
ZigBee PRO Smart Energy API
User Guide

JN-UG-3059

Revision 3.4

22 April 2013

ZigBee PRO Smart Energy API
User Guide

2 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Contents

About this Manual 13
Organisation 13

Conventions 14

Terminology 14

Acronyms and Abbreviations 15

Related Documents 15

Trademarks 16

Chip Compatibility 16

Part I: Concept and Development Information

1. An Introduction to Smart Energy 19
1.1 Philosophy of Smart Energy 19

1.1.1 SE Objectives 19

1.1.2 SE Principles 20

1.2 Smart Energy Devices 21

1.3 Smart Energy Networks 23
1.3.1 Home Area Networks (HANs) 23

1.3.2 Neighbourhood Area Networks (NANs) 27

1.3.3 Network Security 27

2. ZigBee Smart Energy 29
2.1 Essential ZigBee Concepts 29

2.1.1 Application Profiles 30

2.1.2 Devices, Clusters and Attributes 30

2.1.3 ZigBee Cluster Library (ZCL) 31

2.2 ZigBee SE Profile 32

2.3 ZigBee SE Clusters 33

2.4 ZigBee SE Devices 36
2.4.1 Energy Service Portal (ESP) 37

2.4.2 Metering Device 37

2.4.3 In-Premise Display (IPD) 38

2.4.4 Programmable Communicating Thermostat (PCT) 39

2.4.5 Load Control Device 39

2.4.6 Smart Appliance 40

2.4.7 Range Extender 40

2.5 ZigBee SE Security 41
2.5.1 ZigBee PRO Security 41
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 3

Contents
2.5.2 Smart Energy Security 42

3. Smart Energy Application Development 45
3.1 Development Resources and Installation 45

3.2 Smart Energy API 46
3.2.1 Core Resources 46

3.2.2 Cluster-specific Resources 46

3.3 Function Prefixes 47

3.4 Development Phases 47

3.5 Building an Application 48
3.5.1 Compile-Time Options 48

3.5.2 ZigBee Network Parameters 49

3.5.3 Building and Loading the Application Binary 49

4. Smart Energy Application Coding 51
4.1 SE Programming Concepts 51

4.1.1 Shared Device Structures 51

4.1.2 Addressing 53

4.1.3 OS Resources 53

4.2 Initialisation 54

4.3 Callback Functions 55

4.4 Discovering Endpoints and Clusters 55

4.5 Reading Attributes 56

4.6 Writing Attributes 59

4.7 Handling Events 62

Part II: Smart Energy Clusters

5. ZCL Clusters 65
5.1 Basic Cluster 65

5.1.1 Compile-Time Options 65

5.1.2 Mandatory Attributes 65

5.2 Time Cluster 67
5.2.1 Compile-Time Options 67

5.2.2 Time Standards 67

5.2.3 Mandatory Attributes 68

5.2.4 Time-Synchronisation of Devices 69
5.2.4.1 Initialising and Maintaining Master Time 71
5.2.4.2 Initial Synchronisation of Devices 72
5.2.4.3 Re-synchronisation of Devices 73
5.2.4.4 Re-synchronisation Following Sleep 74
5.2.4.5 Checking ZCL Time Synchronisation 74
4 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
5.3 OTA Upgrade Cluster 75
5.3.1 Compile-Time Options 75

5.3.2 Mandatory Attributes 75

6. Price Cluster 77
6.1 Overview 77

6.2 Price Cluster Structure and Attributes 78

6.3 Attribute Settings 84

6.4 Initialising and Maintaining Price Lists 85

6.5 Publishing Price Information 87
6.5.1 Unsolicited Price Updates 87

6.5.2 Get Current Price 88

6.5.3 Get Scheduled Prices 88

6.6 Time-Synchronisation via Publish Price Commands 89

6.7 Conversion Factor and Calorific Value (Gas Only) 90

6.8 Price Events 91

6.9 Functions 96
eSE_PriceCreate 97

eSE_PriceGetCurrentPriceSend 99

eSE_PriceGetScheduledPricesSend 100

eSE_PriceAddPriceEntry 102

eSE_PriceAddPriceEntryToClient 104

eSE_PriceGetPriceEntry 105

eSE_PriceDoesPriceEntryExist 106

eSE_PriceRemovePriceEntry 107

eSE_PriceClearAllPriceEntries 108

eSE_PriceAddConversionFactorEntry 109

eSE_PriceGetConversionFactorSend 111

eSE_PriceGetConversionFactorEntry 113

eSE_PriceDoesConversionFactorEntryExist 114

eSE_PriceRemoveConversionFactorEntry 115

eSE_PriceClearAllConversionFactorEntries 116

eSE_PriceAddCalorificValueEntry 117

eSE_PriceGetCalorificValueSend 119

eSE_PriceGetCalorificValueEntry 121

eSE_PriceDoesCalorificValueEntryExist 122

eSE_PriceRemoveCalorificValueEntry 123

eSE_PriceClearAllCalorificValueEntries 124

6.10 Return Codes 125

6.11 Structures 127
6.11.1 tsSE_PricePublishPriceCmdPayload 127

6.11.2 tsSE_PricePublishConversionCmdPayload 129

6.11.3 tsSE_PricePublishCalorificValueCmdPayload 129
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 5

Contents
6.12 Enumerations 130
6.12.1 ‘Attribute ID’ Enumerations 130

6.12.2 ‘Price Event’ Enumerations 133

6.12.3 'Calorific Value Unit' Enumerations 134

6.13 Compile-Time Options 135

7. Messaging Cluster 137
7.1 Overview 137

7.2 Messaging Cluster Structure and Attributes 137

7.3 Message Delivery and Display 138
7.3.1 Storing Messages 138

7.3.2 Forwarding a Message 138

7.3.3 Requesting a Message 139

7.3.4 Displaying a Message 139

7.3.5 Cancelling a Message 140

7.4 Messaging Events 141
7.4.1 Event Types 141

7.4.2 Other Elements of tsSE_MCCallBackMessage 143

7.5 Functions 144
eSE_MCCreate 145

eSE_MCDisplayMessage 147

eSE_MCCancelMessage 149

eSE_MCGetMessage 151

eSE_MCSendGetLastMessageRequest 152

eSE_MCMessageConfirmationUserSend 153

7.6 Return Codes 154

7.7 Enumerations 155
7.7.1 ‘Message Event’ Enumerations 155

7.7.2 ‘Message List’ Enumerations 155

7.8 Structures 157
7.8.1 tsSE_MCCallBackMessage 157

7.8.2 tsSE_MCDisplayMessageCommandPayload 158

7.8.3 tsSE_MCCancelMessageCommandPayload 159

7.8.4 tsSE_MCMessageConfirmCommandPayload 159

7.9 Compile-Time Options 160

8. Simple Metering Cluster 161
8.1 Overview 161

8.2 Simple Metering Cluster Structure and Attributes 162

8.3 Attribute Settings 178

8.4 Remotely Reading Simple Metering Attributes 180
6 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
8.5 Mirroring Metering Data 181
8.5.1 Configuring Mirroring on ESP 182

8.5.2 Configuring Mirroring on Metering Devices 184

8.5.3 Mirroring Data 185

8.5.4 Reading Mirrored Data 186

8.5.5 Removing a Mirror 187

8.6 Consumption Data Archive (‘Get Profile’) 188
8.6.1 Updating Consumption Data on Server 188

8.6.2 Sending and Handling a ‘Get Profile’ Request 189

8.7 Simple Metering Events 191
8.7.1 Event Types 192

8.7.2 Command Types 192

8.8 Functions 193
eSE_SMCreate 194

eSE_ReadMeterAttributes 196

eSE_HandleReadMeterAttributesResponse 198

eSM_ServerRequestMirrorCommand 199

eSM_ServerRemoveMirrorCommand 201

eSM_CreateMirror 202

eSM_RemoveMirror 203

eSM_GetFreeMirrorEndPoint 204

eSM_IsMirrorSourceAddressValid 205

eSM_ServerUpdateConsumption 206

eSM_ClientGetProfileCommand 207

u32SM_GetReceivedProfileData 209

8.9 Return Codes 210

8.10 Enumerations 210
8.10.1 ‘Attribute ID’ Enumerations 210

8.10.2 ‘Meter Status’ Enumerations 214

8.10.3 ‘Unit of Measure’ Enumerations 215

8.10.4 ‘Summation Formatting’ Enumerations 217

8.10.5 ‘Supply Direction’ Enumerations 218

8.10.6 ‘Metering Device Type’ Enumerations 218

8.10.7 ‘Simple Metering Event’ Enumerations 219

8.10.8 ‘Server Command’ Enumerations 220

8.10.9 ‘Client Command’ Enumerations 221

8.10.10 ‘Consumption Interval’ Enumerations 222

8.10.11 ‘Simple Metering Status’ Enumerations 223

8.11 Structures 224
8.11.1 tsSM_CallBackMessage 224

8.11.2 tsSE_Mirror 225

8.11.3 tsSE_MirrorClusterInstances 226

8.11.4 tsSM_CustomStruct 227

8.11.5 tsSEGetProfile 228

8.11.6 tsSM_RequestMirrorResponseCommand 228
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 7

Contents
8.11.7 tsSM_MirrorRemovedResponseCommand 229

8.11.8 tsSM_GetProfileRequestCommand 229

8.11.9 tsSM_GetProfileResponseCommand 230

8.11.10 tsSM_Error 231

8.12 Compile-Time Options 232

9. Demand-Response and Load Control Cluster 237
9.1 Overview 237

9.2 DRLC Cluster Structure and Attributes 238

9.3 Initialisation 239

9.4 Load Control Events (LCEs) 240
9.4.1 LCE Contents 240

9.4.2 LCE Lists 240

9.5 LCE Handling 241
9.5.1 LCE Handling on Server 241

9.5.2 LCE Handling on Clients 242
9.5.2.1 LCE Activation and De-activation 242
9.5.2.2 Getting Scheduled Events 243
9.5.2.3 Reporting LCE Actions to Server 244
9.5.2.4 Over-riding LCE Settings 244

9.5.3 Cancelling LCEs 245

9.6 Message Signing (Security) 245

9.7 DRLC Events 246
9.7.1 Event and Command Types 247

9.7.2 Other Elements of tsSE_DRLCCallBackMessage 249

9.8 Functions 250
eSE_DRLCCreate 251

eSE_DRLCAddLoadControlEvent 253

eSE_DRLCGetScheduledEventsSend 254

eSE_DRLCCancelLoadControlEvent 255

eSE_DRLCCancelAllLoadControlEvents 256

eSE_DRLCSetEventUserOption 257

eSE_DRLCSetEventUserData 258

eSE_DRLCGetLoadControlEvent 259

eSE_DRLCFindLoadControlEvent 260

9.9 Return Codes 261

9.10 Enumerations 262
9.10.1 ‘Device Class’ Enumerations 262

9.10.2 ‘DRLC Event’ Enumerations 263

9.10.3 ‘Criticality Level’ Enumerations 264

9.10.4 ‘LCE Cancellation’ Enumerations 265

9.10.5 ‘LCE Participation’ Enumerations 266

9.10.6 ‘LCE Data Modification’ Enumerations 266

9.10.7 ‘LCE List’ Enumerations 267
8 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
9.10.8 ‘LCE Status’ Enumerations 268

9.11 Structures 270
9.11.1 tsSE_DRLCLoadControlEvent 270

9.11.2 tsSE_DRLCGetScheduledEvents 272

9.11.3 tsSE_DRLCCancelLoadControlEvent 272

9.11.4 tsSE_DRLCReportEvent 273

9.11.5 tsSE_DRLCCallBackMessage 274

9.12 Compile-Time Options 275

10. Key Establishment Cluster 277
10.1 Overview 277

10.2 Key Establishment Cluster Structure and Attribute 278

10.3 Performing Key Establishment 278

10.4 Key Establishment Events 281
10.4.1 Event Types 282

10.4.2 Other Elements of tsSE_KECCallBackMessage 283

10.5 Restoring Link Key from Non-Volatile Memory 284

10.6 Testing Key Establishment 286

10.7 Functions 287
eSE_KECCreate 288

eSE_KECLoadKeys 290

eSE_KECInitiateKeyEstablishment 291

eSE_KECConfigureTestHarness 292

10.8 Return Codes 293

10.9 Structures 294
10.9.1 tsSE_KECCallBackMessage 294

10.9.2 tsKEC_Common 295

10.9.3 tsKEC_TestHarnessParameters 296

10.10 Enumerations 297
10.10.1 ‘Event’ Enumerations 297

10.10.2 ‘Command ID’ Enumerations 298

10.10.3 ‘Key Establishment Termination’ Status Codes 298

10.11 Compile-Time Options 299

11. Tunnelling Cluster 301
11.1 Overview 301

11.2 Tunnelling Cluster Structure and Attribute 302

11.3 Initialisation 303

11.4 Tunnel Creation 303

11.5 Tunnelled Data Transfer 304

11.6 Closing a Tunnel 305
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 9

Contents
11.7 Tunnelling Events 306
11.7.1 Events Types 307

11.7.2 Example Event Handling Callback Function 311

11.8 Functions 313
eSE_TunnelCreate 314

eSE_TunnelRequestTunnelSend 316

eSE_TunnelTransferDataSend 317

eSE_TunnelCloseTunnelSend 319

eSE_TunnelGetInformation 320

11.9 Return Codes 321

11.10 Structures 322
11.10.1 tsSE_TunnelCallBackMessage 322

11.10.2 tsSE_TunnelRequestTunnelCmdPyld 323

11.10.3 tsSE_TunnelTransferDataReqCmdPyld 323

11.10.4 tsSE_TunnelRequestTunnelResponse 324

11.10.5 tsSE_TunnelRequestTunnelCreated 324

11.10.6 tsSE_TunnelTransferDataCmdPyldRcvd 325

11.10.7 tsSE_TunnelTransferDataReqStatus 325

11.10.8 tsSE_TunnelTransferDataError 326

11.10.9 tsSE_TunnelcloseTunnel 326

11.10.10 tsSE_TunnelDetails 327

11.11 Enumerations 328
11.11.1 'Tunnelling Event' Enumerations 328

11.11.2 'Request Tunnel Status' Enumerations 329

11.11.3 'Data Transfer Error' Enumerations 330

11.11.4 'Close Cause' Enumerations 330

11.11.5 'Protocol ID' Enumerations 331

11.12 Compile-Time Options 332

Part III: General Reference Information

12. Initialisation and Device Registration Functions 335
eSE_Initialise 336

eSE_RegisterEspMeterEndPoint 337

eSE_RegisterEspEndPoint 339

eSE_RegisterMeterEndPoint 341

eSE_RegisterIPDEndPoint 343

eSE_RegisterRangeExtEndPoint 344

13. Structures, Enumerations and Parameters 347
13.1 ZCL Structures 347

13.2 Device Structures 348
13.2.1 ESP/Metering Device (tsSE_EspMeterDevice) 348
10 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
13.2.2 ESP (tsSE_EspDevice) 351

13.2.3 Metering Device (tsSE_MeterDevice) 354

13.2.4 IPD (tsSE_IPDDevice) 357

13.2.5 Range Extender (tsSE_RangeExtDevice) 360

13.3 Event Structure and Enumerations 361

13.4 ZCL Enumerations 361

13.5 ZigBee Network Parameters 361

Part IV: Appendices

A. Supported Clusters and Attributes 365
A.1 Price Cluster Attributes 365
A.2 Demand-Response and Load Control Cluster Attributes 367
A.3 (Simple) Metering Cluster Attributes 367
A.4 Messaging Cluster Attributes 370
A.5 Key Establishment Cluster Attributes 371

B. Custom Endpoints 372
B.1 SE Devices and Endpoints 372
B.2 Cluster Creation Functions 373
B.3 Custom Endpoint Set-up 373
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 11

Contents
12 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
About this Manual

This manual provides an introduction to ZigBee Smart Energy (SE) and describes the
use of the NXP ZigBee PRO Smart Energy Application Programming Interface (API)
for the JN51xx wireless microcontroller. The manual contains both operational and
reference information relating to the ZigBee PRO Smart Energy API, including
descriptions of the C functions and associated resources (e.g. structures and
enumerations).

The API is designed for use with the NXP ZigBee PRO stack to develop wireless
network applications based on the ZigBee Smart Energy application profile. For
complementary information, refer to the following sources:

 Information on ZigBee PRO wireless networks is provided in the ZigBee PRO
Stack User Guide (JN-UG-3048), available from www.nxp.com/jennic.

 The ZigBee SE profile is defined in the ZigBee Smart Energy Profile
Specification (075356), available from the ZigBee Alliance.

Organisation

This manual is divided into four parts:

 Part I: Concept and Development Information comprises four chapters:

 Chapter 1 introduces the concept of Smart Energy (SE) and an SE
network

 Chapter 2 describes the ZigBee implementation of Smart Energy

 Chapter 3 provides an overview of ZigBee PRO SE application
development using NXP resources

 Chapter 4 describes the essential aspects of coding a ZigBee PRO SE
application using the NXP ZigBee PRO Smart Energy API

 Part II: Smart Energy Clusters comprises seven chapters:

 Chapter 5 describes the SE-specific implementation of clusters from the
ZigBee Cluster Library (ZCL) as well as the Over-the-Air Upgrade cluster

 Chapter 6 details the Price cluster used in ZigBee PRO SE

 Chapter 7 details the Messaging cluster used in ZigBee PRO SE

 Chapter 8 details the Simple Metering cluster used in ZigBee PRO SE

 Chapter 9 details the Demand-Response and Load Control cluster used in
ZigBee PRO SE

Note: Clusters that are part of the ZigBee Cluster
Library (ZCL) but used by the Smart Energy profile are
detailed in the ZCL User Guide (JN-UG-3077), which
you should use in conjunction with this manual.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 13

About this Manual
 Chapter 10 details the Key Establishment cluster used in ZigBee PRO SE

 Chapter 11 details the Tunnelling cluster used in ZigBee PRO SE

 Part III: General Reference Information comprises two chapters:

 Chapter 12 details the core functions of the Smart Energy API
(initialisation function and device-specific endpoint registration functions)

 Chapter 13 details the general (not cluster-specific) structures,
enumerations and parameters used by the Smart Energy API

 Part IV: Appendices contains appendices which summarise the supported
clusters and attributes, and describe how to set up custom endpoints.

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

Terminology

The following changes have been made by the ZigBee Alliance to ZigBee Smart
Energy terminology:

 The Energy Service Portal (ESP) is now referred to as the Energy Service
Interface (ESI). However, to maintain consistency with existing NXP software,
the term ESP will continue to be used in this manual.

 The Simple Metering cluster is now referred to as the Metering cluster.
However, to maintain consistency with existing NXP software, the term Simple
Metering cluster will continue to be used in this manual.

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
14 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Acronyms and Abbreviations

AMR Automated Meter Reading

APDU Application Protocol Data Unit

API Application Programming Interface

DRLC Demand-Response and Load Control

EPID Extended PAN ID

ECDSA Elliptic Curve Digital Signature Algorithm

ESI Energy Service Interface

ESP Energy Service Portal

HAN Home Area Network

IDE Integrated Development Environment

IPD In-Premise Display

LCE Load Control Event

NAN Neighbourhood Area Network

OTA Over-the-Air

PAN Personal Area Network

PCT Programmable Communicating Thermostat

PDU Protocol Data Unit

SE Smart Energy

TOU Time Of Use

UTC Co-ordinated Universal Time

ZCL ZigBee Cluster Library

Related Documents

JN-UG-3077 ZigBee Cluster Library User Guide

JN-UG-3048 ZigBee PRO Stack User Guide

JN-UG-3075 JenOS User Guide

JN-UG-3064 SDK Installation and User Guide

JN-UG-3007 JN51xx Flash Programmer User Guide

JN-AN-1135 Smart Energy HAN Solutions Application Note

075356 ZigBee Smart Energy Profile Specification [from ZigBee Alliance]

075123 ZigBee Cluster Library Specification [from ZigBee Alliance]
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 15

About this Manual
Trademarks

All trademarks are the property of their respective owners.

Chip Compatibility

The software described in this manual can be used on the following NXP wireless
microcontrollers:

 JN516x (currently only JN5168-001)

 JN5148-Z01 (limited distribution)

Where the described functionality is applicable to all the supported microcontrollers,
the device may be referred to in this manual as the JN51xx.
16 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Part I:
Concept and Development

Information
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 17

18 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
1. An Introduction to Smart Energy

The efficient and prudent use of energy is now a global pre-occupation, the over-riding
motivation being environmental damage-limitation to offset climate change. Further,
high energy prices and widespread ‘fuel poverty’ have heightened the need to re-
evaluate our energy consumption. This has led to the concept of ‘Smart Energy’ (SE).

1.1 Philosophy of Smart Energy

Smart Energy is an approach to the clever use of energy, encompassing measures
ranging from keeping consumers informed about their power consumption to the
automated re-scheduling of power-hungry activities into off-peak/low-price periods. It
is a methodology that is adopted and deployed by the energy provider or “utility”
company but, for a successful implementation, needs to be equally embraced by their
customers. The form of the supplied energy can be electricity or gas (and other
resources, such as water, can also be incorporated into the scheme).

The objectives and principles of Smart Energy are detailed in the sub-sections below.

1.1.1 SE Objectives

The objectives of Smart Energy are to:

 minimise energy consumption (and therefore production) in order limit its
environmental impact

 minimise energy costs for consumers

 smooth out energy demand to avoid peaks that put strain on energy production

 encourage customers to generate their own energy through clean sources
(e.g. solar panels) and give them credit for it

 introduce a degree of automation, including Automated Meter Reading (AMR)

The operational principles for attaining the above objectives are described next, in
Section 1.1.2.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 19

Chapter 1
An Introduction to Smart Energy

1.1.2 SE Principles

The simplest Smart Energy system just incorporates ‘smart meters’ at the consumers’
premises, where these meters can be read remotely by the utility company -
Automated Meter Reading (AMR). While such a system does not contribute towards
the environmental objectives of Smart Energy, it allows the utility company to operate
more efficiently, with resulting benefits for the consumer. A true Smart Energy system
also includes other devices at the consumers’ premises, allowing energy and cost
savings to be made in the following ways:

 Real-time display of data: The consumer is informed in real-time of their rate
of energy (power) consumption and the associated cost. It may even be
possible to report the power consumption of a particular device. This
encourages the consumer to become more energy-conscious and allows them
to make decisions about their energy usage - for example, they may decide to
delay using their clothes dryer until a low-price period.

 Control from utility company (demand-response): Certain power-hungry
devices or systems (e.g. air-conditioning system) at the consumers’ premises
could be dynamically managed from the utility company according to the
energy-supply conditions at the time. For example, if the demand for power is
high, the utility company could request a device to switch off or reduce its
power consumption. This is known as the demand-response feature.

 Intelligent appliances: Under the Smart Energy scheme, appliances could
become commercially available that are able to receive communications from
the utility company and modify their operation accordingly - for example, when
switched on, a dish washer could automatically delay its start until it becomes
aware that a low-price period has begun.

 Exporting generated power: Customers with the ability to generate their own
electric power (from clean power sources such as solar panels and wind
turbines) may be able to sell any surplus power to the national grid. A Smart
Energy system can provide a means of measuring this power contribution and
relaying the measurements to the utility company so that the customer’s
account can be credited accordingly.

The Smart Energy devices needed to implement the above methods are described in
Section 1.2.
20 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
1.2 Smart Energy Devices

The devices needed to implement Smart Energy at a customer’s premises form a local
network at the premises, sometimes referred to as a Home Area Network (HAN). This
network is installed by the utility company and is linked to a larger network, the
backhaul network, which allows communication with the utility company headquarters.
The networking aspects of Smart Energy are described in Section 1.3, while here we
describe the Smart Energy devices used to implement the principles and achieve the
objectives detailed in Section 1.1.

In this manual, we are concerned with HANs implemented using the ZigBee PRO
wireless network protocol. We will therefore adopt the device terminology used in the
ZigBee Smart Energy specification. Note that the ZigBee definitions of these devices
are covered in Section 2.4.

The Smart Energy devices are as follows:

 Energy Service Portal (ESP)

 Metering Device

 In-Premise Display (IPD)

 Programmable Communicating Thermostat (PCT)

 Load Control Device

 Smart Appliance

 Prepayment Terminal

These devices are described below.

Energy Service Portal (ESP)

The Energy Service Portal (ESP) is the device which connects the HAN to the
backhaul network of the utility company. It therefore provides the entry and exit points
for communications between the utility company and the HAN. Every Smart Energy
HAN must have an ESP. Note that the ESP may be contained in the same physical
unit as another SE device, such as the Metering Device, an In-Premise Display or a
Programmable Communicating Thermostat (see below).

Metering Device

The Metering Device measures and records energy consumption, and other related
data (the recorded data may also be mirrored on the ESP). It also allows this data to
be remotely read by and/or periodically reported to the utility company.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 21

Chapter 1
An Introduction to Smart Energy

In-Premise Display (IPD)

The In-Premise Display (IPD) contains some sort of visual display for relaying
information to the consumer. IPDs can vary widely in their display methods and the
type of information they can display:

 The type of information that an IPD may display includes current power
consumption, historical energy consumption data, available pricing and
important messages from the utility company.

 The display methods range from coloured lights (which indicate the current
level of power consumption or price), through simple text-only screens to full
graphical screens (able to display a wide range of real-time and historical data).

An IPD may also include an interactive interface, such as a keypad or touch-screen,
to allow user input.

Programmable Communicating Thermostat (PCT)

The Programmable Communicating Thermostat (PCT) provides a means of
controlling a heating and/or air-conditioning system, allowing intervention from the
utility company through the demand-response feature introduced in Section 1.1.2. For
example, during periods of high energy demand, the utility company may send a
request to the PCT to adjust the system’s temperature setting or to shut the system
down completely. However, a user over-ride feature would normally be provided. The
PCT behaves in a similar way to the Load Control Device (described below). A PCT
is likely to feature a user interface (buttons and a display), and it may be desirable to
incorporate the PCT and IPD in the same physical unit.

Load Control Device

The Load Control Device provides a means of controlling a high-power appliance (e.g.
water heater, swimming pool pump), allowing intervention from the utility company
through the demand-response feature introduced in Section 1.1.2. For example,
during periods of high energy demand, the utility company may send a request to the
Load Control Device to reduce the appliance’s power setting or to shut the appliance
down completely. However, a user over-ride feature would normally be provided.

Smart Appliance

The Smart Appliance is a device incorporated in a commercial product (e.g. washing
machine) to allow the product to take action on receiving communications from the
utility company. The action may be to simply display a message (such as a warning of
a high-price period) or to implement a decision (for example, to automatically delay the
operation of a washing machine or to reduce its temperature setting during a high-
price period).

Prepayment Terminal

The Prepayment Terminal is used only by customers who pay for their power in
advance in discrete amounts. The device allows a payment to be made (e.g. using
coins or a bank/credit card) and also displays messages (such as the remaining
prepayment balance and warnings when the balance approaches zero).
22 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
1.3 Smart Energy Networks

The Smart Energy devices on a customer’s premises form a Home Area Network
(HAN) which is installed and owned by the utility company, and therefore referred to
as the “utility private HAN”. This local network is connected via the Energy Service
Portal (ESP) to the utility company’s backhaul network, over which messages can be
exchanged between the HAN and the company’s headquarters.

In this manual, we are concerned with HANs that are implemented as wireless
networks which employ the ZigBee PRO protocol operating in the 2.4-GHz radio band.
This wireless solution minimises installation costs and effort, and also causes minimal
disruption at customer premises. Smart Energy networks from the ZigBee perspective
are described in more detail in Chapter 2.

Smart Energy HANs and related network issues are described in the sub-sections
below.

1.3.1 Home Area Networks (HANs)

This section describes Smart Energy HANs by starting with the simplest HAN and
building up to more complex HANs.

SE Network with Automated Meter Reading (only)

The simplest HAN contains an ESP and a Metering Device, as illustrated in Figure 1
below. This type of HAN facilitates Automated Meter Reading (AMR) only.

In practice, the ESP and Metering Device are often incorporated in a single device, as
shown in Figure 3.

Figure 1: Simplest Utility Private HAN

Metering
Device

Backhaul Network ESP

Utility Private HAN
at Customer Premises

Utility
HQ
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 23

Chapter 1
An Introduction to Smart Energy

SE Network with Display Capabilities

Adding an In-Premise Display (IPD) to the above HAN (in Figure 1) provides the
consumer with useful information which enables them to manage their power
consumption in real-time and realise energy/cost savings. This basic but effective
Smart Energy HAN is illustrated in Figure 2 below.

The figure below shows the same utility private HAN with the ESP and Metering
Device combined into a single device. However, in the remainder of this chapter, they
are shown as separate devices.

Figure 2: Utility Private HAN with IPD

Figure 3: Utility Private HAN with IPD and Combined ESP/Metering Device

Backhaul Network

IPD

Metering
Device

ESP

Utility Private HAN
at Customer Premises

Utility
HQ

Backhaul Network

IPD

ESP/
Metering
Device

Utility Private HAN
at Customer Premises

Utility
HQ
24 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
SE Network with Automated Energy Management

Further Smart Energy devices (from those listed in Section 1.2) can be added to the
above HAN (in Figure 2) to achieve automated energy management that does not rely
on customer decisions and actions. Such a system is illustrated in Figure 4 below.

Figure 4: Utility Private HAN with Range of SE Devices

Backhaul Network

Smart
Appliance

IPD

Metering
Device

Load
Control
Device

ESP

PCT

Smart
Appliance

Utility Private HAN
at Customer Premises

Utility
HQ
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 25

Chapter 1
An Introduction to Smart Energy

SE Network with Utility and Customer Sectors

It is also possible for a customer to have their own private HAN which is connected to
the utility private HAN. In this case, there must be a bridge device between the two
HANs. In the customer private HAN, only the bridge device needs to be registered with
the ESP of the utility private HAN (other devices in the customer private HAN do not).
The customer private HAN could be installed by the customer or by a home
automation professional. Such a system is illustrated in Figure 5 below.

Note that the customer private HAN may have its own connection to the outside world
via the internet (not shown in the above diagram). This provides an alternative route
for obtaining information from the utility company.

Figure 5: Utility Private HAN with Customer Private HAN

Backhaul Network

Smart
Appliance

IPD

Metering
Device

Load
Control
Device

ESP

PCT
Smart

Appliance

Utility Private HAN
at Customer Premises

Utility
HQ

HAN
Bridge

Customer Private HAN
26 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
1.3.2 Neighbourhood Area Networks (NANs)

In some situations, the ESP of the utility private HAN may not connect directly to the
backhaul network, but via an intermediate Neighbourhood Area Network (NAN) which
also belongs to the utility company - the “utility private NAN”. This may be the case for
apartments in a block, in which each apartment has a utility private HAN that connects
via its ESP to the utility private NAN for the whole block. The NAN has an ESP which
connects it to the backhaul network. This is illustrated in Figure 6 below.

1.3.3 Network Security

Security is a major concern in a Smart Energy network due to the need to ensure that
a utility private HAN:

 cannot be ‘hacked into’ for the purpose of corrupting power consumption data

 cannot be accessed by a neighbouring HAN

The ZigBee PRO wireless network protocol, on which this manual is based, provides
security measures based on digital certificates and keys used in exchanging
messages within the network. In addition, as standard, ZigBee PRO employs network
identifiers and intelligent radio channel selection to prevent neighbouring networks
from accidentally interfering with each other. Further information on the application of
ZigBee PRO to Smart Energy networks is provided in Chapter 2, with network security
described in Section 2.5.

Figure 6: Utility Private NAN

Backhaul Network

ESP

ESP

ESP

ESP

ESP

Utility Private NAN

Utility
HQ

HAN

HAN

HAN

HAN
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 27

Chapter 1
An Introduction to Smart Energy

28 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
2. ZigBee Smart Energy

This chapter provides the essential information for an understanding of the
implementation of a Smart Energy (SE) network using the ZigBee PRO wireless
network protocol. It assumes that you are already familiar with the basic Smart Energy
concepts presented in Chapter 1.

2.1 Essential ZigBee Concepts

In this manual, we are concerned with implementing a Smart Energy HAN as a ZigBee
PRO wireless network. ZigBee PRO is a second generation wireless network protocol,
defined by the ZigBee Alliance, which provides a worldwide standard for the
implementation of highly flexible ‘mesh’ networks. The protocol is built on top of the
IEEE 802.15.4 standard. The NXP implementation of ZigBee PRO operates in the
2.4-GHz radio band, which allows licence-free radio operation in most parts of the
world (check your local regulations).

A full introduction to ZigBee PRO is provided on the ZigBee PRO Stack User Guide
(JN-UG-3048), available from www.nxp.com/jennic. The rest of this section
describes specific ZigBee concepts relevant to Smart Energy, before the ZigBee PRO
Smart Energy profile is introduced in the remainder of this chapter.

While reading through this section, you may wish to refer to the representation of the
ZigBee PRO protocol stack in Figure 7 below.

Figure 7: ZigBee PRO Stack

Network (NWK) layer

IEEE 802.15.4 layers

Application (APL) layer

 Application

 ZigBee Cluster Library (ZCL)

 Clusters

 Application Profile
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 29

Chapter 2
ZigBee Smart Energy

2.1.1 Application Profiles

ZigBee is designed as an industry-standard protocol for the implementation of
wireless networks by different manufacturers. One of its aims is to allow wireless
network devices from multiple manufacturers to operate together in the same
network. With this aim in mind, the ZigBee Alliance introduced the concept of an
Application Profile.

An Application Profile provides a design framework for a specific market sector by
defining a set of devices that can be coherently used together in implementing an
application for that market sector. For example, the ZigBee Alliance has defined the
Home Automation (HA) profile for use in controlling appliances and systems in the
home, such as a lighting system. It defines a number of ‘devices’ and functions that
are needed or useful in controlling domestic systems, e.g. switches, dimmers,
occupancy sensors and load controllers for a lighting system.

The ZigBee Alliance has defined a public Application Profile for Smart Energy. This is
introduced in Section 2.2 and forms the basis for the rest of this manual.

2.1.2 Devices, Clusters and Attributes

A ZigBee Application Profile, such as Smart Energy, incorporates the set of devices
that it supports. In ZigBee, a ‘device’ is a software entity comprising the set of
properties and functionality of an application that runs on a network node - this
information is detailed in its device descriptors (Node, Power and Simple descriptors).

The Application Profile also defines the type of data supported by the application and
the operations that can be performed on the data. These definitions are handled in
terms of ‘attributes’ and ‘clusters’, as described below.

Attributes

An attribute is a data entity, such as temperature. An application has a set of attributes
that it uses in its communications - attribute values are exchanged in the messages
sent from one application to another in a ZigBee network (see Clusters below).

Note: In ZigBee, a ‘device’ is a software entity which
encompasses a particular set of properties and
functionality. This is explained below in Section 2.1.2.

Note: An application which runs on a network node has
an associated endpoint, which is effectively the
application’s input/output port. Up to 240 endpoints are
available for use by the applications on each node, and
are numbered 1 to 240.
30 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Clusters

ZigBee applications use the concept of a ‘cluster’ for communicating attribute values.
A cluster comprises a set of related attributes together with a set of commands.

A cluster has two aspects, which are respectively concerned with receiving and
sending commands. One or both aspects may be used by a ZigBee application
device. These sides of a cluster are described below and illustrated in Figure 8.

 Server or Input Cluster: This side of a cluster is used to store attributes and
receive commands to manipulate the stored attributes (to which the cluster may
return responses) - for example, a server cluster on a Metering Device may
store an “energy consumed” attribute and associated attributes, and respond to
commands which request readings of these attributes.

 Client or Output Cluster: This side of a cluster is used to manipulate
attributes in the corresponding server cluster by sending commands to it (and
receiving the responses). Normally, these are read commands to obtain
attribute values (the read values being returned in the responses) - for
example, to read the “energy consumed” attribute (and associated attributes)
on a remote Metering Device. There may also be write commands to remotely
set attribute values.

The input clusters and output clusters of an application are listed (separately) in its
Simple descriptor, which forms part of the Application Profile.

2.1.3 ZigBee Cluster Library (ZCL)

Although clusters may be defined in an Application Profile, certain clusters are useful
across all Application Profiles. Therefore, the ZigBee Alliance has defined a number
of standard clusters for different functional areas. These are collected together in the
ZigBee Cluster Library (ZCL). For example, the Smart Energy profile uses the Time
cluster from the ZCL (for the synchronisation of the nodes in an SE network).

The ZCL provides a common means for applications to communicate. It defines a
header and payload that sit inside the Protocol Data Unit (PDU) used for messages.
It also defines attribute types (such as ints, strings, etc), common commands (e.g. for
reading attributes) and default responses for indicating success or failure.

The ZCL is fully detailed in the ZigBee Cluster Library Specification (075123),
available from the ZigBee Alliance.

Figure 8: Client and Server Clusters

Device A

Client Cluster
(Output)

Device B

Server Cluster
(Input)

Commands sent from client to server

Responses returned from server to client
(may contain attribute values read) Attributes written

or read, according
to command
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 31

Chapter 2
ZigBee Smart Energy

2.2 ZigBee SE Profile

The ZigBee Alliance has published a public Application Profile for Smart Energy,
public in the sense that it is available to all manufacturers who wish to develop Smart
Energy products for ZigBee networks. This Application Profile ID is numbered 0x0109
and the profile is defined in the ZigBee Smart Energy Profile Specification (075356),
available from the ZigBee Alliance. However, this User Guide should provide the
necessary information to use the profile.

Some general points to note about the implementation of the ZigBee SE profile are as
follows:

 In scanning for channels, the ZigBee Co-ordinator should ideally restrict itself to
the following 2.4-GHz band channels: 11, 14, 15, 19, 20, 24, 25. This is to avoid
frequency overlap with nearby Wi-Fi systems.

 Broadcasts are strongly discouraged in SE networks and are limited to no more
than one broadcast per second (and much less frequently being preferable).

 ZigBee PRO SE networks are required to use the protocol’s standard security
mode with the obligatory use of link keys.

The SE profile specifies a set of clusters, listed in Section 2.3, as well as a set of
possible SE devices that use these clusters, detailed in Section 2.4. Security is an
important factor in SE networks and the SE profile’s security requirements are
outlined in Section 2.5. The SE profile also defines required aspects of network
operation, including start-up attribute sets (containing global network variables such
as PAN ID and channel mask).
32 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
2.3 ZigBee SE Clusters

The ZigBee SE profile uses certain clusters from the ZCL and also defines some of its
own clusters. All the clusters used by the SE profile are listed in Table 1 and outlined
below. In the table, the clusters from the ZCL are listed as “General” and the clusters
defined by the SE profile are listed as “Smart Energy”.

Category Cluster Cluster ID

General Basic 0x0000

Power Configuration 0x0001

Identify 0x0003

Alarms 0x0009

Time 0x000A

Commissioning 0x0015

Over-the-Air (OTA) Upgrade 0x0019

Smart Energy Price 0x0700

Demand-Response and Load Control 0x0701

Simple Metering 0x0702

Messaging 0x0703

Tunnelling (Complex Metering) 0x0704

Prepayment 0x0705

Key Establishment 0x0800

Table 1: SE Profile Clusters

Note 1: The Smart Energy clusters are detailed in this
manual. The General/ZCL clusters are detailed in the
ZCL User Guide (JN-UG-3077) - only SE-specific
implementation details of the ZCL clusters are described
in this manual.

Note 2: The above table lists the clusters included in the
ZigBee Smart Energy Profile Specification, but not all
clusters are supported in the NXP ZigBee PRO Smart
Energy API. A list of the supported clusters (and
attributes) is provided in Appendix A.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 33

Chapter 2
ZigBee Smart Energy

Basic

The Basic cluster contains the basic properties of a device (e.g. software and
hardware versions) and allows the setting of user-defined properties (such as
location). The Basic cluster is described further in Chapter 5.

Power Configuration

The Power Configuration cluster contains the properties of the device's own power
source (which can be mains or batteries), and allows the configuration of under/over
voltage alarms. The Power Configuration cluster is described further in the ZCL User
Guide (JN-UG-3077).

Identify

The Identify cluster allows a device to make itself known visually (e.g. by flashing a
light) to an observer such as a network installer.

Alarms

The Alarms cluster is used for sending alarm notifications and the general
configuration of alarms for all other clusters on the device (individual alarm conditions
are set in the corresponding clusters).

Time

The Time cluster provides an interface to a real-time clock on a device, allowing the
clock time to be read and written in order to synchronise the clock to a time standard
- the number of seconds since 0 hrs 0 mins 0 secs on 1st January 2000 UTC
(Co-ordinated Universal Time). This cluster includes functionality for local time-zone
and daylight saving time. The Time cluster is described further in Chapter 5.

Commissioning

The Commissioning cluster can be optionally used for commissioning the ZigBee
stack on a device (during network installation) and defining the device behaviour with
respect to the ZigBee network (it does not affect applications operating on the
devices). The Commissioning cluster is described further in the ZCL User Guide
(JN-UG-3077).

OTA Upgrade

The Over-the-Air (OTA) Upgrade cluster provides the facility to upgrade application
software on the nodes of a ZigBee PRO network by distributing the replacement
software through the network (over the air) from a designated node. In an SE network,
this node is normally the ESP. The OTA Upgrade cluster is described further in
Chapter 5.
34 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Price

The Price cluster provides the mechanism for sending and receiving pricing
information within an SE network. The pricing information is sent by the utility
company to the ESP, which passes the information to SE devices in the utility private
HAN (and possibly to other devices in a customer private HAN). The Price cluster is
described further in Chapter 6.

Demand-Response and Load Control

The Demand-Response and Load Control (DRLC) cluster provides an interface for
controlling an attached appliance that supports load control. The cluster is able to
receive load control requests (from the utility company) and act upon them - the
demand-response functionality. The DRLC cluster is described further in Chapter 9.

Simple Metering

The Simple Metering cluster provides a mechanism to obtain consumption data from
a metering device (electric, gas, water or thermal). The Simple Metering cluster is
described further in Chapter 8.

Messaging

The Messaging cluster provides an interface for passing text messages between
ZigBee SE devices. These are likely to be messages from the utility company received
by the ESP, which unicasts a received message to all registered SE devices that
implement the Messaging cluster (or makes the message available to all devices for
later collection). The Messaging cluster is described further in Chapter 7.

Tunnelling (Complex Metering)

The Tunnelling cluster provides an interface for implementing tunnelling protocols. It
allows any existing metering communication protocol to be transported within the
payload of standard ZigBee frames (this includes dealing with issues such as
addressing, fragmentation and flow control). The Tunnelling cluster is described
further in Chapter 11.

Prepayment

The Prepayment cluster provides support for pre-purchased credit which, in
particular, can be used for electricity consumption. The cluster provides the facility to
exchange prepayment information between devices in a HAN - for example, to allow
prepayment data held on a Metering Device to be displayed to the customer on an In-
Premise Display (IPD).

Key Establishment

The Key Establishment cluster is used to manage secure communications in ZigBee,
when the underlying network security cannot be trusted. A key agreement scheme is
used, requiring the exchange of keying information between communicating devices.
Security in SE networks is described further in Section 2.5. The Key Establishment
cluster is described further in Chapter 10.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 35

Chapter 2
ZigBee Smart Energy

2.4 ZigBee SE Devices

The ZigBee SE profile defines the following devices for use in SE networks:

 Energy Service Portal (ESP)

 Metering Device

 In-Premise Display (IPD)

 Programmable Communicating Thermostat (PCT)

 Load Control Device

 Smart Appliance

 Range Extender

The general roles of these devices are as described in Section 1.2, except the Range
Extender which is simply a ZigBee Router. Also note that the Prepayment Terminal,
mentioned in Section 1.2, is not yet supported by ZigBee.

The SE devices are defined by the clusters that they use. Some clusters are common
to all the SE devices - these are detailed in Table 2 below.

Note: For each device, there are mandatory clusters
and optional clusters. Also, the clusters are different for
the server (input) and client (output) sides of the device.

Server (Input) Side Client (Output) Side

Mandatory

Basic

Key Establishment Key Establishment

Optional

Identity

Clusters with reporting capability Clusters with reporting capability

Power Configuration

Inter-PAN Communication Inter-PAN Communication

Alarms

Commissioning Commissioning

OTA Upgrade OTA Upgrade

Tunnelling Tunnelling

Manufacturer-specific Manufacturer-specific

Table 2: Common Clusters for All SE Devices
36 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
The SE devices are further described in the sub-sections below, which include details
of the additional clusters that each device uses.

2.4.1 Energy Service Portal (ESP)

The Energy Service Portal (ESP) acts as the exit/entry point for the utility private HAN,
connecting the HAN to the utility company’s backhaul network and routing messages
into and out of the HAN. The ESP normally acts as the ZigBee Co-ordinator and also
includes the appropriate non-ZigBee interface to communicate on the backhaul
network. Every SE network must have an ESP, which may be housed with another SE
device, often a Metering Device, with both devices operating on the same ZigBee
endpoint.

The specific clusters used by the ESP (in addition to the common clusters in Table 2)
are listed in Table 3 below.

2.4.2 Metering Device

A Metering Device measures the consumption of a resource (normally electricity, gas,
water or heat). The device may be able to accept and respond to read requests, or
may automatically report its measurements periodically. The device may also
communicate certain status indicators (e.g. battery low, tamper detected). A Metering
Device for electricity consumption is often housed with the ESP, with both devices
operating on the same ZigBee endpoint - this is the case in the NXP ZigBee PRO SE
implementation.

The specific clusters used by the Metering Device (in addition to the common clusters
in Table 2) are listed in Table 4 below.

Server (Input) Side Client (Output) Side

Mandatory

Messaging

Price

Demand-Response/Load Control

Time

Optional

Price

Simple Metering Simple Metering

Table 3: Additional Clusters for ESP Device
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 37

Chapter 2
ZigBee Smart Energy

2.4.3 In-Premise Display (IPD)

The In-Premise Display (IPD) device relays consumption information to the user by
some kind of visual means (e.g. LEDs, text display, graphical display). The device
typically displays at least one of:

 current power usage

 consumption history over selectable periods

 pricing information

 text messages

For example, the device may be used to display warnings of high-price periods so that
the consumer can decide whether to modify their power usage in real-time.

The IPD may be fully interactive with some kind of user input interface (e.g. buttons,
keypad, touch screen).

The specific clusters used by the IPD (in addition to the common clusters in Table 2)
are listed in Table 5 below.

Since there are no mandatory clusters for the IPD, the device must implement at least
one of the optional clusters. NXP have implemented the Basic client-side cluster to
allow the IPD to read the Basic cluster attributes on the ESP.

Server (Input) Side Client (Output) Side

Mandatory

Simple Metering

Optional

Time

Price

Messaging

Table 4: Additional Clusters for Metering Device

Server (Input) Side Client (Output) Side

Optional

Demand-Response/Load Control

Time

Price

Simple Metering

Messaging

Table 5: Additional Clusters for IPD Device
38 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
2.4.4 Programmable Communicating Thermostat (PCT)

The Programmable Communicating Thermostat (PCT) is used to manage the power
consumption of a heating and/or air-conditioning system. The device supports the
demand-response feature, meaning that it is able to receive requests from the utility
company for changes in power consumption (e.g. to reduce consumption during high-
demand periods) and act on these requests.

The specific clusters used by the PCT (in addition to the common clusters in Table 2)
are listed in Table 6 below.

2.4.5 Load Control Device

The Load Control device is used to manage the power consumption of an attached
appliance, usually a high-power appliance such as a water heater or swimming pool
pump. The device supports the demand-response feature, meaning that it is able to
receive requests from the utility company for changes in power consumption (e.g. to
reduce consumption during high-demand periods) and act on these requests.

The specific clusters used by the Load Control device (in addition to the common
clusters in Table 2) are listed in Table 7 below.

Server (Input) Side Client (Output) Side

Mandatory

Demand-Response/Load Control

Time

Optional

Price

Simple Metering

Messaging

Table 6: Additional Clusters for PCT Device

Server (Input) Side Client (Output) Side

Mandatory

Demand-Response/Load Control

Time

Optional

Price

Table 7: Additional Clusters for Load Control Device
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 39

Chapter 2
ZigBee Smart Energy

2.4.6 Smart Appliance

The Smart Appliance is a device that can be built into a consumer product, such as a
washing machine, to allow it to participate directly in a ZigBee SE network. The device
is able to receive information (at least pricing data) from the utility company and act on
it (e.g. display information to the consumer).

The specific clusters used by the Smart Appliance device (in addition to the common
clusters in Table 2) are listed in Table 8 below.

2.4.7 Range Extender

The Range Extender is a ZigBee Router used for relaying messages between the
nodes of an SE network. A product which implements the Range Extender device
cannot implement any other device from the SE profile, although it is possible to
implement a private application alongside the Range Extender device.

Only the common clusters (listed in Table 2) are used by the Range Extender device.

Server (Input) Side Client (Output) Side

Mandatory

Price

Time

Optional

Demand-Response/Load Control

Messaging

Table 8: Additional Clusters for Smart Appliance Device
40 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
2.5 ZigBee SE Security

All communications in an SE network are secured to protect the network from
intentional and unintentional interference. To this end, ZigBee PRO incorporates a
number of security features. In addition, the SE profile provides security
enhancements concerned with establishing the security keys used in network
communications. These are outlined in the sub-sections below.

2.5.1 ZigBee PRO Security

ZigBee PRO has default features that isolate a network from neighbouring networks,
ensuring that there is no cross-over between networks. During network start-up, the
ZigBee Co-ordinator (normally incorporated in the ESP of an SE network) performs
the following steps:

1. Sets the 64-bit Extended PAN ID (EPID) for the network, which can be taken
from the IEEE/MAC address of the Co-ordinator - this is a globally unique 64-
bit address and so the resulting EPID will uniquely identify the network.

2. Scans the permissible radio channels in order to select the network’s
operating channel, which is normally chosen to be the channel with the least
detected activity, thus avoiding clashes with other networks.

3. Randomly selects a 16-bit PAN ID for the network, ensuring that the chosen
value does not clash with the PAN ID of any other ZigBee network operating in
the same channel.

The above measures should protect a ZigBee network from accidental interference
from other ZigBee networks in the neighbourhood.

ZigBee PRO also provides specific security features which help protect the network
from malicious attacks. These are described in the ZigBee PRO Stack User Guide
(JN-UG-3048). The ZigBee PRO ‘standard security’ mode is used in SE networks.

ZigBee PRO security employs AES-CCM* encryption. This is a very high-security,
128-bit key-based encryption system which is applied to network communications,
preventing external agents from interpreting ZigBee network data.

Two types of security key are used in ZigBee PRO encryption:

 Network key: This key is randomly generated by the Trust Centre and is
shared by all network nodes. It is used to secure all communications between
nodes (even when an application link key is also used - see below).

 Application link key: This is a unique link key for each pair of communicating
nodes. The application link key provides a high level of security that is used in
accessing certain SE clusters (e.g. Simple Metering, Price, Messaging).

Use of the above keys in a Smart Energy network is described further in the next
section.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 41

Chapter 2
ZigBee Smart Energy

2.5.2 Smart Energy Security

ZigBee PRO SE devices are required to use application link keys (see Section 2.5.1)
for encrypted communication between pairs of nodes. The SE profile provides a Key
Establishment cluster (which is mandatory for all devices) to establish unique
application link keys, as outlined below.

In order to establish an application link key between the Co-ordinator/ESP and a
joining node (any SE device), the following are required:

 Pre-configured link key for the joining node

 Security certificates for the joining node and the Trust Centre

Information on how to obtain the above key and certificates is given below in the
sections Pre-configured Link Key and Security Certificate respectively. The procedure
below describes the generation of the application link key, which is also illustrated in
Figure 9. In this procedure, the above key and relevant certificate are assumed to be
already held by the joining node and by the Trust Centre, which is assumed to be the
Co-ordinator/ESP.

1. The joining node sends a ‘join request’ to the Co-ordinator/Trust Centre, which
returns a ‘transport key’ containing the network key encrypted using the pre-
configured link key of the newly joined node.

2. The Key Establishment cluster on the joining node then uses both nodes’
security certificates to generate an application link key through a sequence of
exchanges with the Co-ordinator, encrypted using the network key.

3. The established application link key can subsequently be used to encrypt
communications between the joined node and the Co-ordinator.

Figure 9: Application Link Key Establishment

Joining Node
Co-ordinator/
Trust Centre

Join request

'Transport key'
(containing encrypted network key)

Key establishment exchanges
(using certificates)

Encrypted communications

Application link key produced

1

2

3

Pre-configured link key used

Network key used

Application link key used
42 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
For further details of the Smart Energy security measures and the Key Establishment
cluster, refer to the ZigBee Smart Energy Profile Specification (075356).

The pre-configured link key and security certificates are obtained as described below.

Pre-configured Link Key

As mentioned above, SE security set-up requires a pre-configured link key for the
joining node. This link key is shared between the joining node and the Trust Centre/
ESP as described below.

1. During node manufacture, the node is assigned an installation code, which is
printed on a label distributed with the node. This installation code consists of
12, 16, 24 or 32 random hex digits, followed by a 4-digit checksum of the
random digits. The leading random (non-checksum) digits are also used in an
algorithm to derive the node’s 128-bit pre-configured link key, which is pre-
programmed in the Flash memory of the device during manufacture.

2. During node installation in the network, the node’s IEEE/MAC address and
installation code are communicated to the utility company via an out-of-band
mechanism (e.g. telephone call or web site registration), with the embedded
checksum being used to validate the registered installation code. The utility
company then derives the pre-configured link key from the leading random
(non-checksum) digits of this code, and installs this key and the MAC address
into the ESP/Trust Centre of the SE network via the backhaul network. The
new node is then powered on and attempts to join the network (see above).

Security Certificate

SE security set-up also requires digital security certificates for the joining node and the
Trust Centre. This certificate contains the following information: IEEE/MAC address of
the node, issuer, profile attribute data, a public key and the signature of a Certificate
Authority (CA). The certificate also has an associated but separate private key (for
information on the use of public and private keys, refer to http://www.verisign.com.au/
repository/tutorial/cryptography/intro1.shtml).

A security certificate for a device can be obtained from Certicom (www.certicom.com)
by submitting the IEEE/MAC address of the device. The “issuer” embedded in the
certificate is then an identifier for Certicom (a unique IEEE/MAC address for the
company). Note that Certicom issue test certificates and production certificates.
Production certificates are issued under a higher level of security and to obtain a
production certificate, your device must already have ZigBee Smart Energy
certification.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 43

Chapter 2
ZigBee Smart Energy

44 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
3. Smart Energy Application Development

This chapter provides basic guidance on developing a ZigBee PRO SE application.
The topics covered in this chapter include:

 Development resources and their installation (Section 3.1)

 Smart Energy Application Programming Interface (API) (Section 3.2)

 API functions (Section 3.3)

 Development phases (Section 3.4)

 Building an application (Section 3.5)

Application coding is described separately in Chapter 4.

3.1 Development Resources and Installation

NXP provide a wide range of resources to aid in the development of Smart Energy
applications for the JN51xx wireless microcontroller. An SE application is developed
as a ZigBee PRO application that uses the NXP ZigBee PRO APIs in conjunction with
JenOS (Jennic Operating System), together with SE-specific and ZCL resources. All
resources are available from www.nxp.com/jennic and are outlined below.

ZigBee PRO Resources

The resources for developing a ZigBee PRO application are supplied free-of-charge
in a Software Developer’s Kit (SDK), which is provided as two installers:

 JN516x ZigBee PRO Smart Energy SDK (JN-SW-4064): This installer
contains a number of APIs, including the ZigBee PRO APIs, JenOS APIs and
Integrated Peripherals API for the JN516x device.

 SDK Toolchain (JN-SW-4041): This installer contains the tools that you will
use in creating an application, including the Eclipse IDE (Integrated
Development Environment) and the JN51xx Flash Programmer.

For full details of the SDK and installation instructions, refer to the SDK Installation and
User Guide (JN-UG-3064). The SDK is normally installed into the directory C:/Jennic.

SE Resources

The SE resources comprise of software files relating to the clusters and devices of the
ZigBee Alliance’s SE profile, as well as the relevant clusters of the ZCL. These
resources are included as source in the SE SDK installer (JN-SW-4064) described
above.

A Smart Energy demonstration application is provided in the Application Note Smart
Energy HAN Solutions (JN-AN-1135), available from www.nxp.com/jennic.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 45

Chapter 3
Smart Energy Application Development

3.2 Smart Energy API

The NXP ZigBee PRO Smart Energy API contains a range of resources (functions,
structures, etc), including:

 Core resources (e.g. for initialising the API and accessing SE cluster attributes)

 Cluster-specific resources

These resources are introduced in the sub-sections below.

3.2.1 Core Resources

The core resources of the Smart Energy API handle the basic operations required in
an SE network, irrespective of the devices and clusters used:

 Initialising the SE API

 Registering an endpoint on a SE device

 Requesting a read access to cluster attributes on a remote device

 Requesting a write access to cluster attributes on a remote device

 Handling errors from SE API function calls

 Handling events on an SE device

The core resources and their use are described in Chapter 4, Chapter 12 and Chapter
13.

3.2.2 Cluster-specific Resources

A ZigBee PRO Smart Energy device uses certain mandatory and optional ZigBee
clusters (for details, refer to Chapter 2). The clusters supported by the NXP Smart
Energy software are listed below:

 Basic cluster (from ZCL) - see Chapter 5

 Time cluster (from ZCL) - see Chapter 5

 Identify cluster (from ZCL) - see Chapter 5

 Commissioning cluster (from ZCL) - see Chapter 5

 OTA Upgrade cluster (from ZCL) - see Chapter 5

 Price cluster - see Chapter 6

 Messaging cluster - see Chapter 7

 Simple Metering cluster - see Chapter 8

 Demand-Response and Load Control cluster - see Chapter 9

 Key Establishment cluster - see Chapter 10

Other SE clusters from the ZigBee SE Profile and ZCL are not yet supported by the
NXP SE software.
46 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
3.3 Function Prefixes

The API functions used in SE are categorised and prefixed in the following ways:

 ZCL functions: Used to interact with the ZCL and prefixed with xZCL_

 SE functions: Used to interact with the SE profile and prefixed with xSE_

 Cluster functions: Used to interact with clusters and prefixed as follows:

 For clusters defined in the SE specification, they are prefixed with xSE_

 For clusters defined in the ZCL specification, they are prefixed with xCLD_

 For the OTA Upgrade cluster, they are prefixed with xOTA_

In the above prefixes, x represents one or more characters that indicate the return
type, e.g. “v” for void.

Only functions that are SE-specific are detailed in this manual. Functions which relate
to clusters of the ZCL are detailed in the ZCL User Guide (JN-UG-3077).

3.4 Development Phases

The main phases of development for an SE application are the same as for any
ZigBee PRO application, and are outlined below.

1. Network Configuration: Configure the ZigBee network parameters for the
nodes using the ZPS Configuration Editor - refer to the ZigBee PRO Stack
User Guide (JN-UG-3048) and to Section 13.5 of this manual.

2. OS Configuration: Configure the JenOS resources to be used by your
application using the JenOS Configuration Editor - refer to the JenOS User
Guide (JN-UG-3075).

3. Application Code Development: Develop the application code for your
nodes using the ZigBee PRO APIs, JenOS APIs, SE API and ZCL - refer to
the ZigBee PRO Stack User Guide (JN-UG-3048), JenOS User Guide
(JN-UG-3075) and ZCL User Guide (JN-UG-3077), as well as this manual.

4. Application Build: Build the application binaries for your nodes using the
JN51xx compiler and linker built into the Eclipse platform - refer to Section 3.5
and to the SDK Installation and User Guide (JN-UG-3064).

5. Node Programming: Load the application binaries into Flash memory on
your nodes using the JN51xx Flash programmer, which can be launched
either from within Eclipse or directly, and is described in the JN51xx Flash
Programmer User Guide (JN-UG-3007).

Note: Before starting your SE application development,
you should familiarise yourself with the general aspects
of ZigBee PRO application development, described in
the ZigBee PRO Stack User Guide (JN-UG-3048).
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 47

Chapter 3
Smart Energy Application Development

3.5 Building an Application

This section outlines how to build a ZigBee PRO Smart Energy application developed
for the JN51xx device. First of all, the configuration of compile-time options and
ZigBee Device Parameters is described, and then directions are given for building and
loading the application.

3.5.1 Compile-Time Options

Before the application can be built, the SE compile-time options must be configured in
the header file zcl_options.h for the application. This header file is supplied in the
Application Note Smart Energy HAN Solutions (JN-AN-1135), which can be used as
a template.

Number of Endpoints

The highest numbered endpoint used by the SE application must be specified - for
example:

#define SE_NUMBER_OF_ENDPOINTS 3

Normally, the endpoints starting at endpoint 1 will be used for SE, so in the above case
endpoints 1 to 3 will be used for SE. It is possible, however, to use the lower numbered
endpoints for non-SE purposes - for example, to run other protocols on endpoints 1
and 2, and SE on endpoint 3. In this case, with SE_NUMBER_OF_ENDPOINTS set
to 3, some storage will be statically allocated by the SE library for endpoints 1 and 2
but never used. Note that this define applies only to local endpoints - the application
can refer to remote endpoints with numbers beyond the locally defined value of
SE_NUMBER_OF_ENDPOINTS.

Enabled Clusters

All required clusters must be enabled in the options header file. For example, a
minimal meter application must have the Basic and Simple Metering clusters:

#define CLD_BASIC

#define CLD_SIMPLE_METERING

Support for Attribute Read/Write

Read/write access to cluster attributes must be explicitly compiled into the application,
and must be enabled separately for the server and client sides of a cluster using the
following macros in the options header file:

#define ZCL_ATTRIBUTE_READ_SERVER_SUPPORTED

#define ZCL_ATTRIBUTE_READ_CLIENT_SUPPORTED

#define ZCL_ATTRIBUTE_WRITE_SERVER_SUPPORTED

#define ZCL_ATTRIBUTE_WRITE_CLIENT_SUPPORTED

Note that each of the above definitions will apply to all clusters used in the application.

In the current NXP implementation of ZigBee PRO Smart Energy, both read and write
access of attributes is required, depending on which clusters are enabled.
48 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Optional Attributes

Many clusters have optional attributes that may be enabled at compile-time via the
options header file - for example, the Simple Metering instantaneous demand attribute
is enabled in the demonstration application:

#define CLD_SM_ATTR_INSTANTANEOUS_DEMAND

3.5.2 ZigBee Network Parameters

Smart Energy applications require specific settings of certain ZigBee network
parameters. These parameters are set using the ZPS Configuration Editor and the
required settings are given in Section 13.5. The full set of ZigBee network parameters
are detailed in the ZigBee PRO Stack User Guide (JN-UG-3048).

3.5.3 Building and Loading the Application Binary

A ZigBee PRO Smart Energy application for the JN51xx device is built like any other
ZigBee PRO application. The build is normally carried out using the Eclipse IDE. This
is the method that we recommend, although it is also possible to use makefiles directly
from the command line (Cygwin).

For instructions on building an application in the Eclipse IDE, refer to the SDK
Installation and User Guide (JN-UG-3064). This guide also indicates how to load the
built application binary file into a JN51xx-based node using the JN51xx Flash
Programmer launched from within Eclipse. Alternatively, you can use the JN51xx
Flash Programmer directly. In either case, you will need to refer to the JN51xx Flash
Programmer User Guide (JN-UG-3007) as part of this procedure.

Note: Cluster-specific compile-time options are detailed
in the chapters for the individual clusters in Part II:
Smart Energy Clusters. For clusters from the ZCL, refer
to the ZCL User Guide (JN-UG-3077).
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 49

Chapter 3
Smart Energy Application Development

50 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
4. Smart Energy Application Coding

This chapter covers general aspects of SE application coding, including essential SE
programming concepts, code initialisation, callback functions, reading and writing
attributes, and event handling. Application coding that is particular to individual
clusters is described later, in the relevant cluster-specific chapter.

4.1 SE Programming Concepts

This section describes the essential programming concepts that are needed in SE
application development. The basic operations in an SE network are concerned with
reading and setting the attribute values of the clusters of a device.

4.1.1 Shared Device Structures

In each SE device, attribute values are exchanged between the application and the
SE library by means of a shared structure. This structure is protected by a mutex
(described in the ZCL User Guide (JN-UG-3077)). The structure for a particular SE
device contains structures for the clusters supported by that device (see Section 2.4).
The available device structures are detailed in Section 13.2.

A shared device structure may be used in either of the following ways:

 The local application writes attribute values to the structure, allowing the
ZigBee Cluster Library (ZCL) to respond to commands relating to these
attributes. For example, a Metering Device application writes energy
consumption data to the local Metering structure and this data is subsequently
read remotely by the utility company.

 The ZCL parses incoming commands that write attribute values to the
structure. The written values can then be read by the local application. For
example, data is remotely written to an IPD structure by the ESP application
and the IPD application then reads this data to display it on a screen.

Remote read and write operations involving a shared device structure are illustrated
in Figure 10 below. For more detailed descriptions of these operations, refer to
Section 4.5 and Section 4.6.

Note: SE API functions referenced in this chapter are
fully detailed in Chapter 12. Referenced ZCL functions
are described in the ZCL User Guide (JN-UG-3077).

Note: In order to use a cluster which is supported by a
device, the relevant option for the cluster must be
specified at build-time - see Section 3.5.1.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 51

Chapter 4
Smart Energy Application Coding

Figure 10: Operations using Shared Device Structure

Note: Provided that there are no remote attribute writes,
the attributes of a cluster server (in the shared structure)
on a device are maintained by the local application(s).
The equivalent attributes of a cluster client on another
device are copies of these cluster server attributes
(remotely read from the server).

Read
Command

Response

Server Device

Device
Structure

Application

WriteRead

Client Device

Device
Structure
(Copy)

Application

Read Write

Read Request

ZCLZCL

Reading Remote Attributes

Write
Command

Server Device

Device
Structure

Application

Read
Write

Client Device

Device
Structure
(Copy)

Application

Write Read

Write Request

ZCLZCL

Writing Remote Attributes

Response

Application requests read of attribute values from device
structure on remote server and ZCL sends request.
ZCL receives response, writes received attribute values to
local copy of device structure and generates events (which
can prompt application to read attributes from structure).

1.

4.

If necessary, application first updates attribute values in
device structure.
ZCL reads requested attribute values from device structure
and then returns them to requesting client.

2.

3.

Application writes new attribute values to local copy of device
structure for remote server.
ZCL sends 'write attributes' request to remote server.
ZCL can receive optional response and generate events
for the application (that indicate any unsuccessful writes).

1.

2.
5.

ZCL writes received attribute values to device structure and
optionally sends response to client.
If required, application can then read new attribute values
from device structure.

3.

4.

Event (s)

Event (s)
52 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
4.1.2 Addressing

Communications between devices in an SE network are performed using standard
ZigBee PRO mechanisms. A brief summary is provided below.

In order to perform an operation (e.g. a read) on a remote node in a ZigBee PRO
network, a command must be sent from the relevant output (or client) cluster on the
local node to the relevant input (or server) cluster on the remote node.

At a higher level, an application (and therefore the SE device and supported clusters)
is associated with a unique endpoint, which acts as the I/O port for the application on
the node. Therefore, a command is sent from an endpoint on the local node to the
relevant endpoint(s) on the remote node.

The destination node(s) and endpoint(s) must be identified by the sending application.
The endpoints on each node are numbered from 1 to 240. The target node(s) can be
addressed in a number of different ways, listed below.

 64-bit IEEE/MAC address

 16-bit ZigBee network (short) address

 16-bit group address, relating to a pre-specified group of nodes and endpoints

 A binding, where the source endpoint has been pre-bound to the remote
node(s) and endpoint(s)

 A broadcast, in which the message is sent to all nodes of a certain type, one of:

 only Co-ordinator and Router nodes

 all End Devices

 only End Devices for which the radio receiver stays on when they are idle

A destination address structure, tsZCL_Address, is defined in the ZCL and is
detailed in the ZCL User Guide (JN-UG-3077). Enumerations are provided for the
addressing mode and broadcast mode in this structure, and are also detailed in the
above manual.

4.1.3 OS Resources

The SE library and ZCL require OS resources, such as tasks and mutexes. These
resources are provided by JenOS (Jennic Operating System), supplied in the SDK.

The JenOS resources for an application are allocated using the JenOS Configuration
Editor, which is provided as an NXP-specific plug-in for the Eclipse IDE. Use of the
JenOS Configuration Editor for an SE application should be based on the ZigBee PRO
Smart Energy template or demonstration application (rather than on the standard
ZigBee PRO stack template) to ensure that the extra JenOS resources required by the
SE profile and the ZCL are available.

A JenOS mutex protects the shared structure that holds the cluster attribute values for
a device (see Section 4.1.1 above). This mutex is part of the JenOS Smart Energy
template. The ZCL invokes an application callback function to lock and unlock this
mutex. The mutex should be used in conjunction with the counting mutex code
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 53

Chapter 4
Smart Energy Application Coding

provided in the appendix of the ZCL User Guide (JN-UG-3077). The software for this
mutex operation is contained in the Smart Energy demonstration application.

The task that the SE library and ZCL use to process incoming messages is defined in
the JenOS Smart Energy template. Callbacks from the SE library and ZCL to the
application will be in the context of this task. The Smart Energy demonstration
application and template have a separate task for the user application code. This task
also links to the shared-structure mutex in the JenOS configuration so that it can use
critical sections to protect access to the shared structures.

Only data events addressed to the correct ZigBee profile, endpoint and cluster are
processed by the ZCL, possibly with the aid of a callback function. Stack and data
events that are not addressed to an SE endpoint are handled by the application
through a callback function. All events are first passed into the ZCL using the function
vZCL_EventHandler(). The ZCL either processes the event or passes it to the
application, invoking the relevant callback function (refer to Section 4.3 for information
on callback functions and to Section 4.7 for more details on event handling).

If the ZCL consumes a data event, it will free the corresponding Protocol Data Unit
(PDU), otherwise it is the responsibility of the application to free the PDU.

4.2 Initialisation

A ZigBee PRO Smart Energy application is initialised like a normal ZigBee PRO
application, as described in the section “Forming a Network” of the ZigBee PRO Stack
User Guide (JN-UG-3048). In addition, some SE initialisation must be performed in the
application code.

The SE initialisation functions mentioned below must be called after calling
ZPS_eAplAfInit() and before calling ZPS_eAplZdoStartStack():

1. First initialise the SE library and ZCL using the function eSE_Initialise(). This
function requires you specify a user-defined callback function for handling
stack events (see Section 4.3 below), as well as a pool of APDUs (Application
Protocol Data Units) for sending and receiving data.

2. Now set up the SE device(s) handled by your code. Each SE device on the
node must be allocated a unique endpoint (in the range 1-240). In addition, its
device structure must be registered, as well as a user-defined callback
function that will be invoked by the SE library when an event occurs relating to
the endpoint (see Section 4.3 below). All of this is done using a registration
function for the SE device type - for example, in the case of an IPD, the
required function is eSE_RegisterIPDEndPoint().

Note: The set of endpoint registration functions for the
different SE device types are detailed in Chapter 12.
Functions are provided for a combined ESP/Metering
Device and for separate ESP and Metering Device.
54 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
4.3 Callback Functions

Two types of user-defined callback function must be provided (and registered as
described in Section 4.2):

 Endpoint Callback Function: A callback function must be provided for each
endpoint used, where this callback function will be invoked when an event
occurs (such as an incoming message) relating to the endpoint. The callback
function is registered with the SE library when the endpoint is registered using
the registration function for the SE device type that the endpoint supports - for
example, using eSE_RegisterIPDEndPoint() for an IPD (see Chapter 12).

 General Callback Function: Events that do not have an associated endpoint
are delivered via a callback function that is registered with the SE library
through the function eSE_Initialise(). For example, stack leave and join events
can be received by the application through this callback function.

The endpoint callback function and general callback function both have the type
definition given below:

typedef void (* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

The callback events are detailed in the ZCL User Guide (JN-UG-3077) and event
handling is further described in Section 4.7.

4.4 Discovering Endpoints and Clusters

In order to communicate, a cluster client and cluster server must discover and store
each other’s contact details - that is, the address of the node and the number of the
endpoint on which the relevant cluster resides.

The SE application on a node can discover other nodes in the network by calling the
ZigBee PRO API function ZPS_eAplZdpMatchDescRequest(), which sends out a
match descriptor request (as a broadcast to all network nodes or as unicasts to
selected nodes). This function allows nodes to be selectively discovered by looking for
specific criteria in the Simple Descriptors of the endpoints on the recipient nodes.
These criteria include a list of required input (server) clusters and a list of required
output (client) clusters. In this way, an application which supports a particular cluster
server or client can discover its cluster counterpart(s) in the rest of the network.

If a recipient node satisfies the criteria specified in a match descriptor request, it will
respond with a match descriptor response. This response contains the network
address of the responding node and a list of the node’s endpoints that satisfy the
required criteria - for example, the endpoints that support the specified cluster(s).
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 55

Chapter 4
Smart Energy Application Coding

Once a relevant node and endpoint have been identified:

 The function ZPS_eAplZdpIeeeAddrRequest() can be used to obtain the
IEEE/MAC address of the node and then both addresses can be added to the
local Address Map using the function ZPS_eAplZdoAddAddrMapEntry().

 If data packets between the two endpoints are to be encrypted by means of
standard ZigBee PRO security then one of the two nodes must initiate a link
key request using the function ZPS_eAplZdoRequestKeyReq().

 The node can bind a local endpoint to the remote endpoint using the function
ZPS_eAplZdpBindUnbindRequest().

4.5 Reading Attributes

The most common operation in an SE application is to read attributes from a remote
device, e.g. an application on an IPD may need to obtain data from a Metering device.
Attributes can be read using a general ZCL function or using an SE function which is
specific to the target cluster. The cluster-specific functions for reading attributes are
covered in the chapters of this manual that describe the supported clusters. Note that
read access to cluster attributes must be explicitly enabled at compile-time as
described in Section 3.5.1.

The remainder of this section describes the use of the ZCL function
eZCL_SendReadAttributesRequest() to send a ‘read attributes’ request, although
the sequence is similar when using the cluster-specific ‘read attributes’ functions. The
resulting activities on the source and destination nodes are outlined below and
illustrated in Figure 11. Note that instances of the shared device structure (which
contains the relevant attributes) exist on both the source and destination nodes. The
events generated from a ‘read attributes’ request are further described in Section 4.7.

1. On Source Node (Client)

The function eZCL_SendReadAttributesRequest() is called to submit a request to
read one or more attributes on a cluster on a remote node. The information required
by this function includes the following:

 Source endpoint (from which the read request is to be sent)

 Address of destination node for request

 Destination endpoint (on destination node)

 Identifier of the cluster containing the attributes [enumerations provided]

 Number of attributes to be read

 Array of identifiers of attributes to be read [enumerations provided]

Note: All of the above functions are described in the
ZigBee PRO Stack User Guide (JN-UG-3048).
56 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
2. On Destination Node (Server)

On receiving the ‘read attributes’ request, the SE library software on the destination
node performs the following steps:

1. Generates an E_ZCL_CBET_READ_REQUEST event for the destination
endpoint callback function which, if required, can update the shared device
structure that contains the attributes to be read, before the read takes place.

2. Generates an E_ZCL_CBET_LOCK_MUTEX event for the endpoint callback
function, which should lock the mutex that protects the shared device
structure - for information on mutexes, refer to the ZCL User Guide
(JN-UG-3077)

3. Reads the relevant attribute values from the shared device structure and
creates a ‘read attributes’ response message containing the read values.

4. Generates an E_ZCL_CBET_UNLOCK_MUTEX event for the endpoint
callback function, which should now unlock the mutex that protects the shared
device structure (other application tasks can now access the structure).

5. Sends the ‘read attributes’ response to the source node of the request.

3. On Source Node (Client)

On receiving the ‘read attributes’ response, the SE library software on the source node
performs the following steps:

1. Generates an E_ZCL_CBET_LOCK_MUTEX event for the source endpoint
callback function, which should lock the mutex that protects the relevant
shared device structure on the source node.

2. Writes the new attribute values to the shared device structure on the source
node.

3. Generates an E_ZCL_CBET_UNLOCK_MUTEX event for the endpoint
callback function, which should now unlock the mutex that protects the shared
device structure (other application tasks can now access the structure).

4. For each attribute listed in the ‘read attributes’ response, it generates an
E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE message for
the source endpoint callback function, which may or may not take action on
this message.

5. On completion of the parsing of the ‘read attributes’ response, it generates a
single E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE message for the
source endpoint callback function, which may or may not take action on this
message.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 57

Chapter 4
Smart Energy Application Coding

Figure 11: ‘Read Attributes’ Request and Response

Note: The ‘read attributes’ requests and responses
arrive at their destinations as data messages. Such a
message triggers a stack event of the type
ZPS_EVENT_APS_DATA_INDICATION, which is
handled as described in Section 4.7.

Endpoint SE Library SE Library Endpoint

'Read Attributes' Message

READ_REQUEST
'Read Attributes' Request

LOCK_MUTEX

Read Attribute Values

UNLOCK_MUTEX

'Read Attributes' Response
LOCK_MUTEX

Write Attribute Values

UNLOCK_MUTEX

READ_INDIVIDUAL_
ATTRIBUTE_RESPONSE

READ_ATTRIBUTES
_RESPONSE

Source Node Destination Node

Shared
Structure

Local
Shared
Structure
58 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
4.6 Writing Attributes

The ability to write attribute values to a remote cluster is required by some SE devices
- for example, an ESP may need to write attributes to a Load Control Device (e.g to
configure the device group). Normally, a ‘write attributes’ request is sent from a client
cluster to a server cluster, where the relevant attributes in the shared device structure
are updated. Note that write access to cluster attributes must be explicitly enabled at
compile-time as described in Section 3.5.1.

Three ‘write attributes’ functions are provided in the ZCL:

 eZCL_SendWriteAttributesRequest(): This function sends a ‘write attributes’
request to a remote device, which attempts to update the attributes in its shared
structure. The remote device generates a ‘write attributes’ response to the
source device, indicating success or listing error codes for any attributes that it
could not update.

 eZCL_SendWriteAttributesNoResponseRequest(): This function sends a
‘write attributes’ request to a remote device, which attempts to update the
attributes in its shared structure. However, the remote device does not
generate a ‘write attributes’ response, regardless of whether there are errors.

 eZCL_SendWriteAttributesUndividedRequest(): This function sends a ‘write
attributes’ request to a remote device, which checks that all the attributes can
be written to without error:

 If all attributes can be written without error, all the attributes are updated.

 If any attribute is in error, all the attributes are left at their existing values.

The remote device generates a ‘write attributes’ response to the source device,
indicating success or listing error codes for attributes that are in error.

The activities surrounding a ‘write attributes’ request on the source and destination
nodes are outlined below and illustrated in Figure 12. Note that instances of the
shared device structure (which contains the relevant attributes) must be maintained
on both the source and destination nodes. The events generated from a ‘write
attributes’ request are further described in Section 4.7.

1. On Source Node (Client)

In order to send a ‘write attributes’ request, the application on the source node
performs the following steps:

1. Locks the mutex that protects the local instance of the shared device structure
that contains the attributes to be updated - for information on mutexes, refer to
the ZCL User Guide (JN-UG-3077).

2. Writes one or more updated attribute values to the local instance of the shared
device structure.

3. Unlocks the mutex that protects the local instance of the shared device
structure.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 59

Chapter 4
Smart Energy Application Coding

4. Calls one of the above ZCL ‘write attributes’ functions to submit a request to
update the relevant attributes on a cluster on a remote node. The information
required by this function includes the following:

 Source endpoint (from which the write request is to be sent)

 Address of destination node for request

 Destination endpoint (on destination node)

 Identifier of the cluster containing the attributes [enumerations provided]

 Number of attributes to be written

 Array of identifiers of attributes to be written [enumerations provided]

From the above information, the function is able to pick up the relevant attribute
values from the local instance of the shared structure and incorporate them in
the message for the remote node.

2. On Destination Node (Server)

On receiving the ‘write attributes’ request, the SE library software on the destination
node performs the following steps:

1. For each attribute in the ‘write attributes’ request, generates an
E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE event for the destination
endpoint callback function. If required, the callback function can do either or
both of the following:

 check that the new attribute value is in the correct range - if the value is
out-of-range, the function should set the eAttributeStatus field of the
event to E_ZCL_ERR_ATTRIBUTE RANGE

 block the write by setting the the eAttributeStatus field of the event to
E_ZCL_DENY_ATTRIBUTE_ACCESS

In the case of an out-of-range value or a blocked write, there is no further
processing for that particular attribute following the ‘write attributes’ request.

2. Generates an E_ZCL_CBET_LOCK_MUTEX event for the endpoint callback
function, which should lock the mutex that protects the relevant shared device
structure - for more on mutexes, refer to the ZCL User Guide (JN-UG-3077).

3. Writes the relevant attribute values to the shared device structure - an
E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE event is generated for
each individual attempt to write an attribute value, which the endpoint callback
function can use to keep track of the successful and unsuccessful writes.

Note that if an ‘undivided write attributes’ request was received, an individual
failed write will render the whole update process unsuccessful.

4. Generates an E_ZCL_CBET_WRITE_ATTRIBUTES event to indicate that all
relevant attributes have been processed and, if required, creates a ‘write
attributes’ response message for the source node.

5. Generates an E_ZCL_CBET_UNLOCK_MUTEX event for the endpoint
callback function, which should now unlock the mutex that protects the shared
device structure (other application tasks can now access the structure).

6. If required, sends a ‘write attributes’ response to the source node of the
request.
60 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
3. On Source Node (Client)

On receiving an optional ‘write attributes’ response, the SE library software on the
source node performs the following steps:

1. For each attribute listed in the ‘write attributes’ response, it generates an
E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE message for
the source endpoint callback function, which may or may not take action on
this message. Only attributes for which the write has failed are included in the
response and will therefore result in one of these events.

2. On completion of the parsing of the ‘write attributes’ response, it generates a
single E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE message for the
source endpoint callback function, which may or may not take action on this
message.

Figure 12: ‘Write Attributes’ Request and Response

Note: The ‘write attributes’ requests and responses
arrive at their destinations as data messages. Such a
message triggers a stack event of the type
ZPS_EVENT_APS_DATA_INDICATION, which is
handled as described in Section 4.7.

Endpoint SE Library SE Library Endpoint

'Write Attributes' Message

CHECK_ATTRIBUTE_RANGE

'Write Attributes' Request

LOCK_MUTEX

Write Attribute Value

UNLOCK_MUTEX

'Write Attributes' Response

WRITE_INDIVIDUAL_
ATTRIBUTE_RESPONSE

WRITE_ATTRIBUTES
_RESPONSE

Source Node Destination Node

Lock mutex for
local shared structure

Write attribute values

Unlock mutex for
local shared structure

WRITE_INDIVIDUAL_ATTRIBUTE

WRITE_ATTRIBUTES

Shared
Structure

Local
Shared
Structure
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 61

Chapter 4
Smart Energy Application Coding

4.7 Handling Events

This section outlines the event handling framework which allows a ZigBee PRO Smart
Energy application to deal with stack-related and timer-related events. A stack event
is triggered by a message arriving in a message queue and a timer event is triggered
when a JenOS timer expires.

The event handling framework for ZigBee PRO Smart Energy is provided by the ZCL.
The event must be wrapped in a tsZCL_CallBackEvent structure by the
application, which then passes this event structure into the ZCL using the function
vZCL_EventHandler(). The ZCL processes the event and, if necessary, invokes the
relevant endpoint callback function. This event structure and event handler function
are detailed in the ZCL User Guide (JN-UG-3077), which also provides more details
of event processing.

The events that are not cluster-specific are divided into four categories, as shown in
Table 9 below - these events are described in the ZCL User Guide (JN-UG-3077).
Cluster-specific events are covered in the chapter for the relevant cluster.

Category Event

Input Events E_ZCL_ZIGBEE_EVENT

E_ZCL_CBET_TIMER

Read Events E_ZCL_CBET_READ_REQUEST

E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE

Write Events E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE

E_ZCL_CBET_WRITE_ATTRIBUTES

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE

General Events E_ZCL_CBET_LOCK_MUTEX

E_ZCL_CBET_UNLOCK_MUTEX

E_ZCL_CBET_DEFAULT_RESPONSE

E_ZCL_CBET_UNHANDLED_EVENT

E_ZCL_CBET_ERROR

Table 9: Events (Not Cluster-Specific)

Note: ZCL error events and default responses may be
generated when problems occur in receiving
commands. The possible ZCL status codes contained in
the events and responses are detailed in the ZCL User
Guide (JN-UG-3077).
62 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Part II:
Smart Energy Clusters
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 63

64 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
5. ZCL Clusters

This chapter provides SE-specific implementation details of the following clusters,
which are fully described in the ZigBee Cluster Library (ZCL) User Guide
(JN-UG-3077):

 Basic cluster - see Section 5.1

 Time cluster - see Section 5.2

 OTA Upgrade cluster - see Section 5.3

There are no SE-specific recommendations for the other supported ZCL clusters,
listed in Appendix A.

5.1 Basic Cluster

The Basic cluster is a mandatory cluster for all ZigBee SE devices and has a Cluster
ID of 0x0000. It is a Server-side (input) cluster, so is able to store attributes and
respond to commands relating to these attributes. However, NXP have also
implemented the Basic client-side (output) cluster on the IPD, to allow this device to
read the Basic cluster attributes on the ESP.

5.1.1 Compile-Time Options

The Basic cluster is enabled by defining CLD_BASIC in the zcl_options.h file - see
Section 3.5.1. In addition, to enable the cluster as a client or server or both, it is also
necessary to add one or both of the following to the same file:

#define BASIC_CLIENT

#define BASIC_SERVER

Other compile-time options are also available for the Basic cluster and are described
in the ZCL User Guide (JN-UG-3077).

5.1.2 Mandatory Attributes

The tsCLD_Basic structure and attributes of the Basic cluster are fully described in
the ZCL User Guide (JN-UG-3077). The cluster contains only two mandatory
attributes, the remaining attributes being optional. The two mandatory attributes are
outlined below:

 u8ZCLVersion: This is an 8-bit version number for the ZCL release that all
clusters on the local endpoint(s) conform to.

 ePowerSource: This is an 8-bit value in which seven bits indicate the primary
power source for the device (e.g. battery) and one bit indicates whether there is
a secondary power source for the device.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 65

Chapter 5
ZCL Clusters

A set of enumerated values for the full range of possible primary power sources are
provided in the structure teCLD_BAS_PowerSource of the ZCL software.

The application must set the values of the mandatory u8ZCLVersion and
ePowerSource fields of the Basic cluster structure so that other devices can read
them. This should be done immediately after calling the endpoint registration function
for the device, e.g. eSE_RegisterIPDEndPoint(). Example settings for SE are:

On a mains-powered ESP/Meter:

sMeter.sBasicCluster.u8ZCLVersion = 0x01;

sMeter.sBasicCluster.ePowerSource = E_CLD_BAS_PS_SINGLE_PHASE_MAINS;

On a battery-powered IPD:

sIPD.sLocalBasicCluster.u8ZCLVersion = 0x01;

sIPD.sLocalBasicCluster.ePowerSource = E_CLD_BAS_PS_BATTERY;

Note: Since NXP implement the Basic cluster as a client
as well as a server on the IPD, there are two Basic
cluster structures on this device - one for the local
server attributes and another for keeping copies of
remote server attribute values. The above settings must
be made in the ‘local’ server structure.
66 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
5.2 Time Cluster

The Time cluster is used to maintain a time reference for the transactions in a Smart
Energy network and to time-synchronise the SE devices. It has a Cluster ID of 0x000A.

The Time cluster is required in SE devices as indicated in the table below.

The ESP implements the Time cluster as a server and acts as the time-master for an
SE network. The other SE devices in the network implement the Time cluster as a
client and time-synchronise with the server.

5.2.1 Compile-Time Options

The Time cluster is enabled by defining CLD_TIME in the zcl_options.h file - see
Section 3.5.1. In addition, to enable the cluster as a client or server or both, it is also
necessary to add one or both of the following to the same file:

#define TIME_CLIENT

#define TIME_SERVER

Other compile-time options are also available for the Time cluster and are described
in the ZCL User Guide (JN-UG-3077).

5.2.2 Time Standards

UTC Time

The Time cluster contains an attribute for the current time, which is referenced to UTC
(Co-ordinated Universal Time) and based on the type UTCTime, which is defined in
the ZigBee standard as:

"UTCTime is an unsigned 32 bit value representing the number of seconds since 0
hours, 0 minutes, 0 seconds, on the 1st of January, 2000 UTC".

ZCL Time

The ZCL also keeps its own time, ‘ZCL time’, which is based on the above UTCTime
definition. This time is derived from a one-second timer provided by JenOS and is
used to drive any ZCL timers that have been registered.

Server-side Client-side

Mandatory in... ESP PCT
Load Control Device
Smart Appliance

Optional in... Metering Device
IPD

Table 10: Time Cluster in SE Devices
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 67

Chapter 5
ZCL Clusters

5.2.3 Mandatory Attributes

The tsCLD_Time structure and attributes of the Time cluster are fully described in the
ZCL User Guide (JN-UG-3077). The cluster contains only two mandatory attributes,
the remaining attributes being optional. The two mandatory attributes are outlined
below:

 utctTime: This is a 32-bit attribute which holds the current time (UTC). On the
time-master (ESP), this attribute value is incremented once per second. On all
other SE devices, it is the responsibility of the local application to synchronise
this time with the time-master. For more information on time-synchronisation,
refer to Section 5.2.4.

 u8TimeStatus: This is an 8-bit attribute containing the following bitmap:

* DST= Daylight Saving Time

This attribute must be set as follows on the ESP, on which the Time cluster is a
server and which acts as the time-master for the network:

 The ‘Master’ bit should initially be zero until the current time has been
obtained from the utility company or from another external time-of-day
source. Once the time has been obtained and set, the ‘Master’ bit should
be set (to ‘1’).

 The ‘Synchronised’ bit must always be zero, as the ESP does not obtain its
time from another SE device within the ZigBee network (this bit is set to ‘1’
only for a secondary Time cluster server that is synchronised to the time-
master).

 The ‘Master for Time Zone and DST’ bit must be set (to ‘1’) once the time-
zone and Daylight Saving Time (DST) attributes (see below) have been
correctly set for the device.

Macros are provided for setting the individual bits of the bitmap - these macros
are defined in the header file time.h and listed in the ZCL User Guide
(JN-UG-3077).

The optional attributes of the Time cluster are mainly concerned with the time-zone
and daylight saving.

Bits Meaning Description

0 Master 1: Time-master for network
0: Not time-master for network

1 Synchronised
(servers only)

1: Server synchronised to another ZigBee SE device
0: Server not synchronised to another ZigBee SE device

2 Master for Time
Zone and DST *

1: Master for time-zone and DST
0: Not master for time-zone and DST

3-7 Reserved -

Table 11: u8TimeStatus Bitmap
68 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
5.2.4 Time-Synchronisation of Devices

Devices in an SE wireless network need to be time-synchronised (so that they all refer
to the same time). Normally, the ESP acts as the time-master from which the other
devices set their time, since this device is linked to the utility company from where the
master time is obtained.

There are two times on a device that should be maintained during the synchronisation
process:

 Time attribute of the Time cluster (utctTime field of tsCLD_Time structure)

 ZCL time

On the time-master, these times are initialised by the local application using the
current time from the utility company and are subsequently maintained using a local
one-second timer (see Section 5.2.4.1), as well as occasional re-synchronisations
with the utility company.

On all other devices, these times are initialised by the local application by
synchronising with the time-master (see Section 5.2.4.2). The ZCL time is
subsequently maintained using a local one-second timer and both times are
occasionally re-synchronised with the time master (see Section 5.2.4.3).

Synchronisation with the time-master is normally performed via the Time cluster (but
can alternatively be performed using a field of the Publish Price command - see
Section 6.6).

Caution: If there is more than one Time cluster server in
the network, devices should only attempt to synchronise
to one server in order to prevent their clocks from
repeatedly jittering backwards and forwards.

Note: Some SE clusters use the ZCL time in order to
generate events at particular times. When the ZCL is
initialised on a device, the ZCL time is not set. Until this
time is set, events that depend on the current time (such
as a Price event with a ‘start-time of now’) cannot be
processed - see Section 5.2.4.1 below.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 69

Chapter 5
ZCL Clusters

The diagram in Figure 13 below provides an overview of the time initialisation and
synchronisation processes described in the sub-sections that follow.

Figure 13: Time Initialisation and Synchronisation

Utility
Company

Time Cluster

ESP Application

ZCL Clock

ZCL

JenOS Timer

Time Cluster

Device Application

ZCL Clock

ZCL

JenOS Timer

Increment

Increment Set

Set

Time
Message

'Read
Attributes'
Request

'Read
Attributes'
Response

Increment

READ_ATTRIBUTES_RESPONSE Event

Callback Function

Set

Set
70 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
5.2.4.1 Initialising and Maintaining Master Time

The ESP initially obtains the current time (UTC) from the utility company via the
backhaul network. The ESP application must use this time to set its ZCL time by
calling the function vZCL_SetUTCTime() and to set the value of the Time cluster
attribute utctTime in the local tsCLD_Time structure within the shared device
structure (securing access with a mutex). The application must also set (to ‘1’) the
‘Master’ bit of the u8TimeStatus attribute of the tsCLD_Time structure, to indicate
that this device is the time-master and that the time has been set.

If the ESP has also obtained time-zone and daylight saving information from the utility
company (or has been pre-programmed with this information), the ESP application
must set (to ‘1’) the ‘Master for Time Zone and DST’ bit of the u8TimeStatus
attribute and write the relevant optional attributes. These optional attributes on the
ESP can then be used to provide time-zone and daylight saving information to other
devices.

The ZCL time and the utctTime attribute are subsequently incremented from a local
one-second timer provided by JenOS, as follows. On expiration of the JenOS timer,
an event is generated (from the hardware/software timer that drives the JenOS timer),
which causes JenOS to activate a ZCL user task. The event is initially handled by this
task as described in Section 4.7, resulting in an E_ZCL_CBET_TIMER event being
passed to the ZCL via the function vZCL_EventHandler(). The following actions
should then be performed:

1. The ZCL automatically increments the ZCL time and may run cluster-specific
schedulers (e.g. for maintaining a price list).

2. The user task updates the value of the utctTime attribute of the
tsCLD_Time structure within the shared device structure (securing access
with a mutex).

3. The user task resumes the one-second timer using the JenOS function
OS_eContinueSWTimer().

Note: The ‘Synchronised’ bit of the u8TimeStatus
attribute should always be zero on the time-master, as
this device does not synchronise to any other SE device
within the ZigBee network.

Note: The ESP can prevent other devices from
attempting to read its Time cluster attributes before the
time has been set - the initial synchronisation with the
utility company should be done after calling the relevant
endpoint registration function (for example,
eSE_RegisterEspEndPoint()) but before calling
ZPS_eAplZdoStartStack().
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 71

Chapter 5
ZCL Clusters

The demonstration application in the Application Note Smart Energy HAN Solutions
(JN-AN-1135) illustrates how to do this.

Both the ZCL time and the utctTime attribute must also be updated by the
application when a time update is received from the utility company.

5.2.4.2 Initial Synchronisation of Devices

It is the responsibility of the application on an SE device to perform time-
synchronisation with the ESP. The application must remotely read the Time cluster
attributes from the ESP by calling the function eSE_ReadTimeAttributes() or
eZCL_SendReadAttributesRequest(), which will result in a ‘read attributes’
response containing the Time cluster data. On receiving this response, a ‘data
indication’ stack event is generated on the local device, which causes JenOS to
activate a ZCL user task. The event is initially handled by this task as described in
Section 4.7, resulting in an E_ZCL_ZIGBEE_EVENT event being passed to the ZCL
via the function vZCL_EventHandler(). Provided that the event contains a message
incorporating a ‘read attributes’ response, the ZCL:

1. automatically sets the utctTime field of the tsCLD_Time structure to the
value of the same attribute in the ‘read attributes’ response (and also sets
other Time cluster attributes, if requested)

2. invokes the relevant user-defined callback function (see Section 4.7), which
must read the local utctTime attribute (securing access with a mutex) and
use this value to set the ZCL time by calling the function vZCL_SetUTCTime()

The demonstration application in the Application Note Smart Energy HAN Solutions
(JN-AN-1135) illustrates how to do this.

It may also be possible to obtain time-zone and daylight saving information from the
ESP. If available, this information will be returned in the ‘read attributes’ response.
However, before using these optional Time cluster attributes from the response, the
application should first check that the ‘Master for Time Zone and DST’ bit of the
u8TimeStatus attribute is set (to ‘1’) in the response.

The ZCL time and utctTime attribute value on the local device are subsequently
maintained as described in Section 5.2.4.3.

Note: When a device attempts to time-synchronise with
the ESP, it should check the u8TimeStatus attribute in
the ‘read attributes’ response. If the ‘Master’ bit of this
attribute is not equal to ‘1’, the obtained time should not
be trusted and the time should not be set. The device
should wait and try to synchronise again later.
72 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
5.2.4.3 Re-synchronisation of Devices

After the initialisation described in Section 5.2.4.2, the ZCL time must be updated by
the application on each one-second tick of the local JenOS timer. The ZCL time is
updated from the timer in the same way as described for the time-master (ESP) in
Section 5.2.4.1 (except the Time cluster utctTime attribute is not updated).

Due to the inaccuracy of the local one-second timer, the ZCL time is likely to lose
synchronisation with the master time on the ESP. It will therefore be necessary to
occasionally re-synchronise the local ZCL time with the ESP - the utctTime attribute
value is also updated at the same time. A device re-synchronises with the ESP by first
remotely reading the utctTime attribute on the ESP using the function
eSE_ReadTimeAttributes() or eZCL_SendReadAttributesRequest(). On receiving
the ‘read attributes’ response from the ESP, the operations performed are the same
as those described for initial synchronisation in Section 5.2.4.2.

In order to avoid excessive re-synchronisation traffic across the network, the ZigBee
Smart Energy specification states that “time accuracy on client devices shall be within
±1 minute of the server device (ESP) per 24 hour period“. In addition, the specification
demands that clock accuracy on the client devices “never requires more than one time
synchronization event per 24 hour period“. As a general rule, an application should
initiate a time re-synchronisation if it has not received any communications that
contain a time-stamp in the last 48 hours. However, in the case of a failed
synchronisation (see Note in Section 5.2.4.2), a new attempt to synchronise can be
made after a much shorter time, as this situation is only likely to occur when the ESP
and the device have been powered around the same time.

Note: If a device also implements the Price cluster, time
re-synchronisation can be performed using the current
time embedded in the Publish Price commands - see
Section 6.6. However, these commands do not carry
time-zone or daylight saving information. If such a
command has not been received for an extended period
of time, the device may need to initiate a time
re-synchronisation with the ESP as described above.

Note: If the ESP receives a time update from the utility
company then the ESP application must update its ZCL
time and its time attribute.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 73

Chapter 5
ZCL Clusters

5.2.4.4 Re-synchronisation Following Sleep

The above re-synchronisation (in Section 5.2.4.3) is easy to achieve for a device that
does not sleep. In the case of a device that sleeps, on waking from sleep, the
application should update the ZCL time using the function vZCL_SetUTCTime()
according to the duration for which the device was asleep. This requires the sleep
duration to be timed.

While sleeping, the JN51xx microcontroller normally uses its RC oscillator for timing
purposes, which does not maintain the required accuracy for Smart Energy. It is
therefore recommended that a more accurate external crystal is used to time the sleep
periods.

The vZCL_SetUTCTime() function does not cause timer events to be executed. If the
device is awake for less than one second, the application should generate a
E_ZCL_CBET_TIMER event to prompt the ZCL to run any timer-related functions,
such as maintenance of the list of scheduled prices. Note that when passed into
vZCL_EventHandler(), this event will increment the ZCL time by one second.

5.2.4.5 Checking ZCL Time Synchronisation

In addition to the time-related functions mentioned earlier, the SE API provides the
following functions for checking ZCL time synchronisation:

 u32ZCL_GetUTCTime() obtains the ZCL time (held locally).

 bZCL_GetTimeHasBeenSynchronised() determines whether the device has
been time-synchronised.

 vZCL_ClearTimeHasBeenSynchronised() can be used to specify that the
device can no longer be considered to be synchronised (for example, if there
has been a problem in accessing the Time cluster server over a long period).

The above functions provide the means for an application on a device that hosts other
time-related clusters (e.g. Price and Messaging) to discover whether the device is
time-synchronised with the rest of the network or, in the case of the ESP, with the utility
company. If the device is not synchronised, these clusters will be unable to send and
receive messages (for more information on the resulting Price cluster issues, refer to
Section 6.6).
74 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
5.3 OTA Upgrade Cluster

The Over-the-Air (OTA) Upgrade cluster provides the facility to upgrade application
software on the nodes of a ZigBee PRO network by distributing the replacement
software through the network (over the air) from a designated node. This cluster is not
officially a part of the ZCL but is described in the ZCL User Guide (JN-UG3077), since
it can be included in any ZigBee application profile. The OTA Upgrade cluster has a
Cluster ID of 0x0019.

The OTA Upgrade cluster is optional but is particularly useful in Smart Energy
networks, allowing upgrade software obtained from the utility company to be easily
distributed to the SE network devices. In this case:

 The ESP normally acts as the OTA Upgrade cluster server, which obtains the
upgrade software from the utility company (via the backhaul network) and
distributes this software within the SE network.

 Other SE devices act as OTA Upgrade cluster clients, able to receive software
images from the server and use this software to update the running application.

5.3.1 Compile-Time Options

The OTA Upgrade cluster is enabled by defining CLD_OTA in the zcl_options.h file
- see Section 3.5.1. In addition, to enable the cluster as a client or server or both, it is
also necessary to add one or both of the following to the same file:

#define OTA_CLIENT

#define OTA_SERVER

Other compile-time options are also available for the OTA Upgrade cluster and are
described in the ZCL User Guide (JN-UG-3077).

5.3.2 Mandatory Attributes

The OTA Upgrade cluster attributes are located only on a cluster client and are
contained on the structure tsZCL_AttributeDefinition - this structure and the
attributes are fully described in the ZCL User Guide (JN-UG-3077). The cluster
contains only two mandatory attributes, the remaining attributes being optional. The
two mandatory attributes are outlined below:

 u64UgradeServerID: Contains the 64-bit IEEE/MAC address of the OTA
Upgrade server for the (local) client. In an SE network, this is normally the
address of the ESP. This address can be fixed during manufacture or
discovered during network formation/operation.

 u8ImageUpgradeStatus: Contains the status of the client device in relation to
image downloads and upgrades. Refer to the ZCL User Guide (JN-UG-3077)
for the possible values.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 75

Chapter 5
ZCL Clusters

76 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
6. Price Cluster

This chapter outlines the Price cluster which is defined in the ZigBee Smart Energy
profile, and is used to hold and exchange price information.

The Price cluster has a Cluster ID of 0x0700.

6.1 Overview

The Price cluster is required in SE devices as indicated in the table below.

The ESP normally acts as the Price cluster server, holding price information received
from the utility company. Other devices act as clients and receive price information
from the ESP. The clients’ price information must be kept up-to-date with the server’s
price information.

The Price cluster is enabled by defining CLD_PRICE in the zcl_options.h file - see
Section 3.5.1. Further compile-time options for the Price cluster are detailed in Section
6.13.

The Price cluster can operate in a mode in which pricing is based on the time at which
the consumption occurs - this is called Time-Of-Use (TOU) mode. The cluster allows
up to fifteen price ‘tiers’, numbered 1 to 15, which correspond to different time periods.
Each price tier is given a label, which is used to identify the tier - typical labels are
"Normal", "Shoulder", "Peak", "Real-time Pricing" and "Critical Peak". The tiers must
be numbered consecutively in price order, with Tier 1 being the cheapest. Note that
tiers 7 to 15 are not certifiable in SE 1.1.1 or earlier and are reserved for future use.

The information that can potentially be stored in the Price cluster is organised into the
following attribute sets: Tier Label, Block Threshold, Block Period, Commodity, Block
Price Information, Billing Period Information. The attribute sets Block Threshold, Block
Period, Block Price Information and Billing Period Information are reserved for future

Important: While the Price cluster software supports
Block mode, this mode is not certifiable in SE 1.1.1
(07-5356-17) or earlier and is therefore not fully
documented in this chapter. Customers who wish to use
Block mode should contact NXP for direct support.

Server-side Client-side

Mandatory in... ESP Smart Appliance

Optional in... ESP
Metering Device
IPD
PCT
Load Control Device

Table 12: Price Cluster in SE Devices
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 77

Chapter 6
Price Cluster

use (with Block mode). There is also a set of attributes exclusively for use on a Price
cluster client.

The cluster includes commands for requesting and publishing (distributing) price
information. The price information that is valid for a certain time is sent from the Price
cluster server (ESP) to the Price cluster clients using Publish Price commands, which
may be sent from the ESP under the following circumstances:

 Unsolicited from the server - for example, when new pricing information has
been received from the utility company or a new price tier becomes active

 In response to a Get Current Price command, sent by a client that needs the
price for the current time period

 In response to a Get Scheduled Prices command, sent by a client that needs
both current and future prices

The SE API provides functions for implementing the cluster commands. These
functions are referenced in Section 6.4 and Section 6.5, and detailed in Section 6.9.

6.2 Price Cluster Structure and Attributes

 The Price cluster is contained in the following tsCLD_Price structure:

typedef struct CLD_Price_tag

{

 /* Tier Price Label Set (D.4.2.2.1) */

#if (CLD_P_ATTR_TIER_PRICE_LABEL_MAX_COUNT != 0)

 tsZCL_OctetString asTierPriceLabel[CLD_P_ATTR_TIER_PRICE_LABEL_MAX_COUNT];

 uint8 au8TierPriceLabel[CLD_P_ATTR_TIER_PRICE_LABEL_MAX_COUNT][SE_PRICE_SERVER_MAX_STRING_LENGTH];

#endif

 /* Block Threshold Set (D.4.2.2) */

#if (CLD_P_ATTR_BLOCK_THRESHOLD_MAX_COUNT != 0)

 zuint48 au48BlockThreshold[CLD_P_ATTR_BLOCK_THRESHOLD_MAX_COUNT];

#endif

 /* Block Period Set (D.4.2.2.3) */

#ifdef CLD_P_ATTR_START_OF_BLOCK_PERIOD

 zutctime utctStartOfBlockPeriod;

#endif

#ifdef CLD_P_ATTR_BLOCK_PERIOD_DURATION

 zuint24 u24BlockPeriodDuration;

#endif

#ifdef CLD_P_ATTR_THRESHOLD_MULTIPLIER

 zuint24 u24ThresholdMultiplier;

#endif

#ifdef CLD_P_ATTR_THRESHOLD_DIVISOR

 zuint24 u24ThresholdDivisor;

#endif

 /* Commodity Set Set (D.4.2.2.4) */

#ifdef CLD_P_ATTR_COMMODITY_TYPE

 zenum8 e8CommodityType;

#endif

#ifdef CLD_P_ATTR_STANDING_CHARGE

 zuint32 u32StandingCharge;

#endif
78 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
#ifdef CLD_P_ATTR_CONVERSION_FACTOR

 zuint32 u32ConversionFactor;

#endif

#ifdef CLD_P_ATTR_CONVERSION_FACTOR_TRAILING_DIGIT

 zbmap8 b8ConversionFactorTrailingDigit;

#endif

#ifdef CLD_P_ATTR_CALORIFIC_VALUE

 zuint32 u32CalorificValue;

#endif

#ifdef CLD_P_ATTR_CALORIFIC_VALUE_UNIT

 zenum8 e8CalorificValueUnit;

#endif

#ifdef CLD_P_ATTR_CALORIFIC_VALUE_TRAILING_DIGIT

 zbmap8 b8CalorificValueTrailingDigit;

#endif

 /* Block Price Information Set (D.4.2.2.5) */

#if (CLD_P_ATTR_NO_TIER_BLOCK_PRICES_MAX_COUNT != 0)

 zuint32 au32NoTierBlockPrice[CLD_P_ATTR_NO_TIER_BLOCK_PRICES_MAX_COUNT];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 0)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier1BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 1)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier2BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 2)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier3BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 3)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier4BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 4)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier5BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 5)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier6BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 6)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier7BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 7)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier8BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 8)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier9BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 9)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier10BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 79

Chapter 6
Price Cluster

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 10)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier11BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 11)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier12BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 12)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier13BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 13)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier14BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#if ((CLD_P_ATTR_NUM_OF_TIERS_PRICE > 14)&&(CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE != 0))

 zuint32 au32Tier15BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE];

#endif

#ifdef CLD_P_ATTR_START_OF_BILLING_PERIOD

 zutctime utctStartOfBillingPeriod;

#endif

#ifdef CLD_P_ATTR_BILLING_PERIOD_DURATION

 zuint24 u24BillingPeriodDuration;

#endif

#ifdef CLD_P_CLIENT_ATTR_PRICE_INCREASE_RANDOMIZE_MINUTES

 uint8 u8ClientIncreaseRandomize;

#endif

#ifdef CLD_P_CLIENT_ATTR_PRICE_DECREASE_RANDOMIZE_MINUTES

 uint8 u8ClientDecreaseRandomize;

#endif

#ifdef CLD_P_CLIENT_ATTR_COMMODITY_TYPE

 zenum8 e8ClientCommodityType;

#endif

} tsCLD_Price;

where:

‘Tier Label’ Attribute Set

 The following are optional attributes that are only relevant to TOU mode (tiers 7
to 15 are not certifiable in SE 1.1.1 or earlier and are reserved for future use):

 asTierPriceLabel[CLD_P_ATTR_TIER_PRICE_LABEL_MAX_COUNT]
is a tsZCL_OctetString structure containing information on tier labels.
The maximum size of asTierPriceLabel is defined by assigning a
value to CLD_P_ATTR_TIER_PRICE_LABEL_MAX_COUNT. This optional
element is paired with au8TierPriceLabel (below)

 au8TierPriceLabel[CLD_P_ATTR_TIER_PRICE_LABEL_MAX_COUNT]
[SE_PRICE_SERVER_MAX_STRING_LENGTH] is an array containing the
tier labels, e.g. "Peak". This optional element is paired with the element
asTierPriceLabel (above)
80 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
‘Block Threshold’ Attribute Set

 The following are optional attributes that relate to Block mode and are fully
described in the ZigBee Smart Energy Profile Specification (these attributes are
not certifiable in SE 1.1.1 or earlier and are for future use):

 au48BlockThreshold[CLD_P_ATTR_BLOCK_THRESHOLD_MAX_COUNT]

‘Block Period’ Attribute Set

 The following are optional attributes that relate to Block mode and are fully
described in the ZigBee Smart Energy Profile Specification (these attributes are
not certifiable in SE 1.1.1 or earlier and are for future use):

 utctStartOfBlockPeriod

 u24BlockPeriodDuration

 u24ThresholdMultiplier

 u24ThresholdDivisor

‘Commodity’ Attribute Set

 The following are optional attributes:

 e8CommodityType is an enumeration representing the type of
commodity (e.g. gas) to which the prices apply - the enumerations used
are those provided in the teCLD_SM_MeteringDeviceType structure of
the Simple Metering cluster and listed in Section 8.10.6

 u32StandingCharge is the value of a fixed daily 'standing charge'
associated with supplying the commodity, expressed in the currency and
with the decimal places indicated in the Publish Price command described
in Section 6.11.1 (the value 0xFFFFFFFF indicates that the field is not
used)

 u32ConversionFactor is used only for gas and accounts for the
variation of gas volume with temperature and pressure (and is
dimensionless). The Price server can change this conversion factor at any
time and this attribute contains the currently active value. The default
value is 1. The position of the decimal point is indicated by
b8ConversionFactorTrailingDigit described below.

 b8ConversionFactorTrailingDigit is an 8-bit bitmap which
indicates the location of the decimal point in the u32ConversionFactor
attribute. The most significant 4 bits indicate the number of digits after the
decimal point. The remaining bits are reserved.

Note: Memory space for each (enabled) price tier label
is statically allocated and comprises 13 bytes per label
(plus one byte for the ‘octet count’). Therefore, memory
space remains allocated for unused bytes.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 81

Chapter 6
Price Cluster

 u32CalorificValue is used only for gas and indicates the quantity of
energy in MJ that is generated per unit volume or unit mass of gas burned
(see e8CalorificValueUnit) - the value can be used to calculate
energy consumption in kWh. The position of the decimal point is indicated
by b8CalorificValueTrailingDigit described below.

 e8CalorificValueUnit is an enumerated value indicating whether
u32CalorificValue is quantified per unit volume or per unit mass. The
possible values are 0x01 for MJ/m3 and 0x02 for MJ/kg (all other values
are reserved).

 b8CalorificValueTrailingDigit is an 8-bit bitmap which indicates
the location of the decimal point in the u32CalorificValue attribute.
The most significant 4 bits indicate the number of digits after the decimal
point. The remaining bits are reserved.

‘Block Price Information’ Attribute Set

 The following are optional attributes that relate to Block mode and are fully
described in the ZigBee Smart Energy Profile Specification (these attributes are
not certifiable in SE 1.1.1 or earlier and are for future use):

 au32NoTierBlockPrice[CLD_P_ATTR_NO_TIER_BLOCK_PRICES_MAX_COUNT]

 au32Tier1BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier2BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier3BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier4BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier5BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier6BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier7BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier8BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier9BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier10BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier11BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier12BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier13BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier14BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

 au32Tier15BlockPrice[CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE]

‘Billing Period Information’ Attribute Set

 The following are optional attributes that relate to Block mode (both attributes
are not certifiable in SE 1.1.1 or earlier and are for future use):

 utctStartOfBillingPeriod

 u24BillingPeriodDuration
82 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Client Attribute Set

 The following set of attributes are only for use on a Price cluster client:

 u8ClientIncreaseRandomize represents the maximum length of time,
in minutes, between a client node applying a price increase and taking a
resulting action (such as reducing its power consumption). The action may
be performed before or after the price increase is implemented, and the
delay (either way) must be chosen at random by the application on the
node. The maximum is set in minutes, in the range 0 to 60 minutes, but it is
recommended that the random delay is selected in seconds.

 u8ClientDecreaseRandomize represents the maximum length of time,
in minutes, between a client node applying a price decrease and taking a
resulting action (such as switching itself on). The action may be performed
before or after the price decrease is implemented, and the delay (either
way) must be chosen at random by the application on the node. The
maximum is set in minutes, in the range 0 to 60 minutes, but it is
recommended that the random delay is selected in seconds.

 e8ClientCommodityType is an enumeration representing the
commodity that is priced on the client device. This enumeration is one from
the ‘Metering Device Type’ enumerations listed in Table 25 on page 219.

Note: Price information for Time-Of-Use (TOU) mode is
held in the tsSE_PricePublishPriceCmdPayload
structure described in Section 6.11.1. Prices are
matched to tiers using the strings defined in the Tier
Label attributes.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 83

Chapter 6
Price Cluster

6.3 Attribute Settings

The Price cluster structure (see Section 6.2) contains no mandatory elements. All
elements are optional, each being enabled/disabled through a corresponding macro
defined in the zcl_options.h file - for example, the commodity type attribute is
enabled/disabled through the macro CLD_P_ATTR_COMMODITY_TYPE. The
attributes that are used will depend on the number of tiers implemented (and Block
mode attributes must be disabled).

Note 1: The Tier Label attributes are connected to the
tier-related attributes in the Simple Metering cluster, e.g.
u48CurrentTier6SummationDelivered for Tier 6.
For a complete list of these Simple Metering attributes,
refer to Section 8.2. SE-compliance testing includes
these attributes.

Note 2: The price information for Time-Of-Use (TOU)
mode is stored in the structure
tsSE_PricePublishPriceCmdPayload described
in Section 6.11.1.
84 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
6.4 Initialising and Maintaining Price Lists

A list of prices is held on both the Price cluster server (ESP) and client(s). The price
list on a client must be maintained to mirror the price list on the server. On device start-
up, the Price cluster software initialises the device’s price list as empty. The price lists
are then built and maintained as described below.

The ESP receives price information from the utility company and populates its price
list with this information. The application on the ESP does this by calling the function
eSE_PriceAddPriceEntry() for each new price received from the utility company.
This function also sends out a Publish Price command containing the new price
information to all Price cluster clients in the network. On receiving this command, a
Price cluster client will automatically add this price information to its own price list (see
Section 6.5.1). However, at ESP start-up, there may be no other active nodes in the
network to receive the Publish Price commands (since the ESP is normally also the
ZigBee Co-ordinator and will therefore be the first node to be started). For this reason,
the Price cluster clients should normally request the scheduled prices from the ESP
when they start up, as described in Section 6.5.3.

A price list is maintained in time order and if there is an active price, this will be
positioned at the head of the list (with index 0). Price lists on clients are updated to
reflect the price list on the server, as described in Section 6.5.

Note: When initialising the price list at ESP start-up, the
ESP application should call eSE_PriceAddPriceEntry()
with the address mode parameter set to
E_ZCL_AM_NO_TRANSMIT, so that the price additions
are not subsequently transmitted.

Note: A Price cluster server should take precautions to
prevent clients from attempting to read the server price
list during ESP initialisation, before the prices have been
received from the utility company. This can be achieved
by adding the obtained prices to the server price list
after the call to the relevant endpoint registration
function (for example, eSE_RegisterEspEndPoint())
but before the call to ZPS_eAplZdoStartStack().
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 85

Chapter 6
Price Cluster

The active price is always at the head of the price list (entry zero). The application
should check that the entry at the head of the list is active before displaying it as the
current price. If it is not active, a message may be displayed indicating that the current
price is not known. The item at the head of the list is active if both of the following hold:

 Its start time is less than or equal to the current time, obtained by
u32ZCL_GetUTCTime()

 The time on the client has been synchronised, i.e. a call to
bZCL_GetTimeHasBeenSynchronised() returns TRUE

In addition to the function eSE_PriceAddPriceEntry(), the SE API contains other
functions that allow an ESP application to access and manipulate its price list:

 eSE_PriceGetPriceEntry() obtains the price entry with the specified index

 eSE_PriceDoesPriceEntryExist() checks whether there is a price entry with
the specified start-time

 eSE_PriceRemovePriceEntry() deletes the price entry with the specified
start-time

 eSE_PriceClearAllPriceEntries() deletes all price entries in the list

These functions are fully detailed in Section 6.9.

Note: The Price cluster of ZigBee Smart Energy
automatically deletes a price entry from a client or
server price list immediately after the price event has
expired. This is because the start-time of a price event is
a universal time (UTC) and therefore corresponds to a
one-off event. In practice, the price list may need a new
price schedule daily, which may be provided by the
utility company. Alternatively, if a similar schedule is
required every day, the ESP application can keep a local
copy of the schedule, which it can modify (e.g. start-
times) and add to the price list on a daily basis.
86 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
6.5 Publishing Price Information

This section and its sub-sections describe the ways in which price information can be
published (distributed) in an SE network. As introduced in Section 6.1, there are three
ways in which price information may be published to the network from the Price cluster
server (ESP):

 Unsolicited unicasts - refer to Section 6.5.1

 Response to a Get Current Price command - refer to Section 6.5.2

 Response to a Get Scheduled Prices command - refer to Section 6.5.3

All of the above methods require the ESP to send a Publish Price command to the
relevant device(s), where the payload of this command includes information such as
resource (e.g. gas), unit of measure, currency, price, current time, start-time and
duration. On receipt of this command, if valid, the received price information will be
automatically added to the price list on the device. If it is successfully added, an
E_SE_PRICE_TABLE_ADD event will be generated on the receiving device and this
event will be handled by the callback function registered for the relevant endpoint (see
Section 4.3).

6.5.1 Unsolicited Price Updates

When the ESP receives updated price information from the utility company (via the
backhaul network) or a new price tier becomes active, the ESP must inform all SE
network devices that are using the Price cluster. The ESP therefore individually
unicasts a Publish Price command to all these devices. This command is sent out
automatically - there is no need for the application on the ESP to explicitly send the
command. In the case of new prices received from the utility company, the ESP
application must call the function eSE_PriceAddPriceEntry() to add the new price to
the price list held by the server, and the Publish Price command is then automatically
sent out (possibly with a ‘start-time of now’). Note that if the stack has not been started
when eSE_PriceAddPriceEntry() is called, the function’s address mode parameter
should be set to E_ZCL_AM_NO_TRANSMIT, so that no transmission is attempted.

It is recommended that price updates on the ESP are relayed to Price cluster clients
with which the ESP has been (previously) bound.

Therefore, when updating its price list, the ESP application should call
eSE_PriceAddPriceEntry() with the address mode parameter set to
E_ZCL_AM_BOUND, so that the price updates are transmitted only to bound
endpoints/nodes.

Note: Each of these bindings is initiated on the client
node (e.g. IPD) using the ZigBee PRO stack function
ZPS_eAplZdpBindUnbindRequest() to add the client’s
address and endpoint to the Binding table on the ESP.
Binding is described in the ZigBee PRO Stack User
Guide (JN-UG-3048).
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 87

Chapter 6
Price Cluster

As an alternative to using binding, the ESP can maintain a list of SE network nodes
that are able to receive unsolicited Publish Price commands at all times - that is, nodes
with radio receivers that remain active during idle periods (e.g. when sleeping).
Unsolicited updates are then only sent to clients in this group. The ESP gathers
information for this group from the Get Current Price commands received from clients
(see Section 6.5.2). This option requires the address node parameter to be set to
ZPS_E_APL_AF_BROADCAST_RX_ON in eSE_PriceAddPriceEntry().

The ESP can send unsolicited Publish Price commands with ‘start-time of now' when
an E_SE_PRICE_TABLE_ACTIVE event indicates that a new price has become
active (see Section 6.8). This command can be used by devices that do not implement
a real-time clock.

6.5.2 Get Current Price

Any device which supports the Price cluster can request the currently active price
information from the ESP by sending a Get Current Price command. The SE API
provides the function eSE_PriceGetCurrentPriceSend() which allows a Price cluster
client to send this command to the Price cluster server and deal with the response.

 On receiving the command, the server automatically responds with a Publish
Price command containing the requested price information.

 On receiving the response, the client checks whether the received price
information is currently in the client’s price list. If it is not, the client adds the
new price information to the list and generates an E_SE_PRICE_TABLE_ADD
event - this event is handled by the callback function registered for the relevant
endpoint (see Section 4.3).

The Get Current Price command contains information on whether the radio receiver
of the sending device remains active when the node is otherwise idle (e.g. sleeping).
If this is true, the ESP application can use the address of the node to update a list of
such devices, which it may use when sending out unsolicited Publish Price commands
(see Section 6.5.1). The ESP application can extract this information from the event
E_SE_PRICE_GET_CURRENT_PRICE_RECEIVED which is generated when a Get
Current Price command is received by the server - this event is handled by the
callback function registered for the relevant endpoint (see Section 4.3).

6.5.3 Get Scheduled Prices

Any device which supports the Price cluster can request the current price schedule
from the ESP by sending a Get Scheduled Prices command - the schedule includes a
set of prices with their start-times and durations. The SE API provides the function
eSE_PriceGetScheduledPricesSend() which allows a Price cluster client to send
this command to the Price cluster server and deal with the responses.

 On receiving the command, the server automatically responds with a sequence
of Publish Price commands, where each of these responses contains the
information for one scheduled price.

 On receiving a response, the client checks whether the received price
information is currently in the client’s price list. If it is not, the client adds the
88 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
new price information to the list and generates an E_SE_PRICE_TABLE_ADD
event - this event is handled by the callback function registered for the relevant
endpoint (see Section 4.3).

6.6 Time-Synchronisation via Publish Price Commands

As an alternative to using the Time cluster to time-synchronise an SE device with the
ESP (as described in Section 6.3.3), the local application can use the time embedded
in a Publish Price command from the ESP (see Section 6.5), as described below.

It is the responsibility of the application on an SE device to perform time-
synchronisation with the ESP. This involves updating the ZCL time on the local device.

The initialisation of the ZCL time on a device should be performed using the Time
cluster by requesting the current time from the ESP, as described in Section 6.3.2 (this
method will also get time-zone and daylight saving information).

Subsequent re-synchronisations of a device with the time-master can use the time
contained in Publish Price commands from the ESP (but note that no time-zone or
daylight saving information is included). Therefore, a device can update its ZCL time
whenever it receives a Publish Price command. On receiving this command, a ‘data
indication’ stack event is generated, which causes JenOS to activate a ZCL user task.
The event is initially handled by this task as described in Section 4.7, resulting in an
E_ZCL_ZIGBEE_EVENT event being passed to the ZCL via vZCL_EventHandler().
The ZCL invokes the relevant user-defined callback function (see Section 4.7) which,
provided that the event is of the type E_SE_PRICE_TIME_UPDATE, must update the
ZCL time using vZCL_SetUTCTime().

The demonstration application in the Application Note Smart Energy HAN Solutions
(JN-AN-1135) illustrates how to do this.

Note that the utctTime field of the local copy of the Time cluster is not updated, since
this should only be done following a read of the Time cluster attributes from the server.

The time-synchronisation of a device (with the time-master) should be performed
regularly. As a rule, if no Publish Price commands have been received from the ESP
in the last 48 hours, the device should request the current time from the ESP and
update its own times as described in Section 6.3.3.

Note: A device which implements the Price cluster must
also implement the Time cluster.

Caution: If a device is handling Publish Price
commands from more than one server, the time must
only be updated with time events from one server, to
prevent the time from jittering forwards and backwards if
the servers’ times are not in sync.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 89

Chapter 6
Price Cluster

It is worth noting that an undefined ZCL time causes the following issues in the Price
cluster (refer to Section 6.3.5 for information on checking ZCL time synchronisation):

 A Price cluster server without a ZCL time cannot issue any Publish Price
commands, since the current time is a mandatory field of this command.

 A Price cluster client without a ZCL time cannot process a Publish Price
command with a ‘start-time of now', unless the ZCL time is first set with the time
extracted from the received command.

 If the price at the head of the price list has a specified start-time, it is not
possible to know whether this price is active or not.

Regarding the last point, a device should be time-synchronised with the ESP (as
described in Section 6.3.2) before an attempt is made to add scheduled prices to the
device’s price list. Then, if the device receives a scheduled price with a ‘start-time of
now’, it is permissible to add this price to the list.

6.7 Conversion Factor and Calorific Value (Gas Only)

The Price cluster provides attributes related to conversion factor and calorific value for
use with gas (only):

 Conversion factor: Accounts for the variation of gas volume with temperature
and pressure

 Calorific value: Indicates the quantity of energy in MJ that is generated per
unit volume or unit mass of gas burned

The attributes associated with the above properties are part of the ‘Commodity’ set -
refer to Section 6.2.

If required, conversion factor and/or calorific value must be enable in the compile-time
options, as described in Section 6.13.

Conversion factors and calorific values can be independently scheduled with
associated start-times. The Price cluster server (ESP) and clients each maintain a list
of the scheduled conversion factors and a list of the scheduled calorific values (along
with their start-times). The maximum number of entries in each list is by default 2
(allowing the present one and the next one to be stored), but this maximum can be re-
defined in the compile-time options.

The ESP (Price cluster server) receives a scheduled conversion factor or calorific
value from the utility company. A received value and its associated start-time are
added as an entry to the relevant list on the server by the ESP application as follows:

 A new entry is added to the conversion factor list by calling the function
eSE_PriceAddConversionFactorEntry()

 A new entry is added to the calorific value list by calling the function
eSE_PriceAddCalorificValueEntry()

The entries are maintained in the list in increasing order of start-times. If an existing
entry in the list has the same start-time as the new entry, the entry with the greater
value of the Issuer Event ID is included in the list (and the other entry is discarded).
90 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Once a new entry is added to a list on the server, a Publish Conversion Factor or
Publish Calorific Value command is automatically sent to the cluster clients to inform
them that a new value is available, allowing them to update their lists with the new
information.

Initialising Conversion Factors and Calorific Values at Network Start-up

Note the following issues at network start-up:

 When the ESP node first starts, there may be no other active nodes in the
network to receive a new conversion factor and/or calorific value. Thus, the
Price cluster clients should request this information from the ESP when they
start. They can do this using eSE_PriceGetConversionFactorSend() or
eSE_PriceGetCalorificValueSend(), as appropriate.

 When initialising the conversion factor or calorific value at ESP start-up, the
ESP application should call eSE_PriceAddConversionFactorEntry() or
eSE_PriceAddCalorificValueEntry() with the address mode parameter set to
E_ZCL_AM_NO_TRANSMIT. This prevents the new value from being
transmitted to a network with no other active nodes.

 Any clients that are active during ESP initialisation should not request a
conversion factor or calorific value from the ESP before the values are received
from the utility company. To avoid this problem, the ESP application should
obtain the values from the utility company before calling the ZigBee PRO
function ZPS_eAplZdoStartStack() and after calling the relevant endpoint
register function (e.g. eSE_RegisterEspMeterEndPoint()).

6.8 Price Events

The Price cluster has its own events that are handled through the callback mechanism
outlined in Section 4.7 (and fully detailed in the ZCL User Guide (JN-UG-3077)). If a
device uses the Price cluster then Price event handling must be included in the
callback function for the associated endpoint, where this callback function is registered
through the relevant endpoint registration function (for example, through
eSE_RegisterEspEndPoint() for a standalone ESP). The relevant callback function
will then be invoked when a Price event occurs.

For a Price event, the eEventType field of the tsZCL_CallBackEvent structure is
set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an
element sClusterCustomMessage, which is itself a structure containing a field
pvCustomData. This field is a pointer to a tsSE_PriceCallBackMessage
structure which contains the Price parameters:
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 91

Chapter 6
Price Cluster

typedef struct
{
 teSE_PriceCallBackEventType eEventType;
 uint32 u32CurrentTime;

 union {
 tsSE_PriceTableCommand sPriceTableCommand;
 tsSE_PriceTableTimeEvent sPriceTableTimeEvent;
 teSE_PriceCommandOptions ePriceCommandOptions;
 tsSE_PriceAckCmdPayload *psAckCmdPayload;
 tsSE_PriceAttrReadInput sReadAttrInfo;
 tsSE_BlockPeriodTableTimeEvent sBlockPeriodTableTimeEvent;
 tsSE_ConversionFactorTableTimeEvent sConversionFactorTableTimeEvent;
 tsSE_CalorificValueTableTimeEvent sCalorificValueTableTimeEvent;

 } uMessage;

} tsSE_PriceCallBackMessage;

The eEventType field of the above structure specifies the type of Price event that has
been generated - these event types are listed and described below (also refer to
Section 6.12.2 for a summary of the Price events).

E_SE_PRICE_TABLE_ADD

The E_SE_PRICE_TABLE_ADD event is generated on a Price cluster client when an
attempt has been made to add a scheduled price (received in a Publish Price
command) to the local price list. In the tsSE_PriceCallBackMessage structure,
the u32CurrentTime field is set to the current time from the Publish Price command
and the sPriceTableCommand field is used as follows:

typedef struct {

 teSE_PriceStatus ePriceStatus;

} tsSE_PriceTableCommand;

ePriceStatus contains E_SE_PRICE_SUCCESS if a new price has been
successfully added to the price list. Otherwise, the addition was rejected for the reason
specified by ePriceStatus. If the addition was successful but the new price
information overlapped (in time) any existing price information in the list, this previous
price information may have been deleted from the list according to the rules in the
ZigBee SE Profile specification.

Note: The field sReadAttrInfo is reserved for future
use (for Block mode).
92 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
E_SE_PRICE_TABLE_ACTIVE

The E_SE_PRICE_TABLE_ACTIVE event is generated when there is a new active
price or the active price expires. This event can occur due to a time update or the
reception of a Publish Price command from the server. In the
tsSE_PriceCallBackMessage structure, the u32CurrentTime field is set to the
current ZCL time and the sPriceTableTimeEvent field is used as follows:

typedef struct {

 teSE_PriceStatus ePriceStatus;

 uint8 u8NumberOfEntriesFree;

} tsSE_PriceTableTimeEvent;

ePriceStatus contains E_SE_PRICE_SUCCESS if there is a new active price or
E_SE_PRICE_TABLE_NOT_YET_ACTIVE if the price at the head of the list is
scheduled for a time in the future.

u8NumberOfEntriesFree contains the number of free entries in the client's price
list. This number can be used to determine whether the client should issue a new Get
Scheduled Prices command, in order to obtain more price entries to fill the free space
in the list.

E_SE_PRICE_GET_CURRENT_PRICE_RECEIVED

The E_SE_PRICE_GET_CURRENT_PRICE_RECEIVED event is generated on a
Price cluster server when a Get Current Price command is received from a client. In
the tsSE_PriceCallBackMessage structure, the ePriceCommandOptions field
is used as follows:

typedef enum PACK

{

 E_SE_PRICE_REQUESTOR_RX_ON_IDLE = 0x01 // LSB set

} teSE_PriceCommandOptions;

This field indicates whether the client that sent the request has its radio receiver
enabled when idle (e.g. sleeping), and is used as described in Section 6.5.1 and
Section 6.5.2.

E_SE_PRICE_TIME_UPDATE

The E_SE_PRICE_TIME_UPDATE event is generated on a Price cluster client when
a Publish Price command is received from the server. In the
tsSE_PriceCallBackMessage structure, the u32CurrentTime field is set to the
current time from the Publish Price command. The application may then use this
information to time-synchronise the device, as described in Section 6.6.

E_SE_PRICE_ACK_RECEIVED

The E_SE_PRICE_ACK_RECEIVED event is generated on a Price cluster server
when a Price Acknowledgment command is received from a client. In the
tsSE_PriceCallBackMessage structure, the psAckCmdPayload field is a pointer
to the structure tsSE_PriceAckCmdPayload defined as follows:
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 93

Chapter 6
Price Cluster

typedef struct {

 uint32 u32ProviderId;

 uint32 u32IssuerEventId;

 uint32 u32PriceAckTime;

 uint8 u8Control;

} tsSE_PriceAckCmdPayload;

This structure contains the Price Acknowledgement command payload.

E_SE_PRICE_NO_PRICE_TABLES

The E_SE_PRICE_NO_PRICE_TABLES event is generated when an active price
expires, is deleted from the price list and the price list becomes empty. In the
tsSE_PriceCallBackMessage structure the sPriceTableTimeEvent field is
used as follows:

typedef struct {

 teSE_PriceStatus ePriceStatus;

 uint8 u8NumberOfEntriesFree;

} tsSE_PriceTableTimeEvent;

ePriceStatus contains E_SE_PRICE_NO_TABLES.

u8NumberOfEntriesFree contains the number of free entries in the client's price
list. This number can be used to determine whether the client should issue a new Get
Scheduled Prices command, in order to obtain more price entries to fill the free space
in the list.

 E_SE_PRICE_CONVERSION_FACTOR_TABLE_ACTIVE

The E_SE_PRICE_CONVERSION_FACTOR_TABLE_ACTIVE event is generated
when a new conversion factor value becomes active - that is, when the start-time of
the conversion factor entry becomes less than or equal to the present time. This event
can occur due to a time update or the reception of a Publish Conversion Factor
command from the server.

In the tsSE_PriceCallBackMessage structure, the u32CurrentTime field is set
to the current ZCL time and the field
tsSE_PriceConversionFactorTableTimeEvent is used as follows:

typedef struct {

 teSE_PriceStatus eConversionFactorStatus;

 uint8 u8NumberOfEntriesFree;

} tsSE_ConversionFactorTableTimeEvent;

eConversionFactorStatus takes the value E_ZCL_SUCCESS when a new
conversion factor becomes active.

u8NumberOfEntriesFree contains the present number of free entries in the
conversion factor list. This value should be checked by the client before issuing a Get
94 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Conversion Factor command to obtain a new conversion factor value - the command
should be issued only if there is free space in the list for a new entry to be added.

E_SE_PRICE_CONVERSION_FACTOR_ADD

The E_SE_PRICE_CONVERSION_FACTOR_ADD event is generated when a new
conversion factor entry is advertised by the ESP to the client application using the
Publish Conversion Factor command. Note that the event is generated even when the
new entry is not successfully added to the internal conversion factor list maintained by
the cluster.

The status of the command is passed back to the user application in the
ePriceStatus field of the tsSE_PriceTableCommand structure (see above)
within the tsSE_PriceCallBackMessage structure.

E_SE_PRICE_CALORIFIC_VALUE_TABLE_ACTIVE

The E_SE_PRICE_CALORIFIC_VALUE_TABLE_ACTIVE event is generated when a
new calorific value becomes active - that is, when the start-time of the calorific value
entry becomes less than or equal to the present time. This event can occur due to a
time update or the reception of a Publish Calorific Value command from the server.

In the tsSE_PriceCallBackMessage structure, the u32CurrentTime field is set
to the current ZCL time and the field
tsSE_PriceCalorificValueTableTimeEvent is used as follows:

typedef struct {

 teSE_PriceStatus eCalorificValueStatus;

 uint8 u8NumberOfEntriesFree;

} tsSE_CalorificValueTableTimeEvent;

eCalorificValueStatus takes the value E_ZCL_SUCCESS when a new calorific
value becomes active.

u8NumberOfEntriesFree contains the present number of free entries in the
calorific value list. This value should be checked by the client before issuing a Get
Calorific Value command to obtain a new calorific value - the command should be
issued only if there is free space in the list for a new entry to be added.

E_SE_PRICE_CALORIFIC_VALUE_ADD

The E_SE_PRICE_CALORIFIC_VALUE_ADD event is generated when a new
calorific value entry is advertised by the ESP to the client application using the Publish
Calorific Value command. Note that this event is generated even when the new entry
is not successfully added to the internal calorific value list maintained by the cluster.

The status of the command is passed back to the user application in the
ePriceStatus field of the tsSE_PriceTableCommand structure (see above)
within the tsSE_PriceCallBackMessage structure.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 95

Chapter 6
Price Cluster

6.9 Functions

The following Price cluster functions are provided in the SE API:

Function Page

eSE_PriceCreate 97

eSE_PriceGetCurrentPriceSend 99

eSE_PriceGetScheduledPricesSend 100

eSE_PriceAddPriceEntry 102

eSE_PriceAddPriceEntryToClient 104

eSE_PriceGetPriceEntry 105

eSE_PriceDoesPriceEntryExist 106

eSE_PriceRemovePriceEntry 107

eSE_PriceClearAllPriceEntries 108

eSE_PriceAddConversionFactorEntry 109

eSE_PriceGetConversionFactorSend 111

eSE_PriceGetConversionFactorEntry 113

eSE_PriceDoesConversionFactorEntryExist 114

eSE_PriceRemoveConversionFactorEntry 115

eSE_PriceClearAllConversionFactorEntries 116

eSE_PriceAddCalorificValueEntry 117

eSE_PriceGetCalorificValueSend 119

eSE_PriceGetCalorificValueEntry 121

eSE_PriceDoesCalorificValueEntryExist 122

eSE_PriceRemoveCalorificValueEntry 123

eSE_PriceClearAllCalorificValueEntries 124
96 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_PriceCreate

Description

This function creates an instance of the Price cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Price cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions. For more details of creating cluster
instances on custom endpoints, refer to Appendix B.

When used, this function must be the first Price cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate be the total number of attributes supported by the Price cluster,
which can be obtained by using the macro
CLD_PRICE_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8
au8AppPriceClusterAttributeControlBits[CLD_PRICE_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

teSE_PriceStatus eSE_PriceCreate(
bool_t bIsServer,
uint8 u8NumberOfRecordEntries,
uint8 *pu8AttributeControlBits,
uint8 *pau8RateLabel,
tsZCL_ClusterInstance *psClusterInstance,
tsZCL_ClusterDefinition *psClusterDefinition,
tsSE_PriceCustomDataStructure
 *psCustomDataStructure,
tsSE_PricePublishPriceRecord
 *psPublishPriceRecord,
void *pvEndPointSharedStructPtr);

Note: This function must not be called for an endpoint on
which a standard ZigBee device (e.g. IPD) will be used. In this
case, the device and its supported clusters must be registered
on the endpoint using the relevant device registration function
from those described in Chapter 12.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 97

Chapter 6
Price Cluster

The function also requires an array of price labels to be declared, in which each array
element is a label (string) for each price in the price list. The required declarations
are different for a cluster server and client, as follows:

uint8
au8RateLabel[SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES][SE_PRICE_CLIENT
_MAX_STRING_LENGTH];

uint8
au8RateLabel[SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES][SE_PRICE_CLIENT
_MAX_STRING_LENGTH];

Parameters

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server

 FALSE - client

u8NumberOfRecordEntries Number of prices that can be stored in the price list, one
of:
SE_PRICE_NUMBER_OF_SERVER_PRICE_RECORD_ENTRIES
SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

pau8RateLabel Pointer to an array of price labels (strings), with one
element for each price in the price list (see above).

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see the ZCL User Guide
(JN-UG-3077)). This structure will be updated by the
function by initialising individual structure fields.

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see the ZCL User Guide (JN-UG-3077)). In
this case, this structure must contain the details of the
Price cluster. This parameter can refer to a pre-filled
structure called sCLD_Price which is provided in the
Price.h file.

psCustomDataStructure Pointer to structure which contains custom data for the
Price cluster. This structure is used for internal data
storage. No knowledge of the fields of this structure is
required

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_Price which defines the
attributes of Price cluster. The function will initialise the
attributes with default values.

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
98 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_PriceGetCurrentPriceSend

Description

This function can be used on a Price cluster client to send a Get Current Price
command to the Price cluster server. Therefore, it is used by a device (such as an
IPD) to obtain the currently active price from the ESP.

The ESP should respond with a Publish Price command containing the active price.
This response is processed by the Price cluster. The obtained price is checked
against the prices currently in the price list on the client. If the price is not currently in
the list, it is added to the list and an E_SE_PRICE_TABLE_ADD event is generated
to indicate that a price has been added.

A pointer must be specified to a location to receive a Transaction Sequence Number
(TSN) for the request. The TSN in the response will be set to match the TSN in the
request, allowing an incoming response to be paired with a request.

Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent

psDestinationAddress Pointer to a structure containing the address of
the remote node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

ePriceCommandOptions Indicates whether the radio receiver on client
remains on when the device is idle (e.g. asleep):
0x01 - receiver on when idle
0x00 - receiver off when idle

An enumeration is provided for the ‘on’ case:
E_SE_PRICE_REQUESTOR_RX_ON_IDLE

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

teZCL_Status eSE_PriceGetCurrentPriceSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
teSE_PriceCommandOptions ePriceCommandOptions);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 99

Chapter 6
Price Cluster

eSE_PriceGetScheduledPricesSend

Description

This function can be used on a Price cluster client to send a Get Scheduled Prices
command to the Price cluster server. Therefore, it is used by a device (such as an
IPD) to obtain the current price schedule from the ESP, either to check that its own
price schedule is up-to-date or to recover the price schedule following a device reset.

You must specify the earliest start-time for the scheduled prices to be included in the
results. This is normally set to zero or the current time (UTC). Note that you are not
advised to specify the last time in the client price list, since the server may contain
updates for prices covering an earlier time-period that are already in the client price
list. You must also specify the maximum number of scheduled prices to be returned
in the results.

The ESP should respond with multiple Publish Price commands containing the
scheduled prices. Each response is processed by the Price cluster. The obtained
price is checked against the prices currently in the price list on the client. If the price
is not currently in the list, it is added to the list and an E_SE_PRICE_TABLE_ADD
event is generated to indicate that a price has been added.

A pointer must be specified to a location to receive a Transaction Sequence Number
(TSN) for the request. The TSN in the response will be set to match the TSN in the
request, allowing an incoming response to be paired with a request.

Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent

psDestinationAddress Pointer to a structure containing the address of
the remote node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u32StartTime The earliest start-time of any prices to be
returned - this is normally set to zero or the
current time (UTC)

u8NumberOfEvents The maximum number of scheduled prices to be
returned in the results - this should normally be
set to:
SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES

teZCL_Status eSE_PriceGetScheduledPricesSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint32 u32StartTime,
uint8 u8NumberOfEvents);
100 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_ZBUFFER_FAIL
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 101

Chapter 6
Price Cluster

eSE_PriceAddPriceEntry

Description

This function can be used on the Price cluster server to add a price to the local price
list. The function also sends an unsolicited Publish Price command containing the
new price information to one or more remote endpoints. The function should be
called on the ESP when a new price is received from the utility company.

On receiving the Publish Price command, a remote client will automatically add the
new price to the local price list. However, you must specify the action to be taken if
the time-period of the new price overlaps with the time-period of a price that is
already in the client’s price list. You can choose to delete the existing price and add
the new price, or leave the existing price in place and not add the new price. The rules
on overlapping prices are defined in the ZigBee Smart Energy Profile specification.

A pointer must be specified to a location to receive a Transaction Sequence Number
(TSN) for the request. The TSN in the response will be set to match the TSN in the
request, allowing an incoming response to be paired with a request.

Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent

psDestinationAddress Pointer to a structure containing the address of
the remote node to which the Publish Price
command will be sent. It is recommended that
the command is sent to all bound clients using a
ZCL address mode of E_ZCL_AM_BOUND. If
the stack has not been started, the
E_ZCL_AM_NO_TRANSMIT address mode
should be used

bOverwritePrevious Action to be taken if the new price overlaps (in
time) a price which is already in the price list:
TRUE - existing price deleted, new price added
FALSE - new price not added and error returned

psPricePayload Pointer to a structure containing the price
information to be added (see Section 6.11.1).
This parameter only needs to remain in scope for
the duration of this function call

teSE_PriceStatus eSE_PriceAddPriceEntry(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
bool_t bOverwritePrevious,
tsSE_PricePublishPriceCmdPayload *psPricePayload,
uint8 *pu8TransactionSequenceNumber);
102 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the command

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

E_ZCL_ERR_TIME_NOT_SYNCHRONISED

E_ZCL_ERR_INSUFFICIENT_SPACE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_SE_PRICE_OVERFLOW

E_SE_PRICE_DUPLICATE

E_SE_PRICE_DATA_OLD
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 103

Chapter 6
Price Cluster

eSE_PriceAddPriceEntryToClient

Description

This function can be used on a Price cluster client to add a price to the local price list
directly.

Normally, price entries are automatically added to the price list on a client when a
Publish Price command is received from the server (e.g. the ESP). However, this
function can be used by the local application to directly add a price entry to the price
list on the client. The function should therefore only be used on a device which does
not receive price information from the server (but by some other means, such as via
the Internet).

Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

bOverwritePrevious Action to be taken if the new price overlaps (in
time) a price which is already in the price list:
TRUE - existing price deleted, new price added
FALSE - new price not added and error returned

psPricePayload Pointer to a structure containing the price
information to be added (see Section 6.11.1).
This parameter only needs to remain in scope for
the duration of this function call

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

E_ZCL_ERR_TIME_NOT_SYNCHRONISED

E_ZCL_ERR_INSUFFICIENT_SPACE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_SE_PRICE_OVERFLOW

E_SE_PRICE_DUPLICATE

E_SE_PRICE_DATA_OLD

teSE_PriceStatus eSE_PriceAddPriceEntryToClient(
uint8 u8SourceEndPointId,
bool_t bOverwritePrevious,
tsSE_PricePublishPriceCmdPayload *psPricePayload);
104 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_PriceGetPriceEntry

Description

This function can be used to obtain the entry with specified index from a price list on
the local device. For example, the function can be used on an IPD to obtain a price
to display.

You must specify the endpoint on which the local Price cluster resides and whether
this cluster instance is a server or a client.

Parameters

u8SourceEndPointId Number of the local endpoint for the price list to be accessed

bIsServer Nature of the Price cluster instance containing the price list:
TRUE - server (e.g. on ESP)
FALSE - client (e.g. on IPD)

u8TableIndex The index of the price entry to obtain from the price list
(index 0 is the entry with the oldest start-time and may contain
the currently active price)

psPricePayload Pointer to a pointer to a structure which will be used to store
the obtained price information (see Section 6.11.1), if found.
The pointer value that is returned in this parameter points to
the structure in the internal storage associated with the list.
The data in the structure will be valid as long as the item
remains in the list

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_PRICE_TABLE_NOT_FOUND

teSE_PriceStatus eSE_PriceGetPriceEntry(
uint8 u8SourceEndPointId,
bool_t bIsServer,
uint8 u8TableIndex,
tsSE_PricePublishPriceCmdPayload **psPricePayload);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 105

Chapter 6
Price Cluster

eSE_PriceDoesPriceEntryExist

Description

This function can be used to check whether a price entry with the specified start-time
is present in a price list on the local device.

You must specify the endpoint on which the local Price cluster resides and whether
this cluster instance is a server or a client.

For a price entry to be successfully found, the specified start-time must exactly match
the start-time of an entry in the price list, otherwise the status code
E_SE_PRICE_NOT_FOUND will be returned.

Parameters

u8SourceEndPointId Number of the local endpoint for the price list to be accessed

bIsServer Nature of the Price cluster instance containing the price list:
TRUE - server
FALSE - client

u32StartTime Start-time of the price entry to search for

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_PRICE_NOT_FOUND

teSE_PriceStatus eSE_PriceDoesPriceEntryExist(
 uint8 u8SourceEndPointId,
 bool_t bIsServer,
 uint32 u32StartTime);
106 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_PriceRemovePriceEntry

Description

This function can be used to delete a price entry with specified start-time from a price
list on the local device.

You must specify the endpoint on which the local Price cluster resides and whether
this cluster instance is a server or a client.

For the successful deletion of a price entry, the specified start-time must exactly
match the start-time of an entry in the price list, otherwise the status code
E_SE_PRICE_NOT_FOUND will be returned.

Parameters

u8SourceEndPointId Number of the local endpoint on which Price cluster resides

bIsServer Nature of the Price cluster instance containing the price list:
TRUE - server
FALSE - client

u32StartTime The start-time of the price entry to delete

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_PRICE_NOT_FOUND

E_SE_PRICE_TABLE_NOT_FOUND

teSE_PriceStatus eSE_PriceRemovePriceEntry(
uint8 u8SourceEndPointId,
bool_t bIsServer,
uint32 u32StartTime);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 107

Chapter 6
Price Cluster

eSE_PriceClearAllPriceEntries

Description

This function can be used to delete all entries in a price list on the local device.

You must specify the endpoint on which the local Price cluster resides and whether
this cluster instance is a server or a client.

Parameters

u8SourceEndPointId Number of the local endpoint for the price list to be cleared

bIsServer Nature of the Price cluster instance containing the price list:
TRUE - server
FALSE - client

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

teSE_PriceStatus eSE_PriceClearAllPriceEntries(
uint8 u8SourceEndPointId,
bool_t bIsServer);
108 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_PriceAddConversionFactorEntry

Description

The function can be used on a Price cluster server to add a new conversion factor
entry to the internal list of scheduled conversion factors maintained by the cluster.
The function also sends an unsolicited Publish Conversion Factor command to the
Price cluster client nodes in the network, to advertise the new conversion factor.
Therefore, the function should be called on the ESP when a new conversion factor
is received from the utility company.

On receiving the Publish Conversion Factor command, a remote client automatically
adds the new conversion factor to the local conversion factor list. However, if the new
entry has the same start-time as an existing entry in the list, the outcome depends
on the setting of the boolean parameter bOverwritePrevious in this function:

 If this parameter is set to TRUE then the existing entry is removed and the new entry is
added

 If this parameter is set to FALSE then the Issuer Event IDs of the two conversion factor
entries are compared:

 If the Event ID of the new entry is the greater, the existing entry is removed and
the new entry is added

 If the Event ID of the existing entry is the greater, E_ZCL_FAIL is returned and the
list is not modified

A pointer must be specified to a location to receive a Transaction Sequence Number
(TSN) for the request. The TSN in the response will be set to match the TSN in the
request, allowing an incoming response to be paired with a request.

Parameters

u8SourceEndPointId Number of the local endpoint through which
the request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent

psDestinationAddress Pointer to a structure containing the address
of the remote node to which the request will
be sent

teZCL_Status eSE_PriceAddConversionFactorEntry(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
bool_t bOverwritePrevious,
tsSE_PricePublishConversionCmdPayload

 *psPublishConversionCmdPayload,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 109

Chapter 6
Price Cluster

bOverwritePrevious Determines whether an existing conversion
factor with the same start-time on the clients
will be over-written without comparing Event
IDs (see above):

TRUE - over-write existing entry
FALSE - compare Event IDs first

psPublishConversionCmdPayload Pointer to conversion factor entry to be added
to list on server and advertised to clients

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_TIME_NOT_SYNCHRONISED
110 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_PriceGetConversionFactorSend

Description

The function can be used on a Price cluster client to send a Get Conversion Factor
request to the Price cluster server. Therefore, it is used by a device (such as an IPD)
to obtain scheduled conversion factor values from the ESP. The function allows
scheduled conversion factors to be obtained with start-times greater than or equal to
a specified time, u32StartTime.

The ESP should respond with a Publish Conversion Factor command containing up
to u8NumberOfEvent scheduled conversion factor values. The Price cluster on the
receiving client processes the response by updating the local conversion factor list,
as follows. For each conversion factor received in the response, the event
E_SE_PRICE_CONVERSION_FACTOR_ADD is generated.

A pointer must be specified to a location to receive a Transaction Sequence Number
(TSN) for the request. The TSN in the response will be set to match the TSN in the
request, allowing an incoming response to be paired with a request.

Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent

psDestinationAddress Pointer to a structure containing the address of
the remote node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u32StartTime Earliest start-time of scheduled conversion
factors to be returned - a setting of 0 returns the
factor that is currently active and factors with
start-times in the future

u8NumberOfEvents Maximum number of conversion factors to be
returned as a result of this request

teZCL_Status eSE_PriceGetConversionFactorSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint32 u32StartTime,
uint8 u8NumberOfEvents);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 111

Chapter 6
Price Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZTRANSMIT_FAIL
112 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_PriceGetConversionFactorEntry

Description

This function can be used to obtain the entry with the specified index from the
conversion factor list on the local device. For example, the function can be used on
an IPD to obtain a conversion factor to display.

You must specify the endpoint on which the local Price cluster resides and whether
this cluster instance is a server or a client.

Parameters

u8SourceEndPointId Number of the local endpoint for the conversion factor list to
be accessed

bIsServer Nature of the Price cluster instance containing the list:
TRUE - server (e.g. on ESP)
FALSE - client (e.g. on IPD)

u8TableIndex The index of the entry to obtain from the conversion factor list
(index 0 is the entry with the oldest start-time and may contain
the currently active conversion factor)

**ppsPublishConversionCmdPayload
Pointer to a pointer to a structure which will be used to store
the obtained conversion factor information (see Section
6.11.2), if found. The pointer value that is returned in this
parameter points to the structure in the internal storage
associated with the list. The data in the structure will be valid
as long as the item remains in the list

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_PRICE_TABLE_NOT_FOUND

teSE_PriceStatus eSE_PriceGetConversionFactorEntry(
uint8 u8SourceEndPointId,
bool_t bIsServer,
uint8 u8TableIndex,
sSE_PricePublishConversionCmdPayload

 **ppsPublishConversionCmdPayload);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 113

Chapter 6
Price Cluster

eSE_PriceDoesConversionFactorEntryExist

Description

This function can be used to check whether a conversion factor entry with the
specified start-time is present in a conversion factor list on the local device.

You must specify the endpoint on which the local Price cluster resides and whether
this cluster instance is a server or a client.

For a conversion factor entry to be successfully found, the specified start-time must
exactly match the start-time of an entry in the conversion factor list, otherwise the
status code E_SE_PRICE_NOT_FOUND will be returned.

Parameters

u8SourceEndPointId Number of the local endpoint for the conversion factor list to
be accessed

bIsServer Nature of the Price cluster instance containing the price list:
TRUE - server
FALSE - client

u32StartTime Start-time of the conversion factor entry to search for

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_PRICE_NOT_FOUND

teSE_PriceStatus
eSE_PriceDoesConversionFactorEntryExist(
 uint8 u8SourceEndPointId,
 bool_t bIsServer,
 uint32 u32StartTime);
114 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_PriceRemoveConversionFactorEntry

Description

This function can be used to delete a conversion factor entry with specified start-time
from conversion factor list on the local device.

You must specify the endpoint on which the local Price cluster resides and whether
this cluster instance is a server or a client.

For the successful deletion of a conversion factor entry, the specified start-time must
exactly match the start-time of an entry in the conversion factor list, otherwise the
status code E_SE_PRICE_NOT_FOUND will be returned.

Parameters

u8SourceEndPointId Number of the local endpoint for the conversion factor list to
be accessed

bIsServer Nature of the Price cluster instance containing the list:
TRUE - server
FALSE - client

u32StartTime The start-time of the conversion factor entry to delete

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_PRICE_NOT_FOUND

E_SE_PRICE_TABLE_NOT_FOUND

teSE_PriceStatus eSE_PriceRemoveConversionFactorEntry(
uint8 u8SourceEndPointId,
bool_t bIsServer,
uint32 u32StartTime);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 115

Chapter 6
Price Cluster

eSE_PriceClearAllConversionFactorEntries

Description

This function can be used to delete all entries in a conversion factor list on the local
device.

You must specify the endpoint on which the local Price cluster resides and whether
this cluster instance is a server or a client.

Parameters

u8SourceEndPointId Number of the local endpoint for the conversion factor list to
be cleared

bIsServer Nature of the Price cluster instance containing the price list:
TRUE - server
FALSE - client

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

teSE_PriceStatus
eSE_PriceClearAllConversionFactorEntries(

uint8 u8SourceEndPointId,
bool_t bIsServer);
116 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_PriceAddCalorificValueEntry

Description

The function can be used on a Price cluster server to add a calorific value entry to
the internal list of scheduled calorific values maintained by the cluster. The function
also sends an unsolicited Publish Calorific Value command to the Price cluster client
nodes in the network, to advertise the new calorific value. Therefore, the function
should be called on the ESP when a new calorific value is received from the utility
company.

On receiving the Publish Calorific Value command, a remote client automatically
adds the new calorific value to the local calorific value list. However, if the new entry
has the same start-time as an existing entry in the list, the outcome depends on the
setting of the boolean parameter bOverwritePrevious in this function:

 If this parameter is set to TRUE then the existing entry is removed and the new entry is
added

 If this parameter is set to FALSE then the Issuer Event IDs of the two calorific value
entries are compared:

 If the Event ID of the new entry is the greater, the existing entry is removed and
the new entry is added

 If the Event ID of the existing entry is the greater, E_ZCL_FAIL is returned and the
list is not modified

A pointer must be specified to a location to receive a Transaction Sequence Number
(TSN) for the request. The TSN in the response will be set to match the TSN in the
request, allowing an incoming response to be paired with a request.

Parameters

u8SourceEndPointId Number of the local endpoint through which
the request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent

psDestinationAddress Pointer to a structure containing the address
of the remote node to which the request will
be sent

teZCL_Status eSE_PriceAddCalorificValueEntry(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
bool_t bOverwritePrevious,
tsSE_PricePublishCalorificValueCmdPayload

 *psPublishCalorificValueCmdPayload,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 117

Chapter 6
Price Cluster

bOverwritePrevious Determines whether an existing calorific value
with the same start-time on the clients will be
over-written without comparing Event IDs
(see above):

TRUE - over-write existing entry
FALSE - compare Event IDs first

psPublishCalorificValueCmdPayload Pointer to calorific value entry to be added to
list on server and advertised to clients

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_TIME_NOT_SYNCHRONISED
118 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_PriceGetCalorificValueSend

Description

The function can be used on a Price cluster client to send a Get Calorific Value
request to the Price cluster server. Therefore, it is used by a device (such as an IPD)
to obtain scheduled calorific values from the ESP. The function allows scheduled
calorific values to be obtained with start-times greater than or equal to a specified
time, u32StartTime.

The ESP should respond with a Publish Calorific Value command containing up to
u8NumberOfEvent scheduled calorific values. The Price cluster on the receiving
client processes the response by updating the local calorific value list, as follows. For
each calorific value received in the response, the event
E_SE_PRICE_CALORIFIC_VALUE_ADD is generated.

A pointer must be specified to a location to receive a Transaction Sequence Number
(TSN) for the request. The TSN in the response will be set to match the TSN in the
request, allowing an incoming response to be paired with a request.

Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent

psDestinationAddress Pointer to a structure containing the address of
the remote node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u32StartTime Earliest start-time of scheduled calorific values to
be returned - a setting of 0 returns the value that
is currently active and values with start-times in
the future

u8NumberOfEvents Maximum number of calorific values to be
returned as a result of this request

teZCL_Status eSE_PriceGetCalorificValueSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint32 u32StartTime,
uint8 u8NumberOfEvents);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 119

Chapter 6
Price Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZTRANSMIT_FAIL
120 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_PriceGetCalorificValueEntry

Description

This function can be used to obtain the entry with the specified index from the calorific
value list on the local device. For example, the function can be used on an IPD to
obtain a calorific value to display.

You must specify the endpoint on which the local Price cluster resides and whether
this cluster instance is a server or a client.

Parameters

u8SourceEndPointId Number of the local endpoint for the calorific value list to be
accessed

bIsServer Nature of the Price cluster instance containing the list:
TRUE - server (e.g. on ESP)
FALSE - client (e.g. on IPD)

u8TableIndex The index of the entry to obtain from the calorific value list
(index 0 is the entry with the oldest start-time and may contain
the currently active calorific value)

**ppsPublishCalorificValueCmdPayload
Pointer to a pointer to a structure which will be used to store
the obtained calorific value information (see Section 6.11.3), if
found. The pointer value that is returned in this parameter
points to the structure in the internal storage associated with
the list. The data in the structure will be valid as long as the
item remains in the list

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_PRICE_TABLE_NOT_FOUND

teSE_PriceStatus eSE_PriceGetCalorificValueEntry(
uint8 u8SourceEndPointId,
bool_t bIsServer,
uint8 u8TableIndex,
sSE_PricePublishCalorificValueCmdPayload

 **ppsPublishCalorificValueCmdPayload);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 121

Chapter 6
Price Cluster

eSE_PriceDoesCalorificValueEntryExist

Description

This function can be used to check whether a calorific value entry with the specified
start-time is present in a calorific value list on the local device.

You must specify the endpoint on which the local Price cluster resides and whether
this cluster instance is a server or a client.

For a calorific value entry to be successfully found, the specified start-time must
exactly match the start-time of an entry in the calorific value list, otherwise the status
code E_SE_PRICE_NOT_FOUND will be returned.

Parameters

u8SourceEndPointId Number of the local endpoint for the calorific value list to be
accessed

bIsServer Nature of the Price cluster instance containing the price list:
TRUE - server
FALSE - client

u32StartTime Start-time of the calorific value entry to search for

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_PRICE_NOT_FOUND

teSE_PriceStatus eSE_PriceDoesCalorificValueEntryExist(
 uint8 u8SourceEndPointId,
 bool_t bIsServer,
 uint32 u32StartTime);
122 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_PriceRemoveCalorificValueEntry

Description

This function can be used to delete a calorific value entry with specified start-time
from calorific value list on the local device.

You must specify the endpoint on which the local Price cluster resides and whether
this cluster instance is a server or a client.

For the successful deletion of a calorific value entry, the specified start-time must
exactly match the start-time of an entry in the calorific value list, otherwise the status
code E_SE_PRICE_NOT_FOUND will be returned.

Parameters

u8SourceEndPointId Number of the local endpoint for the calorific value list to be
accessed

bIsServer Nature of the Price cluster instance containing the list:
TRUE - server
FALSE - client

u32StartTime Start-time of the calorific value entry to delete

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_PRICE_NOT_FOUND

E_SE_PRICE_TABLE_NOT_FOUND

teSE_PriceStatus eSE_PriceRemoveCalorificValueEntry(
uint8 u8SourceEndPointId,
bool_t bIsServer,
uint32 u32StartTime);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 123

Chapter 6
Price Cluster

eSE_PriceClearAllCalorificValueEntries

Description

This function can be used to delete all entries in a calorific value list on the local
device.

You must specify the endpoint on which the local Price cluster resides and whether
this cluster instance is a server or a client.

Parameters

u8SourceEndPointId Number of the local endpoint for the calorific value list to be
cleared

bIsServer Nature of the Price cluster instance containing the price list:
TRUE - server
FALSE - client

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

teSE_PriceStatus eSE_PriceClearAllCalorificValueEntries(
uint8 u8SourceEndPointId,
bool_t bIsServer);
124 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
6.10 Return Codes

In addition to some of the ZCL status enumerations (detailed in the ZCL User Guide
(JN-UG-3077)), the following enumerations are returned by SE API Price cluster
functions (see Section 6.9) to indicate the outcome of the function call.

typedef enum PACK

{

 E_SE_PRICE_OVERLAP =0x80,

 E_SE_PRICE_TABLE_NOT_YET_ACTIVE,

 E_SE_PRICE_DATA_OLD,

 E_SE_PRICE_NOT_FOUND,

 E_SE_PRICE_TABLE_NOT_FOUND,

 E_SE_PRICE_OVERFLOW,

 E_SE_PRICE_DUPLICATE,

 E_SE_PRICE_NO_TABLES,

 E_SE_PRICE_BLOCK_PERIOD_TABLE_NOT_YET_ACTIVE,

 E_SE_PRICE_NO_BLOCKS,

 E_SE_PRICE_NUMBER_OF_BLOCK_THRESHOLD_MISMATCH,

 E_SE_BLOCK_PERIOD_OVERFLOW,

 E_SE_BLOCK_PERIOD_DUPLICATE,

 E_SE_BLOCK_PERIOD_DATA_OLD,

 E_SE_BLOCK_PERIOD_OVERLAP,

 E_SE_PRICE_STATUS_ENUM_END

} teSE_PriceStatus;

The above enumerations are described in the table below.

Enumeration Description

E_SE_PRICE_OVERLAP New price overlaps (in time) with existing price in price list

E_SE_PRICE_TABLE_NOT_YET_ACTIVE No active price at head of price list

E_SE_PRICE_DATA_OLD Attempt made to add price which overlaps (in time) with exist-
ing price in price list and which is older than existing price *

E_SE_PRICE_NOT_FOUND Specified price was not found in price list

E_SE_PRICE_TABLE_NOT_FOUND Specified price list was not found

E_SE_PRICE_OVERFLOW Attempt to add price to price list failed because end-time for
new price (start-time + duration x 60) exceeds maximum per-
missible time value of 0xFFFFFFFFF (UTC)

E_SE_PRICE_DUPLICATE Specified price information already exists in price list

E_SE_PRICE_NO_TABLES Reserved for future use (for Block mode)

Table 13: Price Cluster Return Codes
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 125

Chapter 6
Price Cluster

* Value of u32IssuerEventId in tsSE_PricePublishPriceCmdPayload structure (see
Section 6.11.1) is less for the price to be added than for the existing (overlapping) price.

E_SE_PRICE_BLOCK_PERIOD_TABLE_NOT_
YET_ACTIVE

Reserved for future use (for Block mode)

E_SE_PRICE_NO_BLOCKS Reserved for future use (for Block mode)

E_SE_PRICE_NUMBER_OF_BLOCK_
THRESHOLD_MISMATCH

Reserved for future use (for Block mode)

E_SE_BLOCK_PERIOD_OVERFLOW Reserved for future use (for Block mode)

E_SE_BLOCK_PERIOD_DUPLICATE Reserved for future use (for Block mode)

E_SE_BLOCK_PERIOD_DATA_OLD Reserved for future use (for Block mode)

E_SE_BLOCK_PERIOD_OVERLAP Reserved for future use (for Block mode)

Enumeration Description

Table 13: Price Cluster Return Codes
126 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
6.11 Structures

6.11.1 tsSE_PricePublishPriceCmdPayload

This structure is used to hold price information to be added to a price list of a Price
cluster:

typedef struct {

 uint8 u8UnitOfMeasure;

 uint8 u8PriceTrailingDigitAndPriceTier;

 uint8 u8NumberOfPriceTiersAndRegisterTiers;

 uint8 u8PriceRatio;

 uint8 u8GenerationPriceRatio;

 uint8 u8AlternateCostUnit;

 uint8 u8AlternateCostTrailingDigit;

 uint8 u8NumberOfBlockThresholds;

 uint8 u8PriceControl;

 uint16 u16Currency;

 uint16 u16DurationInMinutes;

 uint32 u32ProviderId;

 uint32 u32IssuerEventId;

 uint32 u32StartTime;

 uint32 u32Price;

 uint32 u32GenerationPrice;

 uint32 u32AlternateCostDelivered;

 tsZCL_OctetString sRateLabel;

} tsSE_PricePublishPriceCmdPayload;

where:

 u8UnitOfMeasure indicates the resource (e.g. electricity) and unit of
measure (e.g. kWh) for the pricing (see Section 8.10.3)

 u8PriceTrailingDigitAndPriceTier is an 8-bit bitmap indicating the
price tier and the number of digits after the decimal point in the price:

 The 4 most significant bits give the number of digits to the right of the
decimal point in the price

 The 4 least significant bits give the price tier in the range 1 to 6

 u8NumberOfPriceTiersAndRegisterTiers is an 8-bit bitmap indicating
the number of price tiers available and the particular tier that the price
information in the structure relates to:

 The 4 most significant bits give the number of available price tiers in the
range 0 to 6

 The 4 least significant bits give the price tier used in the range 1 to 6
(this value must be less than or equal to the value in the 4 leading bits)

 u8PriceRatio (optional) is the ratio of the price quoted in u32Price to the
‘normal’ price offered by the utility company. The actual price ratio should be
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 127

Chapter 6
Price Cluster

multiplied by 10 for encoding this field, so that a field value of 0x01 represents
0.1 and 0xFE represents 25.4, while 0xFF indicates that the field is not used

 u8GenerationPriceRatio (optional) is the ratio of the price quoted in
u32GenerationPrice to the ‘normal’ price offered by the utility company.
The actual price ratio should be multiplied by 10 for encoding this field, so that
a field value of 0x01 represents 0.1 and 0xFE represents 25.4, while 0xFF is
reserved to indicate that the field is not used

 u8AlternateCostUnit (optional) is an 8-bit bitmap indicating the unit for the
alternative cost in u32AlternateCostDelivered. Currently, the only
supported unit is kilograms of CO2, indicated by the value 0x01

 u8AlternateCostTrailingDigit (optional) is an 8-bit bitmap in which the
4 most significant bits indicate the number of digits after the decimal point in
u32AlternateCostDelivered (the 4 least significant bits are reserved)

 u8NumberOfBlockThresholds is reserved for future use (for Block mode)

 u8PriceControl is reserved for future use (for Block mode)

 u16Currency indicates the currency (e.g. Euro) used for the price - this field
should be set to the appropriate value defined by ISO 4217

 u16DurationInMinutes indicates the duration, in minutes, for which the
price will be valid (0xFFFF indicates that price will remain valid until changed)

 u32ProviderId is an identifier for the utility company

 u32IssuerEventId is a unique identifier for the price information - the higher
its value, the more recently the price information was issued (a UTC time-
stamp could be used in this field)

 u32StartTime indicates the start-time (UTC) for the price, in seconds. The
special value 0x00000000 denotes a start-time of ‘now’

 u32Price is the resource price per unit indicated in u8UnitOfMeasure,
expressed in the currency indicated in u16Currency, with the position of the
decimal point as indicated in u8PriceTrailingDigitAndPriceTier

 u32GenerationPrice (optional) is the resource price per unit indicated in
u8UnitOfMeasure, expressed in the currency indicated in u16Currency
and with the position of the decimal point as indicated in
u8PriceTrailingDigitAndPriceTier, for a resource that is generated on
the customer premises and supplied to the utility company (e.g. solar-sourced
electric power supplied to the national grid). A value of 0xFFFFFFFF indicates
that this field is not used

 u32AlternateCostDelivered (optional) indicates an alternative cost (per
resource consumption unit) which is measured by a means other than
monetary - for example, the amount of CO2 emitted per unit of gas consumed
This alternative cost is interpreted as specified by u8AlternateCostUnit
and u8AlternateCostTrailingDigit

 sRateLabel is a string of up to 12 characters containing a label for the price
information in the structure
128 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
6.11.2 tsSE_PricePublishConversionCmdPayload

This structure is used to hold information to be added to a conversion factor list of a
Price cluster:

typedef struct {

 uint32 u32IssuerEventId;

 uint32 u32StartTime;

 uint32 u32ConversionFactor;

 zbmap8 u8ConversionFactorTrailingDigit;

}tsSE_PricePublishConversionCmdPayload;

where:

 u32IssuerEventId is a unique identifier for the conversion factor information
- the higher the value, the more recently the information was issued

 u32StartTime is the start-time of the conversion factor value. This is the time
at which the conversion factor value is scheduled to become active

 u32ConversionFactor is used only for gas and accounts for the variation in
the volume of gas with temperature and pressure (the value is dimensionless)

 u8ConversionFactorTrailingDigit is an 8-bit bitmap which indicates
the location of the decimal point in the u32ConversionFactor field. The
most significant 4 bits indicate the number of digits after the decimal point. The
remaining bits are reserved

6.11.3 tsSE_PricePublishCalorificValueCmdPayload

This structure is used to hold information to be added to a calorific value list of the
Price cluster:

typedef struct {
 zenum8 u8CalorificValueUnit;
 zbmap8 u8CalorificValueTrailingDigit;
 uint32 u32IssuerEventId;
 uint32 u32StartTime;
 uint32 u32CalorificValue;
}tsSE_PricePublishCalorificValueCmdPayload;

where:

 u8CalorificValueUnit is an 8-bit enumerated value which defines the unit
for the u32CalorificValue field (below). It indicates whether the calorific
value is quantified per unit volume or per unit mass - see Section 6.12.3.

 u8CalorificValueTrailingDigit is an 8-bit bitmap which indicates the
location of the decimal point in the u32CalorificValue field (below). The
most significant 4 bits indicate the number of digits after the decimal point. The
remaining bits are reserved

 u32IssuerEventId is a unique identifier for the calorific value information -
the higher the value, the more recently the information was issued

 u32StartTime is the start-time of the calorific value. This is the time at which
the conversion factor value is scheduled to become active
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 129

Chapter 6
Price Cluster

 u32CalorificValue is used only for gas and indicates the quantity of
energy in MJ that is generated per unit volume or unit mass of gas burned (see
u8CalorificValueUnit). The position of the decimal point is indicated by
u8CalorificValueTrailingDigit described above

6.12 Enumerations

6.12.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the
Price cluster.

typedef enum PACK

{

 /* Price Cluster Attribute Tier Price Label Set Attr Ids
(D.4.2.2.1)*/

 E_CLD_P_ATTR_TIER_1_PRICE_LABEL = 0x0000,

 E_CLD_P_ATTR_TIER_2_PRICE_LABEL,

 :

 :

 E_CLD_P_ATTR_TIER_15_PRICE_LABEL,

 /* Price Cluster Attribute Block Threshold Set Attr IDs
(D.4.2.2.2)*/

 E_CLD_P_ATTR_BLOCK1_THRESHOLD = 0x0100,

 E_CLD_P_ATTR_BLOCK2_THRESHOLD,

 :

 :

 E_CLD_P_ATTR_BLOCK15_THRESHOLD,

 /* Price Cluster Attribute Block Period Set Attr IDs
(D.4.2.2.3)*/

 E_CLD_P_ATTR_START_OF_BLOCK_PERIOD = 0x0200,

 E_CLD_P_ATTR_BLOCK_PERIOD_DURATION,

 E_CLD_P_ATTR_THRESHOLD_MULTIPLIER,

 E_CLD_P_ATTR_THRESHOLD_DIVISOR,

 /* Price Cluster Attribute Commodity Set Attr IDs (D.4.2.2.4)*/

 E_CLD_P_ATTR_COMMODITY_TYPE = 0x0300,

Note: Only the Tier Label attributes are currently used.
The remaining attributes are reserved for future use (for
Block mode).
130 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
 E_CLD_P_ATTR_STANDING_CHARGE,

 E_CLD_P_ATTR_CONVERSION_FACTOR,

 E_CLD_P_ATTR_CONVERSION_FACTOR_TRAILING_DIGIT,

 E_CLD_P_ATTR_CALORIFIC_VALUE,

 E_CLD_P_ATTR_CALORIFIC_VALUE_UNIT,

 E_CLD_P_ATTR_CALORIFIC_VALUE_TRAILING_DIGIT,

 /* Price Cluster Attribute Block Price Information Set Attr IDs
(D.4.2.2.5)*/

 E_CLD_P_ATTR_NOTIER_BLOCK1_PRICE = 0x0400,

 E_CLD_P_ATTR_NOTIER_BLOCK2_PRICE,

 :

 :

 E_CLD_P_ATTR_NOTIER_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER1_BLOCK1_PRICE = 0x0410,

 :

 E_CLD_P_ATTR_TIER1_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER2_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER2_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER3_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER3_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER4_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER4_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER5_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER5_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER6_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER6_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER7_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER7_BLOCK16_PRICE,
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 131

Chapter 6
Price Cluster

 E_CLD_P_ATTR_TIER8_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER8_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER9_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER9_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER10_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER10_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER11_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER11_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER12_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER12_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER13_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER13_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER14_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER14_BLOCK16_PRICE,

 E_CLD_P_ATTR_TIER15_BLOCK1_PRICE,

 :

 E_CLD_P_ATTR_TIER15_BLOCK16_PRICE

 /* Price Cluster Billing Period Information Set Attr IDs */

 E_CLD_P_ATTR_START_OF_BILLING_PERIOD = 0x700,

 E_CLD_P_ATTR_BILLING_PERIOD_DURATION

} teCLD_SM_PriceAttributeID;
132 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
6.12.2 ‘Price Event’ Enumerations

The event types generated by the Price cluster are enumerated in the
teSE_PriceCallBackEventType structure below:

typedef enum PACK

{

 E_SE_PRICE_TABLE_ADD =0x00,

 E_SE_PRICE_TABLE_ACTIVE,

 E_SE_PRICE_GET_CURRENT_PRICE_RECEIVED,

 E_SE_PRICE_TIME_UPDATE,

 E_SE_PRICE_ACK_RECEIVED,

 E_SE_PRICE_NO_PRICE_TABLES,

 E_SE_PRICE_READ_BLOCK_PRICING,

 E_SE_PRICE_BLOCK_PERIOD_TABLE_ACTIVE,

 E_SE_PRICE_NO_BLOCK_PERIOD_TABLES,

 E_SE_PRICE_BLOCK_PERIOD_ADD,

 E_SE_PRICE_READ_BLOCK_THRESHOLDS,

 E_SE_PRICE_CONVERSION_FACTOR_TABLE_ACTIVE,

 E_SE_PRICE_CONVERSION_FACTOR_ADD,

 E_SE_PRICE_CALORIFIC_VALUE_TABLE_ACTIVE,

 E_SE_PRICE_CALORIFIC_VALUE_ADD,

 E_SE_PRICE_CBET_ENUM_END

} teSE_PriceCallBackEventType;

The above event types are described in Table 14 below.

Note: For further details on Price events, refer to
Section 6.8.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 133

Chapter 6
Price Cluster

6.12.3 'Calorific Value Unit' Enumerations

The possible units for the calorific value attribute of the Price cluster are enumerated
in the tsSE_PriceCalorificValueUnits structure below:

 typedef enum PACK

 {

 E_SE_MEGA_JOULES_METER_CUBE = 0x01,

 E_SE_MEGA_JOULES_KILOGRAM = 0x02

 } tsSE_PriceCalorificValueUnits;

Event Type Enumeration Description

E_SE_PRICE_TABLE_ADD Generated when a new scheduled price is added to
the local price list

E_SE_PRICE_TABLE_ACTIVE Generated when a new price becomes active or the
active price expires

E_SE_PRICE_GET_CURRENT_PRICE_RECEIVED Generated on the server when a Get Current Price
command is received from a client

E_SE_PRICE_TIME_UPDATE Generated on a client when a Publish Price com-
mand is received from the server

E_SE_PRICE_ACK_RECEIVED Generated on a server when a Price Acknowledg-
ment command is received from a client

E_SE_PRICE_NO_PRICE_TABLES Generated when an active price expires, is deleted
from the price list and the list becomes empty

E_SE_PRICE_READ_BLOCK_PRICING Reserved for future use (for Block mode)

E_SE_PRICE_BLOCK_PERIOD_TABLE_ACTIVE Reserved for future use (for Block mode)

E_SE_PRICE_NO_BLOCK_PERIOD_TABLES Reserved for future use (for Block mode)

E_SE_PRICE_BLOCK_PERIOD_ADD Reserved for future use (for Block mode)

E_SE_PRICE_READ_BLOCK_THRESHOLDS Reserved for future use (for Block mode)

E_SE_PRICE_CONVERSION_FACTOR_TABLE_ACTIVE Generated when a new conversion factor value
becomes active

E_SE_PRICE_CONVERSION_FACTOR_ADD Generated when a new conversion factor entry is
advertised by the ESP via a Publish Conversion
Factor command

E_SE_PRICE_CALORIFIC_VALUE_TABLE_ACTIVE Generated when a new calorific value becomes
active

E_SE_PRICE_CALORIFIC_VALUE_ADD Generated when a new calorific value entry is
advertised via a Publish Calorific Value command

Table 14: Price Event Types
134 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
The above enumerations are described in Table 15 below.

6.13 Compile-Time Options

This section describes the compile-time options that may be enabled in the
zcl_options.h file of an application that uses the Price cluster.

The Price cluster is enabled by defining CLD_PRICE.

Client and server versions of the cluster are defined by PRICE_CLIENT and
PRICE_SERVER, respectively.

Price List Size

The maximum number of prices that can be stored in the price list on a server and
client defaults to five and two respectively. These default values can be over-ridden
by assigning values to the corresponding macro below:

 SE_PRICE_NUMBER_OF_SERVER_PRICE_RECORD_ENTRIES

 SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES

Price Tier Label Attribute Set

The maximum number of supported Price Tier Label Attribute Sets can be defined by
assigning a value between 1 and 15 (inclusive) to
CLD_P_ATTR_TIER_PRICE_LABEL_MAX_COUNT.

Block Threshold Attribute Set

The maximum number of supported Block Threshold Attribute Sets can be defined by
assigning a value between 1 to 15 (inclusive) to
CLD_P_ATTR_BLOCK_THRESHOLD_MAX_COUNT.

Block Price Information Attribute Set

The maximum number of supported Block Price Information Attribute Sets can be
defined by assigning a value (the maximum of which is shown below in brackets) to
each of the following:

 CLD_P_ATTR_NO_TIER_BLOCK_PRICES_MAX_COUNT (16)

 CLD_P_ATTR_NUM_OF_TIERS_PRICE (15)

 CLD_P_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_PRICE (16)

Enumeration Description

E_SE_MEGA_JOULES_METER_CUBE Calorific value measured in MJ/m3

E_SE_MEGA_JOULES_KILOGRAM Calorific value measured in MJ/kg

Table 15: 'Calorific Value Unit' Enumerations
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 135

Chapter 6
Price Cluster

Conversion Factor (Gas Only)

Conversion factor in the Price cluster is enabled by defining the macro
PRICE_CONVERSION_FACTOR.

The attributes for conversion factor are enabled by defining the following macros:

 CLD_P_ATTR_CONVERSION_FACTOR

 CLD_P_ATTR_CONVERSION_FACTOR_TRAILING_DIGIT

The default value of the maximum number of entries that can be stored in the
conversion factor list which is maintained on the Price cluster server and client is 2.
This value can be over-ridden by assigning another value to the macro:

SE_PRICE_NUMBER_OF_CONVERSION_FACTOR_ENTRIES

Calorific Value (Gas Only)

Calorific value in the Price cluster is enabled by defining the macro
PRICE_CALORIFIC_VALUE.

The attributes for calorific value are enabled by defining the following macros:

 CLD_P_ATTR_CALORIFIC_VALUE

 CLD_P_ATTR_CALORIFIC_VALUE_UNIT

 CLD_P_ATTR_CALORIFIC_VALUE_TRAILING_DIGIT

The default value of the maximum number of entries that can be stored in the calorific
value list which is maintained on the server and client is 2. This value can be over-
ridden by assigning another value to the macro:

SE_PRICE_NUMBER_OF_CALORIFIC_VALUE_ENTRIES
136 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
7. Messaging Cluster

This chapter outlines the Messaging cluster which is defined in the ZigBee Smart
Energy profile. The cluster provides an interface for passing text messages from the
utility company via the ESP to the other devices in a ZigBee SE network.

The Messaging cluster has a Cluster ID of 0x0703.

7.1 Overview

The Messaging cluster is required in SE devices as indicated in the table below.

The ESP acts as the Messaging cluster server, since it is the device which receives
the text messages from the utility company via the backhaul network. Other devices
act as clients and receive the text messages forwarded by the ESP. Typically, the
client is an IPD which displays user information messages from the utility company
(e.g. new price information).

The Messaging cluster is enabled by defining CLD_MC in the zcl_options.h file - see
Section 3.5.1. Further compile-time options for the Messaging cluster are detailed in
Section 7.9. These options include the maximum size of the text string in a message,
which is by default set to 80 characters.

7.2 Messaging Cluster Structure and Attributes

The Messaging cluster does not contain any attributes, only custom commands for
passing messages between two ZigBee devices. The SE API provides functions for
implementing these commands. These functions are referenced in Section 7.3 and
are detailed in Section 7.5.

Server-side Client-side

Mandatory in... ESP

Optional in... Metering Device
IPD
PCT
Smart Appliance

Table 16: Messaging Cluster in SE Devices

Note: Large messages may be divided into fragments
for transmission over the air. This fragmentation is
automatically handled by the ZigBee PRO stack at the
source and destination, but certain ZigBee network
parameter values are required by the SE profile. These
values are provided in Section 3.5.2.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 137

Chapter 7
Messaging Cluster

7.3 Message Delivery and Display

Text messages from the utility company, received by the ESP via the backhaul
network, are normally forwarded (unsolicited) from the Messaging cluster server
(ESP) to the cluster clients in the SE network. However, the clients can also request
text messages that are stored on the ESP. These two scenarios are covered in the
Section 7.3.2 and Section 7.3.3 respectively, but it is first necessary to understand
how these messages are stored on the server and clients, as detailed in Section 7.3.1.

7.3.1 Storing Messages

A Messaging cluster server and client each maintains three lists of messages:

 Active Message List: This list contains (at most) only one message, the
currently active message, at index 0.

 Scheduled Message List: This list contains a queue of scheduled messages,
in start-time order with the next scheduled message at the head of the list.

 Cancel Pending List: This list is used to store messages that are pending
cancellation (see event E_SE_MC_MESSAGE_CANCELLED in Section 7.4).

The total number of messages that can be stored across the three lists is defined in
the zcl_options.h file using the following macros on the server and client respectively:

SE_MESSAGE_NUMBER_OF_SERVER_MESSAGE_RECORD_ENTRIES
SE_MESSAGE_NUMBER_OF_CLIENT_MESSAGE_RECORD_ENTRIES

By default, these are set to 2 messages.

Note that if a new message arrives with a ‘start-time of now’, it will over-write the
currently active message. Also note that it is the responsibility of the application to
obtain the currently active message from the Active Message List and display the
message on the node - displaying a message is described in Section 7.3.4.

7.3.2 Forwarding a Message

It is the responsibility of the ESP application to receive and store text messages from
the utility company and then to pass these messages to other devices in the SE
network. A message is transmitted from the ESP to another SE device using the
function eSE_MCDisplayMessage(). In order to avoid multiple calls to this function to
pass a message to individual clients, you are advised to bind multiple clients to the
server (ESP). Each of these bindings is initiated on the client node using the ZigBee
PRO stack function ZPS_eAplZdpBindUnbindRequest() to add the client’s address
and endpoint to the Binding table on the ESP. Alternatively, you can collect the clients

Note: Each text message has a start time and duration,
and therefore an implied expiry time. The Messaging
cluster will automatically delete a message once it has
expired.
138 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
into a group and specify its group address in the call to eSE_MCDisplayMessage().
Binding and group addressing are described in the ZigBee PRO Stack User Guide
(JN-UG-3048).

On receipt of the message at the client, the Messaging cluster automatically inserts
the message into the client’s Active Message List or Scheduled Message List,
according to the start-time of the message.

When sending a message to a client, the server can request that a user confirmation
is sent back by the client. A user confirmation requires some kind of user action on the
client node to confirm that a displayed message has been read by the user - this user
action is normally a button press (the node should also provide a visual indication to
the user that a new message has been displayed and that a confirmation is required,
e.g. a flashing light). This user action is not required until the message becomes active
(and is displayed), which is indicated by an E_SE_MC_MESSAGE_ACTIVE event.
On completion of the user action, the application must call the SE function
eSE_MCMessageConfirmationUserSend() to send the confirmation to the server.

7.3.3 Requesting a Message

A Messaging cluster client can request from the server the last message received from
the utility company, using the function eSE_MCSendGetLastMessageRequest().
The requested message may be displayed on the client once it has been received
from the server. This function is useful if the client goes through a period in which it is
unable to receive messages, particularly while sleeping - in this case, the function can
be called on waking from sleep.

7.3.4 Displaying a Message

An SE device which implements the Messaging cluster as a client normally displays
messages for user information purposes - the currently active message (in the Active
Message List) is displayed. It is the responsibility of the application on the device to
obtain this message from the list and display it.

The SE function eSE_MCGetMessage() allows a message to be extracted from a
local message list on a Messaging cluster client - the relevant list must be specified
and the required message is then specified by its index in the list. Thus, the application
on a client can use this function to get the currently active message from the Active
Message List in order to display the message. The application needs to do this each
time a new message becomes active, which is indicated by the event
E_SE_MC_MESSAGE_ACTIVE.

Note: For a message which is not immediately active,
the confirmation will not be sent to the server until some
time after the message was originally sent to the client -
that is, until after the start-time of the message.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 139

Chapter 7
Messaging Cluster

The application must also remove a message from the display when the message
expires (indicated by the E_SE_MC_MESSAGE_EXPIRED event) or is cancelled
(see Section 7.3.5).

7.3.5 Cancelling a Message

A previously sent message can be remotely cancelled on the client using the function
eSE_MCCancelMessage() on the ESP. This function sends a request to the client to
remove the specified message from the relevant message list on the client. Again, you
are advised to use binding if the message is to be cancelled on all clients.

On receipt of the ‘message cancel’ request at the client, the event
E_SE_MC_MESSAGE_CANCELLED is generated. The subsequent message
cancellation process depends on whether a user confirmation request was included in
the ‘message cancel’ request:

 If no user confirmation is required, the status field of the above event is
E_SE_MC_SUCCESS and, in this case, the Messaging cluster automatically
deletes the specified message from the Active Message List or Scheduled
Message List.

 If a user confirmation is required, the status field of the above event is
E_SE_MC_MESSAGE_CONFIRM_REQUIRED, in which case the following
steps are required:

a) The Messaging cluster moves the specified message from the Active
Message List or Scheduled Message List to the Cancel Pending List.

b) The application must first indicate on the display that a user action (e.g. a
button press) is required in order to acknowledge the cancellation of the
displayed message, and must then wait for this user input before removing
the message from the display.

c) The application must then call the function
eSE_MCMessageConfirmationUserSend() to send the required
confirmation to the server.

d) The Messaging cluster automatically deletes the message from the Cancel
Pending List.
140 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
7.4 Messaging Events

The Messaging cluster has its own events that are handled through the callback
mechanism outlined in Section 4.7 (and fully detailed in the ZCL User Guide
(JN-UG-3077)). If a device uses the Messaging cluster then Messaging event
handling must be included in the callback function for the associated endpoint, e.g. for
an IPD, this callback function is registered through eSE_RegisterIPDEndPoint(). The
relevant callback function will then be invoked when a Messaging event occurs.

For a Messaging event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to a
tsSE_MCCallBackMessage structure which contains the Messaging parameters:

typedef struct PACK
{
 teSE_MCCallBackEventType eEventType;
 uint8 u8CommandId;
 uint32 u32CurrentTime;
 teSE_MCStatus eMCStatus;

 union {
 tsSE_MCDisplayMessageCommandPayload sDisplayMessageCommandPayload;
 tsSE_MCMessageConfirmCommandPayload sMessageConfirmCommandPayload;
 tsSE_MCCancelMessageCommandPayload sCancelMessageCommandPayload;
 // no get last message structure
 } uMessage;

} tsSE_MCCallBackMessage;

Information on the elements of the above structure is provided in the sub-sections
below. The structure is fully detailed in Section 7.8.1.

7.4.1 Event Types

The eEventType field of the tsSE_MCCallBackMessage structure above specifies
the type of Messaging event that has been generated - these event types are
enumerated in the teSE_MCCallBackEventType structure and described below.

typedef enum PACK

{

 E_SE_MC_MESSAGE_COMMAND =0x00,

 E_SE_MC_MESSAGE_ACTIVE,

 E_SE_MC_MESSAGE_EXPIRED,

 E_SE_MC_MESSAGE_CANCELLED

} teSE_MCCallBackEventType;
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 141

Chapter 7
Messaging Cluster

E_SE_MC_MESSAGE_COMMAND

The E_SE_MC_MESSAGE_COMMAND event is generated when a command has
been received on either the server or client. In the tsSE_MCCallBackMessage
structure, the u8CommandId field is used to indicate the corresponding command -
one of:

#define SE_MC_DISPLAY_MESSAGE (0x00)

#define SE_MC_CANCEL_MESSAGE (0x01)

#define SE_MC_GET_LAST_MESSAGE (0x00)

#define SE_MC_MESSAGE_CONFIRMATION (0x01)

E_SE_MC_MESSAGE_ACTIVE

The E_SE_MC_MESSAGE_ACTIVE event is generated when a new message has
become active on either the client or server - that is, has moved to the Active Message
List.

E_SE_MC_MESSAGE_EXPIRED

The E_SE_MC_MESSAGE_EXPIRED event is generated when a message has
expired on either the client or server.

E_SE_MC_MESSAGE_CANCELLED

The E_SE_MC_MESSAGE_CANCELLED event is generated on a client when a
message cancel request has been received from the server. The event has two
different uses, depending on whether a user confirmation has been requested by the
server (the confirmation request is included in the message cancel request):

 If no user confirmation is required, the Messaging cluster automatically deletes
the specified message from the Active Message List or Scheduled Message
List and the E_SE_MC_MESSAGE_CANCELLED event is generated.

 If a user confirmation is required, the Messaging cluster automatically sets the
eMCStatus field of the tsSE_MCCallBackMessage structure to
E_SE_MC_MESSAGE_CONFIRM_REQUIRED and then continues with the
message cancellation as described in Section 7.3.5.
142 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
7.4.2 Other Elements of tsSE_MCCallBackMessage

In addition to the fields eEventType and u8CommandId described in Section 7.4.1,
the tsSE_MCCallBackMessage structure contains the following elements.

u32CurrentTime

The u32CurrentTime field contains the time (UTC) at which the event was
generated.

eMCStatus

The eMCStatus field indicates the status returned from the command that has been
executed (the command identified in u8CommandId). The status codes are
enumerated in the teSE_MCStatus structure, shown below.

typedef enum PACK

{

 E_SE_MC_SUCCESS =0x00,

 E_SE_MC_FAILURE,

 E_SE_MC_INVALID_VALUE,

 E_SE_MC_PARAMETER_NULL,

 E_SE_MC_INSUFFICIENT_SPACE,

 E_SE_MC_DUPLICATE_EXISTS,

 E_SE_MC_EP_NOT_FOUND,

 E_SE_MC_EP_RANGE,

 E_SE_MC_ZBUFFER_FAIL,

 E_SE_MC_MESSAGE_LATE,

 E_SE_MC_MESSAGE_NOT_FOUND,

 E_SE_MC_CLUSTER_NOT_FOUND,

 E_SE_MC_ZTRANSMIT_FAIL,

 E_SE_MC_TIME_NOT_SYNCHRONISED

} teSE_MCStatus;

uMessage

This field is a union of structures, containing a structure for each of the Messaging
command payloads. The valid structure in the event is defined by the value of
u8CommandId.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 143

Chapter 7
Messaging Cluster

7.5 Functions

The following Messaging cluster functions are provided in the SE API:

Function Page

eSE_MCCreate 145

eSE_MCDisplayMessage 147

eSE_MCCancelMessage 149

eSE_MCGetMessage 151

eSE_MCSendGetLastMessageRequest 152

eSE_MCMessageConfirmationUserSend 153
144 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_MCCreate

Description

This function creates an instance of the Messaging cluster on an endpoint.The
cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Messaging cluster instance on
the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions. For more details of
creating cluster instances on custom endpoints, refer to Appendix B.

When used, this function must be the first Messaging cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared, in which each array element is a string
corresponding to a stored message. The required declarations are different for a
cluster server and client, as follows:

uint8
au8DisplayMessage[SE_MESSAGE_NUMBER_OF_SERVER_MESSAGE_RECORD_ENTRIES][SE_MES
SAGE_SERVER_MAX_STRING_LENGTH];

uint8
au8DisplayMessage[SE_MESSAGE_NUMBER_OF_CLIENT_MESSAGE_RECORD_ENTRIES][SE_MES
SAGE_SERVER_MAX_STRING_LENGTH];

teZCL_Status eSE_MCCreate(
bool_t bIsServer,
uint8 u8NumberOfMessageEntries,
uint8 *pau8StringStorage,
tsZCL_ClusterInstance *psClusterInstance,
tsZCL_ClusterDefinition *psClusterDefinition,
tsSE_MCCustomDataStructure

 *psCustomDataStructure,
tsSE_MCDisplayMessageCommandPayloadRecord

 *psDisplayMessageCommandPayloadRecord);

Note: This function must not be called for an endpoint on
which a standard ZigBee device (e.g. IPD) will be used. In this
case, the device and its supported clusters must be registered
on the endpoint using the relevant device registration function
from those described in Chapter 12.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 145

Chapter 7
Messaging Cluster

Parameters

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server

 FALSE - client

u8NumberOfRecordEntries Number of messages that can be stored in the message
lists, one of:
SE_MESSAGE_NUMBER_OF_SERVER_MESSAGE_RECORD_
ENTRIES
SE_MESSAGE_NUMBER_OF_CLIENT_MESSAGE_RECORD_
ENTRIES

pau8StringStorage Pointer to an array of messages (strings), with one
element for each stored message (see above).

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see the ZCL User Guide
(JN-UG-3077)). This structure will be updated by the
function by initialising individual structure fields.

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see the ZCL User Guide (JN-UG-3077)). In
this case, this structure must contain the details of the
Messaging cluster. This parameter can refer to a pre-
filled structure called sCLD_MC which is provided in the
Messaging.h file.

psCustomDataStructure Pointer to structure which contains custom data for the
Messaging cluster. This structure is used for internal
data storage. No knowledge of the fields of this
structure is required.

psDisplayMessageCommandPayloadRecord

Pointer to structure which will contain the payload of a
message to be displayed.

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
146 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_MCDisplayMessage

Description

This function can be used on the Messaging cluster server (normally the ESP) to
send a request to a remote endpoint to display of the embedded message on the
node. On receipt of the request, the client on the destination endpoint automatically
inserts the message into the Active Message List or Scheduled Message List,
according to the start-time of the message. The function also handles the deletion of
the message once it has expired.

You must specify the address of the destination node and the destination endpoint
number. It is possible to use this function to send a request to bound endpoints or to
a group of endpoints on remote nodes - in the latter case, a group address must be
specified. Note that when sending requests to multiple endpoints through a single
call to this function, multiple responses will subsequently be received from the
remote endpoints.

A user confirmation of the message can optionally be requested in the payload of the
display request - this may require the customer to press a button to acknowledge that
the message has been displayed. This confirmation is relayed to the cluster server
using eSE_MCMessageConfirmationUserSend(). Refer to Section 7.3.2 for more
information on user confirmations.

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request. The TSN in the response will be set to
match the TSN in the request, allowing an incoming response to be paired with a
request. This is useful when sending more than one request to the same destination
endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which the request
will be sent

u8DestinationEndPointId Number of the remote endpoint to which the request will
be sent. Note that this parameter is ignored when
sending to address types E_ZCL_AM_BOUND and
E_ZCL_AM_GROUP

psDestinationAddress Pointer to a structure containing the address of the
remote node to which the request will be sent

psDisplayMessageCommandPayload

Pointer to a structure (see Section 7.8.2) which holds
the message to be displayed on the remote node

teSE_MCStatus eSE_MCDisplayMessage(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
tsSE_MCDisplayMessageCommandPayload

 *psDisplayMessageCommandPayload,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 147

Chapter 7
Messaging Cluster

pu8TransactionSequenceNumber

Pointer to a location to store the Transaction Sequence
Number (TSN) of the request

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INSUFFICIENT_SPACE

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_MC_MESSAGE_LATE
148 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_MCCancelMessage

Description

This function can be used on the Messaging cluster server (normally the ESP) to
request the cancellation of a message previously sent to a remote endpoint. This
cancellation may involve removing the message from a display on the target device.
A user confirmation of the message cancellation can optionally be requested in the
payload of the request - that is, an action by the user (such as pressing a button) to
acknowledge that the message has been withdrawn.

You must specify the address of the destination node and the destination endpoint
number. It is possible to use this function to send a request to bound endpoints or to
a group of endpoints on remote nodes - in the latter case, a group address must be
specified. Note that when sending requests to multiple endpoints through a single
call to this function, multiple responses will subsequently be received from the
remote endpoints.

On receipt of the request, an E_SE_MC_MESSAGE_CANCELLED event is
generated on the client. The subsequent actions depend on whether a user
confirmation has been requested:

 If no user confirmation is required, the client on the destination endpoint automatically
deletes the message from the Active Message List or Scheduled Message List, as
appropriate, and removes the message from the display (if necessary).

 If a user confirmation is required, the client waits for the user action (e.g. button press).
This client application must relay this confirmation to the cluster server using the
function eSE_MCMessageConfirmationUserSend(). The message is then deleted.

Refer to Section 7.3.5 for more details of the message cancellation process.

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request. The TSN in the response will be set to
match the TSN in the request, allowing an incoming response to be paired with a
request. This is useful when sending more than one request to the same destination
endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which the request
will be sent

u8DestinationEndPointId Number of the remote endpoint to which the request will
be sent. Note that this parameter is ignored when
sending to address types E_ZCL_AM_BOUND and
E_ZCL_AM_GROUP

teSE_MCStatus eSE_MCCancelMessage(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
tsSE_MCCancelMessageCommandPayload

 *psCancelMessageCommandPayload,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 149

Chapter 7
Messaging Cluster

psDestinationAddress Pointer to a structure containing the address of the
remote node to which the request will be sent

psCancelMessageCommandPayload

Pointer to a structure (see Section 7.8.3) which holds
details of the message to be cancelled (the message
identifier and cancellation mechanism to be employed,
including any user confirmation request)

pu8TransactionSequenceNumber

Pointer to a location to store the Transaction Sequence
Number (TSN) of the request

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_MC_MESSAGE_LATE

E_SE_MC_MESSAGE_NOT_FOUND
150 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_MCGetMessage

Description

This function can be used to obtain a pointer to the entry with the specified index in
the specified local message list (Active, Scheduled or Cancel Pending).

The function is normally used on an IPD to obtain the currently active message in
order to display it - this should be done each time a new message becomes active,
as indicated by an E_SE_MC_MESSAGE_ACTIVE event. Note that there is only one
message in the Active Message List (therefore, for this list, only index 0 is valid).

Parameters

u8SourceEndPointId Number of the local endpoint through which request will be
made

u8tableIndex Index of required message in the specified message list

eEventList Message list to be queried (see Section 7.9), one of:
E_SE_MC_MESSAGE_LIST_SCHEDULED
E_SE_MC_MESSAGE_LIST_ACTIVE
E_SE_MC_MESSAGE_LIST_CANCEL_PENDING

ppsDisplayMessageCommandPayload

Pointer to location to receive pointer to required entry in
message list

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_SE_MC_MESSAGE_NOT_FOUND

teSE_MCStatus eSE_MCGetMessage(
uint8 u8SourceEndPointId,
uint8 u8tableIndex,
teSE_MCEventList eEventList,
tsSE_MCDisplayMessageCommandPayload

 **ppsDisplayMessageCommandPayload);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 151

Chapter 7
Messaging Cluster

eSE_MCSendGetLastMessageRequest

Description

This function can be used on a Messaging cluster client to request the last message
sent by the server (normally the ESP). For example, this function may be called when
a device wakes from sleep, in order to collect the last message missed while it was
asleep.

You must specify the address of the destination node and the destination endpoint
number.

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request. The TSN in the response will be set to
match the TSN in the request, allowing an incoming response to be paired with a
request.

Parameters

u8SourceEndPointId Number of the local endpoint through which the request
will be sent

u8DestinationEndPointId Number of the remote endpoint to which the request will
be sent

psDestinationAddress Pointer to a structure containing the address of the
remote node to which the request will be sent

pu8TransactionSequenceNumber

Pointer to a location to store the Transaction Sequence
Number (TSN) of the request

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INSUFFICIENT_SPACE

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZTRANSMIT_FAIL

teSE_MCStatus eSE_MCSendGetLastMessageRequest(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
152 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_MCMessageConfirmationUserSend

Description

This function can be used on a Messaging cluster client to send a confirmation to the
server that the user has acknowledged the display or cancellation of a message.

Thus, this function is required when a message display or message cancellation
request has been received in which a user confirmation has been selected. The
function should be called following a user action such as pressing a button. Refer to
the Section 7.3 for more information on user confirmations.

Parameters

u8SourceEndPointId Number of the local endpoint through which the
confirmation will be sent

u32MessageId Identifier of message for which user confirmation is
required

eEventList The message list which contains the message for which
user confirmation is required. When confirming an
active displayed message, the list will be
E_SE_MC_MESSAGE_LIST_ACTIVE. When
confirming a message cancellation, the list will be
E_SE_MC_MESSAGE_LIST_CANCEL_PENDING

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_SE_MC_MESSAGE_NOT_FOUND

E_SE_MC_MESSAGE_CONFIRM_NOT_REQUIRED

teSE_MCStatus eSE_MCMessageConfirmationUserSend(
uint8 u8SourceEndPointId,
uint32 u32MessageId,
teSE_MCEventList eEventList);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 153

Chapter 7
Messaging Cluster

7.6 Return Codes

In addition to some of the ZCL status enumerations (detailed in the ZCL User Guide
(JN-UG-3077)), the following enumerations are returned by SE API Messaging cluster
functions (see Section 7.5) to indicate the outcome of the function call.

typedef enum PACK

{

 E_SE_MC_DUPLICATE_EXISTS = 0x80,

 E_SE_MC_MESSAGE_LATE,

 E_SE_MC_MESSAGE_NOT_FOUND,

 E_SE_MC_MESSAGE_CONFIRM_REQUIRED,

 E_SE_MC_MESSAGE_CONFIRM_NOT_REQUIRED,

 E_SE_MC_STATUS_ENUM_END

} teSE_MCStatus;

The above enumerations are described in the table below.

Enumeration Description

E_SE_MC_DUPLICATE_EXISTS Message with specified identifier already exists in message lists

E_SE_MC_MESSAGE_LATE Message end-time (start-time + duration x 60) is in the past

E_SE_MC_MESSAGE_NOT_FOUND Message with specified identifier not found in message lists

E_SE_MC_MESSAGE_CONFIRM_
REQUIRED

User acknowledgement of message cancellation required

E_SE_MC_MESSAGE_CONFIRM_NOT_
REQUIRED

User acknowledgement of message cancellation not required

Table 17: Messaging Cluster Return Codes
154 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
7.7 Enumerations

7.7.1 ‘Message Event’ Enumerations

The event types generated by the Messaging cluster are enumerated in the
teSE_MCCallBackEventType structure below:

typedef enum PACK

{

 E_SE_MC_MESSAGE_COMMAND =0x00,

 E_SE_MC_MESSAGE_ACTIVE,

 E_SE_MC_MESSAGE_EXPIRED,

 E_SE_MC_MESSAGE_CANCELLED

} teSE_MCCallBackEventType;

The above event types are described in the table below.

7.7.2 ‘Message List’ Enumerations

This structure contains enumerations used to identify a message list (Active Message
List, Scheduled Message List and Cancel Pending List):

typedef enum PACK

{

 E_SE_MC_MESSAGE_LIST_SCHEDULED = 0x00,

 E_SE_MC_MESSAGE_LIST_ACTIVE,

 E_SE_MC_MESSAGE_LIST_DEALLOCATED,

 E_SE_MC_MESSAGE_LIST_CANCEL_PENDING,

 E_SE_MC_MESSAGE_LIST_ENUM_END

} teSE_MCEventList;

Event Type Enumeration Description

E_SE_MC_MESSAGE_COMMAND Generated on a cluster client when a command is received
from the server

E_SE_MC_MESSAGE_ACTIVE Indicates that there is a new active message to display

E_SE_MC_MESSAGE_EXPIRED Indicates that the currently active/displayed message has
expired (reached its end-time)

E_SE_MC_MESSAGE_CANCELLED Indicates that a message has been deleted from the mes-
sage lists

Table 18: Messaging Event Types
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 155

Chapter 7
Messaging Cluster

The above enumerations are described in the table below.

Enumeration Description

E_SE_MC_MESSAGE_LIST_SCHEDULED Refers to Scheduled Message List, which holds messages
that are not yet active (i.e. the message start time is later
than the current time)

E_SE_MC_MESSAGE_LIST_ACTIVE Refers to Active Message List, which holds the currently
active message, if there is one (i.e. a message with start
time before the current time and start time+duration after the
current time)

E_SE_MC_MESSAGE_LIST_DEALLOCATED Used internally by the cluster

E_SE_MC_MESSAGE_LIST_CANCEL_PENDING Refers to Cancel Pending List, which holds a message for
which a cancel confirmation has been requested but not sent
- see eSE_MCMessageConfirmationUserSend on page 153

Table 19: Message List Enumerations
156 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
7.8 Structures

7.8.1 tsSE_MCCallBackMessage

For a Messaging event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to the following
tsSE_MCCallBackMessage structure which contains the Messaging parameters:

typedef struct PACK
{
 teSE_MCCallBackEventType eEventType;
 uint8 u8CommandId;
 uint32 u32CurrentTime;
 teSE_MCStatus eMCStatus;

 union {
 tsSE_MCDisplayMessageCommandPayload sDisplayMessageCommandPayload;
 tsSE_MCMessageConfirmCommandPayload sMessageConfirmCommandPayload;
 tsSE_MCCancelMessageCommandPayload sCancelMessageCommandPayload;
 // no get last message structure
 } uMessage;

} tsSE_MCCallBackMessage;

where:

 eEventType is the messaging event type from those listed in Section 7.7

 u8CommandId is the identifier of the type of messaging command received.
This field is only valid for the messaging event type
E_SE_MC_MESSAGE_COMMAND and, when valid, takes one of the following
enumerated values:

SE_MC_DISPLAY_MESSAGE (0x00, server to client)

SE_MC_CANCEL_MESSAGE (0x01, server to client)

SE_MC_GET_LAST_MESSAGE (0x00, client to server)

SE_MC_MESSAGE_CONFIRMATION (0x01, client to server)

 u32CurrentTime is the current time (UTC), in seconds

 eMCStatus is the status returned after executing the command specified in the
field u8CommandId. The possible status values are listed and described in
Section 7.6

 uMessage is a union containing the command payload in one of the following
forms (depending on the command specified in the field u8CommandId):

 sDisplayMessageCommandPayload is a structure containing the
payload of a ‘display message’ command - see Section 7.8.2

 sMessageConfirmCommandPayload is a structure containing the
payload of a ‘confirm’ command - see Section 7.8.4

 sCancelMessageCommandPayload is a structure containing the
payload of a ‘cancel message’ command - see Section 7.8.3
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 157

Chapter 7
Messaging Cluster

7.8.2 tsSE_MCDisplayMessageCommandPayload

This structure is used to hold the payload of ‘display message’ command sent from
the Messaging cluster server to a client:

typedef struct {

 uint8 u8MessageControl;

 uint16 u16DurationInMinutes;

 uint32 u32MessageId;

 uint32 u32StartTime;

 tsZCL_CharacterString sMessage;

} tsSE_MCDisplayMessageCommandPayload;

where:

 u8MessageControl is an 8-bit bitmap, where:

 Bits 1-0 are used to specify the transmission options of the command

 Bits 3-2 are used to specify the priority of the command

 Bits 6-4 are reserved

 Bit 7 is used to indicate whether a user confirmation is required

For further details, refer to the ZigBee Smart Energy Profile Specification.

 u16DurationInMinutes is the duration of validity for the message, in
minutes

 u32MessageId is the unique identifier of the embedded message

 u32StartTime is the start-time (UTC) for the message, in seconds

 sMessage is the character string containing the message (this string is, by
default, up to 80 characters long but this maximum can be configured in the
zcl_options.h header file)
158 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
7.8.3 tsSE_MCCancelMessageCommandPayload

This structure is used to hold the payload of ‘cancel message’ command sent from the
Messaging cluster server to a client:

typedef struct PACK {

 uint32 u32MessageId;

 uint8 u8MessageControl;

} tsSE_MCCancelMessageCommandPayload;

where:

 u32MessageId is the unique identifier of the message to be cancelled

 u8MessageControl is an 8-bit bitmap, where:

 Bits 1-0 are used to specify the transmission options of the command

 Bits 3-2 are used to specify the priority of the command

 Bits 6-4 are reserved

 Bit 7 is used to indicate whether a user confirmation is required

For further details, refer to the ZigBee Smart Energy Profile Specification.

7.8.4 tsSE_MCMessageConfirmCommandPayload

This structure is used to hold the payload of ‘confirmation’ command sent from a
Messaging cluster client to the server:

typedef struct PACK {

 uint32 u32MessageId;

 uint32 u32ConfirmationTime;

} tsSE_MCMessageConfirmCommandPayload;

where:

 u32MessageId is the unique identifier of the message being confirmed

 u32ConfirmationTime is the time (UTC) at which the message was
confirmed, in seconds
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 159

Chapter 7
Messaging Cluster

7.9 Compile-Time Options

This section describes the compile-time options that may be enabled in the
zcl_options.h file of an application that uses the Messaging cluster.

The Messaging cluster is enabled by defining CLD_MC.

Client and server versions of the cluster are defined by MC_CLIENT and
MC_SERVER, respectively.

Message List Size

The maximum number of messages that can be stored in the message lists on a
server and on a client defaults to two. This number can be over-ridden for a server and
client, respectively, by assigning values to:

 SE_MESSAGE_NUMBER_OF_SERVER_MESSAGE_RECORD_ENTRIES

 SE_MESSAGE_NUMBER_OF_CLIENT_MESSAGE_RECORD_ENTRIES

Message Length

The following macro can be used to set the length (in characters) of each message:

SE_MESSAGE_SERVER_MAX_STRING_LENGTH

For example, to set the message length to 80 characters:

#define SE_MESSAGE_SERVER_MAX_STRING_LENGTH (80)

Note that for a string-length of 80 characters (as set by the above macro), the ZigBee
PRO stack must be able to handle fragmented APDUs for message transmission.
160 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
8. Simple Metering Cluster

This chapter outlines the Simple Metering cluster which is defined in the ZigBee Smart
Energy profile and is used to handle information relating to the measured consumption
of some resource, which may be electricity, gas, heat or water.

The Simple Metering cluster has a Cluster ID of 0x0702.

8.1 Overview

The Simple Metering cluster is required in SE devices as indicated in the table below.

Thus, a Metering Device or ESP can use this cluster to store attributes and respond
to commands relating to these attributes, while an IPD or PCT may use this cluster to
issue commands to interact with remote attributes held on a Metering Device or ESP.

The Simple Metering cluster is enabled by defining CLD_SIMPLE_METERING in the
zcl_options.h file - see Section 3.5.1. Further compile-time options for the Simple
Metering cluster are detailed in Section 8.12.

The information that can potentially be stored in this cluster is organised into the
following attribute sets:

 Reading Information Set (resource measurement information)

 TOU Information Set (Time-Of-Use information)

 Meter Status

 Formatting (data formatting/interpretation guidance)

 Historical Consumption

 Load Profile Configuration

 Supply Limit

 Block Information (for future use - not certifiable in SE 1.1.1 or earlier)

 Alarms (for future use - not certifiable in SE 1.1.1 or earlier)

This information is stored in both mandatory and optional attributes - see Section 8.3.

Server-side Client-side

Mandatory in... Metering Device

Optional in... ESP ESP
IPD
PCT

Table 20: Simple Metering Cluster in SE Devices

Note: Many of the Simple Metering cluster attributes are
not certifiable in SE 1.1.1 (07-5356-17) or earlier and
are reserved for future use (as indicated in Section 8.2).
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 161

Chapter 8
Simple Metering Cluster

8.2 Simple Metering Cluster Structure and Attributes

The Simple Metering cluster is contained in the following tsSE_SimpleMetering
structure:

typedef struct

{

 /* Reading information attribute set attribute ID's (D.3.2.2.1) */

 zuint48 u48CurrentSummationDelivered; /* Mandatory */

#ifdef CLD_SM_ATTR_CURRENT_SUMMATION_RECEIVED

 zuint48 u48CurrentSummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_MAX_DEMAND_DELIVERED

 zuint48 u48CurrentMaxDemandDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_MAX_DEMAND_RECEIVED

 zuint48 u48CurrentMaxDemandReceived;

#endif

#ifdef CLD_SM_ATTR_DFT_SUMMATION

 zuint48 u48DFTSummation;

#endif

#ifdef CLD_SM_ATTR_DAILY_FREEZE_TIME

 zuint16 u16DailyFreezeTime;

#endif

#ifdef CLD_SM_ATTR_POWER_FACTOR

 zint8 i8PowerFactor;

#endif

#ifdef CLD_SM_ATTR_READING_SNAPSHOT_TIME

 zutctime utctReadingSnapshotTime;

#endif

#ifdef CLD_SM_ATTR_CURRENT_MAX_DEMAND_DELIVERED_TIME

 zutctime utctCurrentMaxDemandDeliveredTime;

#endif

#ifdef CLD_SM_ATTR_CURRENT_MAX_DEMAND_RECEIVED_TIME

 zutctime utctCurrentMaxDemandReceivedTime;

#endif

#ifdef CLD_SM_ATTR_DEFAULT_UPDATE_PERIOD

 uint8 u8DefaultUpdatePeriod;

#endif

#ifdef CLD_SM_ATTR_FAST_POLL_UPDATE_PERIOD

 uint8 u8FastPollUpdatePeriod;

#endif
162 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
#ifdef CLD_SM_ATTR_CURRENT_BLOCK_PERIOD_CONSUMPTION_DELIVERED

 zuint48 u48CurrentBlockPeriodConsumptionDelivered;

#endif

#ifdef CLD_SM_ATTR_DAILY_CONSUMPTION_TARGET

 zuint24 u24DailyConsumptionTarget;

#endif

#ifdef CLD_SM_ATTR_CURRENT_BLOCK

 zenum8 e8CurrentBlock;

#endif

#ifdef CLD_SM_SUPPORT_GET_PROFILE

#ifdef CLD_SM_ATTR_PROFILE_INTERVAL_PERIOD

 zenum8 eProfileIntervalPeriod;

#endif

#ifdef CLD_SM_ATTR_INTERVAL_READ_REPORTING_PERIOD

 uint16 u16IntervalReadReportingPeriod;

#endif

#endif // CLD_SM_SUPPORT_GET_PROFILE

#ifdef CLD_SM_ATTR_PREVIOUS_BLOCK_PERIOD_CONSUMPTION_DELIVERED

 zuint48 u48PreviousBlockPeriodConsumptionDelivered;

#endif

#ifdef CLD_SM_ATTR_PRESET_READING_TIME

 uint16 u16PresetReadingTime;

#endif

#ifdef CLD_SM_ATTR_VOLUME_PER_REPORT

 uint16 u16VolumePerReport;

#endif

#ifdef CLD_SM_ATTR_FLOW_RESTRICTION

 uint8 u8FlowRestriction;

#endif

#ifdef CLD_SM_ATTR_SUPPLY_STATUS

 zbmap8 u8SupplyStatus;

#endif

#ifdef CLD_SM_ATTR_CURRENT_INLET_ENERGY_CARRIER_SUMMATION

 zuint48 u48CurrentInletEnergyCarrierSummation;

#endif

#ifdef CLD_SM_ATTR_CURRENT_OUTLET_ENERGY_CARRIER_SUMMATION

 zuint48 u48CurrentOutletEnergyCarrierSummation;

#endif

#ifdef CLD_SM_ATTR_INLET_TEMPERATURE
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 163

Chapter 8
Simple Metering Cluster

 int16 i16InletTemperature;

#endif

#ifdef CLD_SM_ATTR_OUTLET_TEMPERATURE

 int16 i16OutletTemperature;

#endif

#ifdef CLD_SM_ATTR_CONTROL_TEMPERATURE

 int16 i16ControlTemperature;

#endif

#ifdef CLD_SM_ATTR_CURRENT_INLET_ENERGY_CARRIER_DEMAND

 zint24 i24CurrentInletEnergyCarrierDemand;

#endif

#ifdef CLD_SM_ATTR_CURRENT_OUTLET_ENERGY_CARRIER_DEMAND

 zint24 i24CurrentOutletEnergyCarrierDemand;

#endif

 /* Time Of Use Information attribute attribute ID's set (D.3.2.2.2) */

#ifdef CLD_SM_ATTR_CURRENT_TIER_1_SUMMATION_DELIVERED

 zuint48 u48CurrentTier1SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_1_SUMMATION_RECEIVED

 zuint48 u48CurrentTier1SummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_2_SUMMATION_DELIVERED

 zuint48 u48CurrentTier2SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_2_SUMMATION_RECEIVED

 zuint48 u48CurrentTier2SummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_3_SUMMATION_DELIVERED

 zuint48 u48CurrentTier3SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_3_SUMMATION_RECEIVED

 zuint48 u48CurrentTier3SummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_4_SUMMATION_DELIVERED

 zuint48 u48CurrentTier4SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_4_SUMMATION_RECEIVED

 zuint48 u48CurrentTier4SummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_5_SUMMATION_DELIVERED

 zuint48 u48CurrentTier5SummationDelivered;
164 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_5_SUMMATION_RECEIVED

 zuint48 u48CurrentTier5SummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_6_SUMMATION_DELIVERED

 zuint48 u48CurrentTier6SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_6_SUMMATION_RECEIVED

 zuint48 u48CurrentTier6SummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_7_SUMMATION_DELIVERED

 zuint48 u48CurrentTier7SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_7_SUMMATION_RECEIVED

 zuint48 u48CurrentTier7SummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_8_SUMMATION_DELIVERED

 zuint48 u48CurrentTier8SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_8_SUMMATION_RECEIVED

 zuint48 u48CurrentTier8SummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_9_SUMMATION_DELIVERED

 zuint48 u48CurrentTier9SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_9_SUMMATION_RECEIVED

 zuint48 u48CurrentTier9SummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_10_SUMMATION_DELIVERED

 zuint48 u48CurrentTier10SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_10_SUMMATION_RECEIVED

 zuint48 u48CurrentTier10SummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_11_SUMMATION_DELIVERED

 zuint48 u48CurrentTier11SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_11_SUMMATION_RECEIVED

 zuint48 u48CurrentTier11SummationReceived;

#endif
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 165

Chapter 8
Simple Metering Cluster

#ifdef CLD_SM_ATTR_CURRENT_TIER_12_SUMMATION_DELIVERED

 zuint48 u48CurrentTier12SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_12_SUMMATION_RECEIVED

 zuint48 u48CurrentTier12SummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_13_SUMMATION_DELIVERED

 zuint48 u48CurrentTier13SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_13_SUMMATION_RECEIVED

 zuint48 u48CurrentTier13SummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_14_SUMMATION_DELIVERED

 zuint48 u48CurrentTier14SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_14_SUMMATION_RECEIVED

 zuint48 u48CurrentTier14SummationReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_15_SUMMATION_DELIVERED

 zuint48 u48CurrentTier15SummationDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_TIER_15_SUMMATION_RECEIVED

 zuint48 u48CurrentTier15SummationReceived;

#endif

 /* Meter status attribute set attribute ID's (D.3.2.2.3) */

 zbmap8 u8MeterStatus; /* Mandatory */

#ifdef CLD_SM_ATTR_REMAINING_BATTERY_LIFE

 uint8 u8RemainingBatteryLife;

#endif

#ifdef CLD_SM_ATTR_HOURS_IN_OPERATION

 zuint24 u24HoursInOperation;

#endif

#ifdef CLD_SM_ATTR_HOURS_IN_FAULT

 zuint24 u24HoursInFault;

#endif

 /* Formatting attribute set attribute ID's (D.3.2.2.4) */

 zenum8 eUnitOfMeasure; /* Mandatory */

#ifdef CLD_SM_ATTR_MULTIPLIER

 zuint24 u24Multiplier;

#endif
166 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
#ifdef CLD_SM_ATTR_DIVISOR

 zuint24 u24Divisor;

#endif

 zbmap8 u8SummationFormatting; /* Mandatory */

#ifdef CLD_SM_ATTR_DEMAND_FORMATING

 zbmap8 u8DemandFormatting;

#endif

#ifdef CLD_SM_ATTR_HISTORICAL_CONSUMPTION_FORMATTING

 zbmap8 u8HistoricalConsumptionFormatting;

#endif

 zbmap8 eMeteringDeviceType; /* Mandatory */

#ifdef CLD_SM_ATTR_SITE_ID

 tsZCL_OctetString sSiteId;

 uint8 au8SiteId[SE_SM_SITE_ID_MAX_STRING_LENGTH];

#endif

#ifdef CLD_SM_ATTR_METER_SERIAL_NUMBER

 tsZCL_OctetString sMeterSerialNumber;

 uint8 au8MeterSerialNumber[SE_SM_METER_SERIAL_NUMBER_MAX_STRING_LENGTH];

#endif

#ifdef CLD_SM_ATTR_ENERGY_CARRIER_UNIT_OF_MEASURE

 zenum8 e8EnergyCarrierUnitOfMeasure;

#endif

#ifdef CLD_SM_ATTR_ENERGY_CARRIER_SUMMATION_FORMATTING

 zbmap8 u8EnergyCarrierSummationFormatting;

#endif

#ifdef CLD_SM_ATTR_ENERGY_CARRIER_DEMAND_FORMATTING

 zbmap8 u8EnergyCarrierDemandFormatting;

#endif

#ifdef CLD_SM_ATTR_TEMPERATURE_UNIT_OF_MEASURE

 zenum8 e8TemperatureUnitOfMeasure;

#endif

#ifdef CLD_SM_ATTR_TEMPERATURE_FORMATTING

 zbmap8 u8TemperatureFormatting;

#endif

 /* ESP Historical Consumption set attribute ID's (D.3.2.2.5) */

#ifdef CLD_SM_ATTR_INSTANTANEOUS_DEMAND

 zint24 i24InstantaneousDemand;

#endif

#ifdef CLD_SM_ATTR_CURRENT_DAY_CONSUMPTION_DELIVERED

 zuint24 u24CurrentDayConsumptionDelivered;

#endif
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 167

Chapter 8
Simple Metering Cluster

#ifdef CLD_SM_ATTR_CURRENT_DAY_CONSUMPTION_RECEIVED

 zuint24 u24CurrentDayConsumptionReceived;

#endif

#ifdef CLD_SM_ATTR_PREVIOUS_DAY_CONSUMPTION_DELIVERED

 zuint24 u24PreviousDayConsumptionDelivered;

#endif

#ifdef CLD_SM_ATTR_PREVIOUS_DAY_CONSUMPTION_RECEIVED

 zuint24 u24PreviousDayConsumptionReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_DELIVERED

 zutctime utctCurrentPartialProfileIntervalStartTimeDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_RECEIVED

 zutctime utctCurrentPartialProfileIntervalStartTimeReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_DELIVERED

 zuint24 u24CurrentPartialProfileIntervalValueDelivered;

#endif

#ifdef CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_RECEIVED

 zuint24 u24CurrentPartialProfileIntervalValueReceived;

#endif

#ifdef CLD_SM_ATTR_CURRENT_DAY_MAXIMUM_PRESSURE

 zuint48 u48CurrentDayMaxPressure;

#endif

#ifdef CLD_SM_ATTR_CURRENT_DAY_MINIMUM_PRESSURE

 zuint48 u48CurrentDayMinPressure;

#endif

#ifdef CLD_SM_ATTR_PREVIOUS_DAY_MAXIMUM_PRESSURE

 zuint48 u48PreviousDayMaxPressure;

#endif

#ifdef CLD_SM_ATTR_PREVIOUS_DAY_MINIMUM_PRESSURE

 zuint48 u48PreviousDayMinPressure;

#endif

#ifdef CLD_SM_ATTR_CURRENT_DAY_MAXIMUM_DEMAND

 zint24 i24CurrentDayMaxDemand;

#endif

#ifdef CLD_SM_ATTR_PREVIOUS_DAY_MAXIMUM_DEMAND

 zint24 i24PreviousDayMaxDemand;

#endif

#ifdef CLD_SM_ATTR_CURRENT_MONTH_MAXIMUM_DEMAND
168 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
 zint24 i24CurrentMonthMaxDemand;

#endif

#ifdef CLD_SM_ATTR_CURRENT_YEAR_MAXIMUM_DEMAND

 zint24 i24CurrentYearMaxDemand;

#endif

#ifdef CLD_SM_ATTR_CURRENT_DAY_MAXIMUM_ENERGY_CARRIER_DEMAND

 zint24 i24CurrentDayMaxEnergyCarrierDemand;

#endif

#ifdef CLD_SM_ATTR_PREVIOUS_DAY_MAXIMUM_ENERGY_CARRIER_DEMAND

 zint24 i24PreviousDayMaxEnergyCarrierDemand;

#endif

#ifdef CLD_SM_ATTR_CURRENT_MONTH_MAXIMUM_ENERGY_CARRIER_DEMAND

 zint24 i24CurrentMonthMaxEnergyCarrierDemand;

#endif

#ifdef CLD_SM_ATTR_CURRENT_MONTH_MINIMUM_ENERGY_CARRIER_DEMAND

 zint24 i24CurrentMonthMinEnergyCarrierDemand;

#endif

#ifdef CLD_SM_ATTR_CURRENT_YEAR_MAXIMUM_ENERGY_CARRIER_DEMAND

 zint24 i24CurrentYearMaxEnergyCarrierDemand;

#endif

#ifdef CLD_SM_ATTR_CURRENT_YEAR_MINIMUM_ENERGY_CARRIER_DEMAND

 zint24 i24CurrentYearMinEnergyCarrierDemand;

#endif

 /* Load Profile attribute set attribute ID's (D.3.2.2.6) */

#ifdef CLD_SM_ATTR_MAX_NUMBER_OF_PERIODS_DELIVERED

 zuint8 u8MaxNumberOfPeriodsDelivered;

#endif

 /* Supply Limit attribute set attribute ID's (D.3.2.2.7) */

#ifdef CLD_SM_ATTR_CURRENT_DEMAND_DELIVERED

 zuint24 u24CurrentDemandDelivered;

#endif

#ifdef CLD_SM_ATTR_DEMAND_LIMIT

 zuint24 u24DemandLimit;

#endif

#ifdef CLD_SM_ATTR_DEMAND_INTEGRATION_PERIOD

 zuint8 u8DemandIntegrationPeriod;

#endif

#ifdef CLD_SM_ATTR_NUMBER_OF_DEMAND_SUBINTERVALS

 zuint8 u8NumberOfDemandSubintervals;

#endif

 /* Block Information attribute set attribute ID's (D.3.2.2.8) */
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 169

Chapter 8
Simple Metering Cluster

 /* No Tier Block */

#if (CLD_SM_ATTR_NO_TIER_BLOCK_CURRENT_SUMMATION_DELIVERED_MAX_COUNT != 0)

 zuint48 au48CurrentNoTierBlockSummationDelivered
 [CLD_SM_ATTR_NO_TIER_BLOCK_CURRENT_SUMMATION_DELIVERED_MAX_COUNT];

#endif

 /* Tier 1 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 0)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier1BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 2 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 1)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier2BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 3 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 2)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier3BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 4 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 3)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier4BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 5 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 4)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier5BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 6 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 5)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier6BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 7 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 6)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier7BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 8 Block Set */
170 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 7)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier8BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 9 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 8)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier9BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 10 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 9)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier10BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 11 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 10)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier11BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 12 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 11)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier12BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 13 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 12)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier13BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 14 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 13)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier14BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Tier 15 Block Set */

#if ((CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED > 14)&&
 (CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED != 0))

 zuint48 au48CurrentTier15BlockSummationDelivered
 [CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED];

#endif

 /* Alarm attribute set attribute ID's (D.3.2.2.9) */

#ifdef CLD_SM_ATTR_GENERIC_ALARM_MASK
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 171

Chapter 8
Simple Metering Cluster

 zbmap16 u16GenericAlarmMask;

#endif

#ifdef CLD_SM_ATTR_ELECTRICITY_ALARM_MASK

 zbmap32 u32ElectricityAlarmMask;

#endif

#ifdef CLD_SM_ATTR_PRESSURE_ALARM_MASK

 zbmap16 u16PressureAlarmMask;

#endif

#ifdef CLD_SM_ATTR_WATER_SPECIFIC_ALARM_MASK

 zbmap16 u16WaterSpecificAlarmMask;

#endif

#ifdef CLD_SM_ATTR_HEAT_AND_COOLING_ALARM_MASK

 zbmap16 u16HeatAndCoolingSpecificAlarmMask;

#endif

#ifdef CLD_SM_ATTR_GAS_ALARM_MASK

 zbmap16 u16GasAlarmMask;

#endif

} tsCLD_SimpleMetering;

where:

‘Reading Information’ Attribute Set

 u48CurrentSummationDelivered is the total amount of the measured
resource (e.g. electrical energy) delivered to the premises so far, expressed in
the units specified in eUnitOfMeasure and in the format specified in
u8SummationFormatting

 The following are optional attributes and are fully described in the ZigBee
Smart Energy Profile Specification:

 u48CurrentSummationReceived

 u48CurrentMaxDemandDelivered

 u48CurrentMaxDemandReceived

 u48DFTSummation

 u16DailyFreezeTime

 i8PowerFactor

 utctReadingSnapshotTime

 utctCurrentMaxDemandDeliveredTime

 utctCurrentMaxDemandReceivedTime

 The following are optional attributes that relate to Fast Polling mode (both
attributes are not certifiable in SE 1.1.1 or earlier and are for future use):

 u32DefaultUpdatePeriod is the default poll-period, in seconds, that is
used in updating metering data outside of fast polling episodes
172 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
 u8FastPollUpdatePeriod is the minimum poll-period, in seconds, that
can be used in updating metering data during fast polling episodes (should
not be set to less than 2 seconds)

 The following are optional attributes and are fully described in the ZigBee
Smart Energy Profile Specification (these attributes are not certifiable in SE
1.1.1 or earlier and are for future use):

 u48CurrentBlockPeriodConsumptionDelivered

 u24DailyConsumptionTarget

 e8CurrentBlock

 The following are optional attributes that relate to the ‘Get Profile’ feature:

 eProfileIntervalPeriod is the time-interval over which one set of
consumption data will be collected

 u32IntervalReadReportingPeriod is the time-interval, in minutes,
after which a sleepy End Device should wake up to provide metering data

 The following are optional attributes are fully described in the ZigBee Smart
Energy Profile Specification (all these attributes except u8SupplyStatus are
not certifiable in SE 1.1.1 or earlier and are for future use):

 u16PresetReadingTime

 u16VolumePerReport

 u8FlowRestriction

 u8SupplyStatus

 u48CurrentInletEnergyCarrierSummation

 u48CurrentOutletEnergyCarrierSummation

 i16InletTemperature

 i16OutletTemperature

 i16ControlTemperature

 i24CurrentInletEnergyCarrierDemand

 i24CurrentOutletEnergyCarrierDemand
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 173

Chapter 8
Simple Metering Cluster

‘Time-Of-Use (TOU) Information’ Attribute Set

 The following are optional attributes and are fully described in the ZigBee
Smart Energy Profile Specification (the attributes for tiers 7 to 15 are not
certifiable in SE 1.1.1 or earlier and are for future use):

 u48CurrentTier1SummationDelivered

 u48CurrentTier1SummationReceived

 u48CurrentTier2SummationDelivered

 u48CurrentTier2SummationReceived

 :

 u48CurrentTier15SummationDelivered

 u48CurrentTier15SummationReceived

‘Meter Status’ Attribute Set

 u8MeterStatus is an 8-bit bitmap representing the status of the meter.
Enumerated masks are provided that correspond to the possible settings - see
Section 8.10.2 (this attribute is only certifiable for electricity meters in SE 1.1.1)

 The following are optional attributes and are fully described in the ZigBee
Smart Energy Profile Specification (all the attributes are not certifiable in SE
1.1.1 or earlier and are for future use):

 u8RemainingBatteryLife

 u24HoursInOperation

 u24HoursInFault

‘Formatting’ Attribute Set

 eUnitOfMeasure indicates the unit of measure for the resource quantity
contained above in u48CurrentSummationDelivered and below in
i24InstantaneousDemand. Enumerations for the possible units are
provided - see Section 8.10.3

 The following are optional attributes and are fully described in the ZigBee
Smart Energy Profile Specification:

 u24Multiplier

 u24Divisor

 u8SummationFormatting indicates the formatting for the resource quantity
contained above in u48CurrentSummationDelivered. Enumerations for
the possible formats are provided - see Section 8.10.4

 The following are optional attributes and are fully described in the ZigBee
Smart Energy Profile Specification:

 u8DemandFormatting

 u8HistoricalConsumptionFormatting

 eMeteringDeviceType indicates the type of Metering Device in terms of the
resource type which it measures. Enumerations for the possible device types
are provided - see Section 8.10.6
174 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
 The following pair of elements represents an optional attribute which identifies
the location of a Metering Device (this attribute is not certifiable in SE 1.1.1 or
earlier and is for future use):

 sSiteId is a tsZCL_OctetString structure containing information on
the site identifier. This element is paired with au8SiteId (below)

 au8SiteId is an array containing the site identifier. This element is paired
with sSiteId (above)

 The following pair of elements represents an optional attribute, which indicates
the serial number of a Metering Device (this attribute is not certifiable in SE
1.1.1 or earlier and is for future use):

 sMeterSerialNumber is a tsZCL_OctetString structure containing
information on the serial number of a Metering Device. This element is
paired with au8SiteId (below)

 au8MeterSerialNumber is an array containing the serial number of a
Metering Device. This element is paired with sMeterSerialNumber
(above)

 The following are optional attributes and are fully described in the ZigBee
Smart Energy Profile Specification (these attributes are not certifiable in SE
1.1.1 or earlier and are for future use):

 e8EnergyCarrierUnitOfMeasure

 u8EnergyCarrierSummationFormatting

 u8EnergyCarrierDemandFormatting

 e8TemperatureUnitOfMeasure

 u8TemperatureFormatting

‘Historical Consumption’ Attribute Set

 i24InstantaneousDemand is an optional attribute containing the current
rate of consumption of the metered resource with respect to time. The unit of
measure for the relevant resource is as specified in eUnitOfMeasure

If this attribute is used, the metering application should update its value on a
regular basis, between once every second and once every five seconds. The
attribute value can be negative, meaning that the relevant resource is currently
being supplied from the premises to the utility company - for example, the case
of locally generated electricity from roof-mounted solar panels being supplied to
the national grid.

 The following are optional attributes and are fully described in the ZigBee
Smart Energy Profile Specification:

Note: This identifier is known in the UK as the M-PAN
for electricity and MPRN for gas, and in South Africa as
as the 'Stand Point'. The field is large enough to
accommodate the number of characters typically used
in the UK and Europe (16 digits).
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 175

Chapter 8
Simple Metering Cluster

 u24CurrentDayConsumptionDelivered

 u24CurrentDayConsumptionReceived

 u24PreviousDayConsumptionDelivered

 u24PreviousDayConsumptionReceived

 utctCurrentPartialProfileIntervalStartTimeDelivered

 utctCurrentPartialProfileIntervalStartTimeReceived

 u24CurrentPartialProfileIntervalValueDelivered

 u24CurrentPartialProfileIntervalValueReceived

 The following are optional attributes and are fully described in the ZigBee
Smart Energy Profile Specification (these attributes are not certifiable in SE
1.1.1 or earlier and are for future use):

 u48CurrentDayMaxPressure

 u48CurrentDayMinPressure

 u48PreviousDayMaxPressure

 u48PreviousDayMinPressure

 i24CurrentDayMaxDemand

 i24PreviousDayMaxDemand

 i24CurrentMonthMaxDemand

 i24CurrentYearMaxDemand

 i24CurrentDayMaxEnergyCarrierDemand

 i24PreviousDayMaxEnergyCarrierDemand

 i24CurrentMonthMaxEnergyCarrierDemand

 i24CurrentMonthMinEnergyCarrierDemand

 i24CurrentYearMaxEnergyCarrierDemand

 i24CurrentYearMinEnergyCarrierDemand

‘Load Profile Configuration’ Attribute Set

 u8MaxNumberOfPeriodsDelivered is an optional attribute from the Simple
Metering ‘Load Profile Configuration’ attribute set and is fully described in the
ZigBee Smart Energy Profile Specification.

‘Supply Limit’ Attribute Set

 The following are optional attributes and are fully described in the ZigBee
Smart Energy Profile Specification:

 u24CurrentDemandDelivered

 u24DemandLimit

 u8DemandIntegrationPeriod

 u8NumberOfDemandSubintervals
176 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
‘Block Information’ Attribute Set

 The following are optional attributes and are fully described in the ZigBee
Smart Energy Profile Specification (these attributes are not certifiable in SE
1.1.1 or earlier and are for future use):

 au48CurrentNoTierBlockSummationDelivered[CLD_SM_ATTR_NO_TIER_BLOCK_CU
RRENT_SUMMATION_DELIVERED_MAX_COUNT]

 au48CurrentTier1BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN_
EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier2BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN_
EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier3BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN_
EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier4BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN_
EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier5BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN_
EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier6BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN_
EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier7BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN_
EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier8BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN_
EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier9BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN_
EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier10BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN
_EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier11BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN
_EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier12BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN
_EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier13BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN
_EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier14BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN
_EACH_TIER_CURRENT_SUMMATION_DELIVERED]

 au48CurrentTier15BlockSummationDelivered[CLD_SM_ATTR_NUM_OF_BLOCKS_IN
_EACH_TIER_CURRENT_SUMMATION_DELIVERED]
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 177

Chapter 8
Simple Metering Cluster

8.3 Attribute Settings

The Simple Metering cluster contains both mandatory and optional attributes (see
Section 8.2). The cluster structure is shown below with only the mandatory attributes
(which are enabled by default):

typedef struct PACK

{

 zuint48 u48CurrentSummationDelivered;

 zbmap8 u8MeterStatus;

 teSE_UnitOfMeasure eUnitOfMeasure;

 zbmap8 u8SummationFormatting;

 teSE_MeteringDeviceType eMeteringDeviceType;

} tsSE_SimpleMetering;

The mandatory attribute settings are outlined below.

eMeteringDeviceType

The element eMeteringDeviceType of the structure tsSE_SimpleMetering
indicates the type of Metering Device in terms of the resource type which it measures:
electricity, gas, water, heat, cooling or pressure. This attribute belongs to the cluster’s
Formatting attribute set.

Enumerated values are provided for the full range of possible metering devices - for
example, E_CLD_SM_MDT_GAS for a gas meter. Enumerated values are also
provided for devices that mirror a Metering Device - for example,
E_CLD_SM_MDT_GAS_MIRRORED for the mirroring device of a gas meter. All of
these enumerations are defined in the structure teCLD_SM_MeteringDeviceType,
detailed in Section 8.10.6.

u8MeterStatus

The element u8MeterStatus of the structure tsSE_SimpleMetering indicates
the current status of the device by means of an 8-bit value. This attribute has its own
attribute set, Meter Status.

The status value is a bitmap with the bit representations indicated in the table below:

* Set to ‘1’ when service to this site has been disconnected

A bit is set (to ‘1’) to indicate the corresponding error or warning.

A number of macros are defined in the SE API to reflect the above bit settings - for
example, E_CLD_SM_METER_STATUS_POWER_FAILURE_BIT contains the state

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved Service
Disconnect

Open *

Leak
Detect

Power
Quality

Power
Failure

Tamper
Detect

Battery
Low

Check
Meter
178 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
of the Power Failure bit (Bit 3). There are also macros for masking off the appropriate
bit - these macros are detailed in Section 8.10.2.

eUnitOfMeasure

The element eUnitOfMeasure of the structure tsSE_SimpleMetering indicates
the unit of measure in which the relevant resource is metered, e.g. kiloWatt-hour for
electricity. This attribute belongs to the cluster’s Formatting attribute set.

Enumerated values are provided for the possible units of measure - for example,
E_CLD_SM_UOM_CUBIC_METER for cubic metre (of gas or water). This example
will also configure measurements to be expressed in binary/hex. However,
enumerated values are also provided to configure measurements to be expressed in
binary coded decimal - for example, E_CLD_SM_UOM_CUBIC_METER_BCD
configures measurements in cubic metres and expressed in binary coded decimal. All
of these enumerations are defined in the structure teCLD_SM_UnitOfMeasure,
detailed in Section 8.10.3.

u8SummationFormatting

The element u8SummationFormatting of the structure tsSE_SimpleMetering
is an 8-bit value indicating the position of the decimal point in the metered value (see
u48CurrentSummationDelivered). This attribute belongs to the cluster’s Formatting
attribute set.

This value contains bit fields, as follows:

 Bits 2-0: 3-bit value indicating number of digits to right of point

 Bits 6-3: 3-bit value indicating number of digits to left of point

 Bit 7: Setting this bit (to ‘1’) suppresses leading zeros

A number of macros are defined in the SE API to accommodate the above format
information - these macros are detailed in Section 8.10.4.

u48CurrentSummationDelivered

The element u48CurrentSummationDelivered of the structure
tsSE_SimpleMetering is a 48-bit value representing the total quantity consumed,
so far, of the metered resource (e.g. electrical energy). This attribute belongs to the
Reading Information attribute set.

The attribute value is interpreted with the aid of the elements eUnitOfMeasure and
u8SummationFormatting, which indicate the unit of measure and the position of
the decimal point respectively.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 179

Chapter 8
Simple Metering Cluster

8.4 Remotely Reading Simple Metering Attributes

The SE API provides dedicated functions for remotely reading the Simple Metering
attributes:

1. The application must first call eSE_ReadMeterAttributes() to submit a ‘read
attributes’ request to the relevant remote endpoint. The resulting read process
is as described for eZCL_SendReadAttributesRequest() in Section 4.5.

2. On receiving the ‘read attributes’ response, the event
E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE is generated, which
causes the callback function for the local endpoint to be invoked. This callback
function should include a call to eSE_HandleReadAttributesResponse()
which checks whether all the Simple Metering attributes are included in the
response. If the response is not complete, the function will re-send ‘read
attributes’ requests until all attribute values have been obtained.

Note that read access to cluster attributes must be explicitly enabled at compile-time
as described in Section 3.5.1.
180 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
8.5 Mirroring Metering Data

‘Mirroring’ is a facility that stores and provides access to metering data which
originates from Metering Devices that sleep. A Metering Device cannot be accessed
during periods of sleep and therefore its data cannot normally be read at these times.
Mirroring involves holding the data from sleepy Metering Devices centrally on a server,
allowing access to the data at all times.

Normally, the ESP (Co-ordinator) acts as the mirroring server. One or more sleepy
Metering Devices (End Devices) can mirror their data on this server. A Metering
Device must send its latest data to the mirroring server immediately before entering
sleep mode. This is illustrated in Figure 14 below.

Every mirror (one for each Metering Device) on the mirroring server has its own
endpoint. The maximum number of mirror endpoints is defined at compile-time (see
Section 8.12). Note that these endpoints are in addition to the main endpoint for the
ESP (registered using eSE_RegisterEspMeterEndPoint() or
eSE_RegisterEspEndPoint()).

Mirroring versions of the Simple Metering cluster server and/or client are implemented
on the mirror endpoints. This is illustrated in Figure 15 below where the ESP, as the
mirroring server, incorporates both the Simple Metering cluster server and client, the
Metering device incorporates a cluster server and the IPD incorporates a cluster client.

The ESP device structure tsSE_EspMeterDevice (see Section 13.2.1) contains a
section on mirroring support which includes an array of tsSE_Mirror structures (see
Section 8.11.2). This array contains one element/structure per mirror endpoint, with
the first mirror endpoint occupying array element 0 and the array size corresponding
to the maximum number of mirror endpoints allowed on the mirroring server. The
information stored in an array element includes the IEEE address of the Metering
Device to which the mirror endpoint has been allocated.

Figure 14: Mirroring of Metering Data

Metering
Device

ESP
Mirroring
Server

HAN

Metering
Device

Metering
Device

Metering
Device

Metering Device sends
data to mirroring server
before going to sleep

Mirroring server holds
data from all sleepy
Metering Devices

To/from
utility company

Active

Sleeping

Key
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 181

Chapter 8
Simple Metering Cluster

8.5.1 Configuring Mirroring on ESP

The ESP normally acts as the mirroring server, containing a unique mirror endpoint for
each (mirrored) Metering Device. Configuration of the mirroring server is carried out
both within the application that runs on the device and as compile-time options - refer
to Section 8.12 for the relevant compile-time options.

On the ESP, mirroring can be enabled in the application code when the device is
registered using the function eSE_RegisterEspMeterEndPoint() or
eSE_RegisterEspEndPoint(). These functions require specification of the first
endpoint that is to be used for mirroring. Starting at this endpoint, consecutive
endpoints to be used for mirrors will be reserved, up to the maximum number of
mirrors defined by the compile-time option CLD_SM_NUMBER_OF_MIRRORS. For
example, if 5 is specified as the first mirror endpoint and up to 4 mirrors can be used
then endpoints 5, 6, 7 and 8 will be reserved for mirrors. Note that mirroring is disabled
by setting the start endpoint to 0.

The tsSE_Mirror structures in the ESP device structure tsSE_EspMeterDevice
contain the IEEE addresses of the Metering Devices being mirrored on the ESP (these
IEEE addresses are automatically initialised to zero). The ESP application must save
an array of these IEEE addresses to non-volatile memory for persistent data storage,
using the JenOS PDM module - this will allow the mirrored Metering Devices to be
identified by the mirroring server following a reset of the ESP.

Figure 15: Simple Metering Cluster in Mirroring

Note: The endpoints reserved for mirroring must also be
included in the configuration diagram in the ZPS
Configuration Editor. However, they must not be
enabled since they will be enabled when mirrors are
created on them.

Simple Metering
Server

Simple Metering
Client

Simple Metering
Server

Simple Metering
Client

ESP

Metering Device IPD
182 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
The ESP must allocate mirror endpoints to Metering Devices in response to requests
from the Metering Devices (refer to Section 8.5.2 for details of requesting a mirror), as
described below:

1. On receiving a mirror request on the ESP, the ZCL automatically allocates the
next available mirror endpoint to the Metering Device (the IEEE address of the
Metering Device is automatically written to the tsSE_Mirror structure which
corresponds to the allocated mirror endpoint).

2. The event E_CLD_SM_CLIENT_RECEIVED_COMMAND containing the
command E_CLD_SM_REQUEST_MIRROR is then generated on the ESP,
causing the callback function on the ESP to be invoked.

3. The callback function must check whether all mirror endpoints have now been
exhausted, in order to update the relevant status on the ESP. To do this, the
function eSM_GetFreeMirrorEndPoint() must be called to obtain the number
of the next free mirror endpoint. If the value 0xFFFF is returned, this means
that no more mirror endpoints are available (for subsequent requests) and the
attribute u8PhysicalEnvironment of the Basic cluster must be set to zero
(to indicate to other Metering Devices that no more mirrors are available on
the ESP). This step is illustrated in the code fragment below.

eSM_GetFreeMirrorEndPoint (&u16FoundEP);

if (u16FoundEP == 0xFFFF)
{
 psSE_EspMeterDevice->sBasicCluster.u8PhysicalEnvironment = 0x00;
}
else
{
 psSE_EspMeterDevice->sBasicCluster.u8PhysicalEnvironment = 0x01;

}

4. The callback function must copy the IEEE addresses from the tsSE_Mirror
structures (which are automatically kept up-to-date) to the application’s array
of IEEE addresses for mirrored devices, and this array should be re-saved in
non-volatile memory using the JenOS PDM module. This step is illustrated
below in the code fragment under “Writing and Preserving Array of IEEE
Addresses”.

5. A response is automatically sent to the requesting Metering Device, where
this response contains the number of the assigned endpoint.

The ESP is then ready to receive metering data from the remote Metering Device, as
described in Section 8.5.3.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 183

Chapter 8
Simple Metering Cluster

Writing and Preserving Array of IEEE Addresses

The ESP application must maintain an array of the IEEE addresses of the mirrored
Metering Devices and keep a copy of this array in NVM. The array can be updated
from the tsSE_Mirror structures for the mirror endpoints and saved to NVM as
illustrated in the code fragment below:

case E_UPDATE_EVENT_REQUEST_MIRROR:
case E_UPDATE_EVENT_REMOVE_MIRROR:
{
 uint8 u8LoopCntr;
 for (u8LoopCntr =0; u8LoopCntr < CLD_SM_NUMBER_OF_MIRRORS; u8LoopCntr++)
 {
 sMirrorState.u64ExtAddr[u8LoopCntr] =
 sMeter.sSE_Mirrors[u8LoopCntr].u64SourceAddress;
 }
 sMirrorState.bNetworkUp = TRUE;
 PDM_vSaveRecord(&g_sMirrorStateDescr);
}
break;

Note that g_sMirrorStateDescr maps to the sMirrorState structure.

Recreating Mirrors Following an ESP Reset

If the ESP is reset, the mirrors that have been created on the device will be lost.
However, if the IEEE addresses (of the mirrored Metering Devices) associated with
the mirror endpoints have been preserved in NVM, this data can be read by the ESP
application following the reset and the mirrors recreated. Given the relevant endpoint
number and IEEE address, a mirror can be recreated using the function
eSM_CreateMirror().

8.5.2 Configuring Mirroring on Metering Devices

Configuration of a Metering Device for mirroring is carried out both within the
application that runs on the device and as a compile-time option - refer to Section 8.12
for the relevant compile-time options.

It is the responsibility of the Metering Device to request a mirror on the ESP, but first
it must establish whether the ESP is accepting mirror requests. To do this, the
application should use the function eZCL_SendReadAttributesRequest() to obtain
the value of the u8PhysicalEnvironment attribute of the Basic cluster on the ESP
- if this value is non-zero then the ESP is open to receiving mirror requests.

Provided that the ESP is accepting mirror requests, a Metering Device application can
request a mirror using the function eSM_ServerRequestMirrorCommand(). This
function sends a mirror request to the ESP with the aim of being allocated a mirror
endpoint. The handling of this request on the ESP is described in Section 8.5.1.

Note: A matching function eSM_RemoveMirror() also
exists to allow the application to remove a mirror.
184 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
The Metering Device application must then wait for a response from the ESP. This
response is indicated by the event E_CLD_SM_SERVER_RECEIVED_COMMAND
containing the command E_CLD_SM_REQUEST_MIRROR_RESPONSE, causing
the callback function for the receiving endpoint to be invoked.

If the request has resulted in the successful allocation of a mirror endpoint on the ESP,
the tsSM_RequestMirrorResponseCommand structure (see Section 8.11.6) in this
event will contain the allocated endpoint number. In this case:

 The callback function should write the allocated endpoint number and mirroring
server (ESP) IEEE address to non-volatile memory for persistent data storage
using the JenOS PDM module.

 The Metering Device application can now send metering data for storage on
the ESP whenever required, as described in Section 8.5.3.

If the request did not result in an allocated mirror endpoint on the ESP, the endpoint
number returned in the above structure will be 0xFFFF and no action needs to be
taken by the callback function.

8.5.3 Mirroring Data

Once a mirror for a Metering Device has been set up, as described in Section 8.5.1
and Section 8.5.2, the mirror can be populated and refreshed with data in two ways:

 The ESP application can submit a ‘read attributes’ request to the Metering
Device (when it is not asleep), as described in Section 4.5.

 The Metering Device can send metering data as unsolicited attribute reports to
the mirror at any time (for example, before entering sleep mode). This method
is described further below.

The Metering Device application sends unsolicited attribute reports for the Simple
Metering cluster to the mirror using the function eZCL_ReportAllAttributes(),
described in the ZCL User Guide (JN-UG-3077).

On receiving this data, the event E_ZCL_CBET_ATTRIBUTE_REPORT_MIRROR is
generated on the ESP, causing the callback function on the ESP to be invoked. The
callback function must then check that the data has come from a valid source (a
Metering Device which has a mirror on the ESP) by calling the function
eSM_IsMirrorSourceAddressValid(). According to the outcome of this check, the
function updates the event status:

sZCL_CallBackEvent.uMessage.sReportAttributeMirror.eStatus

Note: If the Metering Device subsequently requests
another mirror on the same ESP, the same mirror
endpoint number will be returned - a Metering Device
cannot have more than one mirror on the same ESP.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 185

Chapter 8
Simple Metering Cluster

 If eStatus is set to E_ZCL_ATTR_REPORT_OK, the reported attribute values
(metering data) are automatically stored on the relevant mirror endpoint and an
E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTE event is generated for
each attribute reported.

 If eStatus is set to anything else, a ZCL default response is automatically sent
back to the reporting device to indicate that mirroring is not authorised for this
device (E_ZCL_CMDS_NOT_AUTHORIZED).

Maintaining the Mirrored eMeteringDeviceType Attribute

When a mirror is created on the ESP, the Simple Metering cluster attribute
eMeteringDeviceType in the mirror will be set to the appropriate value for the
Metering Device to be mirrored (e.g. E_CLD_SM_MDT_GAS). However, in order to
distinguish the mirror cluster on the ESP from the original cluster on the Metering
Device, the ESP application must replace this value in the mirror with the equivalent
‘_MIRRORED’ value (e.g. E_CLD_SM_MDT_GAS_MIRRORED). In fact, this
replacement must be performed every time the ESP receives a new set of attribute
values from the Metering Device (by either of the two methods described above),
since this attribute value in the mirror will be over-written each time and must
subsequently be corrected.

8.5.4 Reading Mirrored Data

An SE device such as an IPD may need to obtain data from a mirror on the ESP,
particularly when the mirrored Metering Device is sleeping. The data is requested by
means of the standard ‘read attributes’ method, described in Section 4.5 - that is, by
calling the ZCL function eZCL_SendReadAttributesRequest() on the requesting
device.

If an attempt is made to read an attribute that currently has no value in the mirror, the
resulting E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE event will
contain the attribute status E_ZCL_CMDS_UNSUPPORTED_ATTRIBUTE.
186 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
8.5.5 Removing a Mirror

The removal of a mirror on the ESP is initiated by the application on the corresponding
Metering Device using the function eSM_ServerRemoveMirrorCommand(). This
function sends a ‘remove mirror’ request to the relevant mirror endpoint on the ESP.

On receiving this request, the ESP processes the request as follows:

1. The ZCL first verifies the source address of the request to ensure that it has
come from the Metering Device which corresponds to the mirror to be
removed. If the source address is not valid then a ZCL default response is
automatically sent to the requesting Metering Device to indicate that the
request was not authorised (E_ZCL_CMDS_NOT_AUTHORIZED) -
otherwise, the ESP continues to process the request as described in the steps
below.

2. The ZCL then removes the mirror from the specified endpoint, thus freeing the
endpoint for future use by another mirror.

3. The event E_CLD_SM_CLIENT_RECEIVED_COMMAND containing the
command E_CLD_SM_REMOVE_MIRROR is generated on the ESP, causing
the callback function on the ESP to be invoked.

4. The callback function must set the u8PhysicalEnvironment attribute of
the Basic cluster to 0x01 in order to indicate that the ESP has the capacity to
accept mirror requests (since the removal of the mirror leaves at least one
mirror endpoint free).

5. The callback function must copy the IEEE addresses from the tsSE_Mirror
structures (which are automatically kept up-to-date) to the application’s array
of IEEE addresses for mirrored devices, and this array should be re-saved in
non-volatile memory using the JenOS PDM module. This step is illustrated in
the code fragment under “Writing and Preserving Array of IEEE Addresses”
on page 184.

6. A response is automatically sent to the requesting Metering Device to confirm
the mirror removal.

The response (reporting successful mirror removal) results in the generation of the
event E_CLD_SM_SERVER_RECEIVED_COMMAND containing the command
E_CLD_SM_MIRROR_REMOVED on the Metering Device.

Note: A mirror can be removed from an endpoint on the
ESP but the endpoint will remain reserved for mirroring -
it may later be re-assigned to another mirror.

Note: The function eSM_RemoveMirror() is also
provided, which allows the ESP application to directly
remove a mirror.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 187

Chapter 8
Simple Metering Cluster

8.6 Consumption Data Archive (‘Get Profile’)

Devices that support the Simple Metering cluster can maintain and exchange
historical consumption (profiling) data using the ‘Get Profile’ feature. A consumption
data archive, which is distinct from the data of the Simple Metering cluster attributes,
is maintained in a circular buffer on the cluster server. A cluster client can make a ‘Get
Profile’ request to the server to obtain data from this archive. Normally, the cluster
server is implemented on a Metering Device and the cluster client is implemented on
an IPD. Typically, the IPD requests a consumption history from the Metering Device
in order to display this information to the consumer.

The consumption data in the archive corresponds to a series of consecutive time
intervals with their corresponding consumption values. Thus, the archive consists of
the last few consumption measurements - it is the responsibility of the application
running on the server device to update the archive (see Section 8.6.1).

If the ‘Get Profile’ feature is required, it must be enabled in the compile-time options
as described in Section 8.12. These options include the maximum number of
consumption intervals that can be archived on the server (and therefore requested).

8.6.1 Updating Consumption Data on Server

The consumption archive is held on the Smart Metering cluster server in a circular
buffer operating on a FIFO basis. This buffer provides storage space for a sequence
of entries containing consumption data for consecutive time intervals, where each
buffer entry is a structure of the type tsSEGetProfile consisting of:

 End-time of consumption interval (as UTC time)

 Units delivered to the customer

 Units received from the customer (when customer sells units to utility company)

The maximum number of entries that can be stored in the buffer is determined at
compile-time (see Section 8.12). When a new entry is added to a full buffer, this entry
replaces the oldest entry currently in the buffer.

The application must keep the buffer up-to-date by adding a new entry using the
function eSM_ServerUpdateConsumption(). Before this function is called, the
relevant consumption data must be updated in one or both of the following Simple
Metering cluster attributes:

 u24CurrentPartialProfileIntervalValueDelivered

Contains the number of units delivered to the customer over the last interval

 u24CurrentPartialProfileIntervalValueReceived

Contains the number of units received from the customer over the last interval

An attribute only needs to be updated if the corresponding consumption has been
implemented (for example, the utility company often only delivers units to the
customer and does not receive any from the customer).

eSM_ServerUpdateConsumption() takes the current time as an input and then adds
an entry containing the consumption data (in the above attributes) to the buffer, where
188 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
the supplied current time becomes the end-time in the entry (thus, the duration of the
consumption intervals is dictated by the frequency at which this function is called - see
below).

eSM_ServerUpdateConsumption() must be called periodically by the application.
The period must match the value to which the Simple Metering
eProfileIntervalPeriod attribute has been set (see Section 8.2). Standard
periods, ranging from 2.5 minutes to one day, are provided as a set of enumerations
(see Section 8.10.10).

8.6.2 Sending and Handling a ‘Get Profile’ Request

The application on a device which supports the Simple Metering cluster as a client,
such as an IPD, can send a ‘Get Profile’ request to the cluster server by calling the
function eSM_ClientGetProfileCommand(). This function allows consumption data
to be requested from the archive for one or more intervals.

The inputs for this function include:

 A value indicating whether the units delivered or units received (by the utility
company) are being requested (see Section 8.6.1)

 An end-time (as a UTC time) - the most recent consumption data will be
reported which has an end-time equal to or earlier than this end-time (a
specified end-time of zero will result in the most recent consumption data)

 The number of consumption intervals to report (this number will be reported
only if data for sufficient intervals is available) - the end-time rule, specified
above, will be applied to all the reported intervals

On receiving the request, the event E_CLD_SM_SERVER_RECEIVED_COMMAND
containing the command E_CLD_SM_GET_PROFILE is generated on the server,
causing the callback function on the device to be invoked (for a Metering Device, this
is the callback function registered through eSE_RegisterEspMeterEndPoint() or
eSE_RegisterMeterEndPoint()). The callback function only needs to be concerned
with this event if the archive data needs to be modified before the ZCL automatically
sends the requested data in a ‘Get Profile’ response. The response indicates the
number of consumption intervals reported and contains the consumption data for
these intervals, as well as the end-time of the most recent interval reported.

On receiving the response, the event E_CLD_SM_CLIENT_RECEIVED_COMMAND
containing the command E_CLD_SM_GET_PROFILE_RESPONSE is generated on
the requesting client, causing the callback function on the device to be invoked (for an
IPD, this is the callback function registered through eSE_RegisterIPDEndPoint()).
The callback function should extract the requested data from the event using the
function u32SM_GetReceivedProfileData() in order to process or store the data. This
function should be called for each consumption interval reported in the event - the

Note: The current time can be obtained by the
application using the function u32ZCL_GetUTCTime(),
described in the ZCL User Guide (JN-UG-3077).
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 189

Chapter 8
Simple Metering Cluster

code fragment below illustrates repeated calls to the function until all the reported data
has been obtained:

for (i =0 ;i <
sGetProfileResponseCommand.u8NumberOfPeriodsDelivered; i++)

{

//Read data from event

X(i) = u32SM_GetReceivedProfileData(tsSM_GetProfileResponseCommand
*psSMGetProfileResponseCommand)

}

Alternatively, the function can be called repeatedly until it returns 0xFFFFFFFF, which
indicates that there is no more data to be extracted from the event.
190 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
8.7 Simple Metering Events

The Simple Metering cluster has its own events that are handled through the callback
mechanism outlined in Section 4.7 (and fully detailed in the ZCL User Guide
(JN-UG-3077)). If a device uses the Simple Metering cluster then Simple Metering
event handling must be included in the callback function for the associated endpoint,
where this callback function is registered through the relevant endpoint registration
function (for example, through eSE_RegisterMeterEndPoint() for a standalone
Metering Device). The relevant callback function will then be invoked when a Simple
Metering event occurs.

For a Simple Metering event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to a
tsSM_CallBackMessage structure which contains the Simple Metering parameters:

typedef struct

{

 teSM_CallBackEventType eEventType;

 uint8 u8CommandId;

 union

 {

 tsSM_GetProfileResponseCommand sGetProfileResponseCommand;

 tsSM_RequestFastPollResponseCommand sRequestFastPollResponseCommand;

 tsSM_GetProfileRequestCommand sGetProfileCommand;

 tsSM_RequestMirrorResponseCommand sRequestMirrorResponseCommand;

 tsSM_MirrorRemovedResponseCommand sMirrorRemovedResponseCommand;

 tsSM_RequestFastPollCommand sRequestFastPollCommand;

 tsSM_Error sError;

 }uMessage;

}tsSM_CallBackMessage;

Information on the elements of the above structure is provided below.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 191

Chapter 8
Simple Metering Cluster

8.7.1 Event Types

The eEventType field of the tsSM_CallBackMessage structure specifies the type
of Simple Metering event that has been generated. These event types are enumerated
in the teSM_CallBackEventType structure (see Section 8.10.7) and are listed in
the table below.

The possible command types for the above event types are listed in Section 8.7.2.

8.7.2 Command Types

For each event type listed in Section 8.7.1, one of a number of command types could
have been received. The relevant command type is specified through the
u8CommandId field of the tsSM_CallBackMessage structure. The possible
command types for each event type are detailed below.

E_CLD_SM_CLIENT_RECEIVED_COMMAND

The E_CLD_SM_CLIENT_RECEIVED_COMMAND event is generated when a
command has been received on a cluster client. The possible command types for this
event type are listed in the table below, which gives the enumerations and the
associated uMessage union elements in the tsSM_CallBackMessage structure:

The above command enumerations are fully described in Section 8.10.8.

Event Type Enumeration Description

E_CLD_SM_CLIENT_RECEIVED_COMMAND Generated when a command has been
received on a cluster client

E_CLD_SM_SERVER_RECEIVED_COMMAND Generated when a command has been
received on the cluster server

E_CLD_SM_FAST_POLLING_TIMER_EXPIRED Generated on the cluster server at the end of
a fast polling episode (for future use)

u8CommandId Enumeration uMessage Union Element

E_CLD_SM_GET_PROFILE_RESPONSE sGetProfileResponseCommand

E_CLD_SM_REQUEST_MIRROR sRequestMirrorAdd

E_CLD_SM_REMOVE_MIRROR sRequestMirrorRemove

E_CLD_SM_REQUEST_FAST_POLL_MODE_
RESPONSE

sRequestFastPollResponseCommand
(for future use)

E_CLD_SM_CLIENT_ERROR sError
192 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
E_CLD_SM_SERVER_RECEIVED_COMMAND

The E_CLD_SM_SERVER_RECEIVED_COMMAND event is generated when a
command has been received on the cluster server. The possible command types for
this event type are listed in the table below, which gives the enumerations and the
associated uMessage union elements in the tsSM_CallBackMessage structure:

The above command enumerations are fully described in Section 8.10.9.

E_CLD_SM_FAST_POLLING_TIMER_EXPIRED

The E_CLD_SM_FAST_POLLING_TIMER_EXPIRED event is generated on the
cluster server at the end of a fast polling episode. It has no associated data structure.
Fast polling is not certifiable in SE 1.1.1 or earlier and this event is reserved for future
use.

8.8 Functions

The following Simple Metering cluster functions are provided in the SE API:

Function Page

eSE_SMCreate 194

eSE_ReadMeterAttributes 196

eSE_HandleReadMeterAttributesResponse 198

eSM_ServerRequestMirrorCommand 199

eSM_ServerRemoveMirrorCommand 201

eSM_CreateMirror 202

eSM_RemoveMirror 203

eSM_GetFreeMirrorEndPoint 204

eSM_IsMirrorSourceAddressValid 205

eSM_ServerUpdateConsumption 206

eSM_ClientGetProfileCommand 207

u32SM_GetReceivedProfileData 209

u8CommandId Enumeration uMessage Union Element

E_CLD_SM_GET_PROFILE sGetProfileCommand

E_CLD_SM_REQUEST_MIRROR_RESPONSE sRequestMirrorResponseCommand

E_CLD_SM_MIRROR_REMOVED sMirrorRemovedResponseCommand

E_CLD_SM_REQUEST_FAST_POLL_MODE sRequestFastPollCommand (for future use)

E_CLD_SM_SERVER_ERROR sError
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 193

Chapter 8
Simple Metering Cluster

eSE_SMCreate

Description

This function creates an instance of the Simple Metering cluster on an endpoint. The
cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Simple Metering cluster instance
on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions. For more details of
creating cluster instances on custom endpoints, refer to Appendix B.

When used, this function must be the first Simple Metering cluster function called in
the application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate be the total number of attributes supported by the Simple Metering
cluster, which can be obtained by using the macro
CLD_SM_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8AppSMClusterAttributeControlBits[CLD_SM_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

teZCL_Status eSE_SMCreate(
uint8 u8Endpoint,
bool_t bIsServer,
uint8 *pu8AttributeControlBits,
tsZCL_ClusterInstance *psClusterInstance,
tsZCL_ClusterDefinition *psClusterDefinition,
tsSM_CustomStruct *psCustomDataStruct,
void *pvEndPointSharedStructPtr);

Note: This function must not be called for an endpoint on
which a standard ZigBee device (e.g. IPD) will be used. In this
case, the device and its supported clusters must be registered
on the endpoint using the relevant device registration function
from those described in Chapter 12.
194 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Parameters

u8Endpoint Number of local endpoint on which the cluster instance
is to be created, in the range 1 to 240.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server

 FALSE - client

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see the ZCL User Guide
(JN-UG-3077)). This structure will be updated by the
function by initialising individual structure fields.

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see the ZCL User Guide (JN-UG-3077)). In
this case, this structure must contain the details of the
Simple Metering cluster. This parameter can refer to a
pre-filled structure called sCLD_SimpleMetering
which is provided in the SimpleMetering.h file.

psCustomDataStructure Pointer to structure which contains custom data for the
Simple Metering cluster. This structure is used for
internal data storage and also contains data relating to
a received command/message. No knowledge of the
fields of this structure is required.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_SimpleMetering which
defines the attributes of Simple Metering cluster. The
function will initialise the attributes with default values.

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 195

Chapter 8
Simple Metering Cluster

eSE_ReadMeterAttributes

Description

This function can be used to send a ‘read attributes’ request to the Simple Metering
cluster on a remote endpoint. The function requests all Simple Metering attributes to
be read - alternatively, the function eZCL_SendReadAttributesRequest() can be
used if only specific attributes are required. Note that read access to cluster attributes
on the remote node (server) and local node (client) must be enabled at compile-time,
as described in Section 3.5.1.

You must specify the endpoint on the local node from which the request is to be sent.
This is also used to identify the instance of the local shared device structure which
holds the relevant attributes. The obtained attribute values will be written to this
shared structure by the function.

You must also specify the address of the destination node and the destination
endpoint number. It is possible to use this function to send a request to bound
endpoints or to a group of endpoints on remote nodes - in the latter case, a group
address must be specified. Note that when sending requests to multiple endpoints
through a single call to this function, multiple responses will subsequently be
received from the remote endpoints.

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request. The TSN in the response will be set to
match the TSN in the request, allowing an incoming response to be paired with a
request. This is useful when sending more than one request to the same destination
endpoint.

Following the first response to this function call, your application should call the
function eSE_HandleReadAttributesResponse() to ensure that all the Simple
Metering attributes are received from the remote endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which
the request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent. Note that this parameter
is ignored when sending to address types
E_ZCL_AM_BOUND and
E_ZCL_AM_GROUP

psDestinationAddress Pointer to a structure containing the address
of the remote node to which the request will be
sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

teZCL_Status eSE_ReadMeterAttributes(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
196 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_ATTRIBUTE_WO

E_ZCL_ERR_ATTRIBUTES_ACCESS

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 197

Chapter 8
Simple Metering Cluster

eSE_HandleReadMeterAttributesResponse

Description

This function should be called after eSE_ReadMeterAttributes(). The function
examines the response to a ‘read attributes’ request for the Simple Metering cluster
and determines whether the response is complete - that is, whether it contains all the
Simple Metering attributes (the response may be incomplete if the returned data is
too large to fit into a single APDU). If the response is not complete, the function will
re-send ‘read attributes’ requests until all attribute values have been obtained. Any
further attribute values obtained will be written to the local shared device structure
containing the attributes.

This function call should normally be included in the user-defined callback function
that is invoked when the event E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE is
generated. This is the callback function which is specified when the (requesting)
endpoint is registered using the appropriate endpoint registration function from
Chapter 12. The callback function must pass the generated event into
eSE_HandleReadAttributesResponse().

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request/response.

Parameters

psEvent Pointer to the generated event
E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request/
response

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_ATTRIBUTE_WO

E_ZCL_ERR_ATTRIBUTES_ACCESS

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

teSE_Status eSE_HandleReadAttributesResponse(
tsZCL_CallBackEvent *psEvent,
uint8 *puTransactionSequenceNumber);
198 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSM_ServerRequestMirrorCommand

Description

This function can be used by a Metering Device to request a mirror on the ESP, for
the central storage of its metering data. A mirror is useful for a Metering Device which
sleeps, in order to allow access to its metering data while the device is sleeping.

The function sends an ‘Add Mirror’ request to the ESP. The address of the ESP
device must be specified as well as the endpoint that will receive and process the
request - this is the main endpoint on which the ESP is registered on the Co-
ordinator. If successful, the request will result in the allocation of a mirror endpoint
(on the ESP) to the Metering Device.

eSM_ServerRequestMirrorCommand() is a non-blocking function and so returns
immediately after the request has been sent. The application must then wait for a
response, indicated by the event E_CLD_SM_SERVER_RECEIVED_COMMAND
containing the command E_CLD_SM_REQUEST_MIRROR_RESPONSE. If a
mirror was successfully created, the number of the allocated mirror endpoint on the
ESP is included in the event.

Mirroring and mirror set-up are fully described in Section 8.5.

 Parameters

u8SourceEndpoint Number of local endpoint through which request will
be sent

u8DestinationEndpoint Number of ESP endpoint to which request will be
sent (main endpoint of ESP)

psDestinationAddress Pointer to a structure containing the address of the
ESP device (to which the request will be sent)

teZCL_Status eSM_ServerRequestMirrorCommand(
uint8 u8SourceEndpoint,
uint8 u8DestinationEndpoint,
tsZCL_Address *psDestinationAddress);

Note: Before using this function to send an ‘Add Mirror’
request, the Metering Device application should check
whether the ESP is currently accepting these requests by
calling the function eZCL_SendReadAttributesRequest() to
obtain the value of the u8PhysicalEnvironment attribute
of the Basic cluster on the ESP. This attribute value will be
non-zero if ‘Add Mirror’ requests are being accepted.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 199

Chapter 8
Simple Metering Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_ZTRANSMIT_FAIL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_EP_RANGE
200 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSM_ServerRemoveMirrorCommand

Description

This function can be used on a Metering Device to request the removal of the
corresponding mirror on the ESP. The function should only be used to remove a
mirror that has been previously set up by the Metering Device application using the
function eSM_ServerRequestMirrorCommand().

The function sends a ‘Remove Mirror’ request to the ESP. The address of the ESP
must be specified as well as the endpoint number of the mirror to be removed.

This is a non-blocking function and so returns immediately after the request has been
sent. The application must then wait for a response.

 If the request was successful, a response will be received from the ESP resulting in the
generation of the event E_CLD_SM_SERVER_RECEIVED_COMMAND containing the
command E_CLD_SM_MIRROR_REMOVED

 If the request was unsuccessful, a ZCL default response will be received from the ESP
to indicate that the request was not authorised (E_ZCL_CMDS_NOT_AUTHORIZED)

Mirror removal is fully described in Section 8.5.5.

 Parameters

u8SourceEndpoint Number of local endpoint through which request will
be sent

u8DestinationEndpoint Number of ESP endpoint which contains the mirror
to be removed

psDestinationAddress Pointer to a structure containing the address of the
ESP device (to which the request will be sent)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_ZTRANSMIT_FAIL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_EP_RANGE

teZCL_Status eSM_ServerRemoveMirrorCommand(
 uint8 u8SourceEndpoint,
 uint8 u8DestinationEndpoint,
 tsZCL_Address *psDestinationAddress);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 201

Chapter 8
Simple Metering Cluster

eSM_CreateMirror

Description

This function can be used on the mirroring server (ESP) to create a mirror with the
specified endpoint number for the Metering Device with the specified IEEE address.
The endpoint number must be within the valid range for mirror endpoints on the ESP.

An error will be returned if there is no free mirror endpoint on which to create a mirror.

The function is normally used by an ESP application following a device reset, in order
to recreate mirrors that were lost during the reset. This recovery assumes that the
relevant IEEE addresses (for Metering Devices) associated with the mirror endpoints
can be retrieved from non-volatile memory, where they were saved before the reset.

Parameters

u8MirrorEndpoint Number of endpoint on which mirror will be created
(must be within valid range for mirror endpoints)

u64RemoteIeeeAddress IEEE address of Metering Device to be mirrored

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_RANGE

E_CLD_SM_STATUS_EP_NOT_AVAILABLE

teSM_Status eSM_CreateMirror(
uint8 u8MirrorEndpoint,
uint64 u64RemoteIeeeAddress);
202 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSM_RemoveMirror

Description

This function can be used on the mirroring server (ESP) to remove the mirror with the
specified endpoint number for the Metering Device with the specified IEEE address.
The endpoint will then become free to be re-allocated for another mirror.

An error will be returned if the specified mirror endpoint cannot be found.

Parameters

u8MirrorEndpoint Number of endpoint which hosts mirror to be
removed (must be within valid range for mirror
endpoints)

u64RemoteIeeeAddress IEEE address of mirrored Metering Device

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_RANGE

E_CLD_SM_STATUS_EP_NOT_AVAILABLE

E_ZCL_FAIL

teSM_Status eSM_RemoveMirror(
uint8 u8MirrorEndpoint,
uint64 u64RemoteIeeeAddress);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 203

Chapter 8
Simple Metering Cluster

eSM_GetFreeMirrorEndPoint

Description

This function can be used on the mirroring server (ESP) to obtain the number of the
next available mirror endpoint. If there are no free mirror endpoints, the function sets
the returned endpoint number to 0xFFFF.

The function is normally used in the ESP callback function to check the availability of
mirror endpoints before updating the u8PhysicalEnvironment attribute of the
Basic cluster (this attribute is set to zero if no more mirror endpoints are available).

Use of this function is described in Section 8.5.1.

Parameters

pu16FreeEP Pointer to location to receive next free endpoint
number

Returns

E_ZCL_SUCCESS

teZCL_Status eSM_GetFreeMirrorEndPoint(
uint16 *pu16FreeEP);
204 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSM_IsMirrorSourceAddressValid

Description

This function can be used on the ESP to handle mirroring data reported from a
Metering Device. If mirroring is enabled, the function should be included in the
callback function on the ESP.

When the ESP receives mirroring data from a Metering Device, the event
E_ZCL_CBET_ATTRIBUTE_REPORT_MIRROR is generated, causing the callback
function to be invoked. The callback function should call this function to deal with the
event.

The function first checks that the data comes from a Metering Device which has a
mirror on the ESP (the source IEEE address of the data is used for this check) and
then updates the event status accordingly:

sZCL_CallBackEvent.uMessage.sReportAttributeMirror.eStatus

If the source device is valid then this status is set to E_ZCL_ATTR_REPORT_OK
and the metering data is automatically stored on the relevant mirror endpoint.
Otherwise, a ZCL default response is returned to the Metering Device to indicate that
mirroring is not authorised for this device (E_ZCL_CMDS_NOT_AUTHORIZED).

The mirroring of metering data is fully described in Section 8.5.3.

Parameters

psZCL_ReportAttributeMirror Pointer to sReportAttributeMirror element of
the event

Returns

E_ZCL_SUCCESS

eSM_IsMirrorSourceAddressValid(
 tsZCL_ReportAttributeMirror *psZCL_ReportAttributeMirror);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 205

Chapter 8
Simple Metering Cluster

eSM_ServerUpdateConsumption

Description

This function can be used on a Simple Metering cluster server (with the ‘Get Profile’
feature enabled) to add a new entry to the circular buffer used to store historical
consumption data. The buffer stores a sequence of entries containing consumption
data for consecutive time intervals, identified by their end-times.

Before this function is called, the application must update one or both of the following
Simple Metering cluster attributes with the relevant consumption(s) over the last time
interval (since the last readings were made):

 u24CurrentPartialProfileIntervalValueDelivered

 u24CurrentPartialProfileIntervalValueReceived

An attribute only needs to be updated if the corresponding consumption has been
implemented.

The function takes the current time (UTC time) as an input and adds a buffer entry
containing the consumption measurements together with the supplied UTC time,
which is saved as the end-time of the interval

The entry is stored as a tsSEGetProfile structure, described in Section 8.11.5.

The buffer can contain a limited number of entries, determined at compile-time (see
Section 8.12), and operates on a FIFO basis so that a new entry added to a full buffer
will over-write the oldest entry.

The function should be called periodically by the application. The period must match
the value to which the Simple Metering eProfileIntervalPeriod attribute has
been set (see Section 8.2). Standard periods, ranging from 2.5 minutes to one day,
are provided as a set of enumerations (see Section 8.10.10).

 Parameters

u8SourceEndPointId Number of local endpoint on which the Simple
Metering cluster server operates

u32UtcTime Current time (as UTC time which can be obtained
using u32ZCL_GetUTCTime())

Returns

E_ZCL_SUCCESS

teZCL_Status eSM_ServerUpdateConsumption(
uint8 u8SourceEndPointId,
uint32 u32UtcTime);
206 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSM_ClientGetProfileCommand

Description

This function can be used on a Simple Metering cluster client (with the ‘Get Profile’
feature enabled) to send a ‘Get Profile’ request to the Simple Metering cluster server
in order to retrieve historical consumption data.

The server contains a circular buffer which stores a sequence of data entries
containing consumption data for consecutive time intervals, identified by their end-
times. This function can request a number of entries from the buffer, containing the
consumption data over multiple intervals.

The function parameters include:

 The number of buffer entries (corresponding to consumption intervals) requested

 The most recent end-time for which a buffer entry will be reported - the most recent
consumption data will be reported which has an end-time equal to or earlier than this
end-time (a specified end-time of zero will result in the most recent consumption data)

 A value indicating whether the units delivered or units received are being requested

This is a non-blocking function and so returns immediately after the request has been
sent. The application must then wait for a response, which is accessed using the
function u32SM_GetReceivedProfileData().

 Parameters

u8SourceEndpoint Number of local endpoint through which request will
be sent

u8DestinationEndpoint Number of endpoint to which request will be sent on
the destination device

psDestinationAddress Pointer to a structure containing the address of the
destination device

u8IntervalChannel Required consumption data - received or delivered:
E_CLD_SM_CONSUMPTION_RECEIVED
E_CLD_SM_CONSUMPTION_DELIVERED

u32EndTime A UTC time representing the most recent interval
end-time for which data will be reported (a zero value
means report data for the most recent interval)

u8NumberOfPeriods Number of consumption intervals to be reported

teZCL_Status eSM_ClientGetProfileCommand(
uint8 u8SourceEndpoint,
uint8 u8DestinationEndpoint,
tsZCL_Address *psDestinationAddress,
uint8 u8IntervalChannel,
uint32 u32EndTime,
uint8 u8NumberOfPeriods);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 207

Chapter 8
Simple Metering Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_ZTRANSMIT_FAIL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_EP_RANGE
208 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
u32SM_GetReceivedProfileData

Description

This function can be used on a Simple Metering cluster client to obtain the
consumption data received in a ‘Get Profile’ response from the Simple Metering
cluster server (and previously requested by the client through a call to
eSM_ClientGetProfileCommand()).

When a ‘Get Profile’ response from the server arrives, the event
E_CLD_SM_CLIENT_RECEIVED_COMMAND containing the command
E_CLD_SM_GET_PROFILE_RESPONSE is generated on the client, causing the
callback function on the device to be invoked (for an IPD, this is the callback function
registered through eSE_RegisterIPDEndPoint()). The callback function should deal
with the response.

This function can be called within the callback function to extract consumption data
from the event. It is necessary to provide the function with a pointer to the response
within the event. The function will return the data corresponding to one consumption
interval on each call. Therefore, if the response contains data for multiple intervals,
the function must be called multiple times to extract all of this data - the number of
intervals contained in the response is also included in the response:

sSMCallBackMessage.uMessage.sGetProfileResponseCommand.u8NumberOfPeriodsDelivered

When there is no more data to be extracted from the event, the function will return
0xFFFFFFFF.

Parameters

psSMGetProfileResponseCommand Pointer to sGetProfileResponseCommand
element of the event

Returns

32-bit value corresponding to consumption data for one interval

0xFFFFFFFF indicates that there is no more data to be read from the event

uint32 u32SM_GetReceivedProfileData(
tsSM_GetProfileResponseCommand

 *psSMGetProfileResponseCommand);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 209

Chapter 8
Simple Metering Cluster

8.9 Return Codes

The Simple Metering cluster functions use the ZCL return codes defined in the ZCL
User Guide (JN-UG-3077).

8.10 Enumerations

8.10.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the
Simple Metering cluster.

typedef enum PACK

{

 /* Reading information attribute set attribute ID's (D.3.2.2.1) */

 E_CLD_SM_ATTR_ID_CURRENT_SUMMATION_DELIVERED = 0x0000,

 E_CLD_SM_ATTR_ID_CURRENT_SUMMATION_RECEIVED,

 E_CLD_SM_ATTR_ID_CURRENT_MAX_DEMAND_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_MAX_DEMAND_RECEIVED,

 E_CLD_SM_ATTR_ID_DFT_SUMMATION,

 E_CLD_SM_ATTR_ID_DAILY_FREEZE_TIME,

 E_CLD_SM_ATTR_ID_POWER_FACTOR,

 E_CLD_SM_ATTR_ID_READING_SNAPSHOT_TIME,

 E_CLD_SM_ATTR_ID_CURRENT_MAX_DEMAND_DELIVERED_TIME,

 E_CLD_SM_ATTR_ID_CURRENT_MAX_DEMAND_RECEIVED_TIME,

 E_CLD_SM_ATTR_ID_DEFAULT_UPDATE_PERIOD,

 E_CLD_SM_ATTR_ID_FAST_POLL_UPDATE_PERIOD,

 E_CLD_SM_ATTR_ID_CURRENT_BLOCK_PERIOD_CONSUMPTION_DELIVERED,

 E_CLD_SM_ATTR_ID_DAILY_CONSUMPTION_TARGET,

 E_CLD_SM_ATTR_ID_CURRENT_BLOCK,

 E_CLD_SM_ATTR_ID_PROFILE_INTERVAL_PERIOD,

 E_CLD_SM_ATTR_ID_INTERVAL_READ_REPORTING_PERIOD,

 E_CLD_SM_ATTR_ID_PRESET_READING_TIME,

 E_CLD_SM_ATTR_ID_VOLUME_PER_REPORT,

 E_CLD_SM_ATTR_ID_FLOW_RESTRICTION,

 E_CLD_SM_ATTR_ID_SUPPLY_STATUS,

 E_CLD_SM_ATTR_ID_CURRENT_INLET_ENERGY_CARRIER_SUMMATION,

 E_CLD_SM_ATTR_ID_CURRENT_OUTLET_ENERGY_CARRIER_SUMMATION,

 E_CLD_SM_ATTR_ID_INLET_TEMPERATURE,

 E_CLD_SM_ATTR_ID_OUTLET_TEMPERATURE,

Note: Some of the following enumerations correspond
to attributes that are not certifiable in SE 1.1.1
(07-5356-17) or earlier and are for future use (as
indicated in the attribute descriptions in Section 8.2).
210 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
 E_CLD_SM_ATTR_ID_CONTROL_TEMPERATURE,

 E_CLD_SM_ATTR_ID_CURRENT_INLET_ENERGY_CARRIER_DEMAND,

 E_CLD_SM_ATTR_ID_CURRENT_OUTLET_ENERGY_CARRIER_DEMAND,

 /* Time Of Use Information attribute attribute ID's set (D.3.2.2.2) */

 E_CLD_SM_ATTR_ID_CURRENT_TIER_1_SUMMATION_DELIVERED = 0x0100,

 E_CLD_SM_ATTR_ID_CURRENT_TIER_1_SUMMATION_RECEIVED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER_2_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER_2_SUMMATION_RECEIVED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER_15_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER_15_SUMMATION_RECEIVED,

 /* Meter status attribute set attribute ID's (D.3.2.2.3) */

 E_CLD_SM_ATTR_ID_STATUS = 0x0200,

 E_CLD_SM_ATTR_ID_REMAINING_BATTERY_LIFE,

 E_CLD_SM_ATTR_ID_HOURS_IN_OPERATION,

 E_CLD_SM_ATTR_ID_HOURS_IN_FAULT,

 /* Formatting attribute set attribute ID's (D.3.2.2.4) */

 E_CLD_SM_ATTR_ID_UNIT_OF_MEASURE = 0x0300,

 E_CLD_SM_ATTR_ID_MULTIPLIER,

 E_CLD_SM_ATTR_ID_DIVISOR,

 E_CLD_SM_ATTR_ID_SUMMATION_FORMATING,

 E_CLD_SM_ATTR_ID_DEMAND_FORMATING,

 E_CLD_SM_ATTR_ID_HISTORICAL_CONSUMPTION_FORMATTING,

 E_CLD_SM_ATTR_ID_METERING_DEVICE_TYPE,

 E_CLD_SM_ATTR_ID_SITE_ID,

 E_CLD_SM_ATTR_ID_METER_SERIAL_NUMBER,

 E_CLD_SM_ATTR_ID_ENERGY_CARRIER_UNIT_OF_MEASURE,

 E_CLD_SM_ATTR_ID_ENERGY_CARRIER_SUMMATION_FORMATTING,

 E_CLD_SM_ATTR_ID_ENERGY_CARRIER_DEMAND_FORMATTING,

 E_CLD_SM_ATTR_ID_TEMPERATURE_UNIT_OF_MEASURE,

 E_CLD_SM_ATTR_ID_TEMPERATURE_FORMATTING,

 /* ESP Historical Consumption set attribute ID's (D.3.2.2.5) */

 E_CLD_SM_ATTR_ID_INSTANTANEOUS_DEMAND = 0x0400,

 E_CLD_SM_ATTR_ID_CURRENT_DAY_CONSUMPTION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_DAY_CONSUMPTION_RECEIVED,

 E_CLD_SM_ATTR_ID_PREVIOUS_DAY_CONSUMPTION_DELIVERED,

 E_CLD_SM_ATTR_ID_PREVIOUS_DAY_CONSUMPTION_RECEIVED,

 E_CLD_SM_ATTR_ID_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_RECEIVED,

 E_CLD_SM_ATTR_ID_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_RECEIVED,

 E_CLD_SM_ATTR_ID_CURRENT_DAY_MAXIMUM_PRESSURE,

 E_CLD_SM_ATTR_ID_CURRENT_DAY_MINIMUM_PRESSURE,

 E_CLD_SM_ATTR_ID_PREVIOUS_DAY_MAXIMUM_PRESSURE,

 E_CLD_SM_ATTR_ID_PREVIOUS_DAY_MINIMUM_PRESSURE,
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 211

Chapter 8
Simple Metering Cluster

 E_CLD_SM_ATTR_ID_CURRENT_DAY_MAXIMUM_DEMAND,

 E_CLD_SM_ATTR_ID_PREVIOUS_DAY_MAXIMUM_DEMAND,

 E_CLD_SM_ATTR_ID_CURRENT_MONTH_MAXIMUM_DEMAND,

 E_CLD_SM_ATTR_ID_CURRENT_YEAR_MAXIMUM_DEMAND,

 E_CLD_SM_ATTR_ID_CURRENT_DAY_MAXIMUM_ENERGY_CARRIER_DEMAND,

 E_CLD_SM_ATTR_ID_PREVIOUS_DAY_MAXIMUM_ENERGY_CARRIER_DEMAND,

 E_CLD_SM_ATTR_ID_CURRENT_MONTH_MAXIMUM_ENERGY_CARRIER_DEMAND,

 E_CLD_SM_ATTR_ID_CURRENT_MONTH_MINIMUM_ENERGY_CARRIER_DEMAND,

 E_CLD_SM_ATTR_ID_CURRENT_YEAR_MAXIMUM_ENERGY_CARRIER_DEMAND,

 E_CLD_SM_ATTR_ID_CURRENT_YEAR_MINIMUM_ENERGY_CARRIER_DEMAND,

 /* Load Profile attribute set attribute ID's (D.3.2.2.6) */

 E_CLD_SM_ATTR_ID_MAX_NUMBER_OF_PERIODS_DELIVERED = 0x0500,

 /* Supply Limit attribute set attribute ID's (D.3.2.2.7) */

 E_CLD_SM_ATTR_ID_CURRENT_DEMAND_DELIVERED = 0x0600,

 E_CLD_SM_ATTR_ID_DEMAND_LIMIT,

 E_CLD_SM_ATTR_ID_DEMAND_INTEGRATION_PERIOD,

 E_CLD_SM_ATTR_ID_NUMBER_OF_DEMAND_SUBINTERVALS,

 /* Block Information Attribute set attribute ID's (D.3.2.2.8) */

 /* Block Information Attribute set: No Tier Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_NOTIER_BLOCK1_SUMMATION_DELIVERED = 0x0700,

 E_CLD_SM_ATTR_ID_CURRENT_NOTIER_BLOCK2_SUMMATION_DELIVERED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_NOTIER_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier1 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER1_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER1_BLOCK2_SUMMATION_DELIVERED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER1_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier2 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER2_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER2_BLOCK2_SUMMATION_DELIVERED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER2_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier5 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER3_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER3_BLOCK2_SUMMATION_DELIVERED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER3_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier4 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER4_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER4_BLOCK2_SUMMATION_DELIVERED,

 :
212 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
 E_CLD_SM_ATTR_ID_CURRENT_TIER4_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier5 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER5_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER5_BLOCK2_SUMMATION_DELIVERED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER5_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier6 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER6_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER6_BLOCK2_SUMMATION_DELIVERED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER6_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier8 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER7_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER7_BLOCK2_SUMMATION_DELIVERED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER7_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier8 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER8_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER8_BLOCK2_SUMMATION_DELIVERED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER8_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier9 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER9_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER9_BLOCK2_SUMMATION_DELIVERED,
 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER9_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier10 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER10_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER10_BLOCK2_SUMMATION_DELIVERED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER10_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier11 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER11_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER11_BLOCK2_SUMMATION_DELIVERED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER11_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier12 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER12_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER12_BLOCK2_SUMMATION_DELIVERED,

 :
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 213

Chapter 8
Simple Metering Cluster

 E_CLD_SM_ATTR_ID_CURRENT_TIER12_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier13 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER13_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER13_BLOCK2_SUMMATION_DELIVERED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER13_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier14 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER14_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER14_BLOCK2_SUMMATION_DELIVERED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER14_BLOCK16_SUMMATION_DELIVERED,

 /* Block Information Attribute set: Tier15 Block Set */

 E_CLD_SM_ATTR_ID_CURRENT_TIER15_BLOCK1_SUMMATION_DELIVERED,

 E_CLD_SM_ATTR_ID_CURRENT_TIER15_BLOCK2_SUMMATION_DELIVERED,

 :

 E_CLD_SM_ATTR_ID_CURRENT_TIER15_BLOCK16_SUMMATION_DELIVERED,

 /* Alarm Attribute set attribute ID's (D.3.2.2.9) */

 E_CLD_SM_ATTR_ID_GENERIC_ALARM_MASK = 0x0800,

 E_CLD_SM_ATTR_ID_ELECTRICITY_ALARM_MASK,

 E_CLD_SM_ATTR_ID_PRESSURE_ALARM_MASK,

 E_CLD_SM_ATTR_ID_WATER_SPECIFIC_ALARM_MASK,

 E_CLD_SM_ATTR_ID_HEAT_AND_COOLING_SPECIFIC_ALARM_MASK,

 E_CLD_SM_ATTR_ID_GAS_ALARM_MASK,

} teCLD_SM_SimpleMeteringAttributeID;

8.10.2 ‘Meter Status’ Enumerations

Enumerations for the u8MeterStatus element in the Simple Metering cluster
structure tsSE_SimpleMetering are provided as #defines.

The following enumerated masks can be used to set the meter status:

Enumeration Description

E_CLD_SM_METER_STATUS_CHECK_METER_MASK Non-fatal problem detected on meter

E_CLD_SM_METER_STATUS_LOW_BATTERY_MASK Battery level is low

E_CLD_SM_METER_STATUS_TAMPER_DETECT_MASK Detected tampering with device

E_CLD_SM_METER_STATUS_POWER_FAILURE_MASK Indicates power failure on device

E_CLD_SM_METER_STATUS_POWER_QUALITY_MASK Power anomaly detected

E_CLD_SM_METER_STATUS_LEAK_DETECT_MASK Detected leak (e.g. of gas or water)

E_CLD_SM_METER_STATUS_SERVICE_DISCONNECT_OPEN_MASK Service to premises disconnected

Table 21: ‘Meter Status’ Enumerated Masks
214 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
8.10.3 ‘Unit of Measure’ Enumerations

The following enumerations are used to set the teSE_UnitOfMeasure element in
the Simple Metering cluster structure tsSE_SimpleMetering. Separate sets of
enumerations are provided for binary and BCD (Binary Coded Decimal)
representations.

typedef enum PACK

{

 /* Binary values */

 E_CLD_SM_UOM_KILO_WATTS = 0x00,

 E_CLD_SM_UOM_CUBIC_METER,

 E_CLD_SM_UOM_CUBIC_FEET,

 E_CLD_SM_UOM_100_CUBIC_FEET, /* ccf & ccf/h */

 E_CLD_SM_UOM_US_GALLON, /* USG & USG/h */

 E_CLD_SM_UOM_IMPERIAL_GALLON, /* IMPG & IMPG/h */

 E_CLD_SM_UOM_BTU, /* BTU & BTU/h */

 E_CLD_SM_UOM_LITERS, /* Liters & Liters/h */

 E_CLD_SM_UOM_KPA_GAUGE,

 E_CLD_SM_UOM_KPA_ABSOLUTE,

 /* BCD values */

 E_CLD_SM_UOM_KILO_WATTS_BCD = 0x80,

 E_CLD_SM_UOM_CUBIC_METER_BCD,

 E_CLD_SM_UOM_CUBIC_FEET_BCD,

 E_CLD_SM_UOM_100_CUBIC_FEET_BCD, /* ccf & ccf/h */

 E_CLD_SM_UOM_US_GALLON_BCD, /* USG & USG/h */

 E_CLD_SM_UOM_IMPERIAL_GALLON_BCD, /* IMPG & IMPG/h */

 E_CLD_SM_UOM_BTU_BCD, /* BTU & BTU/h */

 E_CLD_SM_UOM_LITERS_BCD, /* Liters & Liters/h */

 E_CLD_SM_UOM_KPA_GAUGE_BCD,

 E_CLD_SM_UOM_KPA_ABSOLUTE_BCD

} teCLD_SM_UnitOfMeasure;

The above enumerations are detailed in the table below.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 215

Chapter 8
Simple Metering Cluster

Enumeration Description

Instantaneous Summation

Binary Values

E_CLD_SM_UOM_KILO_WATTS kW (kiloWatts) kWh (kiloWatt-hours)

E_CLD_SM_UOM_CUBIC_METER m3/h (cubic metres per hour) m3 (cubic metres)

E_CLD_SM_UOM_CUBIC_FEET ft3/h (cubic feet per hour) ft3 (cubic feet)

E_CLD_SM_UOM_100_CUBIC_FEET ccf/h (100 cubic feet per hour) ccf (100 cubic feet)

E_CLD_SM_UOM_US_GALLON US gl/h (US Gallons per hour) US gl (US Gallons)

E_CLD_SM_UOM_IMPERIAL_GALLON Imperial gl/h (Imperial Gallons
per hour)

Imperial gl (Imperial Gallons)

E_CLD_SM_UOM_BTU BTU/h (British Thermal Units
per hour)

BTU (British Thermal Units)

E_CLD_SM_UOM_LITERS l/h (litres per hour) l (litres)

E_CLD_SM_UOM_KPA_GAUGE kPA (kiloPascal) gauge -

E_CLD_SM_UOM_KPA_ABSOLUTE kPA (kiloPascal) absolute -

BCD Values

E_CLD_SM_UOM_KILO_WATTS_BCD kW (kiloWatts) kWh (kiloWatt-hours)

E_CLD_SM_UOM_CUBIC_METER_BCD m3/h (cubic metres per hour) m3 (cubic metres)

E_CLD_SM_UOM_CUBIC_FEET_BCD ft3/h (cubic feet per hour) ft3 (cubic feet)

E_CLD_SM_UOM_100_CUBIC_FEET_BCD ccf/h (100 cubic feet per hour) ccf (100 cubic feet)

E_CLD_SM_UOM_US_GALLON_BCD US gl/h (US Gallons per hour) US gl (US Gallons)

E_CLD_SM_UOM_IMPERIAL_GALLON_BCD Imperial gl/h (Imperial Gallons
per hour)

Imperial gl (Imperial Gallons)

E_CLD_SM_UOM_BTU_BCD BTU/h (British Thermal Units
per hour)

BTU (British Thermal Units)

E_CLD_SM_UOM_LITERS_BCD l/h (litres per hour) l (litres)

E_CLD_SM_UOM_KPA_GAUGE_BCD kPA (kiloPascal) gauge -

E_CLD_SM_UOM_KPA_ABSOLUTE_BCD kPA (kiloPascal) absolute -

Table 22: Units of Measure Enumerations
216 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
8.10.4 ‘Summation Formatting’ Enumerations

Enumerations for use with the u8SummationFormatting element in the Simple
Metering cluster structure u8SummationFormatting are provided as #defines. The
enumerations allow the following formatting information to be extracted from the
u8SummationFormatting bitmap:

The following are examples of the use of the above enumerations.

Extracting the number of digits to the right of the decimal point:

u8BitsToRight = (u8SummationFormatting &
E_CLD_SM_FORMATTING_DIGITS_TO_RIGHT_OF_DP_MASK)
>> E_CLD_SM_FORMATTING_DIGITS_TO_RIGHT_OF_DP_LS_BIT

Extracting the number of digits to the left of the decimal point:

u8BitsToLeft = (u8SummationFormatting &
E_CLD_SM_FORMATTING_DIGITS_TO_LEFT_OF_DP_MASK)
>> E_CLD_SM_FORMATTING_DIGITS_TO_LEFT_OF_DP_LS_BIT

Determining whether leading zeros will be suppressed:

bSuppressZeros = !((u8SummationFormatting &
E_CLD_SM_FORMATTING_SUPPRESS_LEADING_ZEROS_BIT) == 0)

Enumeration Description

E_CLD_SM_FORMATTING_DIGITS_TO_RIGHT_OF_
DP_LS_BIT

Position of least significant bit of bit-field indicating
number of digits to right of decimal point

E_CLD_SM_FORMATTING_DIGITS_TO_RIGHT_OF_
DP_NUMBER_OF_BITS

Number of bits in bit-field indicating number of digits
to right of decimal point

E_CLD_SM_FORMATTING_DIGITS_TO_RIGHT_OF_
DP_MASK

Bit-mask used to extract number of digits to right of
decimal point

E_CLD_SM_FORMATTING_DIGITS_TO_LEFT_OF_
DP_LS_BIT

Position of least significant bit of bit-field indicating
number of digits to left of decimal point

E_CLD_SM_FORMATTING_DIGITS_TO_LEFT_OF_
DP_NUMBER_OF_BITS

Number of bits in bit-field indicating number of digits
to left of decimal point

E_CLD_SM_FORMATTING_DIGITS_TO_LEFT_OF_
DP_MASK

Bit-mask used to extract number of digits to left of
decimal point

E_CLD_SM_FORMATTING_SUPPRESS_LEADING_
ZEROS_BIT

Bit-mask used to extract bit indicating whether lead-
ing zeros will be suppressed

Table 23: ‘Summation Formatting’ Enumerations
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 217

Chapter 8
Simple Metering Cluster

8.10.5 ‘Supply Direction’ Enumerations

The following enumerations are used to indicate the direction of supply.

typedef enum PACK

{

 E_CLD_SM_CONSUMPTION_DELIVERED,

 E_CLD_SM_CONSUMPTION_RECEIVED

}teSM_IntervalChannel;

The above enumerations are detailed in the table below.

8.10.6 ‘Metering Device Type’ Enumerations

The following enumerations are used to set the eMeteringDeviceType element in
the Simple Metering cluster structure tsSE_SimpleMetering.

typedef enum PACK

{

 E_CLD_SM_MDT_ELECTRIC = 0x00,

 E_CLD_SM_MDT_GAS,

 E_CLD_SM_MDT_WATER,

 E_CLD_SM_MDT_THERMAL, /* Deprecated */

 E_CLD_SM_MDT_PRESSURE,

 E_CLD_SM_MDT_HEAT,

 E_CLD_SM_MDT_COOLING,

 E_CLD_SM_MDT_GAS_MIRRORED = 0x80,

 E_CLD_SM_MDT_WATER_MIRRORED,

 E_CLD_SM_MDT_THERMAL_MIRRORED,

 E_CLD_SM_MDT_PRESSURE_MIRRORED,

 E_CLD_SM_MDT_HEAT_MIRRORED,

 E_CLD_SM_MDT_COOLING_MIRRORED,

} teCLD_SM_MeteringDeviceType;

The above enumerations are detailed in the table below.

Enumeration Description

E_CLD_SM_CONSUMPTION_DELIVERED Specifies that the supply is from the customer to the utility company
(in cases where the customer generates their own supply)

E_CLD_SM_CONSUMPTION_RECEIVED Specifies that the supply is from the utility company to the customer

Table 24: ‘Supply Direction’ Enumerations
218 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
8.10.7 ‘Simple Metering Event’ Enumerations

The event types generated by the Simple Metering cluster are enumerated in the
teSM_CallBackEventType structure below:

typedef enum PACK

{

 E_CLD_SM_CLIENT_RECEIVED_COMMAND,

 E_CLD_SM_SERVER_RECEIVED_COMMAND,

 E_CLD_SM_FAST_POLLING_TIMER_EXPIRED

}teSM_CallBackEventType;

 The above event types are described in the table below.

Enumeration Description

E_CLD_SM_MDT_ELECTRIC Electric Meter

E_CLD_SM_MDT_GAS Gas Meter

E_CLD_SM_MDT_WATER Water Meter

E_CLD_SM_MDT_THERMAL Thermal Meter (deprecated)

E_CLD_SM_MDT_PRESSURE Pressure Meter

E_CLD_SM_MDT_HEAT Heat Meter

E_CLD_SM_MDT_COOLING Cooling Meter

E_CLD_SM_MDT_GAS_MIRRORED Mirrored Gas Meter

E_CLD_SM_MDT_WATER_MIRRORED Mirrored Water Meter

E_CLD_SM_MDT_THERMAL_MIRRORED Mirrored Thermal Meter (deprecated)

E_CLD_SM_MDT_PRESSURE_MIRRORED Mirrored Pressure Meter

E_CLD_SM_MDT_HEAT_MIRRORED Mirrored Heat Meter

E_CLD_SM_MDT_COOLING_MIRRORED Mirrored Cooling Meter

Table 25: ‘Metering Device Type’ Enumerations
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 219

Chapter 8
Simple Metering Cluster

8.10.8 ‘Server Command’ Enumerations

The comands issued by a Simple Metering cluster server and received by a client are
enumerated in the teSM_ClusterServerCommands structure below:

typedef enum PACK

{

 E_CLD_SM_GET_PROFILE_RESPONSE,

 E_CLD_SM_REQUEST_MIRROR,

 E_CLD_SM_REMOVE_MIRROR,

 E_CLD_SM_REQUEST_FAST_POLL_MODE_RESPONSE,

 E_CLD_SM_CLIENT_ERROR

}teSM_ClusterServerCommands;

Event Type Enumeration Description

E_CLD_SM_CLIENT_RECEIVED_COMMAND Generated on a cluster client when a command
is received from the server

E_CLD_SM_SERVER_RECEIVED_COMMAND Generated on the cluster server when a com-
mand is received from a client

E_CLD_SM_FAST_POLLING_TIMER_EXPIRED Generated on the cluster server when the end-
time of a fast polling episode is reached (for
future use)

Table 26: Simple Metering Event Types

Command Enumeration Description

E_CLD_SM_GET_PROFILE_RESPONSE Response to ‘Get Profile’ request - content of
response is contained in the structure
tsSM_GetProfileResponseCommand in the
event (see Section 8.11.9)

E_CLD_SM_REQUEST_MIRROR An ‘Add Mirror’ request

E_CLD_SM_REMOVE_MIRROR A ‘Remove Mirror’ request

E_CLD_SM_REQUEST_FAST_POLL_MODE_
RESPONSE

Response to ‘Fast Polling’ request (for future
use)

E_CLD_SM_CLIENT_ERROR Error condition - content of error is contained in
the structure tsSM_Error in the event (see
Section 8.11.10)

Table 27: Commands Issued by Server
220 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
8.10.9 ‘Client Command’ Enumerations

The comands issued by a Simple Metering cluster client and received by the server
are enumerated in the teSM_ClusterClientCommands structure below:

typedef enum PACK

{

 E_CLD_SM_GET_PROFILE,

 E_CLD_SM_REQUEST_MIRROR_RESPONSE,

 E_CLD_SM_MIRROR_REMOVED,

 E_CLD_SM_REQUEST_FAST_POLL_MODE,

 E_CLD_SM_SERVER_ERROR

}teSM_ClusterClientCommands;

Command Enumeration Description

E_CLD_SM_GET_PROFILE A ‘Get Profile’ request - content of request is
contained in the structure
tsSM_GetProfileRequestCommand in the
event (see Section 8.11.8)

E_CLD_SM_REQUEST_MIRROR_RESPONSE Response to ‘Add Mirror’ request - content of
response is contained in the structure
tsSM_RequestMirrorResponseCommand in
the event (see Section 8.11.6)

E_CLD_SM_MIRROR_REMOVED Response to ‘Remove Mirror’ request - content
of response is contained in the structure
tsSM_MirrorRemovedResponseCommand in
the event (see Section 8.11.7)

E_CLD_SM_REQUEST_FAST_POLL_MODE A ‘Fast Polling’ request (for future use)

E_CLD_SM_SERVER_ERROR Error condition - content of error is contained in
the structure tsSM_Error in the event (see
Section 8.11.10)

Table 28: Commands Issued by Client
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 221

Chapter 8
Simple Metering Cluster

8.10.10 ‘Consumption Interval’ Enumerations

The following enumerations define the possible time-intervals for the consumption
data captured in the ‘Get Profile’ feature.

typedef enum PACK

{

 E_CLD_SM_TIME_FRAME_DAILY,

 E_CLD_SM_TIME_FRAME_60MINS,

 E_CLD_SM_TIME_FRAME_30MINS,

 E_CLD_SM_TIME_FRAME_15MINS,

 E_CLD_SM_TIME_FRAME_10MINS,

 E_CLD_SM_TIME_FRAME_7_5MINS,

 E_CLD_SM_TIME_FRAME_5MINS,

 E_CLD_SM_TIME_FRAME_2_5MINS

}teSM_TimeFrame;

Time Frame Enumeration Time Interval

E_CLD_SM_TIME_FRAME_DAILY One day

E_CLD_SM_TIME_FRAME_60MINS 60 minutes

E_CLD_SM_TIME_FRAME_30MINS 30 minutes

E_CLD_SM_TIME_FRAME_15MINS 15 minutes

E_CLD_SM_TIME_FRAME_10MINS 10 minutes

E_CLD_SM_TIME_FRAME_7_5MINS 7.5 minutes

E_CLD_SM_TIME_FRAME_5MINS 5 minutes

E_CLD_SM_TIME_FRAME_2_5MINS 2.5 minutes

Table 29: ‘Consumption Interval’ Enumerations
222 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
8.10.11 ‘Simple Metering Status’ Enumerations

The following enumerations are used to report status in the Simple Metering cluster.

typedef enum PACK

{

 E_CLD_SM_STATUS_SUCCESS,

 E_CLD_SM_STATUS_UNDEFINED_INTERVAL_CHANNEL,

 E_CLD_SM_STATUS_INTERVAL_NOT_SUPPORTED,

 E_CLD_SM_STATUS_INVALID_END_TIME,

 E_CLD_SM_STATUS_MORE_PERIODS_REQUESTED_THAN_SUPPORTED,

 E_CLD_SM_STATUS_NO_INTERVALS_AVAILABLE_FOR_REQUESTED_TIME,

 E_CLD_SM_STATUS_EP_NOT_AVAILABLE

}teSM_Status;

Status Enumeration Description

E_CLD_SM_STATUS_SUCCESS Success

E_CLD_SM_STATUS_UNDEFINED_
INTERVAL_CHANNEL

Undefined eIntervalChannel value speci-
fied in ‘Get Profile’ request (see Section 8.11.8)

E_CLD_SM_STATUS_INTERVAL_
NOT_SUPPORTED

Unsupported consumption data specifed
through eIntervalChannel in ‘Get Profile’
request (see Section 8.11.8)

E_CLD_SM_STATUS_INVALID_END_TIME Invalid end-time specified in ‘Get Profile’
request (Section 8.11.8)

E_CLD_SM_STATUS_MORE_PERIODS_
REQUESTED_THAN_SUPPORTED

More periods specified in ‘Get Profile’ request
than can be returned

E_CLD_SM_STATUS_NO_INTERVALS_
AVAILABLE_FOR_REQUESTED_TIME

No intervals available for the end-time specified
in ‘Get Profile’ request

E_CLD_SM_STATUS_EP_NOT_AVAILABLE Specified endpoint not available

Table 30: Status Enumerations
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 223

Chapter 8
Simple Metering Cluster

8.11 Structures

8.11.1 tsSM_CallBackMessage

For a Simple Metering event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to the following
tsSM_CallBackMessage structure which contains the Simple Metering parameters:

typedef struct
{
teSM_CallBackEventType eEventType;
uint8 u8CommandId;

 union
 {
 tsSM_GetProfileResponseCommand sGetProfileResponseCommand;
 tsSM_RequestFastPollResponseCommand sRequestFastPollResponseCommand;
 tsSM_GetProfileRequestCommand sGetProfileCommand;
 tsSM_RequestMirrorResponseCommand sRequestMirrorResponseCommand;
 tsSM_MirrorRemovedResponseCommand sMirrorRemovedResponseCommand;
 tsSM_RequestFastPollCommand sRequestFastPollCommand;
 tsSM_Error sError;
 }uMessage;

}tsSM_CallBackMessage;

where:

 eEventType is the Simple Metering event type from those listed in Section
8.10.7

 u8CommandId is the identifier of the type of Simple Metering command
received. This field is only valid for the following Simple Metering event types:

 E_CLD_SM_CLIENT_RECEIVED_COMMAND - enumerated commands
are provided, as described in Section 8.10.8

 E_CLD_SM_SERVER_RECEIVED_COMMAND - enumerated commands
are provided, as described in Section 8.10.9

 uMessage is a union containing the command payload in one of the following
forms (depending on the command specified in the field u8CommandId):

 sGetProfileResponseCommand is a structure containing the payload of
a ‘Get Profile’ response - see Section 8.11.9

 sRequestFastPollResponseCommand is a structure containing the
payload of a ‘Fast Polling’ response (for future use)

 sGetProfileCommand is a structure containing the payload of a ‘Get
Profile’ request - see Section 8.11.8

 sRequestMirrorResponseCommand is a structure containing the
payload of an ‘Add Mirror’ response - see Section 8.11.6
224 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
 sMirrorRemovedResponseCommand is a structure containing the
payload of an ‘Remove Mirror’ response - see Section 8.11.7

 sRequestFastPollCommand is a structure containing the payload of an
‘Fast Polling’ request (for future use)

 sError is a structure containing the details of an error condition - see
Section 8.11.10

8.11.2 tsSE_Mirror

Details of the mirror endpoints on the ESP are kept in an array of structures of the type
tsSE_Mirror (one structure per endpoint) within the tsSE_EspMeterDevice
structure (see Section 13.2.1). The tsSE_Mirror structure is shown and described
below.

typedef struct

{

 /*Mirrored EndPoint*/

 tsZCL_EndPointDefinition sEndPoint;

 /*Mirror Requester address*/

 uint64u64SourceAddress;

 /*Mirror cluster instances*/

 tsSE_MirrorClusterInstances sSEMirrorClusterInstances;

 /*Event Address, Custom callback event, Custom callback message*/

 tsSM_CustomStruct sSMMirrorCustomDataStruct;

}tsSE_Mirror;

where:

 sEndPoint is a tsZCL_EndPointDefinition structure which contains
details of the endpoint corresponding to the mirror (for a description of this
structure, refer to the ZCL User Guide (JN-UG-3077))

 u64SourceAddress is the 64-bit IEEE address of the Metering Device to
which the mirror endpoint is assigned - a zero value indicates that the mirror
endpoint is not currently assigned to a device

Note: This structure is only for use by the profile
software and should not be modified by the application.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 225

Chapter 8
Simple Metering Cluster

 sSEMirrorClusterInstances is a tsSE_MirrorClusterInstances
structure (see Section 8.11.3) which contains information on the Basic and
Simple Metering cluster instances that are associated with the mirror endpoint

 sSMMirrorCustomDataStruct is a tsSM_CustomStruct structure (see
Section 8.11.4) which contains data relating to a received command/message
for the mirror endpoint

8.11.3 tsSE_MirrorClusterInstances

This structure contains information on the Basic and Simple Metering cluster
instances that are associated with a mirror endpoint.

typedef struct

{

 /*Basic Cluster Instance*/

 tsZCL_ClusterInstance sBasicCluster;

 /* SM Cluster Instance */

 tsZCL_ClusterInstance sSM_Cluster;

}tsSE_MirrorClusterInstances;

where:

 sBasicCluster is a tsZCL_ClusterInstance structure which contains
information on the Basic cluster instance associated with a mirror endpoint (for
a description of this structure, refer to the ZCL User Guide (JN-UG-3077))

 sSM_Cluster is a tsZCL_ClusterInstance structure which contains
information on the Simple Metering cluster instance associated with a mirror
endpoint (for a description of this structure, refer to the ZCL User Guide
(JN-UG-3077))

Note: This structure is only for use by the profile
software and should not be modified by the application.
226 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
8.11.4 tsSM_CustomStruct

This structure contains data relating to a command/message for a mirror endpoint.

typedef struct

{

 tsZCL_ReceiveEventAddress sReceiveEventAddress;

 tsZCL_CallBackEvent sSMCustomCallBackEvent;

 tsSM_CallBackMessage sSMCallBackMessage;

} tsSM_CustomStruct;

where:

 sReceiveEventAddress is a tsZCL_ReceiveEventAddress structure
which contains addressing information relating to a received mirroring
command/message (for a description of this structure, refer to the ZCL User
Guide (JN-UG-3077))

 sSMCustomCallBackEvent is a tsZCL_CallBackEvent structure which
contains the event that has been generated as a result of the received
command/message (for a description of this structure, refer to the ZCL User
Guide (JN-UG-3077))

 sSMCallBackMessage is a tsSM_CallBackMessage structure (see Section
8.11.1) which contains details of the event and the command/message that
caused the event

Note: This structure is only for use by the profile
software and should not be modified by the application.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 227

Chapter 8
Simple Metering Cluster

8.11.5 tsSEGetProfile

This structure is used to store historical consumption data when the ‘Get Profile’
feature is enabled. The data within the structure corresponds to a single consumption
interval.

typedef struct

{

 uint32 u32UtcTime;

 zuint24 u24ConsumptionReceived;

 zuint24 u24ConsumptionDelivered;

}tsSEGetProfile;

where:

 u32UtcTime is the end-time of the consumption interval (as a UTC time)

 u24ConsumptionReceived is the number of units received from the
customer during the interval (for customers who generate and sell their own
units)

 u24ConsumptionDelivered is the number of units delivered to the
customer during the interval

8.11.6 tsSM_RequestMirrorResponseCommand

This structure contains the details of an ‘Add Mirror’ response (from a cluster client).
It is included in the structure tsSM_CallBackMessage when an
E_CLD_SM_SERVER_RECEIVED_COMMAND event containing the command
E_CLD_SM_REQUEST_MIRROR_RESPONSE is generated on the cluster server.

typedef struct

{

 uint16 u16Endpoint;

}tsSM_RequestMirrorResponseCommand;

where u16Endpoint is the number of the endpoint on which the mirror was
successfully added or takes the value 0xFFFF if the request failed because no free
endpoint was available for the mirror.
228 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
8.11.7 tsSM_MirrorRemovedResponseCommand

This structure contains the details of a ‘Remove Mirror’ response (from a cluster
client). It is included in the structure tsSM_CallBackMessage when an
E_CLD_SM_SERVER_RECEIVED_COMMAND event containing the command
E_CLD_SM_MIRROR_REMOVED is generated on the cluster server.

typedef struct

{

 uint16 u16Endpoint;

}tsSM_MirrorRemovedResponseCommand;

where u16Endpoint is the number of the endpoint from which the mirror was
successfully removed, or takes the value 0xFFFF if the remove request failed.

8.11.8 tsSM_GetProfileRequestCommand

This stucture contains the details of a ‘Get Profile’ request (from a cluster client). It is
included in the structure tsSM_CallBackMessage when an
E_CLD_SM_SERVER_RECEIVED_COMMAND event containing the command
E_CLD_SM_GET_PROFILE is generated on the cluster server.

typedef struct

{

 teSM_IntervalChannel eIntervalChannel;

 uint8 u8NumberOfPeriods;

 uint8 u8SourceEndPoint;

 uint8 u8DestinationEndPoint;

 uint32 u32EndTime;

 tsZCL_Address sSourceAddress;

}tsSM_GetProfileRequestCommand;

where:

 eIntervalChannel is a value indicating the required consumption data:

 E_CLD_SM_CONSUMPTION_RECEIVED - units from customer

 E_CLD_SM_CONSUMPTION_DELIVERED - units to customer

 u8NumberOfPeriods is the number of consumption intervals for which data is
being requested

 u8SourceEndPoint is the number of the source endpoint of the request on
the client

 u8DestinationEndPoint is the number of the destination endpoint of the
request on the server

 u32EndTime is the end-time for which consumption data is being requested -
the most recent consumption data will be reported which has an end-time equal
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 229

Chapter 8
Simple Metering Cluster

to or earlier than this end-time (a zero value will result in the most recent
consumption data)

 sSourceAddress is a structure containing the source address of the request -
that is, the address of the requesting client (the structure is described in the
ZCL User Guide (JN-UG-3077))

8.11.9 tsSM_GetProfileResponseCommand

This stucture contains the details of a ‘Get Profile’ response (from the cluster server).
It is included in the structure tsSM_CallBackMessage when an
E_CLD_SM_CLIENT_RECEIVED_COMMAND event containing the command
E_CLD_SM_GET_PROFILE_RESPONSE is generated on the cluster server.

typedef struct

{

 uint32 u32Endtime;

 teSM_Status eStatus;

 teSM_TimeFrame u8ProfileIntervalPeriod;

 uint8 u8NumberOfPeriodsDelivered;

 zuint24 *pau24Intervals;

}tsSM_GetProfileResponseCommand;

where:

 u32Endtime is the end-time of the consumption data that is being reported, as
a UTC time

 eStatus is the status of the response, represented by one of the enumerated
values listed in Section 8.10.11

 u8ProfileIntervalPeriod is the time-interval (consumption interval) over
which each set of consumption data is collected - one of the standard
enumerated values listed in Section 8.10.10

 u8NumberOfPeriodsDelivered is the number of consumption intervals
being reported

 pau24Intervals is a pointer to the consumption data being reported
230 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
8.11.10 tsSM_Error

This stucture contains the details of an error response (from cluster server or client).
It is included in the structure tsSM_CallBackMessage when an
E_CLD_SM_SERVER_RECEIVED_COMMAND event is generated containing the
command E_CLD_SM_SERVER_ERROR on a client or
E_CLD_SM_CLIENT_ERROR on the server.

typedef struct

{

 uint8 u8Endpoint;

 uint8 u8Status;

}tsSM_Error;

where

 u8Endpoint is the number of the endpoint from which the error is reported

 u8Status is a value representing the nature of the error
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 231

Chapter 8
Simple Metering Cluster

8.12 Compile-Time Options

This section describes the compile-time options that may be enabled in the
zcl_options.h file of an application that uses the Simple Metering cluster.

The Simple Metering cluster is enabled by defining CLD_SIMPLE_METERING.

Optional Attributes

The optional attributes for the Simple Metering cluster are enabled/disabled by
defining:

 For optional attributes from ‘Reading Information’ attribute set:

 CLD_SM_ATTR_CURRENT_SUMMATION_RECEIVED

 CLD_SM_ATTR_CURRENT_MAX_DEMAND_DELIVERED

 CLD_SM_ATTR_CURRENT_MAX_DEMAND_RECEIVED

 CLD_SM_ATTR_DFT_SUMMATION

 CLD_SM_ATTR_DAILY_FREEZE_TIME

 CLD_SM_ATTR_POWER_FACTOR

 CLD_SM_ATTR_READING_SNAPSHOT_TIME

 CLD_SM_ATTR_CURRENT_MAX_DEMAND_DELIVERED_TIME

 CLD_SM_ATTR_CURRENT_MAX_DEMAND_RECEIVED_TIME

 For optional attributes from ‘Time-Of-Use (TOU) Information’ attribute set:

 CLD_SM_ATTR_CURRENT_TIER_1_SUMMATION_DELIVERED

 CLD_SM_ATTR_CURRENT_TIER_1_SUMMATION_RECEIVED

 CLD_SM_ATTR_CURRENT_TIER_2_SUMMATION_DELIVERED

 CLD_SM_ATTR_CURRENT_TIER_2_SUMMATION_RECEIVED

 CLD_SM_ATTR_CURRENT_TIER_3_SUMMATION_DELIVERED

 CLD_SM_ATTR_CURRENT_TIER_3_SUMMATION_RECEIVED

 CLD_SM_ATTR_CURRENT_TIER_4_SUMMATION_DELIVERED

 CLD_SM_ATTR_CURRENT_TIER_4_SUMMATION_RECEIVED

 CLD_SM_ATTR_CURRENT_TIER_5_SUMMATION_DELIVERED

 CLD_SM_ATTR_CURRENT_TIER_5_SUMMATION_RECEIVED

 CLD_SM_ATTR_CURRENT_TIER_6_SUMMATION_DELIVERED

 CLD_SM_ATTR_CURRENT_TIER_6_SUMMATION_RECEIVED

 For optional attributes from ‘Block Information’ attribute set:

 CLD_SM_ATTR_NO_TIER_BLOCK_CURRENT_SUMMATION_DELIVERED_MAX_COUNT
(maximum value of 16)

 CLD_SM_ATTR_NUM_OF_TIERS_CURRENT_SUMMATION_DELIVERED
(maximum value of 15)

 CLD_SM_ATTR_NUM_OF_BLOCKS_IN_EACH_TIER_CURRENT_SUMMATION_DELIVERED
(maximum value of 16)

 For optional attributes from ‘Formatting’ attribute set:

 CLD_SM_ATTR_MULTIPLIER

 CLD_SM_ATTR_DIVISOR

 CLD_SM_ATTR_DEMAND_FORMATING

 CLD_SM_ATTR_HISTORICAL_CONSUMPTION_FORMATTING
232 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
 For optional attributes from ‘ESP Historical Consumption’ attribute set:

 CLD_SM_ATTR_INSTANTANEOUS_DEMAND

 CLD_SM_ATTR_CURRENT_DAY_CONSUMPTION_DELIVERED

 CLD_SM_ATTR_CURRENT_DAY_CONSUMPTION_RECEIVED

 CLD_SM_ATTR_PREVIOUS_DAY_CONSUMPTION_DELIVERED

 CLD_SM_ATTR_PREVIOUS_DAY_CONSUMPTION_RECEIVED

 CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_DELIVERED

 CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_RECEIVED

 CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_DELIVERED

 CLD_SM_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_RECEIVED

 For optional attribute from ‘Load Profile’ attribute set:

 CLD_SM_ATTR_MAX_NUMBER_OF_PERIODS_DELIVERED

 For optional attributes from ‘Supply Limit’ attribute set:

 CLD_SM_ATTR_CURRENT_DEMAND_DELIVERED

 CLD_SM_ATTR_DEMAND_LIMIT

 CLD_SM_ATTR_DEMAND_INTEGRATION_PERIOD

 CLD_SM_ATTR_NUMBER_OF_DEMAND_SUBINTERVALS

Mirroring

If the mirroring of metering data is to be enabled (see Section 8.5), the following
options must be defined in the zcl_options.h file.

On the Simple Metering server on the Metering Device (which will request and report
to a mirror on a mirroring server, such as the ESP), there is no need to define anything.

On the Simple Metering client on the mirroring server, such as the ESP, the mirroring
option must be enabled by including:

#define CLD_SM_SUPPORT_MIRROR

In addition, the following defines must be added on the mirroring server (e.g. ESP):

#define CLD_BAS_ATTR_PHYSICAL_ENVIRONMENT

(flags support for mirroring via a non-zero value of the u8PhysicalEnvironment
attribute of the Basic cluster)

#define CLD_SM_NUMBER_OF_MIRRORS <n>

(sets the maximum number of mirrors supported on the mirroring server to the value n)

#define ZCL_ATTRIBUTE_REPORTING_CLIENT_SUPPORTED

(enables support for attribute reporting clients)
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 233

Chapter 8
Simple Metering Cluster

The Simple Metering cluster attributes that will be supported by mirroring must be
defined on the mirroring server (the same set of attributes are mirrored on all
endpoints):

 CLD_SM_MIRROR_ATTR_CURRENT_SUMMATION_RECEIVED

 CLD_SM_MIRROR_ATTR_CURRENT_MAX_DEMAND_DELIVERED

 CLD_SM_MIRROR_ATTR_CURRENT_MAX_DEMAND_RECEIVED

 CLD_SM_MIRROR_ATTR_DFT_SUMMATION

 CLD_SM_MIRROR_ATTR_DAILY_FREEZE_TIME

 CLD_SM_MIRROR_ATTR_POWER_FACTOR

 CLD_SM_MIRROR_ATTR_READING_SNAPSHOT_TIME

 CLD_SM_MIRROR_ATTR_CURRENT_MAX_DEMAND_DELIVERED_TIME

 CLD_SM_MIRROR_ATTR_CURRENT_MAX_DEMAND_RECEIVED_TIME

 CLD_SM_MIRROR_ATTR_CURRENT_TIER_1_SUMMATION_DELIVERED

 CLD_SM_MIRROR_ATTR_CURRENT_TIER_1_SUMMATION_RECEIVED

 CLD_SM_MIRROR_ATTR_CURRENT_TIER_2_SUMMATION_DELIVERED

 CLD_SM_MIRROR_ATTR_CURRENT_TIER_2_SUMMATION_RECEIVED

 CLD_SM_MIRROR_ATTR_CURRENT_TIER_3_SUMMATION_DELIVERED

 CLD_SM_MIRROR_ATTR_CURRENT_TIER_3_SUMMATION_RECEIVED

 CLD_SM_MIRROR_ATTR_CURRENT_TIER_4_SUMMATION_DELIVERED

 CLD_SM_MIRROR_ATTR_CURRENT_TIER_4_SUMMATION_RECEIVED

 CLD_SM_MIRROR_ATTR_CURRENT_TIER_5_SUMMATION_DELIVERED

 CLD_SM_MIRROR_ATTR_CURRENT_TIER_5_SUMMATION_RECEIVED

 CLD_SM_MIRROR_ATTR_CURRENT_TIER_6_SUMMATION_DELIVERED

 CLD_SM_MIRROR_ATTR_CURRENT_TIER_6_SUMMATION_RECEIVED

 CLD_SM_MIRROR_ATTR_MULTIPLIER

 CLD_SM_MIRROR_ATTR_DIVISOR

 CLD_SM_MIRROR_ATTR_DEMAND_FORMATING

 CLD_SM_MIRROR_ATTR_HISTORICAL_CONSUMPTION_FORMATTING

 CLD_SM_MIRROR_ATTR_INSTANTANEOUS_DEMAND

 CLD_SM_MIRROR_ATTR_CURRENT_DAY_CONSUMPTION_DELIVERED

 CLD_SM_MIRROR_ATTR_CURRENT_DAY_CONSUMPTION_RECEIVED

 CLD_SM_MIRROR_ATTR_PREVIOUS_DAY_CONSUMPTION_DELIVERED

 CLD_SM_MIRROR_ATTR_PREVIOUS_DAY_CONSUMPTION_RECEIVED

 CLD_SM_MIRROR_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_DELIVE
RED

 CLD_SM_MIRROR_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_START_TIME_RECEIV
ED

 CLD_SM_MIRROR_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_DELIVERED

 CLD_SM_MIRROR_ATTR_CURRENT_PARTIAL_PROFILE_INTERVAL_VALUE_RECEIVED

 CLD_SM_MIRROR_ATTR_MAX_NUMBER_OF_PERIODS_DELIVERED

 CLD_SM_MIRROR_ATTR_CURRENT_DEMAND_DELIVERED

 CLD_SM_MIRROR_ATTR_DEMAND_LIMIT

 CLD_SM_MIRROR_ATTR_DEMAND_INTEGRATION_PERIOD

 CLD_SM_MIRROR_ATTR_NUMBER_OF_DEMAND_SUBINTERVALS
234 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
The Basic cluster attributes that will be supported by mirroring must also be defined
on the mirroring server (the same set of attributes are mirrored on all endpoints), from
the following:

 CLD_BAS_MIRROR_ATTR_APPLICATION_VERSION

 CLD_BAS_MIRROR_ATTR_STACK_VERSION

 CLD_BAS_MIRROR_ATTR_HARDWARE_VERSION

 CLD_BAS_MIRROR_ATTR_MANUFACTURER_NAME

 CLD_BAS_MIRROR_ATTR_MODEL_IDENTIFIER

 CLD_BAS_MIRROR_ATTR_DATE_CODE

 CLD_BAS_MIRROR_ATTR_LOCATION_DESCRIPTION

 CLD_BAS_MIRROR_ATTR_PHYSICAL_ENVIRONMENT

 CLD_BAS_MIRROR_ATTR_DEVICE_ENABLED

 CLD_BAS_MIRROR_ATTR_ALARM_MASK

 CLD_BAS_MIRROR_ATTR_DISABLE_LOCAL_CONFIG

Get Profile

If the ‘Get Profile’ feature is to be used (see Section 8.6), the following options must
be defined in the zcl_options.h file.

The ‘Get Profile’ option must be enabled on the server and clients by including:

#define CLD_SM_SUPPORT_GET_PROFILE

Then, the following must be included on the server (only):

#ifdef CLD_SM_SUPPORT_GET_PROFILE

 #defineCLD_SM_GETPROFILE_MAX_NO_INTERVALS <n>

#endif

where <n> is the maximum number of consumption intervals to be held on the server
(and therefore determines the amount of memory to be reserved for the circular buffer
that is used to store the data for these consumption intervals).
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 235

Chapter 8
Simple Metering Cluster

236 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
9. Demand-Response and Load Control Cluster

This chapter outlines the Demand-Response and Load Control (DRLC) cluster which
is defined in the ZigBee Smart Energy profile. The cluster is able to receive load
control requests from the utility company and act upon them by controlling an attached
appliance, such as a heater or pump - this is the ‘demand-response’ functionality.

The DRLC cluster has a Cluster ID of 0x0701.

9.1 Overview

The DRLC cluster is required in SE devices as indicated in the table below.

The ESP acts as the DRLC cluster server, since it is the device which receives Load
Control Events (LCEs) from the utility company via the backhaul network. Other
devices act as clients and receive the LCEs forwarded by the ESP:

 An IPD would normally display a list of LCEs to allow the consumer to manually
modify consumption.

 A Load Control Device, PCT or Smart Appliance would participate in an LCE by
automatically adjusting the consumption of the device.

Devices that participate in an LCE must report their participation back to the ESP.
Participation may result in the consumer receiving a credit on their utility bill.

The LCEs contain a time-stamp. Therefore, devices which support the DRLC cluster
client and which participate in LCEs must implement the Time cluster and maintain a
real-time clock.

The DRLC cluster is enabled by defining CLD_DRLC in the zcl_options.h file - see
Section 3.5.1. Further compile-time options for the DRLC cluster are detailed in
Section 9.12.

Server-side Client-side

Mandatory in... ESP PCT

Load Control Device

Optional in... IPD

Smart Appliance

Table 31: DRLC Cluster in SE Devices

Note: In the current NXP implementation of ZigBee SE,
the DRLC cluster client is contained within an IPD only.
This illustrates how to incorporate the DRLC cluster in
other devices which need to participate in LCEs.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 237

Chapter 9
Demand-Response and Load Control Cluster

9.2 DRLC Cluster Structure and Attributes

The DRLC cluster has no server attributes but has client attributes that are contained
in the following tsCLD_DRLC structure:

typedef struct

{

 uint8 u8UtilityEnrolmentGroup;

 uint8 u8StartRandomizeMinutes;

 uint8 u8StopRandomizeMinutes;

 uint16 u16DeviceClassValue;

} tsCLD_DRLC;

where:

 u8UtilityEnrolmentGroup identifies the ‘enrolment’ group to which the
device belongs, where a group of devices is defined by the utility company in
order to aid load management in a large system. The default value of 0x00 is
used to indicate membership of all groups.

 u8StartRandomizeMinutes specifies the largest random delay, in minutes,
that can be applied to the start of a Load Control Event (so a random delay, no
greater than this value, will be applied to an individual event). The valid range
of values is 0x00 to 0x3C (0 to 60 mins), where 0x00 indicates that no delay is
to be applied.

 u8StopRandomizeMinutes specifies the largest random delay, in minutes,
that can be applied to the end of a Load Control Event (so a random delay, no
greater than this value, will be applied to an individual event). The valid range
of values is 0x00 to 0x3C, where 0x00 indicates that no delay is to be applied.

 u16DeviceClassValue is a bitmap specifying the relevant device classes
(e.g. water heater and pool pump). Enumerations are provided for the device
classes and are detailed in Section 9.10.1. If more than one device class is
required, the relevant enumerations can be bitwise-ORed.

Note: It may be desirable to refuse write access to the
u16DeviceClassValue attribute on a device. To do
this, when a ‘write attributes’ request is received and an
E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE event is
generated for this attribute, the application should set
the eAttributeStatus field of the event to
E_ZCL_DENY_ATTRIBUTE_ACCESS.
238 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
9.3 Initialisation

Provided that the DRLC cluster is enabled in the compile-time options (see Section
9.12), the cluster will be automatically initialised when the SE profile is initialised and
the SE device is registered in the application - that is, by calling eSE_Initialise() and
the relevant endpoint registration function for the device, for example:

 eSE_RegisterEspEndPoint() on a standalone ESP (cluster server)

 eSE_RegisterIPDEndPoint() on an IPD (cluster client)

As part of this initialisation, the DRLC cluster is created and, on the ESP, a DRLC timer
server is registered to support time-stamps in the LCEs.

A DRLC cluster client must also perform a number of other initialisation steps in order
to establish communication with the cluster server. These are described below.

1. Set ‘device class’ attribute: The value of the ‘device class’ attribute (see
Section 9.2) must be set immediately after eSE_RegisterIPDEndPoint() is
called and before the network is started.

2. Bind to server: A non-sleeping client should bind its endpoint to the server
using the ZigBee PRO API function ZPS_eAplZdpBindUnbindRequest().
This allows the server to send out unsolicited LCEs to the client.

Before this binding can take place, the client must obtain the IEEE/MAC
address of the ESP/server. This can be achieved by first using the function
ZPS_eAplZdpMatchDescRequest() to find the ESP/Server and to obtain its
network address. The function ZPS_eAplZdpIeeeAddrRequest() can then be
used to obtain the corresponding IEEE/MAC address. Once found, both
addresses must be added to the local Address Map using the function
ZPS_eAplZdoAddAddrMapEntry().

All four of the above ZPS functions are described in the ZigBee PRO Stack
User Guide (JN-UG-3048).

3. Synchronise time with ESP: A client should synchronise ZCL time with the
ESP using the Time cluster as soon as initialisation is complete. It is not
possible to process unsolicited LCEs with a ‘start-time of now’ until ZCL time
has been synchronised.

Once the clients have been set up, the ESP/server may need to configure the
enrolment groups and randomisation attributes of the DRLC clients (see Section 9.2).
The ESP may use one of the following mechanisms to determine when a DRLC client
has come on-line:

 A Get Scheduled Events message is received from a new client

 A Report Event Status message is received from a new client

 A binding request is received from a new client
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 239

Chapter 9
Demand-Response and Load Control Cluster

9.4 Load Control Events (LCEs)

A Load Control Event (LCE) is an instruction, which originates from the utility
company, to schedule a temporary adjustment of consumption in devices that support
the DRLC cluster. The contents of an LCE are outlined in Section 9.4.1.

An LCE is sent from the utility company to the DRLC server (ESP) of an SE network,
from where it is is passed to DRLC clients. The LCEs are held in lists on the server
and clients, as described in Section 9.4.2.

LCE handling is described in Section 9.5.

9.4.1 LCE Contents

The information contained in an LCE includes:

 LCE ID (provided by utility company)

 Target device class and enrolment group

 Start-time

 Duration

 Criticality level

 Required adjustment(s)

 Randomisation requirements (for start-time and end-time)

For a full list and description of the LCE data, refer to the description of the LCE
structure tsSE_DRLCLoadControlEvent in Section 9.11.1.

9.4.2 LCE Lists

The DRLC cluster server and clients each hold the following lists of LCEs:

 Active list: Contains LCEs that are currently being executed - it is possible for
more than one LCE to be active at the same time, provided that their device
classes and enrolment groups do not clash.

 Scheduled list: Contains LCEs that are due to be executed in the future - that
is, their start-time is later than the current time.

 Cancelled list: Contains LCEs that have been cancelled with a randomised
end-time and whose random end-time has not yet been reached.

 Deallocated list: Contains expired LCEs and therefore a record of the free
storage for LCEs - used internally by the cluster (and not by the application).

A new LCE is first added to the Scheduled list, unless it has a ‘start-time of now’ in
which case it is added to the Active list. An LCE in the Scheduled list is automatically
moved to the Active list at the scheduled start-time (or at the randomised start-time).
At the end of an active LCE, it is automatically moved to the Deallocated list. However,
an active LCE which is cancelled with a randomised end-time is automatically moved
to the Cancelled list, where it stays until the end-time has been reached (when it is
moved to the Deallocated list).
240 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
The addition of a new LCE on the cluster server is performed by the server application,
as described in Section 9.5.1, but is done automatically by the cluster on the clients.
All other operations on LCE lists, apart from cancellation (see Section 9.5.3), are
performed automatically by the cluster on both server and client.

Functions are provided to access entries in the local LCE lists:

 eSE_DRLCGetLoadControlEvent() can be used to obtain a particular LCE
entry (with specified list index) in any one of the local lists

 eSE_DRLCFindLoadControlEvent() can be used to search for and obtain a
particular LCE (with specified ID) in any of the local lists

9.5 LCE Handling

LCEs are handled on the DRLC cluster server and clients as described in Section
9.5.1 and Section 9.5.2 respectively. Cancelling LCEs is described in Section 9.5.3.

9.5.1 LCE Handling on Server

When a new LCE is received from the utility company, it is the responsibility of the
application on the ESP (DRLC cluster server) to add this LCE to the local ‘Scheduled’
list (or to the ‘Active’ list, if the LCE has a ‘start-time of now’). This addition is
performed using the function eSE_DRLCAddLoadControlEvent(), which also sends
the LCE (unsolicited) to the cluster clients. The LCE should normally be sent to all
client endpoints with which the cluster server has been bound (see Section 9.3).

The cluster server also automatically responds to Get Scheduled Events messages
from cluster clients that need current and future LCEs (see Section 9.5.2.2).

Note: The DRLC callback events referred to in this
section are further described in Section 9.7 and are
handled by the callback function that is registered as
part of the device endpoint registration.

Note 1: Following the initial reception of LCEs from the
utility company, the addition of these LCEs to the list(s)
through eSE_DRLCAddLoadControlEvent() can be
done after calling eSE_RegisterEspMeterEndPoint()
or eSE_RegisterEspEndPoint() but before calling
ZPS_eAplZdoStartStack().

Note 2: On receiving an LCE, the client will check the
device class and enrolment group specified within the
LCE, and will only accept the LCE if these values match
the corresponding DRLC cluster attributes held locally
(see Section 9.2).
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 241

Chapter 9
Demand-Response and Load Control Cluster

9.5.2 LCE Handling on Clients

The sub-sections below describe the various LCE handling activities that take place
on a DRLC cluster client.

9.5.2.1 LCE Activation and De-activation

On receiving a new LCE from the DRLC cluster server, a cluster client first checks the
device class and enrolment group specified within the LCE. If they do not match those
of the local device (see DRLC attributes in Section 9.2), the LCE is discarded.

Generally, a valid LCE received from the cluster server is automatically added to the
‘Scheduled’ list on the client - the E_SE_DRLC_EVENT_COMMAND callback event
containing the command SE_DRLC_LOAD_CONTROL_EVENT is generated on the
client to indicate that this has been done. However, if the LCE has a ‘start-time of now’,
it is added directly to the ‘Active’ list, provided that the start-time is not randomised
(see below).

If a new LCE is successfully added to the Scheduled (or Active) list, the client will send
a Report Event Status message to the server to confirm acceptance of the LCE.

When the start-time of an LCE in the ‘Scheduled’ list is reached, the LCE is
automatically moved to the ‘Active’ list - the E_SE_DRLC_EVENT_ACTIVE callback
event is generated on the client to indicate that this has been done, allowing the
application to make the required load adjustment. However, if a randomised start-time
is enabled (in the LCE), the move to the ‘Active’ list is delayed by a random time
interval that is no greater than the maximum defined by the cluster attribute
u8StartRandomizeMinutes (see Section 9.2).

When the duration of the active LCE has expired, the LCE is automatically moved to
the ‘De-allocated’ list - the E_SE_DRLC_EVENT_EXPIRED callback event is
generated on the client to indicate that this has been done, allowing the application to
restore the load to the previous level. However, if a randomised end-time is enabled
(in the LCE), the move to the ‘Deallocated’ list is delayed by a random time interval
that is no greater than the maximum defined by the cluster attribute
u8StopRandomizeMinutes (see Section 9.2).

Note: A DRLC cluster client can opt out of an individual
LCE using the eSE_DRLCSetEventUserOption()
function.

Note: The above randomise attributes of the DRLC
cluster also allow LCE start-time and end-time
randomisation to be disabled for all LCEs on the local
device. If this is the case, randomisation settings within
the LCE itself will be ignored.
242 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
9.5.2.2 Getting Scheduled Events

The application on the DRLC cluster client can send a Get Scheduled Events
message to the cluster server in order to obtain relevant current and future LCEs. This
message may be used in the following situations:

 On a non-sleeping device, the application may send this message:

 immediately after binding with the cluster server in order to get the initial
LCEs (subsequent LCEs will be received unsolicited from the server)

 at other times in order to top up its LCE list, if it has previously discarded
an LCE due to lack of storage

 On a sleeping device (End Device), the application may send this message on
waking from sleep in order to obtain new LCEs that were distributed by the
cluster server during sleep (and therefore not received).

The Get Scheduled Events message can be sent from a client using the function
eSE_DRLCGetScheduledEventsSend(). The message includes the earliest start-
time of the LCEs of interest, where zero is used to indicate all LCEs - for a sleeping
End Device, this time should be set to zero or the current time, in case there are
replacements on the server for LCEs already in the client’s lists. The message also
allows the maximum number of returned LCEs to be specified, where zero is used to
indicate all LCEs.

On receiving the requested LCEs from the cluster server, the cluster client
automatically updates the local LCE lists with the reported LCEs.

Note: The arrival of the Get Scheduled Events message
will result in the generation of the
E_SE_DRLC_EVENT_COMMAND callback event,
containing a DRLC_GET_SCHEDULED_EVENTS
command, on the cluster server. However, the cluster
will respond to the message automatically.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 243

Chapter 9
Demand-Response and Load Control Cluster

9.5.2.3 Reporting LCE Actions to Server

By default, a DRLC cluster client sends a Report Event Status message to the cluster
server when an LCE is actioned on the client - that is, when an LCE is moved between
lists on the client, such as from ‘Scheduled’ to ‘Active’ or from ‘Active’ to ‘Deallocated’
(see Section 9.4.2). Details of the actioned LCE are sent in a
tsSE_DRLCReportEvent structure (see Section 9.11.4). The nature of the action is
indicated in this stucture using an enumeration (see Section 9.10.8).

If a DRLC cluster client opts out of a particular LCE using the function
eSE_DRLCSetEventUserOption(), a Report Event Status message is sent to the
cluster server to indicate this. On reaching the end-time of the LCE, another Report
Event Status message is sent to the server to confirm that the LCE has completed
without the participation of the local client.

9.5.2.4 Over-riding LCE Settings

The client application can over-ride certain aspects of an LCE using the function
eSE_DRLCSetEventUserData(), which allows load control data values to be
modified, including:

 Criticality level

 Cooling temperature set-point

 Heating temperature set-point

 Load adjustment percentage

 Duty cycle

For example, the ESP/server may request an HVAC device to set its cooling level to
24oC, but the user may choose to over-ride this with a cooling level of 20oC. The
above data values and their formats are detailed in the LCE structure description in
Section 9.11.1.

The function eSE_DRLCSetEventUserData() modifies one load control data value on
each call. Therefore, in order to modify more than one data value, the function must
be called multiple times.

When a change is made, the cluster client automatically notifies the cluster server by
sending a Report Event Status message containing the change.

Note: The DRLC cluster server is informed of the arrival
of a Report Event Status message via the callback event
E_SE_DRLC_EVENT_COMMAND, containing a
SE_DRLC_REPORT_EVENT_STATUS command. The
ESP/server may inform the utility company of the
reported status - if the message cannot be forwarded
immediately then it must be buffered by the application.
244 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
9.5.3 Cancelling LCEs

An LCE can be cancelled, in which case it is moved to the ‘Deallocated’ list (possibly
via the ‘Cancelled’ list - see below). A cancellation can only be performed from the
DRLC cluster server and is normally sent to all client endpoints that have been bound
to the server. Two functions are provided which can be called on the cluster server to
perform LCE cancellations:

 eSE_DRLCCancelLoadControlEvent() is used to cancel a particular LCE

 eSE_DRLCCancelAllLoadControlEvents() is used to cancel all LCEs

Cancellation involves removing the LCE(s) from the ‘Scheduled’ or ‘Active’ lists on the
cluster server and clients, which is done automatically by the cluster. As a result, the
callback event E_SE_DRLC_EVENT_COMMAND is generated, containing a
LOAD_CONTROL_EVENT_CANCEL or LOAD_CONTROL_EVENT_CANCEL_ALL
command, as appropriate. This will indicate whether the cancellation will be with
immediate effect or a random delay will be applied:

 If the cancellation is with immediate effect, the application should stop load
control for the relevant device(s).

 If a random delay is to be applied to the cancellation, the cluster will put the
LCE in the ‘Cancelled’ list until the delay has expired, when the LCE will be
moved to the ‘Deallocated’ list. Another E_SE_DRLC_EVENT_COMMAND
callback event containing the command LOAD_CONTROL_EVENT_CANCEL
or LOAD_CONTROL_EVENT_CANCEL_ALL will then be generated, this time
indicating immediate cancellation. The application should now stop load control
for the relevant device(s).

9.6 Message Signing (Security)

As a security measure, Report Event Status messages can be signed by the DRLC
cluster client for non-repudiation purposes (to provide the utility company with
evidence that the cluster client sent the message). On the DRLC cluster client, the
process involves generating a hash value which is based on the content of the
message, then using this value in combination with a device’s private key to generate
a signature which is then appended to the message to be sent to the ESP.

Upon message reception on the ESP, the hash value is recalculated based on the
received message and then used in conjunction with the public key of the message
originator (derived from the originator’s certificate) to check the appended signature.
To facilitate this checking, the ESP must store the certificates of any nodes that send
Report Event Status messages which require verification.

Message signing must be enabled at compile-time, as described in Section 9.12.

Note 1: It is recommended that signatures are
supported by applications for backward compatibility.

Note 2: Signature fields are included in the Report
Event Status structure, detailed in Section 9.11.4.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 245

Chapter 9
Demand-Response and Load Control Cluster

9.7 DRLC Events

The DRLC cluster has its own events that are handled through the callback
mechanism outlined in Section 4.7 (and fully detailed in the ZCL User Guide
(JN-UG-3077)). If a device uses the DRLC cluster then DRLC event handling must be
included in the callback function for the associated endpoint - for example:

 For an ESP (cluster server), this callback function is registered through
eSE_RegisterEspMeterEndPoint() or eSE_RegisterEspEndPoint()

 For an IPD (cluster client), this callback function is registered through
eSE_RegisterIPDEndPoint()

The relevant callback function will then be invoked when a DRLC event occurs.

For a DRLC event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an
element sClusterCustomMessage, which is itself a structure containing a field
pvCustomData. This field is a pointer to a tsSE_DRLCCallBackMessage structure
which contains the DRLC parameters:

typedef struct
{
 teSE_DRLCCallBackEventType eEventType;
 uint8 u8CommandId;
 teSE_DRLCStatus eDRLCStatus;
 uint32 u32CurrentTime;
 union {
 tsSE_DRLCLoadControlEvent sLoadControlEvent;
 tsSE_DRLCCancelLoadControlEvent sCancelLoadControlEvent;
 tsSE_DRLCCancelLoadControlAllEvent sCancelLoadControlAllEvent;
 tsSE_DRLCReportEvent sReportEvent;
 tsSE_DRLCGetScheduledEvents sGetScheduledEvents;
 } uMessage;
} tsSE_DRLCCallBackMessage;

Information on the elements of the above structure is provided in the sub-sections
below.
246 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
9.7.1 Event and Command Types

The eEventType field of the tsSE_DRLCCallBackMessage structure above
specifies the type of DRLC event that has been generated - these event types are
enumerated in the teSE_DRLCCallBackEventType structure, described below.

typedef enum PACK

{

 E_SE_DRLC_EVENT_API =0x00,

 E_SE_DRLC_EVENT_COMMAND,

 E_SE_DRLC_EVENT_ACTIVE,

 E_SE_DRLC_EVENT_EXPIRED,

 E_SE_DRLC_EVENT_CANCELLED,

 E_SE_DRLC_EVENT_ENUM_END,

} teSE_DRLCCallBackEventType;

E_SE_DRLC_EVENT_API

The E_SE_DRLC_EVENT_API event is reserved for internal use.

E_SE_DRLC_EVENT_COMMAND

The E_SE_DRLC_EVENT_COMMAND event is generated when a command has
been received on either the server or client. In the tsSE_DRLCCallBackMessage
structure, the u8CommandId field is used to indicate the corresponding command -
one of:

Note: The u8CommandId field of the
tsSE_DRLCCallBackMessage structure is only
required for a DRLC event of type
E_SE_DRLC_EVENT_COMMAND (see below).

Command Description

SE_DRLC_LOAD_CONTROL_EVENT Generated on a client when a new LCE has been
received from the server and added to the ‘Scheduled’
(or ‘Active’) list - the LCE is included in the
uMessage.LoadControlEvent field of the
tsSE_DRLCCallBackMessage structure

SE_DRLC_LOAD_CONTROL_EVENT_CANCEL * Generated on a client when a command has been
received to cancel an LCE and the LCE has been
moved to the ‘Cancelled’ or ‘ Deallocated’ list - which list
depends on whether an immediate or randomised end-
time is specified in the
uMessage.sCancelLoadControlEvent field of the
tsSE_DRLCCallBackMessage structure

Table 32: Command Types
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 247

Chapter 9
Demand-Response and Load Control Cluster

* If an LCE cancellation with a randomised end-time is required, the LCE will first be moved to
the ‘Cancelled’ list and the event will be generated with randomised end-time specified. When
the randomised end-time has been reached, the LCE will be moved to the ‘Deallocated’ list
and the event will be generated again but with an immediate end-time specified. The applica-
tion must then stop the corresponding load control.

** The server can identify which client has sent a Report Event Status or Get Scheduled Events
message by examining the pZPSevent field of the tsZCL_CallBackEvent structure that
contains the message.

E_SE_DRLC_EVENT_ACTIVE

The E_SE_DRLC_EVENT_ACTIVE event is generated when an LCE has been
moved from the ‘Scheduled’ list to the ‘Active’ list (see Section 9.4.2). The activated
LCE is included in the uMessage.LoadControlEvent field of the
tsSE_DRLCCallBackMessage structure.

E_SE_DRLC_EVENT_EXPIRED

The E_SE_DRLC_EVENT_EXPIRED event is generated when an LCE has been
moved from the ‘Active’ list (see Section 9.4.2). The expired LCE is included in the
uMessage.LoadControlEvent field of the tsSE_DRLCCallBackMessage
structure.

E_SE_DRLC_EVENT_CANCELLED

The E_SE_DRLC_EVENT_CANCELLED event is generated when an LCE has been
put in the ‘Cancelled’ list (see Section 9.4.2) as the result of an LCE ‘cancel’ or ‘cancel
all’ command. Information on the cancelled LCE(s) is included in the
uMessage.sCancelLoadControlEvent or
uMessage.sCancelLoadControlAllEvent field of the
tsSE_DRLCCallBackMessage structure, as appropriate.

SE_DRLC_LOAD_CONTROL_EVENT_CANCEL_ALL * Generated on a client when a command has been
received to cancel all LCEs and the LCEs have been
moved to the ‘Cancelled’ or ‘ Deallocated’ list - which list
depends on whether an immediate or randomised end-
time is specified in the
uMessage.sCancelLoadControlAllEvent field of
the tsSE_DRLCCallBackMessage structure

SE_DRLC_REPORT_EVENT_STATUS ** Generated on the server when a Report Event Status
message is received from a client - the contents of the
report are included in the uMessage.sReportEvent
field of the tsSE_DRLCCallBackMessage structure

SE_DRLC_GET_SCHEDULED_EVENTS ** Generated on the server when a Get Scheduled Events
message is received from a client - the contents of the
request are included in the
uMessage.sGetScheduledEvents field of the
tsSE_DRLCCallBackMessage structure

Command Description

Table 32: Command Types
248 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
9.7.2 Other Elements of tsSE_DRLCCallBackMessage

In addition to the fields eEventType and u8CommandId described in Section 9.7.1,
the tsSE_DRLCCallBackMessage structure contains the following elements.

eDRLCStatus

The eDRLCStatus field indicates the status returned from the command that has
been executed (the command identified in u8CommandId). The status codes are
enumerated in the teSE_DRLCStatus structure, shown below and described in
Section 9.9.

typedef enum PACK

{

 E_SE_DRLC_DUPLICATE_EXISTS = 0x80,

 E_SE_DRLC_EVENT_LATE,

 E_SE_DRLC_EVENT_NOT_YET_ACTIVE,

 E_SE_DRLC_EVENT_OLD,

 E_SE_DRLC_NOT_FOUND,

 E_SE_DRLC_EVENT_NOT_FOUND,

 E_SE_DRLC_EVENT_IGNORED,

 E_SE_DRLC_CANCEL_DEFERRED,

 E_SE_DRLC_BAD_DEVICE_CLASS,

 E_SE_DRLC_BAD_CRITICALITY_LEVEL,

 E_SE_DRLC_DURATION_TOO_LONG,

 E_SE_DRLC_ENUM_END

} teSE_DRLCStatus;

u32CurrentTime

The u32CurrentTime field contains the time (UTC) at which the event was
generated.

uMessage

This field is a union of structures, containing a structure for each of the DRLC
command payloads. The valid structure in the event is defined by the value of
u8CommandId (refer to the description of the E_SE_DRLC_EVENT_COMMAND
event in Section 9.7.1).
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 249

Chapter 9
Demand-Response and Load Control Cluster

9.8 Functions

The following DRLC cluster functions are provided in the SE API:

Function Page

eSE_DRLCCreate 251

eSE_DRLCAddLoadControlEvent 253

eSE_DRLCGetScheduledEventsSend 254

eSE_DRLCCancelLoadControlEvent 255

eSE_DRLCCancelAllLoadControlEvents 256

eSE_DRLCSetEventUserOption 257

eSE_DRLCSetEventUserData 258

eSE_DRLCGetLoadControlEvent 259

eSE_DRLCFindLoadControlEvent 260
250 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_DRLCCreate

Description

This function creates an instance of the DRLC cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a DRLC cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions. For more details of creating cluster
instances on custom endpoints, refer to Appendix B.

When used, this function must be the first DRLC cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate be the total number of attributes supported by the DRLC cluster,
which can be obtained by using the macro
CLD_DRLC_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8
au8AppDRLC_ClusterAttributeControlBits[CLD_DRLC_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

teZCL_Status eSE_DRLCCreate(
bool_t bIsServer,
uint8 u8NumberOfRecordEntries,
uint8 *pu8AttributeControlBits,
tsZCL_ClusterInstance *psClusterInstance,
tsZCL_ClusterDefinition *psClusterDefinition,
tsSE_DRLCCustomDataStructure
 *psCustomDataStructure,
tsSE_DRLCLoadControlEventRecord
 *psDRLCLoadControlEventRecord,
void *pvEndPointSharedStructPtr);

Note: This function must not be called for an endpoint on
which a standard ZigBee device (e.g. IPD) will be used. In this
case, the device and its supported clusters must be registered
on the endpoint using the relevant device registration function
from those described in Chapter 12.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 251

Chapter 9
Demand-Response and Load Control Cluster

Parameters

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server

 FALSE - client

u8NumberOfRecordEntries Number of LCEs that can be stored in the LCE list, one
of:
SE_DRLC_NUMBER_OF_SERVER_LOAD_CONTROL_ENTRIES
SE_DRLC_NUMBER_OF_CLIENT_LOAD_CONTROL_ENTRIES

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see the ZCL User Guide
(JN-UG-3077)). This structure will be updated by the
function by initialising individual structure fields.

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see the ZCL User Guide (JN-UG-3077)). In
this case, this structure must contain the details of the
DRLC cluster. This parameter can refer to a pre-filled
structure called sCLD_DRLC which is provided in the
DRLC.h file.

psCustomDataStructure Pointer to structure which contains custom data for the
DRLC cluster. This structure is used for internal data
storage. No knowledge of the fields of this structure is
required.

psDRLCLoadControlEventRecord

Pointer to a structure in which an LCE will be stored

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_DRLC which defines the
attributes of DRLC cluster. The function will initialise the
attributes with default values.

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
252 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_DRLCAddLoadControlEvent

Description

This function can be used on the DRLC cluster server to add an LCE (received from
the utility company) to the ‘Scheduled’ list. The function also sends the LCE to the
specified DRLC cluster client endpoints, where it will also be added to the
‘Scheduled’ list. Note that the LCE will be added to the ‘Active’ lists on the relevant
devices if a ‘start-time of now’ is specified in the LCE.

The LCE should normally be sent to client endpoints that have been previously
bound to the cluster server. This is done by specifying an address type of
E_ZCL_AM_BOUND in the tsZCL_Address structure - in this case, the address
field of this structure and the destination endpoint in the function call are both
ignored.

Parameters

u8SourceEndPointId Number of the local endpoint through which the LCE will
be sent

u8DestinationEndPointId Number of the remote endpoint to which the LCE will be
sent. Note that this parameter is ignored when sending
to address types E_ZCL_AM_BOUND and
E_ZCL_AM_GROUP

psDestinationAddress Pointer to a ZCL structure containing the address of the
remote node to which the LCE will be sent

psLoadControlEvent Pointer to a structure (see Section 9.11.1) which
contains the LCE to be added and sent

pu8TransactionSequenceNumber

Pointer to a location to store the Transaction Sequence
Number (TSN) of the packet sent

Returns

Any relevant DRLC return code listed in Section 9.9 or ZCL return code listed in the
ZCL User Guide (JN-UG-3077)

teSE_DRLCStatus eSE_DRLCAddLoadControlEvent(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address psDestinationAddress,
tsSE_DRLCLoadControlEvent *psLoadControlEvent,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 253

Chapter 9
Demand-Response and Load Control Cluster

eSE_DRLCGetScheduledEventsSend

Description

This function can be used on a DRLC cluster client to send a Get Scheduled Events
message to the cluster server in order to request a list of scheduled (and active)
LCEs. The function can be used to obtain the initial schedule of LCEs and to update
the local LCE lists during operation (for example, if an End Device has been sleeping
and has missed unsolicited LCE updates) - refer to Section 9.5.2.2 for more
information on the use of this function.

As part of this function call, a tsSE_DRLCGetScheduledEvents structure must be
provided which specifies the earliest start-time of the LCEs of interest and the
maximum number of LCEs to be reported.

Parameters

u8SourceEndPointId Number of the local endpoint through which the request
will be sent

u8DestinationEndPointId Number of the remote endpoint to which the request will
be sent (this must be the DRLC cluster server endpoint)

psDestinationAddress Pointer to a ZCL structure containing the address of the
remote node to which the request will be sent (this must
be the address of the ESP)

psGetScheduledEvents Pointer to a structure which contains the LCE
requirements of the request (see Section 9.11.2)

pu8TransactionSequenceNumber

Pointer to a location to store the Transaction Sequence
Number (TSN) of the request

Returns

Any relevant DRLC return code listed in Section 9.9 or ZCL return code listed in the
ZCL User Guide (JN-UG-3077)

teSE_DRLCStatus eSE_DRLCGetScheduledEventsSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address psDestinationAddress,
tsSE_DRLCGetScheduledEvents *psGetScheduledEvents,
uint8 *pu8TransactionSequenceNumber);
254 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_DRLCCancelLoadControlEvent

Description

This function can be used on the DRLC cluster server to cancel an LCE. The LCE
will be cancelled locally and the cancellation will also be sent to the specified DRLC
cluster client endpoints. The LCE will be ultimately moved to the ‘Deallocated’ list.

The cancellation request should normally be sent to client endpoints that have been
previously bound to the cluster server. This is done by specifying an address type of
E_ZCL_AM_BOUND in the tsZCL_Address structure - in this case, the address
field of this structure and the destination endpoint in the function call are both
ignored.

The LCE cancellation requirements are specified in the structure
tsSE_DRLCCancelLoadControlEvent, including the applicable device class(es)
and enrolment group(s), as well as an immediate or randomised end (for a full
description of the end-time options, refer to Section 9.5.3).

Parameters

u8SourceEndPointId Number of the local endpoint through which the request
will be sent

u8DestinationEndPointId Number of the remote endpoint to which the request will
be sent. Note that this parameter is ignored when
sending to address types E_ZCL_AM_BOUND and
E_ZCL_AM_GROUP

psDestinationAddress Pointer to a ZCL structure containing the address of the
remote node to which the request will be sent

psCancelLoadControlEvent Pointer to a structure which contains the LCE
cancellation requirements (see Section 9.11.3)

pu8TransactionSequenceNumber

Pointer to a location to store the Transaction Sequence
Number (TSN) of the request

Returns

Any relevant DRLC return code listed in Section 9.9 or ZCL return code listed in the
ZCL User Guide (JN-UG-3077)

teSE_DRLCStatus eSE_DRLCCancelLoadControlEvent(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address psDestinationAddress,
tsSE_DRLCCancelLoadControlEvent
 *psCancelLoadControlEvent,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 255

Chapter 9
Demand-Response and Load Control Cluster

eSE_DRLCCancelAllLoadControlEvents

Description

This function can be used on the DRLC cluster server to cancel all LCEs. The LCEs
will be cancelled locally and the cancellation will also be sent to the specified DRLC
cluster client endpoints. The LCEs will be ultimately moved to the ‘Deallocated’ list.

The cancellation request should normally be sent to client endpoints that have been
previously bound to the cluster server. This is done by specifying an address type of
E_ZCL_AM_BOUND in the tsZCL_Address structure - in this case, the address
field of this structure and the destination endpoint in the function call are both
ignored.

The LCE cancellation end-time requirement must be specified as an immediate or
randomised end (for a full description of the end-time options, refer to Section 9.5.3).

Parameters

u8SourceEndPointId Number of the local endpoint through which the request
will be sent

u8DestinationEndPointId Number of the remote endpoint to which the request will
be sent. Note that this parameter is ignored when
sending to address types E_ZCL_AM_BOUND and
E_ZCL_AM_GROUP

psDestinationAddress Pointer to a ZCL structure containing the address of the
remote node to which the request will be sent

eCancelEventControl Enumeration indicating an immediate or randomised
end, one of:
E_SE_DRLC_CANCEL_CONTROL_IMMEDIATE
E_SE_DRLC_CANCEL_CONTROL_USE_RANDOMISATION

pu8TransactionSequenceNumber

Pointer to a location to store the Transaction Sequence
Number (TSN) of the request

Returns

Any relevant DRLC return code listed in Section 9.9 or ZCL return code listed in the
ZCL User Guide (JN-UG-3077)

teSE_DRLCStatus eSE_DRLCCancelAllLoadControlEvents(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address psDestinationAddress,
teSE_DRLCCancelControl eCancelEventControl,
uint8 *pu8TransactionSequenceNumber);
256 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_DRLCSetEventUserOption

Description

This function can be used on a DRLC cluster client to choose to participate or not
participate in an individual LCE. By default, a client participates in an LCE, so
normally this function only needs to be called if the client is to opt out of the LCE.

The function could be called following a button-press which results from a user
decision to opt out of the LCE (for which information is displayed on the IPD screen).

When this function is called, a Report Event Status message is sent to the cluster
server in order to indicate that the local client has opted out of the LCE. Once the
LCE end-time has been reached, another Report Event Status message is sent to
the server in order to confirm that the LCE has completed without the participation of
the local client.

Parameters

u32IssuerId Identifier of the LCE (as issued by the utility company)

u8SourceEndPointId Number of the local endpoint where the LCE is located
(endpoint corresponding to the DRLC cluster)

eEventOption Required option, one of:
E_SE_DRLC_EVENT_USER_OPT_IN (participate)
E_SE_DRLC_EVENT_USER_OPT_OUT (do not participate)

Returns

Any relevant DRLC return code listed in Section 9.9 or ZCL return code listed in the
ZCL User Guide (JN-UG-3077)

teSE_DRLCStatus eSE_DRLCSetEventUserOption(
uint32 u32IssuerId,
uint8 u8SourceEndPointId,
teSE_DRLCUserEventOption eEventOption);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 257

Chapter 9
Demand-Response and Load Control Cluster

eSE_DRLCSetEventUserData

Description

This function can be used on a DRLC cluster client to locally modify the load control
data of an LCE. Any one of the following data values can be changed:

 Criticality level

 Cooling temperature set-point

 Heating temperature set-point

 Load adjustment percentage

 Duty cycle

The function can be called multiple times to modify more than one of the above
values. The data values are fully described in Section 9.11.1.

Parameters

u32IssuerId Identifier of the LCE (as issued by the utility company)

u8SourceEndPointId Number of the local endpoint where the LCE is located
(endpoint corresponding to the DRLC cluster)

eUserEventSetID Identifier of the load control data item to be modified, one of:
E_SE_DRLC_CRITICALITY_LEVEL_APPLIED

E_SE_DRLC_COOLING_TEMPERATURE_SET_POINT_APPLIED

E_SE_DRLC_HEATING_TEMPERATURE_SET_POINT_APPLIED

E_SE_DRLC_AVERAGE_LOAD_ADJUSTMENT_PERCENTAGE_APPLIED

E_SE_DRLC_DUTY_CYCLE_APPLIED

u16EventData Value to which the specified data item is to be set (for formats
of data values, refer to descriptions in Section 9.11.1)

Returns

Any relevant DRLC return code listed in Section 9.9 or ZCL return code listed in the
ZCL User Guide (JN-UG-3077)

teSE_DRLCStatus eSE_DRLCSetEventUserData(
uint32 u32IssuerId,
uint8 u8SourceEndPointId,
teSE_DRLCUserEventSet eUserEventSetID,
uint16 u16EventData);
258 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_DRLCGetLoadControlEvent

Description

This function can be used to obtain an LCE from a local LCE list.

The required list must be specified as one of ‘Scheduled’, ‘Active’, ‘Cancelled’ and
‘Deallocated’. The index of the required LCE in the list must also be specified. The
index of zero is used to indicate that the LCE with the oldest start-time should be
retrieved. To retrieve all the LCEs in a list, repeatedly call this function with index zero
until the function indicates that there are no further LCEs in the list (returns
E_SE_DRLC_EVENT_NOT_FOUND).

Parameters

u8SourceEndPointId Number of the local endpoint from which the LCE is to be
retrieved (endpoint corresponding to the DRLC cluster)

u8TableIndex Index of required LCE in the specified LCE list (see below)

eEventList LCE list from which the LCE is to be retrieved, one of:
E_SE_DRLC_EVENT_LIST_SCHEDULED
E_SE_DRLC_EVENT_LIST_ACTIVE
E_SE_DRLC_EVENT_LIST_CANCELLED
E_SE_DRLC_EVENT_LIST_DEALLOCATED

ppsLoadControlEvent Pointer to a pointer to a tsSE_DRLCLoadControlEvent
structure to receive the obtained LCE (see Section 9.11.1)

Returns

Any relevant DRLC return code listed in Section 9.9 or ZCL return code listed in the
ZCL User Guide (JN-UG-3077)

teSE_DRLCStatus eDRLCGetLoadControlEvent(
uint8 u8SourceEndPointId,
uint8 u8TableIndex,
teSE_DRLCEventList eEventList,
tsSE_DRLCLoadControlEvent **ppsLoadControlEvent);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 259

Chapter 9
Demand-Response and Load Control Cluster

eSE_DRLCFindLoadControlEvent

Description

This function can be used to obtain the specified LCE from the local LCE lists.

The required LCE must be specified in terms of its identifier issued by the utility
company. The function will search all the local LCE lists, identify the list (if any) in
which the LCE was found and return the found LCE.

Parameters

u8SourceEndPointId Number of the local endpoint from which the LCE is to be
retrieved (endpoint corresponding to the DRLC cluster)

u32IssuerId Identifier of the LCE to be found (as issued by the utility
company)

bIsServer Cluster server or client:
TRUE - server
FALSE - client

ppsLoadControlEvent Pointer to a pointer to a tsSE_DRLCLoadControlEvent
structure to receive the obtained LCE (see Section 9.11.1)

peEventList Pointer to variable to receive enumerated value of the list in
which the LCE was found (see Section 9.10.7)

Returns

Any relevant DRLC return code listed in Section 9.9 or ZCL return code listed in the
ZCL User Guide (JN-UG-3077)

teSE_DRLCStatus eSE_DRLCFindLoadControlEvent(
uint8 u8SourceEndPointId,
uint32 u32IssuerId,
bool_t bIsServer,
tsSE_DRLCLoadControlEvent **ppsLoadControlEvent,
teSE_DRLCEventList *peEventList);
260 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
9.9 Return Codes

In addition to some of the ZCL status enumerations (detailed in the ZCL User Guide
(JN-UG-3077)), the following enumerations are returned by the DRLC cluster
functions (described in Section 9.8) to indicate the outcome of the function call.

typedef enum PACK

{

 E_SE_DRLC_DUPLICATE_EXISTS = 0x80,

 E_SE_DRLC_EVENT_LATE,

 E_SE_DRLC_EVENT_NOT_YET_ACTIVE,

 E_SE_DRLC_EVENT_OLD,

 E_SE_DRLC_NOT_FOUND,

 E_SE_DRLC_EVENT_NOT_FOUND,

 E_SE_DRLC_EVENT_IGNORED,

 E_SE_DRLC_CANCEL_DEFERRED,

 E_SE_DRLC_BAD_DEVICE_CLASS,

 E_SE_DRLC_BAD_CRITICALITY_LEVEL,

 E_SE_DRLC_DURATION_TOO_LONG,

 E_SE_DRLC_ENUM_END

} teSE_DRLCStatus;

The above return codes are described in the table below.

Enumeration Description

E_SE_DRLC_DUPLICATE_EXISTS An overlapping LCE (in time) has been found

E_SE_DRLC_EVENT_LATE Function call refers to a time period that is earlier than the current
ZCL time

E_SE_DRLC_EVENT_NOT_YET_ACTIVE Not used - reserved for future use

E_SE_DRLC_EVENT_OLD Not used - reserved for future use

E_SE_DRLC_NOT_FOUND LCE cannot be found in lists (used in LCE cancellation or opt out)

E_SE_DRLC_EVENT_NOT_FOUND LCE cannot be found in lists (used when searching for an LCE)

E_SE_DRLC_EVENT_IGNORED Not used - reserved for future use

E_SE_DRLC_CANCEL_DEFERRED Cancellation has been processed but is deferred to act in the future

E_SE_DRLC_BAD_DEVICE_CLASS Specified device class not recognised

E_SE_DRLC_BAD_CRITICALITY_LEVEL Specified criticaility level not recognised

E_SE_DRLC_DURATION_TOO_LONG Specified duration exceeds maximum of 1440 minutes (one day)

Table 33: Return Codes
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 261

Chapter 9
Demand-Response and Load Control Cluster

9.10 Enumerations

9.10.1 ‘Device Class’ Enumerations

The device classes that are used in load control are enumerated in the
teSE_DRLCDeviceClassFieldBitmap structure below:

typedef enum

{

 E_SE_DRLC_HVAC_COMPRESSOR_OR_FURNACE_BIT = 0x00,

 E_SE_DRLC_STRIP_BASEBOARD_HEATERS_BIT,

 E_SE_DRLC_WATER_HEATER_BIT,

 E_SE_DRLC_POOL_PUMP_SPA_JACUZZI_BIT,

 E_SE_DRLC_SMART_APPLIANCES_BIT,

 E_SE_DRLC_IRRIGATION_PUMP_BIT,

 E_SE_DRLC_MANAGED_COMMERCIAL_AND_INDUSTRIAL_LOADS_BIT,

 E_SE_DRLC_SIMPLE_MISC_LOADS_BIT,

 E_SE_DRLC_EXTERIOR_LIGHTING_BIT,

 E_SE_DRLC_INTERIOR_LIGHTING_BIT,

 E_SE_DRLC_ELECTRIC_VEHICLE_BIT,

 E_SE_DRLC_GENERATION_SYSTEMS_BIT,

 E_SE_DRLC_DEVICE_CLASS_FIRST_RESERVED_BIT

} teSE_DRLCDeviceClassFieldBitmap;

The device class enumerations are listed and described in the table below.

Device Class Enumeration Description

E_SE_DRLC_HVAC_COMPRESSOR_OR_FURNACE_BIT HVAC compressor or furnace

E_SE_DRLC_STRIP_BASEBOARD_HEATERS_BIT Strip/baseboard heater

E_SE_DRLC_WATER_HEATER_BIT Water heater

E_SE_DRLC_POOL_PUMP_SPA_JACUZZI_BIT Pool/spa/jacuzzi pump

E_SE_DRLC_SMART_APPLIANCES_BIT Smart appliance

E_SE_DRLC_IRRIGATION_PUMP_BIT Irrigation pump

E_SE_DRLC_MANAGED_COMMERCIAL_AND_INDUSTRIAL_
LOADS_BIT

Managed Commercial & Industrial (C&I)

E_SE_DRLC_SIMPLE_MISC_LOADS_BIT Simple miscellaneous (residential on/off)

E_SE_DRLC_EXTERIOR_LIGHTING_BIT Exterior lighting

E_SE_DRLC_INTERIOR_LIGHTING_BIT Interior lighting

E_SE_DRLC_ELECTRIC_VEHICLE_BIT Electric vehicle

Table 34: Device Classes
262 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
9.10.2 ‘DRLC Event’ Enumerations

The event types generated by the DRLC cluster are enumerated in the
teSE_DRLCCallBackEventType structure below:

typedef enum PACK

{

 E_SE_DRLC_EVENT_API =0x00,

 E_SE_DRLC_EVENT_COMMAND,

 E_SE_DRLC_EVENT_ACTIVE,

 E_SE_DRLC_EVENT_EXPIRED,

 E_SE_DRLC_EVENT_CANCELLED,

 E_SE_DRLC_EVENT_ENUM_END,

} teSE_DRLCCallBackEventType;

The above event types are described in the table below.

DRLC events are described in more detail in Section 9.7.

E_SE_DRLC_GENERATION_SYSTEMS_BIT Generation systems

E_SE_DRLC_DEVICE_CLASS_FIRST_RESERVED_BIT Reserved

Event Type Enumeration Description

E_SE_DRLC_EVENT_API Reserved for internal use

E_SE_DRLC_EVENT_COMMAND Generated when a command has been received from either
the cluster server or a cluster client

E_SE_DRLC_EVENT_ACTIVE Generated when an LCE has been added to the ‘Active’ list

E_SE_DRLC_EVENT_EXPIRED Generated when an LCE has been removed from the
‘Active’ list

E_SE_DRLC_EVENT_CANCELLED Generated when an LCE has been put in the ‘Cancelled’ list

Table 35: DRLC Event Types

Device Class Enumeration Description

Table 34: Device Classes
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 263

Chapter 9
Demand-Response and Load Control Cluster

9.10.3 ‘Criticality Level’ Enumerations

The criticality levels that are available for an LCE are enumerated in the
teSE_DRLCCriticalityLevels structure below:

typedef enum

{

 E_SE_DRLC_RESERVED_0_CRITICALITY = 0x00,

 E_SE_DRLC_GREEN_CRITICALITY,

 E_SE_DRLC_VOLUNTARY_1_CRITICALITY,

 E_SE_DRLC_VOLUNTARY_2_CRITICALITY,

 E_SE_DRLC_VOLUNTARY_3_CRITICALITY,

 E_SE_DRLC_VOLUNTARY_4_CRITICALITY,

 E_SE_DRLC_VOLUNTARY_5_CRITICALITY,

 E_SE_DRLC_EMERGENCY_CRITICALITY,

 E_SE_DRLC_PLANNED_OUTAGE_CRITICALITY,

 E_SE_DRLC_SERVICE_DISCONNECT_CRITICALITY,

 E_SE_DRLC_UTILITY_DEFINED_1_CRITICALITY,

 E_SE_DRLC_UTILITY_DEFINED_2_CRITICALITY,

 E_SE_DRLC_UTILITY_DEFINED_3_CRITICALITY,

 E_SE_DRLC_UTILITY_DEFINED_4_CRITICALITY,

 E_SE_DRLC_UTILITY_DEFINED_5_CRITICALITY,

 E_SE_DRLC_UTILITY_DEFINED_6_CRITICALITY,

 E_SE_DRLC_FIRST_RESERVED_CRITICALITY

} teSE_DRLCCriticalityLevels;

The above criticality levels are described in the table below.

Criticality Level Enumeration Description

E_SE_DRLC_RESERVED_0_CRITICALITY Reserved for future use

E_SE_DRLC_GREEN_CRITICALITY Green: Indicates that there will be a significant contribu-
tion from non-green sources during the LCE - participa-
tion in the LCE is voluntary

E_SE_DRLC_VOLUNTARY_1_CRITICALITY Voluntary 1-6: Represent increasing levels of load
reduction as move through levels 1 to 6, as defined by
the utility company - intended to be used in a sequence
of LCEs to gradually reduce loads, where participation
in the LCEs is voluntary

E_SE_DRLC_VOLUNTARY_2_CRITICALITY

E_SE_DRLC_VOLUNTARY_3_CRITICALITY

E_SE_DRLC_VOLUNTARY_4_CRITICALITY

E_SE_DRLC_VOLUNTARY_5_CRITICALITY

E_SE_DRLC_EMERGENCY_CRITICALITY Emergency: Indicates that the LCE represents an
emergency situation (normally demanding the termina-
tion of all non-essential loads, as defined by the utility
company) - participation in the LCE is mandatory

Table 36: Criticality Levels
264 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
9.10.4 ‘LCE Cancellation’ Enumerations

The cancellation options (immediate or randomised) that are available for an LCE are
enumerated in the teSE_DRLCCancelControl structure below:

typedef enum PACK

{

 E_SE_DRLC_CANCEL_CONTROL_IMMEDIATE =0x00,

 E_SE_DRLC_CANCEL_CONTROL_USE_RANDOMISATION =0x10

} teSE_DRLCCancelControl;

The above options are described in the table below.

E_SE_DRLC_PLANNED_OUTAGE_CRITICALITY Planned Outage: Indicates that the LCE represents an
intentional outage (normally demanding the termination
of all non-essential loads, as defined by the utility com-
pany) - participation in the LCE is mandatory

E_SE_DRLC_SERVICE_DISCONNECT_CRITICALITY Service Disconnect: Indicates that the LCE represents
a service disconnection (normally demanding the termi-
nation of all non-essential loads, as defined by the utility
company) - participation in the LCE is mandatory

E_SE_DRLC_UTILITY_DEFINED_1_CRITICALITY Utility-defined 1-6: Criticality levels completely defined
by the utility company - participation in the LCE is volun-
tary E_SE_DRLC_UTILITY_DEFINED_2_CRITICALITY

E_SE_DRLC_UTILITY_DEFINED_3_CRITICALITY

E_SE_DRLC_UTILITY_DEFINED_4_CRITICALITY

E_SE_DRLC_UTILITY_DEFINED_5_CRITICALITY

E_SE_DRLC_UTILITY_DEFINED_6_CRITICALITY

E_SE_DRLC_FIRST_RESERVED_CRITICALITY Reserved for future use

LCE Cancellation Enumeration Description

E_SE_DRLC_CANCEL_CONTROL_IMMEDIATE LCE will be cancelled immediately by moving it
directly to the ‘Deallocated’ list - a randomised
end-time configured in the LCE will be ignored

E_SE_DRLC_CANCEL_CONTROL_USE_RANDOMISATION A random delay will be applied to the LCE cancel-
lation, if a randomised end-time was configured in
the LCE - the LCE will be moved to the ‘Can-
celled’ list where it will stay (and remain valid)
until the random delay has expired, when it will be
moved to the ‘Deallocated’ list (an upper limit on
the delay is defined in the cluster - see Section
9.2)

Table 37: LCE Cancellation Options

Criticality Level Enumeration Description

Table 36: Criticality Levels
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 265

Chapter 9
Demand-Response and Load Control Cluster

9.10.5 ‘LCE Participation’ Enumerations

The options to participate or not participate in an LCE are enumerated in the
teSE_DRLCUserEventOption structure below:

typedef enum PACK

{

 E_SE_DRLC_EVENT_USER_OPT_IN =0x00,

 E_SE_DRLC_EVENT_USER_OPT_OUT

} teSE_DRLCUserEventOption;

The above options are described in the table below.

9.10.6 ‘LCE Data Modification’ Enumerations

The load control data items that can be locally modified in an LCE are enumerated in
the teSE_DRLCUserEventSet structure below:

typedef enum PACK

{

 E_SE_DRLC_CRITICALITY_LEVEL_APPLIED =0x00,

 E_SE_DRLC_COOLING_TEMPERATURE_SET_POINT_APPLIED,

 E_SE_DRLC_HEATING_TEMPERATURE_SET_POINT_APPLIED,

 E_SE_DRLC_AVERAGE_LOAD_ADJUSTMENT_PERCENTAGE_APPLIED,

 E_SE_DRLC_DUTY_CYCLE_APPLIED,

 E_SE_DRLC_USER_EVENT_ENUM_END,

} teSE_DRLCUserEventSet;

The above options are described in the table below (the data items are fully described
in Section 9.11.1).

LCE Participation Enumeration Description

E_SE_DRLC_EVENT_USER_OPT_OUT User has opted not to participate in the LCE. The device sends this
message and does not adjust the load when the LCE becomes
active.

E_SE_DRLC_EVENT_USER_OPT_IN User has opted to participate in the LCE. The device only sends this
message following an OPT_OUT (when the user has changed their
mind and decided to participate after all)

Table 38: LCE Participation Options
266 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
9.10.7 ‘LCE List’ Enumerations

The LCE lists are enumerated in the teSE_DRLCEventList structure below:

typedef enum PACK

{

 E_SE_DRLC_EVENT_LIST_SCHEDULED =0x00,

 E_SE_DRLC_EVENT_LIST_ACTIVE,

 E_SE_DRLC_EVENT_LIST_CANCELLED,

 E_SE_DRLC_EVENT_LIST_DEALLOCATED,

 E_SE_DRLC_EVENT_LIST_NONE

} teSE_DRLCEventList;

The above lists are described in the table below.

LCE Participation Enumeration Description

E_SE_DRLC_CRITICALITY_LEVEL_APPLIED Specifies that ‘criticality level’ is to be modified.

E_SE_DRLC_COOLING_TEMPERATURE_
SET_POINT_APPLIED

Specifies that ‘cooling temperature set-point’ is to be modi-
fied

E_SE_DRLC_HEATING_TEMPERATURE_
SET_POINT_APPLIED

Specifies that ‘heating temperature set-point’ is to be modi-
fied

E_SE_DRLC_AVERAGE_LOAD_ADJUSTMENT_
PERCENTAGE_APPLIED

Specifies that ‘average load adjustment percentage’ is to be
modified

E_SE_DRLC_DUTY_CYCLE_APPLIED Specifies that ‘duty cycle’ is to be modified

Table 39: LCE Data Modification Options

LCE List Enumeration Description

E_SE_DRLC_EVENT_LIST_SCHEDULED Scheduled list: Contains LCEs that are due to be executed in
the future

E_SE_DRLC_EVENT_LIST_ACTIVE Active list: Contains LCEs that are currently being executed

E_SE_DRLC_EVENT_LIST_CANCELLED Cancelled list: Contains LCEs that have been cancelled with a
randomised end-time and whose random end-time has not yet
been reached

E_SE_DRLC_EVENT_LIST_DEALLOCATED Deallocated list: Contains expired LCEs and therefore a record
of the free storage for LCEs

Table 40: LCE Lists
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 267

Chapter 9
Demand-Response and Load Control Cluster

9.10.8 ‘LCE Status’ Enumerations

LCE status is enumerated in the teSE_DRLCEventStatus structure below:

typedef enum PACK

{

 E_SE_DRLC_LOAD_CONTROL_EVENT_COMMAND_RECIEVED =0x01,

 E_SE_DRLC_EVENT_STARTED,

 E_SE_DRLC_EVENT_COMPLETED,

 E_SE_DRLC_USER_CHOSEN_OPT_OUT,

 E_SE_DRLC_USER_CHOSEN_OPT_IN,

 E_SE_DRLC_EVENT_HAS_BEEN_CANCELLED,

 E_SE_DRLC_EVENT_HAS_BEEN_SUPERSEDED,

 E_SE_DRLC_EVENT_PARTIALLY_COMPLETED_WITH_USER_OPT_OUT,

 E_SE_DRLC_EVENT_PARTIALLY_COMPLETED_WITH_USER_OPT_IN,

 E_SE_DRLC_EVENT_COMPLETED_NO_USER_PARTICIPATION,

 E_SE_DRLC_REJECTED_INVALID_CANCEL_COMMAND_DEFAULT =0xF8,

 E_SE_DRLC_REJECTED_INVALID_CANCEL_COMMAND_INVALID_EFFECTIVE_TIME,

 E_SE_DRLC_REJECTED_EVENT_RECEIVED_AFTER_IT_HAD_EXPIRED =0xFB,

 E_SE_DRLC_REJECTED_INVALID_CANCEL_COMMAND_UNDEFINED_EVENT=0xFD,

 E_SE_DRLC_LOAD_CONTROL_EVENT_COMMAND_REJECTED,

 E_SE_DRLC_EVENT_STATUS_ENUM_END

} teSE_DRLCEventStatus;

The above enumerations are described in the table below.

Enumeration Description

E_SE_DRLC_LOAD_CONTROL_EVENT_COMMAND_
RECEIVED

LCE command received (to add new LCE to local lists)

E_SE_DRLC_EVENT_STARTED LCE has started

E_SE_DRLC_EVENT_COMPLETED LCE has completed

E_SE_DRLC_USER_CHOSEN_OPT_OUT Client has opted out of the LCE

E_SE_DRLC_USER_CHOSEN_OPT_IN Client has opted into the LCE

E_SE_DRLC_EVENT_HAS_BEEN_CANCELLED LCE has been cancelled

E_SE_DRLC_EVENT_HAS_BEEN_SUPERSEDED LCE has been replaced with another LCE

E_SE_DRLC_EVENT_PARTIALLY_COMPLETED_
WITH_USER_OPT_OUT

LCE has prematurely completed due to a client opt-out
during the LCE

E_SE_DRLC_EVENT_PARTIALLY_COMPLETED_
WITH_USER_OPT_IN

LCE has completed but was only partially executed due
to a client opt-in during the LCE

E_SE_DRLC_EVENT_COMPLETED_NO_USER_
PARTICIPATION

LCE has completed but there was no client participation
(due to a client opt-out from the start)

E_SE_DRLC_REJECTED_INVALID_CANCEL_
COMMAND_DEFAULT

Received ‘cancel command’ invalid and rejected
(default)

Table 41: LCE Status Codes
268 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
E_SE_DRLC_REJECTED_INVALID_CANCEL_
COMMAND_INVALID_EFFECTIVE_TIME

Received ‘cancel command’ rejected due to invalid
effective time (start-time of cancellation)

E_SE_DRLC_REJECTED_EVENT_RECEIVED_
AFTER_IT_HAD_EXPIRED

LCE was received after it had expired (current time is
greater than start-time + duration)

E_SE_DRLC_REJECTED_INVALID_CANCEL_
COMMAND_UNDEFINED_EVENT

Received ‘cancel command’ due to undefined LCE

E_SE_DRLC_LOAD_CONTROL_EVENT_COMMAND_
REJECTED

LCE command rejected

Enumeration Description

Table 41: LCE Status Codes
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 269

Chapter 9
Demand-Response and Load Control Cluster

9.11 Structures

9.11.1 tsSE_DRLCLoadControlEvent

The structure of type tsSE_DRLCLoadControlEvent contains the parameters of a
Load Control Event (LCE), as shown and described below.

typedef struct {

 uint8 u8UtilityEnrolmentGroup;

 uint8 u8CriticalityLevel;

 uint8 u8CoolingTemperatureOffset;

 uint8 u8HeatingTemperatureOffset;

 uint8 u8AverageLoadAdjustmentSetPoint;

 uint8 u8DutyCycle;

 uint8 u8EventControl;

 uint16 u16DeviceClass;

 uint16 u16DurationInMinutes;

 uint16 u16CoolingTemperatureSetPoint;

 uint16 u16HeatingTemperatureSetPoint;

 uint32 u32IssuerId;

 uint32 u32StartTime;

} tsSE_DRLCLoadControlEvent;

where:

 u8UtilityEnrolmentGroup identifies the group of devices to which the
LCE applies - an ‘enrolment group’ is defined by the utility company. The
identifier 0x00 is reserved to indicate ‘all groups’.

 u8CriticalityLevel is a value representing the level of criticality of the
LCE. Enumerations are provided for the different levels and are detailed in
Section 9.10.3.

 u8CoolingTemperatureOffset (optional) specifies the required
temperature offset, in units of 0.1oC, above the current temperature set-point of
a cooling device (e.g. 0x5 represents a temperature offset of 0.5oC). The
setting 0xFF is used to indicate that no offset is required.

 u8HeatingTemperatureOffset (optional) specifies the required
temperature offset, in units of 0.1oC, below the current temperature set-point of
a heating device (e.g. 0x14 represents a temperature offset of 2.0oC). The
setting 0xFF is used to indicate that no offset is required.

 u8AverageLoadAdjustmentSetPoint (optional) specifies the maximum
permissible load as an offset from the consumer’s average load, where this
offset is expressed as a positive or negative percentage in units of 1% (e.g.
20% allows loads of up to 120% of the average while -10% allows loads of up
to 90% of the average). The offset has a valid range of -100% to +100% and is
represented in two’s complement form (e.g. 15% is represented by 0x0F and
270 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
-5% is represented by 0xFB). The value 0x80 is used to indicate that no such
limit is required.

 u8DutyCycle (optional) specifies the percentage duty cycle for the load
supplied to the device - that is, the percentage of the LCE duration for which
the load will be supplied (e.g. for a duty cycle of 80%, the supplied device will
be ‘on’ for 80% of the duration of the LCE). The manner in which the duty cycle
is implemented (e.g. periodicity) is device-specific. The valid range of duty
cycle values is 0 to 100. The setting 0xFF indicates that no duty cycling is
required.

 u8EventControl specifies whether a randomised start-time and/or
randomised end-time are required for the LCE. The following bit-masks are
provided to allow the start-time and end-time of an LCE to be individually
randomised (they can be bitwise-ORed to randomise both times):

#define SE_DRLC_CONTROL_RANDOMISATION_START_TIME_MASK (0x01)

#define SE_DRLC_CONTROL_RANDOMISATION_STOP_TIME_MASK (0x02)

 u16DeviceClass identifies the class(es) of device to which the LCE applies.
Enumerations are provided for the various device classes, which may be
combined in a bitwise-OR operation, and are detailed in Section 9.10.1.

 u16DurationInMinutes specifies the duration, in minutes, of the LCE
(although the actual duration will be longer than the specified duration if a
randomised end-time is required). The maximum possible duration that can be
specified is 1440 minutes (one day).

 u16CoolingTemperatureSetPoint (optional) specifies the required
temperature set-point, in units of 0.01oC, for a cooling device, where a negative
temperature is represented in two’s complement form (e.g. a temperature of
20oC is represented by 0x07D0 and -40oC is represented by 0xF060). The
valid temperature range is -273.15°C to 327.67°C. The setting 0x8000 is used
to indicate that no temperature set-point is required.

 u16HeatingTemperatureSetPoint (optional) specifies the required
temperature set-point, in units of 0.01oC, for a heating device, where a negative
temperature is represented in two’s complement form (e.g. a temperature of
25oC is represented by 0x09C4 and -1oC is represented by 0xFFFF). The valid
temperature range is -273.15°C to 327.67°C. The setting 0x8000 is used to
indicate that no temperature set-point is required.

 u32IssuerId is a unique identifier for the LCE, issued by the utility company
(the value could be based on the time-stamp of when the LCE was issued).

 u32StartTime represents the start-time (UTC) of the LCE (although the
actual start-time will be later if a randomised start-time is required). The value
0x000000000 is used to indicate a ‘start-time of now’.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 271

Chapter 9
Demand-Response and Load Control Cluster

9.11.2 tsSE_DRLCGetScheduledEvents

The structure of type tsSE_DRLCGetScheduledEvents contains the parameters of
a Get Scheduled Event message, as shown and described below.

typedef struct {

 uint32 u32StartTime;

 uint8 u8numberOfEvents;

} tsSE_DRLCGetScheduledEvents;

where:

 u32StartTime is the earliest start-time (UTC) of the requested LCEs

 u8numberOfEvents is the maximum number of LCEs to report

9.11.3 tsSE_DRLCCancelLoadControlEvent

The structure of type tsSE_DRLCCancelLoadControlEvent contains the
parameters of a Cancel LCE command, as shown and described below.

typedef struct {

 uint32 u32IssuerId;

 uint16 u16DeviceClass;

 uint8 u8UtilityEnrolmentGroup;

 teSE_DRLCCancelControl eCancelControl;

 uint32 u32effectiveTime;

} tsSE_DRLCCancelLoadControlEvent;

where:

 u32IssuerId is the identifer (provided by the utility company) of the LCE to
be cancelled

 u16DeviceClass is a bitmap indicating the device class(es) to which the LCE
cancellation applies - enumerations for the device classes are provided, as
described in Section 9.10.1

 u8UtilityEnrolmentGroup is the enrolment group of the devices to which
the LCE cancellation applies

 eCancelControl indicates whether to honour a randomised end that has
been configured in the LCE - enumerations are provided, as described in
Section 9.10.4

 u32effectiveTime is the time (UTC) from which the LCE cancellation will be
effective

272 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
9.11.4 tsSE_DRLCReportEvent

The structure of type tsSE_DRLCReportEvent contains the parameters of a Report
Event Status message, as shown and described below.

typedef struct {

 uint8 u8EventStatus;

 uint8 u8AverageLoadAdjustmentPercentageApplied;

 uint8 u8DutyCycleApplied;

 uint8 u8EventControl;

 uint8 u8SignatureType;

 uint8 u8CriticalityLevelApplied;

 bool_t bSignatureVerified;

 uint16 u16CoolingTemperatureSetPointApplied;

 uint16 u16HeatingTemperatureSetPointApplied;

 uint32 u32IssuerId;

 uint32 u32EventStatusTime;

 tsSE_DRLCOctets sSignature;

} tsSE_DRLCReportEvent;

where:

 u8EventStatus is the reported LCE status - enumerations are provided and
described in Section 9.10.8

 u8AverageLoadAdjustmentPercentageApplied is an optional field
containing the load adjustment percentage applied by the sending client (if the
user has chosen to over-ride the original setting in the LCE) - for the format of
this setting, refer to the equivalent field description in Section 9.11.1 (0x80
indicates that the field is not used)

 u8DutyCycleApplied is an optional field containing the percentage duty
cycle applied by the sending client (if the user has chosen to over-ride the
original setting in the LCE) - for the format of this setting, refer to the equivalent
field description in Section 9.11.1 (0xFF indicates that the field is not used)

 u8EventControl is a bitmap which specifies whether a randomised start-
time and/or randomised end-time are configured for the LCE:

 u8SignatureType is the type of algorithm, if any, used to create the signature
for the Report Event Status message (only one algorithm, ECDSA, is currently
supported):

#define SE_DRLC_NO_SIGNATURE (0x00)
#define SE_DRLC_SIGNATURE_TYPE_ECDSA (0x01)

Bit Description

0 1 = randomised start-time, 0 = immediate start-time

1 1 = randomised end-time, 0 = immediate end-time

2-7 Not used
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 273

Chapter 9
Demand-Response and Load Control Cluster

 u8CriticalityLevelApplied is the criticality level of the LCE -
enumerations are provided and described in Section 9.10.3

 bSignatureVerified is filled in by the recipient of the Report Event Status
message (therefore, the DRLC cluster server) to indicate whether the
signature of the message has been verified and is valid:

TRUE - verified and valid
FALSE - verified and not valid, or not verified

 u16CoolingTemperatureSetPointApplied is an optional field containing
the cooling temperature applied by the sending client (if the user has chosen to
over-ride the original setting in the LCE) - for the format of this setting, refer to
the equivalent field description in Section 9.11.1 (0x8000 indicates that the field
is not used)

 u16HeatingTemperatureSetPointApplied is an optional field containing
the heating temperature applied by the sending client (if the user has chosen to
over-ride the original setting in the LCE) - for the format of this setting, refer to
the equivalent field description in Section 9.11.1 (0x8000 indicates that the field
is not used)

 u32IssuerId is the unique identifier for the LCE, as issued by the utility
company

 u32EventStatusTime is the time (UTC) at which the Report Event Status
message was issued

 sSignature is the signature for the Report Event Status message - this is the
concatenation of two ECDSA signature components (r,s)

9.11.5 tsSE_DRLCCallBackMessage

The structure of type tsSE_DRLCCallBackMessage contains a DRLC callback
event. It is shown below but described in Section 9.7.

typedef struct

{

 teSE_DRLCCallBackEventType eEventType;

 uint8 u8CommandId;

 teSE_DRLCStatus eDRLCStatus;

 uint32 u32CurrentTime;

 union {

 tsSE_DRLCLoadControlEvent sLoadControlEvent;

 tsSE_DRLCCancelLoadControlEvent sCancelLoadControlEvent;

 tsSE_DRLCCancelLoadControlAllEvent sCancelLoadControlAllEvent;

 tsSE_DRLCReportEvent sReportEvent;

 tsSE_DRLCGetScheduledEvents sGetScheduledEvents;

 } uMessage;

} tsSE_DRLCCallBackMessage;

Note: It is recommended that signatures are supported
by your application for backward compatibility.
274 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
9.12 Compile-Time Options

This section describes the compile-time options that may be enabled in the
zcl_options.h file of an application that uses the DRLC cluster.

The DRLC cluster is enabled by defining CLD_DRLC.

Client and server versions of the cluster are defined by DRLC_CLIENT and
DRLC_SERVER, respectively.

Length of LCE Lists

The number of LCEs that may be stored in an LCE list (see Section 9.4.2) is, by
default, three. This default can be over-ridden on the cluster server and a cluster client
by assigning the desired values to the macros:

SE_DRLC_NUMBER_OF_SERVER_LOAD_CONTROL_ENTRIES (server)

SE_DRLC_NUMBER_OF_CLIENT_LOAD_CONTROL_ENTRIES (client)

LCE Re-sends

The DRLC cluster server may re-send an LCE when it becomes active in order to
support clients that do not have a clock. This facility should not be enabled unless
explicitly required. To enable this functionality, define:

DRLC_SEND_LCE_AGAIN_AT_ACTIVE_TIME

Message Signing (Security)

On DRLC cluster clients that need to implement message signing (see Section 9.6),
the following must be defined:

#define SE_MESSAGE_SIGNING

For a DRLC cluster server to check a message signature, it is necessary to locally
store the certificates of any nodes that perform key establishment. The maximum
number of certificates that can be stored is configured by defining the following on the
server:

#define KEC_NUM_CERTIFICATES <n>

where n is the number of certificates that can be stored.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 275

Chapter 9
Demand-Response and Load Control Cluster

276 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
10. Key Establishment Cluster

This chapter outlines the Key Establishment cluster which is defined in the ZigBee
Smart Energy profile and is a mandatory cluster for nearly all ZigBee SE devices. It is
used to manage secure wireless communications between SE devices.

The Key Establishment cluster has a Cluster ID of 0x0800.

10.1 Overview

The Key Establishment cluster is a mandatory server-side and client-side cluster for
all ZigBee SE devices.

ZigBee PRO employs the AES-CCM* 128-bit key-based encryption system to secure
communications between the nodes of a wireless network. The Key Establishment
cluster is concerned with establishing a unique application link key for encrypted
communications between a pair of nodes (the key is unique to the pair), as outlined in
Section 2.5.2.

The attributes of the Key Establishment cluster client and server specify all the
cryptographic schemes for key establishment on a device. The cluster’s commands
are used to initiate the key request mechanism on the client device. The ESP normally
acts as the server and performs device authentication.

The Key Establishment cluster is enabled by defining CLD_KEY_ESTABLISHMENT
in the zcl_options.h file - see Section 3.5.1. Further compile-time options for the Key
Establishment cluster are detailed in Section 10.11.

Note: There can only be one Key Establishment cluster
on each endpoint. The function eZCL_Register()
checks for this and will return an error code of
E_ZCL_ERR_KEY_ESTABLISHMENT_MORE_THAN_
ONE_CLUSTER if more than one cluster is found on a
single endpoint.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 277

Chapter 10
Key Establishment Cluster

10.2 Key Establishment Cluster Structure and Attribute

The Key Establishment cluster is contained in the following
tsCLD_KeyEstablishment structure:

typedef struct

{

 zenum16 u16KeyEstablishmentSuite;

} tsCLD_KeyEstablishment;

where u16KeyEstablishmentSuite indicates the Key Establishment suite used to
derive the application link key. In the NXP implementation, this value should always
be set to 1.

10.3 Performing Key Establishment

Key establishment is performed when a device joins the SE network and involves key
exchanges with the ESP/Co-ordinator/Trust Centre - see Section 2.5.2. The process
is largely automatic, but the applications on the joining device (client) and ESP
(server) must take certain steps - these are detailed separately below for the joining
device and ESP.

On the Joining Device

The following steps must be taken in the application on the joining device:

1. First initialise the security set-up and register the pre-configured link key of the
joining device (see Section 2.5.2) using the stack function
ZPS_vAplSecSetInitialSecurityState() detailed in the ZigBee PRO Stack
User Guide (JN-UG-3048). Note that this function must be called after
ZPS_eAplAfInit() and the JenOS initialisation functions that are listed in the
“Forming a Network” section of the above User Guide.

Note 1: The key establishment processes described
below are illustrated in the demonstration code of the
Application Note Smart Energy HAN Solutions
(JN-AN-1135).

Note 2: These processes apply on a cold start of the
device or on a device reset in which the persisted
application state indicates that key establishment did not
previously complete (before the reset).

Note 3: In the case of a device reset in which the
persisted application state indicates that key
establishment successully completed (before the reset),
security is re-established as described in Section 10.5.
278 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
2. Next initialise the SE library using eSE_Initialise() and register an endpoint
on the joining device, e.g. using eSE_RegisterIPDEndPoint() for an IPD -
see Section 4.2.

3. Now initialise the key establishment data by calling the SE function
eSE_KECLoadKeys(). The joining device’s digital security certificate,
together with its associated public and private keys, must be provided in this
function call (see Section 2.5.2).

4. At this point, the ZigBee PRO stack can be started on the joining device using
the stack function ZPS_eAplZdoStartStack() and then the stack function
ZPS_eAplZdoJoinNetwork() can be called to request a join. Note that full
descriptions of initialising the application, starting the stack and initiating a join
are provided in the ZigBee PRO Stack User Guide (JN-UG-3048).

5. On receiving a confirmation event that the device has joined the network
(depending on the device type, ZPS_EVENT_NWK_JOINED_AS_ROUTER
or ZPS_EVENT_NWK_JOINED_AS_ENDDEVICE):

 The network address and endpoint number of the Key Establishment
cluster server should be discovered using the stack function
ZPS_eAplZdpMatchDescRequest(), as described in Section 4.4.

 The generation of APS acknowledgements must be disabled (until after
key establishment has completed) using the function
ZPS_eAplZdoSetDevicePermission() with the setting
ZPS_DEVICE_PERMISSIONS_DATA_REQUEST_DISALLOWED.

6. The key exchange sequence can then be started by calling the SE function
eSE_KECInitiateKeyEstablishment(). The Key Establishment cluster code
then works through a pre-ordered sequence of exchanges with the server.

7. Eventually, a Key Establishment event will be generated indicating success or
failure (for details of the Key Establishment events, see Section 10.4):

 In the case of success, the function ZPS_eAplZdoAddReplaceLinkKey()
must be called again to store the established application link key delivered
in the tsKEC_Common structure in the generated event. Subsequent data
exchanges between the joined device and the ESP will be encrypted with
this new key. These communications should always use the joined
device’s IEEE/MAC address extracted from the device’s security certificate
in the tsKEC_Common structure. APS acknowledgements should also be
re-enabled by calling ZPS_eAplZdoSetDevicePermission() with the
setting ZPS_DEVICE_PERMISSIONS_ALL_PERMITED.

 In the case of failure, the application may report the failure to the user,
giving the option to re-try key establishment on the same device or start a
channel scan for another ESP/Co-ordinator. Failure can occur if the ESP is
busy with another key establishment process - in this case, the event will
contain a minimum waiting time (in seconds) before a re-try is
recommended.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 279

Chapter 10
Key Establishment Cluster

On the ESP

The following steps must be taken in the application on the ESP/Co-ordinator:

1. After registering the ESP endpoint using eSE_RegisterEspMeterEndPoint()
or eSE_RegisterEspEndPoint(), initialise the key establishment data of the
ESP device by calling the SE function eSE_KECLoadKeys(). The ESP
device's digital security certificate, together with its associated public and
private keys, must be provided in this function call (see Section 2.5.2).

2. For each device which is expected to join the network, perform the following
two steps:

a) Load the pre-configured link key of the joining device, using the stack
function ZPS_eAplZdoAddReplaceLinkKey() detailed in the ZigBee
PRO Stack User Guide (JN-UG-3048). The pre-configured link key and
IEEE/MAC address of the joining node are provided to the ESP application
by the utility company via the backhaul network - see Section 2.5.2.

b) Call ZPS_bAplZdoTrustCenterSetDevicePermissions() with the setting
ZPS_TRUST_CENTER_DATA_REQUEST_DISALLOWED for the joining
node.

3. On completion of the key exchange sequence with a joining device, a Key
Establishment event will be generated indicating success or failure (for details
of the Key Establishment events, see Section 10.4):

 In the case of success, the function ZPS_eAplZdoAddReplaceLinkKey()
must be called again to store the established application link key
(delivered in the generated event). The ESP application must then call the
stack function ZPS_bAplZdoTrustCenterSetDevicePermissions() with
the setting ZPS_TRUST_CENTER_JOIN_DISALLOWED for the stored
key (so that the device cannot ‘join’ the network again but only ‘re-join’).
Subsequent data exchanges between the ESP and the joined device will
be encrypted with this key.

 In the case of failure (which can occur if the ESP is busy with another key
establishment process), it is the responsibility of the client (joined device)
to decide what to do next, e.g. re-try key establishment after a short delay.

Note: This procedure assumes that the ZigBee PRO
stack is already running on the ESP/Co-ordinator and
that the device has been fully initialised.
280 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
10.4 Key Establishment Events

The Key Establishment cluster has its own events that are handled through the
callback mechanism outlined in Section 4.7 (and fully detailed in the ZCL User Guide
(JN-UG-3077)). Key Establishment event handling must be included in the callback
function for the associated endpoint, where this callback function is registered through
the relevant endpoint registration function (for example, through
eSE_RegisterEspEndPoint() for a standalone ESP). The relevant callback function
will then be invoked when a Key Establishment event occurs.

For a Key Establishment event, the eEventType field of the
tsZCL_CallBackEvent structure is set to E_ZCL_CBET_CLUSTER_CUSTOM.
This event structure also contains an element sClusterCustomMessage, which is
itself a structure containing a field pvCustomData. This field is a pointer to a
tsSE_KECCallBackMessage structure which contains the Key Establishment
parameters:

typedef struct

{

 teSE_KECCallBackEventType eEventType;

 uint8 u8CommandId;

 teSE_KECStatus eKECStatus;

 teSE_KECTerminateKeyEstablishmentStatusCode eTerminateReason;

 uint32 u32CurrentTime;

 tsKEC_Common *psKEC_Common;

} tsSE_KECCallBackMessage;

Information on the elements of the above structure is provided in the sub-sections
below. The structure is fully detailed in Section 10.9.1.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 281

Chapter 10
Key Establishment Cluster

10.4.1 Event Types

The eEventType field of the tsSE_KECCallBackMessage structure above specifies
the type of Key Establishment event that has been generated - these event types are
enumerated in the teSE_KECCallBackEventType structure and described below.

typedef enum PACK

{

 E_SE_KEC_EVENT_API =0x00,

 E_SE_KEC_EVENT_COMMAND,

 // scheduler codes

 E_SE_KEC_APS_RX_EXPIRED,

 E_SE_KEC_EPHEMERAL_DATA_EXPIRED,

 E_SE_KEC_KEY_ESTABLISHMENT_EXPIRED,

 E_SE_KEC_KEY_ESTABLISHMENT_TERMINATED

} teSE_KECCallBackEventType;

E_SE_KEC_EVENT_COMMAND

The E_SE_KEC_EVENT_COMMAND event is generated when a command is
executing on either the server or client. In the tsSE_KECCallBackMessage
structure, the u8CommandId field is used to indicate the corresponding command -
one of:

#define E_SE_INITIATE_KEY_ESTABLISHMENT_REQUEST (0x00)

#define E_SE_EPHEMERAL_DATA_REQUEST (0x01)

#define E_SE_CONFIRM_KEY_DATA_REQUEST (0x02)

#define E_SE_TERMINATE_KEY_ESTABLISHMENT (0x03)

#define E_SE_INITIATE_KEY_ESTABLISHMENT_RESPONSE (0x00)

#define E_SE_EPHEMERAL_DATA_RESPONSE (0x01)

#define E_SE_CONFIRM_KEY_DATA_RESPONSE (0x02)

E_SE_KEC_APS_RX_EXPIRED

The E_SE_KEC_APS_RX_EXPIRED event is generated when the key establishment
process has timed out due to an acknowledgement not being received in response to
the last key establishment message that was transmitted.

E_SE_KEC_EPHEMERAL_DATA_EXPIRED

The E_SE_KEC_EPHEMERAL_DATA_EXPIRED event is generated when the key
establishment process has timed out due to ephemeral data not being generated in a
given time.

E_SE_KEC_KEY_ESTABLISHMENT_EXPIRED

The E_SE_KEC_KEY_ESTABLISHMENT_EXPIRED event is generated when the
key establishment process has timed out due to the Confirm Key request not being
generated in time by the client.
282 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
E_SE_KEC_KEY_ESTABLISHMENT_TERMINATED

The E_SE_KEC_KEY_ESTABLISHMENT_TERMINATED event is generated when
the key establishment process has been terminated prematurely (for one of a number
of reasons - see Section 10.10.3).

10.4.2 Other Elements of tsSE_KECCallBackMessage

In addition to the fields eEventType and u8CommandId described in Section 10.4.2,
the tsSE_KECCallBackMessage structure contains the following elements.

u32CurrentTime

The u32CurrentTime field contains the time (UTC) at which the event was
generated.

psKEC_Common

The psKEC_Common field is a pointer to the internal key exchange data structure,
which defines the present state of the Key Establishment cluster. The user should not
modify this data.

eKECStatus

The eKECStatus field indicates the status returned from the command that has been
executed (the command identified in u8CommandId). The status codes are
enumerated in the teSE_KECStatus structure, shown below.

typedef enum PACK

{

 E_SE_KEY_ESTABLISHMENT_SUCCESS =0x00,

 E_SE_KEY_ESTABLISHMENT_FAILURE,

 E_SE_KEY_ESTABLISHMENT_VALUE,

 E_SE_KEY_ESTABLISHMENT_PARAMETER_NULL,

 E_SE_KEY_ESTABLISHMENT_PARAMETER_ERROR,

 E_SE_KEY_ESTABLISHMENT_INSUFFICIENT_SPACE,

 E_SE_KEY_ESTABLISHMENT_STATE_ERROR,

 E_SE_KEY_ESTABLISHMENT_EP_NOT_FOUND,

 E_SE_KEY_ESTABLISHMENT_EP_RANGE,

 E_SE_KEY_ESTABLISHMENT_ZBUFFER_FAIL,

 E_SE_KEY_ESTABLISHMENT_CLUSTER_NOT_FOUND,

 E_SE_KEY_ESTABLISHMENT_CUSTOM_DATA_NULL,

 E_SE_KEY_ESTABLISHMENT_ZTRANSMIT_FAIL,

 E_SE_KEY_ESTABLISHMENT_BAD_MESSAGE,

 E_SE_KEY_ESTABLISHMENT_NO_RESOURCES,

 E_SE_KEY_ESTABLISHMENT_UNSUPPORTED_SUITE,

 E_SE_KEY_ESTABLISHMENT_CERTIFICATE_ERROR,

 E_SE_KEY_ESTABLISHMENT_TSN_ERROR

} teSE_KECStatus;
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 283

Chapter 10
Key Establishment Cluster

10.5 Restoring Link Key from Non-Volatile Memory

An application link key (which results from the key establishment process) is stored in
external non-volatile memory (normally Flash memory) when the function
ZPS_eAplZdoAddReplaceLinkKey() is called. During a subsequent cold restart of
the JN51xx wireless microcontroller (for example, following a power failure), this key
is automatically retrieved from Flash memory, provided that the JenOS Persistent
Data Manager (PDM) module is enabled - for details of using the PDM module, refer
to the JenOS User Guide (JN-UG-3075).

In order to successfully restore the application link key from Flash memory, you should
implement the following procedure in your application (which requires use of the PDM
module) - the exact procedure required depends on the device:

Before the Restart

1. Immediately after calling ZPS_eAplZdoAddReplaceLinkKey() to store the
newly established key, save a variable to Flash memory indicating that key
establishment has completed and an application link key has been stored.

2. Save this variable to Flash memory using the PDM function
PDM_vSaveRecord().

After the Restart (ESP/Trust Centre)

1. During a subsequent cold start, retrieve the saved variable from Flash
memory using the PDM function PDM_eLoadRecord() and check the
variable to confirm that an application link key is available.

2. Provided that a key is available, call the following functions in your code:

a) eSE_Initialise() to initialise the SE library

b) Relevant endpoint registration function,
e.g. eSE_RegisterEspEndPoint()

c) ZPS_eAplZdoStartStack() to start the stack

After the Restart (Other Devices)

1. During a subsequent cold start, retrieve the saved variable from Flash
memory using the PDM function PDM_eLoadRecord() and check the
variable to confirm that an application link key is available.

2. Provided that a key is available, call the following functions in your code:

a) ZPS_eAplZdoStartStack() to start the stack

b) eSE_Initialise() to initialise the SE library

c) Relevant endpoint registration function, e.g. eSE_RegisterIPDEndPoint()

d) ZPS_eAplZdoSetDevicePermission() with the setting
ZPS_DEVICE_PERMISSIONS_ALL_PERMITED to re-enable APS
acknowledgements
284 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
If performing a cold start and there is no application link key to retrieve from Flash
memory, the application must initiate a new key establishment process, as described
in Section 10.3.

Caution: If an established application link key has been
restored from Flash memory, do not call the function
ZPS_eAplZdoAddReplaceLinkKey(), as this will over-
write the existing key.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 285

Chapter 10
Key Establishment Cluster

10.6 Testing Key Establishment

The function eSE_KECConfigureTestHarness() allows certain tests on key
establishment between devices to be configured on a device. The parameter values
for this configuration are provided to the function in a structure of the type
tsKEC_TestHarnessParameters (described in Section 10.9.3). The possible tests
and the relevant parameters from this structure are summarised in the table below.

For full details of the above tests, refer to the “Security & The Key Establishment
Cluster” section of the SEP 1.1 Test Specification (075384) from the ZigBee Alliance.

Test Description Relevant Parameters

Timeout
(Trust Centre)

Tests the Trust Centre's handling of a
timeout when the partner device takes
longer than advertised to respond to a
key establishment cluster message

bSlowResponseTestEnabled
u8EphemeralInitMessageTime
u8EphemeralDelayTime

Timeout
(Device)

Tests a device’s handling of a timeout
when the partner device takes longer
than advertised to respond to a key
establishment cluster message

Long Generate Time
(Trust Centre)

Tests the Trust Centre's handling of
large values of Ephemeral Data Gen-
erate Time and Confirm Key Generate
Time when the partner device meets
these requirements

bSlowResponseTestEnabled
u8EphemeralInitMessageTime
u8EphemeralDelayTime
u8ConfirmInitMessageTime
u8ConfirmDelayTime

Long Generate Time
(Device)

Tests a device’s handling of large val-
ues of Ephemeral Data Generate Time
and Confirm Key Generate Time when
the partner device meets these
requirements

Too Long Certificate
(Trust Centre)

Tests the proper operation of the Trust
Centre when it receives a key estab-
lishment message which has extra
bytes appended to the message

u8ExtraBytesAfterCert

Too Long Certificate
(Device)

Tests the proper operation of a device
when it receives a key establishment
message which has extra bytes
appended to the end of the message

Out of Sequence Message
(Device)

Tests the proper handling of an out-of-
order message in the key establish-
ment protocol

bRespondToInitReqWithEp-
hRsp

Corrupt Certificate
(Device)

Tests the rejection of link key estab-
lishment between the Trust Centre
and a device due to a corrupted certifi-
cate

Table 42: Key Establishment Tests
286 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
10.7 Functions

The following Key Establishment cluster functions are provided in the SE API:

Function Page

eSE_KECCreate 288

eSE_KECLoadKeys 290

eSE_KECInitiateKeyEstablishment 291

eSE_KECConfigureTestHarness 292
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 287

Chapter 10
Key Establishment Cluster

eSE_KECCreate

Description

This function creates an instance of the Key Establishment cluster on an endpoint.
The cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Key Establishment cluster
instance on the endpoint, but instances of other clusters may also be created on the
same endpoint by calling their corresponding creation functions. For more details of
creating cluster instances on custom endpoints, refer to Appendix B.

When used, this function must be the first Key Establishment cluster function called
in the application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Key
Establishment cluster, which can be obtained by using the macro
CLD_KEC_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8AppKEC_ClusterAttributeControlBits[CLD_KEC_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see the ZCL User Guide
(JN-UG-3077)). This structure will be updated by the
function by initialising individual structure fields.

teZCL_Status eSE_KECCreate(
uint8 *pu8AttributeControlBits,
tsZCL_ClusterInstance *psClusterInstance,
tsZCL_ClusterDefinition *psClusterDefinition,
tsSE_KECCustomDataStructure *psCustomDataStructure,
void *pvEndPointSharedStructPtr);

Note: This function must not be called for an endpoint on
which a standard ZigBee device (e.g. IPD) will be used. In this
case, the device and its supported clusters must be registered
on the endpoint using the relevant device registration function
from those described in Chapter 12.
288 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see the ZCL User Guide (JN-UG-3077)). In
this case, this structure must contain the details of the
Key Establishment cluster. This parameter can refer to
a pre-filled structure called
sCLD_KeyEstablishment which is provided in the
KeyEstablishment.h file.

psCustomDataStructure Pointer to structure which contains custom data for the
Key Establishment cluster. This structure is used for
internal data storage. No knowledge of the fields of this
structure is required

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_KeyEstablishment which
defines the attributes of Key Establishment cluster. The
function will initialise the attributes with default values.

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 289

Chapter 10
Key Establishment Cluster

eSE_KECLoadKeys

Description

This function must be called by the application on both the joining device and the
ESP, in order to load the respective device’s security certificate and keys. The
function can be called once the device endpoint has been registered, e.g. after calling
eSE_RegisterEspEndPoint() for a stanadlone ESP or
eSE_RegisterIPDEndPoint() for an IPD.

For more information on where to use this function, refer to Section 10.3.

A digital security certificate must be obtained for a device from Certicom
(www.certicom.com). This certificate includes a public key. A private key is also
issued, which is paired with the certificate. The security certificate, public key and
private key must all be passed into this function.

Note that the Key Establishment cluster code makes internal copies of the data
passed via this function and there is therefore no need for the application to maintain
this data as part of external context saving.

Parameters

u8SourceEndPointId Number of the local endpoint on which the Key
Establishment cluster resides

pu8CertificateAuthorityPublicKey Pointer to location which holds the device’s
public key, issued as part of its security certificate

pu8Certificate Pointer to location which holds the device’s
security certificate

pu8PrivateKey Pointer to location which holds the device’s
private key, issued alongside its security
certificate

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

teSE_KECStatus eSE_KECLoadKeys(
uint8 u8SourceEndPointId,
uint8 *pu8CertificateAuthorityPublicKey,
uint8 *pu8Certificate,
uint8 *pu8PrivateKey);
290 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_KECInitiateKeyEstablishment

Description

This function must be called by the application on a joined device to initiate the key
exchange protocol with the ESP. The function must be called only once the function
eSE_KECLoadKeys() has been called on both the local device and ESP, and once
the stack has been started on the local device and the device has joined the network.

On successful completion of the key establishment process, an application link key
will be returned in an E_ZCL_CBET_CLUSTER_CUSTOM event of the type
E_SE_KEC_EVENT_COMMAND. This key must subsequently be stored by the
application using the ZigBee PRO function ZPS_eAplZdoAddReplaceLinkKey().

For more information on where to use this function, refer to Section 10.3.

Parameters

u8SourceEndPointId Number of the local endpoint through which the
key exchange will take place

u8DestinationEndPointId Number of the remote endpoint (on the ESP) to
which key exchange messages will be sent

psDestinationAddress Pointer to a structure containing the address of
the remote node (ESP) to which key exchange
messages will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_SE_KEY_ESTABLISHMENT_STATE_ERROR

E_SE_KEY_ESTABLISHMENT_KEYS_NOT_LOADED

teSE_KECStatus eSE_KECInitiateKeyEstablishment(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 291

Chapter 10
Key Establishment Cluster

eSE_KECConfigureTestHarness

Description

This function can be used to set up a test harness in order to perform tests on key
establishment between two devices, one of which is the Trust Centre. The function
is used to configure certain key establishment parameters on one of the two
participating devices. The parameter values that define the particular test(s) to be
performed are provided through a structure (detailed in Section 10.9.3).

The possible tests are outlined in Section 10.6. For full details of the tests, refer to
the “Security & The Key Establishment Cluster” section of the SEP 1.1 Test
Specification (075384) from the ZigBee Alliance.

Parameters

u8SourceEndPointId Number of the local endpoint through which the
key exchange will take place

psParameters Pointer to structure containing parameter values
for test harness (see Section 10.9.3)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_CUSTOM_DATA_NULL

teSE_KECStatus eSE_KECConfigureTestHarness(
uint8 u8SourceEndPointId,
tsKEC_TestHarnessParameters *psParameters);

Caution: This function should only be called during testing.
Be sure to remove the function call for normal operation of the
network.
292 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
10.8 Return Codes

In addition to some of the ZCL status enumerations (detailed in the ZCL User Guide
(JN-UG-3077)), the following enumerations are returned by SE API Key
Establishment cluster functions (see Section 10.7) to indicate the outcome of the
function call.

typedef enum PACK

{

 E_SE_KEY_ESTABLISHMENT_STATE_ERROR = 0x80,

 E_SE_KEY_ESTABLISHMENT_BAD_MESSAGE,

 E_SE_KEY_ESTABLISHMENT_NO_RESOURCES,

 E_SE_KEY_ESTABLISHMENT_UNSUPPORTED_SUITE,

 E_SE_KEY_ESTABLISHMENT_TSN_ERROR,

 E_SE_KEY_ESTABLISHMENT_MAC_VERIFY_FAILED,

 E_SE_KEY_ESTABLISHMENT_KEYS_NOT_LOADED

} teSE_KECStatus;

The above enumerations are described in the table below.

Enumeration Description

E_SE_KEY_ESTABLISHMENT_STATE_ERROR Error occurred during key exchange process

E_SE_KEY_ESTABLISHMENT_BAD_MESSAGE Incorrect parameter in key exchange message

E_SE_KEY_ESTABLISHMENT_NO_RESOURCES Key establishment currently busy

E_SE_KEY_ESTABLISHMENT_UNSUPPORTED_SUITE Specified Key Establishment suite is not supported

E_SE_KEY_ESTABLISHMENT_TSN_ERROR Error in Transaction Sequence Number

E_SE_KEY_ESTABLISHMENT_MAC_VERIFY_FAILED Message Authentication Code incorrect

E_SE_KEY_ESTABLISHMENT_KEYS_NOT_LOADED No keys have been loaded

Table 43: Key Establishment Cluster Return Codes
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 293

Chapter 10
Key Establishment Cluster

10.9 Structures

10.9.1 tsSE_KECCallBackMessage

For a Key Establishment event, the eEventType field of the
tsZCL_CallBackEvent structure is set to E_ZCL_CBET_CLUSTER_CUSTOM.
This event structure also contains an element sClusterCustomMessage, which is
itself a structure containing a field pvCustomData. This field is a pointer to the
following tsSE_KECCallBackMessage structure which contains the Key
Establishment parameters:

typedef struct

{

 teSE_KECCallBackEventType eEventType;

 uint8 u8CommandId;

 teSE_KECStatus eKECStatus;

 teSE_KECTerminateKeyEstablishmentStatusCode eTerminateReason;

 uint32 u32CurrentTime;

 tsKEC_Common *psKEC_Common;

} tsSE_KECCallBackMessage;

where:

 eEventType is the Key Establishment event type - see Section 10.9

 u8CommandId is the command that has been executed - see Section 10.10

 eKECStatus is the return status of the command that has been executed - see
Section 10.8

 eTerminateReason is an enumeration indicating the reason for terminating
the key establishment process - see Section 10.10.3

 u32CurrentTime is the current time (UTC), in seconds

 psKEC_Common is a pointer to the internal key exchange data structure, which
defines the present state of the Key Establishment cluster (this structure
contains the established application link key) - see Section 10.9.2
294 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
10.9.2 tsKEC_Common

This structure contains information relating to the key establishment process, but most
of this information is not directly relevant to the application. The structure is accessed
via the tsSE_KECCallBackMessage structure (see Section 10.9.1) and contains the
application link key which results from a successful key establishment process.

struct tsKEC_Common

{

 uint8 u8RemoteEmphemeralTimeout;

 uint8 u8RemoteConfirmTimeout;

 uint8 u8WaitTime;

 uint8 u8TransactionSequenceNumber;

 bool_t bAPSrxReceived;

 bool_t bIsLoaded;

 teSE_KECState eState;

 uint32 u32APSRxUtcTimeout;

 uint32 u32NextMessageUtcTimeout;

 tsZCL_CallBackEvent sKECCustomCallBackEvent;

 tsSE_KECCallBackMessage sKECCallBackMessage;

 tsKEC_TestHarnessParameters sTestHarnessParameters;

 tsKEC_TestHarnessState sTestHarnessState;

 tsSE_KECTerminateKeyEstablishmentCmdPayload sTerminateKeyEstablishmentCmdPayload;

 uint8 au8LocalEphemeralPublicKey[E_SE_PUBLIC_KEY_LEN];

 uint8 au8LocalMACVData[E_SE_HASH_LEN];

 union

 {

 uint8 au8RemoteEphemeralPublicKey[E_SE_PUBLIC_KEY_LEN];

 uint8 au8RemoteCertificate[E_SE_CERTIFICATE_LEN];

 }uMessage;

 uint8 *pu8CertificateAuthorityPublicKey;

 uint8 *pu8LocalCertificate;

 uint8 *pu8PrivateKey;

 uint8 au8EphemeralPrivateKey[E_SE_PRIVATE_KEY_LEN];

 uint8 au8MacKey[E_SE_HASH_LEN];

 uint8 au8Key[E_SE_HASH_LEN];

 tsSE_KECCertificate asCertificate[KEC_NUM_CERTIFICATES];

};

The only elements of this structure that will be of interest to the application are:

 au8RemoteCertificate[], which is an array containing the security
certificate of the remote device with which a link key has been established - this
certificate contains the IEEE/MAC address of the remote device (see below)

 au8Key[], which is an array containing the established application link key

The IEEE/MAC address of the remote device and the application link key can be
extracted from this structure using the following code:

// Copy MAC address from certificate

memcpy(&u64MacAddress, &psKECMessage->psKEC_Common->au8RemoteCertificate[22], 8);

ZPS_eAplZdoAddReplaceLinkKey(u64MacAddress, psKECMessage->psKEC_Common->au8Key);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 295

Chapter 10
Key Establishment Cluster

10.9.3 tsKEC_TestHarnessParameters

This structure contains parameter values which define the test(s) to be conducted on
key establishment between devices. These parameter values are used by the function
eSE_KECConfigureTestHarness().

typedef struct

{

 bool_t bSlowResponseTestEnabled;

 uint8 u8EphemeralDelayTime;

 uint8 u8ConfirmDelayTime;

 uint8 u8EphemeralInitMessageTime;

 uint8 u8ConfirmInitMessageTime;

 uint8 u8ExtraBytesAfterCert;

 bool_t bRespondToInitReqWithEphRsp;

} tsKEC_TestHarnessParameters;

where:

 bSlowResponseTestEnabled enables (TRUE) or disables (FALSE) the
testing of slow message generation, controlled by the following parameters:

 u8EphemeralDelayTime is the time delay, in seconds, to apply before
sending an Ephemeral message (e.g. 240 s)

 u8ConfirmDelayTime is the time delay, in seconds, to apply before
sending a Confirm Key message (e.g. 240 s)

 u8EphemeralInitMessageTime is the Ephemeral Delay Time, in
seconds, advertised in the Initiate message (e.g. 254 s)

 u8ConfirmInitMessageTime is the Confirm Generate Time, in
seconds, advertised in the Initiate message (e.g. 254 s)

 u8ExtraBytesAfterCert is the number of bytes to insert after the identity
data in the Initiate message

 bRespondToInitReqWithEphRsp enables (TRUE) or disables (FALSE) an
Ephemeral Data Response to the Initiate message for testing out-of-order
messages

For information on the possible tests and the relevant parameters (from the above
structure), refer to Section 10.6.
296 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
10.10 Enumerations

10.10.1 ‘Event’ Enumerations

The event types generated by the Key Establishment cluster are enumerated in the
teSE_KECCallBackEventType structure below:

typedef enum PACK

{

 E_SE_KEC_EVENT_API =0x00,

 E_SE_KEC_EVENT_COMMAND,

 // scheduler codes

 E_SE_KEC_APS_RX_EXPIRED,

 E_SE_KEC_INITIATE_EXPIRED,

 E_SE_KEC_EPHEMERAL_DATA_EXPIRED,

 E_SE_KEC_KEY_ESTABLISHMENT_EXPIRED,

 E_SE_KEC_KEY_ESTABLISHMENT_TERMINATED,

 E_SE_KEC_KEY_ESTABLISHMENT_CBET_ENUM_END,

} teSE_KECCallBackEventType;

The above event types are described in the table below.

Event Type Enumeration Description

E_SE_KEC_EVENT_API Not used - reserved for future use

E_SE_KEC_EVENT_COMMAND Indicates that a command is executing on the server or client

E_SE_KEC_APS_RX_EXPIRED Indicates that the key establishment process has timed out due
to an APS acknowledgement not being received in response to
the last key establishment message that was transmitted

E_SE_KEC_INITIATE_EXPIRED Indicates a timeout due to an ‘initiate response’ not being
received

E_SE_KEC_EPHEMERAL_DATA_EXPIRED Indicates that the key establishment process has timed out due
to ephemeral data not being generated in a given time.

E_SE_KEC_KEY_ESTABLISHMENT_EXPIRED Indicates that the key establishment process has timed out due
to the Confirm Key request not being generated in time by the
client

E_SE_KEC_KEY_ESTABLISHMENT_
TERMINATED

Indicates that key establishment with the server has been ter-
minated due to a mismatch of server certificates

Table 44: Key Establishment Event Types
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 297

Chapter 10
Key Establishment Cluster

10.10.2 ‘Command ID’ Enumerations

The following enumerations are used to identify commands (requests and responses)
used by the Key Establishment cluster:

#define E_SE_INITIATE_KEY_ESTABLISHMENT_REQUEST (0x00)

#define E_SE_EPHEMERAL_DATA_REQUEST (0x01)

#define E_SE_CONFIRM_KEY_DATA_REQUEST (0x02)

#define E_SE_TERMINATE_KEY_ESTABLISHMENT (0x03)

#define E_SE_INITIATE_KEY_ESTABLISHMENT_RESPONSE (0x00)

#define E_SE_EPHEMERAL_DATA_RESPONSE (0x01)

#define E_SE_CONFIRM_KEY_DATA_RESPONSE (0x02)

On successful completion of the key establishment process, the response
E_SE_CONFIRM_KEY_DATA_RESPONSE will be generated.

10.10.3 ‘Key Establishment Termination’ Status Codes

The following enumerations are used to indicate the reason for the termination of the
key establishment process.

typedef enum

{

 E_SE_KEY_ESTABLISHMENT_TERMINATE_UNKNOWN_ISSUER = 0x01,

 E_SE_KEY_ESTABLISHMENT_TERMINATE_BAD_KEY_CONFIRM,

 E_SE_KEY_ESTABLISHMENT_TERMINATE_BAD_MESSAGE,

 E_SE_KEY_ESTABLISHMENT_TERMINATE_NO_RESOURCES,

 E_SE_KEY_ESTABLISHMENT_TERMINATE_UNSUPPORTED_SUITE,

} teSE_KECTerminateKeyEstablishmentStatusCode;

The above status codes are described in the table below.

Event Type Enumeration Description

E_SE_KEY_ESTABLISHMENT_TERMINATE_
UNKNOWN_ISSUER

Unknown issuer

E_SE_KEY_ESTABLISHMENT_TERMINATE_
BAD_KEY_CONFIRM

Bad key

E_SE_KEY_ESTABLISHMENT_TERMINATE_
BAD_MESSAGE

Bad message

E_SE_KEY_ESTABLISHMENT_TERMINATE_
NO_RESOURCES

No resources to handle key establishment

Table 45: ‘Key Establishment Termination’ Status Codes
298 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
10.11 Compile-Time Options

This section describes the compile-time options that may be set in the zcl_options.h
file of an application that uses the Key Establishment cluster.

The Key Establishment cluster is enabled by defining CLD_KEC.

A set of key establishment timeout periods can be customised in the options file,
although it is unlikely that you will need to change these from the default values (which
are defined in the header file KEC.h). These timeout values are described below.

Ephemeral Data Timeout

The timeout period for the generation of an ephemeral data message is defined using
the macro:

KEC_EPHEMERAL_DATA_GENERATE_TIME

The default value is 10 seconds (which is conservative for the JN51xx device, which
normally takes less than one second to generate this message). This value is sent to
the remote device to inform it how long to wait for an ephemeral data message before
timing out.

‘Confirm Key’ Timeout

The timeout period for the generation of a ‘confirm key’ message is defined using the
macro:

KEC_CONFIRM_KEY_GENERATE_TIME

The default value is 10 seconds (which is conservative for the JN51xx device, which
normally takes less than one second to generate this message). This value is sent to
the remote device to inform it how long to wait for a key confirmation message before
timing out.

Message Response Timeout

The timeout period for the reception of the response to a key establishment message
is defined using the macro:

E_SE_KEY_ESTABLISHMENT_TERMINATE_
UNSUPPORTED_SUITE

Unsupported KEC suite

Tip: The Itron meter uses its own ZCL Transaction
Sequence Number (TSN) when replying to messages,
rather than the TSN of the message that it is replying to,
and so the following option must be defined:
CLD_KEY_ESTABLISHMENT_DISABLE_TSN_CHECK.

Event Type Enumeration Description

Table 45: ‘Key Establishment Termination’ Status Codes
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 299

Chapter 10
Key Establishment Cluster

KEC_MESSAGE_RESPONSE_TIME

The default value is 7 seconds (which takes into account possible transmission retries
and is comfortably above the minimum of 2 seconds recommended in the ZigBee
Smart Energy Specification). This value is added to the timeout value for the particular
message type - for example, when a JN51xx device performs key establishment with
another JN51xx device, the total message-response timeout period for an ephemeral
data message or a ‘confirm key’ message is 17 seconds (by default).

APS Acknowledgement Timeout

The timeout period for the generation of an APS acknowledgement is defined using
the macro:

KEC_APS_ACK_WAIT_TIME

By default, this value is set to the value of KEC_MESSAGE_RESPONSE_TIME.

‘Initiate Response’ Timeout

The timeout period for the generation of an ‘initiate response’ is defined using the
macro:

KEC_INITIATE_RESPONSE_WAIT_TIME

By default, this value is set to the value of KEC_MESSAGE_RESPONSE_TIME.
The value is used locally after sending an ‘initiate message’ and while waiting for the
response.

Private Key Encryption

The following macro must be enabled for any JN516x production applications that use
the Key Establishment cluster:

 KEC_DECRYPT_PRIVATE_KEY

This macro enables decryption of the private security key. The key should therefore
be encrypted before it is merged with the application binary using JET. For more
information, refer to the JET User Guide (JN-UG-3081).
300 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
11. Tunnelling Cluster

This chapter outlines the Tunnelling cluster which is defined in the ZigBee Smart
Energy profile. It provides a transport mechanism for metering protocols within the
payloads of standard ZigBee frames.

The Tunnelling cluster has a Cluster ID of 0x0704.

11.1 Overview

Metering data, which uses its own transfer protocol, can be transported through an SE
network by embedding the data directly inside the payloads of normal ZigBee frames.
This data is said to be ‘tunnelled’ through the network. For example, data utilising the
following metering transfer protocols can be tunnelled: DLMS/COSEM, IEC61107,
ANSI C12, M-Bus. This functionality is implemented using the Tunnelling cluster.

Figure 17 below illustrates how the Tunnelling cluster may be used to transport DLMS
protocol messages within an SE network. The network includes a DLMS station
(located at the utility company) which sends commands to a Metering Device
supporting DLMS in the HAN at a customer’s premises. The ESP of the HAN receives
a DLMS command from the DLMS station via the backhaul network. The ESP
transparently tunnels the DLMS command to the Metering Device by encapsulating
the command in the payload of a ZigBee frame. The Metering Device receives the
tunnelled command, extracts and processes the DLMS message in the payload,
creates a response message and tunnels the DLMS response message back to the
ESP, which passes the data payload to the DLMS station.

Note: The NXP implementation of the Tunnelling cluster
does not currently support the optional flow control
feature.

Figure 16: Tunnelling Metering Data in ZigBee Frames

Metering Command (e.g. DLMS)

ZigBee Frame

Payload
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 301

Chapter 11
Tunnelling Cluster

The Tunnelling cluster is an optional cluster for all SE devices, and any device can
support this cluster as a client or as a server or both.

 When a device acts as a Tunnelling cluster client, the device requests a tunnel
from a cluster server and requests its closure when it is no longer needed.

 When a device acts as a Tunnelling cluster server, the device provides a tunnel
to a client on request and manages the tunnel.

In the above example, the ESP acts as a Tunnelling cluster client and the Metering
Device acts as a Tunnelling cluster server.

The Tunnelling cluster is enabled by defining CLD_TUNNELING in the zcl_options.h
file - see Section 3.5.1. Further compile-time options for the Tunnelling cluster are
detailed in Section 11.12.

The SE API provides functions for implementing the cluster commands. These
functions are referenced throughout this chapter and are detailed in Section 11.8.

11.2 Tunnelling Cluster Structure and Attribute

The Tunnelling cluster has only one server attribute, which is mandatory and is
contained in the following tsCLD_Tunnel structure:

typedef struct

{

 uint16 u16CloseTunnelTimeout;

} tsCLD_Tunnel;

where u16CloseTunnelTimeout is the timeout period, in seconds, for an inactive
tunnel - that is, it is the minimum time for which the server will allow an opened tunnel
to remain unused before closing it and releasing the associated resources.

Figure 17: Example Network for DLMS Tunnelling

ESP

Utility Private HAN
at Customer Premises

Metering
Device
(DLMS)

Tunnelled
DLMS

commands

DLMS Station
(at Utility HQ)

Backhaul
Network
302 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
11.3 Initialisation

Provided that the Tunnelling cluster is enabled through the compile-time options (see
Section 11.12), the cluster will be automatically initialised when the SE profile is
initialised and the SE device is registered in the application - that is, by calling
eSE_Initialise() and the relevant device registration function, for example:

 eSE_RegisterEspMeterEndPoint() on a combined ESP/Metering Device
(cluster client)

 eSE_RegisterMeterEndPoint() on a Metering Device (cluster server)

As part of this initialisation, the Tunnelling cluster is created as a server or client or
both.

11.4 Tunnel Creation

A tunnel is created by the Tunnelling cluster server but this creation must be initiated
on a cluster client using the function eSE_TunnelRequestTunnelSend(). Note that
this is a client function and should be called only on a client, once key establishment
has completed. The function call requires the following to be specified for the
requested tunnel:

 The ID of the protocol used by the data which is to be tunnelled

 The maximum size, in bytes, of the incoming tunnelled data

The function call results in a tunnel creation request being sent to the server.

Server-side Events

Calling eSE_TunnelRequestTunnelSend() on the client then results in the
generation of the following events on the server:

 E_SE_TUN_REQUEST_TUNNEL_REQUEST_RECEIVED

This event indicates that the server has received a request to create a tunnel.
The details of the tunnel request are given in the callback structure
tsSE_TunnelRequestTunnelCmdRcvd. This event is passed to the
application to check whether the Protocol ID requested by the client is
supported on the server and to set the maximum incoming data size on the
server. The application should update both these values in the fields eStatus
and u16MaxLocalIncmgDataSizeSupported of the structure
tsSE_TunnelRequestTunnelCmdRcvd before returning from the registered
endpoint callback function.

 E_SE_TUN_CREATED

This event indicates that the server has created a tunnel and gives the Tunnel
ID created for the application. The application can then use this Tunnel ID during
data transfer. Note that the application either can store this Tunnel ID for later
data transfers or can retrieve the tunnel details when required using the function
eSE_TunnelGetInformation().
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 303

Chapter 11
Tunnelling Cluster

Client-side Event

Calling eSE_TunnelRequestTunnelSend() on the client also results in the
generation of the following event on the client:

 E_SE_TUN_REQUEST_TUNNEL_RESPONSE_RECEIVED

This event indicates the status of tunnel created. If the tunnel status is success,
the client application can save the Tunnel ID for sending data or for closing the
tunnel. The application can alternatively retrieve the tunnel information using the
function eSE_TunnelGetInformation() when required (instead of storing it).

11.5 Tunnelled Data Transfer

A tunnelled data transfer can be initiated on either the client or the server after the
successful creation of a tunnel (as described in Section 11.4) - that is, after the event
E_SE_TUN_CREATED has been generated on the server or the event
E_SE_TUN_REQUEST_TUNNEL_RESPONSE_RECEIVED has been generated on
client. The data transfer can be initiated by calling the function
eSE_TunnelTransferDataSend() on either device.

Note that the maximum data size that can be transmitted using
eSE_TunnelTransferDataSend() should not exceed the maximum incoming data
transfer size of the recipient and should not exceed

APDU size - 5 bytes

where 3 bytes are reserved for the ZCL header and 2 bytes are reserved for the
Tunnel ID.

If the application needs to transfer more data than this, another call to
eSE_TunnelTransferDataSend() to initiate a second data transfer may be needed
after the event E_SE_TUN_TUNNEL_DATA_TRANSFER_COMPLETED or after a
timeout which is sufficient for the previous data transfer to complete.

The function eSE_TunnelTransferDataSend() takes a pointer to the data. The data
should be allocated by the application, which can use a global uint8 array for storing
the data.

Initiator Events

The following events are generated on the initiator of the tunnelled data transfer:

 E_SE_TUN_TUNNEL_DATA_TRANSFER_COMPLETED

This event indicates that data transmission has completed. The application may
choose to continue further data transmissions or close the tunnel.

 E_SE_TUN_TUNNEL_DATA_TRANSFER_ERROR

This event indicates that the previous data transmission has resulted in an error
on the recipient side. The status parameter indicates the type of error. The
application may choose to retransmit the packet or ignore this event or close the
tunnel.
304 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Recipient Event

The following event is generated on the recipient of the tunnelled data transfer.

 E_SE_TUN_TRANSFER_DATA_COMMAND_RECEIVED

This event indicates that tunnelled data has been received. The event contains
the data length and a pointer to the received data. The application should save
the data, if required, as the pointer will be deallocated once the registered
endpoint callback function has completed.

After receiving this event, the application may choose to send data to the
initiator or receive more data (by waiting for another event of the type
E_SE_TUN_TRANSFER_DATA_COMMAND_RECEIVED), or may choose to
ignore the event or close the tunnel (if a client).

11.6 Closing a Tunnel

A client can request a tunnel to be closed by calling eSE_TunnelCloseTunnelSend().
Note that this is a client function and can be called only on a client. As a result of this
function call, a Tunnel Close command is sent to the server.

The following event is generated on the server after receiving a Tunnel Close
command:

 E_SE_TUN_CLOSED

This event indicates that a tunnel has been closed on the server.

Note that this event can be generated either:

 on receiving a Tunnel Close command from a client, or

 if the tunnel is closed on a timeout value (stored in the server attribute -
see Section 11.2).

The contents of E_SE_TUN_CLOSED give the reason for the tunnel closure
(either E_SE_TUN_CLOSE_TUN_CMD_RECVD or E_SE_TUN_TIMEOUT).

Note: The application should not attempt to use the
tunnel after the tunnel has been closed. If a tunnelled
data transfer is required at a later point, the client
application should then request a new tunnel using the
function eSE_TunnelRequestTunnelSend().
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 305

Chapter 11
Tunnelling Cluster

11.7 Tunnelling Events

The Tunnelling cluster has its own events that are handled through the callback
mechanism outlined in Section 4.7 (and fully detailed in the ZCL User Guide
(JN-UG-3077)). If a device uses the Tunnelling cluster then Tunnelling event handling
must be included in the callback function for the associated endpoint - for example:

 For an Metering device (cluster server), this callback function is registered
through eSE_RegisterMeterEndPoint()

 For an ESP/Meter (cluster client), this callback function is registered through
eSE_RegisterESPMeterEndPoint()

The relevant callback function will then be invoked when a Tunnelling event occurs.
For a Tunnelling event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to a
tsSE_TunnelCallBackMessage structure which contains the Tunnelling
parameters:

typedef struct

{

 teSE_TunnelCallbackEvents eEventType;

 union

 {

 tsSE_TunnelRequestTunnelCmdRcvd sTunnelRequestTunnelCmd;

 tsSE_TunnelRequestTunnelResponse sTunnelRequestTunnelRspCmd;

 tsSE_TunnelRequestTunnelCreated sTunnelCreated;

 tsSE_TunnelTransferDataCmdPyldRcvd sTunnelTransferDataCmd;

 tsSE_TunnelTransferDataReqStatus sTransferDataReq;

 tsSE_TunnelTransferDataError sTunnelTransferDataErrCmd;

 tsSE_TunnelcloseTunnel sCloseTunnelDetails;

 }uMessage;

}tsSE_TunnelCallBackMessage;
306 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
11.7.1 Events Types

The eEventType field of the above structure specifies the type of Tunnelling event
that has been generated - these event types are enumerated in the
teSE_TunnelCallbackEvents structure and are described below.

typedef enum PACK

{

 E_SE_TUN_REQUEST_TUNNEL_REQUEST_RECEIVED,

 E_SE_TUN_REQUEST_TUNNEL_RESPONSE_RECEIVED,

 E_SE_TUN_CREATED,

 E_SE_TUN_TRANSFER_DATA_COMMAND_RECEIVED,

 E_SE_TUN_TUNNEL_DATA_TRANSFER_COMPLETED,

 E_SE_TUN_TUNNEL_DATA_TRANSFER_ERROR,

 E_SE_TUN_CLOSED

}teSE_TunnelCallbackEvents;

E_SE_TUN_REQUEST_TUNNEL_REQUEST_RECEIVED

This event is generated on a server on receiving a Request Tunnel command. The
event is passed to the application to check whether the application supports the
protocol requested and to indicate the incoming data transfer size for the server. The
event has the following payload:

typedef struct {

 teSE_TunnelStatus eStatus;

 uint16 u16MaxLocalIncmgDataSizeSupported;

 tsSE_TunnelRequestTunnelCmdPyld sTunnelRequestTunnelCmdPyld;

}tsSE_TunnelRequestTunnelCmdRcvd;

where

 eStatus indicates whether the protocol is supported. The application should
assign any of the following values to eStatus before returning from the
callback function:

E_SE_TUN_SUCCESS

E_SE_TUN_BUSY

E_SE_TUN_NO_MORE_TUNNEL

E_SE_TUN_PROTOCOL_NOT_SUPPORTED

 u16MaxLocalIncmgDataSizeSupported is the maximum incoming data
transfer size on the server. Note that this value should be less than
(APDU size - 5)

 sTunnelRequestTunnelCmdPyld contains the details of a tunnel request
received on the server. The tsSE_TunnelRequestTunnelCmdPyld
structure is described in Section 11.10.2
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 307

Chapter 11
Tunnelling Cluster

E_SE_TUN_REQUEST_TUNNEL_RESPONSE_RECEIVED

This event is generated on a client and indicates the status of a Request Tunnel
command that has been issued. The event has the following payload:

typedef struct

{

 teSE_TunnelRequestTunnelStatus eStatus;

 uint16 u16TunnelID;

 uint16 u16MaxIncmgTransferSize;

}tsSE_TunnelRequestTunnelResponse;

where

 eStatus indicates the status of the Request Tunnel command. This can have
any of the following enumerated values:

E_SE_TUN_SUCCESS

E_SE_TUN_BUSY

E_SE_TUN_NO_MORE_TUNNEL

E_SE_TUN_PROTOCOL_NOT_SUPPORTED

E_SE_TUN_FLOW_CONTROL_NOT_SUPPORTED

 u16TunnelID is the identifier for the requested tunnel (but will only be valid if
eStatus returns E_SE_TUN_SUCCESS)

 u16MaxIncmgTransferSize is the maximum incoming data transfer size on
the server. The client should not initiate a data transfer with a data length
greater than this value by means of a single Transfer Data command

E_SE_TUN_CREATED

This event is generated on a server and indicates that a tunnel has been created. The
event has the following payload:

typedef struct

{

 uint16 u16TunnelID;

}tsSE_TunnelRequestTunnelCreated;

where u16TunnelID is the identifier assigned to the created tunnel.
308 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
E_SE_TUN_TRANSFER_DATA_COMMAND_RECEIVED

This event can be generated either on a server or on a client after tunnelled data has
been received. The event has the following payload:

typedef struct

{

 uint8 u8Status;

 uint16 u16TunnelID;

 uint8 *pu8Data;

 uint16 u16DataLength;

 uint16 u16NumOfBytesLeft;

}tsSE_TunnelTransferDataCmdPyldRcvd;

where

 u8Status should be set by the application in the case of an error during the
processing of the data

 u16TunnelID is the identifier of the tunnel through which the data was
received

 pu8Data is a pointer to the received data. Note that this pointer will be invalid
once the endpoint callback function has completed and so the data should be
backed up by the application, if required at a later point

 u16DataLength is the length of the received data, in bytes

 u16NumOfBytesLeft is reserved for future use

 E_SE_TUN_TUNNEL_DATA_TRANSFER_COMPLETED

This event is generated on the server or a client, whichever has initiated the data
transfer using the function eSE_TunnelTransferDataSend(). The event has the
following payload:

typedef struct

{

 uint8 u8Status;

 uint16 u16TunnelID;

}tsSE_TunnelTransferDataReqStatus;

where

 u8Status indicates the status of the transmission (this is the status returned
by the ZPS_tsAfDataAckEvent event)

 u16TunnelID is the identifier of the tunnel used for the data transfer
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 309

Chapter 11
Tunnelling Cluster

E_SE_TUN_TUNNEL_DATA_TRANSFER_ERROR

This event can be generated either on a server or on a client after receiving a Data
Transfer Error command. The event has the following payload:

typedef struct

{

 tsSE_TunnelTransferDataStatus eTunnelTransferDataStatus;

 uint16 u16TunnelID;

}tsSE_TunnelTransferDataError;

where

 eTunnelTransferDataStatus is the error status. This can have any of the
following enumerated values:

E_SE_TUN_NO_SUCH_TUNNEL

E_SE_TUN_WRONG_DEVICE

E_SE_TUN_DATA_ERR_OVERFLOW

 u16TunnelID is the identifier of the tunnel through which the Data Transfer
Error command was received.

 E_SE_TUN_CLOSED

This event is generated on the server on the closure of a tunnel, either due to the
reception of a Close Tunnel command or due to a timeout (of value
E_CLD_TUN_CLOSE_TUNNEL_TIMEOUT) on an inactive channel. The event has
the following payload.

typedef struct

{

 uint16 u16TunnelID;

 teSE_TunnelCloseCause u8CloseReason;

}tsSE_TunnelcloseTunnel;

where

 u16TunnelID is the identifier of the tunnel that has been closed

 u8CloseReason indicates the reason for closure. This can be either
E_SE_TUN_CLOSE_TUN_CMD_RECVD or E_SE_TUN_TIMEOUT
310 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
11.7.2 Example Event Handling Callback Function

PRIVATE void vHandleTunnelingEvent(void *pvParam)

{

tsSE_TunnelCallBackMessage *psMessage = (tsSE_TunnelCallBackMessage*) (pvParam);

tsSE_TunnelTransferDataReqCmdPyld sData;

uint8 u8SeqNo;

uint16 tunnelID;

switch(psMessage->eEventType)

{

case E_SE_TUN_REQUEST_TUNNEL_REQUEST_RECEIVED:

psMessage->uMessage.sTunnelRequestTunnelCmd.eStatus =

 E_SE_TUN_SUCCESS;

if(E_PROTOCOL_SUPPORTED == psMessage-
>uMessage.sTunnelRequestTunnelCmd.sTunnelRequestTunnelCmdPyld.u8ProtocolID)

{

 psMessage->uMessage.sTunnelRequestTunnelCmd.eStatus =

 E_SE_TUN_SUCCESS;

}

Else

{

 psMessage->uMessage.sTunnelRequestTunnelCmd.eStatus =

 E_SE_TUN_PROTOCOL_NOT_SUPPORTED;

}

psMessage->uMessage.sTunnelRequestTunnelCmd.u16MaxLocalIncmgDataSizeSupported =
200;

break;

case E_SE_TUN_REQUEST_TUNNEL_RESPONSE_RECEIVED:

sData.u16TunnelID = psMessage->uMessage.sTunnelRequestTunnelRspCmd.u16TunnelID;

if(0x00 == psMessage->uMessage.sTunnelRequestTunnelRspCmd.eStatus)

{

 eSE_TunnelTransferDataSend(

 0x01,

 0x01,

 FALSE,

 &s_sDevice.sEsp.sAddress,

 &u8SeqNo,

 &sData);

}

case E_SE_TUN_CREATED:

DBG_vPrintf(TRUE,"E_SE_TUN_CREATED received\n");

DBG_vPrintf(TRUE,"u16TunnelID = %d\n",psMessage-
>uMessage.sTunnelCreated.u16TunnelID);

tunnelID = psMessage->uMessage.sTunnelCreated.u16TunnelID;
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 311

Chapter 11
Tunnelling Cluster

break;

case E_SE_TUN_TRANSFER_DATA_COMMAND_RECEIVED:

break;

case E_SE_TUN_TUNNEL_DATA_TRANSFER_COMPLETED:

eSE_TunnelCloseTunnelSend(

 1,

 1,

 &s_sDevice.sEsp.sAddress,

 &u8SeqNo,

 sData.u16TunnelID);

break;

case E_SE_TUN_TUNNEL_DATA_TRANSFER_ERROR:

break;

case E_SE_TUN_GET_SUPPORTED_PROTOCOL_RESPONSE_RECEIVED:

break;

case E_SE_TUN_CLOSED:

break;

default:

break;

}

}

312 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
11.8 Functions

The following Tunnelling cluster functions are provided in the SE API and described in
this section:

Function Page

eSE_TunnelCreate 314

eSE_TunnelRequestTunnelSend 316

eSE_TunnelTransferDataSend 317

eSE_TunnelCloseTunnelSend 319

eSE_TunnelGetInformation 320
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 313

Chapter 11
Tunnelling Cluster

eSE_TunnelCreate

Description

This function creates an instance of the Tunnelling cluster on an endpoint. The
cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

Note that:

 The function is called internally by the SE device registration functions, and so an
application that uses these standard functions does not need to explicitly call this
function

 The function should only be explicitly called when the application has been registered
with a custom endpoint, as described in Appendix B. In this case, it must be the first
Tunnelling function called in the application, and must be called after the stack has
been started and after the application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Tunnelling cluster,
which can be obtained by using the macro
CLD_TUN_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8
au8AppTunnel_ClusterAttributeControlBits[CLD_TUN_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

bIsServer Type of cluster instance (server or client) to be created:

TRUE - server
FALSE - client

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

psTunnelClusterInstance Pointer to structure containing information about the
cluster instance to be created (see the ZCL User Guide
(JN-UG-3077)). This structure will be updated by the
function by initialising individual structure fields.

teZCL_Status eSE_TunnelCreate(
bool_t bIsServer,
uint8 *pu8AttributeControlBits,
tsZCL_ClusterInstance *psTunnelClusterInstance,
tsCLD_Tunnel *psTunnelData,
tsSE_TunnelCustomDataStructure

 *psCustomDataStruct);
314 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
psTunnelData Pointer to attribute storage. This should be the address
of a structure of type tsCLD_Tunnel which defines the
attributes of the Tunnelling cluster. This function will
initialise the attributes with default values.

psCustomDataStructure Pointer to structure which contains custom data for the
Tunnelling cluster. This structure is used for internal
data storage. No knowledge of the fields of this
structure is required.

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 315

Chapter 11
Tunnelling Cluster

eSE_TunnelRequestTunnelSend

Description

This function can be used by a client to request the creation of a tunnel by the server
- that is, to send a Tunnel Request command to the server. The created tunnel will
subsequently be available for communications between the server and client.

A pointer must be specified to a location to receive a Transaction Sequence Number
(TSN) for the request. The TSN in the response will be set to match the TSN in the
request, allowing an incoming response to be paired with a request.

Parameters

u8SourceEndPointId Number of the local endpoint from which the
Tunnel Request command is initiated

u8DestinationEndPointId Number of the remote endpoint to which the
Tunnel Request command will be sent

*psDestinationAddress Pointer to a structure containing the address
of the remote node to which the Tunnel
Request command will be sent

*pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

*sRequestTunnelCmdPyld Pointer to a structure containing data relating
to the tunnel request (for details of the
structure, see Section 11.10.2)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_TUN_DEVICE_BUSY

E_SE_TUN_DATA_OVERFLOW

E_SE_TUN_INVALID_ADDRESS

E_SE_TUN_NOT_FOUND

E_SE_TUN_DATA_SUCCESS

teSE_TunnelStatus eSE_TunnelRequestTunnelSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsSE_TunnelRequestTunnelCmdPyld

 *sRequestTunnelCmdPyld);
316 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_TunnelTransferDataSend

Description

This function can be called on a server or client to send tunnelled data to the other
node (a tunnel must have already been created between the two nodes).

A pointer must be specified to a location to receive a Transaction Sequence Number
(TSN) for the request. The TSN in the response will be set to match the TSN in the
request, allowing an incoming response to be paired with a request.

Parameters

u8SourceEndPointId Number of the local endpoint from which the
tunnelled data transfer will take place

u8DestinationEndPointId Number of the remote endpoint to which the
tunnelled data will be sent

bIsServer Type of cluster instance (server or client) which is
initiating the data transfer:

TRUE - server
FALSE - client

psDestinationAddress Pointer to a structure containing the address of
the remote node to which the tunnelled data will
be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

psTunnelCommandPyld Pointer to a structure containing the data to be
transferred (for details of the structure, see
Section 11.10.3)

teSE_TunnelStatus eSE_TunnelTransferDataSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
bool bIsServer,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsSE_TunnelTransferDataReqCmdPyld

 *psTunnelCommandPyld);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 317

Chapter 11
Tunnelling Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_TUN_DEVICE_BUSY

E_SE_TUN_DATA_OVERFLOW

E_SE_TUN_INVALID_ADDRESS

E_SE_TUN_NOT_FOUND

E_SE_TUN_DATA_SUCCESS
318 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_TunnelCloseTunnelSend

Description

This function can be used by a client to request a tunnel to be closed by the server.

Parameters

u8SourceEndPointId Number of the local endpoint from which the
tunnel will be closed

u8DestinationEndPointId Number of the remote endpoint to which the
tunnel is connected

psDestinationAddress Pointer to a structure containing the address of
the remote node to which the tunnel is connected

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u16TunnelId The identifier of the tunnel to be closed

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_SE_TUN_DEVICE_BUSY

E_SE_TUN_NOT_FOUND

teSE_TunnelStatus eSE_TunnelCloseTunnelSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint16 u16TunnelId);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 319

Chapter 11
Tunnelling Cluster

eSE_TunnelGetInformation

Description

This function can be used on a server or a client to obtain information about the
specified tunnel which was created by the specified remote node.

The search for information can be also be used in the following ways:

 If the address of the remote node is set to NULL, the function will retrieve the first
tunnel record matching the specified tunnel ID

 If the tunnel ID is set to 0xFFFF, the function will retrieve the first tunnel record
with the specified remote node address

 If the address of the remote node is set to NULL and tunnel ID is set to 0xFFFF, the
function will retrieve the first tunnel record

If no matching record is found, the function returns E_SE_TUN_NOT_FOUND.

Parameters

u8SourceEndPointId Number of the local endpoint to which the tunnel
is connected

u8DestinationEndPointId Number of the remote endpoint to which the
tunnel is connected

bIsServer Type of cluster instance (server or client) which is
initiating the information request:

TRUE - server
FALSE - client

psDestinationAddress Pointer to a structure containing the address of
the remote node to which the tunnel is connected

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u16TunnelId The identifier of the tunnel for which information
is requested

psTunnelDetails Pointer to structure in which the obtained details
of the tunnel will be stored

Returns

E_ZCL_SUCCESS

E_SE_TUN_NOT_FOUND

teSE_TunnelStatus eSE_TunnelGetInformation(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
bool bIsServer,
tsZCL_Address *psDestinationAddress,
uint16 u16TunnelId,
tsSE_TunnelDetails *psTunnelDetails);
320 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
11.9 Return Codes

In addition to some of the ZCL status enumerations (detailed in the ZCL User Guide
(JN-UG-3077)), the following enumerations are returned by the SE API Tunnelling
cluster functions (see Section 11.8) to indicate the outcome of the function call.

typedef enum PACK

{

 E_SE_TUN_DEVICE_BUSY = E_ZCL_ERR_ENUM_END + 1,

 E_SE_TUN_DATA_OVERFLOW,

 E_SE_TUN_INVALID_ADDRESS,

 E_SE_TUN_NOT_FOUND,

 E_SE_TUN_DATA_SUCCESS

}teSE_TunnelStatus;

The above enumerations are described in the table below.

Enumeration Description

E_SE_TUN_DEVICE_BUSY Device is busy

E_SE_TUN_DATA_OVERFLOW Data size is greater than maximum incoming data size which
was negotiated when the tunnel was created

E_SE_TUN_INVALID_ADDRESS Specified address is not valid

E_SE_TUN_NOT_FOUND Tunnel does not exist

E_SE_TUN_DATA_SUCCESS Tunnelled data transfer was a success

Table 46: Tunnelling Cluster Return Codes
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 321

Chapter 11
Tunnelling Cluster

11.10 Structures

11.10.1 tsSE_TunnelCallBackMessage

This structure is used when a tunnelling event is generated - for example, as the result
of a tunnelling command having been received.

typedef struct

{

 teSE_TunnelCallbackEvents eEventType;

 union

 {

 tsSE_TunnelRequestTunnelCmdRcvd sTunnelRequestTunnelCmd;

 tsSE_TunnelRequestTunnelResponse sTunnelRequestTunnelRspCmd;

 tsSE_TunnelRequestTunnelCreated sTunnelCreated;

 tsSE_TunnelTransferDataCmdPyldRcvd sTunnelTransferDataCmd;

 tsSE_TunnelTransferDataReqStatus sTransferDataReq;

 tsSE_TunnelTransferDataError sTunnelTransferDataErrCmd;

 tsSE_TunnelcloseTunnel sCloseTunnelDetails;

 }uMessage;

}tsSE_TunnelCallBackMessage;

Where:

 eEventType is the Tunnelling event type - see Section 11.11.1.

 uMessage is a union containing the event details in one of the following forms
(depending on the event specified in the field eEventType):

 sTunnelRequestTunnelCmd is a structure containing the payload of a
received Request Tunnel command

 sTunnelRequestTunnelRspCmd is a structure containing the payload of
the response to a Request Tunnel command (response received by client)

 sTunnelCreated is a structure containing the details of a tunnel created
by the server

 sTunnelTransferDataCmd is a structure containing the details of
received tunnelled data

 sTunnelTransferDataErrCmd is a structure containing the details of a
received tunnel data error command

 sCloseTunnelDetails is a structure containing the details of a tunnel
closed by the server
322 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
11.10.2 tsSE_TunnelRequestTunnelCmdPyld

This structure is used to hold the client’s requirements when the client requests a
tunnel to be created.

typedef struct {

 uint8 u8ProtocolID;

 uint16 u16ManufCode;

 bool_t bFlowControlSupport;

 uint16 u16MaxIncmgTransferSize;

}tsSE_TunnelRequestTunnelCmdPyld;

where

 u8ProtocolID is an enumeration representing the identifier of the metering
communication protocol for which the tunnel is requested - see Section
11.11.5.

 u16ManufCode is a manufacture code which is related either to the
manufacturer of a device and/or to a manufacturer-specific protocol. The value
0xFFFF is used to indicate that a manufacture code is not used.

 bFlowControlSupport indicates whether flow control support is requested
from the tunnel. In this release, flow control is not supported and this field
should be set to FALSE.

 u16MaxIncmgTransferSize is the maximum size of a data packet, in bytes,
that can be transferred to the client in the payload of a single Transfer Data
command.

11.10.3 tsSE_TunnelTransferDataReqCmdPyld

This structure is used to send a Transfer Data command and holds the details of the
data to be tunnelled.

typedef struct

{

 uint16 u16TunnelID;

 uint8 *pu8Data;

 uint16 u16dataLength;

}tsSE_TunnelTransferDataReqCmdPyld;

where:

 u16TunnelID is the identifier of the tunnel to be used (created when the
tunnel was created).

 pu8Data is a pointer to the data to be sent

 u16dataLength is the length of the data to be sent, in bytes
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 323

Chapter 11
Tunnelling Cluster

11.10.4 tsSE_TunnelRequestTunnelResponse

This structure is used on a client on generating the event
E_SE_TUN_REQUEST_TUNNEL_RESPONSE_RECEIVED, containing the details
of the response to a Request Tunnel command.

typedef struct

{

 teSE_TunnelRequestTunnelStatus eStatus;

 uint16 u16TunnelID;

 uint16 u16MaxIncmgTransferSize;

}tsSE_TunnelRequestTunnelResponse

where:

 eStatus is the status of the Request Tunnel command. Enumerations are
provided and are detailed in Section 11.11.2.

 u16TunnelID is the identifier for the tunnel.

 u16MaxIncmgTransferSize is the maximum size of a data packet, in bytes,
that can be transferred to the server in the payload of a single Transfer Data
command.

11.10.5 tsSE_TunnelRequestTunnelCreated

This structure is used on generating the event E_SE_TUN_CREATED, containing the
details of details of a created tunnel.

typedef struct

{

 uint16 u16TunnelID;

}tsSE_TunnelRequestTunnelCreated;

where u16TunnelID is the identifier of the created tunnel.
324 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
11.10.6 tsSE_TunnelTransferDataCmdPyldRcvd

This structure is used on generating the event
E_SE_TUN_TRANSFER_DATA_COMMAND_RECEIVED, containing received
tunnelled data.

typedef struct

{

 uint8 u8Status;

 uint16 u16TunnelID;

 uint8 *pu8Data;

 uint16 u16DataLength;

 uint16 u16NumOfBytesLeft;

}tsSE_TunnelTransferDataCmdPyldRcvd;

where:

 u8Status is the status of the tunnelled data transfer.

 u16TunnelID is the identifier of the tunnel through which the data was
received.

 pu8Data is a pointer to received data.

 u16DataLength is the length of the received data, in bytes.

 u16NumOfBytesLeft is the number of data bytes remaining to be transferred
(and requiring another Transfer Data command).

11.10.7 tsSE_TunnelTransferDataReqStatus

This structure is used on generating the event
E_SE_TUN_TUNNEL_DATA_TRANSFER_COMPLETED, containing the status of a
tunnelled data transmission.

typedef struct

{

 uint8 u8Status;

 uint16 u16TunnelID;

}tsSE_TunnelTransferDataReqStatus;

where

 u8Status is the status of the data transmission (it will be the status returned
by the stack ZPS_tsAfDataAckEvent event).

 u16TunnelID is the identifier of the tunnel ID through which the Transfer Data
command was initiated.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 325

Chapter 11
Tunnelling Cluster

11.10.8 tsSE_TunnelTransferDataError

This structure is used on generating the event
E_SE_TUN_TUNNEL_DATA_TRANSFER_ERROR, containing the details of a
received Transfer Data Error command.

typedef struct

{

 tsSE_TunnelTransferDataStatus eTunnelTransferDataStatus;

 uint16 u16TunnelID;

}tsSE_TunnelTransferDataError

where

 eTunnelTransferDataStatus is the status code received in the Transfer
Data Error command. Enumerations are provided and are detailed in Section
11.11.3.

 u16TunnelID is the identifier of the tunnel through which the Transfer Data
Error command was received.

11.10.9 tsSE_TunnelcloseTunnel

This structure is used on a server on generating the event E_SE_TUN_CLOSED,
containing details of a tunnel that has been closed.

typedef struct

{

 uint16 u16TunnelID;

 teSE_TunnelCloseCause eCloseReason;

}tsSE_TunnelcloseTunnel;

where:

 u16TunnelID is the identifier of the tunnel which has been closed

 eCloseReason indicates the reason for closing the tunnel. Enumerations are
provided and are detailed in Section 11.11.4.
326 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
11.10.10 tsSE_TunnelDetails

This structure contains the details of the tunnel record returned when the function
eSE_TunnelGetInformation() is called.

typedef struct

{

 teSE_RemoteTunnelStatus eStatus;

 uint16 u16TunnelID;

 uint64 u64DeviceAddress;

 uint8 u8EndPoint;

 uint8 bFlowControl;

 uint32 u32UtcTime;

 uint16 u16MaxIncmgTransferSizeRemoteDevice;

 uint16 u16MaxIncmgTransferSize;

 uint8 u8SeqNo;

}tsSE_TunnelDetails;

where

 u16TunnelID is the identifier of the tunnel

 u64DeviceAddress is the 64-bit IEEE/MAC address of the device that
created the tunnel

 u8EndPoint is the number of the endpoint on which the tunnel was created
(on the device that created the tunnel).

 u16MaxIncmgTransferSizeRemoteDevice is the maximum size, in bytes,
of an incoming data transfer for the remote device

 u16MaxIncmgTransferSize is the maximum size, in bytes, of an incoming
data transfer for the local device.

 All other fields are used for internal cluster management and can be ignored by
the application.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 327

Chapter 11
Tunnelling Cluster

11.11 Enumerations

11.11.1 'Tunnelling Event' Enumerations

The event types generated by the Tunnelling cluster are enumerated in the
teSE_TunnelCallbackEvents structure below:

typedef enum PACK

{

 E_SE_TUN_REQUEST_TUNNEL_REQUEST_RECEIVED,

 E_SE_TUN_REQUEST_TUNNEL_RESPONSE_RECEIVED,

 E_SE_TUN_CREATED,

 E_SE_TUN_TRANSFER_DATA_COMMAND_RECEIVED,

 E_SE_TUN_TUNNEL_DATA_TRANSFER_COMPLETED,

 E_SE_TUN_TUNNEL_DATA_TRANSFER_ERROR,

 E_SE_TUN_CLOSED

}teSE_TunnelCallbackEvents;

The above event types are described in the table below.

Enumeration Description

E_SE_TUN_REQUEST_TUNNEL_REQUEST_RECEIVED Generated on server on receiving a Request Tun-
nel command

E_SE_TUN_REQUEST_TUNNEL_RESPONSE_RECEIVED Generated on client and indicates the status of a
Request Tunnel command previously issued

E_SE_TUN_CREATED Generated on server and indicates that a tunnel
has been created

E_SE_TUN_TRANSFER_DATA_COMMAND_RECEIVED Generated either on server or on client after a tun-
nelled data transfer is received.

E_SE_TUN_TUNNEL_DATA_TRANSFER_COMPLETED Generated on server or client after the completion
of a data transfer initiated using the function
eSE_TunnelTransferDataSend()

E_SE_TUN_TUNNEL_DATA_TRANSFER_ERROR Generated when a Data Transfer Error command
has been received

E_SE_TUN_CLOSED Generated on server on the closure of a tunnel
either due to the reception of a Close Tunnel com-
mand or due to a timeout on an inactive channel
(E_CLD_TUN_CLOSE_TUNNEL_TIMEOUT)

Table 47: Tunnelling Event Enumerations
328 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
11.11.2 'Request Tunnel Status' Enumerations

The status values of the response to a Request Tunnel command are enumerated in
the teSE_TunnelRequestTunnelStatus structure below:

typedef enum PACK

{

 E_SE_TUN_SUCCESS = 0x00,

 E_SE_TUN_BUSY,

 E_SE_TUN_NO_MORE_TUNNEL,

 E_SE_TUN_PROTOCOL_NOT_SUPPORTED,

 E_SE_TUN_FLOW_CONTROL_NOT_SUPPORTED

}teSE_TunnelRequestTunnelStatus;

The above enumerations are listed and described in the table below.

Enumeration Description

E_SE_TUN_SUCCESS Tunnel created successfully

E_SE_TUN_BUSY Tunnel is busy - try again after a delay

E_SE_TUN_NO_MORE_TUNNEL All possible tunnels are in use

E_SE_TUN_PROTOCOL_NOT_SUPPORTED Requested protocol is not supported by server

E_SE_TUN_FLOW_CONTROL_NOT_SUPPORTED Flow control is not supported by server

Table 48: 'Request Tunnel Status' Enumerations
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 329

Chapter 11
Tunnelling Cluster

11.11.3 'Data Transfer Error' Enumerations

The status codes of the Data Transfer Error command are enumerated in the
tsSE_TunnelTransferDataStatus structure below.

typedef enum PACK

{

 E_SE_TUN_NO_SUCH_TUNNEL,

 E_SE_TUN_WRONG_DEVICE,

 E_SE_TUN_DATA_ERR_OVERFLOW

}tsSE_TunnelTransferDataStatus

The above enumerations are listed and described in the table below.

11.11.4 'Close Cause' Enumerations

The reasons for a tunnel closure by a server are enumerated in the
teSE_TunnelCloseCause structure below:

typedef enum PACK

{

 E_SE_TUN_CLOSE_TUN_CMD_RECVD,

 E_SE_TUN_TIMEOUT

}teSE_TunnelCloseCause;

The above enumerations are listed and described in the table below.

Enumeration Description

E_SE_TUN_NO_SUCH_TUNNEL Data received through invalid tunnel

E_SE_TUN_WRONG_DEVICE Data received through a tunnel which have no access to

E_SE_TUN_DATA_ERR_OVERFLOW Received data length is greater than maximum permissible incoming
data transfer size

Table 49: 'Data Transfer Error' Enumerations

Enumeration Description

E_SE_TUN_CLOSE_TUN_CMD_RECVD Close Tunnel command received from client

E_SE_TUN_TIMEOUT Tunnel is closed due to inactivity (timeout)

Table 50: 'Close Cause' Enumerations
330 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
11.11.5 'Protocol ID' Enumerations

The protocols defined by ZigBee for tunnelling are enumerated in the
teSE_tunnelProtocolID structure below:

typedef enum PACK

{

 E_CLD_TUN_DLMS_COSEM_IEC_62056 = 0,

 E_CLD_TUN_IEC_61107, // 1

 E_CLD_TUN_ANS_C12, // 2

 E_CLD_TUN_M_BUS, // 3

 E_CLD_TUN_SML, // 4

 E_CLD_TUN_CLIMATE_TALK, // 5

 E_CLD_TUN_MANUFACTURER_DEFINED_BASE = 200

} teSE_tunnelProtocolID;

The above enumerations are listed and described in the table below.

Enumeration Protocol

E_CLD_TUN_DLMS_COSEM_IEC_62056 DLMS/COSEM (IEC 62056)

E_CLD_TUN_IEC_61107 IEC 61107

E_CLD_TUN_ANS_C12 ANSI C12

E_CLD_TUN_M_BUS M-BUS

E_CLD_TUN_SML SML

E_CLD_TUN_CLIMATE_TALK ClimateTalk

E_CLD_TUN_MANUFACTURER_DEFINED_BASE Manufacturer-defined protocols

Table 51: 'Protocol' Enumerations
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 331

Chapter 11
Tunnelling Cluster

11.12 Compile-Time Options

This section describes the compile-time options that may be set in the zcl_options.h
file of an application that uses the Tunnelling cluster.

The Tunnelling cluster is enabled by defining CLD_TUNNELING.

Client and server versions of the cluster are defined using TUNNELING_CLIENT and
TUNNELING_SERVER respectively.

Maximum Simultaneous Tunnels

The maximum number of tunnels that can exist at the same time on a device can be
defined using the macro:

CLD_TUN_MAX_SIMULTANEOUS_TUNNELS

If the application does not define this macro, the default value of one is used.
332 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Part III:
General Reference

Information
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 333

334 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
12. Initialisation and Device Registration Functions

This chapter details the core functions of the Smart Energy API. These comprise the
following initialisation function and device-specific endpoint registration functions:

Function Page

eSE_Initialise 336

eSE_RegisterEspMeterEndPoint 337

eSE_RegisterEspEndPoint 339

eSE_RegisterMeterEndPoint 341

eSE_RegisterIPDEndPoint 343

eSE_RegisterRangeExtEndPoint 344

Note 1: For guidance on using these functions in your
application code, refer to Chapter 4.

Note 2: The return codes for these functions are
described in the ZCL User Guide (JN-UG-3077).

Note 3: The SE API provides a separate endpoint
registration function for each SE device type. Functions
are provided for a combined ESP/Metering Device and
for separate ESP and Metering Device.

Note 4: SE initialisation must also be performed through
definitions in the header file zcl_options.h - see Section
3.5.1. In addition, JenOS resources for SE (such as a
software timer for a real-time clock) must also be pre-
configured using the JenOS Configuration Editor - refer
to the JenOS User Guide (JN-UG-3075).
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 335

Chapter 12
Initialisation and Device Registration Func-

eSE_Initialise

Description

This function initialises the ZCL and SE libraries. It should be called before
registering any endpoints (using one of the device-specific endpoint registration
functions from this section).

As part of this function call, you must specify a user-defined callback function that will
be invoked when a ZigBee PRO stack event occurs that is not associated with an
endpoint (the callback function for events associated with an endpoint is specified
when the endpoint is registered using one of the registration functions). This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a local pool of Application Protocol Data Units
(APDUs) that will be used by the ZCL to hold messages to be sent and received.

Parameters

cbCallBack Pointer to a callback function to handle stack events that are
not associated with a registered endpoint

hAPdu Pointer to a pool of APDUs for holding messages to be sent
and received

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_HEAP_FAIL

E_ZCL_ERR_PARAMETER_NULL

teZCL_Status eSE_Initialise(
 tfpZCL_ZPSCallBackFunction cbCallBack,
 PDUM_thAPdu hAPdu);
336 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_RegisterEspMeterEndPoint

Description

This function is used to register an endpoint which will support a combined ESP/
Metering Device. The function must be called after the eSE_Initialise() function and
before starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). SE endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
SE_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for SE.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint (events are
detailed in the ZCL User Guide (JN-UG-3077)). This callback function is defined
according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsSE_EspMeterDevice structure (see
Section 13.2.1) which will be used to store all variables relating to the ESP and
Metering Device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

If the ESP is to implement the mirroring of metering data for sleepy Metering devices,
the number of the first endpoint to be used for mirroring must be specified.
Depending on the maximum number of mirrors set in the compile-time options (see
Section 8.12), consecutive endpoints will be reserved for mirrors. For example, if 5
is specified as the first mirror endpoint and up to 4 mirrors can be used then
endpoints 5, 6, 7 and 8 will be reserved for mirrors. Mirroring is described in Section
8.5.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Metering Device is housed in the same hardware,
sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold ESP and Metering
Device variables

teZCL_Status eSE_RegisterEspMeterEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsSE_EspMeterDevice *psDeviceInfo,

uint8 u8MirrorStartEndPoint);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 337

Chapter 12
Initialisation and Device Registration Func-

u8MirrorStartEndPoint Number of first endpoint to be used for mirroring (to
disable mirroring, set to 0)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
338 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_RegisterEspEndPoint

Description

This function is used to register an endpoint which will support a standalone ESP.
The function must be called after the eSE_Initialise() function and before starting the
ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). SE endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
SE_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for SE.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint (events are
detailed in the ZCL User Guide (JN-UG-3077)). This callback function is defined
according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsSE_EspDevice structure (see Section
13.2.2) which will be used to store all variables relating to the ESP associated with
the endpoint. The sEndPoint and sClusterInstance fields of this structure are
set by this function and must not be directly written to by the application.

If the ESP is to implement the mirroring of metering data for sleepy Metering devices,
the number of the first endpoint to be used for mirroring must be specified.
Depending on the maximum number of mirrors set in the compile-time options (see
Section 8.12), consecutive endpoints will be reserved for mirrors. For example, if 5
is specified as the first mirror endpoint and up to 4 mirrors can be used then
endpoints 5, 6, 7 and 8 will be reserved for mirrors. Mirroring is described in Section
8.5.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one ESP is housed in the same hardware, sharing the
same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold ESP variables

u8MirrorStartEndPoint Number of first endpoint to be used for mirroring (to
disable mirroring, set to 0)

teZCL_Status eSE_RegisterEspEndPoint(
uint8 u8EndPointIdentifier,
tfpZCL_ZCLCallBackFunction cbCallBack,
tsSE_EspDevice *psDeviceInfo,
uint8 u8MirrorStartEndPoint);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 339

Chapter 12
Initialisation and Device Registration Func-

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
340 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_RegisterMeterEndPoint

Description

This function is used to register an endpoint which will support a standalone Metering
Device. The function must be called after the eSE_Initialise() function and before
starting the ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). SE endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
SE_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for SE.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint (events are
detailed in the ZCL User Guide (JN-UG-3077)). This callback function is defined
according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsSE_MeterDevice structure (see Section
13.2.3) which will be used to store all variables relating to the Metering Device
associated with the endpoint. The sEndPoint and sClusterInstance fields of
this structure are set by this function and must not be directly written to by the
application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Metering Device is housed in the same hardware,
sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold Metering Device
variables

teZCL_Status eSE_RegisterMeterEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsSE_MeterDevice *psDeviceInfo);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 341

Chapter 12
Initialisation and Device Registration Func-

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
342 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
eSE_RegisterIPDEndPoint

Description

This function is used to register an endpoint which will support an IPD. The function
must be called after the eSE_Initialise() function and before starting the ZigBee
PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). SE endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
SE_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for SE.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint (events are
detailed in the ZCL User Guide (JN-UG-3077)). This callback function is defined
according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsSE_IPDDevice structure (see Section
13.2.4) which will be used to store all variables relating to the IPD associated with the
endpoint. The sEndPoint and sClusterInstance fields of this structure are set
by this function and must not be directly written to by the application.

The function may be called multiple times if more than one endpoint is being used.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events associated with
the registered endpoint

psDeviceInfo Pointer to structure to be used to hold IPD variables

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

teZCL_Status eSE_RegisterIPDEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsSE_IPDDevice *psDeviceInfo);
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 343

Chapter 12
Initialisation and Device Registration Func-

eSE_RegisterRangeExtEndPoint

Description

This function is used to register an endpoint which will support a Range Extender.
The function must be called after the eSE_Initialise() function and before starting the
ZigBee PRO stack.

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). SE endpoints are normally numbered consecutively
starting at 1. The specified number must be less than or equal to the value of
SE_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which represents
the highest endpoint number used for SE.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint (events are
detailed in the ZCL User Guide (JN-UG-3077)). This callback function is defined
according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsSE_RangeExtDevice structure (see
Section 13.2.5) which will be used to store all variables relating to the Range
Extender associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used.

Parameters

u8EndPointIdentifier Identifier of endpoint to be registered - this is an endpoint
number in the range 1 to 240

cbCallBack Pointer to a callback function to handle events
associated with the registered endpoint

psDeviceInfo Pointer to structure to be used to hold Range Extender
variables

teZCL_Status eSE_RegisterRangeExtEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsSE_EspMeterDevice *psDeviceInfo);
344 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 345

Chapter 12
Initialisation and Device Registration Func-

346 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
13. Structures, Enumerations and Parameters

This chapter details the SE API structures that are not specific to any particular SE
cluster.

13.1 ZCL Structures

The following structures are defined in the ZigBee Cluster Library and are detailed in
the ZCL User Guide (JN-UG-3077):

 tsZCL_Address

 tsZCL_IndividualAttributesResponse

 tsZCL_DefaultResponse

 tsZCL_OctetString

 tsZCL_CharacterString

 tsZCL_ClusterCustomMessage

 tsZCL_ClusterInstance

 tsZCL_ClusterDefinition

 tsZCL_AttributeDefinition

Note: Cluster-specific structures are detailed in the
chapters for the respective clusters.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 347

Chapter 13
Structures, Enumerations and Parameters

13.2 Device Structures

This section presents the shared device structures for the SE devices supported by
the SE API.

13.2.1 ESP/Metering Device (tsSE_EspMeterDevice)

The following tsSE_EspMeterDevice structure is the shared structure for a
combined ESP/Metering device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsSE_EspMeterDeviceClusterInstances sClusterInstance;

#ifdef CLD_BASIC

 /* Holds the attributes for the basic cluster */

 tsCLD_Basic sBasicCluster;

 /* Holds the status of the attributes in the basic cluster */

 /* sCLD_AS_Basic sBasicClusterAttributeStatus; */

#ifdef BASIC_CLIENT

 /* Holds the attributes for the basic cluster for whatever the IPD is
monitoring */

 tsCLD_Basic sRemoteBasicCluster;

#endif

#endif

#ifdef CLD_SIMPLE_METERING

 /* Holds the attributes for the simple metering cluster */

 tsCLD_SimpleMetering sSimpleMeteringCluster;

 /* Holds the status of the attributes in the simple metering cluster */

 /*tsCLD_AS_SimpleMetering sSimpleMeteringClusterAttributeStatus;*/

 /*Event Address, Custom call back event, Custom call back message*/

 tsSM_CustomStruct sSimpleMeteringCustomDataStruct;

#endif

#ifdef CLD_TIME

#ifdef TIME_SERVER

 /* Pointer to the common time cluster */

 tsCLD_Time sTimeCluster;

 /* Pointer to the common time cluster attribute status */
348 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
 /*tsCLD_AS_Time sTimeClusterAttributeStatus;*/

#endif

#ifdef TIME_CLIENT

 /* Pointer to the common time cluster */

 tsCLD_Time sRemoteTimeCluster;

#endif

#endif

#ifdef CLD_PRICE

 /* price cluster */

 tsCLD_Price sPriceCluster;

 /* status of the attributes in the price cluster */

 /*tsCLD_AS_Price sPriceClusterAttributeStatus;*/

 /* custom data structures */

 tsSE_PriceCustomDataStructure sPriceCustomDataStructure;

 tsSE_PricePublishPriceRecord
asPublishPriceRecord[SE_PRICE_NUMBER_OF_SERVER_PRICE_RECORD_ENTRIES];

 uint8
au8RateLabel[SE_PRICE_NUMBER_OF_SERVER_PRICE_RECORD_ENTRIES][SE_PRICE_SER
VER_MAX_STRING_LENGTH];

#ifdef BLOCK_CHARGING

 /* Block Period */

 tsSE_PricePublishBlockPeriodRecord
asPublishBlockPeriodRecord[SE_PRICE_NUMBER_OF_SERVER_BLOCK_PERIOD_RECORD_
ENTRIES];

#endif /* BLOCK_CHARGING */

#ifdef PRICE_CONVERSION_FACTOR

 tsSE_PriceConversionFactorRecord
asPublishConversionFactorRecord[SE_PRICE_NUMBER_OF_CONVERSION_FACTOR_ENTR
IES];

#endif

#ifdef PRICE_CALORIFIC_VALUE

 tsSE_PriceCalorificValueRecord
asPublishCalorificValueRecord[SE_PRICE_NUMBER_OF_CALORIFIC_VALUE_ENTRIES]
;

#endif

#endif

#ifdef CLD_DRLC

 tsCLD_DRLC sDRLCCluster;

 /*tsCLD_AS_DRLC sDRLCClusterAttributeStatus;*/

 tsSE_DRLCCustomDataStructure sDRLCCustomDataStructure;

 tsSE_DRLCLoadControlEventRecord
asDRLCLoadControlEventRecord[SE_DRLC_NUMBER_OF_SERVER_LOAD_CONTROL_ENTRIE
S];

#endif
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 349

Chapter 13
Structures, Enumerations and Parameters

#ifdef CLD_KEY_ESTABLISHMENT

 tsCLD_KeyEstablishment sKeyEstablishmentCluster;

 /*tsCLD_AS_KeyEstablishment sKeyEstablishmentClusterAttributeStatus;*/

 tsSE_KECCustomDataStructure sKECCustomDataStructure;

#endif

#ifdef CLD_MC

 tsSE_MCCustomDataStructure sMessageCustomDataStructure;

 tsSE_MCDisplayMessageCommandPayloadRecord
asDisplayMessageCommandPayloadRecord[SE_MESSAGE_NUMBER_OF_SERVER_MESSAGE_
RECORD_ENTRIES];

 uint8
au8DisplayMessage[SE_MESSAGE_NUMBER_OF_SERVER_MESSAGE_RECORD_ENTRIES][SE_
MESSAGE_SERVER_MAX_STRING_LENGTH];

#endif

#if ((defined CLD_SIMPLE_METERING) && (defined CLD_SM_SUPPORT_MIRROR))

 //Create an Array of Mirror Structure

 tsSE_Mirror sSE_Mirrors[CLD_SM_NUMBER_OF_MIRRORS];

 //Create an Array for Mirrored Attribute set.

 tsSE_EspMirrorAttributeSet
sSE_MirrorAttributeSet[CLD_SM_NUMBER_OF_MIRRORS];

#endif

#ifdef CLD_OTA

 /* OTA cluster */

 tsCLD_AS_Ota sCLD_OTA;

 /* Status of OTA attributes in the cluster */

 /*tsCLD_AS_Ota_Status sOTAClusterAttributesStatus;*/

 /* custom data structures */

 /*tsOTA_Common sCLD_OTA_CustomDataStruct[SE_NUMBER_OF_ENDPOINTS];*/

 tsOTA_Common sCLD_OTA_CustomDataStruct;

#endif

#ifdef CLD_PREPAYMENT

 tsSE_PrepayDeviceInstance PrepayDeviceInfo;

#endif

#ifdef CLD_COMMISSIONING

 /* Pointer to the common time cluster */

 tsCLD_Commissioning sCommissioningCluster;

#endif

#if defined(CLD_IDENTIFY) && defined(IDENTIFY_SERVER)

 tsCLD_Identify sIdentifyCluster;

 tsCLD_IdentifyCustomDataStructure sIdentifyCustomDataStructure;

#endif

} tsSE_EspMeterDevice;
350 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
There is a section of this structure for each cluster supported by the ESP/Metering
Device. Each of these sections has one or more of the following elements:

 Pointer to the cluster

 Data structure(s) for the cluster

The section for each optional cluster is enabled by a corresponding enumeration
defined in the zcl_options.h file (e.g. CLD_MC for the Messaging cluster). If a cluster
is not defined in this header file then it does not feature in the above structure.

13.2.2 ESP (tsSE_EspDevice)

The following tsSE_EspDevice structure is the shared structure for an ESP:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsSE_EspDeviceClusterInstances sClusterInstance;

#ifdef CLD_BASIC

 /* Holds the attributes for the basic cluster */

 tsCLD_Basic sBasicCluster;

#ifdef BASIC_CLIENT

 /* Holds the attributes for the basic cluster for whatever the IPD is
monitoring */

 tsCLD_Basic sRemoteBasicCluster;

#endif

#endif

#if ((defined CLD_SIMPLE_METERING)&&(defined SM_CLIENT))

 /* Holds the attributes for the simple metering cluster */

 tsCLD_SimpleMetering sSimpleMeteringCluster;

 /*Event Address, Custom call back event, Custom call back message*/

 tsSM_CustomStruct sSimpleMeteringCustomDataStruct;

#endif

#ifdef CLD_TIME

#ifdef TIME_SERVER

 /* Pointer to the common time cluster */

 tsCLD_Time sTimeCluster;

#endif

#ifdef TIME_CLIENT

 /* Pointer to the common time cluster */

 tsCLD_Time sRemoteTimeCluster;

#endif
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 351

Chapter 13
Structures, Enumerations and Parameters

#endif

#ifdef CLD_PRICE

 /* price cluster */

 tsCLD_Price sPriceCluster;

 /* custom data structures */

 tsSE_PriceCustomDataStructure sPriceCustomDataStructure;

 tsSE_PricePublishPriceRecord
asPublishPriceRecord[SE_PRICE_NUMBER_OF_SERVER_PRICE_RECORD_ENTRIES];

 uint8
au8RateLabel[SE_PRICE_NUMBER_OF_SERVER_PRICE_RECORD_ENTRIES][SE_PRICE_SERVER
_MAX_STRING_LENGTH];

#ifdef BLOCK_CHARGING

 /* Block Period */

 tsSE_PricePublishBlockPeriodRecord
asPublishBlockPeriodRecord[SE_PRICE_NUMBER_OF_SERVER_BLOCK_PERIOD_RECORD_ENT
RIES];

#endif /* BLOCK_CHARGING */

#ifdef PRICE_CONVERSION_FACTOR

 tsSE_PriceConversionFactorRecord
asPublishConversionFactorRecord[SE_PRICE_NUMBER_OF_CONVERSION_FACTOR_ENTRIES
];

#endif

#ifdef PRICE_CALORIFIC_VALUE

 tsSE_PriceCalorificValueRecord
asPublishCalorificValueRecord[SE_PRICE_NUMBER_OF_CALORIFIC_VALUE_ENTRIES];

#endif

#endif

#ifdef CLD_DRLC

 tsCLD_DRLC sDRLCCluster;

 tsSE_DRLCCustomDataStructure sDRLCCustomDataStructure;

 tsSE_DRLCLoadControlEventRecord
asDRLCLoadControlEventRecord[SE_DRLC_NUMBER_OF_SERVER_LOAD_CONTROL_ENTRIES];

#endif

#ifdef CLD_KEY_ESTABLISHMENT

 tsCLD_KeyEstablishment sKeyEstablishmentCluster;

 tsSE_KECCustomDataStructure sKECCustomDataStructure;

#endif

#ifdef CLD_MC

 tsSE_MCCustomDataStructure sMessageCustomDataStructure;

 tsSE_MCDisplayMessageCommandPayloadRecord
asDisplayMessageCommandPayloadRecord[SE_MESSAGE_NUMBER_OF_SERVER_MESSAGE_REC
ORD_ENTRIES];

 uint8
au8DisplayMessage[SE_MESSAGE_NUMBER_OF_SERVER_MESSAGE_RECORD_ENTRIES][SE_MES
SAGE_SERVER_MAX_STRING_LENGTH];

#endif
352 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
#if ((defined CLD_SIMPLE_METERING) && (defined CLD_SM_SUPPORT_MIRROR))

 //Create an Array of Mirror Structure

 tsSE_Mirror sSE_Mirrors[CLD_SM_NUMBER_OF_MIRRORS];

 //Create an Array for Mirrored Attribute set.

 tsSE_EspMirrorAttributeSet
sSE_MirrorAttributeSet[CLD_SM_NUMBER_OF_MIRRORS];

#endif

#ifdef CLD_OTA

 /* OTA cluster */

 tsCLD_AS_Ota sCLD_OTA;

 /* custom data structures */

 tsOTA_Common sCLD_OTA_CustomDataStruct;

#endif

#ifdef CLD_PREPAYMENT

 tsSE_PrepayDeviceInstance PrepayDeviceInfo;

#endif

#ifdef CLD_COMMISSIONING

 /* Pointer to the common time cluster */

 tsCLD_Commissioning sCommissioningCluster;

#endif

#if defined(CLD_IDENTIFY) && defined(IDENTIFY_SERVER)

 tsCLD_Identify sIdentifyCluster;

 tsCLD_IdentifyCustomDataStructure sIdentifyCustomDataStructure;

#endif

} tsSE_EspDevice;
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 353

Chapter 13
Structures, Enumerations and Parameters

There is a section of this structure for each cluster supported by the ESP. Each of
these sections has one or more of the following elements:

 Pointer to the cluster

 Data structure(s) for the cluster

The section for each optional cluster is enabled by a corresponding enumeration
defined in the zcl_options.h file (e.g. CLD_MC for the Messaging cluster). If a cluster
is not defined in this header file then it does not feature in the above structure.

13.2.3 Metering Device (tsSE_MeterDevice)

The following tsSE_MeterDevice structure is the shared structure for a Metering
Device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsSE_MeterDeviceClusterInstances sClusterInstance;

#ifdef CLD_BASIC

 /* Holds the attributes for the basic cluster */

 tsCLD_Basic sBasicCluster;

#ifdef BASIC_CLIENT

 /* Holds the attributes for the basic cluster for whatever the IPD is
monitoring */

 tsCLD_Basic sRemoteBasicCluster;

#endif

#endif

#ifdef CLD_SIMPLE_METERING

 /* Holds the attributes for the simple metering cluster */

 tsCLD_SimpleMetering sSimpleMeteringCluster;

 /*Event Address, Custom call back event, Custom call back message*/

 tsSM_CustomStruct sSimpleMeteringCustomDataStruct;

#endif

#if (defined CLD_TIME && defined TIME_CLIENT)

 /* Pointer to the common time cluster */

 tsCLD_Time sTimeCluster;

#endif

#ifdef CLD_PRICE

 /* price cluster */

 tsCLD_Price sPriceCluster;

 /* custom data structures */

 tsSE_PriceCustomDataStructure sPriceCustomDataStructure;

 tsSE_PricePublishPriceRecord
asPublishPriceRecord[SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES];
354 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
 uint8
au8RateLabel[SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES][SE_PRICE_SER
VER_MAX_STRING_LENGTH];

#ifdef BLOCK_CHARGING

 /* Block Period */

 tsSE_PricePublishBlockPeriodRecord
asPublishBlockPeriodRecord[SE_PRICE_NUMBER_OF_CLIENT_BLOCK_PERIOD_RECORD_
ENTRIES];

#endif /* BLOCK_CHARGING */

#ifdef PRICE_CONVERSION_FACTOR

 tsSE_PriceConversionFactorRecord
asPublishConversionFactorRecord[SE_PRICE_NUMBER_OF_CONVERSION_FACTOR_ENTR
IES];

#endif

#ifdef PRICE_CALORIFIC_VALUE

 tsSE_PriceCalorificValueRecord
asPublishCalorificValueRecord[SE_PRICE_NUMBER_OF_CALORIFIC_VALUE_ENTRIES]
;

#endif

#endif

#ifdef CLD_KEY_ESTABLISHMENT

 /* key establishment cluster */

 tsCLD_KeyEstablishment sKeyEstablishmentCluster;

 tsSE_KECCustomDataStructure sKECCustomDataStructure;

#endif

#ifdef CLD_MC

 tsSE_MCCustomDataStructure sMessageCustomDataStructure;

 tsSE_MCDisplayMessageCommandPayloadRecord
asDisplayMessageCommandPayloadRecord[SE_MESSAGE_NUMBER_OF_CLIENT_MESSAGE_
RECORD_ENTRIES];

 uint8
au8DisplayMessage[SE_MESSAGE_NUMBER_OF_CLIENT_MESSAGE_RECORD_ENTRIES][SE_
MESSAGE_SERVER_MAX_STRING_LENGTH];

#endif

#ifdef CLD_OTA

 /* OTA cluster */

 tsCLD_AS_Ota sCLD_OTA;

 /* custom data structures */

 tsOTA_Common sCLD_OTA_CustomDataStruct;

#endif

#ifdef CLD_PREPAYMENT

 tsSE_PrepayDeviceInstance PrepayDeviceInfo;

#endif

#ifdef CLD_COMMISSIONING

 tsCLD_Commissioning sCommissioningCluster;
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 355

Chapter 13
Structures, Enumerations and Parameters

#endif

#if defined(CLD_IDENTIFY) && defined(IDENTIFY_SERVER)

 tsCLD_Identify sIdentifyCluster;

 tsCLD_IdentifyCustomDataStructure sIdentifyCustomDataStructure;

#endif

} tsSE_MeterDevice;

There is a section of this structure for each cluster supported by the Metering Device.
Each of these sections has one or more of the following elements:

 Pointer to the cluster

 Data structure(s) for the cluster

The section for each optional cluster is enabled by a corresponding enumeration
defined in the zcl_options.h file (e.g. CLD_MC for the Messaging cluster). If a cluster
is not defined in this header file then it does not feature in the above structure.
356 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
13.2.4 IPD (tsSE_IPDDevice)

The following tsSE_IPDDevice structure is the shared structure for an IPD:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsSE_IPDDeviceClusterInstances sClusterInstance;

 /* Holds the attributes for the basic cluster for the IPD */

 tsCLD_Basic sLocalBasicCluster;

 /* Holds the status of the attributes in the basic cluster */

 /*tsCLD_AS_Basic sLocalBasicClusterAttributeStatus;*/

 /* Holds the attributes for the basic cluster for whatever the IPD is
monitoring */

 tsCLD_Basic sRemoteBasicCluster;

 /* Holds the status of the attributes in the basic cluster */

 /*tsCLD_AS_Basic sRemoteBasicClusterAttributeStatus;*/

#ifdef CLD_SIMPLE_METERING

 /* Holds the attributes for the simple metering cluster */

 tsCLD_SimpleMetering sSimpleMeteringCluster;

 /* Holds the status of the attributes in the simple metering cluster */

 /*tsCLD_AS_SimpleMetering sSimpleMeteringClusterAttributeStatus;*/

 /*Event Address, Custom call back event, Custom call back message*/

 tsSM_CustomStruct sSimpleMeteringCustomDataStruct;

#endif

#if (defined CLD_TIME && defined TIME_CLIENT)

 /* Pointer to the common time cluster */

 tsCLD_Time sTimeCluster;

#endif

#ifdef CLD_PRICE

 /* the price cluster */

 tsCLD_Price sPriceCluster;

 /* the common time cluster attribute status */

 /*tsCLD_AS_Price sPriceClusterAttributeStatus;*/

 /* custom data structures */

 tsSE_PriceCustomDataStructure sPriceCustomDataStructure;

 tsSE_PricePublishPriceRecord
asPublishPriceRecord[SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES];
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 357

Chapter 13
Structures, Enumerations and Parameters

 uint8
au8RateLabel[SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES][SE_PRICE_SERVER
_MAX_STRING_LENGTH];

#ifdef BLOCK_CHARGING

 /* Block Period */

 tsSE_PricePublishBlockPeriodRecord
asPublishBlockPeriodRecord[SE_PRICE_NUMBER_OF_CLIENT_BLOCK_PERIOD_RECORD_ENT
RIES];

#endif /* BLOCK_CHARGING */

#ifdef PRICE_CONVERSION_FACTOR

 tsSE_PriceConversionFactorRecord
asPublishConversionFactorRecord[SE_PRICE_NUMBER_OF_CONVERSION_FACTOR_ENTRIES
];

#endif

#ifdef PRICE_CALORIFIC_VALUE

 tsSE_PriceCalorificValueRecord
asPublishCalorificValueRecord[SE_PRICE_NUMBER_OF_CALORIFIC_VALUE_ENTRIES];

#endif

#endif

#ifdef CLD_DRLC

 tsCLD_DRLC sDRLCCluster;

 /*tsCLD_AS_DRLC sDRLCClusterAttributeStatus;*/

 /* custom data structures */

 tsSE_DRLCCustomDataStructure sDRLCCustomDataStructure;

 tsSE_DRLCLoadControlEventRecord
asDRLCLoadControlEventRecord[SE_DRLC_NUMBER_OF_CLIENT_LOAD_CONTROL_ENTRIES];

#endif

#ifdef CLD_KEY_ESTABLISHMENT

 /* key establishment cluster */

 tsCLD_KeyEstablishment sKeyEstablishmentCluster;

 /* status of the attributes in the price cluster */

 /*tsCLD_AS_KeyEstablishment sKeyEstablishmentClusterAttributeStatus;*/

 tsSE_KECCustomDataStructure sKECCustomDataStructure;

#endif

#ifdef CLD_MC

 tsSE_MCCustomDataStructure sMessageCustomDataStructure;

 tsSE_MCDisplayMessageCommandPayloadRecord
asDisplayMessageCommandPayloadRecord[SE_MESSAGE_NUMBER_OF_CLIENT_MESSAGE_REC
ORD_ENTRIES];

 uint8
au8DisplayMessage[SE_MESSAGE_NUMBER_OF_CLIENT_MESSAGE_RECORD_ENTRIES][SE_MES
SAGE_SERVER_MAX_STRING_LENGTH];

#endif

#ifdef CLD_OTA

 /* OTA cluster */
358 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
 tsCLD_AS_Ota sCLD_OTA;

 /* Status of OTA attributes in the cluster */

 /*tsCLD_AS_Ota_Status
sOTAClusterAttributesStatus[SE_NUMBER_OF_ENDPOINTS];*/

 /* custom data structures */

 /*tsOTA_Common sCLD_OTA_CustomDataStruct[SE_NUMBER_OF_ENDPOINTS];*/

 tsOTA_Common sCLD_OTA_CustomDataStruct;

#endif

#ifdef CLD_PREPAYMENT

 tsSE_PrepayDeviceInstance PrepayDeviceInfo;

#endif

#ifdef CLD_COMMISSIONING

 tsCLD_Commissioning sCommissioningCluster;

#endif

#if defined(CLD_IDENTIFY) && defined(IDENTIFY_SERVER)

 tsCLD_Identify sIdentifyCluster;

 tsCLD_IdentifyCustomDataStructure sIdentifyCustomDataStructure;

#endif

#if defined(CLD_IDENTIFY) && defined(IDENTIFY_CLIENT)

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure sIdentifyClientCustomDataStructure;

#endif

} tsSE_IPDDevice;

There is a section of this structure for each cluster supported by the IPD. Each of these
sections has one or more of the following elements:

 Pointer to the cluster

 Data structure(s) for the cluster

The section for each optional cluster is enabled by a corresponding enumeration
defined in the zcl_options.h file (e.g. CLD_MC for the Messaging cluster). If a cluster
is not defined in this header file then it does not feature in the above structure.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 359

Chapter 13
Structures, Enumerations and Parameters

13.2.5 Range Extender (tsSE_RangeExtDevice)

The following tsSE_RangeExtDevice structure is the shared structure for a Range
Extender:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsSE_RangeExtDeviceClusterInstances sClusterInstance;

#ifdef CLD_BASIC

 /* Holds the attributes for the basic cluster */

 tsCLD_Basic sBasicCluster;

 /* Holds the status of the attributes in the basic cluster */

 //tsCLD_AS_Basic sLocalBasicClusterAttributeStatus;

#ifdef BASIC_CLIENT

 /* Holds the attributes for the basic cluster for whatever the IPD is
monitoring */

 tsCLD_Basic sRemoteBasicCluster;

 /* Holds the status of the attributes in the basic cluster */

 //tsCLD_AS_Basic sRemoteBasicClusterAttributeStatus;

 #endif

#endif

#ifdef CLD_KEY_ESTABLISHMENT

 /* key establishment cluster */

 tsCLD_KeyEstablishment sKeyEstablishmentCluster;

 /* status of the attributes in the price cluster */

 //tsCLD_AS_KeyEstablishment sKeyEstablishmentClusterAttributeStatus;

 tsSE_KECCustomDataStructure sKECCustomDataStructure;

#endif

#ifdef CLD_OTA

 /* OTA cluster */

 tsCLD_AS_Ota sCLD_OTA;

 /* custom data structures */

 tsOTA_Common sCLD_OTA_CustomDataStruct;

#endif

} tsSE_RangeExtDevice;
360 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
13.3 Event Structure and Enumerations

The following event-related structures are defined in the ZigBee Cluster Library and
are detailed in the ZCL User Guide (JN-UG-3077):

 tsZCL_CallBackEvent (event structure)

 teZCL_CallBackEventType (event type enumerations)

13.4 ZCL Enumerations

The following sets of enumerations are defined in the ZigBee Cluster Library and are
detailed in the ZCL User Guide (JN-UG-3077):

 teZCL_Status (function return codes)

 eZCL_AddressMode (addressing modes)

 ZPS_teAplAfBroadcastMode (broadcast modes)

 teZCL_ZCLAttributeType (attribute types)

 teZCL_RequestStatus (request status)

 teZCL_CommandStatus (command status)

 teZCL_ZCLSendSecurity (security level)

13.5 ZigBee Network Parameters

The ZigBee network parameters are configurable in the ZPS Configuration Editor and
are described in the ZigBee PRO Stack User Guide (JN-UG-3048). Some of these
parameters require specific settings for Smart Energy applications. These parameters
are listed in the table below along with the required settings (the paths and parameter
names are as used in the ZPS Configuration Editor).

* Path is obtained in the ZPS Configuration Editor by selecting a ZigBee device (and possibly one
or more sub-entries) in the tree and then clicking the Properties or Advanced Properties but-
ton - the parameters then appear in the bottom panel of the editor.

Path * Parameter Required Value

Co-ordinator > Properties Initial Security Key Random (Co-ordinator only)

Co-ordinator > ZDO Configu-
ration > End Device Bind
Server > Properties

Timeout 60 (Co-ordinator only)

Any Device > Advanced
Properties

APS Inter-frame Delay 50

APS Max Window Size 1

APS Use Insecure Join FALSE

APS Security Timeout Period 1000 (default)

Table 52: Network Parameter Settings for Smart Energy
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 361

Chapter 13
Structures, Enumerations and Parameters

362 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Part IV:
Appendices
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 363

364 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
A. Supported Clusters and Attributes

The General and Smart Energy clusters that are included in the ZigBee Smart Energy
Profile Specification 1.1.1 are listed in Section 2.3. Not all of these clusters are
certifiable in SE 1.1.1 (07-5356-17) or earlier and supported by the NXP ZigBee PRO
Smart Energy API. The supported clusters are listed in the table below.

The attributes supported by each Smart Energy cluster are indicated in the sections
below.

A.1 Price Cluster Attributes

Price Cluster Server Attributes

 Tier Label attribute set

 Tier<x>PriceLabel (where <x>=1, 2,... 15)

 Block Threshold attribute set

 Block<x>Threshold (where <x>=1, 2,... 15)

 Block Period attribute set

 StartofBlockPeriod

 BlockPeriodDuration (minutes)

 ThresholdMultiplier

 ThresholdDivisor

 Commodity attribute set

 CommodityType

 StandingCharge

Category Cluster Cluster ID

General (ZCL) Basic 0x0000

Identify 0x0003

Time 0x000A

Commissioning 0x0015

Over-the-Air (OTA) Upgrade 0x0019

Smart Energy Price 0x0700

Demand-Response and Load Control 0x0701

(Simple) Metering 0x0702

Messaging 0x0703

Key Establishment 0x0800

Table 53: SE Profile Clusters
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 365

Appendices
 ConversionFactor

 ConversionFactorTrailingDigit

 CalorificValue

 CalorificValueTrailingDigit

 CalorificValueUnit

 Block Price Information attribute set

 NoTierBlock<x>Price (where <x>=1, 2,... 16)

 Tier1Block<x>Price (where <x>=1, 2,... 16)

 Tier2Block<x>Price (where <x>=1, 2,... 16)

 Tier3Block<x>Price (where <x>=1, 2,... 16)

 Tier4Block<x>Price (where <x>=1, 2,... 16)

 Tier5Block<x>Price (where <x>=1, 2,... 16)

 Tier6Block<x>Price (where <x>=1, 2,... 16)

 Tier7Block<x>Price (where <x>=1, 2,... 16)

 Tier8Block<x>Price (where <x>=1, 2,... 16)

 Tier9Block<x>Price (where <x>=1, 2,... 16)

 Tier10Block<x>Price (where <x>=1, 2,... 16)

 Tier11Block<x>Price (where <x>=1, 2,... 16)

 Tier12Block<x>Price (where <x>=1, 2,... 16)

 Tier13Block<x>Price (where <x>=1, 2,... 16)

 Tier14Block<x>Price (where <x>=1, 2,... 16)

 Tier15Block<x>Price (where <x>=1, 2,... 16)

 Billing Period Information attribute set

 StartOfBillingPeriod

 BillingPeriodDuration

Price Cluster Client Attributes

 u8ClientIncreaseRandomize

 u8ClientDecreaseRandomize

 e8ClientCommodityType
366 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
A.2 Demand-Response and Load Control Cluster Attributes

DRLC Cluster Client Attributes

 UtilityEnrolmentGroup

 StartRandomizeMinutes

 StopRandomizeMinutes

 DeviceClassValue

A.3 (Simple) Metering Cluster Attributes

Metering Cluster Server Attributes

 Reading Information attribute set

 CurrentSummationDelivered

 CurrentSummationReceived

 CurrentMaxDemandDelivered

 CurrentMaxDemandReceived

 DFTSummation

 Daily FreezeTime

 PowerFactor

 ReadingSnapShotTime

 CurrentMaxDemandDeliveredTime

 CurrentMaxDemandReceivedTime

 DefaultUpdatePeriod

 FastPollUpdatePeriod

 CurrentBlockPeriodConsumptionDelivered

 DailyConsumptionTarget

 CurrentBlock

 ProfileIntervalPeriod

Note: There are no server attributes in the Demand-
Response and Load Control cluster.

Note: There are no client attributes in the Simple
Metering cluster.
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 367

Appendices
 IntervalReadReportingPeriod

 PresetReadingTime

 VolumePerReport

 FlowRestriction

 Supply Status

 CurrentInletEnergyCarrierSummation

 CurrentOutletEnergyCarrierSummation

 InletTemperature

 OutletTemperature

 ControlTemperature

 CurrentInletEnergyCarrierDemand

 CurrentOutletEnergyCarrierDemand

 TOU Information attribute set

 CurrentTier<x>SummationDelivered (where <x>=1, 2,... 16)

 CurrentTier<x>SummationReceived (where <x>=1, 2,... 16)

 Meter Status attribute set

 Status

 RemainingBatteryLife

 HoursInOperation

 HoursInFault

 Formatting Attribute Set

 UnitofMeasure

 Multiplier

 Divisor

 SummationFormatting

 DemandFormatting

 HistoricalConsumptionFormatting

 MeteringDeviceType

 SiteID

 MeterSerialNumber

 EnergyCarrierUnitOfMeasure

 EnergyCarrierSummationFormatting

 EnergyCarrierDemandFormatting

 TemperatureUnitOfMeasure

 TemperatureFormatting
368 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
 Historical Consumption attribute set

 InstantaneousDemand

 CurrentDayConsumptionDelivered

 CurrentDayConsumptionReceived

 PreviousDayConsumptionDelivered

 PreviousDayConsumptionReceived

 CurrentPartialProfileIntervalStartTimeDelivered

 CurrentPartialProfileIntervalStartTimeReceived

 CurrentPartialProfileIntervalValueDelivered

 CurrentPartialProfileIntervalValueReceived

 CurrentDayMaxPressure

 CurrentDayMinPressure

 PreviousDayMaxPressure

 PreviousDayMinPressure

 CurrentDayMaxDemand

 PreviousDayMaxDemand

 CurrentMonthMaxDemand

 CurrentYearMaxDemand

 CurrentDayMaxEnergyCarrierDemand

 PreviousDayMaxEnergyCarrierDemand

 CurrentMonthMaxEnergyCarrierDemand

 CurrentMonthMinEnergyCarrierDemand

 CurrentYearMaxEnergyCarrierDemand

 CurrentYearMinEnergyCarrierDemand

 Load Profile Configuration attribute set

 MaxNumberOfPeriodsDelivered

 Supply Limit attribute set

 CurrentDemandDelivered

 DemandLimit

 DemandIntegration Period

 NumberOfDemandSubintervals

 Block Information attribute set

 CurrentNoTierBlock<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier1Block<x>SummationDelivered
(where <x>=1, 2,... 16)
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 369

Appendices
 CurrentTier2Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier3Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier4Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier5Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier6Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier7Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier8Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier9Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier10Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier11Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier12Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier13Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier14Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 CurrentTier15Block<x>SummationDelivered
(where <x>=1, 2,... 16)

 Alarms attribute set

 GenericAlarmMask

 ElectricityAlarmMask

 Generic Flow/PressureAlarmMask

 Water SpecificAlarmMask

 Heat andCoolingSpecificAlarmMask

 Gas SpecificAlarmMask

A.4 Messaging Cluster Attributes

The Messaging cluster does not have any attributes.
370 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
A.5 Key Establishment Cluster Attributes

Key Establishment Cluster Server Attributes

 KeyEstablishmentSuite

Key Establishment Cluster Client Attributes

 KeyEstablishmentSuite
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 371

Appendices
B. Custom Endpoints

An SE device and its associated clusters can be registered on an endpoint using the
relevant device registration function, from those listed and described in Chapter 12.
However, it is also possible to set up a custom endpoint which supports selected
clusters (rather than a whole SE device and all of its associated clusters). Custom
endpoints are particularly useful when using multiple endpoints on a single node - for
example, the first endpoint may support a complete SE device (such as an IPD) while
one or more custom endpoints are used to support selected clusters.

B.1 SE Devices and Endpoints

When using custom endpoints, it is important to note the difference between the
following SE ‘devices’:

 Physical device: This is the physical entity which is the SE network node

 Logical SE device: This is a software entity which implements a specific set of
SE functionality on the node, e.g. Metering device

An SE network node may contain multiple endpoints, where one endpoint is used to
represent the ‘physical device’ and other endpoints are used to support ‘logical SE
devices’. The following rules apply to cluster instances on endpoints:

 All cluster instances relating to a single ‘logical SE device’ must reside on a
single endpoint.

 The Basic cluster and Key Establishment cluster relate to the ‘physical device’
rather than a ‘logical SE device’ instance. For each of these clusters, there can
be only one cluster server for the entire node, which can be implemented in
either of the following ways:

 A single cluster instance on a dedicated ‘physical device’ endpoint
(instances for both clusters can reside on this endpoint)

 A separate cluster instance on each ‘logical SE device’ endpoint, but each
cluster instance must use the same tsZCL_ClusterInstance structure
(and the same attribute values)
372 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
B.2 Cluster Creation Functions

For each cluster, a creation function is provided which creates an instance of the
cluster on an endpoint. These functions are as follows:

 Basic: eCLD_BasicCreateBasic()

 Identify: eCLD_IdentifyCreateIdentify()

 Time: eCLD_TimeCreateTime()

 Price: eSE_PriceCreate()

 Messaging: eSE_MCCreate()

 Simple Metering: eSE_SMCreate()

 Demand-Response and Load Control: eSE_DRLCCreate()

 Key Establishment: eSE_KECCreate()

More than one of the above functions can be called for the same endpoint in order to
create multiple cluster instances on the endpoint.

The creation functions for clusters from the ZCL are described in the ZCL User Guide
(JN-UG-3077). The creation functions for the remaining SE-specific clusters are
described in the chapters for the corresponding clusters in this manual.

B.3 Custom Endpoint Set-up

In order to set up a custom endpoint (supporting selected clusters), you must do the
following in your application code:

1. Create a structure for the custom endpoint containing details of the cluster
instances and attributes supported - see Appendix B.3.1 and Appendix B.3.2.

2. Initialise the fields of the tsZCL_EndPointDefinition structure for the
endpoint.

3. Call the relevant cluster creation function(s) for the cluster(s) to be supported
on the endpoint - see Appendix B.2.

4. Call the ZCL function eZCL_Register() for the endpoint.

Note: No more than one server instance and one client
instance of a given cluster can be created on a single
endpoint (e.g. one Identify cluster server and one
Identify cluster client, but no further Identify cluster
instances).
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 373

Appendices
B.3.1 Custom Endpoint Structure

In your application code, to set up a custom endpoint you must create a structure
containing details of the cluster instances and attributes to be supported on the
endpoint. This structure must include the following:

 A definition of the custom endpoint through a tsZCL_EndPointDefinition
structure - for example:

tsZCL_EndPointDefinition sEndPoint

 A structure containing a set of tsZCL_ClusterInstance structures for the
supported cluster instances - for example:

typedef struct
{
 tsZCL_ClusterInstance sBasicServer;
 tsZCL_ClusterInstance sBasicClient;
 tsZCL_ClusterInstance sSimpleMeteringClient;
 tsZCL_ClusterInstance sDRLCClient;
 tsZCL_ClusterInstance sPriceClient;
 tsZCL_ClusterInstance sKeyEstablishmentClient;
 tsZCL_ClusterInstance sTimeClient;
 tsZCL_ClusterInstance sIdentifyClient;
} tsSE_AppCustomDeviceClusterInstances

For each cluster instance that is not shared with another endpoint, the following
should be specified via the relevant tsZCL_ClusterInstance structure:

 Attribute definitions, if any - for example, the tsCLD_Basic structure for
the Basic cluster

 Custom data structures, if any - for example, the tsSM_CustomStruct
structure for the Simple Metering cluster

 Memory for tables or any other resources, if required by the cluster
creation function

An example of a custom endpoint structure is provided in the example code fragment
in Appendix B.3.2.

Note: If a custom endpoint is to co-exist with a device
endpoint (as in the example in Appendix B.3.2), the
endpoints can share the structures for the clusters that
they have in common. Therefore, it is not necessary to
define these cluster structures for the custom endpoint,
since they already exist for the device endpoint.
374 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
B.3.2 Example Code for Custom Endpoint

The code fragment below illustrates how to set up a custom endpoint for an IPD in
addition to an endpoint for a standard IPD. The two IPD endpoints use the same
clusters and can share the cluster structures but, in this case, the custom IPD uses its
own Price and DRLC structures.

/* The following variable will be used for registering endpoint1 */
tsSE_IPDDevices SE_IPDDevice;

/* Cluster instances for endpoint2 */
typedef struct
{
 tsZCL_ClusterInstance sBasicServer;
 tsZCL_ClusterInstance sBasicClient;
 tsZCL_ClusterInstance sSimpleMeteringClient;
 tsZCL_ClusterInstance sDRLCClient;
 tsZCL_ClusterInstance sPriceClient;
 tsZCL_ClusterInstance sDRLCClient;
 tsZCL_ClusterInstance sKeyEstablishmentClient;
 tsZCL_ClusterInstance sTimeClient;
 tsZCL_ClusterInstance sIdentifyClient;
} tsAPP_IPDDeviceClusterInstances;

typedef struct
{
 /* Endpoint details*/
 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */
 tsAPP_IPDDeviceClusterInstances sClusterInstance;

/* When setting up a second endpoint, it is not necessary to define all cluster-related structures as these
can be shared between endpoint1 and endpoint2. This is up to the application. In this example, only
structures for the Price and DRLC clusters are specifically set up for endpoint2. */

 /* Price cluster */
#ifdef PRICE_CLIENT
 tsCLD_Price sPriceCluster;
 tsSE_PriceCustomDataStructure sPriceCustomDataStructure;
 tsSE_PricePublishPriceRecord asPublishPriceRecord [SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES];
 uint8 au8RateLabel
[SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES][SE_PRICE_SERVER_MAX_STRING_LENGTH];
#endif

#ifdef DRLC_CLIENT

 /* DRLC */
 tsCLD_DRLC sDRLCCluster;
 tsSE_DRLCCustomDataStructure sDRLCCustomDataStructure;
 tsSE_DRLCLoadControlEventRecord asDRLCLoadControlEventRecord
[SE_DRLC_NUMBER_OF_CLIENT_LOAD_CONTROL_ENTRIES];
#endif
}tsAPP_IpdDevice;

/* Define endpoint instance in Application global area as follows */
tsAPP_IpdDevice sIPDDevice;

/* Registration function */
teZCL_Status eRegisterCustomIPDNode(void)
{
 uint8 i;
 teZCL_Status eZCL_Status;

 /* First register the endpoint using the SE-defined endpoint function */
 eZCL_Status = eSE_RegisterIPDEndPoint(IPD_BASE_LOCAL_EP, &cbZCL_EndpointCallback, &sSE_IPDDevice);
 if(E_ZCL_SUCCESS != eZCL_Status)
 {
 return eZCL_Status;
 }
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 375

Appendices
 sSE_IPDDevice.sDRLCCluster.u16DeviceClassValue = E_SE_DRLC_SMART_APPLIANCES_BIT;

 /* Other endpoints share the cluster data with endpoint1 for the Basic,
 * Time, KEC, SM, and Identify clusters, but not for the DRLC and
 * Price clusters */

 /* Fill in end point details */
 sIPDDevice.sEndPoint.u8EndPointNumber = IPD_BASE_LOCAL_EP + 1;
 sIPDDevice.sEndPoint.u16ManufacturerCode = SE_MANUFACTURER_CODE;
 sIPDDevice.sEndPoint.u16ProfileEnum = SE_PROFILE_ID;
 sIPDDevice.sEndPoint.bIsManufacturerSpecificProfile = FALSE;
 sIPDDevice.sEndPoint.u16NumberOfClusters =
 sizeof(tsAPP_IPDDeviceClusterInstances) / sizeof(tsZCL_ClusterInstance);;
 sIPDDevice.sEndPoint.psClusterInstance =
 (tsZCL_ClusterInstance*)&sIPDDevice.sClusterInstance;
 sIPDDevice.sEndPoint.bDisableDefaultResponse = TRUE;
 sIPDDevice.sEndPoint.pCallBackFunctions = cbZCL_EndpointCallback;

 /* Create Basic server. Share the cluster data from endpoint1 */
#ifdef BASIC_SERVER
 if (eCLD_BasicCreateBasic(
 &sIPDDevice.sClusterInstance.sBasicServer,
 TRUE,
 &sCLD_Basic,
 &sSE_IPDDevice.sLocalBasicCluster,
 &au8AppBasicServerAttributeControlBits[0]
) != E_ZCL_SUCCESS)
 {
 return E_ZCL_FAIL;
 }
#else
sIPDDevice .sClusterInstance. sBasicServer.psClusterDefinition = &sCLD_BasicDummy;
#endif

 /* Create Basic client. Share the cluster data from endpoint1 */
#ifdef BASIC_CLIENT

 if (eCLD_BasicCreateBasic(
 &sIPDDevice.sClusterInstance.sBasicClient,
 FALSE,
 &sCLD_Basic,
 &sSE_IPDDevice.sRemoteBasicCluster,
 &au8AppBasicClientAttributeControlBits[0]
) != E_ZCL_SUCCESS)
 {
 return E_ZCL_FAIL;
 }

#else
 sIPDDevice .sClusterInstance. sBasicClient.psClusterDefinition = &sCLD_BasicDummy;
#endif

#ifdef SM_CLIENT
 /* Create SM client. Share the cluster data from endpoint1 */
 if (eSE_SMCreate(
 IPD_BASE_LOCAL_EP + 1,
 FALSE,
 &au8AppSMClientAttributeControlBits[0],
 &sIPDDevice.sClusterInstance.sSimpleMeteringClient,
 &sCLD_SimpleMetering,
 &sSE_IPDDevice.sSimpleMeteringCustomDataStruct, /* Information shared with endpoint1 */
 &sSE_IPDDevice.sSimpleMeteringCluster) /* Information shared with endpoint1 */
 != E_ZCL_SUCCESS)
 {
 return E_ZCL_FAIL;
 }

#else
 sIPDDevice .sClusterInstance. sSimpleMeteringClient.psClusterDefinition = &sCLD_SMDummy;
#endif

#ifdef TIME_CLIENT
376 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
 /* Create Time client. Share the cluster data from endpoint1 */
 if (eCLD_TimeCreateTime(
 &sIPDDevice.sClusterInstance.sTimeClient,
 TRUE,
 &sCLD_Time,
 &sSE_IPDDevice.sTimeCluster,
 &au8AppTimeClientAttributeControlBits[0]
) != E_ZCL_SUCCESS)
 {
 return E_ZCL_FAIL;
 }
#else
 sIPDDevice .sClusterInstance. sTimeClient.psClusterDefinition = &sCLD_TimeDummy;
#endif

#ifdef DRLC_CLIENT
 /* Create DRLC client. Use different cluster data */
 if (eSE_DRLCCreate(
 FALSE,
 SE_DRLC_NUMBER_OF_CLIENT_LOAD_CONTROL_ENTRIES,
 &au8AppDRLCClientAttributeControlBits[0],
 &sIPDDevice.sClusterInstance.sDRLCClient,
 &sCLD_DRLC,
 &sIPDDevice.sDRLCCustomDataStructure,
 sIPDDevice.asDRLCLoadControlEventRecord,
 &sIPDDevice.sDRLCCluster)
 != E_ZCL_SUCCESS)
 {
 return E_ZCL_FAIL;
 }
#else
 sIPDDevice .sClusterInstance. sDRLCClient.psClusterDefinition = &sCLD_DRLCDummy;
#endif

#ifdef CLD_KEY_ESTABLISHMENT
 /* Create KEC client. Share the cluster data from endpoint1 */
 if (eSE_KECCreate(
&au8AppKECClientAttributeControlBits[0],
 & sIPDDevice.sClusterInstance.sKeyEstablishmentClient,
 &sCLD_KeyEstablishment,
 &sSE_IPDDevice.sKECCustomDataStructure, /* Information shared with endpoint1 */
 &sSE_IPDDevice.sKeyEstablishmentCluster,) /* Information shared with endpoint1 */
 != E_ZCL_SUCCESS)

 {
 return E_ZCL_FAIL;
 }
#else
 sIPDDevice .sClusterInstance. sKeyEstablishmentCluster.psClusterDefinition = &sCLD_KECDummy;
#endif
#ifdef MC_CLIENT
 /* Create Messaging client. Share the cluster data from endpoint1 */
 if (eSE_MCCreate(
 FALSE,
 SE_MESSAGE_NUMBER_OF_CLIENT_MESSAGE_RECORD_ENTRIES,
 &sSE_IPDDevice.au8DisplayMessage[0][0], /* Information shared with endpoint1 */
 &sIPDDevice.sClusterInstance.sMCClient,
 &sCLD_MC,
 &sSE_IPDDevice.sMessageCustomDataStructure, /* Information shared with endpoint1 */
 sSE_IPDDevice.asDisplayMessageCommandPayloadRecord) /* Information shared with endpoint1 */
 != E_ZCL_SUCCESS)

 {
 return E_ZCL_FAIL;
 }
#else
 sIPDDevice .sClusterInstance. sMCClient.psClusterDefinition = &sCLD_MCDummy;
#endif

 /* Create Identify client. Share the cluster data from endpoint1 */
 if(eCLD_IdentifyCreateIdentify(
 &sIPDDevice.sClusterInstance.sIdentifyClient,
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 377

Appendices
 FALSE,
 &sCLD_Identify,
 &sSE_IPDDevice.sIdentifyClientCluster,
 (void*)&au8AppIdentifyServerAttributeControlBits[0],
 &sSE_IPDDevice.sIdentifyClientCustomDataStructure
) != E_ZCL_SUCCESS)
 {
 return E_ZCL_FAIL;
 }
 /* Create Price client. Use different cluster data from endpoint1 */
#ifdef PRICE_CLIENT
 if (eSE_PriceCreate(
 FALSE,
 SE_PRICE_NUMBER_OF_CLIENT_PRICE_RECORD_ENTRIES,
 &au8AppPriceClientAttributeControlBits[0],
 &sIPDDevice.au8RateLabel[0][0]
 &sIPDDevice.sClusterInstance.sPriceClient,
 &sCLD_Price,
 &sIPDDevice.sPriceCustomDataStructure,
 sIPDDevice.asPublishPriceRecord,
 &sIPDDevice.sPriceCluster)

) != E_ZCL_SUCCESS)
 {
 return E_ZCL_FAIL;
 }
#else
 sIPDDevice .sClusterInstance. sPriceClient.psClusterDefinition = &sCLD_PriceDummy;
#endif

 eZCL_Status = eZCL_Register(&sIPDDevice.sEndPoint);
 if(E_ZCL_SUCCESS != eZCL_Status)
 {
 return eZCL_Status;
 }

 return E_ZCL_SUCCESS;
}

378 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

 ZigBee PRO Smart Energy API
User Guide
Revision History

Version Date Comments

1.0 03-Dec-2009 First release

1.1 22-Mar-2010 Minor updates

2.0 24-Nov-2010 Incorporated information from former ZigBee PRO Smart Energy API
Reference Manual (JN-RM-2046)

3.0 10-May-2011 Details of clusters from the ZigBee Cluster Library (ZCL) migrated to
the ZCL User Guide (JN-UG-3077). Key Establishment testing added
and OTA Upgrade cluster introduced

3.1 23-May-2012 Made minor updates/corrections and added:

• Demand-Response and Load Control (DRLC) cluster

• Extra features (Mirroring, Get Profile) to Simple Metering cluster

3.2 24-Aug-2012 Updated to include ‘calorific value’ and ‘conversion factor’ in the Price
cluster. Other minor updates/corrections also made

3.3 14-Jan-2013 Updated various structure definitions and Price cluster attribute sets

3.4 22-Apr-2013 Made minor updates/corrections and added:

• Tunnelling cluster

• Custom endpoints
JN-UG-3059 v3.4 © NXP Laboratories UK 2013 379

ZigBee PRO Smart Energy API
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Laboratories UK Ltd
(Formerly Jennic Ltd)

Furnival Street
Sheffield
S1 4QT

United Kingdom

Tel: +44 (0)114 281 2655
Fax: +44 (0)114 281 2951

For the contact details of your local NXP office or distributor, refer to:

www.nxp.com/jennic
380 © NXP Laboratories UK 2013 JN-UG-3059 v3.4

	Contents
	About this Manual
	Organisation
	Conventions
	Terminology
	Acronyms and Abbreviations
	Related Documents
	Trademarks
	Chip Compatibility

	Part I: Concept and Development Information
	1. An Introduction to Smart Energy
	1.1 Philosophy of Smart Energy
	1.1.1 SE Objectives
	1.1.2 SE Principles

	1.2 Smart Energy Devices
	1.3 Smart Energy Networks
	1.3.1 Home Area Networks (HANs)
	1.3.2 Neighbourhood Area Networks (NANs)
	1.3.3 Network Security

	2. ZigBee Smart Energy
	2.1 Essential ZigBee Concepts
	2.1.1 Application Profiles
	2.1.2 Devices, Clusters and Attributes
	2.1.3 ZigBee Cluster Library (ZCL)

	2.2 ZigBee SE Profile
	2.3 ZigBee SE Clusters
	2.4 ZigBee SE Devices
	2.4.1 Energy Service Portal (ESP)
	2.4.2 Metering Device
	2.4.3 In-Premise Display (IPD)
	2.4.4 Programmable Communicating Thermostat (PCT)
	2.4.5 Load Control Device
	2.4.6 Smart Appliance
	2.4.7 Range Extender

	2.5 ZigBee SE Security
	2.5.1 ZigBee PRO Security
	2.5.2 Smart Energy Security

	3. Smart Energy Application Development
	3.1 Development Resources and Installation
	3.2 Smart Energy API
	3.2.1 Core Resources
	3.2.2 Cluster-specific Resources

	3.3 Function Prefixes
	3.4 Development Phases
	3.5 Building an Application
	3.5.1 Compile-Time Options
	3.5.2 ZigBee Network Parameters
	3.5.3 Building and Loading the Application Binary

	4. Smart Energy Application Coding
	4.1 SE Programming Concepts
	4.1.1 Shared Device Structures
	4.1.2 Addressing
	4.1.3 OS Resources

	4.2 Initialisation
	4.3 Callback Functions
	4.4 Discovering Endpoints and Clusters
	4.5 Reading Attributes
	4.6 Writing Attributes
	4.7 Handling Events

	Part II: Smart Energy Clusters
	5. ZCL Clusters
	5.1 Basic Cluster
	5.1.1 Compile-Time Options
	5.1.2 Mandatory Attributes

	5.2 Time Cluster
	5.2.1 Compile-Time Options
	5.2.2 Time Standards
	5.2.3 Mandatory Attributes
	5.2.4 Time-Synchronisation of Devices
	5.2.4.1 Initialising and Maintaining Master Time
	5.2.4.2 Initial Synchronisation of Devices
	5.2.4.3 Re-synchronisation of Devices
	5.2.4.4 Re-synchronisation Following Sleep
	5.2.4.5 Checking ZCL Time Synchronisation

	5.3 OTA Upgrade Cluster
	5.3.1 Compile-Time Options
	5.3.2 Mandatory Attributes

	6. Price Cluster
	6.1 Overview
	6.2 Price Cluster Structure and Attributes
	6.3 Attribute Settings
	6.4 Initialising and Maintaining Price Lists
	6.5 Publishing Price Information
	6.5.1 Unsolicited Price Updates
	6.5.2 Get Current Price
	6.5.3 Get Scheduled Prices

	6.6 Time-Synchronisation via Publish Price Commands
	6.7 Conversion Factor and Calorific Value (Gas Only)
	6.8 Price Events
	6.9 Functions
	eSE_PriceCreate
	eSE_PriceGetCurrentPriceSend
	eSE_PriceGetScheduledPricesSend
	eSE_PriceAddPriceEntry
	eSE_PriceAddPriceEntryToClient
	eSE_PriceGetPriceEntry
	eSE_PriceDoesPriceEntryExist
	eSE_PriceRemovePriceEntry
	eSE_PriceClearAllPriceEntries
	eSE_PriceAddConversionFactorEntry
	eSE_PriceGetConversionFactorSend
	eSE_PriceGetConversionFactorEntry
	eSE_PriceDoesConversionFactorEntryExist
	eSE_PriceRemoveConversionFactorEntry
	eSE_PriceClearAllConversionFactorEntries
	eSE_PriceAddCalorificValueEntry
	eSE_PriceGetCalorificValueSend
	eSE_PriceGetCalorificValueEntry
	eSE_PriceDoesCalorificValueEntryExist
	eSE_PriceRemoveCalorificValueEntry
	eSE_PriceClearAllCalorificValueEntries

	6.10 Return Codes
	6.11 Structures
	6.11.1 tsSE_PricePublishPriceCmdPayload
	6.11.2 tsSE_PricePublishConversionCmdPayload
	6.11.3 tsSE_PricePublishCalorificValueCmdPayload

	6.12 Enumerations
	6.12.1 ‘Attribute ID’ Enumerations
	6.12.2 ‘Price Event’ Enumerations
	6.12.3 'Calorific Value Unit' Enumerations

	6.13 Compile-Time Options

	7. Messaging Cluster
	7.1 Overview
	7.2 Messaging Cluster Structure and Attributes
	7.3 Message Delivery and Display
	7.3.1 Storing Messages
	7.3.2 Forwarding a Message
	7.3.3 Requesting a Message
	7.3.4 Displaying a Message
	7.3.5 Cancelling a Message

	7.4 Messaging Events
	7.4.1 Event Types
	7.4.2 Other Elements of tsSE_MCCallBackMessage

	7.5 Functions
	eSE_MCCreate
	eSE_MCDisplayMessage
	eSE_MCCancelMessage
	eSE_MCGetMessage
	eSE_MCSendGetLastMessageRequest
	eSE_MCMessageConfirmationUserSend

	7.6 Return Codes
	7.7 Enumerations
	7.7.1 ‘Message Event’ Enumerations
	7.7.2 ‘Message List’ Enumerations

	7.8 Structures
	7.8.1 tsSE_MCCallBackMessage
	7.8.2 tsSE_MCDisplayMessageCommandPayload
	7.8.3 tsSE_MCCancelMessageCommandPayload
	7.8.4 tsSE_MCMessageConfirmCommandPayload

	7.9 Compile-Time Options

	8. Simple Metering Cluster
	8.1 Overview
	8.2 Simple Metering Cluster Structure and Attributes
	8.3 Attribute Settings
	8.4 Remotely Reading Simple Metering Attributes
	8.5 Mirroring Metering Data
	8.5.1 Configuring Mirroring on ESP
	8.5.2 Configuring Mirroring on Metering Devices
	8.5.3 Mirroring Data
	8.5.4 Reading Mirrored Data
	8.5.5 Removing a Mirror

	8.6 Consumption Data Archive (‘Get Profile’)
	8.6.1 Updating Consumption Data on Server
	8.6.2 Sending and Handling a ‘Get Profile’ Request

	8.7 Simple Metering Events
	8.7.1 Event Types
	8.7.2 Command Types

	8.8 Functions
	eSE_SMCreate
	eSE_ReadMeterAttributes
	eSE_HandleReadMeterAttributesResponse
	eSM_ServerRequestMirrorCommand
	eSM_ServerRemoveMirrorCommand
	eSM_CreateMirror
	eSM_RemoveMirror
	eSM_GetFreeMirrorEndPoint
	eSM_IsMirrorSourceAddressValid
	eSM_ServerUpdateConsumption
	eSM_ClientGetProfileCommand
	u32SM_GetReceivedProfileData

	8.9 Return Codes
	8.10 Enumerations
	8.10.1 ‘Attribute ID’ Enumerations
	8.10.2 ‘Meter Status’ Enumerations
	8.10.3 ‘Unit of Measure’ Enumerations
	8.10.4 ‘Summation Formatting’ Enumerations
	8.10.5 ‘Supply Direction’ Enumerations
	8.10.6 ‘Metering Device Type’ Enumerations
	8.10.7 ‘Simple Metering Event’ Enumerations
	8.10.8 ‘Server Command’ Enumerations
	8.10.9 ‘Client Command’ Enumerations
	8.10.10 ‘Consumption Interval’ Enumerations
	8.10.11 ‘Simple Metering Status’ Enumerations

	8.11 Structures
	8.11.1 tsSM_CallBackMessage
	8.11.2 tsSE_Mirror
	8.11.3 tsSE_MirrorClusterInstances
	8.11.4 tsSM_CustomStruct
	8.11.5 tsSEGetProfile
	8.11.6 tsSM_RequestMirrorResponseCommand
	8.11.7 tsSM_MirrorRemovedResponseCommand
	8.11.8 tsSM_GetProfileRequestCommand
	8.11.9 tsSM_GetProfileResponseCommand
	8.11.10 tsSM_Error

	8.12 Compile-Time Options

	9. Demand-Response and Load Control Cluster
	9.1 Overview
	9.2 DRLC Cluster Structure and Attributes
	9.3 Initialisation
	9.4 Load Control Events (LCEs)
	9.4.1 LCE Contents
	9.4.2 LCE Lists

	9.5 LCE Handling
	9.5.1 LCE Handling on Server
	9.5.2 LCE Handling on Clients
	9.5.2.1 LCE Activation and De-activation
	9.5.2.2 Getting Scheduled Events
	9.5.2.3 Reporting LCE Actions to Server
	9.5.2.4 Over-riding LCE Settings

	9.5.3 Cancelling LCEs

	9.6 Message Signing (Security)
	9.7 DRLC Events
	9.7.1 Event and Command Types
	9.7.2 Other Elements of tsSE_DRLCCallBackMessage

	9.8 Functions
	eSE_DRLCCreate
	eSE_DRLCAddLoadControlEvent
	eSE_DRLCGetScheduledEventsSend
	eSE_DRLCCancelLoadControlEvent
	eSE_DRLCCancelAllLoadControlEvents
	eSE_DRLCSetEventUserOption
	eSE_DRLCSetEventUserData
	eSE_DRLCGetLoadControlEvent
	eSE_DRLCFindLoadControlEvent

	9.9 Return Codes
	9.10 Enumerations
	9.10.1 ‘Device Class’ Enumerations
	9.10.2 ‘DRLC Event’ Enumerations
	9.10.3 ‘Criticality Level’ Enumerations
	9.10.4 ‘LCE Cancellation’ Enumerations
	9.10.5 ‘LCE Participation’ Enumerations
	9.10.6 ‘LCE Data Modification’ Enumerations
	9.10.7 ‘LCE List’ Enumerations
	9.10.8 ‘LCE Status’ Enumerations

	9.11 Structures
	9.11.1 tsSE_DRLCLoadControlEvent
	9.11.2 tsSE_DRLCGetScheduledEvents
	9.11.3 tsSE_DRLCCancelLoadControlEvent
	9.11.4 tsSE_DRLCReportEvent
	9.11.5 tsSE_DRLCCallBackMessage

	9.12 Compile-Time Options

	10. Key Establishment Cluster
	10.1 Overview
	10.2 Key Establishment Cluster Structure and Attribute
	10.3 Performing Key Establishment
	10.4 Key Establishment Events
	10.4.1 Event Types
	10.4.2 Other Elements of tsSE_KECCallBackMessage

	10.5 Restoring Link Key from Non-Volatile Memory
	10.6 Testing Key Establishment
	10.7 Functions
	eSE_KECCreate
	eSE_KECLoadKeys
	eSE_KECInitiateKeyEstablishment
	eSE_KECConfigureTestHarness

	10.8 Return Codes
	10.9 Structures
	10.9.1 tsSE_KECCallBackMessage
	10.9.2 tsKEC_Common
	10.9.3 tsKEC_TestHarnessParameters

	10.10 Enumerations
	10.10.1 ‘Event’ Enumerations
	10.10.2 ‘Command ID’ Enumerations
	10.10.3 ‘Key Establishment Termination’ Status Codes

	10.11 Compile-Time Options

	11. Tunnelling Cluster
	11.1 Overview
	11.2 Tunnelling Cluster Structure and Attribute
	11.3 Initialisation
	11.4 Tunnel Creation
	11.5 Tunnelled Data Transfer
	11.6 Closing a Tunnel
	11.7 Tunnelling Events
	11.7.1 Events Types
	11.7.2 Example Event Handling Callback Function

	11.8 Functions
	eSE_TunnelCreate
	eSE_TunnelRequestTunnelSend
	eSE_TunnelTransferDataSend
	eSE_TunnelCloseTunnelSend
	eSE_TunnelGetInformation

	11.9 Return Codes
	11.10 Structures
	11.10.1 tsSE_TunnelCallBackMessage
	11.10.2 tsSE_TunnelRequestTunnelCmdPyld
	11.10.3 tsSE_TunnelTransferDataReqCmdPyld
	11.10.4 tsSE_TunnelRequestTunnelResponse
	11.10.5 tsSE_TunnelRequestTunnelCreated
	11.10.6 tsSE_TunnelTransferDataCmdPyldRcvd
	11.10.7 tsSE_TunnelTransferDataReqStatus
	11.10.8 tsSE_TunnelTransferDataError
	11.10.9 tsSE_TunnelcloseTunnel
	11.10.10 tsSE_TunnelDetails

	11.11 Enumerations
	11.11.1 'Tunnelling Event' Enumerations
	11.11.2 'Request Tunnel Status' Enumerations
	11.11.3 'Data Transfer Error' Enumerations
	11.11.4 'Close Cause' Enumerations
	11.11.5 'Protocol ID' Enumerations

	11.12 Compile-Time Options

	Part III: General Reference Information
	12. Initialisation and Device Registration Functions
	eSE_Initialise
	eSE_RegisterEspMeterEndPoint
	eSE_RegisterEspEndPoint
	eSE_RegisterMeterEndPoint
	eSE_RegisterIPDEndPoint
	eSE_RegisterRangeExtEndPoint

	13. Structures, Enumerations and Parameters
	13.1 ZCL Structures
	13.2 Device Structures
	13.2.1 ESP/Metering Device (tsSE_EspMeterDevice)
	13.2.2 ESP (tsSE_EspDevice)
	13.2.3 Metering Device (tsSE_MeterDevice)
	13.2.4 IPD (tsSE_IPDDevice)
	13.2.5 Range Extender (tsSE_RangeExtDevice)

	13.3 Event Structure and Enumerations
	13.4 ZCL Enumerations
	13.5 ZigBee Network Parameters

	Part IV: Appendices
	A. Supported Clusters and Attributes
	A.1 Price Cluster Attributes
	A.2 Demand-Response and Load Control Cluster Attributes
	A.3 (Simple) Metering Cluster Attributes
	A.4 Messaging Cluster Attributes
	A.5 Key Establishment Cluster Attributes

	B. Custom Endpoints
	B.1 SE Devices and Endpoints
	B.2 Cluster Creation Functions
	B.3 Custom Endpoint Set-up
	B.3.1 Custom Endpoint Structure
	B.3.2 Example Code for Custom Endpoint

