

Google Cloud IoT Core and i.MX7D

Development Platform for Android

Things

Quick Start Guide

1. Overview

This tutorial helps developers get started with the NXP based development platform for Android

Things – PICO-i.MX7D board, software support, and the Google Cloud IoT Core. Specifically, it walks

through the hardware setup, Android Things image build, board booting process, and how to enable

and publish a sensor hub demo on a Google Cloud IoT PubSub topic. Refer to page 13, section 12 for

the Google Cloud IoT demo and setup.

Code development, build, and unit testing take place on the developer’s host computer. The

resulting image is flashed to the target hardware for further integration testing and debugging over

USB or Ethernet. Just as Android Things is Android-based, the software development leverages

Android development tools including ADB (Android Development Bridge) and FASTBOOT mode to

interact with the target.

This development platform together with the Board Support Package software aim to enable faster

development of IoT devices based on Android Things, and flexible hardware/software customization

needed for the particular device.

2. Hardware Requirement

The development kit contains:

 PICO-i.MX7D-eMMC System-On-Module (SOM)

• PICO- carrier board (pre-assembled with the SOM)

Besides, other required materials include:

• Cables:

For ADB/FASTBOOT/MFGTool

o USB type-A to USB type-C cable

Serial console:

o USB type-A to micro USB

• WiFi antenna (IPEX interface)

3. Getting Familiar with the Development Platform

For more information on the platform, go to the following link:

https://www.technexion.com/support/download-center/?wpv-product=pico-imx7-

emmc&wpv_aux_current_post_id=78&wpv_view_count=181-TCPID78

https://www.technexion.com/support/download-center/?wpv-product=pico-imx7-emmc&wpv_aux_current_post_id=78&wpv_view_count=181-TCPID78
https://www.technexion.com/support/download-center/?wpv-product=pico-imx7-emmc&wpv_aux_current_post_id=78&wpv_view_count=181-TCPID78

The key interfaces of the board are shown in Figure 1:

 USB to serial console convertor interface (Number 1 in figure 1)

 WiFi+Bluetooth antenna connector (Number 5 in figure 1)

 Microphone and headphone jack (Number 3 in figure 1)

 USB OTG (USB Type-C) and power supply interface (Number 4 in figure 1)

Figure 1. Top view of the PICO-i.MX7D board

 Take a close look at the jumpers on the top view of the board. There are two different setup for

download mode and boot mode. Continue reading for further details.

Figure 2a. Jumper Setup (Download Mode)

Figure 2b. Jumper Setup (Boot Mode)

4. Connect the board and host computer

1. Connect the USB type-A to micro USB’s micro USB end to the micro USB interface (number 1 in

figure 1).

2. Connect the WiFi antenna to connector (number 5 in figure 1).

3. Get a USB type A to USB type C cable. Plug the USB type C end to the USB OTG type C connector

(number 4 in Figure 1) for ADB and FASTBOOT interface. Plug the other end of the USB cable to

your computer. This interface also be the power supply for the board.

5. Instructions to set up the serial console terminal

1. Make sure the you connect to the UART serial console as shown in step 3 in “Connect the board

and host computer” section

2. Start the serial communication software

3. Choose operating system of host computer– Window

a. Once the PC recognizes the virtual USB to UART device, it can be seen in your PC Device

Manager list. You can determine the port number of the virtual COM port by looking under

the "Ports" group.

b. With the serial port driver installed, run your favorite terminal application (putty, minicom,

etc.) to view the serial output from i.MX7D microprocessor's UART.

Recommended settings for the serial connection:

Serial port configuration: 115200 baudrate, 8 data bits, 1 stop bit, no parity.

Note: The PC needs a driver to enable a virtual COM port through the PC USB port. Please

consult www.ftdichip.com/Documents/InstallGuides.htm to download the correct driver.

Set up serial communication terminal in Putty as below:

Figure 7a. Screenshot of Putty

4. Choose operating system of host computer – Ubuntu

Install Minicom on host computer as below commands:

$ sudo apt-get install minicom

Set up serial communication terminal in Minicom as below:

Figure 7b. Screenshot of Minicom

6. Download Mode and Boot Mode

The board is designed as booting from the internal eMMC. There are two modes for the PICO-i.MX7D

board. One is the download mode in which the board will receive the instructions from MFG Tools to

flash images to boot storage such as eMMC. The other one is boot mode in which the board will load the

image from the boot storage and boot from the image.

The board comes with a working image burned in eMMC. To boot the board from that image, you can

boot the board directly with the power supply connected. Please make sure the board is in Boot Mode

with the jumper setting as above.

7. Prepare Android Things Images

7.1 Prebuilt Android Things Images

Download the prebuilt Android Things images at:

https://developer.android.com/things/preview/download.html

7.1.1 Android Things Image Introduction

The table describes Android Things images and the targeted eMMC partition where the Android Things

images to be flashed into:

Image Name Image Description Target Parition

u-boot.imx The u-boot bootloader image,

which is the first code run after

the PICO-i.MX7D board

hardware reset. It will load and

jump to the boot.img either

from Slot a’s boot partition or

Slot b’s boot partition, based

on the meta data stored in

misc partition

The first boot partition of PICO-i.MX7D-

emmc

partition-table.img The GUID Partition Table

image, which define the

partitions in the PICO-i.MX7D-

emmc

gpt partition(Slot a’s boot partition) for

PICO-i.MX7D-emmc

https://developer.android.com/things/preview/download.html

boot.img The Android Things boot image

which is composed by Linux

kernel zImage, linux kernel

dtb(Device Tree Binary) file,

Android Things ramdisk image,

and linux kernel boot

arguments. The code in

boot.img will mount the

related system.img based on

the meta data stored in misc

partition.

boot_a partition(Slot a’s boot partition)

for PICO-i.MX7D-emmc

boot_b(Slot b’s boot partition) for PICO-

i.MX7D-emmc

userdata.img The Android Things user data

image

userdata partition for PICO-i.MX7D-

emmc

system.img The Android Things system

image which includes all

Android Things related

binaries, libraries, and system

configuration files.

system_a partition(Slot a’s system

partition) for PICO-i.MX7D-emmc

system_b partition(Slot b’s system

partition) for PICO-i.MX7D-emmc

 gapps.img The Google application image.

gapps_a partition(Slot a’s system

partition) for PICO-i.MX7D-emmc

gapps_b partition(Slot b’s system

partition) for PICO-i.MX7D-emmc

 oem.img The oem image. oem_a partition(Slot a’s system

partition) for PICO-i.MX7D-emmc

oem_b partition(Slot b’s system

partition) for PICO-i.MX7D-emmc

7.2 The mfgtools

The mfgtools can be downloaded at

http://www.nxp.com/products/software-and-tools/software-development-tools/i.mx-

software-and-tools/iot-development-platforms-based-on-i.mx-6ul-processor-and-

android-things-os:IOT-DEV-PLATFORMS-i.MX6UL?tab=Design_Tools_Tab

http://www.nxp.com/products/software-and-tools/software-development-tools/i.mx-software-and-tools/iot-development-platforms-based-on-i.mx-6ul-processor-and-android-things-os:IOT-DEV-PLATFORMS-i.MX6UL?tab=Design_Tools_Tab
http://www.nxp.com/products/software-and-tools/software-development-tools/i.mx-software-and-tools/iot-development-platforms-based-on-i.mx-6ul-processor-and-android-things-os:IOT-DEV-PLATFORMS-i.MX6UL?tab=Design_Tools_Tab
http://www.nxp.com/products/software-and-tools/software-development-tools/i.mx-software-and-tools/iot-development-platforms-based-on-i.mx-6ul-processor-and-android-things-os:IOT-DEV-PLATFORMS-i.MX6UL?tab=Design_Tools_Tab

8. Testing and Debugging Tools

Unit tests run locally on the developer’s host computer and integration tests interact with the target

device via ADB.

Pico-imx7d board is Android Things compatible and provides full support for ADB and FASTBOOT over

USB for debugging.

ADB and FASTBOOT are the tools in Android SDK. Please refer to the link

http://developer.android.com/sdk/index.html#Other to download the latest version of Android SDK

9 Flash Android Things Images

By default, a valid bootloader binary has been flashed into the PICO-i.MX7D board. It will make the

board into FASTBOOT mode if Android Things Images are not been flashed yet. Please refer “11.

Instructions to make board into FASTBOOT mode” to check whether your board is into FASTBOOT mode.

9.1 Flash Android Things bootloader binary with MFG Tools

1. Unzip the mfgtools.tar.gz file to a selected location. The directory is named MFGTool-Dir in this

example.

2. Make your board into Serial download, as explained in Chapter 3, figure 2a.

3. Power on the board. Using USB cable on the Pico OTG port, connect your WINDOWS/LINUX PC

with Pico-imx7d.

4. On WINDOWS, double click the file "mfgtool2-brillo-mx7d-pico-emmc-firmware.vbs" to flash

only the uboot.imx of Android Things, or double click the file "mfgtool2-brillo-mx7d-pico-

emmc.vbs" to flash all Android Things images. Then click "Start".

 The mage below shows what the tool will become once the download is complete.

http://developer.android.com/sdk/index.html

For more information on the MFGTool, please check the “Manufacturing Tool V2 Quick

Start Guide.docx” under the mfgtools\Documents path.

5. Program images in Linux OS:

a: In Linux, run below commands to flash the uboot.imx image of Android Things.

sudo ./linux-runvbs.sh mfgtool2-brillo-mx7d-pico-emmc-firmware.vbs

b: In Linux, run below commands to flash all the images of Android Things.

sudo ./linux-runvbs.sh mfgtool2-brillo-mx7d-pico-emmc.vbs

Note: If blocked, please plug out55 the USB OTG cable, then plug in.

6. Power off, set the board is in Boot Mode.

9.2 Provision Android Things images with FASTBOOT mode

1. Download Android Things images package for PICO i.MX7D from

https://developer.android.com/things/preview/download.html, and unzip it.

2. Refer “11. Instructions to make board into FASTBOOT mode” to make the board into

FASTBOOT mode.

3. Flash Android Things images with either of the two ways below:

3.1 Flash all images with the shell script in Android Things images package

o Execute the batch file iot-flashall-imx7d.bat On WINDOWS PC

o Execute the shell script iot-flashall-imx7d.sh On LINUX PC

3.2 Flash Android Things images with fastboot command

 Execute below commands in Linux PC to flash the related images

Image File Name Partition Name Fastboot command

u-boot.imx bootloader $fastboot flash bootloader u-

boot.imx

partition-table.img gpt $fastboot flash gpt partition-

table.img

boot.img boot_a/boot_b $fastboot flash boot_a

boot.img

https://developer.android.com/things/preview/download.html

$fastboot flash boot_b

boot.img

system.img system_a/system_b $fastboot flash system_a

system.img

$fastboot flash system_b

system.img

userdata.img userdata $fastboot flash userdata

userdata.img

gapps.img gapps_a/gapps_b $fastboot flash gapps_a

gapps.img

$fastboot flash gapps_b

gapps.img

oem.img oem_a/oem_b $fastboot flash oem_a

oem.img

$fastboot flash oem_b

oem.img

Note: The paritions boot_a, boot_b, system_a, system_b and userdata are defined by the

partition-table.img flashed in board’s eMMC. The partition-table.img should be flashed into

board’s eMMC before flashing those parititions.

4. Run below commands in Linux PC to make the board in lock state, and reboot the board

$fastboot flashing lock

$fastboot reboot

10. Boot Android Things

After flashing the images, you can boot the board directly with the power supply connected. Please

make sure the board is in Boot Mode

10.1 Change boot arguments

By default, the u-boot will take the boot arguments stored in Android Things’ boot.img. Below is an

example in case you need to change the default boot arguments used by u-boot.

U-Boot > setenv bootargs console=ttymxc4,115200 init=/init

androidboot.console=ttymxc4 androidboot.hardware=imx7d vt.global_cursor_default=0

rootwait ro

U-Boot > saveenv

U-Boot > boot

11. Instructions to make board into FASTBOOT mode

FASTBOOT mode is a state in which the board will respond the commands from host PC FASTBOOT

commands to flash Android Things images or query board information. The board should connect with

your host PC through USB type-A to USB type-C cable.

Turn on the board and stop the boot process to enter to uboot prompt. Then run the following uboot

command:

$fastboot usb

11.1 Check whether the device is into FASTBOOT mode

You can check whether your board is into FASTBOOT mode through fastboot commands on your PC

Commands with return string Device in FASTBOOT mode

~$ fastboot devices
000000f674a400d3 fastboot

Yes

~$ fastboot devices

No

11.2 Set the device into FASTBOOT mode

If your device isn't into FASTBOOT mode, you can set the device into FASTBOOT mode with either of the

two ways below:

1. Via adb command line

o Once you confirm that you have access the device through adb on your PC, run command “adb

reboot bootloader” as shown below:

2. Via serial console

o Once the board completed booting-up, type the following commands in your serial console

window:

$su

$reboot bootloader

Once the device is in FASTBOOT mode, your serial console will look similar to the screen shown below:

To get the device out of FASTBOOT mode, run command “fastboot reboot” from your PC.

12. Android Things Cloud IoT Demo

This demo shows how to implement a sensor hub on Android Things that collects sensor data from

connected sensors and publish on a Google Cloud IoT PubSub topic.

12.1 Features

 Connection parameters are configurable via intent and configuration is saved in

sharedpreferences

 Sensor robustness: you can remove and add sensors at runtime and the app will adapt

accordingly

 Network robustness: device can loose connectivity. When connectivity is restored, it will auto-

reconnect

 Power robustness: device can loose power. When is reboots, it will auto-reconnect

 Sensor data collected since the last publish is sent to pubsub every 20 seconds

 Sensor data is collected either as continuous mode or onchange mode. Continuous mode

sensors (temperature and pressure) publishes only the most recent value. Onchange mode

sensors (motion detection) stores up to 10 sensor changes in between pubsub publications.

12.2 Requirements

This section covers the Hardware and Software requirements needed to enable this sensor hub demo.

12.2.1 Hardware requirements
i.mx7d-pico-pi board.

USB A to USB Type C cable.

PC with internet connection and USB port.

Ethernet cable or Wifi connection with internet access.

Optional Hardware (at least one is required):

Rainbow HAT board

PIR motion detector sensor, 3 female to female jumper wires.

Push button, breadboard, 2 female to male breadboard jumper wires.

12.2.2 Software requirements
Android Studio 2.2+

Google Cloud Platform project with Cloud IoT support enabled

https://www.adafruit.com/product/3354
https://www.adafruit.com/product/189
https://cloud.google.com/

12.3 Setup

This section talks about setting up the Hardware and Software for this demo.

NOTE:

This sections assumes the board has been flashed with Android Things previously. If not, go to the

board flash section.

12.3.1 Hardware setup
Three different Hardware can be set up. First two need external boards. The third one uses a push

button only.

12.3.1.1 Accessory connection

12.3.1.1.1 Rainbow HAT board

Connect the Rainbow HAT board to the Pico-Pi imx7d through the pin header. Check the picture below.

12.3.1.1.2 Motion Sensor

Connect the motion sensor board to the Pico-Pi imx7d through the pin header. Use the 3 female to

female jumper wires.

Connection configuration

Pico Pi header pin PicoPi board signal name Motion sensor signal name

1 3.3V VCC

40 GND GND

34 GPIO_174 OUT

Bottom View Top View

Motion Sensor Board

PicoPi Header

12.3.1.1.3 Push Button

In case you don’t have a motion sensor, you can emulate it with a push button. Every time the button is

pushed, a message will be published.

1. Plug the push button into the breadboard

2. Plug the male side from the jumper wires into the breadboard. On the same column as the push

button pins are.

3. Plug the female side from the jumper wires into the pico-pi board header.

Pins 1 and 40. It does not matter the orientation of the cables.

Pin 1 Pin 40

12.3.1.2 Internet access
Internet access can be enabled by Ethernet or Wifi on the Pico-Pi board.

12.3.1.2.1 Ethernet

Connect the RJ45 cable to the Ethernet port with Internet connection.

12.3.1.2.2 Wifi

Make sure the wifi antenna is connected on the top board. Check section 12.3.X to setup the Wifi

connection from Android things.

Ethernet cable

12.3.1.3 USB power interface
Power on the board by connecting the USB type C cable. Connect the other side of the cable to your

Windows 7 PC. Make sure you already have flashed the Android Things image in the board.

12.3.2 Cloud configuration and building process

12.3.2.1 Google Cloud IoT setup

1. Make sure you have Google account open.

2. Go to the Google Cloud Platform GCP Console and login.

3. Create a project named “cloud-iot”.

NOTE:

The project name doesn’t necessary have the same project id. To locate the project Id, click on

the project name on your GCP and check what project id was assigned. In this example the

project id is “cloud-iot-175022”

https://console.cloud.google.com/

4. Enable Pub/Sub API

5. Under the Pub/Sub topics window, create a new topic called “device-events”.

6. In the Cloud Platform Console, select the topic and click the PERMISSIONS button at the top of

the page. This will open the IAM permissions editor in the right-side panel. Add the member

cloud-iot@system.gserviceaccount.com with the role Pub/Sub Publisher.

7. Enable Cloud Vision API.

8. Under IoT Core window, create a new device registry called “registry-iot”. Select “us-central1”

on the Cloud region. Select “device-events” on pub/sub topic.

9. At the end of last step, you should have the following information. This will be needed at the

upcoming steps.

 Project ID cloud-iot-175022

 Registry ID registry-iot

 Cloud region us-central1

12.3.2.2 Building process

1. On your PC, clone the sensorhub-cloud-iot.

2. Open Android Studio, import the sensorhub-cloud-iot project.

NOTE: If a pop window is showed about to update the Android gradle plugin, click on

“Don’t remind me again for this project”.

3. Make sure the Pico-Pi is connected to your PC through the USB type C connector. At this point

Android Things has booted up on the board.

4. Click on the “Run” button to install the application.

5. After the application has been installed, use the adb tool to reboot the board. This will grant

write permission to the application to write on disk. The application will restart automatically

after the reboot.

6. Once the system has been rebooted, use ADB tool to set the date on the system.

This is the date format required MMDDhhmm[YY]

NOTE:

Every time the board is powered or rebooted the date must be set. Use the GMT current time,

otherwise the system will not publish the information.

$git clone https://github.com/androidthings/sensorhub-cloud-iot.git

$adb reboot

$adb root

$adb shell date 071816322017

7. Once the system has been rebooted, use the ADB tool to start the mqtt service on the

application. Pass the parameters created on the Google Cloud IoT setup section.

At this point, any device hasn’t been registered yet on the GCP (Google Cloud Platform).

First, we need to create it on the board (my-device-1) and then we will add it to the GCP.

8. Once the service has started, the application will create two keys on the device. One private and

the other public. The private key will be stored at the Android Keystore. The public one will be

printed to logcat and will be available as a file on your external storage location.

This file will be needed to register this device on the GCP.

Use ADB tool to retrieve this file.

12.3.2.3 Adding device to GCP

1. On your PC, go to the GCP console (at your browser)

2. On the right up corner, click on the “Activate Google Cloud Shell” to open the cloud shell.

3. Make sure the GCS (Google Cloud Shell) has opened on your browser. At the bottom of the

screen.

$adb shell am startservice -a

com.example.androidthings.sensorhub.mqtt.CONFIGURE -e project_id

cloud-iot-175022 -e cloud_region us-central1 -e registry_id

registry-iot -e device_id my-device-1

com.example.androidthings.sensorhub/.cloud.CloudPublisherService

$adb pull sdcard/cloud_iot_auth_certificate.pem .

4. Upload the file “cloud_iot_auth_certificate.pem” to the GCS. This file was created by the

sensor_hub application that runs on the device.

5. On your GCS, use the following command to create the device on the GCP side. This command

needs the “cloud_iot_auth_certificate.pem” file, which has the public key generated by the

device.

You will need the following information:

Project_id, region, registry_id, public-key file.

6. You should be able to check the device added inside the registry-iot.

$gcloud beta iot devices create my-device-1 \

 --project=cloud-iot-175022 \

 --region=us-central1 \

 --registry=registry-iot \

 --public-key path=cloud_iot_auth_certificate.pem,type=rs256

13. Useful Links

http://developer.android.com/tools/help/adb.html

http://developer.android.com/tools/help/adb.html

