
HRPNUG
Harpoon User's Guide
Rev. 3.0 — 29 March 2024 User guide

Document information
Information Content

Keywords i.MX 8M, i.MX 93, HiFiBerry, MX93AUD-HAT, Arm Cortex-A53/A55 processor (Armv8-A
architecture), RTOS, Linux, hardware partitioning, Jailhouse hypervisor, NXP Linux Yocto, Zephyr
RTOS, FreeRTOS, MCUXpresso SDK

Abstract This document presents the Harpoon release 3.0 for i.MX 8M and i.MX 93 device family, using the
Arm Cortex-A53/A55 processor (Armv8-A architecture).

https://www.nxp.com

NXP Semiconductors HRPNUG
Harpoon User's Guide

1 Overview

This document presents the Harpoon release 3.0 for i.MX 8M device family and i.MX 93, using the Arm Cortex-
A53/A55 processor (Armv8-A architecture).

Harpoon provides an environment for developing real-time demanding applications on an RTOS running on one
(or several) Cortex-A core(s) in parallel of a Linux distribution, leveraging the 64-bit Arm architecture for higher
performance.

The system starts on Linux and the Jailhouse hypervisor partitions the hardware to run both Linux and the guest
RTOS in parallel.

The hardware partitioning is configurable and depends on the use case. This release includes an audio
application, an industrial application and a real-time latency measurement application, all available both for
FreeRTOS as well as Zephyr (some application feature limitations exist depending on the selected platform and
RTOS).

This release supports the following software and hardware:

• NXP Linux Yocto
– i.MX LF 6.1.55-2.2.0: For more information, see the i.MX Yocto Project User's Guide.
– Real-time Edge SW v2.8: For more information, see the Real-time Edge Yocto Project v2.8 User Guide.

• i.MX 8M Series
– i.MX 8M Mini LPDDR4 EVKB
– i.MX 8M Nano LPDDR4 EVK
– i.MX 8M Plus LPDDR4 EVK

• i.MX 9 Series
– i.MX 93 EVK

• Jailhouse hypervisor
• FreeRTOS V10.5.0 kernel

– AARCH64 port, uniprocessor
– Guest OS running on Jailhouse cell

• Zephyr RTOS 3.5.0
– Cortex-A53 and Cortex-A55 port, SMP
– Guest OS running on the Jailhouse cell

• MCUXpresso SDK 2.14.0
– GIC, Timer and MMU AARCH64 drivers
– FlexCAN, ENET, ENET_QOS, GPT, TPM, I2C, LPI2C, SAI, LPUART, and UART SoC drivers
– Audio Codec drivers
– PHY drivers

• RTOS applications
– Audio reference application
– Industrial reference application
– Real-time latency measurement application
– Virtio Networking reference application
– Hello World application

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
2 / 68

https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX
https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE#documentation
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-mini-applications-processor:8MMINILPD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-nano-applications-processor:8MNANOD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8m-plus-evaluation-kit-enabling-power-measurement:8MPLUSLPD4-PEVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-93-evaluation-kit:i.MX93EVK

NXP Semiconductors HRPNUG
Harpoon User's Guide

1.1 Supported Features

i.MX 8M Mini i.MX 8M Nano[1] i.MX 8M Plus i.MX 93

FreeRTOS Zephyr FreeRTOS Zephyr FreeRTOS Zephyr FreeRTOS Zephyr

GICv3 • • • • • • • •

MMU • • • • • • • •

UART • • • • • •

LPUART • •

GPT • • • • • •

TPM • •

I2C • • • • • •

LPI2C • •

SAI • • • • • • • •

ENET • • • • • • • •

ENET_QOS • • • •

FlexCAN • • • •

Audio
Codec(s)

• • • • • • • •

Peripherals

Ethernet
PHY(s)

• • • • • • • •

HiFiBerry • • • • • •Audio
Expansion
Boards

MX93
AUD-HAT • •

GenAVB/
TSN • • • • • • • •

MiddleWare
RPMsg-Lite • • • • • • • •

SAI
pipeline(s) • • • • • • • •

AVB pipeline • • • • • • • •

AVB pipeline
(with MCR) • •

SMP pipeline • • •

AVB + SMP
pipeline • • •

Audio
Application

AVB + SMP
pipeline

(with MCR)
•

CAN • • • •

Ethernet • • • • • • • •Industrial
Application

TSN •[2] •[2] •[2] •[2] • • • •

Table 1. Harpoon 3.0 supported features

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
3 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

i.MX 8M Mini i.MX 8M Nano[1] i.MX 8M Plus i.MX 93

FreeRTOS Zephyr FreeRTOS Zephyr FreeRTOS Zephyr FreeRTOS Zephyr

Real-time
Latency
Application

• • • • • • • •

Virtio
Networking
Application[3]

• • •

Hello World
Application • • • • • • • •

Table 1. Harpoon 3.0 supported features...continued

[1] i.MX Linux Yocto based image only
[2] Using ENET interface without 802.1Qbv support
[3] Real-time Edge based image only

1.2 Architecture
The following figure shows the architecture of the Harpoon solution.

aaa-053020

Jailhouse hypervisor

Harpoon apps

RTOS

Linux apps

Linux

LINUX OS Linux and RTOS RTOS

Linux domain Real-time domain

Core0 Core1

USB ETH

MMC UART

GPU DISP

/.../

GPIO CCM

DDR GIC

IOMUX DMA

Core2 Core3

UART4 SAI

I2C

/.../

Figure 1. Harpoon solution architecture

The bottom box shows the hardware partitioning between Jailhouse cells.

The boxes in light red (group 1) show the main hardware blocks allocated to the Linux OS.

The boxes in blue (group 3) show the main hardware blocks allocated to the RTOS.

The boxes in light orange (group 2) show the main hardware blocks shared between Linux and the RTOS.

Harpoon-apps is the real-time application running on Jailhouse's inmate cell. It is built on top of Zephyr or
FreeRTOS, using MCUXpresso drivers.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
4 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

1.3 Hardware resource partitioning
Jailhouse hypervisor is used to run an RTOS in parallel with Linux: FreeRTOS and Zephyr are supported in this
release.

Jailhouse is a simple hypervisor that assigns hardware resources to a guest OS instead of virtualising them. For
instance, a CPU core is statically assigned to a specific guest and is not shared with other guests.

In Jailhouse terms, the RTOS (inmate) runs in a cell. A configuration file describes which hardware resources
are assigned to this cell. This configuration file contains descriptions of the following:

• CPU cores assigned to the cell
• Interrupt lines assigned to the cell
• Memory regions assigned to the cell
• Virtual PCI devices used for communication between cells

There is also a root cell configuration that describes the hardware prior to the hardware partitioning.

The source files of the cell configurations are embedded through patches in the Jailhouse recipe of the Harpoon
meta-layer, at the following locations:

• configs/arm64/imx{8m*,93}-harpoon-freertos.c for the cell configuration of the FreeRTOS
hello_world and rt_latency use case

• configs/arm64/imx{8m*,93}-harpoon-zephyr.c for the cell configuration of the Zephyr
hello_world and rt_latency use case

• configs/arm64/imx{8m*,93}-harpoon-freertos-audio.c for the cell configuration of the
FreeRTOS audio use case

• configs/arm64/imx{8m*,93}-harpoon-zephyr-audio.c for the cell configuration of the Zephyr
audio use case

• configs/arm64/imx{8m*,93}-harpoon-freertos-avb.c for the cell configuration of the FreeRTOS
audio (AVB) use case

• configs/arm64/imx{8m*,93}-harpoon-zephyr-avb.c for the cell configuration of the Zephyr audio
(AVB) use case

• configs/arm64/imx{8m*,93}-harpoon-freertos-industrial.c for the cell configuration of the
FreeRTOS industrial use case

• configs/arm64/imx{8m*,93}-harpoon-zephyr-industrial.c for the cell configuration of the
Zephyr industrial use case

• configs/arm64/imx{8m*,93}-harpoon-freertos-virtio.c for the cell configuration of the
FreeRTOS Virtio Networking use case

• configs/arm64/imx8m*.c and configs/arm64/imx93.c for the root cell configuration

The CPU core allocated to the RTOS forms a bitmap in the cpu structure:

• For i.MX 8M, CPU core 3 is assigned to the cell:

.cpus = {
 0b1000,
 },

• For i.MX 93, CPU core 1 is assigned to the cell:

.cpus = {
 0b10,
 },

• For a multicore (SMP) cell, two cores can be used. For instance, on i.MX 8M:

.cpus = {
 0b1100,

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
5 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

 },

Memory regions assigned to the inmate cell are listed in the mem_regions structure. Memory regions can be
reserved for the inmate cell or shared with the Linux root cell.

Memory regions can be DDR chunks for the inmate cell use as well as device memory mapped regions such as
UART or SAI.

Interrupts are mapped to the cell with the irqchips structure.

Virtual PCI devices are defined with the pci_devices structure. These virtual devices are used by Jailhouse to
implement IVSHMEM v2 communication channels.

2 Building Harpoon Yocto images

As mentioned in the overview section, Harpoon is compatible with both i.MX Yocto and Real-Time Edge Yocto.
Each distribution is addressed in a separate section below.

2.1 i.MX Yocto
To build this release, fetch its Yocto manifest and get the meta-layers:

$ mkdir yocto
$ cd yocto
$ repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-mickledore -
m imx-6.1.55-2.2.0_harpoon-v3.xml
$ repo sync

Then, prepare the environment with the following command:

$ DISTRO=fsl-imx-xwayland MACHINE=<machine> source imx-harpoon-setup-release.sh
 -b build.<machine>

Where, <machine> is one of the following:

• imx8mm-lpddr4-evk for i.MX 8M Mini EVKB board
• imx8mn-lpddr4-evk for i.MX 8M Nano EVKB board
• imx8mp-lpddr4-evk for i.MX 8M Plus EVK board
• imx93evk for i.MX 93 EVK board

The end user license agreement must be accepted to continue.

Then build the image with the following command:

$ bitbake imx-image-core

The image is then available in the subdirectory tmp/deploy/images/<machine>/.

Copy the disk image to a micro-SD card. For example, assuming the card is recognized as /dev/mmcblk0 by
your host machine:

$ zstdcat imx-image-core-<machine>.wic.zst | sudo dd of=/dev/mmcblk0 bs=1M

The micro-SD card now contains the release.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
6 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

2.2 Real-Time Edge Yocto
See the Real-time Edge Yocto Project User Guide to build Harpoon and prepare an SD card for supported
boards.

3 Hardware Setup

3.1 i.MX Reference Boards
This Harpoon release supports the following development boards.

3.1.1 i.MX 8M Mini EVK

Figure 2. i.MX 8M Mini EVK

Note: For more information to order the board, see https://www.nxp.com/design/development-boards/i-mx-
evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-mini-applications-processor:8MMINILPD4-
EVK

3.1.2 i.MX 8M Nano EVK

Figure 3. i.MX 8M Nano EVK

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
7 / 68

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE#documentation
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-mini-applications-processor:8MMINILPD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-mini-applications-processor:8MMINILPD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-mini-applications-processor:8MMINILPD4-EVK

NXP Semiconductors HRPNUG
Harpoon User's Guide

Note: For more information to order the board, see https://www.nxp.com/design/development-boards/i-mx-
evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-nano-applications-processor:8MNANOD4-
EVK.

3.1.3 i.MX 8M Plus EVK

Figure 4. i.MX 8M Plus EVK

Note: For more information to order the board, see https://www.nxp.com/design/development-boards/i-mx-
evaluation-and-development-boards/i-mx-8m-plus-evaluation-kit-enabling-power-measurement:8MPLUSLPD4-
PEVK.

3.1.4 i.MX 93 EVK

Figure 5. i.MX 93 Plus EVK

Note: For more information to order the board, see https://www.nxp.com/design/development-boards/i-mx-
evaluation-and-development-boards/i-mx-93-evaluation-kit:i.MX93EVK.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
8 / 68

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-nano-applications-processor:8MNANOD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-nano-applications-processor:8MNANOD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-nano-applications-processor:8MNANOD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8m-plus-evaluation-kit-enabling-power-measurement:8MPLUSLPD4-PEVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8m-plus-evaluation-kit-enabling-power-measurement:8MPLUSLPD4-PEVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8m-plus-evaluation-kit-enabling-power-measurement:8MPLUSLPD4-PEVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-93-evaluation-kit:i.MX93EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-93-evaluation-kit:i.MX93EVK

NXP Semiconductors HRPNUG
Harpoon User's Guide

3.2 Audio use case hardware
Harpoon audio application uses SAI as the digital audio interface to connect with different audio codecs for
playback and capture. It uses the On-Board Audio Codecs and can use audio expansion boards as well.

The following table lists the different supported codecs and audio expansion boards supported by the
application.

Board ID EVK audio hardware Audio expansion hardware

i.MX 8M Nano EVK On-Board Codec WM8524 - SAI 3 HiFiBerry - ADC PCM1863 and DAC PCM5122
- SAI 5

i.MX 8M Mini EVK On-Board Codec WM8524 - SAI 3 HiFiBerry - ADC PCM1863 and DAC PCM5122
- SAI 5

i.MX 8M Plus EVK On-Board Codec WM8960 - SAI 3 HiFiBerry - ADC PCM1863 and DAC PCM5122
- SAI 5

i.MX 93 EVK On-Board Codec WM8962 - SAI 3 MX93AUD-HAT - On-Board Codec CS42448 -
SAI 3

Table 2. Harpoon audio application hardware

3.2.1 HiFiBerry setup

For the Audio application use, the i.MX 8M family is complemented by an I2S HiFiBerry audio card DAC+ ADC
Pro.

Figure 6. HiFiBerry DAC+ ADC Pro (picture from HiFiBerry's website)

Note: HifiBerry related infomation link

The HiFiBerry DAC+ ADC Pro is an audio card designed for the Raspberry Pi, but it can be connected to EVK
boards using the 40-pin connector, provided a few adaptations are made.

The following pins on the EVK's 40-pin connector must be connected to the following HiFiBerry's pins.

EVK HiFiBerry Function

2 2 5V

3 3 I2C SDA

5 5 I2C SCK

6 6 GND

35 40 I2S TX

36 12 I2S clock

37 35 I2S word select for RX and TX

Table 3. EVK - HiFiBerry transposition

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
9 / 68

https://www.hifiberry.com/shop/boards/hifiberry-dac-adc-pro/

NXP Semiconductors HRPNUG
Harpoon User's Guide

EVK HiFiBerry Function

38 38 I2S RX

Table 3. EVK - HiFiBerry transposition...continued

Figure 7. Handmade transposer

Figure 8. Transposer (Top View)

A complete setup, with a handmade transposer to respect above pinout, is shown as follows.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
10 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

Figure 9. i.MX 8M Mini EVK with HiFiBerry audio card

The audio card has both an ADC (PCM1863) to record audio and a DAC (PCM5122) for audio playback.

Record is done through the audio jack (connector highlighted in 1 in the following figure) and playback is done
through the RCA connectors (highlighted in 2).

Figure 10. HiFiBerry audio connectors (picture from HiFiBerry's website)

Note: HiFiBerry purchase link.

Control of the PCM1863 is done through I2C3, at address 0x4a.

Control of the PCM5122 is done through I2C3, at address 0x4d.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
11 / 68

https://www.hifiberry.com/shop/boards/hifiberry-dac-adc-pro/

NXP Semiconductors HRPNUG
Harpoon User's Guide

Both the PCM1863 and PCM5122 use i.MX I2S5. The I2S5 is the I2S clock master. Two oscillators (one for
sampling frequencies multiple of 44,100 Hz, one for sampling frequencies multiple of 48,000 Hz) are present on
the HiFiBerry card, and controlled by PCM5122 GPIOs.

The following diagram shows the HiFiBerry architecture.

aaa-053021

40-pin header

HiFiBerry DAC+ ADC pro

ADC DAC
OSC 44 kHz

GPIO

I2S TX
I2CI2S RX

I2S CLK

GPIO

GPIO
GPIO

OSC 48 kHz

Figure 11. HiFiBerry architecture

The PCM1863 and the PCM5122 use the same signal for I2S word select by using SAI synchronous mode.

3.2.2 MX93AUD-HAT Setup

For the Audio application use case, the i.MX 93 EVK is complemented by an audio expansion board MX93AUD-
HAT.

Figure 12. MX93AUD-HAT side image

Note: MX93AUD-HAT related information link

Jumpers configuration:

Use the following settings to configure the MX93AUD-HAT jumpers.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
12 / 68

https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-and-development-boards/mx93aud-hat:MX93AUD-HAT

NXP Semiconductors HRPNUG
Harpoon User's Guide

Jumper ID Name Settings

J1 5 V power control Shorted: Connect 5 V power supply from the motherboard to the
MX93AUD-HAT board (Default Setting)

J2 3V3 LDO power control Shorted: Connect 3.3 V LDO U1 input path (Default Setting)

J4 3.3 V path selection 2-3 shorted: 3.3 V source from on board LDO (Default Setting)

J15 S/PDIF transmit 2-3 shorted: RCA port is used for S/PDIF transmit (Default Setting)

J18 S/PDIF receiver 2-3: RCA port is used as S/PDIF receiver (Default Setting)

Table 4. Jumpers configuration

The following table lists the MX93AUD-HAT sound input/output connectors.

Connector ID Connector description Audio application use

J10 CH Line Out, 2- CH per Jack Used as output line for all audio use cases

J8 CH Line In, 2- CH per Jack Used as input line for Loopback, Full Pipeline and AVB use cases

Table 5. Jack connectors

3.3 Industrial use case hardware
Harpoon's industrial application may use the following hardware depending on the use case.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
13 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

Figure 13. LS1028A AVB/TSN network bridge

Note: For more information to order the board, see https://www.nxp.com/design/qoriq-developer-resources/
layerscape-ls1028a-reference-design-board:LS1028ARDB.

The LS1028A RDB is used as a TSN bridge/switch in a TSN network to demonstrate the TSN Ethernet use
case running from the inmate cell.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
14 / 68

https://www.nxp.com/design/qoriq-developer-resources/layerscape-ls1028a-reference-design-board:LS1028ARDB
https://www.nxp.com/design/qoriq-developer-resources/layerscape-ls1028a-reference-design-board:LS1028ARDB

NXP Semiconductors HRPNUG
Harpoon User's Guide

Figure 14. RT1170 TSN endpoint

Note: For more information to order the board, see https://www.nxp.com/design/development-boards/i-mx-
evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVK.

The RT1170 is used as a TSN endpoint in a TSN network, exchanging packets with the i.MX 8M Plus EVK
board.

3.4 Virtio networking use case hardware
User needs to connect ENET port on i.MX 8M Mini EVK / i.MX 8M Plus EVK / i.MX 93 EVK to another board/
PC or network switch/router to make sure the networking link is up before running Harpoon Virtio networking
use case.

4 Running Harpoon Reference Applications

4.1 Basic setup
The EVK boards expose serial ports through their USB debug interface. One of these serial ports is used by
Linux for its console, and another one is used by the guest RTOS.

To run the reference applications, open both serial ports with terminal emulators, insert the micro-SD card on
which the Yocto image has been flashed in the EVK and power up the board.

4.2 Starting Linux kernel
Linux kernel must be started with a (Harpoon specific) Jailhouse compatible device tree.

To do this, when U-Boot is executing, stop at U-Boot prompt with a terminal emulator connected to the serial
port and execute the following command (based on the board and the application):

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
15 / 68

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVK

NXP Semiconductors HRPNUG
Harpoon User's Guide

• For i.MX 8M Mini (hello_world, audio, or rt_latency):

u-boot => setenv jh_root_dtb imx8mm-evk-harpoon.dtb
u-boot => run jh_mmcboot

• For i.MX 8M Mini (hello_world or audio AVB):

u-boot => setenv jh_root_dtb imx8mm-evk-harpoon-avb.dtb
u-boot => run jh_mmcboot

• For i.MX 8M Mini (hello_world, industrial or rt_latency):

u-boot => setenv jh_root_dtb imx8mm-evk-harpoon-industrial.dtb
u-boot => run jh_mmcboot

• For i.MX 8M Mini (hello_world or virtio networking):

u-boot => setenv jh_root_dtb imx8mm-evk-harpoon-virtio-net.dtb
Clear VirtIO magic value in memory in case of warm reboot to avoid MMIO probe
 error.
u-boot => mw b8400000 0 1
u-boot => run jh_mmcboot

• For i.MX 8M Nano (hello_world, audio or rt_latency):

u-boot => setenv jh_root_dtb imx8mn-evk-harpoon.dtb
u-boot => run jh_mmcboot

• For i.MX 8M Nano (hello_world or audio AVB):

u-boot => setenv jh_root_dtb imx8mn-evk-harpoon-avb.dtb
u-boot => run jh_mmcboot

• For i.MX 8M Nano (hello_world, industrial, or rt_latency):

u-boot => setenv jh_root_dtb imx8mn-evk-harpoon-industrial.dtb
u-boot => run jh_mmcboot

• For i.MX 8M Plus (hello_world, audio, or rt_latency):

u-boot => setenv jh_root_dtb imx8mp-evk-harpoon.dtb
u-boot => run jh_mmcboot

• For i.MX 8M Plus (hello_world or audio AVB):

u-boot => setenv jh_root_dtb imx8mp-evk-harpoon-avb.dtb
u-boot => run jh_mmcboot

• For i.MX 8M Plus (hello_world, industrial, or rt_latency):

u-boot => setenv jh_root_dtb imx8mp-evk-harpoon-industrial.dtb
u-boot => run jh_mmcboot

• For i.MX 8M Plus (hello_world or virtio networking):

u-boot => setenv jh_root_dtb imx8mp-evk-harpoon-virtio-net.dtb
Clear VirtIO magic value in memory in case of warm reboot to avoid MMIO probe
 error.
u-boot => mw fc700000 0 1
u-boot => run jh_mmcboot

• For i.MX 93 (hello_world, audio, or rt_latency):

u-boot => setenv jh_root_dtb imx93-11x11-evk-harpoon.dtb
u-boot => run jh_mmcboot

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
16 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

• For i.MX 93 (hello_world or audio AVB):

u-boot => setenv jh_root_dtb imx93-11x11-evk-harpoon-avb.dtb
u-boot => run jh_mmcboot

• For i.MX 93 (hello_world, industrial, or rt_latency):

u-boot => setenv jh_root_dtb imx93-11x11-evk-harpoon-industrial.dtb
u-boot => run jh_mmcboot

• For i.MX 93 (hello_world or virtio networking):

u-boot => setenv jh_root_dtb imx93-11x11-evk-harpoon-virtio-net.dtb
Clear VirtIO magic value in memory in case of warm reboot to avoid MMIO probe
 error.
u-boot => mw fc700000 0 1
u-boot => run jh_mmcboot

Note: This configuration is not persistent after a reboot.

To make changes permanent, execute the following commands once (after setenv above):

u-boot => setenv bootcmd 'run jh_mmcboot'
u-boot => saveenv

Now, at each reboot, the system starts with the Jailhouse compatible configuration and no user interaction is
required.

4.3 hello_world application
The hello_world application is a simple demo for the basic features like IRQ, generic timer and UART on
FreeRTOS and Zephyr.

The application binary is available in the Harpoon share directory of the root file system:

/usr/share/harpoon/inmates/freertos/hello_world.bin # FreeRTOS binary
/usr/share/harpoon/inmates/zephyr/hello_world.bin # Zephyr binary

To use the hello_world application, Jailhouse must be started first. To start Jailhouse and the application,
create the corresponding Harpoon configuration file and run the harpoon service using systemd; for instance:

To run FreeRTOS binary, create configuration:

harpoon_set_configuration.sh freertos hello

To run Zephyr binary, create configuration:

harpoon_set_configuration.sh zephyr hello

Start Harpoon service:

systemctl start harpoon

The configuration file is stored under /etc/harpoon/harpoon.conf, the Harpoon systemd service uses it to
start Jailhouse and the application.

Once the Harpoon service has been started, the following logs is shown in the inmate cell console:

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
17 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

FreeRTOS logs:

INFO: hello_func : Hello world.
tic tac tic tac ...

Zephyr logs:

*** Booting Zephyr OS build zephyr-v3.3.0-25-gd3644304707e ***
INFO: hello_func : Hello world.
INFO: hello_func : 2 threads running
tic tac tic tac ...

4.4 Audio application

4.4.1 Features of the audio application

The audio application is available in the Harpoon share directory of the target's root file system:

/usr/share/harpoon/inmates/freertos/audio.bin # FreeRTOS binary
/usr/share/harpoon/inmates/zephyr/audio.bin # Zephyr binary

The different modes are:

• DTMF playback: plays a DTMF sequence.
• Sine wave playback: plays a generated sine wave.
• Loopback: records sound from all available SAI sources and plays it live through the same SAI instances'

sinks.
• Full Audio pipeline: implements a flexible 3-stage pipeline with different sources (DTMF, sine waves, SAI

input) that can be routed to different sinks (SAI outputs).
• AVB Audio pipeline: implements a 3-stage pipeline with AVB input as a source that can be routed to different

sinks (SAI outputs, AVTP sink).
• AVB Audio pipeline with Media Clock Recovery support: uses the pipeline above only with elements that

support Media Clock Recovery.
• SMP Audio pipeline: splits the Full Audio pipeline in two pieces to process them onto different cores.
• AVB SMP Audio pipeline: splits the AVB Audio pipeline in two pieces to process them onto different cores.
• AVB SMP Audio pipeline with Media Clock Recovery support: uses the above pipeline only with elements that

support Media Clock Recovery.

All the modes support (see Notes for exceptions):

• Basic pipeline framework for audio processing.
• 44100, 48000, 88200, 96000, 176400, and 192000 Hz sample frequencies.
• Audio processing period with 2, 4, 8, 16, or 32 frames.
• Audio processing in 64-bit float format.
• Audio playback to both SAI3 (on board codec/sound jack) and SAI5 (HiFiBerry).
• Audio capture from SAI5 (HiFiBerry).

Note:

• i.MX 93 supports only a single SAI instance (SAI3) and can be used to either connect to the on-board audio
codec or the MX93AUD-HAT audio evaluation platform through a runtime application configuration.

• The on-board codec on i.MX 93 EVK (WM8962) supports only 48 kHz and 96 kHz sample rates.
• The MX93AUD-HAT supports only 48 kHz, 96 kHz, and 192 kHz sample rates.
• i.MX 93 does not support any of the SMP Audio pipelines.
HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
18 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

• Playback on SAI3: The i.MX 8M Plus EVK on board codec (WM8960) supports sample rates up to 48 kHz.
only. 88.2 kHz and above frequency settings will fail for this codec.

• Media Clock Recovery: Only supported on i.MX 8M Plus EVK using SAI3 (on-board codec/sound jack).

4.4.2 Starting the audio application

The Harpoon service uses the /etc/harpoon/harpoon.conf configuration file that contains the RTOS and
the application to run. By default, the configuration file points to the FreeRTOS audio application.

To use the Zephyr audio application, run the following command to generate an appropriate configuration file:

harpoon_set_configuration.sh zephyr audio

To use the audio application, start Jailhouse first. To start Jailhouse and the audio application, run the Harpoon
service with Systemd:

systemctl start harpoon

Once the Harpoon service is started, harpoon_ctrl is used to start or stop the audio modes with optional
parameters. The different options for the audio application are:

Audio options:
 -f <frequency> audio clock frequency (in Hz):
 imx8m{n,m,p}: supporting 44100, 48000, 88200, 96000,
 176400 and 192000 Hz
 imx93: supporting 48000 and 96000 Hz
 supporting 48000, 96000, 192000 Hz using MX93AUD-
HAT
 Will use default frequency 48000Hz if not specified
 -p <frames> audio processing period (in frames)
 Supporting 2, 4, 8, 16, 32 frames
 Will use default period 8 frames if not specified
 -a <mac_addr> set hardware MAC address (default 00:bb:cc:dd:ee:14)
 -r <id> run audio mode id:
 0 - dtmf playback
 1 - sine wave playback
 2 - playback & recording (loopback)
 3 - audio pipeline
 4 - AVB audio pipeline
 5 - SMP audio pipeline on imx8m{n,m,p}
 6 - AVB audio pipeline (with MCR support) only on i.mx8mp
 7 - SMP + AVB audio pipeline on imx8m{n,m,p}
 8 - SMP + AVB audio pipeline (with MCR support) only on
 i.mx8mp
 -H select the MX93AUD-HAT extension audio board. Only on
 i.mx93
 -s stop running audio mode

Audio pipeline options:
 -a <pipeline_id> audio pipeline id (default 0)
 -d audio pipeline dump

Audio element options:
 -a <pipeline_id> audio pipeline id (default 0)
 -d audio element dump
 -e <element_id> audio element id (default 0)
 -t <element_type> audio element type (default 0):
 0 - dtmf source

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
19 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

 1 - routing
 2 - sai sink
 3 - sai source
 4 - sine source
 5 - avtp source
 6 - avtp sink

Routing audio element options:
 -a <pipeline_id> audio pipeline id (default 0)
 -c connect routing input/output
 -d disconnect routing input/output
 -e <element_id> routing element id (default 0)
 -i <input_id> routing element input (default 0)
 -o <output_id> routing element output (default 0)

4.4.3 Audio latency in loopback mode

The loopback mode reads audio samples from HiFiBerry's ADC in an audio buffer and sends this buffer to the
HiFiBerry's DAC when fully loaded.

The end-to-end latency, between the analog audio input and the analog audio output, has been measured and
is dependent on the audio buffer size and the audio sampling rate. The RTOS and SoC combination does not
alter the latency measurements.

Audio latency (μs)

Audio buffer size (frames)

Sampling
rate (kHz)

32 16 8 4 2

192 612 442 363 317 295

176.4 669 488 397 351 329

96 1,202 873 703 623 578

88.2 1,315 952 771 680 635

48 2,392 1,723 1,383 1,224 1,134

44.1 2,596 1,870 1,508 1,327 1,236

Table 6. Audio application latency

4.4.4 Running audio application: examples

4.4.4.1 Playing DTMF

To run DTMF playback with the default parameters (48000 Hz sampling rate):

harpoon_ctrl audio -r 0

The DTMF is played to both the HiFiBerry RCA outputs (on i.MX 8M EVKs) and the onboard jack.

To use the MX93AUD-HAT on the i.MX 93 EVK rather than the on-board codec:

harpoon_ctrl audio -r 0 -H

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
20 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

To run another audio use case or change the playback codec on i.MX 93 EVK, stop the playback using the
following command:

harpoon_ctrl audio -s

4.4.4.2 Playing in loopback mode

In loopback mode, the SAI input is copied to the SAI output.

To start loopback mode with the default parameters (48000 Hz sampling rate, 8 frame period size):

harpoon_ctrl audio -r 2

The loopbak mode is played to both the HiFiBerry RCA output and input (on i.MX 8M EVKs) and the on-board
jack.

To use the MX93AUD-HAT on the i.MX 93 EVK rather than the on-board codec:

 harpoon_ctrl audio -r 2 -H

To run another audio use case or change the playback codec on the i.MX 93 EVK, stop the playback using the
following command:

harpoon_ctrl audio -s

4.4.4.3 Playing a full audio pipeline

The reference audio application is based on a basic pipeline framework for audio processing. Different audio
processing elements can be assembled in a pipeline to process audio from source(s) to sink(s). The pipeline is
processed in real time, cyclically with a fixed period.

In the audio pipeline mode, there is a three stage pipeline composed of a routing element in stage 2, which can
link source elements from stage 1 to sink elements from stage 3.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
21 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

aaa-053015

DTMF (source0)

Stage 1 Stage 2

Pipeline data thread

Stage 3 Control thread

Routing
(routing0)

DTMF (source1) Audio buffer 1

Sine (source2)

Audio buffer 8

Audio buffer 9

Audio buffer 10

Audio buffer 11
Sine (source3)

SAI (source4)

SAI3
SAI5

SAI (sink0) Linux control

SAI3 RPMSG
shared

memory
SAI5

Audio buffer 3

Optional: Available only on boards supporting simultaneous multi-SAI instances

Audio buffer 5

Audio buffer 7

Audio buffer 2

Audio buffer 4

Audio buffer 0

Audio buffer 6

Audio pipeline with multiple sources/sinks and a routing element

Figure 15. Full audio pipeline

When running the audio pipeline, the routes can be configured dynamically with the harpoon_ctrl command.
This command uses source and sink indexes to connect elements.

Index

Multi-SAI pipeline Single-SAI pipeline

Source element Comment

0 0 DTMF, sequence 1 Software generated source

1 1 DTMF, sequence 2 Software generated source

2 2 Sine wave, 440 Hz Software generated source

3 3 Sine wave, 880 Hz Software generated source

4 N/A SAI5, left channel Hardware source

5 N/A SAI5, right channel Hardware source

6 4 SAI3, left channel Hardware source

7 5 SAI3, right channel Hardware source

Table 7. Indexes of source elements

Index

Multi-SAI pipeline Single-SAI pipeline

Sink element Comment

0 N/A SAI5, left channel Hardware sink

1 N/A SAI5, right channel Hardware sink

2 0 SAI3, left channel Hardware sink

3 1 SAI3, right channel Hardware sink

Table 8. Indexes of sink elements

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
22 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

This makes for a flexible pipeline.

• For instance, on multi-SAI boards (i.MX 8M EVKs), the following commands starts the pipeline and configures
the routing element to have a loopback between SAI input and SAI output (i.e., sound recorded by the
HiFiBerry card played by the EVK's internal codec or audio jack input) while a DTMF sequence is played on
the left channel of SAI's output and a 440 Hz sine wave on the right channel of SAI's output (i.e., HiFiBerry's
output or audio jack output):

harpoon_ctrl audio -r 3 # start audio pipeline
harpoon_ctrl routing -i 4 -o 2 -c # SAI5's input to SAI3's output (L)
harpoon_ctrl routing -i 5 -o 3 -c # SAI5's input to SAI3's output (R)
harpoon_ctrl routing -i 0 -o 0 -c # DTMF to SAI5's output (L)
harpoon_ctrl routing -i 2 -o 1 -c # sinewave 440Hz to SAI5's output (R)

• On the other hand, for boards with single-SAI support (i.MX 93 EVK), the following commands starts the
pipeline and routing element to have a DTMF sequence played on the left channel of SAI's output and a 440
Hz sine wave on the right channel of SAI's output (i.e., On-Board Codec audio jack output, MX93AUD-HAT
audio jack output (J10)).

First, start the pipeline on the chosen audio codec.

On-board codec:

harpoon_ctrl audio -r 3 # start audio pipeline on the On-Board Codec

Or, the MX93AUD-HAT codec:

harpoon_ctrl audio -r 3 -H # start audio pipeline on the MX93AUD-HAT

Then connect the signals to the output buffers:

harpoon_ctrl routing -i 0 -o 0 -c # DTMF to SAI3's output(L)
harpoon_ctrl routing -i 2 -o 1 -c # sinewave 440Hz to SAI3's output(R)

Note:

• The pipeline dump also outputs the Audio Buffer Routing for an easier Buffer Routing through the "Routing
Element".

• To change the audio codec used for i.MX 93 EVK, issue a pipeline stop before another run command.

4.4.4.4 Playing an AVB audio pipeline

The AVB audio pipeline embeds an AVB Listener as a source element, making use of the GenAVB/TSN stack
streaming API’s. This element is only responsible of the audio data path:

• Supports one or more AVTP Listener streams
• Supports one or more AVTP Talker streams
• Supports multi-channel AVTP streams
• Supports scatter of audio data
• Supports audio format conversion, from AVTP stream format to the common format
• Supports Media Clock Recovery (on a specific audio Pipeline)

It re-uses the audio application's pipeline framework for audio processing in which an AVTP Listener is added
as a source.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
23 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

aaa-053017

Sine (source0)

Stage 1 Stage 2

Pipeline data thread

Stage 3

Control thread

Routing
(routing0)

Audio buffer 9

Audio buffer 10

Audio buffer 11

Audio buffer 12

Audio buffer 13

Audio buffer 14

Audio buffer 15

Audio buffer 16

AVTP (source2)

STREAM0
STREAM1

SAI (sink0) Linux control

SAI3
RPMSG
shared

memory

AVDECC
control

Ethernet

SAI5

AVTP(sink1)

STREAM0
STREAM1

Audio buffer 6

Audio buffer 7

Audio buffer 8

Audio buffer 5

SAI (source1)

SAI3
SAI5

Audio buffer 2

Audio buffer 3

Audio buffer 4

Audio buffer 1

Audio buffer 0

Optional: Available only on boards supporting simultaneous multi-SAI instances

AVB Audio pipeline showing the AVTP Listener with multiple streams as a source.

Figure 16. AVB Audio pipeline

When running the AVB audio pipeline, the routes can be configured dynamically with the harpoon_ctrl
command. This command uses source and sink indexes to connect elements.

Index

Multi-SAI pipeline Single-SAI pipeline

Source element Comment

0 0 Sine wave, 440 Hz Software generated source

1 N/A SAI5, left channel Hardware source

2 N/A SAI5, right channel Hardware source

3 1 SAI3, left channel Hardware source

4 2 SAI3, right channel Hardware source

5 3 AVTP, stream#0 left channel AVB source from network

6 4 AVTP, stream#0 right channel AVB source from network

7 5 AVTP, stream#1 left channel AVB source from network

8 6 AVTP, stream#1 right channel AVB source from network

Table 9. Indexes of source elements

Index

Multi-SAI pipeline Single-SAI pipeline

Sink element Comment

0 N/A SAI5, left channel Hardware sink

1 N/A SAI5, right channel Hardware sink

2 0 SAI3, left channel Hardware sink

3 1 SAI3, right channel Hardware sink

Table 10. Indexes of sink elements

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
24 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

Index

Multi-SAI pipeline Single-SAI pipeline

Sink element Comment

4 2 AVTP, stream#0 left channel AVB sink to network

5 3 AVTP, stream#0 right channel AVB sink to network

6 4 AVTP, stream#1 left channel AVB sink to network

7 5 AVTP, stream#1 right channel AVB sink to network

Table 10. Indexes of sink elements...continued

As for the pipeline with Media Clock Recovery support:

aaa-053023

Sine (source0)

Stage 1 Stage 2

Pipeline data thread

Stage 3

Control thread

Routing
(routing0)

Audio buffer 7

Audio buffer 8

Audio buffer 9

Audio buffer 10

Audio buffer 11

Audio buffer 12

AVTP (source2)

STREAM0
STREAM1

SAI (sink0) Linux control

SAI3 RPMSG
shared
memory

AVDECC
control

Ethernet

AVTP(sink1)

STREAM0
STREAM1

Audio buffer 4

Audio buffer 5

Audio buffer 6

Audio buffer 3

SAI (source1)

SAI3
Audio buffer 2

Audio buffer 1

Audio buffer 0

Figure 17. AVB Audio pipeline with Media Clock Recovery

Index Source element Comment

0 Sine wave, 440 Hz Software generated source

1 SAI3, left channel Hardware source

2 SAI3, right channel Hardware source

3 AVTP, stream#0 left channel AVB source from network

4 AVTP, stream#0 right channel AVB source from network

5 AVTP, stream#1 left channel AVB source from network

6 AVTP, stream#1 right channel AVB source from network

Table 11. Indexes of source elements

Index Sink element Comment

0 SAI3, left channel Hardware sink

1 SAI3, right channel Hardware sink

2 AVTP, stream#0 left channel AVB sink to network

Table 12. Indexes of sink elements

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
25 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

Index Sink element Comment

3 AVTP, stream#0 right channel AVB sink to network

4 AVTP, stream#1 left channel AVB sink to network

5 AVTP, stream#1 right channel AVB sink to network

Table 12. Indexes of sink elements...continued

The sections below describe how to set up an (external) AVB Audio Media Server to enable the (Harpoon) AVB
Listener and Talker.

4.4.4.4.1 AVB: Harpoon AVTP Listener

4.4.4.4.1.1 AVB setup preparation

An i.MX 8M Plus EVK with Real-time Edge SW v2.5 (or above) can be used as a Talker. On the other end, any
Harpoon supported EVK can be used as a Listener.

1. Connect the headphones/speakers to the HiFiBerry's RCA output or the Listener's audio Jack port.
2. Connect both the i.MX boards with an Ethernet RJ45 cable.
3. Connect a Serial/USB cable to each i.MX board and to some USB ports of the host PC.
4. Start consoles of the i.MX boards through the serial/USB ports.

aaa-053018

USB

PC USB

Audio OUT

i.MX
Audio sampler

Serial

Audio OUT

Serial
Ethernet AVB

USB to serial

USB to serial

Line OUT

Audio IN

Audio OUT

AVTP AAF

i.MX
Audio Amplifier

Ethernet

Audio IN

Ethernet

AVB Talker (blue box) connected to the AVB Listener (orange box) through Ethernet.

Figure 18. AVB Audio setup

4.4.4.4.1.2 AVB Talker configuration (Linux)

The default AVB script needs to be modified to configure operations of the Talker entity as using a custom
Media Application. The AVB Stack is provided with a simple Media Server application example, interfaced to the
AVB stack through the GenAVB/TSN API, and supporting reading audio samples from a media file.

To enable AVB streaming using this media application, the endpoint needs to be configured as Endpoint AVB
and the GenAVB/TSN configuration files needs to be modified as follows:

1. Power on the i.MX board and let the boot process complete

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
26 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

2. Configure the GenAVB/TSN stack to Endpoint AVB mode by setting GENAVB_TSN_CONFIG to the right
value in the GenAVB/TSN mode configuration file:

vi /etc/genavb/config

For i.MX 8M Plus EVK:

GENAVB_TSN_CONFIG=2

3. Save and exit the file
4. Edit the GenAVB/TSN AVB configuration file using the following command:

vi /etc/genavb/config_avb

5. Set the configuration profile to PROFILE 2

PROFILE=2

6. Save and exit the file.
7. A raw audio file sample1_for_aaf.raw is available in the /home/media repository. The multi-stream

application example looks for audio files named talker_mediaX.raw in the /home/media repository,
with X being the stream number. Therefore, before executing the multi-stream application, some symbolic
links needs to be created in the /home/media directory for associating the talker_mediaX.raw names; here
is an example for stream #0:

cd /home/media
ln -s sample1_for_aaf.raw talker_media0.raw

8. Enable the GenAVB/TSN systemd service to start the stack automatically on next reboot:

systemctl enable genavb-tsn

9. Reboot the board. The change is saved across reboots, so this has only to be done once.
10. Stop in U-Boot and select the AVB device tree blob before booting Linux:

=> setenv fdtfile imx8mp-evk-avb.dtb
=> boot

4.4.4.4.1.3 AVB Listener configuration (Harpoon)

The AVB Listener is implemented in Harpoon interfaces with the AVB stack through the GenAVB/TSN API, and
supports reading audio samples from the network while pushing out the audio data, through the audio pipeline,
on the SAI interfaces.

To enable the AVB Listener on the Harpoon side, perform the following steps:

1. Power on the i.MX board and stop the boot process in U-Boot to fetch the AVB DTB file:

=> setenv jh_root_dtb imx8mp-evk-harpoon-avb.dtb
=> run jh_mmcboot

2. Start the audio application using the following command at the Linux prompt:
• On FreeRTOS

harpoon_set_configuration.sh freertos avb
systemctl start harpoon

• On Zephyr

harpoon_set_configuration.sh zephyr avb

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
27 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

systemctl start harpoon

3. Start the AVB pipeline, connecting the AVTP source element (stream #0) to the SAI output (for example,
HiFiBerry board).
• On Multi-SAI boards (i.MX 8M EVKs):

Connect the AVTP element to the HiFiBerry board (SAI5).

harpoon_ctrl audio -r 4
harpoon_ctrl routing -i 5 -o 0 -c
harpoon_ctrl routing -i 6 -o 1 -c

• On Single-SAI boards (i.MX 93 EVK):
Connect the AVTP element to the on-board jack (SAI3) or to the audio expansion board output jack (using
an additional -H option in the command).

harpoon_ctrl audio -r 4 # add -H to select the MX93AUD-HAT
harpoon_ctrl routing -i 3 -o 0 -c
harpoon_ctrl routing -i 4 -o 1 -c

4. Watch for AVTP source logs once the stream is connected (see next section):
INFO: avtp_source_element_st: rx stream: 0, avtp(C067ABF0, 0)
INFO: avtp_source_element_st: connected: 1
INFO: avtp_source_element_st: batch size: 64
INFO: avtp_source_element_st: underflow: 459, overflow: 0 err: 0 received: 208617
INFO: avtp_source_element_st: rx stream: 1, avtp(0, 0)
INFO: avtp_source_element_st: connected: 0
INFO: avtp_source_element_st: batch size: 0
INFO: avtp_source_element_st: underflow: 0, overflow: 0 err: 0 received: 0

4.4.4.4.1.4 AVB Listener with Media clock Recovery configuration (Harpoon)

The media clock recovery feature permits the listener to synchronize its media clock to a remote master clock
through gPTP timestamps in the AVTP stream. On boards that support this feature, users can enable the
Harpoon AVB listener to use timestamps from the AVTP stream to tune its own audio PLL and prevent audio
clock drifts with the AVB talker. This feature is only available on the i.MX 8M Plus EVK currently and SAI3 output
only.

To enable the AVB Listener (with MCR support) on Harpoon side, perform the following steps:

1. Power on the i.MX board and stop the boot process in U-Boot to fetch the AVB DTB file:

=> setenv jh_root_dtb imx8mp-evk-harpoon-avb.dtb
=> run jh_mmcboot

2. Start the audio application using the following command at the Linux prompt:
• on FreeRTOS

harpoon_set_configuration.sh freertos avb
systemctl start harpoon

• On Zephyr

harpoon_set_configuration.sh zephyr avb
systemctl start harpoon

3. Start the AVB pipeline, connecting the AVTP source element (stream #0) to the SAI output (for example, on
the board jack).

harpoon_ctrl audio -r 6
harpoon_ctrl routing -i 3 -o 0 -c

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
28 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

harpoon_ctrl routing -i 4 -o 1 -c

4. Watch for AVTP source logs once the stream is connected (see next section):

INFO: avtp_source_element_st: rx stream: 0, avtp(C067ABF0, 0)
INFO: avtp_source_element_st: connected: 1
INFO: avtp_source_element_st: batch size: 64
INFO: avtp_source_element_st: underflow: 459, overflow: 0 err: 0 received:
 208617
INFO: avtp_source_element_st: rx stream: 1, avtp(0, 0)
INFO: avtp_source_element_st: connected: 0
INFO: avtp_source_element_st: batch size: 0
INFO: avtp_source_element_st: underflow: 0, overflow: 0 err: 0 received: 0

You can also see logs about the Media Clock Recovery execution:
INFO 23.157693775 os mclock_rec_pll_stats : adjust = 0
INFO 23.157693775 os mclock_rec_pll_stats : reset = 0
INFO 23.157693775 os mclock_rec_pll_stats : start = 0
INFO 23.157693775 os mclock_rec_pll_stats : stop = 0
INFO 23.157693775 os mclock_rec_pll_stats : GPTP error = 0
INFO 23.157693775 os mclock_rec_pll_stats : GPTP start error = 0
INFO 23.157693775 os mclock_rec_pll_stats : GPTP gettime error = 0
INFO 23.157693775 os mclock_rec_pll_stats : measurement error = 0
INFO 23.157693775 os mclock_rec_pll_stats : watchdog error = 0
INFO 23.157693775 os mclock_rec_pll_stats : ts error = 0
INFO 23.157693775 os mclock_rec_pll_stats : drift error = 0
INFO 23.157693775 os mclock_rec_pll_stats : error (Hz/s) = 0
INFO 23.157693775 os mclock_rec_pll_stats : gpt_rec event = 0
INFO 23.157693775 os mclock_rec_pll_stats : gpt_rec event fec = 0
INFO 23.157693775 os mclock_rec_pll_stats : fec_reloaded = 0
INFO 23.157693775 os mclock_rec_pll_stats : numerator = 0
INFO 23.157693775 os mclock_rec_pll_stats : measure = 0
INFO 23.157693775 os mclock_rec_pll_stats : err_set_pll_rate = 0
INFO 23.157693775 os mclock_rec_pll_stats : err_pll_prec = 0
INFO 23.157693775 os mclock_rec_pll_stats : last_app_adjust = 0

Note:

Media Clock Recovery is supported only on the i.MX 8M Plus.

4.4.4.4.1.5 AVB stream connection

This section describes how to use AVDECC events to configure the stream output of the Talker to the input
of the Listener. To do so, we may use the GenAVB AVDECC controller application available on the Talker
endpoint:

genavb-controller-app -h
NXP's GenAVB AVDECC controller demo application

Usage:
app [options]

Options:
 -S <control_type> <entity_id> <control_index> <value> Set a given control to the given
 value where control_type
 must be uint8 or utf8 (For utf8:
 <value> must be string of max 99 characters)
 -G <control_type> <entity_id> <control_index> Get a control value where
 control_type must be uint8 or utf8
 -l list discovered AVDECC entities
 -c <talker_entity_id> <talker_unique_id> <listener_entity_id> <listener_unique_id> <flags>
 connect a stream between a talker and a listener
 -d <talker_entity_id> <talker_unique_id> <listener_entity_id> <listener_unique_id>
 disconnect a stream between a talker and a listener
 -r <listener_entity_id> <listener_unique_id> Get information about a listener
 sink
 -t <talker_entity_id> <talker_unique_id> Get information about a talker
 source

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
29 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

 -s <talker_entity_id> <talker_unique_id> <index> Get information from a talker about
 a given connection/stream
 -T <talker_entity_id> <talker_unique_id> <start|stop> Send START_STREAMING or
 STOP_STREAMING command to a talker
 -L <listener_entity_id> <listener_unique_id> <start|stop> Send START_STREAMING or
 STOP_STREAMING command to a listener
 -h print this help text

First of all, the Talker's entity information can be displayed by using the AVDECC controller application
(available on the talker endpoint):

genavb-controller-app -l
NXP's GenAVB AVDECC controller demo application
Number of discovered entities: 2
Entity ID = 0x49f070f840001 Model ID = 0x49f0000080001 Capabilities = 0x8 Association ID =
 0x0 MAC address= 00:04:9F:07:0F:84 Local MAC address= 00:04:9F:07:0F:84
 Controller
 Controls:
 None

Entity ID = 0x49f070f840000 Model ID = 0x49f0000090001 Capabilities = 0x708 Association ID =
 0x0 MAC address= 00:04:9F:07:0F:84 Local MAC address= 00:04:9F:07:0F:84
 Talker: sources = 8 capabilities = 0x4801
 Stream 0: name = Stream output 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream output 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream output 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 3: name = Stream output 3 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 4: name = Stream output 4 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 5: name = Stream output 5 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 6: name = Stream output 6 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 7: name = Stream output 7 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Listener: sinks = 8 capabilities = 0x4801
 Stream 0: name = Stream input 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream input 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream input 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 3: name = Stream input 3 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 4: name = Stream input 4 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 5: name = Stream input 5 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 6: name = Stream input 6 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 7: name = Stream input 7 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Controls:
 Control 0: name = Volume Control 0 type = 0x90e0f00000000004 read-only = No
 value_type = 1 min = 0 current = 100 max = 100 step = 1

Once the Listener is running, its entity ID can be displayed by using the same tool:

Entity ID = 0x49fddee100000 Model ID = 0x49fff00000001 Capabilities = 0x708 Association ID =
 0x0 MAC address= 00:BB:CC:DD:EE:10 Local MAC address= 00:04:9F:07:0F:84
 Talker: sources = 3 capabilities = 0x4801
 Stream 0: name = Stream output 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream output 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream output 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Listener: sinks = 3 capabilities = 0x4801

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
30 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

 Stream 0: name = Stream input 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream input 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream input 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Controls:
 Control 0: name = Volume Control 0 type = 0x90e0f00000000004 read-only = No
 value_type = 1 min = 0 current = 100 max = 100 step = 1

To connect streams, use the following command:

genavb-controller-app -c <talker_entity_id> <talker_unique_id> <listener_entity_id>
 <listener_unique_id> <flag>

To disconnect a stream, use the command:

genavb-controller-app -d <talker_entity_id> <talker_unique_id> <listener_entity_id>
 <listener_unique_id>

In the below example, the Listener's stream #0 is connected to the Talker’s stream #0:

genavb-controller-app -c 0x49f070f840000 0 0x49fddee100000 0 0
NXP's GenAVB AVDECC controller demo application
Stream connection successful: stream id = 0x49f070f840000 Destination MAC address 91:E0:F0:00:FE:24
 flags = 0x0 connection_count = 1 VLAN id = 0

Once the stream is connected, the audio file can be heard on the SAI output lines.

4.4.4.4.2 AVB: Harpoon AVTP Talker

4.4.4.4.2.1 AVB setup preparation

An i.MX 8M Plus EVK with Real-time Edge SW v2.5 (or above) can be used as a Listener. On the other end,
any Harpoon supported EVK can be used as a Talker.

1. Connect the headphones/speakers to the Listener's audio Jack port.
2. Connect both the i.MX boards with an Ethernet RJ45 cable.
3. Connect a Serial/USB cable to each i.MX board and to some USB ports of the host PC.
4. Start consoles of the i.MX boards through the serial/USB ports.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
31 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

aaa-053018

USB

PC USB

Audio OUT

i.MX
Audio sampler

Serial

Audio OUT

Serial
Ethernet AVB

USB to serial

USB to serial

Line OUT

Audio IN

Audio OUT

AVTP AAF

i.MX
Audio Amplifier

Ethernet

Audio IN

Ethernet

AVB Talker (blue box) connected to the AVB Listener (orange box) through Ethernet.

Figure 19. AVB Audio setup

4.4.4.4.2.2 AVB Listener configuration (Linux)

The default AVB configuration needs to be modified to enable the Listener entity in a custom Media Application.
The AVB Stack is provided with a simple Media Server application example, interfaced to the AVB stack through
the GenAVB/TSN API.

To enable AVB listening using this media application, the endpoint needs to be configured as Endpoint AVB and
the GenAVB/TSN configuration files needs to be modified as follows:

1. Power on the i.MX board and let the boot process complete
2. Configure the GenAVB/TSN stack to Endpoint AVB mode by setting GENAVB_TSN_CONFIG to the right

value in the GenAVB/TSN mode configuration file:

vi /etc/genavb/config

For i.MX 8M Plus EVK:

GENAVB_TSN_CONFIG=2

3. Save and exit the file
4. Edit the GenAVB/TSN AVB configuration file using the following command:

vi /etc/genavb/config_avb

5. Set the configuration profile to PROFILE 14

PROFILE=14

6. Save and exit the file.
7. Enable the GenAVB/TSN systemd service to start the stack automatically on next reboot:

systemctl enable genavb-tsn

8. Reboot the board. The change is saved across reboots, so this has only to be done once.
9. Stop in U-Boot and select the AVB device tree blob before booting Linux:

For i.MX 8M Plus EVK:

=> setenv fdtfile imx8mp-evk-avb.dtb
=> boot

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
32 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

4.4.4.4.2.3 AVB Talker configuration (Harpoon)

The AVB Talker implemented in Harpoon interfaces with the AVB stack through the GenAVB/TSN API, and
supports audio streaming to the network while reading the audio data, through the audio pipeline, from the SAI
interfaces.

To enable the AVB Talker on the Harpoon side, perform the following steps:

1. Power on the i.MX board and stop the boot process in U-Boot to fetch the AVB DTB file:

=> setenv jh_root_dtb imx8mp-evk-harpoon-avb.dtb
=> run jh_mmcboot

2. Start the audio application using the following command at the Linux prompt:
• On FreeRTOS

harpoon_set_configuration.sh freertos avb
systemctl start harpoon

• On Zephyr

harpoon_set_configuration.sh zephyr avb
systemctl start harpoon

3. Start the AVB pipeline, connecting the SAI input (for example, HiFiBerry board) to the AVTP sink element
(stream #0).
• On Multi-SAI boards (i.MX 8M EVKs):

Connect the HiFiBerry board (SAI5) to the AVTP element.

harpoon_ctrl audio -r 4 -a 00:bb:cc:dd:be:ef
harpoon_ctrl routing -i 1 -o 4 -c
harpoon_ctrl routing -i 2 -o 5 -c

• On Single-SAI boards (i.MX 93 EVK):
Connect the on-board audio jack (SAI3) or to the audio expansion board input jack (using an additional -H
option in the command) to the AVTP element.

harpoon_ctrl audio -r 4 -a 00:bb:cc:dd:be:ef # add -H to select the
 MX93AUD-HAT
harpoon_ctrl routing -i 1 -o 2 -c
harpoon_ctrl routing -i 2 -o 3 -c

4. Watch for the AVTP sink logs once the stream is connected (see next section):
INFO: avtp_sink_element_st: rx stream: 0, avtp(C067ABF0, 0)
INFO: avtp_sink_element_st: connected: 1
INFO: avtp_sink_element_st: batch size: 64
INFO: avtp_sink_element_st: underflow: 459, overflow: 0 err: 0 sent: 208617
INFO: avtp_sink_element_st: rx stream: 1, avtp(0, 0)
INFO: avtp_sink_element_st: connected: 0
INFO: avtp_sink_element_st: batch size: 0
INFO: avtp_sink_element_st: underflow: 0, overflow: 0 err: 0 sent: 0

4.4.4.4.2.4 AVB stream connection

This section describes how to use AVDECC events to configure the stream output of the Talker to the input of
the Listener. To do so, we may use the GenAVB AVDECC controller application available on the Listener (Linux
endpoint):

genavb-controller-app -h
NXP's GenAVB AVDECC controller demo application

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
33 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

Usage:
app [options]

Options:
 -S <control_type> <entity_id> <control_index> <value> Set a given control to the given
 value where control_type
 must be uint8 or utf8 (For utf8:
 <value> must be string of max 99 characters)
 -G <control_type> <entity_id> <control_index> Get a control value where
 control_type must be uint8 or utf8
 -l list discovered AVDECC entities
 -c <talker_entity_id> <talker_unique_id> <listener_entity_id> <listener_unique_id> <flags>
 connect a stream between a talker and a listener
 -d <talker_entity_id> <talker_unique_id> <listener_entity_id> <listener_unique_id>
 disconnect a stream between a talker and a listener
 -r <listener_entity_id> <listener_unique_id> Get information about a listener
 sink
 -t <talker_entity_id> <talker_unique_id> Get information about a talker
 source
 -s <talker_entity_id> <talker_unique_id> <index> Get information from a talker about
 a given connection/stream
 -T <talker_entity_id> <talker_unique_id> <start|stop> Send START_STREAMING or
 STOP_STREAMING command to a talker
 -L <listener_entity_id> <listener_unique_id> <start|stop> Send START_STREAMING or
 STOP_STREAMING command to a listener
 -h print this help text

First of all, the Talker's entity information can be displayed by using the AVDECC controller application
(available on the talker endpoint):

genavb-controller-app -l
NXP's GenAVB AVDECC controller demo application
Number of discovered entities: 4
Entity ID = 0x49f05cf720001 Model ID = 0x49f0000080001 Capabilities = 0x8 Association ID =
 0x0 MAC address= 00:04:9F:05:CF:72 Local MAC address= 00:04:9F:05:CF:72
 Controller
 Controls:
 None

Entity ID = 0x49f070f840000 Model ID = 0x49f0000090001 Capabilities = 0x708 Association ID =
 0x0 MAC address= 00:04:9F:07:0F:84 Local MAC address= 00:04:9F:05:CF:72
 Talker: sources = 8 capabilities = 0x4801
 Stream 0: name = Stream output 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream output 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream output 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 3: name = Stream output 3 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 4: name = Stream output 4 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 5: name = Stream output 5 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 6: name = Stream output 6 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 7: name = Stream output 7 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Listener: sinks = 8 capabilities = 0x4801
 Stream 0: name = Stream input 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream input 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream input 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 3: name = Stream input 3 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 4: name = Stream input 4 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 5: name = Stream input 5 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 6: name = Stream input 6 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
34 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

 Stream 7: name = Stream input 7 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Controls:
 Control 0: name = Volume Control 0 type = 0x90e0f00000000004 read-only = No
 value_type = 1 min = 0 current = 100 max = 100 step = 1

Entity ID = 0x49fddbeef0000 Model ID = 0x49fff00000001 Capabilities = 0x708 Association ID =
 0x0 MAC address= 00:BB:CC:DD:BE:EF Local MAC address= 00:04:9F:05:CF:72
 Talker: sources = 3 capabilities = 0x4801
 Stream 0: name = Stream output 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream output 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream output 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Listener: sinks = 3 capabilities = 0x4801
 Stream 0: name = Stream input 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream input 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream input 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Controls:
 Control 0: name = Volume Control 0 type = 0x90e0f00000000004 read-only = No
 value_type = 1 min = 0 current = 100 max = 100 step = 1

Once the Talker is running, its entity ID can be displayed by using the same tool:

Entity ID = 0x49fddbeef0000 Model ID = 0x49fff00000001 Capabilities = 0x708 Association ID =
 0x0 MAC address= 00:BB:CC:DD:BE:EF Local MAC address= 00:04:9F:05:CF:72
 Talker: sources = 3 capabilities = 0x4801
 Stream 0: name = Stream output 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream output 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream output 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Listener: sinks = 3 capabilities = 0x4801
 Stream 0: name = Stream input 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream input 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream input 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Controls:
 Control 0: name = Volume Control 0 type = 0x90e0f00000000004 read-only = No
 value_type = 1 min = 0 current = 100 max = 100 step = 1

To connect streams, use the following command:

genavb-controller-app -c <talker_entity_id> <talker_unique_id> <listener_entity_id>
 <listener_unique_id> <flag>

To disconnect a stream, use the command:

genavb-controller-app -d <talker_entity_id> <talker_unique_id> <listener_entity_id>
 <listener_unique_id>

In the below example, the Listener's stream #0 is connected to the Talker’s stream #0:

genavb-controller-app -c 0x49fddbeef0000 0 0x49f070f840000 0 0
NXP's GenAVB AVDECC controller demo application
Stream connection successful: stream id = 0xbbccddbeef0000 Destination MAC address
 91:E0:F0:00:FE:21 flags = 0x0 connection_count = 1 VLAN id = 0

Once the stream is connected, the audio file can be heard on the SAI output lines.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
35 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

4.4.4.4.3 AVB Connect Harpoon Listeners and Talker through an AVB bridge

4.4.4.4.3.1 AVB setup preparation

The AVB Listeners and Talker implemented in Harpoon can be connected with each other, and support reading
audio samples from the network while pushing out the audio data, through the audio pipeline, on the SAI
interfaces.

• Two or more AVB endpoints (i.MX 8M Plus EVK, i.MX 8M Mini EVK, or i.MX 8M Nano EVK)
• AVDECC controller (e.g., i.MX 8M Plus EVK with Real-time Edge SW v2.8 as AVB endpoint using genavb-
controller-app)

• One AVB bridge (e.g., LS1028ARDB with Real-time Edge SW v2.8)

aaa-053016

USB
USB

USB

USB

USB i.MX AVB endpoint

i.MX AVB endpoint

i.MX AVB endpoint

PC USB

USB
USB

Talker

USB

Ethernet

Ethernet

Ethernet
Audio IN

Listener

Listener

USB

Audio IN

3

AVB bridge

Audio OUT

Ethernet

Ethernet

Ethernet

0

2

1

Figure 20. Harpoon AVTP Talker/Listener setup

4.4.4.4.3.2 AVB Bridge Configuration

Use the following commands to configure bridge on LS1028ARDB:

avb-bridge.sh
avb.sh start

4.4.4.4.3.3 AVB Listeners configuration (Harpoon)

The AVB Listener is implemented in Harpoon interfaces with the AVB stack through the GenAVB/TSN API, and
supports reading audio samples from the network while pushing out the audio data, through the audio pipeline,
on the SAI interfaces.

To enable the AVB Listener on the Harpoon side, perform the following steps:

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
36 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

1. Power on the i.MX board and stop the boot process in U-Boot to fetch the AVB DTB file:

=> setenv jh_root_dtb imx8mp-evk-harpoon-avb.dtb
=> run jh_mmcboot

2. Start the audio application using the following command at the Linux prompt:
• On FreeRTOS

harpoon_set_configuration.sh freertos avb
systemctl start harpoon

• On Zephyr

harpoon_set_configuration.sh zephyr avb
systemctl start harpoon

3. Start the AVB pipeline, connecting the AVTP source element (stream #0) to the SAI output (for example,
HiFiBerry board).
• On Multi-SAI boards (i.MX 8M EVKs):

Connect the AVTP element to the HiFiBerry board (SAI5).

harpoon_ctrl audio -r 4 -a 00:bb:cc:dd:be:ef
harpoon_ctrl routing -i 5 -o 0 -c
harpoon_ctrl routing -i 6 -o 1 -c

• On Single-SAI boards (i.MX 93 EVK):
Connect the AVTP element to the on-board jack (SAI3) or to the audio expansion board output jack (using
an additional -H option in the command).

harpoon_ctrl audio -r 4 -a 00:bb:cc:dd:be:ef # add -H to select the
 MX93AUD-HAT
harpoon_ctrl routing -i 3 -o 0 -c
harpoon_ctrl routing -i 4 -o 1 -c

4. For other AVB AVTP Listener instances, use a different MAC address:
• On Multi-SAI boards (i.MX 8M EVKs):

harpoon_ctrl audio -r 4 -a 00:bb:cc:dd:ca:fe
harpoon_ctrl routing -i 5 -o 0 -c
harpoon_ctrl routing -i 6 -o 1 -c

• On Single-SAI boards (i.MX 93 EVK):

harpoon_ctrl audio -r 4 -a 00:bb:cc:dd:ca:fe # add -H to select the
 MX93AUD-HAT
harpoon_ctrl routing -i 3 -o 0 -c
harpoon_ctrl routing -i 4 -o 1 -c

5. Watch for AVTP source logs once the stream is connected (see next section):
INFO: avtp_source_element_st: rx stream: 0, avtp(C067ABF0, 0)
INFO: avtp_source_element_st: connected: 1
INFO: avtp_source_element_st: batch size: 64
INFO: avtp_source_element_st: underflow: 459, overflow: 0 err: 0 received: 208617
INFO: avtp_source_element_st: rx stream: 1, avtp(0, 0)
INFO: avtp_source_element_st: connected: 0
INFO: avtp_source_element_st: batch size: 0
INFO: avtp_source_element_st: underflow: 0, overflow: 0 err: 0 received: 0

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
37 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

4.4.4.4.3.4 AVB Talker configuration (Harpoon)

The AVB Talker implemented in Harpoon interfaces with the AVB stack through the GenAVB/TSN API, and
supports audio streaming to the network while reading the audio data, through the audio pipeline, from the SAI
interfaces.

To enable the AVB Talker on the Harpoon side, perform the following steps:

1. Power on the i.MX board and stop the boot process in U-Boot to fetch the AVB DTB file:

=> setenv jh_root_dtb imx8mp-evk-harpoon-avb.dtb
=> run jh_mmcboot

2. Start the audio application using the following command at the Linux prompt:
• On FreeRTOS

harpoon_set_configuration.sh freertos avb
systemctl start harpoon

• On Zephyr

harpoon_set_configuration.sh zephyr avb
systemctl start harpoon

3. Start the AVB pipeline, connecting the SAI input (for example, HiFiBerry board) to the AVTP sink element
(stream #0).
• On Multi-SAI boards (i.MX 8M EVKs):

Connect the HiFiBerry board (SAI5) to the AVTP element.

harpoon_ctrl audio -r 4 -a 00:bb:cc:dd:de:ad
harpoon_ctrl routing -i 1 -o 4 -c
harpoon_ctrl routing -i 2 -o 5 -c

• On Single-SAI boards (i.MX 93 EVK):
Connect the on-board audio jack (SAI3) or to the audio expansion board input jack (using an additional -H
option in the command).

harpoon_ctrl audio -r 4 -a 00:bb:cc:dd:de:ad # add - H to select the
 MX93AUD-HAT
harpoon_ctrl routing -i 1 -o 2 -c
harpoon_ctrl routing -i 2 -o 3 -c

4. Watch for AVTP sink logs once the stream is connected (see next section):
INFO: avtp_sink_element_st: rx stream: 0, avtp(C067ABF0, 0)
INFO: avtp_sink_element_st: connected: 1
INFO: avtp_sink_element_st: batch size: 64
INFO: avtp_sink_element_st: underflow: 459, overflow: 0 err: 0 sent: 208617
INFO: avtp_sink_element_st: rx stream: 1, avtp(0, 0)
INFO: avtp_sink_element_st: connected: 0
INFO: avtp_sink_element_st: batch size: 0
INFO: avtp_sink_element_st: underflow: 0, overflow: 0 err: 0 sent: 0

4.4.4.4.3.5 AVDECC controller configuration (Linux)

To enable the usage the command line AVB AVDECC controller, the AVB stack needs to be started as Endpoint
AVB. For that, the GenAVB/TSN configuration files needs to be modified as follows:

1. Power on the i.MX board and let the boot process complete

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
38 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

2. Configure the GenAVB/TSN stack to Endpoint AVB mode by setting GENAVB_TSN_CONFIG to the right
value in the GenAVB/TSN mode configuration file:

vi /etc/genavb/config

For i.MX 8M Plus EVK:

GENAVB_TSN_CONFIG=2

For i.MX 8M Mini EVK:

GENAVB_TSN_CONFIG=1

3. Save and exit the file
4. Enable the GenAVB/TSN systemd service to start the stack automatically on next reboot:

systemctl enable genavb-tsn

5. Reboot the board. The change is saved across reboots, so this has only to be done once.
6. Stop in U-Boot and select the AVB device tree blob before booting Linux:

For i.MX 8M Plus EVK:

=> setenv fdtfile imx8mp-evk-avb.dtb
=> boot

For i.MX 8M Mini EVK:

=> setenv fdtfile imx8mm-evk-avb.dtb
=> boot

4.4.4.4.3.6 AVB stream connection

This section describes how to use AVDECC events to connect the stream output of the Talker to the stream
inputs of the Listeners. To do so, we may use the GenAVB AVDECC controller previously configured:

genavb-controller-app -h
NXP's GenAVB AVDECC controller demo application

Usage:
app [options]

Options:
 -S <control_type> <entity_id> <control_index> <value> Set a given control to the given
 value where control_type
 must be uint8 or utf8 (For utf8:
 <value> must be string of max 99 characters)
 -G <control_type> <entity_id> <control_index> Get a control value where
 control_type must be uint8 or utf8
 -l list discovered AVDECC entities
 -c <talker_entity_id> <talker_unique_id> <listener_entity_id> <listener_unique_id> <flags>
 connect a stream between a talker and a listener
 -d <talker_entity_id> <talker_unique_id> <listener_entity_id> <listener_unique_id>
 disconnect a stream between a talker and a listener
 -r <listener_entity_id> <listener_unique_id> Get information about a listener
 sink
 -t <talker_entity_id> <talker_unique_id> Get information about a talker
 source
 -s <talker_entity_id> <talker_unique_id> <index> Get information from a talker about
 a given connection/stream
 -T <talker_entity_id> <talker_unique_id> <start|stop> Send START_STREAMING or
 STOP_STREAMING command to a talker
 -L <listener_entity_id> <listener_unique_id> <start|stop> Send START_STREAMING or
 STOP_STREAMING command to a listener
 -h print this help text

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
39 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

First of all, the Talker's entity information can be displayed by using the AVDECC controller application:

genavb-controller-app -l
NXP's GenAVB AVDECC controller demo application
Number of discovered entities: 4
Entity ID = 0x49f05cf720001 Model ID = 0x49f0000080001 Capabilities = 0x8 Association ID =
 0x0 MAC address= 00:04:9F:05:CF:72 Local MAC address= 00:04:9F:05:CF:72
 Controller
 Controls:
 None

Entity ID = 0x49f070f840000 Model ID = 0x49f0000090001 Capabilities = 0x708 Association ID =
 0x0 MAC address= 00:04:9F:07:0F:84 Local MAC address= 00:04:9F:05:CF:72
 Talker: sources = 8 capabilities = 0x4801
 Stream 0: name = Stream output 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream output 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream output 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 3: name = Stream output 3 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 4: name = Stream output 4 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 5: name = Stream output 5 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 6: name = Stream output 6 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 7: name = Stream output 7 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Listener: sinks = 8 capabilities = 0x4801
 Stream 0: name = Stream input 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream input 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream input 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 3: name = Stream input 3 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 4: name = Stream input 4 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 5: name = Stream input 5 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 6: name = Stream input 6 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 7: name = Stream input 7 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Controls:
 Control 0: name = Volume Control 0 type = 0x90e0f00000000004 read-only = No
 value_type = 1 min = 0 current = 100 max = 100 step = 1

Entity ID = 0x49fddbeef0000 Model ID = 0x49fff00000001 Capabilities = 0x708 Association ID =
 0x0 MAC address= 00:BB:CC:DD:BE:EF Local MAC address= 00:04:9F:05:CF:72
 Talker: sources = 3 capabilities = 0x4801
 Stream 0: name = Stream output 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream output 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream output 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Listener: sinks = 3 capabilities = 0x4801
 Stream 0: name = Stream input 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream input 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream input 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Controls:
 Control 0: name = Volume Control 0 type = 0x90e0f00000000004 read-only = No
 value_type = 1 min = 0 current = 100 max = 100 step = 1

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
40 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

Once the Talker is running, its entity ID can be displayed by using the same tool:

Entity ID = 0x49fdddead0000 Model ID = 0x49fff00000001 Capabilities = 0x708 Association ID =
 0x0 MAC address= 00:BB:CC:DD:BE:EF Local MAC address= 00:04:9F:05:CF:72
 Talker: sources = 3 capabilities = 0x4801
 Stream 0: name = Stream output 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream output 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream output 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Listener: sinks = 3 capabilities = 0x4801
 Stream 0: name = Stream input 0 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 1: name = Stream input 1 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Stream 2: name = Stream input 2 interface index = 0 number of formats = 1
 flags = 0x6 current_format = 0x0205021800806000 (AAF 2chans 24/32bits 48000Hz 6samples/packet)
 Controls:
 Control 0: name = Volume Control 0 type = 0x90e0f00000000004 read-only = No
 value_type = 1 min = 0 current = 100 max = 100 step = 1

To connect streams, use the following command:

genavb-controller-app -c <talker_entity_id> <talker_unique_id> <listener_entity_id>
 <listener_unique_id> <flag>

To disconnect a stream, use the command:

genavb-controller-app -d <talker_entity_id> <talker_unique_id> <listener_entity_id>
 <listener_unique_id>

In the below example, the Listener's stream #0 is connected to the Talker’s stream #0:

genavb-controller-app -c 0x49fdddead0000 0 0x49fddbeef0000 0 0
NXP's GenAVB AVDECC controller demo application
Stream connection successful: stream id = 0xbbccdddead0000 Destination MAC address
 91:E0:F0:00:FE:21 flags = 0x0 connection_count = 1 VLAN id = 0
If you have another Listener on the network:
genavb-controller-app -c 0x49fdddead0000 0 0x49fddcafe0000 0 0
NXP's GenAVB AVDECC controller demo application
Stream connection successful: stream id = 0xbbccdddead0000 Destination MAC address
 91:E0:F0:00:FE:21 flags = 0x0 connection_count = 1 VLAN id = 0

Once the stream is connected, the audio file can be heard on the SAI output lines.

4.4.4.5 Playing an SMP audio pipeline

The use case for SMP audio pipeline is only supported on Zephyr, which runs the SMP kernel on two CPU
Cores. It creates and binds one dedicated data thread for each CPU Core.

The main motivation for SMP support is to distribute the CPU load of the pipeline processing across available
cores, and thus is able to run pipelines that consume more than one single core CPU resources.

The main approach used is to split the existing pipelines in two pieces, and process them, asynchronously, in
different cores/data threads. This allows the two pieces to fully run in parallel, but usually requires a one period
increase in the end-to-end latency. For example:

• Before: 1 audio pipeline, running in one core/data thread. Processing period P, with an end-to-end latency of 2
x P.

• After: Pipeline is split into two 2 pipelines. Each runs on a separate core. Explicit synchronization between the
two threads/pipelines is avoided by adding an extra buffer of P length between the two pipelines. Processing
period is still P, but end-to-end latency is now 3 x P.

This basically models one pipeline as two independent ones:
HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
41 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

• The first one has no sink elements. It terminates with output buffers.
• The second one has a specific source element, which implements the extra buffer between pipelines.
• The scheduling of all the thread handling is done based on the same IRQ.

This approach can also be scaled to more CPUs, each time splitting the pipeline into several pieces, each new
thread/piece increasing the end-to-end latency by P.

4.4.4.5.1 Playing an SMP full audio pipeline

The reference audio application splits the pipeline used by the "full audio pipeline" use case into two audio data
pipelines. Each pipeline runs on a dedicated thread bound to a dedicated CPU Core.

aaa-053024

DTMF (source0)

Stage 1 Stage 2

Pipeline data thread (CPU0) Pipeline data thread
(CPU1)

Stage 3

Control thread

Routing
(routing0)

DTMF (source1) Audio buffer 1

Sine (source2)

Audio buffer 8

Audio buffer 9

Audio buffer 10

Audio buffer 11
Sine (source3)

SAI (source4)

SAI3
SAI5

SAI (sink0) Linux control

SAI3 RPMSG
shared

memory
SAI5

Audio buffer 3

Audio buffer 5

Audio buffer 6

Audio buffer 7

Audio buffer 2

Audio buffer 4

Audio buffer 0

Figure 21. SMP Audio Pipeline with two threads and CPU cores

To run the Zephyr audio SMP pipeline application, run the following command to generate an appropriate
configuration file:

harpoon_set_configuration.sh zephyr audio_smp

Note: Avoid changing the configuration while the Harpoon service is running (silent failure when restarting the
service).

Run the Harpoon service with Systemd to start Jailhouse.

systemctl start harpoon

Then use the following command to run audio SMP pipeline testcase:

harpoon_ctrl audio -r 5

You can then connect the provided sources to audio outputs:

harpoon_ctrl routing -i 4 -o 2 -c # SAI5's input to SAI3's output (L)
harpoon_ctrl routing -i 5 -o 3 -c # SAI5's input to SAI3's output (R)

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
42 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

To run another audio use case, stop the playback using the following command:

harpoon_ctrl audio -s

4.4.4.5.2 Playing an SMP AVB audio pipeline

This pipeline runs with the same constraints as the SMP Full audio pipeline with the addition of the AVB feature.
The GenAVB/TSN stack tasks are bound to the CPU Core 0, the AVTP source elements run on the CPU Core
0, and the AVTP Sink elements run on CPU Core 1.

Pipeline data thread (CPU0) Pipeline data thread
(CPU1)

Sine (source0)

Stage 1 Stage 2 Stage 3

Routing (routing0)

aaa-055125

Audio buffer 0

SAI (source1)

SAI3
SAI5

Audio buffer 1

Audio buffer 2

Audio buffer 3

Audio buffer 4

AVTP (source2)

STREAM0
STREAM1

Audio buffer 5

Audio buffer 6

Audio buffer 7

Audio buffer 8

SAI (sink0)

SAI3
SAI5

Control thread

Linux control

RPMSG
Shared
Memory

Audio buffer 9

Audio buffer 10

Audio buffer 11

Audio buffer 12

AVTP (sink1)

STREAM0
STREAM1

Audio buffer 13

Audio buffer 14

Audio buffer 15

Audio buffer 16

Figure 22. SMP AVB Audio Pipeline with two threads and CPU cores

To run the Zephyr audio AVB SMP pipeline application, run the following command to generate an appropriate
configuration file:

harpoon_set_configuration.sh zephyr avb

Run the Harpoon service with Systemd to start Jailhouse.

systemctl start harpoon

Then use the following command to run the audio AVB SMP pipeline testcase:

harpoon_ctrl audio -r 7

Or use the following command to run audio AVB SMP pipeline with Media Clock Recovery testcase:

harpoon_ctrl audio -r 8

You can then follow the same steps as described in Playing an AVB audio Pipeline to connect streams and do
the audio routing.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
43 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

4.5 Industrial application

4.5.1 Features of the industrial application

The industrial application is available in the Harpoon share directory of the root file system:

/usr/share/harpoon/inmates/freertos/industrial.bin # FreeRTOS binary
/usr/share/harpoon/inmates/zephyr/industrial.bin # Zephyr binary

The different use cases are:

• FlexCAN-based communication (on i.MX 8M Plus EVK and i.MX93 EVK):
– Two boards (nodes) are connected through their CAN bus connectors using a proper CAN bus cable. The

latter can either be purchased or built following the CAN pinout standard.
– Each node is configured to handle multiple message buffers. Where a message buffer is either configured

for transmit or receive.
– Both nodes send/receive either CAN or CAN FD messages.

• Ethernet:
– Simple MCUXpresso SDK API based application to send and receive packets through the ENET interface:

– ENET application for FreeRTOS and Zephyr on i.MX 8M Mini/Nano EVK.
– ENET_QoS application with or without internal loopback for Zephyr on i.MX 8M Plus EVK and i.MX93

EVK.
– Full TSN stack based application, running a gPTP stack and sending/receiving TSN packets on a TSN

network:
– Through the ENET_QOS interface, acting as a controller/IO device on i.MX 8M Plus EVK and i.MX93

EVK.
– Through the ENET interface, acting as a controller/IO device on i.MX 8M Mini EVK and i.MX 8M Nano

EVK.
Note: The ENET interface does not support 802.1Qbv. Packets are transmitted using basic, software
based, strict priority scheduling.

4.5.2 Starting the industrial application

To use the industrial application, Jailhouse must be started first. To start Jailhouse and the industrial application,
create the corresponding Harpoon configuration file and run the harpoon service using systemd, for example:

harpoon_set_configuration.sh freertos industrial

The configuration file is stored under /etc/harpoon/harpoon.conf and the Harpoon systemd service uses
it to start Jailhouse and the industrial application:

systemctl start harpoon

Once the Harpoon service has been started, harpoon_ctrl is used to start or stop the industrial features with
optional parameters. The different options for the industrial application are as follows:

Industrial FlexCAN options:
 -r <id> run CAN mode id:
 0 - Multiple Nodes and Messages Tx+Rx on the imx8mp and
 the imx93
 -n <node_type> acting as node 'A' or 'B' (default 'A')
 0 - node 'A'
 1 - node 'B'

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
44 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

 -o <protocol> use 'CAN' or 'CAN FD' protocol (default 'CAN')
 0 - protocol is 'CAN'
 1 - protocol is 'CAN FD'
 -s stop FlexCAN based communication

Industrial ethernet options:
 -a <mac_addr> set hardware MAC address (default 91:e0:f0:00:fe:70)
 -p <period_ns> set processing period in ns (default 100000)
 -r <id> run ethernet mode id:
 0 - genAVB/TSN stack on FreeRTOS
 1 - mcux-sdk API:
 imx8m{m,n}: ENET on Zephyr and FreeRTOS
 imx8mp, imx93: ENET_QoS on Zephyr
 2 - mcux-sdk API with PHY loopback mode:
 imx8mp, imx93: ENET_QoS on Zephyr
 -i <role> for genAVB/TSN: endpoint role (default 'controller', if
 not specified)
 0 - role is 'IO device 0'
 1 - role is 'IO device 1'
 -s stop ethernet

4.5.3 Running the industrial application: examples

4.5.3.1 FlexCAN multiple nodes communication

4.5.3.1.1 Hardware Setup

• On i.MX 8M PLUS EVK:
Connection is done through the CAN bus connector (J19) using a male DB9 adapter. The termination
resistance should be added adequately.

• On i.MX93 EVK:
Connection is done through the CAN bus connectors (J1101). The board has a DIP switch (S1101) to control
the termination resistance.

The used cables can be built (or purchased) following the CAN pinout standard. Each pin should be connected
to its equivalent signal between two boards:

Signal i.MX 93 J1101 pins DB9 CAN bus cable pins

CAN_H Pin 2 Pin 7

CAN_L Pin 3 Pin 2

GND Pin 4 Pin 3

Table 13. CAN pinouts list

4.5.3.1.2 Industrial CAN application overview

The industrial CAN application is configured to perform communication between two nodes. Each node has four
message buffers (MB) used equally for transmit and receive (two MBs for transmit and two MBs for receive).
The transmission is driven by a periodic timer (currently configured at 1200 us) and reception is driven by frame
reception.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
45 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

aaa-053019

Node A

MB 2 (Rx)

MB 4 (Rx)

*MB: CAN Message Buffer.

Frame Id : 0x321

Frame Id : 0x422

Node B

MB 2 (Rx)

MB 4 (Rx)

Frame Id : 0x123

Frame Id : 0x124

Timer: used to send
all Tx frames on
regular intervals. Rx
frames are processed
on receive.

MB 3 (Tx)

Frame Id : 0x123
MB 1 (Tx)

Frame Id : 0x422

MB* 1 (Tx)
Frame Id : 0x321

Frame Id : 0x124
MB 3 (Tx)

Figure 23. Industrial CAN application architecture

4.5.3.1.3 FlexCAN multiple nodes use case

To start the FlexCAN based communication:

• One board needs to be selected as Node A -n 0 and the other as Node B -n 1.
• Select the same CAN protocol on both nodes: -o 0 for CAN and -o 1 for CAN FD. Default is CAN protocol.

On board A, start CAN protocol multiple node use case as Node A:

harpoon_ctrl can -r 0 -n 0

On board B, start CAN protocol multiple node use case as Node B:

harpoon_ctrl can -r 0 -n 1

Type this command to stop the current use case (mandatory before starting a new use case):

harpoon_ctrl can -s

During the execution of the application, reception and transmission logs are dumped on console every 10
seconds.

Industrial CAN application logs example:

• Node A:
INFO: can_stats : |Mbit/s: 2|TX period µs: 1200|global irq: 5532306|
INFO: can_stats : |TX mb: 1, id: 123|==>|irq: 1383079|tx: 1383079|busy : 2350|fail: 0|
INFO: can_stats : |RX mb: 2, id: 321|==>|irq: 1383074|rx: 1383074|ovrflw: 0|fail: 0|
INFO: can_stats : |TX mb: 3, id: 124|==>|irq: 1383079|tx: 1383079|busy : 2350|fail: 0|
INFO: can_stats : |RX mb: 4, id: 422|==>|irq: 1383074|rx: 1383074|ovrflw: 0|fail: 0|

• Node B:
INFO: can_stats : |Mbit/s: 2|TX period µs: 1200|global irq: 5544926|
INFO: can_stats : |TX mb: 1, id: 321|==>|irq: 1389384|tx: 1389384|busy : 0|fail: 0|
INFO: can_stats : |RX mb: 2, id: 123|==>|irq: 1383079|rx: 1383079|ovrflw: 0|fail: 0|
INFO: can_stats : |TX mb: 3, id: 422|==>|irq: 1389384|tx: 1389384|busy : 0|fail: 0|
INFO: can_stats : |RX mb: 4, id: 124|==>|irq: 1383079|rx: 1383079|ovrflw: 0|fail: 0|

The definition of the log's key words is as follows:

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
46 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

• Mbit/s: bus baudrate. It is set to 2 Mbits/s for the CAN FD and to 1 Mbits/s for the CAN in the applcation
example.

• TX period µs: transmission timer period. In this example it is set to 1200 us.
• global irq: global interrupts number. One global interruption may signal both RX and TX interruptions at

the same time. It is possible that the global IRQ number is lower than the sum of TX and RX interruptions.
• TX mb: TX message buffer index.
• RX mb: RX message buffer index.
• id: frame id.
• irq: number of TX or RX interruptions:

– A TX interruption is triggered when the application manages to send a message to the receiver.
– An RX interruption is triggered when a message is received.

• tx and rx: number of reads and writes in the message buffer memory.
• busy: number of TX busy operations. It occurs when the application is not able to write another frame,

because it is still waiting for the TX interruption from the previous one. This can also happen when the
receiver is not in run mode or not configured properly.

• ovrflw: number of RX overflows. It occurs when the message buffer is busy and cannot receive the new
frame.

• fail: number of reads and writes failures. It occurs when the application fails to read or write into message
buffer memory.

4.5.3.2 Ethernet through MCUXpresso SDK API

A simple reference use case is given to exchange Ethernet packets using the SDK API.

1. Run the ENET test case on i.MX 8M Mini/Nano EVK.

harpoon_ctrl ethernet -r 1

One possibility to verify that the use case is functional is to plug an Ethernet cable on the Ethernet
connector on one end, and to a Linux host computer on the other end.
The expected output on the inmate cell console is as follows:

ENET test start.
ENET: Wait for PHY link up...
ENET: PHY link speed 1000M full-duplex
INFO: ethernet_sdk_enet_stat: not implemented
INFO: cpu_load_stats : CPU load: 0.00%
ENET test result:
 TX: total = 100; succ = 100; fail = 0
 RX: total = 100; succ = 0; fail = 0; empty = 100

To verify that data are successfully received on the host side, use the tcpdump tool (sudo permissions may
be required):
$ tcpdump -i <INTERFACE> -e
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on enp1s2, link-type EN10MB (Ethernet), capture size 262144 bytes
11:48:40.402104 00:04:9f:06:96:36 (oui Freescale) > 01:80:c2:00:00:0e (oui Unknown),
 ethertype LLDP (0x88cc), length 269: LLDP, length 255: imx8mp-lpddr4-evk
11:48:46.648227 00:00:00:00:00:00 (oui Ethernet) > Broadcast, 802.3, length 986: LLC,
 dsap Null (0x00) Individual, ssap Null (0x00) Response, ctrl 0x0302: Information,
 send seq 1, rcv seq 1, Flags [Final], length 986
 0x0000: 0001 0203 0405 0607 0809 0a0b 0c0d 0e0f
 0x0010: 1011 1213 1415 1617 1819 1a1b 1c1d 1e1f
 0x0020: 2021 2223 2425 2627 2829 2a2b 2c2d 2e2f .!"#$%&'()*+,-./
 0x0030: 3031 3233 3435 3637 3839 3a3b 3c3d 3e3f 0123456789:;<=>?
 0x0040: 4041 4243 4445 4647 4849 4a4b 4c4d 4e4f @ABCDEFGHIJKLMNO
 0x0050: 5051 5253 5455 5657 5859 5a5b 5c5d 5e5f PQRSTUVWXYZ[\]^_

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
47 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

 0x0060: 6061 6263 6465 6667 6869 6a6b 6c6d 6e6f `abcdefghijklmno
 0x0070: 7071 7273 7475 7677 7879 7a7b 7c7d 7e7f pqrstuvwxyz{|}~.
 0x0080: 8081 8283 8485 8687 8889 8a8b 8c8d 8e8f
 0x0090: 9091 9293 9495 9697 9899 9a9b 9c9d 9e9f
 0x00a0: a0a1 a2a3 a4a5 a6a7 a8a9 aaab acad aeaf
 0x00b0: b0b1 b2b3 b4b5 b6b7 b8b9 babb bcbd bebf
 0x00c0: c0c1 c2c3 c4c5 c6c7 c8c9 cacb cccd cecf
 0x00d0: d0d1 d2d3 d4d5 d6d7 d8d9 dadb dcdd dedf
 0x00e0: e0e1 e2e3 e4e5 e6e7 e8e9 eaeb eced eeef
 0x00f0: f0f1 f2f3 f4f5 f6f7 f8f9 fafb fcfd fe00
 0x0100: 0102 0304 0506 0708 090a 0b0c 0d0e 0f10
 0x0110: 1112 1314 1516 1718 191a 1b1c 1d1e 1f20
 0x0120: 2122 2324 2526 2728 292a 2b2c 2d2e 2f30 !"#$%&'()*+,-./0
 0x0130: 3132 3334 3536 3738 393a 3b3c 3d3e 3f40 123456789:;<=>?@
 0x0140: 4142 4344 4546 4748 494a 4b4c 4d4e 4f50 ABCDEFGHIJKLMNOP
 0x0150: 5152 5354 5556 5758 595a 5b5c 5d5e 5f60 QRSTUVWXYZ[\]^_`
 0x0160: 6162 6364 6566 6768 696a 6b6c 6d6e 6f70 abcdefghijklmnop
 0x0170: 7172 7374 7576 7778 797a 7b7c 7d7e 7f80 qrstuvwxyz{|}~..
 0x0180: 8182 8384 8586 8788 898a 8b8c 8d8e 8f90
 0x0190: 9192 9394 9596 9798 999a 9b9c 9d9e 9fa0
 0x01a0: a1a2 a3a4 a5a6 a7a8 a9aa abac adae afb0
<snip>

2. Run the ENET_QoS test case on i.MX 8M Plus EVK or i.MX 93 EVK:
This use case is only supported on Zephyr.

harpoon_ctrl ethernet -r 1

One possibility to verify that the use case is functional is to plug an Ethernet cable on the Ethernet
connector on one end, and to a Linux host computer on the other end. Use the tcpdump tool on the Linux
host to verify that the packets are received correctly.
The expected output on the inmate cell console is as follows:

INFO: main_task : Industrial application started!
INFO: industrial_set_hw_addr: 00:bb:cc:dd:ee:14
INFO: enet_qos_init : enet_qos_init
INFO: ethernet_sdk_enet_run :
INFO: ethernet_sdk_enet_run : ####################
INFO: ethernet_sdk_enet_run : # #
INFO: ethernet_sdk_enet_run : # enet_qos_app #
INFO: ethernet_sdk_enet_run : # #
INFO: ethernet_sdk_enet_run : ####################
INFO: ethernet_sdk_enet_run : Wait for PHY init...
INFO: ethernet_sdk_enet_run : PHY setup was finalized
INFO: ethernet_sdk_enet_run :
30 frames ----> will be sent in 3 queues, and frames will be received in 3
 queues.
INFO: ethernet_sdk_enet_run : The frames transmitted from the ring 0, 1, 2 is
 10, 10, 10, total 30 frames!
INFO: ethernet_sdk_enet_run : The frames received from the ring 0, 1, 2 is 0,
 0, 0, total 0 frames!
INFO: ethernet_sdk_enet_run : ENET QOS TXRX Test Done0

3. Run the ENET_QoS Loopback test case on i.MX 8M Plus EVK or i.MX 93 EVK:
This use case is only supported on Zephyr.

harpoon_ctrl ethernet -r 2

For this test case, the PHY internal loopback is enabled, so the packets sent out by the ENET_QoS port will
be looped back and the port will receive these packets transmitted.
The expected output on the inmate cell console is as follows:

INFO: main_task : Industrial application started!
INFO: industrial_set_hw_addr: 00:bb:cc:dd:ee:14

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
48 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

INFO: enet_qos_init : enet_qos_init
INFO: ethernet_sdk_enet_run :
INFO: ethernet_sdk_enet_run : ####################
INFO: ethernet_sdk_enet_run : # #
INFO: ethernet_sdk_enet_run : # enet_qos_app #
INFO: ethernet_sdk_enet_run : # #
INFO: ethernet_sdk_enet_run : ####################
INFO: ethernet_sdk_enet_run : Wait for PHY init...
INFO: ethernet_sdk_enet_run : PHY setup was finalized
INFO: ethernet_sdk_enet_run :
30 frames ----> will be sent in 3 queues, and frames will be received in 3
 queues.
INFO: ethernet_sdk_enet_run : The frames transmitted from the ring 0, 1, 2 is
 10, 10, 10, total 30 frames!
INFO: ethernet_sdk_enet_run : The frames received from the ring 0, 1, 2 is
 10, 10, 10, total 30 frames!
INFO: ethernet_sdk_enet_run : ENET QOS TXRX Loopback Test PASSED0

4.5.3.3 Ethernet with GenAVB/TSN stack

A more complex Ethernet use case uses the GenAVB/TSN Stack, which provides advanced implementation for
AVB as well as Time-Sensitive Networking (TSN) functionalities. Some functions for the latter do require special
TSN hardware support, available in the i.MX 8M Plus and i.MX 93 SoCs for instance.

The following sections give some details on the hardware requirements, setup preparation, and test execution.

As far as the Harpoon demonstration goes, the controller (i.MX 8M Plus or i.MX 93) runs in the Cortex-A53/
A55 FreeRTOS or Zephyr cell. The IO devices, which can be any TSN endpoint (i.MX 8M Plus, i.MX 93, i.MX
RT1170, etc.) and the TSN bridge complete the TSN network environment for this use case.

4.5.3.3.1 Requirements

• Two TSN endpoints (i.MX 8M Plus EVK, i.MX 93 EVK, or optionally an i.MX RT1170 EVK)
• One TSN bridge (LS1028ARDB)

Note: The second IO Device is optional.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
49 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

aaa-053025

USB
USB

USB

USB

USB

Controller

PC USB

USB
USB

IO device 1

USB

Ethernet

Ethernet

Ethernet

IO device 2

USB

TSN bridge

Ethernet

3

0

1

2

Ethernet

Ethernet

i.MX TSN endpoint

i.MX TSN endpoint

i.MX TSN endpoint

Figure 24. TSN endpoint sample application setup

4.5.3.3.2 Setup preparation

One of the TSN endpoint needs to be configured as “controller” and the other one as “IO device”. Both
endpoints are connected to the TSN bridge.

4.5.3.3.2.1 i.MX RT1170 TSN Endpoint - IO Device (Optional)

If using an i.MX RT1170 as the IO device, first flash the latest GenAVB/TSN Endpoint image (https://
mcuxpresso.nxp.com/en/dashboard?download=84124a72b3f5916f99168a06ef287f2f).

Once the i.MX RT1170 is flashed, press 'insert' and set the following parameters:

IO_DEVICE_0>>write tsn_app/role 1
IO_DEVICE_0>>write tsn_app/period_ns 100000

Press 'insert' to exit the configuration mode and reboot.

4.5.3.3.2.2 TSN Bridge

LS1028ARDB can be used as a generic time-aware bridge, connected to other time-aware end stations or
bridges.

By default, LS1028ARDB does not forward packets if no bridge interface is configured under Linux. Enabling
bridge interface is dependent on the board used.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
50 / 68

https://mcuxpresso.nxp.com/en/dashboard?download=84124a72b3f5916f99168a06ef287f2f
https://mcuxpresso.nxp.com/en/dashboard?download=84124a72b3f5916f99168a06ef287f2f

NXP Semiconductors HRPNUG
Harpoon User's Guide

TSN Bridge Configuration

Use the following commands to configure bridge on LS1028ARDB:

ls /sys/bus/pci/devices/0000:00:00.5/net/

Get switch device interfaces for swp0, swp1, swp2, and swp3 as shown below:

ip link set dev eno2 up
ip link add name br0 type bridge
ip link set br0 up
ip link set master br0 swp0 up
ip link set master br0 swp1 up
ip link set master br0 swp2 up
ip link set master br0 swp3 up

Then start gPTP:

tsn.sh start

TSN Bridge logging

Logs are stored in /var/log/tsn-br.

• Linux command:

tail -f /var/log/tsn-br

• The bridge stack statistics are similar to the endpoint stack ones except that they are reported for each of the
external ports of the switch (Port 0 to 3) and also for the internal port connected to the endpoint stack (Port 4)
in case of Hybrid setup.

• Pdelay (propagation delay), Link status, AS capability and Port Role are printed for each port.

Port(0): domain(0, 0): Role: Master Link: Up asCapable: Yes neighborGptpCapable: Yes
 delayMechanism: P2P
Port(0): Propagation delay (ns): 334.29 min 329 avg 333 max 342 variance
 17
Port(1): domain(0, 0): Role: Disabled Link: Down asCapable: No neighborGptpCapable: No
 delayMechanism: P2P
Port(2): domain(0, 0): Role: Master Link: Up asCapable: Yes neighborGptpCapable: Yes
 delayMechanism: P2P
Port(2): Propagation delay (ns): 386.54 min 380 avg 385 max 390 variance
 9
Port(3): domain(0, 0): Role: Disabled Link: Down asCapable: No neighborGptpCapable: No
 delayMechanism: P2P
Port(4): domain(0, 0): Role: Disabled Link: Down asCapable: No neighborGptpCapable: No
 delayMechanism: P2P

If a port is not connected, Link status takes the value Down.

If a port is not capable of communicating a synchronized time, AS_Capable status takes the value No.

4.5.3.3.3 Running the TSN use case

To start the Ethernet use case from the inmate cell (acting as a TSN Endpoint - Controller), run the following
command:

harpoon_ctrl ethernet -r 0

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
51 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

To start the Ethernet use case from the inmate cell (acting as a TSN Endpoint - IO Device), run the following
command:

harpoon_ctrl ethernet -r 0 -i 0

The expected initialization output in the inmates consoles is:

INFO: main_task : Industrial application started!
INFO: rpmsg_init : RPMSG init ...
INFO: rpmsg_init : RPMSG link up
INFO: industrial_set_hw_addr: 00:bb:cc:dd:ee:14
INFO: ethernet_avb_tsn_init : ethernet_avb_tsn_init
INFO 0 app gavb_stack_init : talker_entity_id 0x0000000000000000
INIT 0.000000000 os genavb_init : NXP's GenAVB/TSN stack version
 dev-d71ce4fc

[...]

INIT 0.000000000 os phy_task : started
INIT 0.000000000 os net_tx_task : networking(C0624B70) tx task
 started
INIT 0.000000000 os net_rx_task : networking(C0624850) rx task
 started
INIT 0.000000000 os net_task_init : networking started
INIT 0.000000000 os management_task : management task started
INIT 0.000000000 os management_task : started
INIT 0.000000000 os management_task_init : management main completed
INIT 0.000000000 os gptp_task : gptp task started
INIT 0.006209075 os gptp_task_init : gptp main completed
INIT 0.006209075 os srp_task : srp task started
INIT 0.006209075 os srp_task : started
INIT 0.006209075 os srp_task_init : srp main completed

[...]

INFO: ethernet_avb_tsn_run : tsn_app config
INFO: ethernet_avb_tsn_run : mode : NETWORK_ONLY
INFO: ethernet_avb_tsn_run : role : 0
INFO: ethernet_avb_tsn_run : num_io_devices : 1
INFO: ethernet_avb_tsn_run : motor_offset : 0
INFO: ethernet_avb_tsn_run : control_strategy : 0
INFO: ethernet_avb_tsn_run : app period : 100000
INFO: ethernet_avb_tsn_run : BUILD_MOTOR disabled, MOTOR_NETWORK and MOTOR_LOCAL modes cannot be
 used

After a few seconds, TSN Endpoints should be synchronized through gPTP and exchanging packets at the
rate of 10000 packets per second. To observe this behavior, check the logs. If an endpoint has gPTP running
correctly, the following log should appear:

Port(0): domain(0, 0): Role: Slave Link: Up asCapable: Yes
 neighborGptpCapable: Yes delayMechanism: P2P
Port(0): Propagation delay (ns): 340.13 min 331 avg 339 max 347
 variance 25

If the endpoint is grand master, the role field should be “Master”; otherwise, it should be “Slave”. If the
application socket is correctly receiving packets, “link up” should be shown.

socket_stats_print : link up

Between two appearances of the following log, the number represented by XXXXX should be incremented by
50000 (10000 pps for 5 seconds):

socket_stats_print : cyclic rx socket(C0605A80) net_sock(C0666820) peer
 id: 1
socket_stats_print : valid frames : XXXXX

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
52 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

socket_stats_print : err id : 0
socket_stats_print : err ts : XXXXX
socket_stats_print : err underflow : XXXXX

To stop the Ethernet use case (to eventually restart it), the previous commands must be stopped with the
following command:

harpoon_ctrl ethernet -s

4.6 rt_latency application
The rt_latency application is a simple benchmark application for real-time OS that measures the latency
(Time delta, in nanoseconds) between hardware IRQ events and software actions:

• irq delay: time to enter in the software IRQ handler after a hardware IRQ occurs (hardware + hypervisor +
IRQ vector latency)

• irq to sched: time to enter in an RTOS task, scheduled by the IRQ handler (irq delay + RTOS
scheduler)

All measurements are done using a hardware timer (GPT on i.MX 8M or TPM on i.MX 93) and relative to the
hardware IRQ event time, with sub-microsecond precision.

Since Harpoon 2.4, the timer sampling frequency has been increased to better reflect real-time constraints: The
hardware timer is now scheduled every 100 us.

When running, the rt_latency application prints regular statistics, based on the measurements taken, to help
characterize the system real-time latency.

The rt_latency application is available in the Harpoon share directory of the root file system:

/usr/share/harpoon/inmates/freertos/rt_latency.bin # FreeRTOS binary
/usr/share/harpoon/inmates/zephyr/rt_latency.bin # Zephyr binary

To use the rt_latency application, Jailhouse must be started first. To start Jailhouse and the rt_latency
application, create an appropriate Harpoon configuration file and run the Harpoon service with systemd. For
instance:

harpoon_set_configuration.sh freertos latency

systemctl start harpoon

The Harpoon service uses the /etc/harpoon/harpoon.conf configuration file that contains the RTOS and
the application to run. By default, the configuration file points to the FreeRTOS audio application. To run the
rt_latency application, we have generated a corresponding configuration file. This step needs to be run only
once.

Once the Harpoon service has been started, the following rt_latency trace is shown in the terminal emulator
connected to the other serial port:

Harpoon v3.0.0
main_task: running

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
53 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

After booting, the rt_latency application waits for commands to be received. A list of available commands is
shown using the command harpoon_ctrl:

harpoon_ctrl -h

The usage for the rt_latency application is shown:

Latency options:
 -r <id> run latency test case id
 -s stop running test case

Examples:

To stop the rt_latency application’s current test case:

harpoon_ctrl latency -s

To run a test case:

It is possible to engage some CPU load and/or IRQ load to measure their impact on the latency. To do so,
different test cases (TC) can be executed, by specifying the test case ID with the “-r” option:

harpoon_ctrl latency -r <TC_ID>

TC_ID:

• 1: no extra load
• 2: extra CPU load (low-priority task, executing busy loop and consuming all available CPU time)
• 3: extra IRQ load
• 4: extra CPU load + semaphore load
• 5: extra CPU load + Linux load (not provided by the test case)
• 6: extra CPU load + cache flush (instruction cache only for this release)

To execute test case 1:

harpoon_ctrl latency -r 1

When running, latency statistics are printed every 10 seconds:

INFO: start_test_case : Running test case 1:

INFO: benchmark_task : running

INFO: stats_print : stats(C0601B30) irq delay (ns) min 625 mean 792 max 3625
 rms^2 629985 stddev^2 1510 absmin 625 absmax 3625

INFO: hist_print : n_slot 21 slot_size 1000

INFO: hist_print : 99890 76 22 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO: stats_print : stats(C0601F90) irq to sched (ns) min 2583 mean 2587 max
 8291 rms^2 6702537 stddev^2 6329 absmin 2583 absmax 8291

INFO: hist_print : n_slot 21 slot_size 1000

INFO: hist_print : 0 0 99673 233 68 24 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO: print_stats : late alarm scheduling: 0

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
54 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

Both the irq delay and the irq to sched statistics are shown:

• min/mean/max: minimum, average and maximum latency value measured within the last period of time
• absmin/absmax: minimum and maximum latency value measured since the beginning of the test
• A histogram is also shown to give an idea of repartition of the measured latency values

i.MX 93 IRQ Latency (ns) i.MX 93 Task Latency (ns)Description

Min Average Max Stddev Min Average Max Stddev

No system load 583 708 1,375 50 1,875 1,889 3,291 491

Low priority task
CPU load

583 708 1,250 47 1,833 1,875 3,250 102

Low priority IRQ
load

583 795 1,375 890 8,166 9,466 10,708 1,258

Low priority task
CPU load, mutex

541 708 1,791 49 1,833 1,889 3,500 471

Linux CPU +
memory load

541 708 1,250 50 1,833 1,875 3,250 168

RTOS cold cache 541 708 1,666 83 1,833 1,875 4,375 303

Table 14. Real-time latencies measured on i.MX 93/FreeRTOS (in ns)

i.MX 8M Plus IRQ Latency (ns) i.MX 8M Plus Task Latency (ns)Test description

Min Average Max Stddev Min Average Max Stddev

No system load 541 752 4,500 2,406 2,458 2,481 9,625 13,028

Low priority task
CPU load

541 748 4,708 2,102 2,416 2,474 9,958 4,961

Low priority IRQ
load

8,083 11,065 16,500 8,489 9,958 12,819 20,583 15,423

Low priority task
CPU load, mutex

541 751 4,708 1,816 2,458 2,477 9,833 7,418

Linux CPU +
memory load

541 748 4,791 1,750 2,416 2,476 9,625 9,828

RTOS cold cache 541 748 5,375 4,868 2,416 2,477 11,500 20,097

Table 15. Real-time latencies measured on i.MX 8M Plus/FreeRTOS (in ns)

i.MX 93 IRQ Latency (ns) i.MX 93 Task Latency (ns)Description

Min Average Max Stddev Min Average Max Stddev

No system load 583 708 1,375 50 1,875 1,889 3,291 491

Low priority task
CPU load

583 708 1,250 47 1,833 1,875 3,250 102

Low priority IRQ
load

583 795 1,375 890 8,166 9,466 10,708 1,258

Low priority task
CPU load, mutex

541 708 1,791 49 1,833 1,889 3,500 471

Table 16. Real-time latencies measured on i.MX 93/Zephyr (in ns)

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
55 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

i.MX 93 IRQ Latency (ns) i.MX 93 Task Latency (ns)Description

Min Average Max Stddev Min Average Max Stddev

Linux CPU +
memory load

541 708 1,250 50 1,833 1,875 3,250 168

RTOS cold cache 541 708 1,666 83 1,833 1,875 4,375 303

Table 16. Real-time latencies measured on i.MX 93/Zephyr (in ns)...continued

i.MX 8M Plus IRQ Latency (ns) i.MX 8M Plus Task Latency (ns)Description

Min Average Max Stddev Min Average Max Stddev

No system load 625 796 11,125 1,798 2,583 2,671 13,041 6,045

Low priority task
CPU load

583 796 3,750 2,531 2,583 2,668 7,666 6,541

Low priority IRQ
load

583 958 4,083 3,358 8,791 11,542 20,333 24,762

Low priority task
CPU load, mutex

625 797 3,875 2,752 2,583 2,672 7,666 7,122

Linux CPU +
memory load

625 798 4,250 4,674 2,583 2,670 14,333 10,407

RTOS cold cache 625 801 6,833 13,743 2,583 2,673 8,708 21,046

Table 17. Real-time latencies measured on i.MX 8M Plus/Zephyr (in ns)

4.7 Virtio Networking application

4.7.1 Features of the Virtio Networking application

The virtio_net application is available in the Harpoon share directory of the root file system:

/usr/share/harpoon/inmates/freertos/virtio_net.bin # FreeRTOS binary

Note: In the current release, the virtio_net application is only supported under FreeRTOS on i.MX 8M Mini
EVK, i.MX 8M Plus EVK or i.MX 93 EVK for Yocto Real-time Edge SW (i.MX BSP Yocto not supported).

This application starts a Virtio networking back end on Jailhouse inmate cell. Linux OS runs Virtio networking
front end, which provides a virtual network interface. The back end owns physical ENET port and shares with
the front end by using Virtio communication between the front end and back end.

4.7.2 Running the Virtio Networking application

To use the virtio_net application, Jailhouse must be started first. To start Jailhouse and the Virtio Networking
application, create the corresponding Harpoon configuration file and run the Harpoon service using systemd,
for example:

harpoon_set_configuration.sh freertos virtio_net

Note: Avoid changing the configuration while the Harpoon service is running (silent failure when restarting the
service).

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
56 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

The configuration file is stored under /etc/harpoon/harpoon.conf and the Harpoon systemd service uses
it to start Jailhouse and the Virtio Networking application:

systemctl start harpoon

When the Harpoon service has been started, virtio_net back end application is started with the following
login console of inmate cell:

Starting Virtio networking backend...
virtio network device initialization succeed!
Switch enabled with enet remote port succeed!
ENET: PHY link is up with speed 1000M full-duplexx

Then in Linux console of root cell, use ifconfig and ethtool to check whether virtual networking interface is
available. The driver used by virtual networking interface is "virtio_net", so from the following log, "eth1" is
Virtio virtual networking interface.

root@imx8mm-lpddr4-evk:~# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 16384
 ether fa:6f:22:ce:31:6b txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 10.193.20.30 netmask 255.255.255.0 broadcast 10.193.20.255
 inet6 fe80::201:2ff:fe03:405 prefixlen 64 scopeid 0x20<link>
 ether 00:04:9f:00:01:02 txqueuelen 1000 (Ethernet)
 RX packets 17 bytes 3897 (3.8 KiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 41 bytes 7309 (7.1 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
 inet 127.0.0.1 netmask 255.0.0.0
 inet6 ::1 prefixlen 128 scopeid 0x10<host>
 loop txqueuelen 1000 (Local Loopback)
 RX packets 99 bytes 8926 (8.7 KiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 99 bytes 8926 (8.7 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

root@imx8mm-lpddr4-evk:~# ethtool -i eth1
driver: virtio_net
version: 1.0.0
firmware-version:
expansion-rom-version:
bus-info: b8400000.virtio_net
supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: no
supports-priv-flags: no

If the interface is connected to a DHCP service, it gets the IP address by DHCP. Otherwise, set the IP address
by using the ifconfig command.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
57 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

Then use the ping command to check whether the virtual networking interface works or not.

root@imx8mm-lpddr4-evk:~# ping 10.193.20.18
PING 10.193.20.18 (10.193.20.18) 56(84) bytes of data.
64 bytes from 10.193.20.18: icmp_seq=1 ttl=64 time=3.65 ms
64 bytes from 10.193.20.18: icmp_seq=2 ttl=64 time=1.83 ms
64 bytes from 10.193.20.18: icmp_seq=3 ttl=64 time=1.84 ms
64 bytes from 10.193.20.18: icmp_seq=4 ttl=64 time=1.83 ms
64 bytes from 10.193.20.18: icmp_seq=5 ttl=64 time=1.84 ms
64 bytes from 10.193.20.18: icmp_seq=6 ttl=64 time=1.84 ms

Use the following command to change the MAC address of virtio_net:

root@imx8mm-lpddr4-evk:~# ifconfig eth1 hw ether 00:04:9f:00:01:03

5 Known Issues

ID Description Workarounds

HRPN-245 Linux cannot access eMMC. Store the root file system on SD card or
NFS.

HRPN-448 RTOS crashes on Ethernet TSN use case stress restarts. Restart the Jailhouse cell.

HRPN-483 Audio glitches on all boards for combination of high frequency
and low frame size.

Do not use combinations of the following
parameters:
• Frame size: 2, 4
• Frequency: 176.4 kHz, 192 kHz

HRPN-632 Occurrences of command timeout for frame size 2 for Audio
SMP pipeline.

-

HRPN-739 Changing the MAC address after restarting the Audio
application does not change the AVB Entity ID and may lead to
spurious crashes with third-party AVDECC controller.

Restart the Harpoon service.

HRPN-1043 i.MX 8M Plus: Lower audio volume for on-board Jack when
restarting the application after first execution post-boot.

-

HRPN-
872/873

When running Audio SMP, you may run into instabilities: for
combination of high frequency and low frame size, you might
have audio sample drop.

-

HRPN-895 i.MX 8M (FreeRTOS): AVB streaming: spurious and short PTP
synchronization loss on long runs.

-

HRPN-1092 Unexpected exception on FreeRTOS audio application
compiled with ARM GCC 12.2.Rel1 Toolchain.

Using ARM GCC 10.3 Toolchain.

Table 18. Known issues

6 Technical Details on Harpoon Applications

6.1 Description
Harpoon reference applications are embedded in a repository named harpoon-apps.

Several RTOS applications are embedded in this repository, which may run in Jailhouse cells, based on an
RTOS (currently using FreeRTOS and Zephyr) and leveraging the MCUXpresso SDK. As a consequence,
FreeRTOS-Kernel, CMSIS_5, and mcux-sdk repositories are required to build FreeRTOS-based applications,

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
58 / 68

https://github.com/NXP/harpoon-apps
https://github.com/nxp-mcuxpresso/FreeRTOS-Kernel/tree/feature/aarch64_support
https://github.com/nxp-mcuxpresso/cmsis_5/tree/feature/aarch64_support
https://github.com/nxp-mcuxpresso/mcux-sdk/tree/feature/aarch64_support

NXP Semiconductors HRPNUG
Harpoon User's Guide

and zephyr and hal_nxp repositories are required to build Zephyr-based applications. Additionally, repositories
GenAVB_TSN and rtos-abstraction-layer are needed to build the industrial and audio applications. The west
tool is used to fetch those repositories, along with the harpoon-apps Git tree.

To manage Linux - RTOS communication, a control application running in the Linux root cell is used. This
application is to be compiled with the Yocto toolchain.

The next section explains how to build binaries (RTOS application and Linux control application).

Related information
https://docs.zephyrproject.org/latest/guides/west/index.html

6.2 Manual build

6.2.1 Setting up the environment

Both git and west should be installed to fetch the source code for Harpoon-apps, FreeRTOS, Zephyr,
MCUXpresso SDK, etc.:

$ west init -m https://github.com/NXP/harpoon-apps --mr harpoon_3.0.0 hww
$ cd hww
$ west update

6.2.2 Building the RTOS application for the RTOS cell

6.2.2.1 Building FreeRTOS based applications

FreeRTOS applications for Armv8-A must be compiled with a compatible toolchain.

The reference toolchain is the GNU Arm cross-toolchain for the A-profile cores GCC 10.3-2021.07.

To download the toolchain and install it:

$ wget https://developer.arm.com/-/media/Files/downloads/gnu-a/10.3-2021.07/
binrel/gcc-arm-10.3-2021.07-x86_64-aarch64-none-elf.tar.xz
tar -C /opt/ -xvf gcc-arm-10.3-2021.07-x86_64-aarch64-none-elf.tar.xz

If starting from a fresh console, the cross-compiler variable must be set:

$ export ARMGCC_DIR=/opt/gcc-arm-10.3-2021.07-x86_64-aarch64-none-elf/

Then build an RTOS application:

$ cd harpoon-apps/<RTOS_APP>/freertos/boards/<BOARD>/armgcc_aarch64
$./build_ddr_release.sh

Where:

• RTOS_APP is hello_world, audio, industrial, rt_latency or virtio_net.
• BOARD is evkmimx8mm for i.MX 8M Mini, evkmimx8mn for i.MX 8M Nano, evkmimx8mp for i.MX 8M Plus,
mcimx93evk for i.MX 93 EVK.

• Build artefacts are available in the directory ddr_release/.
• The artefact to be used on target is the RTOS application binary: <RTOS_APP>.bin.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
59 / 68

https://github.com/nxp-zephyr/zephyr/tree/feature/aarch64_support
https://github.com/nxp-zephyr/hal_nxp/tree/feature/aarch64_support
https://github.com/NXP/GenAVB_TSN
https://github.com/NXP/rtos-abstraction-layer
https://docs.zephyrproject.org/latest/guides/west/index.html

NXP Semiconductors HRPNUG
Harpoon User's Guide

6.2.2.2 Building Zephyr based applications

Install cross-compile toolchain first, then set the cross-compile environment and the zephyr kernel directory
variable:

$ export ARMGCC_DIR=/opt/gcc-arm-10.3-2021.07-x86_64-aarch64-none-elf/
$ export Zephyr_DIR=/path/to/hww/zephyr

Then build a Single Core Zephyr application

$ cd harpoon-apps/<RTOS_APP>/zephyr/boards/<BOARD>/armgcc_aarch64
$./build_singlecore.sh

Or build an SMP Zephyr application

$ cd harpoon-apps/<RTOS_APP>/zephyr/boards/<BOARD>/armgcc_aarch64
$./build_smp.sh

Where,

• RTOS_APP is hello_world, audio, industrial, or rt_latency.
• BOARD is evkmimx8mm for i.MX 8M Mini, evkmimx8mn for i.MX 8M Nano, and evkmimx8mp for i.MX 8M

Plus, mcimx93evk for i.MX 93 EVK.
• Build artefacts are available in the directory build_singlecore/zephyr/ or build_smp/zephyr/.
• The artefact to be used on target is the RTOS application binary: <RTOS_APP>.bin for singlecore

application or <RTOS_APP>_smp.bin for SMP application.

6.2.3 Building the Linux control application for the root cell

The Linux control application for Armv8-A must be compiled with a compatible toolchain.

The reference toolchain is the Poky Arm cross-toolchain built with Yocto.

To generate this toolchain:

$ bitbake meta-toolchain

This generates a toolchain installer in directory tmp/deploy/sdk. The installer name depends on the DISTRO
and MACHINE variables and on the image name of the current build. For instance, for an i.MX build, the installer
name is fsl-imx-xwayland-glibc-x86_64-meta-toolchain-armv8a-imx8mm-lpddr4-evk-
toolchain-6.1-mickledore.sh.

When executed, the installer prompts for a directory where to put the toolchain. The default location for the i.MX
toolchain is /opt/fsl-imx-xwayland/6.1-mickledore.

When the toolchain is installed, different cross-compile variables must be set. This is done by sourcing script
environment-setup-cortexa53-crypto-poky-linux. For example with default installation path:

$. /opt/fsl-imx-xwayland/6.1-mickledore/environment-setup-armv8a-poky-linux

The Harpoon control application can then be built:

$ cd harpoon-apps/ctrl
$./build_ctrl.sh

The build generates one binary: harpoon_ctrl in the same directory and can be used on target.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
60 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

The Linux root cell uses the Remote Processor Messaging (RPMsg) device to communicate with FreeRTOS
and Zephyr inmate cells. harpoon_ctrl binary implements this device, and should be used to communicate
with RTOS cells.

6.3 Developing a Harpoon Application
Harpoon-apps is the basis to create a Harpoon application. It links with (at least) MCUXpresso drivers and an
RTOS (FreeRTOS and Zephyr).

A Harpoon application has its own directory in the root folder of the Harpoon-apps repository. Examples include
audio, the audio reference application, industrial, the industrial reference application and rt_latency,
the real-time benchmark application.

6.3.1 Architecture of the audio application

The audio application, which serves as an example for this chapter, has the following architecture.

aaa-053022

NXP Linux
(rich OS)

Harpoon-Apps-Audio

RTOS

Jailhouse hypervisor

i.MX 8M

Non-RT app

Root cell Not-root cell

A53 A53

USB ETH

MMC UART2

GPU DISP

/.../

GPIO CCM

DDR GIC

IOMUX SDMA

A53 A53
DAC/ADC controls

Hifiberry

UART4 SAI3

SAI5

I2C3

MICFIL

/.../

Figure 25. Architecture of audio application

The DAC and ADC on the HiFiBerry card are controlled by the audio application. Control is done through I2C3
and data throughput through SAI5.

6.3.2 Source file creation

This chapter gives some information on how to develop an application for Harpoon by using the audio
application as an example.

First, the application directory must be created in the root directory of repository harpoon-apps.

This directory contains the source code for the application, a CMake configuration file listing the files to
be compiled. Source file can be common to all RTOS and platform, be RTOS dependent and/or platform
dependent. Helper scripts are provided to build the application for each RTOS/platform combination.

audio/
├── common
│ ├── audio.c
│ ├── audio.h
│ ├── audio_buffer.c

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
61 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

│ ├── audio_buffer.h
│ ├── audio_element.c
│ ├── audio_element.h
│ ├── audio_element_avtp_sink.c
│ ├── audio_element_avtp_sink.h
│ ├── audio_element_avtp_source.c
│ ├── audio_element_avtp_source.h
│ ├── audio_element_dtmf.c
│ ├── audio_element_dtmf.h
│ ├── audio_element_pll.c
│ ├── audio_element_pll.h
│ ├── audio_element_routing.c
│ ├── audio_element_routing.h
│ ├── audio_element_sai_sink.c
│ ├── audio_element_sai_sink.h
│ ├── audio_element_sai_source.c
│ ├── audio_element_sai_source.h
│ ├── audio_element_sine.c
│ ├── audio_element_sine.h
│ ├── audio_entry.h
│ ├── audio_format.h
│ ├── audio_pipeline.c
│ ├── audio_pipeline.h
│ ├── avb_config.c
│ ├── boards
│ │ ├── evkmimx8mm
│ │ │ ├── app_board.h
│ │ │ ├── avb_hardware.c
│ │ │ ├── clock_config.c
│ │ │ ├── codec_config.c
│ │ │ ├── pin_mux.c
│ │ │ ├── sai_clock_config.c
│ │ │ └── sai_config.c
│ │ ├── evkmimx8mn
│ │ │ [...]
│ │ ├── evkmimx8mp
│ │ │ [...]
│ │ └── include
│ │ ├── avb_hardware.h
│ │ ├── clock_config.h
│ │ ├── codec_config.h
│ │ ├── pin_mux.h
│ │ ├── sai_clock_config.h
│ │ └── sai_config.h
│ ├── pipeline_config.c
│ ├── play_pipeline.c
│ ├── sai_drv.c
│ └── sai_drv.h
├── freertos
│ ├── boards
│ │ ├── evkmimx8mm
│ │ │ ├── app_mmu.h
│ │ │ └── armgcc_aarch64
│ │ │ ├── CMakeLists.txt
│ │ │ ├── build_ddr_debug.sh
│ │ │ ├── build_ddr_release.sh
│ │ │ └── clean.sh
│ │ ├── evkmimx8mn
│ │ │ [...]
│ │ └── evkmimx8mp

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
62 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

│ │ [...]
│ └── main.c
└── zephyr
 ├── CMakeLists.txt
 ├── boards
 │ ├── evkmimx8mm
 │ │ └── armgcc_aarch64
 │ │ ├── build_singlecore.sh
 │ │ ├── build_smp.sh
 │ │ └── clean.sh
 │ ├── evkmimx8mn
 │ │ [...]
 │ ├── evkmimx8mp
 │ │ [...]
 │ ├── mimx8mm_evk_a53.conf
 │ ├── mimx8mm_evk_a53_smp.conf
 │ ├── mimx8mn_evk_a53.conf
 │ ├── mimx8mn_evk_a53_smp.conf
 │ ├── mimx8mp_evk_a53.conf
 │ └── mimx8mp_evk_a53_smp.conf
 ├── main.c
 └── prj.conf

The application starts in function main(), defined in file main.c.

RTOS specific code goes to directory audio/freertos and audio/zephyr.

Board specific code (clock configuration, hardware description, MMU configuration) goes to directory
audio/<rtos>/boards/<boardid> and audio/boards/<boardid>.

OS-agnostic code goes to directory audio/common.

6.3.3 Board specific code

Board specific code and header files for the audio application include:

app_board.h Definition of SAI and I2C instances used for the demo. I2C addresses of HiFiBerry's DAC and
ADC. SAI configuration. Audio samples format.

app_mmu.h Device memory to map with MMU (includes SAI and I2C).

sai_clock_config.c Configuration of Audio PLLs, Audiomix (for i.MX 8M Plus) and SAI clocks.

sai_config.c Define configuration of each SAI instance.

codec_config.c Helper functions to open, configure and close DAC and ADC drivers.

pin_mux.c Functions to set IOMux for the application use case.

CMakeLists.txt CMake configuration file that includes all necessary MCUXpresso drivers.

flags.cmake CFLAGS and LDFLAGS definitions for building the application.

Table 19. Board specific code

6.3.4 Controlling application from Linux side

Linux side can control the Harpoon application by sending messages through the RPMsg communication
channel.

The audio application leverages this in function audio_control_init(), defined in audio/common/
audio.c.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
63 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

For RPMsg channel, RTOS creates a RPMsg endpoint with service name "rpmsg-raw" for communication:

audio_ctx->ctrl.ept = rpmsg_transport_init(RL_BOARD_RPMSG_LINK_ID, EPT_ADDR,
 "rpmsg-raw");

Finally, the application’s main thread periodically looks for incoming control messages:

do {
 audio_command_handler(&ctx);
 […]
} while (1);

The Linux user space application that sends control messages is located in the directory ctrl of the harpoon-
apps repository.

7 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

8 Revision History

The following table provides the revision history for this document.

Document ID Release date Description

HRPNUG v.3.0 29 March 2024 • Support for AVB SMP pipeline in Zephyr audio application
• Support for MX93AUD-HAT audio expansion board on i.MX 93
• Improve support for AVB Talker and Listener on Zephyr
• Improve support for TSN industrial application on Zephyr

HRPNUG v.2.5 15 December 2023 • Support for audio and industrial applications on i.MX 93
• Initial support for AVB Talker and Listener on Zephyr
• Initial support for TSN industrial application on Zephyr

Table 20. Revision history

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
64 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

Document ID Release date Description

HRPNUG v.2.4 28 July 2023 • Full Support for RPMsg control (all OSes, all boards)
• Support for RT Latency on i.MX 93
• Support for Virtual Ethernet on i.MX 8M Plus and i.MX 93
• Support for AVB Listener Media Clock Recovery on i.MX 8M Plus
• Support for AVB Listener Synchronization

HRPNUG v.2.3 28 March 2023 • Support for AVB Talker in FreeRTOS audio
• Support for RPMsg control (FreeRTOS, all boards)
• Support for Virtual Ethernet
• Support for i.MX 93 (preview: hello_world)

HRPNUG v.2.2 16 December 2022 • Support for AVB listener in FreeRTOS audio
• Support for SMP pipeline in Zephyr audio
• Support for RPMsg control (preview)
• Support for ENET, ENET_QoS in Zephyr industrial

HRPNUG v.EAR 2.1.0 28 July 2022 Minor changes to Section 4 and Section 5. Compatible with Real-Time
Edge Software Rev 2.3 release

HRPNUG v.EAR 2.1.0 30 June 2022 • New industrial application in harpoon-apps
• Implementation of flexible audio pipeline in harpoon-apps
• Support for i.MX 8M Nano EVK for i.MX Yocto
• Support for EVK's internal audio codecs
• Support for systemd
• Support for Zephyr
• Drivers for FlexCAN, ENET, ENET_QOS

HRPNUG v.EAR 2.0.1 29 March 2022 Full integration to NXP Real-Time Edge

HRPNUG v.EAR 2.0.0 14 January 2022 Introduction of harpoon-apps. Support of FreeRTOS
Support of both i.MX BSP and Real-Time Edge SW

Table 20. Revision history...continued

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
65 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
Amazon Web Services, AWS, the Powered by AWS logo, and FreeRTOS
— are trademarks of Amazon.com, Inc. or its affiliates.
i.MX — is a trademark of NXP B.V.
I2C-bus — logo is a trademark of NXP B.V.
Layerscape — is a trademark of NXP B.V.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
66 / 68

mailto:PSIRT@nxp.com

NXP Semiconductors HRPNUG
Harpoon User's Guide

QorIQ — is a trademark of NXP B.V.

HRPNUG All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 3.0 — 29 March 2024
67 / 68

NXP Semiconductors HRPNUG
Harpoon User's Guide

Contents
1 Overview ...2
1.1 Supported Features ...3
1.2 Architecture ..4
1.3 Hardware resource partitioning5
2 Building Harpoon Yocto images 6
2.1 i.MX Yocto ... 6
2.2 Real-Time Edge Yocto7
3 Hardware Setup ... 7
3.1 i.MX Reference Boards 7
3.1.1 i.MX 8M Mini EVK ... 7
3.1.2 i.MX 8M Nano EVK ... 7
3.1.3 i.MX 8M Plus EVK ...8
3.1.4 i.MX 93 EVK ..8
3.2 Audio use case hardware9
3.2.1 HiFiBerry setup ..9
3.2.2 MX93AUD-HAT Setup 12
3.3 Industrial use case hardware13
3.4 Virtio networking use case hardware15
4 Running Harpoon Reference

Applications ... 15
4.1 Basic setup .. 15
4.2 Starting Linux kernel ..15
4.3 hello_world application 17
4.4 Audio application ... 18
4.4.1 Features of the audio application 18
4.4.2 Starting the audio application 19
4.4.3 Audio latency in loopback mode20
4.4.4 Running audio application: examples 20
4.4.4.1 Playing DTMF ..20
4.4.4.2 Playing in loopback mode 21
4.4.4.3 Playing a full audio pipeline21
4.4.4.4 Playing an AVB audio pipeline23
4.4.4.5 Playing an SMP audio pipeline41
4.5 Industrial application .. 44
4.5.1 Features of the industrial application 44
4.5.2 Starting the industrial application44
4.5.3 Running the industrial application:

examples ..45
4.5.3.1 FlexCAN multiple nodes communication 45
4.5.3.2 Ethernet through MCUXpresso SDK API47
4.5.3.3 Ethernet with GenAVB/TSN stack 49
4.6 rt_latency application 53
4.7 Virtio Networking application 56
4.7.1 Features of the Virtio Networking

application ..56
4.7.2 Running the Virtio Networking application 56
5 Known Issues .. 58
6 Technical Details on Harpoon

Applications ... 58
6.1 Description ... 58
6.2 Manual build .. 59
6.2.1 Setting up the environment59

6.2.2 Building the RTOS application for the
RTOS cell .. 59

6.2.2.1 Building FreeRTOS based applications 59
6.2.2.2 Building Zephyr based applications 60
6.2.3 Building the Linux control application for the

root cell ..60
6.3 Developing a Harpoon Application 61
6.3.1 Architecture of the audio application61
6.3.2 Source file creation ..61
6.3.3 Board specific code ... 63
6.3.4 Controlling application from Linux side 63
7 Note About the Source Code in the

Document ... 64
8 Revision History .. 64

Legal information ...66

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 29 March 2024
Document identifier: HRPNUG

	1 Overview
	1.1 Supported Features
	1.2 Architecture
	1.3 Hardware resource partitioning

	2 Building Harpoon Yocto images
	2.1 i.MX Yocto
	2.2 Real-Time Edge Yocto

	3 Hardware Setup
	3.1 i.MX Reference Boards
	3.1.1 i.MX 8M Mini EVK
	3.1.2 i.MX 8M Nano EVK
	3.1.3 i.MX 8M Plus EVK
	3.1.4 i.MX 93 EVK

	3.2 Audio use case hardware
	3.2.1 HiFiBerry setup
	3.2.2 MX93AUD-HAT Setup

	3.3 Industrial use case hardware
	3.4 Virtio networking use case hardware

	4 Running Harpoon Reference Applications
	4.1 Basic setup
	4.2 Starting Linux kernel
	4.3 hello_world application
	4.4 Audio application
	4.4.1 Features of the audio application
	4.4.2 Starting the audio application
	4.4.3 Audio latency in loopback mode
	4.4.4 Running audio application: examples
	4.4.4.1 Playing DTMF
	4.4.4.2 Playing in loopback mode
	4.4.4.3 Playing a full audio pipeline
	4.4.4.4 Playing an AVB audio pipeline
	4.4.4.4.1 AVB: Harpoon AVTP Listener
	4.4.4.4.1.1 AVB setup preparation
	4.4.4.4.1.2 AVB Talker configuration (Linux)
	4.4.4.4.1.3 AVB Listener configuration (Harpoon)
	4.4.4.4.1.4 AVB Listener with Media clock Recovery configuration (Harpoon)
	4.4.4.4.1.5 AVB stream connection

	4.4.4.4.2 AVB: Harpoon AVTP Talker
	4.4.4.4.2.1 AVB setup preparation
	4.4.4.4.2.2 AVB Listener configuration (Linux)
	4.4.4.4.2.3 AVB Talker configuration (Harpoon)
	4.4.4.4.2.4 AVB stream connection

	4.4.4.4.3 AVB Connect Harpoon Listeners and Talker through an AVB bridge
	4.4.4.4.3.1 AVB setup preparation
	4.4.4.4.3.2 AVB Bridge Configuration
	4.4.4.4.3.3 AVB Listeners configuration (Harpoon)
	4.4.4.4.3.4 AVB Talker configuration (Harpoon)
	4.4.4.4.3.5 AVDECC controller configuration (Linux)
	4.4.4.4.3.6 AVB stream connection

	4.4.4.5 Playing an SMP audio pipeline
	4.4.4.5.1 Playing an SMP full audio pipeline
	4.4.4.5.2 Playing an SMP AVB audio pipeline

	4.5 Industrial application
	4.5.1 Features of the industrial application
	4.5.2 Starting the industrial application
	4.5.3 Running the industrial application: examples
	4.5.3.1 FlexCAN multiple nodes communication
	4.5.3.1.1 Hardware Setup
	4.5.3.1.2 Industrial CAN application overview
	4.5.3.1.3 FlexCAN multiple nodes use case

	4.5.3.2 Ethernet through MCUXpresso SDK API
	4.5.3.3 Ethernet with GenAVB/TSN stack
	4.5.3.3.1 Requirements
	4.5.3.3.2 Setup preparation
	4.5.3.3.2.1 i.MX RT1170 TSN Endpoint - IO Device (Optional)
	4.5.3.3.2.2 TSN Bridge
	TSN Bridge Configuration
	TSN Bridge logging

	4.5.3.3.3 Running the TSN use case

	4.6 rt_latency application
	4.7 Virtio Networking application
	4.7.1 Features of the Virtio Networking application
	4.7.2 Running the Virtio Networking application

	5 Known Issues
	6 Technical Details on Harpoon Applications
	6.1 Description
	6.2 Manual build
	6.2.1 Setting up the environment
	6.2.2 Building the RTOS application for the RTOS cell
	6.2.2.1 Building FreeRTOS based applications
	6.2.2.2 Building Zephyr based applications

	6.2.3 Building the Linux control application for the root cell

	6.3 Developing a Harpoon Application
	6.3.1 Architecture of the audio application
	6.3.2 Source file creation
	6.3.3 Board specific code
	6.3.4 Controlling application from Linux side

	7 Note About the Source Code in the Document
	8 Revision History
	Legal information
	Contents

