[E] C/C++ Application [JReset and Delay (seconds): 2

[E] ¢/C++ Attach to Application e

[£] C/C++ Postmortem Debugger mon ondisconnect $(ondisconnect} -
5] C/C++ Remote Application set arm force-mode thumb

[] GDB Hardware Debugging S(ioad) v

[GDB PEMicro Interface Debugging
8 608 seceeR 999 [Load image

Bl Java Applet: i light K32wOx-light "
71 Java Application ®use 9 ig p
& Launch Group O Use file: Workspace.. File System..

¥ Launch Group (Deprecated) Image offset (hex): |:|

T Remote Java Application
4 XSL Load symbols

®Use
O Use file: Workspace... File System...

symbolsotset st [

Run Commands
(] et program counter at (hex):

Bsetireskpoint o

Request hardware breakpoint

[Resume

< >
Filter matched 15 of 15 items

® oo coe

- Save the debug configuration by pressing “Apply”.

- Setthe vector.catch value to false inside the .launch file:
Right click on the Project -> Utilities -> Open Directory Browser here -> edit *.launch file:
<booleanAttribute key="vector.catch" value="false"/>

[C\matter\matter LinkServer Default.launch « Notepads « - o *

File Edit Search View Encoding Language Settings Tools Macro Rum Plugins Window 7 x
sAHE A LashRdciagax B2 E1 En@DHes e RBIEE »

[matter LinkServer Detault launch E3

95 [l<mapAttribute key="org.eclipse.debug.core.preferred launchers’> D
86 | <mapEntry key="[debug]" value=
"com.nxp.mcuxpresso.core.debug. support. link .launch.Li aunch"
red
-</mapAttribute>
88 | <stringAttribute key="process_factory id" value=

"com. nXp.mcuxpresso.core. debug . override .MCXProcessFactory" />
89 | <booleanAttribute key="redlink.disable.preconnect.script" value="false"/>
90 | <booleanAttribute key="redlink.enable.flashhashing" value="true"/>

91 | <booleanAttribute key="redlink.enable.rangestepping" value="true"/>

92 <stringAttribute key="run" value="cont"/>

93 key="vector.catch" value="falsd"§

94 </launchConfiguration>

95 -
eXtensible Marl length : 7065 lines : 95 Ln:93 Col:50 Sel:511 Windows (CRLF) UTF-8 INS.

- Laststepis to start debug the application:

NXP Semiconductors. Getting started with K32WOx1 in Matter 21

Rev. 1.0 NXP Semiconductors

WOPAKB B O QS S L

Debug As >
Debug Configurations... %+ v =0
©Organize Favorites...

1 Debug
(0 matter LinkServer Default [C/C+ « (NXP Semiconductors) MCU Application]
& chip-I32wOx-light-example [K32WO61 (cortex-m4)]
v P Tivead #1 1 (Suspended : Breakpoint)

= main{) at fsl_os_abstraction_free_105.c1,091 0x9064.
43 arm-none-eabi-gdb (8.3.020190703)

init();
0SA_TaskCreate(0SA_TASK(startup_task), NULL);
VTaskStartScheduler();

The alternative for this method is to build an SDK example and reuse the debug configuration by selecting
the Matter example elf file:

- Import an SDK example:

B 50K Import Wizard

NP |
& The source from the SDK will be copied into the workspace. &

If you want to use linked files, please unzip the 'SDK_2.x_K32W061DK6" SDK.

ji -~
. Import projects
Project name prefix: k32w061dk6 % |Project name suffix. g
Use default location

CA\Users\nxa29890\Documents\MCUXpressolDE_11.1.1_3241\workspace\k32w061dk6

Project Type Project Options
@CProject | C++ Project C Static Library (C++ Static Library SDK Debug Console O Semihost @ UART * Example default
Copy sources
M import other files

Examples FIRa=R TRl
‘ type to filter
Name Description Version el
[] & temp_sens
v [m] § w_uart
~ [J & bm
[] = wireless_uart_bm The BLE wireless uart application is a simple demonstration prog...
v [v] & freertos
& wireless_uart_freertos The BLE wireless uart application is a simple demonstration prog..
» [0 € framework .
@ < Back Near || dnsn]| cancel

- Change the elf application to debug with the one from the Matter build:

NXP Semiconductors. Getting started with K32WOx1 in Matter 22

Rev. 1.0 NXP Semiconductors

Yy
4\

B Debug Configurations m] x
Create, ge, and run configurati G\"
s
¥ x i

Name: | k32w061dkb_wireless_uart_freertos JLink Debug

Main %> GDB Debugger| % JLink Debugger Other Symbols € GUI Flash Tool B Startup % Source|] Common

~ (B C/C++ (NXP Semiconductors) MC

[matter LinkServer Default Project:
[E] C/C++ Application K32W061dK6_wireless_uart_freertos —
C/C++ Attach to Application C/C++ Application:

=1 A 7l

C/C++ Postmortem Debugger /home /g /mattesfexsmples/l |
ples/lighting-app/nxp/k 32w/k32wo/out/debug/chip-k32wo-light-example
C/C++ Remote Application I— I

€1 GDB Hardware Debugging Variables.. Search Project..

[GDB PEMicro Interface Debuggin | | Build (if required) before launching
K GDB SEGGER Interface Debuggin

<

B k32w061dib_wireless_uart_fred Build Configuration: |Debug -
1 Java Applet O Enable auto build O Disable auto build
[Java Application (®) Use workspace settings Co A

% Launch Group

¥ Launch Group (Deprecated
T Remote Java Application
x XSL

< >
Filter matched 16 of 16 items

2 o

4.5 K32WO0x1 Matter Application User interface

The example application provides a simple Ul that depicts the state of the device and offers basic user control.

This Ul is implemented via the general-purpose LEDs and buttons built in to the OM15082 Expansion board
attached to the DK6 board:

Application LEDs

User interface

Button

LPC Link2
uUsB

Jumpers FTDI USB
JP4 & JP7

Application Switches

- Application LED D2 shows the overall state of the device and its connectivity. Four states are depicted:

— Short Flash On (50ms on/950ms off) — The device s in an unprovisioned (unpaired) state and is
waiting for a commissioning application to connect.

NXP Semiconductors. Getting started with K32WO0x1 in Matter 23

Rev. 1.0 NXP Semiconductors

Yy
4\

— Rapid Even Flashing (100ms on/100ms off) — The device is in an unprovisioned state and a
commissioning application is connected via BLE.

— Short Flash Off (950ms on/50ms off) — The device is full provisioned, but does not yet have full
network (Thread) or service connectivity.

— Solid On — The device is fully provisioned and has full network and service connectivity.

- Application LED D3 shows the state of the simulated light bulb. When the LED is lit, the light bulb is on;
when not lit, the light bulb is off.
- Application Button SW2 can be used to reset the device to a default state:
o Ashort Press Button SW2 initiates a factory reset.
Afteraninitial period of 3 seconds, LED2 D2 and D3 will flash in unison to signal the pending reset.
After 6 seconds will cause the device to reset its persistent configuration and initiate a reboot.
The reset action can be cancelled by press SW2 button at any point before the 6 second limit.
- Application Button SW3 can be used to change the state of the simulated light bulb.
- DK6 development board — User Interface button
o Ashort Press will start advertising for a predefined period;
o Also, pushingthis button starts the NFC emulation by writing the onboarding informationin the

NTAG.

In case the OM 15082 Expansion boardis notattached to the DK6 board, like the case in which low power support
is enabled, the functionality of LED D2 and LED D3 is taken over by LED DS2, respectively LED DS3, which can be
found on the DK6 board. Also, by long pressing the USERINTERFACE button, the factory reset action will be

initiated.

NXP Semiconductors. Getting started with K32WOx1 in Matter 24

Rev. 1.0 NXP Semiconductors

Yy
4\

5 MATTER NETWORK — CHIP TOOL COMISSIONGING AND CONTROL

The prerequisite for this section is to have the i. MX8M Mini + 8W8987 + K32WO0x1 setup as OTBR and Matter
Controller in order to commission and control Matter devices. The steps for this setup can be found in “Getting
started with i.MX8 Mini in Matter”.

The following instructions will provide information on how to commission and run basic Matter Cluster commands
for an application running K32WO0x1 platform:

Commissioning K32WO0x1 over Bluetooth LE:

- Get the operational active dataset from the Thread Network. On the i.mx8m mini run the following
command:

S ot-ctl dataset active —x

- Activate the BLE advertising on the K32WOx platform by pressing User Interface button;
- Runthe following command to commission the device to the Thread Network:

S./chip-toolpairing ble-thread {NODE_ID_TO_ASSIGN}{ACTIVE_DATASET}{SETUP_PIN_CODE} {DISCRIMINATOR}

Where:

{NODE_ID_TO_ASSIGN} -the matter node id;

{ACTIVE_DATASET} - Thread operational active dataset. The format is hex:xxxxxx).
{SETUP_PIN_CODE} — pin code, default value is 20202021,

- {DISCRIMINATOR} — discriminator, default value is 3840;

Example:

S./chip-tool pairing ble-thread 1
hex:0e080000000000010000000300000f35060004001fffe0020811111111222222220708fd8e93c50ace6eae051
000112233445566778899aabbccddeeff030e47265616444656d6f01021234041061e1206d2c2b46e079eb775f41f
€72190c0402a0fff8 20202021 3840

Sending cluster commands to K32W0x1:

These commands are sent from the imx8m mini shell terminal.
The format of the cluster command is:

S./chip-tool <cluster_name> <command_name> <paraml1, param2 ..>

NXP Semiconductors. Getting started with K32WOx1 in Matter 25

Rev. 1.0 NXP Semiconductors

Example of usage:

- Send OnOff cluster -> Toggle command to node ID for cluster endpoint
o chip-tool onoff toggle <node_id> <cluster_endpoint>

S./chip-tool onoff toggle 1 1

- Send OnOff cluster -> On command to node ID for cluster endpoint
o chip-tool onoff on <node_id> <cluster_endpoint>

S./chip-toolonoffon 11

- Send OnOff cluster -> Off command to node ID for cluster endpoint
o chip-tool onoff off <node_id> <cluster_endpoint>

S./chip-tool onoff off 11

- SendAttribute reporting configuration for on-off attribute using min/max interval to node ID for cluster
endpoint
o chip-tool onoff report on-off <min_interval> <max_interval> <node_id> <cluster_endpoint>

S./chip-tool onoff report on-off 300301 1 1

NXP Semiconductors. Getting started with K32WOx1 in Matter 26

Rev. 1.0 NXP Semiconductors

Yy
4\

- Read Channel Attribute from the Thread Diagnostic cluster from node ID
o chip-tool threadnetworkdiagnostics read channel <node_id> <cluster_endpoint>

S./chip-tool threadnetworkdiagnostics read channel 10

- Read fabrics list based on the basic cluster from node ID
o chip-tool operationalcredentials read fabrics-list <node_id> <cluster_endpoint>

S./chip-tool operationalcredentials read fabrics-list 10

NXP Semiconductors. Getting started with K32WOx1 in Matter 27

Rev. 1.0 NXP Semiconductors

Yy
4\

6 K32WO0X1 - EXPLORING WITH MATTER
6.1 Adding Manufacturing data to the application

By default, Matter repository is set to use test certificates found in the credentials folder. They are used in
conjunction with default provisioning data and are stored in the embedded application code.

The following workflow describes how to change the certificates and provisioning data to the user’s own
manufacturing data.

Further details about this feature can be found at https://github.com/NXPmicro/matter/blob/v1.0-branch-
nxp/examples/platform/nxp/doc/manufacturing flow.md

Generate new certificates

This step allows the user to generate a custom Device Attestation Certificate (DAC), Product Attestation
Intermediate (PAI) certificate and Product Attestation Authority (PAA) certificate.

This step can be skipped if these certificates are already available from a third-party entity.

Please note that for real production manufacturing data, the "production PAA certificate authenticity is
determined via the Distributed Compliance Ledger (DCL) rather than thorough a PAA certificate generated
alongside a DAC and PAI certificate. The PAI certificate may also have a different lifecycle.

As prerequisite for this step, it is required to have the chip-cert compiled in the matter repository. This can be
obtained by executing the following commands from the Matter root directory:

S source scripts/activate.sh

S gn gen out/host

S ninja -C out/host

The script to be used for this step is found in the following folder as bash script generate cert.sh:

<matter_root>/scripts/tools/nxp/

The output of this script will be a DAC, a PAland a PAA. User must adjust the PAI_VID and PAI_PID values in the
script according to their own vendor ID (VID) and product ID (PID).

S ./ scripts/tools/nxp/generate_cert.sh ./src/tools/chip-cert/out/chip-cert

NXP provides demo certificates for testing with NXP vendor and product IDs that can be found at
<matter_root>/scripts/tools/nxp/demo_generated_certs.

NXP Semiconductors. Getting started with K32WOx1 in Matter 28

Rev. 1.0 NXP Semiconductors

Yy
4\

Generate new provisioning data:

This step is to generate new provisioning data and convert all the data to a binary that can be written in the
internal flash of the K32WO0x1 chip. This example is without any encryption on the data in the binary:

S python3./scripts/tools/nxp/generate_nxp_chip_factory_bin.py -i 10000 -s
UXKLzwHdIN3DZZLBal2iVGhQi/OoQwIwJRQV4rpEalbA= -p 14014 -d 1000 --dac_cert /path/to/certs/Chip-DAC-
Generated-Cert.der--dac_key /path/to/certs/Chip-DAC-Generated-Key.der --pai_cert /path/to/certs/Chip-PAlI-
Generated-Cert.der --spake2p_path /out/host/spake2p --out out.bin

Same example as above, but with an already generated verifier passed as input:

S python3./scripts/tools/nxp/generate_nxp_chip_factory_bin.py -i 10000 -s
UXKLzwHdN3DZZLBal2iVGhQi/OoQwIwJRQV4rpEalbA= -p 14014 -d 1000 --dac_cert /path/to/certs/Chip-DAC-
Generated-Cert.der--dac_key /path/to/certs/Chip-DAC-Generated-Key.der --pai_cert /path/to/certs/Chip-PAl-
Generated-Cert.der --spake2p_path ./src/tools/spake2p/out/spake2p --spake2p_verifier
ivD5n3L2t5+zeFt6S5jW7BhHRF30g FXWZVvvXgDxgCNcE+BGUuTASAUaVm3qDZBcMMKn 1a6Caki4SxyPUnJrOCpJdpw
proDvpTIkQKqaRvkOQfAQIXDyf55DuavM5KVGdDrg== --out out.bin

Here is the interpretation of the parameters:

-i -> SPAKE2+ iteration

-S -> SPAKE2+ salt (passed as base64 encoded string)
-p -> SPAKE2+ passcode

-d ->discriminator

--dac_cert -> path to the DAC (der format) location
--dac_key -> path to the DAC key (der format) location
--pai_cert -> path to the PAI (der format) location

--spake2p_path -> path to the spake2p tool (compile it from ./src/tools/spake2p)

--out -> name of the binary that will be used for storing all the generated data

--aes128 key -> 128 bits AES key used to encrypt the whole dataset

--spake2p_verifier ->SPAKE2+ verifier (passed as base64 encoded string). If this option is set,
all SPAKE2+ inputs will be encoded in the final binary. The spake2p tool

will not be used to generate a new verifier on the fly.

NXP Semiconductors. Getting started with K32WOx1 in Matter 29

Rev. 1.0 NXP Semiconductors

Yy
4\

Write the provision data to the internal flash:

Write out.bin to the internal flash of the K32WO0x1 chip at location 0x9D200. This can be done using the FTDI
USB connection on the DK6 board and the DK6Programmer software. Refer to the Hardware connection in
chapter 4.3 for more information on installing the software.

Open a Windows Command Prompt and issue the following command.

C:\nxp\DK6ProductionFlashProgrammer\DK6Programmer.exe -Y-V2-s <COM_PORT> -P 1000000 -Y -p
FLASH@0x9D200="out.bin"

Generate a new Certificate Declaration (CD)

The script that generates the CD can be found at credentials/test/gen-test-cds.sh. In order to regenerate the CD
with the correct data, user needsto update the vids, pid0 and device_type_id parameters with the appropriate
values. The default Chip-Test-CD-Signing-* key and certificate can be found at credentials/test/certification-
declaration. This CD can act as CSA certificate sand is hard-coded as Trust Anchor in the current chip-tool
version. To use this certificate and avoid generatinga new one, lines 69-70 must be commented in the gen-test-
cds.sh script (the ones that are generating a new CD signing authority).

The command to run the actual CD generation is:

S ./credentials/test/gen-test-cds.sh ./src/tools/chip-cert/out/chip-cert

SET the Vendor and Product IDs

Setthe correctVID/PIDand CD in the examples/<example_app>/nxp/k32w/k32w0/ChipProjectConfig.h file VID
and PID values should correspond to the ones used in the DAC.

The following command can be used to obtain a byte array containing the Certificate Declaration:

S hexdump -ve '1/1 "0x%.2x, “ path/to/generated/cd/Chip-Test-CD-Generated.der

Building the Application

As stated in the Matterapplication Building instructions from chapter4.1, the gn command needsto be adjusted
to support the factory data, by adding chip_with_factory_data=1 to the command.

The command should look like the following:

Sgn gen out/debug --args="k32w0_sdk_root=\"S{NXP_K32W0_SDK_ROOT}\" chip_with_OM15082=1
chip_with_ot_cli=0is_debug=false chip_crypto=\"tinycrypt\" chip_with_se05x=0

chip_pw_tokenizer logging=true
mbedtls_repo=\"//third_party/connectedhomeip/third_party/nxp/libs/mbedtis\“ chip_with_factory_data=1"

NXP Semiconductors. Getting started with K32WOx1 in Matter 30

Rev. 1.0 NXP Semiconductors

Yy
4\

Build the application using the command:

S ninja -C out/debug

Running Commissioning using Manufacturer Data

The PAA certificate generated atstep 1in “Generate new certificates” needs to be copied to the device that acts
as Matter controller. For example, using scp, user can copy with the command:

S scp /path/to/generated/certificates/Chip-PAA-Generated-Cert.der
root@<ip_of _matter_controller>:/path/to/paa/directory

Open a connection to the Matter controller and run chip-tool with a new PAA:

./chip-tool pairing ble-thread {NODE_ID_TO_ASSIGN}{ACTIVE_DATASET}{SETUP_PIN_CODE}{DISCRIMINATOR} -
-paa-trust-store-path /path/to/paa/directory

For example:
./chip-tool pairing ble-thread 1 hex:Shex_value 14014 1000 --paa-trust-store-path /path/to/paa/directory
Where:

- paa-trust-store-path -> path to the generated PAA (der format). Avoid placing other certificates in the
same location as this may confuse chip-tool.

- 14014 is the discriminator

- 1000 is the passcode. This is needed for testing self-generated DACs, but likely not required for "true
production" with production PAl issued DACs

Note that the descriminator entered above must match exactly the descriminator value that was selected when
the DAC was generated.

NXP Semiconductors. Getting started with K32WOx1 in Matter 31

Rev. 1.0 NXP Semiconductors

Yy
4\

6.2 Over the air upgrade — Flash Configuration

The supportfor over-the-airupgrades is enabled by adding chip_enable_ota_requestor to the build command.
By default this feature is enabled on the k32w0x1 Matter examplesin the args.gni file, otherwise can be enabled
like below:

S gn gen out/debug --args="k32w0_sdk_root=\"S{NXP_K32W0_SDK_ROOT}\" chip_with_OM15082=1
chip_enable_ota_requestor=1chip_with_ot _cli=0is_debug=false chip_crypto=\"tinycrypt\" chip_with_se05x=0
chip_pw_tokenizer logging=true
mbedtls_repo=\"//third_party/connectedhomeip/third_party/nxp/libs/mbedtis\""

Flash configuration

The internal flash must be prepared for the OTA process:

Total size: 640K
. SSBL SSBL Matter application Factory = Meta a
Lo oo Medate L ADaa_ Data

Total flash size available on K32WO0x1 internal memory is 640KB

* SSBLand SSBL update region — needed for OTA (mandatory in Matter 1.0) —first 16k are reserved for the
Bootloader;

* FlashConfig—Flash Configuration data that outlines that supported Flash regions, and their corresponding
base addresses/sizes. User needs to take care handling this section and not overwrite it!

* Meta Data: e.g.: image signature

* Factory data, including certificates and other security related data

* Matter remains with 614K available for .text (code) and .rodata (constant strings)

The external flash memory is also used for over the air updates and has the following mapping:

Maximum size: 16M

i Heteron binaw —

Default: 63 x External flash sector size

6.3 Reading Tokenizer logs

The debuglogging is controlled by the chip_pw_tokenizer_logging build parameter issued at build time. If this is
not set or was set to false, then the user can open a serial connection from the host PC with a baudrate of
115200 bps without any changes.

The chip_pw_tokenizer_logging build option can be set to reduce the overall size of the firmware image while
enabling debug logging statements by replacing ASCII character strings with encoded (or tokenized) strings.

NXP Semiconductors. Getting started with K32WOx1 in Matter 32

Rev. 1.0 NXP Semiconductors

Yy
4\

If chip_pw_tokenizer_logging is set to true, then the detokenizer script must be used. This script decod es the
tokenized logs either from a file or from a serial port. The detokenizer script is available in the following path,
from the Matter root directory:

examples/platform/nxp/k32w/k32w0/scripts/detokenizer.py

The token database is created automatically after building the binary if the argument
chip_pw_tokenizer logging=true was used.

The script can be used in the following ways:
detokenizer.py serial [-h] -i INPUT -d DATABASE [-0 OUTPUT]
detokenizer.py file [-h] -i INPUT -d DATABASE -0 OUTPUT
Where:

- The first parameter is either serial or file and it selects between decoding from a file or from a serial
port.

- -iINPUT - used to set the path of the file or the serial to decode from.

- -d DATABASE - represents the path to the token database to be used for decoding. The default path is
out/debug/chip-k32w0x-light-example-database.bin after a successful build.

- -0 OUTPUT - represents the path to the output file where the decoded logs will be stored. This
parameter is required for file usage and optional for serial usage. If not provided when used with serial
port, it will show the decoded log only at the stdout and not save it to file.

The detokenizer script must be run inside the example's folder after execution of the scripts/activate.sh script.
The pw_tokenizer module used by the script is loaded by the activation script.

An example of running the detokenizer script to see logs of a lighting app:

Spython3../../../../../examples/platform/nxp/k32w/k32w0/scripts/detokenizer.py serial -i /dev/ttyACMO -d
out/debug/chip-k32w0x-light-example-database.bin -o device.txt

6.4 ZAP tool. Update Cluster/Endpoint functionality
ZAP - ZCL Advanced Platform is a generic generation engine and user interface for applications and libraries
based on

It provides a user interfacefor developers to select specific application configuration (endpoints, clusters,
attributes, commands) and perform SDK specific generation of artifacts based on the ZCL specifation and

customer provided app configuration.

Building and running ZAP tool:

It is recomanded to always use the latest version, which at the time of publication of this documentis (v16.17.1)

The ZAP tool requires nodejs to be installed, and this cam be done by executing the following commands:

NXP Semiconductors. Getting started with K32WOx1 in Matter 33

Rev. 1.0 NXP Semiconductors

Yy
4\

- Download the latest version of nodejs

- Unzip the binary archive to any directory you wanna install Node:
Ssudo mkdir -p /usr/local/lib/nodejs
Ssudo tar -xJvf node-v16.15.1-linux-x64.tar.xz -C /usr/local/lib/nodejs

- Setthe environment variable ~/.profile, add the text below to the end
Ssudo nano ~/.profile
Nodejs
VERSION=v16.15.1
DISTRO=linux-x64
export PATH=/usr/local/lib/nodejs/node-v16.15.1-linux-x64/bin:SPATH

- Refresh the profile
S. ~/.profile

Running the ZAP-Tool
- Install the zap-tool from the Matter github repositroy:
- Open aterminal and navigate to the Matter root directory
Scd *path_to_matter_sdk*/matter
Ssource ./scripts/activate.sh
S./scripts/tools/zap/run_zaptool.sh

- The first time this script is executed will take longer, as zap-tool is being installed
- If the installation is succesfull you will see the below feedback on the terminal and ZAP-Tool will open:

cL GENERATE.. REGENERATE PREVIEW € @

Cluster Configurator: Matter SDK ZCL data @) DISPLAYEUTTON ZCL GLOBAL OPTIONS.. = ZCL EXTENSIONS...

+ ADD NEW ENDPOINT “

ZCL Advanced Platform

What is ZAP?

ZAP is a generic generation engine and user interface for applications and Library, the the Zigbee Alliance

ZAP allows you to perform the following

- perform SDK-specific customized generation of all global artifacts (constants, types, IDs, etc) based on the ZCL specification

« provide Ul for ibutes, c)

+ perform SDK-s;
provided applic

endooint etc) based on ZCL specification and customer-

ZAP is & genenc tempiating engine. Examples are provided for how 1o generate artifacts for the C language environment, but one could easily 5dd new templates for other language environments,
has Ce+, java, nede js, python or any other

Quickinstructions

- Next, openthe ZAP file for the corresponding project. For Lighting-app -> Go
to .../matter/examples/lighting-app/lighting-common and select the lighting-app.zap file:

NXP Semiconductors. Getting started with K32WO0x1 in Matter 34

Rev. 1.0 NXP Semiconductors

7 Recent 4 {jomsis —ENgmm—— matter examples lighting-app | lightingcommon

3 Home Name ~ Size Type Modified
" B src Jo
] Desktop . o
[E] Documents g Text
© lighting-app.matter
2 Downloads = BUILD.gn 13kB Text Jo
J1 Music
[& Pictures
H videos
£ repo

+ Other Locations

- Anew ZAP-tool window will open with the endpoint/cluster configuration for the selected application:

Jmatter/examples/lighting-app/lighting-common/lighting-app.zap

le Edit View Window Help

2L GENERATE... ~ REGENERATE PREVIEW £ @
Cluster Configurator: Matter SDK ZCL data @) DISPLAYEUTTON ZCL GLOBAL OPTIONS.. i ZCL EXTENSIONS...
<+ ADD NEW ENDPOINT “

Endpoint 1 Clusters
Endpoint-0 W e o

Sou tarwer - [cue | | Q seacnoustes
Device Matter Root Node

(0x0018)
Network 0 A General
Profile 0x0103

° Clustar Requred Clustar Cluster D Manufacturer Code Ensble Configurs.

Version 1
Enabled Clusters 42 identify Sorver 00003 Server - o
Enabled Atributes 246
Enabled Reporting 250 e Serve N o
Enapoin SLIE ICEUEPAEL R Scenes Server 0x0005 - Not Enabled O
Device Matter Dimmable onvoff Server 0x0008. - Server 3

Light (0x0101)
Netwark 0

On/off Switch Configuration 0x0007 - Not Enabled o

Profile ID 0x0103
Version ' Level comrol Server oxoo0s Server o
Enabled Clusters 14
Enabled Attributes 100 Binary Input (Basic) 0x000F - Not Enabled - o
Enabled Reporting 137

- After performing all the changes, generate the new configuration -> by pressing the Generate button
and save the new configuration in the .../matter/zzz_generated/lighting-app/zap-generated folder:

NXP Semiconductors. Getting started with K32WOx1 in Matter 35

Rev. 1.0 NXP Semiconductors

it View window || Recent 4 {eeseeeetessmsiegly matter = zzz_generated | lighting-app = zap-generated | » [0

4t Home Name Modified

W PluginApplicationCallbacks.h

Jo
Jo

Jo

O Desktop terCommandHandler.cpp
[Documents + gen tokens.h
h| gen_config.h

Jo
4 Downloads b} endpoint_config.h

Jo
cHIPClusters.h 4ki t Jo

Musie
eic cHIPClientCallbacks.h Jo

Jo

n .h 4 Text Jo
B videos ccess. T Jo

& Pictures

P repo

+ Other Locations

- Rebuild the application to apply the new configuration.

NXP Semiconductors. Getting started with K32WOx1 in Matter 36

Rev. 1.0 NXP Semiconductors

