
Enhanced Time
Processing Unit

(eTPU)
CodeWarrior

Build Tools Reference

Document ID: ETPUTOOLSREF

Rev 0.1 08/2010

Freescale, the Freescale logo, and CodeWarrior are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm.
Off. QUICC Engine is trademarks of Freescale Semiconductor, Inc. All other product or service names are the property
of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and
related marks are trademarks and service marks licensed by Power.org.

© 2005-2010 Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.

6501 William Cannon Drive West

Austin, TX 78735

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

1CodeWarrior Build Tools Reference for the eTPU

Table of Contents

1 Introduction 13
Compiler Architecture . 13

Linker Architecture. 15

2 Using Build Tools with the CodeWarrior IDE 17
Choosing Tools and Files . 17

IDE Options and Pragmas. 17

IDE Settings Panels. 18

C/C++ Language Settings Panel . 18

C/C++ Preprocessor Panel . 25

C/C++ Warnings Panel . 28

3 Using Build Tools on the Command Line 33
Configuring Command-Line Tools. 33

Setting CodeWarrior Environment Variables . 33

Setting the PATH Environment Variable . 34

Invoking Command-Line Tools . 35

Getting Help . 35

File Name Extensions . 37

4 Command-Line Options for Standard C Conformance 39
-ansi . 39

-stdkeywords . 39

-strict . 40

5 Command-Line Options for Language Translation 41
-char. 41

-defaults . 41

-encoding. 42

-flag . 43

Table of Contents

2CodeWarrior Build Tools Reference for the eTPU

-gccext . 43

-gcc_extensions . 43

-M . 44

-make. 44

-mapcr . 44

-MM . 45

-MD . 45

-MMD . 45

-msext . 46

-once . 46

-pragma . 46

-relax_pointers. 47

-requireprotos . 47

-search . 47

-trigraphs . 48

6 Command-Line Options for Diagnostic Messages 49
-disassemble . 49

-help. 49

-maxerrors . 50

-maxwarnings . 51

-msgstyle . 51

-nofail . 52

-progress . 52

-S . 52

-stderr . 52

-verbose . 53

-version . 53

-timing . 53

-warnings. 54

-wraplines . 58

7 Command-Line Options for Preprocessing 59
-convertpaths . 59

-cwd. 60

Table of Contents

3CodeWarrior Build Tools Reference for the eTPU

-D+ . 60

-define . 60

-E . 61

-EP. 61

-gccincludes. 61

-I-. 62

-I+ . 62

-include . 63

-ir . 63

-P . 63

-precompile . 64

-preprocess . 64

-ppopt . 65

-prefix . 65

-noprecompile . 66

-nosyspath . 66

-stdinc . 66

-U+ . 66

-undefine . 67

8 Command-Line Options for Object Code 69
-c . 69

-codegen . 69

-enum. 69

-min_enum_size . 70

-ext. 70

-strings. 71

9 Command-Line Options for Optimization 73
-inline . 73

-O. 74

-O+ . 74

-opt . 75

Table of Contents

4CodeWarrior Build Tools Reference for the eTPU

10 Command-Line Options for eTPU Code Generation 79
-kif | -keep_ intermediate_ files. 79

-lpm . 79

-big_memory_model . 79

-not_engine_relative . 79

-no_32bit_err. 80

-warn_data. 80

-[no]sched . 80

11 Working with the Assembler 81
Understanding the eTPU Assembler. 81

Using the Command-Line Assembler. 81

File Extensions . 82

Command-Line Syntax . 83

Command-Line Switches . 83

Assembly File Layout . 87

Instructions, directives and Packets. 87

Syntax . 87

Statement Layout. 88

Symbols. 90

Strings . 91

Instructions and Directives . 92

Memory Spaces and Sections . 92

Data Storage . 93

Symbol Directives . 95

The Current Location . 96

Change of Flow . 96

Code Checking . 97

eTPU Assembler Preprocessor . 97

Preprocessor Macros . 98

Regular (Single-Line) Macros. 98

Multi-line Macros . 99

Macro-Related Directives . 101

Conditional Assembly . 103

Table of Contents

5CodeWarrior Build Tools Reference for the eTPU

Including Files. 105

Preprocessor Operations . 106

Predefined Macros. 108

12 Working with the ELF Linker 111
Invocation and Command Line Switches . 111

Structure of Linker Command Files . 113

Memory Segment . 113

Sections Segment . 114

Closure Blocks . 115

Linker Command File Syntax. 115

Alignment . 116

Arithmetic Operations . 116

Comments . 117

Dead Strip Prevention . 117

Expressions, Variables and Integral Types . 117

File Selection. 119

Writing Data to Memory . 120

Alphabetical Keyword Listing . 120

. (location counter) . 121

ALIGN . 121

FORCE_ACTIVE . 122

KEEP_SECTION . 122

FORCE_FILE . 122

MEMORY . 122

REF_INCLUDE . 124

SECTIONS . 124

WRITEB . 126

WRITEH . 127

WRITES . 127

WRITEW . 128

Code and Data Sections . 128

13 C Compiler 129
Extensions to Standard C . 129

Table of Contents

6 CodeWarrior Build Tools Reference for the eTPU

Controlling Standard C Conformance .129

C++-style Comments. .130

Unnamed Arguments .130

Extensions to the Preprocessor .130

Non-Standard Keywords .131

Declaring Variables by Address. .131

C99 Extensions .132

Controlling C99 Extensions. .132

Trailing Commas in Enumerations .133

Compound Literal Values .133

Designated Initializers .133

Predefined Symbol __func__ .134

Implicit Return From main() .134

Non-constant Static Data Initialization .134

Variable Argument Macros .134

Extra C99 Keywords .135

C++-Style Comments .135

C++-Style Digraphs. .136

Empty Arrays in Structures .136

Hexadecimal Floating-Point Constants .136

Variable-Length Arrays .137

Unsuffixed Decimal Literal Values .138

C99 Complex Data Types .138

GCC Extensions .138

Controlling GCC Extensions .139

Initializing Automatic Arrays and Structures .139

The sizeof() Operator. .140

Statements in Expressions .140

Redefining Macros. .141

The typeof() Operator .141

Void and Function Pointer Arithmetic. .141

The __builtin_constant_p() Operator .142

Forward Declarations of Static Arrays .142

Omitted Operands in Conditional Expressions .142

The __builtin_expect() Operator .142

Table of Contents

7CodeWarrior Build Tools Reference for the eTPU

Void Return Statements . 143

Minimum and Maximum Operators . 143

Local Labels . 144

14 Intermediate Optimizations 145
Intermediate Optimizations. 145

Dead Code Elimination . 145

Expression Simplification . 146

Common Subexpression Elimination . 148

Copy Propagation . 149

Dead Store Elimination . 150

Live Range Splitting . 151

Loop-Invariant Code Motion. 152

Strength Reduction . 154

Loop Unrolling . 155

Inlining . 156

Choosing Which Functions to Inline. 156

Inlining Techniques . 158

15 Declaration Specifications 161
Syntax for Declaration Specifications . 161

Declaration Specifications . 161

__declspec(never_inline). 161

Syntax for Attribute Specifications. 162

Attribute Specifications. 162

__attribute__((deprecated)) . 162

__attribute__((force_export)) . 163

__attribute__((malloc)) . 163

__attribute__((noalias)) . 164

__attribute__((returns_twice)). 164

__attribute__((unused)) . 165

__attribute__((used)) . 165

16 Predefined Macros 167
__COUNTER__ . 167

Table of Contents

8 CodeWarrior Build Tools Reference for the eTPU

__cplusplus .168

__CWCC__ .168

__DATE__ .168

__embedded_cplusplus .169

__FILE__. .169

__func__ .170

__FUNCTION__ .170

__ide_target(). .170

__LINE__ .171

__MWERKS__ .171

__PRETTY_FUNCTION__ .172

__profile__. .172

__STDC__ .172

__TIME__ .173

17 Using Pragmas 175
Checking Pragma Settings .175

Saving and Restoring Pragma Settings .176

Determining Which Settings Are Saved and Restored177

Invalid Pragmas .178

Pragma Scope .178

18 Pragmas for Standard C Conformance 181
ANSI_strict .181

c99 .181

c9x .183

ignore_oldstyle .183

only_std_keywords .184

require_prototypes .184

19 Pragmas for Language Translation 187
asmpoundcomment .187

asmsemicolcomment .187

const_strings .188

dollar_identifiers .188

Table of Contents

9CodeWarrior Build Tools Reference for the eTPU

gcc_extensions . 189

mark. 190

mpwc_newline. 190

mpwc_relax . 191

multibyteaware . 191

multibyteaware_preserve_literals . 192

text_encoding . 192

trigraphs. 193

unsigned_char . 194

20 Pragmas for Diagnostic Messages 197
extended_errorcheck . 197

maxerrorcount . 198

message . 199

showmessagenumber. 199

show_error_filestack . 200

suppress_warnings . 200

sym . 200

unused . 201

warning . 202

warning_errors . 203

warn_any_ptr_int_conv. 203

warn_emptydecl . 204

warn_extracomma . 205

warn_filenamecaps . 206

warn_filenamecaps_system. 206

warn_hiddenlocals. 207

warn_illpragma . 208

warn_illtokenpasting . 208

warn_illunionmembers . 208

warn_impl_f2i_conv . 209

warn_impl_i2f_conv . 210

warn_impl_s2u_conv . 210

warn_implicitconv. 211

warn_largeargs . 212

Table of Contents

10 CodeWarrior Build Tools Reference for the eTPU

warn_missingreturn .212

warn_no_side_effect .213

warn_padding .214

warn_pch_portability. .214

warn_possunwant .215

warn_ptr_int_conv .216

warn_resultnotused .217

warn_undefmacro .217

warn_uninitializedvar .218

warn_unusedarg. .218

warn_unusedvar .219

21 Pragmas for Preprocessing 221
check_header_flags .221

faster_pch_gen. .221

flat_include .222

fullpath_file .222

fullpath_prepdump. .222

keepcomments .223

line_prepdump .223

macro_prepdump .224

msg_show_lineref .224

msg_show_realref .224

notonce. .225

old_pragma_once. .225

once .225

pop, push .226

pragma_prepdump .227

precompile_target .227

simple_prepdump .228

space_prepdump .228

srcrelincludes .229

syspath_once .229

Table of Contents

11CodeWarrior Build Tools Reference for the eTPU

22 Pragmas for Code Generation 231
aggressive_inline . 231

dont_reuse_strings. 231

enumsalwaysint . 232

enums_signed . 233

errno_name . 234

explicit_zero_data . 235

float_constants. 235

instmgr_file . 235

longlong. 236

longlong_enums . 236

min_enum_size . 237

pool_strings . 237

readonly_strings . 238

reverse_bitfields . 238

store_object_files. 239

23 Pragmas for Optimization 241
global_optimizer . 241

opt_common_subs. 241

opt_dead_assignments. 242

opt_dead_code. 242

opt_lifetimes . 243

opt_loop_invariants . 243

opt_propagation. 243

opt_strength_reduction . 244

opt_strength_reduction_strict . 244

opt_unroll_loops . 245

opt_vectorize_loops . 245

optimization_level . 245

optimize_for_size . 246

optimizewithasm . 246

pack . 247

strictheaderchecking . 248

Table of Contents

12 CodeWarrior Build Tools Reference for the eTPU

24 eTPU Specific Features 249
Restrictions on 32-bit Variables .249

Host Interface Files .250

eTPU Functions Structure .250

pragma ETPU_function. .252

Memory Allocation .252

Channel Structure .253

Tooth Program Register (TPR) Structure .253

Entry Table Intrinsic Functions .254

Predefined Symbols. .254

Integer Types .255

Fractional Types .255

Inline Assembly. .255

Inline Assembler Usage. .255

Specifying Variables and Labels .255

Using Datatype Sizes. .256

#pragma write .256

#pragma fill .256

__attribute__((expects_flags)). .256

__attribute__((no_save_registers)) .257

__attribute__((pure_assembly)) .257

eTPU Intrinsic Functions .257

Index 259

13CodeWarrior Build Tools Reference for the eTPU

1
Introduction

This manual documents the CodeWarrior build tools for the Enhanced Time Processing
Unit (eTPU). The document covers the CodeWarrior eTPU compiler and linker, versions
4.0 and higher.

In this chapter:

• Compiler Architecture

• Linker Architecture

Compiler Architecture
From a programmer’s point of view, the CodeWarrior compiler translates source code into
object code. Internally, however, the CodeWarrior compiler organizes its work between its
front-end and back-end, each end taking several steps. Figure 1.1 shows the steps the
compiler takes.

Introduction
Compiler Architecture

14 CodeWarrior Build Tools Reference for the eTPU

Figure 1.1 CodeWarrior compiler steps

Front-end steps:

• read settings: retrieves your settings from the host’s integrated development
environment (IDE) or the command line to configure how to perform subsequent
steps

• read and preprocess source code: reads your program’s source code files and applies
preprocessor directives

• translate to intermediate representation: translates your program’s preprocessed
source code into a platform-independent intermediate representation

• optimize intermediate representation: rearranges the intermediate representation to
reduce your program’s size, improve its performance, or both

Back-end steps:

• translate to processor object code: converts the optimized intermediate representation
into native object code, containing data and instructions, for the target processor

read settings

read and
preprocess source

code

translate to
intermediate

representation

optimize
intermediate

representation

translate to
processor object

code
optimize object code

source code file and
included files

settings from the IDE or
command line

output object code and
debugging data

object code and debugging
data files

front-end

back-end

Introduction
Linker Architecture

15CodeWarrior Build Tools Reference for the eTPU

• optimize object code: rearranges the native object code to reduce its size, improve
performance, or both

• output object code and diagnostic data: writes output files on the host system, ready
for the linker and diagnostic tools such as a debugger or profiler

Linker Architecture
A linker combines and arranges data and instructions from one or more object code files
into a single file, or image. This image is ready to execute on the target platform. The
CodeWarrior linker uses settings from the host’s integrated development environment
(IDE) or command line to determine how to generate the image file.

The linker also optionally reads a linker command file. A linker command file allows you
to specify precise details of how data and instructions should be arranged in the image file.

Figure 1.2 shows the steps the CodeWarrior linker takes to build an executable image.

Introduction
Linker Architecture

16 CodeWarrior Build Tools Reference for the eTPU

Figure 1.2 CodeWarrior linker steps

• read settings: retrieves your settings from the IDE or the command line to determine
how to perform subsequent steps

• read linker command file: retrieves commands to determine how to arrange object
code in the final image

• read object code: retrieves data and executable objects that are the result of
compilation or assembly

• delete unused objects (“deadstripping”): deletes objects that are not referred to by the
rest of the program

• resolve references among objects: arranges objects to compose the image then
computes the addresses of the objects

• output link map and image files: writes files on the host system, ready to load onto
the target system

read settings

linker command file

settings from the IDE or
command line

output link map and
image files

link map and
executable image files

resolve references
among objects

object code filesread object code

read linker command file

delete unused objects
(“deadstripping”)

17CodeWarrior Build Tools Reference for the eTPU

2
Using Build Tools with the
CodeWarrior IDE

The CodeWarrior Integrated Development Environment (IDE) uses settings in a project’s
build target to choose which compilers and linkers to invoke, which files those compilers
and linkers will process, and which options the compilers and linkers will use.

This chapter explains how to use CodeWarrior compilers and linkers with the
CodeWarrior IDE:

• Choosing Tools and Files

• IDE Options and Pragmas

• IDE Settings Panels

Choosing Tools and Files
The IDE uses settings in the Target Settings panel to determine which compilers and
linkers to use. This panel is in the build-target Settings window, where build-target is the
name of the current build target. The Linker option in this settings panel specifies the
platform or processor to build for. From this option, the IDE also determines which
compilers, pre-linkers, and post-linkers to use.

The IDE uses the settings in the File Mappings panel of the build-target Settings window
to determine which types of files may be added to a project’s build target and which
compiler should be invoked to process each file. The menu of compilers in the Compiler
option of this panel is determined by the Linker setting in the Target Settings panel.

The IDE uses the settings in a build target’s Access Paths and Source Trees panels to
choose the source code and object code files to dispatch to the CodeWarrior build tools.
See the IDE User’s Guide for more information on these panels.

IDE Options and Pragmas
Use IDE settings and directives in source code to configure the build tools.

The CodeWarrior compiler follows these steps to determine the settings to apply to each
file that the compiler translates under the IDE:

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

18 CodeWarrior Build Tools Reference for the eTPU

• before translating the source code file, the compiler gets option settings from the
IDE’s settings panels in the current build target

• the compiler updates the settings for pragmas that correspond to panel settings

• the compiler translates the source code in the Prefix Text field of the build target’s
C/C++ Preprocessor panel

The compiler applies pragma directives and updates their settings as pragma
directives are encountered in this source code.

• the compiler translates the source code file and the files that it includes

The compiler applies pragma settings as it encounters them.

IDE Settings Panels
These CodeWarrior IDE settings panels control compiler and linker behavior:

• C/C++ Language Settings Panel

• C/C++ Preprocessor Panel

• C/C++ Warnings Panel

C/C++ Language Settings Panel
This settings panel controls compiler language features and some object code storage
features for the current build target.

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

19CodeWarrior Build Tools Reference for the eTPU

Table 2.1 C/C++ Language Settings Panel

This item... controls this behavior and is equivalent to
these options

Force C++
Compilation

Checked—translates all C source
files as C++ source code.

Clear—uses the filename’s extension
to determine whether to use the C or
C++ compiler. The entries in the
IDE’s File Mappings settings panel
specify the suffixes that the compiler
assigns to each compiler.

pragma cplusplus and
the command-line option
-lang c++

ISO C++
Template Parser

Checked—follows the ISO/IEC
14882-1998 standard for C++ to
translate templates, enforcing more
careful use of the typename and
template keywords. The compiler
also follows stricter rules for resolving
names during declaration and
instantiation.

Clear—the C+++ compiler does not
expect template source code to
follow the ISO C++ standard as
closely.

pragma
parse_func_templ and
the command-line option -
iso_templates

Use Instance
Manager

Checked—reduces compile time by
generating any instance of a C++
template (or non-inlined inline)
function only once.

Clear—generates a new instance of
a template or non-inlined function
each time it appears in source code.

Control where the instance database
is stored using #pragma
instmgr_file.

command-line option
-instmgr

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

20 CodeWarrior Build Tools Reference for the eTPU

Enable C++
Exceptions

Checked—generates executable
code for C++ exceptions.

Clear—generates smaller, faster
executable code.

Enable the Enable C++ Exceptions
setting if you use the try, throw,
and catch statements specified in
the ISO/IEC 14882-1998 C++
standard. Otherwise, disable this
setting to generate smaller and faster
code.

pragma exceptions and
the command-line option

-cpp_exceptions

Enable RTTI Checked—allows the use of the C++
runtime type information (RTTI)
capabilities, including the
dynamic_cast and typeid
operators.

Clear—the compiler generates
smaller, faster object code but does
not allow runtime type information
operations.

pragma RTTI and the
command-line option
-RTTI

Enable bool
Support

Checked—the C++ compiler
recognizes the bool type and its
true and false values specified in
the ISO/IEC 14882-1998 C++
standard.

Clear—the compiler does not
recognize this type or its values.

pragma bool and the
command-line option
-bool

Enable wchar_t
Support

Checked—the C++ compiler
recognizes the wchar_t data type
specified in the ISO/IEC 14882-1998
C++ standard.

Clear—the compiler does not
recognize this type.

Turn off this option when compiling
source code that defines its own
wchar_t type.

pragma wchar_type and
the command-line option
-wchar_t

Table 2.1 C/C++ Language Settings Panel (continued)

This item... controls this behavior and is equivalent to
these options

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

21CodeWarrior Build Tools Reference for the eTPU

EC++
Compatibility
Mode

Checked—expects C++ source code
files to contain Embedded C++
source code.

Clear—the compiler expects regular
C++ source code in C++ source files.

pragma ecplusplus and
the command-line option
-dialect ec++

Inline Depth Don’t Inline—Inlines no functions, not
even C or C++ functions declared

inline.

Smart—Inlines small functions to a
depth of 2 to 4 inline functions deep.

1 to 8—Inlines to the depth specified
by the numerical selection.

The Don’t Inline item
corresponds to the pragma
dont_inline and the
command-line option
-inline off. The Smart
and 1 to 8 items
correspond to the pragma
inline_depth and the
command-line option

-inline level=n,
where n is 1 to 8.

Table 2.1 C/C++ Language Settings Panel (continued)

This item... controls this behavior and is equivalent to
these options

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

22 CodeWarrior Build Tools Reference for the eTPU

IPA Specifies the Interprocedural
Analysis (IPA) policy.

Off—No interprocedural analysis, but
still performs function-level
optimization. Equivalent to the “no
deferred inlining” compilation policy
of older compilers.

File—Completely parse each
translation unit before generating any
code or data. Equivalent to the
“deferred inlining” option of older
compilers. Also performs an early
dead code and dead data analysis in
this mode. Objects with unreferenced
internal linkages will be dead-
stripped in the compiler rather than in
the linker.

Program—completely parse the
entire program before optimizing and
generating code, providing many
optimization benefits. For example,
the compiler can auto-inline functions
that are defined in another translation
unit.

command line option -ipa

Auto-Inline Checked—the compiler chooses
which functions to inline. Also inlines
C++ functions declared inline and
member functions defined within a
class declaration.

Clear—the compiler only considers
functions declared with inline.

pragma auto_inline
and the command-line
option -inline auto

Bottom-up
Inlining

Checked—performs inline analysis
from the last function to the first
function in a chain of function calls.

Clear—inline analysis begins at the
first function in a chain of function
calls.

pragma
inline_bottom_up and
the command-line option
-inline bottomup

Table 2.1 C/C++ Language Settings Panel (continued)

This item... controls this behavior and is equivalent to
these options

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

23CodeWarrior Build Tools Reference for the eTPU

ANSI Strict Checked—Only recognizes source
code that conforms to the ISO/IEC
9899-1990 standard for C.

Clear—recognize several
CodeWarrior extensions to the C
language:

• unnamed arguments in
function definitions

• a # not followed by a
macro directive

• using an identifier after a
#endif directive

• using typecasted pointers
as lvalues

• converting points to type of
the same size

• arrays of zero length in
structures

• the D constant suffix

• enumeration constant
definitions that cannot be
represented as signed
integers when the Enums
Always Int option is on in
the IDE’s C/C++
Language settings panel
or the enumsalwaysint
pragma is on

• a C++ main() function
that does not return an
integer value

pragma ANSI_strict
and the command-line
option -ansi strict

ANSI Keywords
Only

Checked—(ISO/IEC 9899-1990 C,
§6.4.1) generates an error message
for all non-standard keywords. If you
must write source code that strictly
adheres to the ISO standard, enable
this setting.

Clear—the compiler recognizes only
these non-standard keywords: far,
inline, __inline__, __inline,
and pascal.

pragma
only_std_keywords
and the command-line
option -stdkeywords

Table 2.1 C/C++ Language Settings Panel (continued)

This item... controls this behavior and is equivalent to
these options

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

24 CodeWarrior Build Tools Reference for the eTPU

Expand
Trigraphs

Checked—recognizes trigraph
sequences (ISO/IEC 9899-1990 C,
§5.2.1.1).

Clear—ignores trigraph characters.
Many common character constants
look like trigraph sequences, and this
extension lets you use them without
including escape characters.

pragma trigraphs and
the command-line option
-trigraphs

Legacy for-
scoping

Checked—generates an error
message when the compiler
encounters a variable scope usage
that the ISO/IEC 14882-1998 C++
standard disallows, but is allowed in
the C++ language specified in The
Annotated C++ Reference Manual
(“ARM”).

Clear—allows scope rules specified
in ARM.

pragma ARM_scoping
and the command-line
option -for_scoping

Require
Function
Prototypes

Checked—enforces the requirement
of function prototypes. the compiler
generates an error message if you
define a previously referenced
function that does not have a
prototype. If you define the function
before it is referenced but do not give
it a prototype, this setting causes the
compiler to issue a warning
message.

Clear—do not require prototypes.

pragma
require_prototypes
and the command-line
option -requireprotos

Enable C99
Extensions

Checked—recognizes ISO/IEC 9899-
1999 (“C99”) language features.

Clear—recognizes only ISO/IEC
9899-1990 (“C90”) language
features.

pragma c99 and the
command-line option
-dialect c99

Table 2.1 C/C++ Language Settings Panel (continued)

This item... controls this behavior and is equivalent to
these options

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

25CodeWarrior Build Tools Reference for the eTPU

.

C/C++ Preprocessor Panel
The C/C++ Preprocessor settings panel controls the operation of the CodeWarrior
compiler’s preprocessor.

Enable GCC
Extensions

Checked—recognizes language
features of the GNU Compiler
Collection (GCC) C compiler that are
supported by CodeWarrior compilers.

Clear—do not recognize GCC
extensions

pragma
gcc_extensions and the
command-line option -
gcc_extensions

Enums Always
Int

Checked—uses signed integers to
represent enumerated constants.

Clear—uses smallest possible
integer type to represent enumerated
constants.

pragma
enumsalwaysint and the
command-line option
-enum

Use Unsigned
Chars

Checked—treats char declarations
as unsigned char declarations.

Clear—char declarations are
signed char declarations

pragma unsigned_char
and the command-line
option -char unsigned

Pool Strings Checked—collects all string
constants into a single data section in
the object code it generates.

Clear—creates a unique section for
each string constant.

pragma pool_strings
and the command-line
option -strings pool

Reuse Strings Checked—stores only one copy of
identical string literals.

Clear—stores each string literal
separately.

opposite of the pragma
dont_reuse_strings
and the command-line
option -string reuse

Table 2.1 C/C++ Language Settings Panel (continued)

This item... controls this behavior and is equivalent to
these options

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

26 CodeWarrior Build Tools Reference for the eTPU

Table 2.2 C/C++ Preprocessor Panel

This item... controls this behavior

Prefix Text Contains source code that the compiler
inserts at the beginning of each translation
unit. A translation unit is the combination of a
source code file and all the files that it
includes.

Source encoding Allows you to specify the default encoding of
source files. The compiler recognizes
Multibyte and Unicode source text. To
replicate the obsolete option Multi-Byte
Aware, set this option to System or
Autodetect. Additionally, options that affect
the preprocess request appear in this panel.

Use prefix text in precompiled header Checked—inserts the source code in the
Prefix Text field at the beginning of a
precompiled header file.

Clear—does not insert Prefix Text contents
in a precompiled header file.

Defaults to clear to correspond with previous
versions of the compiler that ignore the prefix
file when building precompiled headers. If
any pragmas are imported from old C/C++
Language Panel settings, this option is
enabled.

Emit file changes Checked—notification of file changes (or
#line changes) appear in the output.

Clear—no file changes appear in output.

Emit #pragmas Checked—pragma directives appear in the
preprocessor output. Essential for producing
reproducible test cases for bug reports.

Clear—pragma directives do not appear in
preprocessor output.

Show Full Paths Checked—show the full path of a file’s name.

Clear—show the base filename.

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

27CodeWarrior Build Tools Reference for the eTPU

Keep comments Checked—comments appear in the
preprocessor output.

Clear—comments do not appear in
preprocessor output.

Use #line Checked—file changes appear in comments
(as before) or in #line directives.

Clear—file changes do not appear in
comments or in #line directives.

Keep whitespace Checked—whitespace is copied to
preprocessor output. This is useful for
keeping the starting column aligned with the
original source, though the compiler attempts
to preserve space within the line. This does
not apply when macros are expanded.

Clear—whitespace is stripped in
preprocessor output.

Table 2.2 C/C++ Preprocessor Panel (continued)

This item... controls this behavior

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

28 CodeWarrior Build Tools Reference for the eTPU

C/C++ Warnings Panel
The C/C++ Warnings settings panel contains options that control which warning
messages the CodeWarrior C/C++ compiler issues as it translates source code:

Table 2.3 C/C++ Warnings Panel

This item controls this behavior and is equivalent to
these options

Illegal Pragmas Checked—issues a warning
message if the compiler
encounters an unrecognized
pragma.

Clear—no action for
unrecognized pragma
directives.

pragma warn_illpragma
pragma and the command-
line option -warnings
illpragmas

Possible Errors Checked—issues warning
messages for common, usually-
unintended logical errors: in
conditional statements, using
the assignment (=) operator
instead of the equality
comparison (==) operator, in
expression statements, using

the == operator instead of the =
operator, placing a semicolon
(;) immediately after a do,
while, if, or for statement.

pragma warn_possunwant
and the command-line option
-warnings possible

Extended Error
Checking

Checked—issues warning
messages for common
programming errors: mis-
matched return type in a
function’s definition and the
return statement in the
function’s body, mismatched
assignments to variables of
enumerated types.

pragma
extended_errorcheck
and the command-line option
-warnings extended

Hidden Virtual
Functions

Checked—generates a warning
message if you declare a non-
virtual member function that
prevents a virtual function, that
was defined in a superclass,
from being called.

pragma
warn_hidevirtual and
the command-line option
-warnings hidevirtual

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

29CodeWarrior Build Tools Reference for the eTPU

Implicit Arithmetic
Conversions

Checked—issues a warning
message when the compiler
applies implicit conversions that
may not give results you intend:
assignments where the
destination is not large enough
to hold the result of the
conversion, a signed value
converted to an unsigned value,
an integer or floating-point value
is converted to a floating-point
or integer value, respectively.

pragma
warn_implicitconv and
the command-line option -
warnings implicitconv

Float To Integer Checked—issues a warning
message for implicit
conversions from floating point
values to integer values.

pragma
warn_impl_f2i_conv and
the command-line option -
warnings
impl_float2int

Signed/Unsigned Checked—issues a warning
message for implicit
conversions from a signed or
unsigned integer value to an
unsigned or signed value,
respectively.

pragma
warn_impl_s2u_conv and
the command-line option -
warnings
signedunsigned

Integer To Float Checked—issues a warning
message for implicit
conversions from integer to
floating-point values.

pragma
warn_impl_i2f_conv and
the command-line option -
warnings
impl_int2float

Pointer/Integral
Conversions

Checked—issues a warning
message for implicit
conversions from pointer values
to integer values and from
integer values to pointer values.

pragmas
warn_any_ptr_int_conv
and warn_ptr_int_conv
and the command-line option
-warnings
ptrintconv,anyptrinvc
onv

Unused Variables Checked—issues a warning
message for local variables that
are not referred to in a function.

pragma warn_unusedvar
and the command-line option
-warnings unusedvar

Table 2.3 C/C++ Warnings Panel

This item controls this behavior and is equivalent to
these options

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

30 CodeWarrior Build Tools Reference for the eTPU

Unused Arguments Checked—issues a warning
message for function arguments
that are not referred to in a
function.

pragma warn_unusedarg
and the command-line option
-warnings unusedarg

Missing ‘return’
Statements

Checked—issues a warning
message if a function that is
defined to return a value has no
return statement.

pragma
warn_missingreturn and
the command-line option -
warnings
missingreturn

Expression Has No
Side Effect

Checked—issues a warning
message if a statement does
not change the program’s state.

pragma
warn_no_side_effect
and the command-line option
-warnings unusedexpr

Enable All Checked—turns on all warning
options.

Disable All Checked—turns off all warning
options.

Extra Commas Checked—issues a warning
message if a list in an
enumeration terminates with a
comma. The compiler ignores
terminating commas in
enumerations when compiling
source code that conforms to
the ISO/IEC 9899-1999 (“C99”)
standard.

pragma warn_extracomma
and the command-line option
-warnings extracomma

Inconsistent ‘class’/
’struct’ Usage

Checked—issues a warning
message if the class and struct
keywords are used
interchangeably in the definition
and declaration of the same
identifier in C++ source code.

pragma
warn_structclass and
the command-line option -
warnings structclass

Empty
Declarations

Checked—issues a warning
message if a declaration has no
variable name.

pragma warn_emptydecl
and the command-line option
-warnings emptydecl

Table 2.3 C/C++ Warnings Panel

This item controls this behavior and is equivalent to
these options

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

31CodeWarrior Build Tools Reference for the eTPU

Include File
Capitalization

Checked—issues a warning
message if the name of the file
specified in a #include
"file" directive uses different
letter case from a file on disk.

pragma
warn_filenamecaps and
the command-line option -
warnings filecaps

Check System
Includes

Checked—issues a warning
message if the name of the file
specified in a #include
<file> directive uses different
letter case from a file on disk.

pragma
warn_filenamecaps_sys
tem and the command-line
option -warnings
sysfilecaps

Pad Bytes Added Checked—issues a warning
message when the compiler
adjusts the alignment of
components in a data structure.

pragma warn_padding and
the command-line option -
warnings padding

Undefined Macro in
#if

Checked—issues a warning
message if an undefined macro
appears in #if and #elif
directives.

pragma warn_undefmacro
and the command-line option
-warnings undefmacro

Non-Inlined
Functions

Checked—issues a warning
message if a call to a function
defined with the inline,
__inline__, or __inline
keywords could not be replaced
with the function body.

pragma warn_notinlined
and the command-line option
-warnings notinlined

Treat All Warnings
As Errors

Checked—issues warning
messages as error messages.

pragma warning_errors
pragma and the command-
line option -warnings
error

Table 2.3 C/C++ Warnings Panel

This item controls this behavior and is equivalent to
these options

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

32 CodeWarrior Build Tools Reference for the eTPU

33CodeWarrior Build Tools Reference for the eTPU

3
Using Build Tools on the
Command Line

CodeWarrior build tools may be invoked from the command-line. These command-line
tools operate almost identically to their counterparts in an integrated development
environment (IDE). CodeWarrior command-line compilers and assemblers translate
source code files into object code files. CodeWarrior command-line linkers then combine
one or more object code files to produce an executable image file, ready to load and
execute on the target platform. Each command-line tool has options that you configure
when you invoke the tool.

• Configuring Command-Line Tools

• Invoking Command-Line Tools

• Getting Help

• File Name Extensions

Configuring Command-Line Tools
• Setting CodeWarrior Environment Variables

• Setting the PATH Environment Variable

Setting CodeWarrior Environment
Variables
Use environment variables on the host system to specify to the CodeWarrior command
line tools where to find CodeWarrior files for compiling and linking. Table 3.1 describes
these environment variables.

Using Build Tools on the Command Line
Configuring Command-Line Tools

34 CodeWarrior Build Tools Reference for the eTPU

A system header file is a header file that is enclosed with the “<“ and “>” characters in
include directives. For example

#include <stdlib.h> /* stdlib.h system header. */

Typically, you define the MWCIncludes and MWLibraries environment variables to
refer to the header files and libraries in the subdirectories of your CodeWarrior software.

To specify more than one directory for the MWCIncludes and MWLibraries
variables, use the conventional separator for your host operating system command-line
shell.

Listing 3.1 Setting environment variables in Microsoft® Windows® operating systems

rem Use ; to separate directory paths

set CWFolder=C:\Program Files\Freescale\CodeWarrior

set MWCIncludes=%CWFolder%\MSL_Common\Include
set MWCIncludes=%MWCIncludes%;%CWFolder%\MSL_Embedded\Include
set MWLibraries=%CWFolder%\Support\;%CWFolder%\Support\Runtime

Setting the PATH Environment Variable
The PATH variable should include the paths for your CodeWarrior tools, shown in Listing
3.2. Toolset represents the name of the folder that contains the command line tools for
your build target.

Listing 3.2 Example of setting PATH

set CWFolder=C:\Program Files\Freescale\CodeWarrior
set PATH=%PATH%\%CWFolder%\Bin;%CWFolder%\Command_Line_Tools

Table 3.1 Environment variables for CodeWarrior command-line tools

This environment variable... specifies this information

MWCIncludes Directories on the host system for system
header files for the CodeWarrior compiler.

MWLibraries Directories on the host system for system
libraries for the CodeWarrior linker.

Using Build Tools on the Command Line
Invoking Command-Line Tools

35CodeWarrior Build Tools Reference for the eTPU

Invoking Command-Line Tools
To compile, assemble, link, or perform some other programming task with the
CodeWarrior command-line tools, you type a command at a command line’s prompt. This
command specifies the tool you want to run, what options to use while the tool runs, and
what files the tool should operate on.

The form of a command to run a command-line tool is

tool options files

where tool is the name of the CodeWarrior command-line tool to invoke, options is a
list of zero or more options that specify to the tool what operation it should perform and
how it should be performed, and files is a list of files zero or more files that the tool
should operate on.

Which options and files you should specify depend on what operation you want the tool to
perform.

The tool then performs the operation on the files you specify. If the tool is successful it
simply finishes its operation and a new prompt appears at the command line. If the tool
encounters problems it reports these problems as text messages on the command-line
before a new prompt appears.

Scripts that automate the process to build a piece of software contain commands to invoke
command-line tools. For example, the make tool, a common software development tool,
uses scripts to manage dependencies among source code files and invoke command-line
compilers, assemblers and linkers as needed, much like the CodeWarrior IDE’s project
manager.

Getting Help
To show short descriptions of a tool’s options, type this command at the command line:

tool -help

where tool is the name of the CodeWarrior build tool.

To show only a few lines of help information at a time, pipe the tool’s output to a pager
program. For example,

tool -help | more

will use the more pager program to display the help information.

Enter the following command in a Command Prompt window to see a list of
specifications that describe how options are formatted:

tool -help usage

where tool is the name of the CodeWarrior build tool.

Using Build Tools on the Command Line
Getting Help

36 CodeWarrior Build Tools Reference for the eTPU

Parameter Formats
Parameters in an option are formatted as follows:

• A parameter included in brackets “[]” is optional.

• Use of the ellipsis “...” character indicates that the previous type of parameter
may be repeated as a list.

Option Formats
Options are formatted as follows:

• For most options, the option and the parameters are separated by a space as in
“-xxx param”.

When the option’s name is “-xxx+”, however, the parameter must directly follow
the option, without the “+” character (as in “-xxx45”) and with no space separator.

• An option given as “-[no]xxx” may be issued as “-xxx” or “-noxxx”.

The use of “-noxxx” reverses the meaning of the option.

• When an option is specified as “-xxx | yy[y] | zzz”, then either “-xxx”,
“-yy”, “-yyy”, or “-zzz” matches the option.

• The symbols “,” and “=” separate options and parameters unconditionally; to
include one of these symbols in a parameter or filename, escape it (e.g., as “\,” in
mwcc file.c\,v).

Common Terms
These common terms appear in many option descriptions:

• A “cased” option is considered case-sensitive. By default, no options are case-
sensitive.

• “compatibility” indicates that the option is borrowed from another vendor’s tool and
its behavior may only approximate its counterpart.

• A “global” option has an effect over the entire command line and is parsed before
any other options. When several global options are specified, they are interpreted in
order.

• A “deprecated” option will be eliminated in the future and should no longer be used.
An alternative form is supplied.

• An “ignored” option is accepted by the tool but has no effect.

• A “meaningless” option is accepted by the tool but probably has no meaning for the
target operating system.

• An “obsolete” option indicates a deprecated option that is no longer available.

Using Build Tools on the Command Line
File Name Extensions

37CodeWarrior Build Tools Reference for the eTPU

• A “substituted” option has the same effect as another option. This points out a
preferred form and prevents confusion when similar options appear in the help.

• Use of “default” in the help text indicates that the given value or variation of an
option is used unless otherwise overridden.

This tool calls the linker (unless a compiler option such as -c prevents it) and understands
linker options – use “-help tool=other” to see them. Options marked “passed to
linker” are used by the compiler and the linker; options marked “for linker” are used only
by the linker. When using the compiler and linker separately, you must pass the common
options to both.

File Name Extensions
Files specified on the command line are identified by contents and file extension, as in the
CodeWarrior IDE.

The command-line version of the CodeWarrior C/C++ compiler accepts non-standard file
extensions as source code but also emits a warning message. By default, the compiler
assumes that a file with any extensions besides .c, .h, .pch is C++ source code. The
linker ignores all files that it can not identify as object code, libraries, or command files.

Linker command files must end in .lcf. They may be simply added to the link line, for
example (Listing 3.3).

Listing 3.3 Example of using linker command files

mwldtarget file.o lib.a commandfile.lcf

For more information on linker command files, refer to the Targeting manual for your
platform.

Using Build Tools on the Command Line
File Name Extensions

38 CodeWarrior Build Tools Reference for the eTPU

39CodeWarrior Build Tools Reference for the eTPU

4
Command-Line Options for
Standard C Conformance

-ansi

Controls the ISO/IEC 9899-1990 (“C90”) conformance options, overriding the given
settings.

Syntax

-ansi keyword

The arguments for keyword are:

off

Turns ISO conformance off. Same as

-stdkeywords off -enum min -strict off.

on | relaxed

Turns ISO conformance on in relaxed mode. Same as

-stdkeywords on -enum min -strict on

strict

Turns ISO conformance on in strict mode. Same as

-stdkeywords on -enum int -strict on

-stdkeywords

Controls the use of ISO/IEC 9899-1990 (“C90”) keywords.

Syntax

-stdkeywords on | off

Command-Line Options for Standard C Conformance

40 CodeWarrior Build Tools Reference for the eTPU

Remarks

Default setting is off.

-strict

Controls the use of non-standard ISO/IEC 9899-1990 (“C90”) language features.

Syntax

-strict on | off

Remarks

If this option is on, the compiler generates an error message if it encounters some
CodeWarrior extensions to the C language defined by the ISO/IEC 9899-1990
(“C90”) standard:

• C++-style comments

• unnamed arguments in function definitions

• non-standard keywords

The default setting is off.

41CodeWarrior Build Tools Reference for the eTPU

5
Command-Line Options for
Language Translation

-char

Controls the default sign of the char data type.

Syntax

-char keyword

The arguments for keyword are:

signed

char data items are signed.

unsigned

char data items are unsigned.

Remarks

The default is signed.

-defaults

Controls whether the compiler uses additional environment variables to provide default
settings.

Syntax

-defaults

-nodefaults

Command-Line Options for Language Translation

42 CodeWarrior Build Tools Reference for the eTPU

Remarks

This option is global. To tell the command-line compiler to use the same set of
default settings as the CodeWarrior IDE, use -defaults. For example, in the
IDE, all access paths and libraries are explicit. defaults is the default setting.

Use -nodefaults to disable the use of additional environment variables.

-encoding

Specifies the default source encoding used by the compiler.

Syntax

-enc[oding] keyword

The options for keyword are:

ascii

American Standard Code for Information Interchange (ASCII) format. This is the default.

autodetect | multibyte | mb

Scan file for multibyte encoding.

system

Uses local system format.

UTF[8 | -8]

Unicode Transformation Format (UTF).

SJIS | Shift-JIS | ShiftJIS

Shift Japanese Industrial Standard (Shift-JIS) format.f

EUC[JP | -JP]

Japanese Extended UNIX Code (EUCJP) format.

ISO[2022JP | -2022-JP]

International Organization of Standards (ISO) Japanese format.

Remarks

The compiler automatically detects UTF-8 (Unicode Transformation Format)
header or UCS-2/UCS-4 (Uniform Communications Standard) encodings
regardless of setting. The default setting is ascii.

Command-Line Options for Language Translation

43CodeWarrior Build Tools Reference for the eTPU

-flag

Specifies compiler #pragma as either on or off.

Syntax

-fl[ag] [no-]pragma

Remarks

For example, this option setting

-flag require_prototypes

is equivalent to

#pragma require_prototypes on

This option setting

-flag no-require_prototypes

is the same as

#pragma require_prototypes off

-gccext

Enables GCC (Gnu Compiler Collection) C language extensions.

Syntax

-gcc[ext] on | off

Remarks

See “GCC Extensions” on page 138 for a list of language extensions that the
compiler recognizes when this option is on.

The default setting is off.

-gcc_extensions

Equivalent to the -gccext option.

Command-Line Options for Language Translation

44 CodeWarrior Build Tools Reference for the eTPU

Syntax

-gcc[_extensions] on | off

-M

Scans source files for dependencies and emit a Makefile, without generating object code.

Syntax

-M

Remarks

This command is global and case-sensitive.

-make

Scans source files for dependencies and emit a Makefile, without generating object code.

Syntax

-make

Remarks

This command is global.

-mapcr

Swaps the values of the \n and \r escape characters.

Syntax

-mapcr

-nomapcr

Remarks

The -mapcr option tells the compiler to treat the '\n' character as ASCII 13 and
the '\r' character as ASCII 10. The -nomapcr option tells the compiler to treat
these characters as ASCII 10 and 13, respectively.

Command-Line Options for Language Translation

45CodeWarrior Build Tools Reference for the eTPU

-MM

Scans source files for dependencies and emit a Makefile, without generating object code
or listing system #include files.

Syntax

-MM

Remarks

This command is global and case-sensitive.

-MD

Scans source files for dependencies and emit a Makefile, generate object code, and write a
dependency map.

Syntax

-MD

Remarks

This command is global and case-sensitive.

-MMD

Scans source files for dependencies and emit a Makefile, generate object code, write a
dependency map, without listing system #include files.

Syntax

-MMD

Remarks

 This command is global and case-sensitive.

Command-Line Options for Language Translation

46 CodeWarrior Build Tools Reference for the eTPU

-msext

Allows Microsoft® Visual C++ extensions.

Syntax

-msext on | off

Remarks

Turn on this option to allow Microsoft Visual C++ extensions:

• Redefinition of macros

• Allows XXX::yyy syntax when declaring method yyy of class XXX

• Allows extra commas

• Ignores casts to the same type

• Treats function types with equivalent parameter lists but different return types as
equal

• Allows pointer-to-integer conversions, and various syntactical differences

-once

Prevents header files from being processed more than once.

Syntax

-once

Remarks

You can also add #pragma once on in a prefix file.

-pragma

Defines a pragma for the compiler.

Syntax

-pragma "name [setting]"

The arguments are:

Command-Line Options for Language Translation

47CodeWarrior Build Tools Reference for the eTPU

name

Name of the pragma.

setting

Arguments to give to the pragma

Remarks

For example, this command-line option

-pragma "c99 on"

is equivalent to inserting this directive in source code

#pragma c99 on

-relax_pointers

Relaxes the pointer type-checking rules in C.

Syntax

-relax_pointers

Remarks

This option is equivalent to

#pragma mpwc_relax on

-requireprotos

Controls whether or not the compiler should expect function prototypes.

Syntax

-r[equireprotos]

-search

Globally searches across paths for source files, object code, and libraries specified in the
command line.

Command-Line Options for Language Translation

48 CodeWarrior Build Tools Reference for the eTPU

Syntax

-search

-trigraphs

Controls the use of trigraph sequences specified by the ISO/IEC standards for C and C++.

Syntax

-trigraphs on | off

Remarks

Default setting is off.

49CodeWarrior Build Tools Reference for the eTPU

6
Command-Line Options for
Diagnostic Messages

-disassemble

Tells the command-line tool to disassemble files and send result to stdout.

Syntax

-dis[assemble]

Remarks

 This option is global.

-help

Lists descriptions of the CodeWarrior tool’s command-line options.

Syntax

-help [keyword [,...]]

The options for keyword are:

all

Show all standard options

group=keyword

Show help for groups whose names contain keyword (case-sensitive).

[no]compatible

Use compatible to show options compatible with this compiler. Use
nocompatible to show options that do not work with this compiler.

Command-Line Options for Diagnostic Messages

50 CodeWarrior Build Tools Reference for the eTPU

[no]deprecated

Shows deprecated options

[no]ignored

Shows ignored options

[no]meaningless

Shows options meaningless for this target

[no]normal

Shows only standard options

[no]obsolete

Shows obsolete options

[no]spaces

Inserts blank lines between options in printout.

opt[ion]=name

Shows help for a given option; for name, maximum length 63 chars

search=keyword

Shows help for an option whose name or help contains keyword (case-sensitive),
maximum length 63 chars

tool=keyword[all | this | other | skipped | both]

Categorizes groups of options by tool; default.

• all–show all options available in this tool

• this–show options executed by this tool; default

• other | skipped–show options passed to another tool

• both–show options used in all tools

usage

Displays usage information.

-maxerrors

Specifies the maximum number of errors messages to show.

Syntax

-maxerrors max

Command-Line Options for Diagnostic Messages

51CodeWarrior Build Tools Reference for the eTPU

max

Use max to specify the number of error messages. Common values are:

• 0 (zero) – disable maximum count, show all error messages.

• 100 – Default setting.

-maxwarnings

Specifies the maximum number of warning messages to show.

Syntax

-maxerrors max

max

Specifies the number of warning messages. Common values are:

• 0 (zero) – Disable maximum count (default).

• n – Maximum number of warnings to show.

-msgstyle

Controls the style used to show error and warning messages.

Syntax

-msgstyle keyword

The options for keyword are:

gcc

Uses the message style that the Gnu Compiler Collection tools use.

ide

Uses CodeWarrior’s Integrated Development Environment (IDE) message style.

mpw

Uses Macintosh Programmer’s Workshop (MPW®) message style.

parseable

Uses context-free machine parseable message style.

std

Uses standard message style. This is the default.

Command-Line Options for Diagnostic Messages

52 CodeWarrior Build Tools Reference for the eTPU

enterpriseIDE

Uses Enterprise-IDE message style.

-nofail

Continues processing after getting error messages in earlier files.

Syntax

-nofail

-progress

Shows progress and version information.

Syntax

-progress

-S

Disassembles all files and send output to a file. This command is global and case-
sensitive.

Syntax

-S

-stderr

Uses the standard error stream to report error and warning messages.

Syntax

-stderr

Command-Line Options for Diagnostic Messages

53CodeWarrior Build Tools Reference for the eTPU

-nostderr

Remarks

The -stderr option specifies to the compiler, and other tools that it invokes, that
error and warning messages should be sent to the standard error stream.

The -nostderr option specifies that error and warning messages should be sent
to the standard output stream.

-verbose

Tells the compiler to provide extra, cumulative information in messages.

Syntax

-v[erbose]

Remarks

This option also gives progress and version information.

-version

Displays version, configuration, and build data.

Syntax

-v[ersion]

-timing

Shows the amount of time that the tool used to perform an action.

Syntax

-timing

Command-Line Options for Diagnostic Messages

54 CodeWarrior Build Tools Reference for the eTPU

-warnings

Specifies which warning messages the command-line tool issues. This command is global.

Syntax

-w[arning] keyword [,...]

The options for keyword are:

off

Turns off all warning messages. Passed to all tools. Equivalent to

#pragma warning off

on

Turns on warning messages. Passed to all tools. Equivalent to

#pragma warning on

[no]cmdline

Passed to all tools.

[no]err[or] | [no]iserr[or]

Treats warnings as errors. Passed to all tools. Equivalent to

#pragma warning_errors

most

Turns on most warnings

all

Turns on almost all warnings and require prototypes

full

Turns on all warning messages and require prototypes. This option is likely to
generate spurious warnings.

NOTE -warnings full should be used before using any other options that affect
warnings. For example, use
-warnings full -warnings noanyptrintconv instead of
-warnings noanyptrintconv -warnings full.

Command-Line Options for Diagnostic Messages

55CodeWarrior Build Tools Reference for the eTPU

[no]pragmas | [no]illpragmas

Issues warning messages on invalid pragmas. Enabled when most is used.
Equivalent to

#pragma warn_illpragma

[no]empty[decl]

Issues warning messages on empty declarations. Enabled when most is used.
Equivalent to

#pragma warn_emptydecl

[no]possible | [no]unwanted

Issues warning messages on possible unwanted effects. Enabled when most is
used. Equivalent to

#pragma warn_possunwanted

[no]unusedarg

Issues warning messages on unused arguments. Enabled when most is used.
Equivalent to

#pragma warn_unusedarg

[no]unusedvar

Issues warning messages on unused variables. Enabled when most is used.
Equivalent to

#pragma warn_unusedvar

[no]unused

Same as

-w [no]unusedarg,[no]unusedvar

Enabled when most is used.

[no]extracomma | [no]comma

Issues warning messages on extra commas in enumerations. The compiler ignores
terminating commas in enumerations when compiling source code that conforms to
the ISO/IEC 9899-1999 (“C99”) standard. Enabled when most is used. Equivalent
to

#pragma warn_extracomma

[no]extended_errorcheck

Extended error checking. Enabled when most is used. Equivalent to

#pragma extended_errorcheck

Command-Line Options for Diagnostic Messages

56 CodeWarrior Build Tools Reference for the eTPU

[no]hidevirtual | [no]hidden[virtual]

Issues warning messages on hidden virtual functions. Enabled when most is used.
Equivalent to

#pragma warn_hidevirtual

[no]implicit[conv]

Issues warning messages on implicit arithmetic conversions. Enabled when all is
used. Implies

-warn impl_float2int,impl_signedunsigned

[no]impl_int2float

Issues warning messages on implicit integral to floating conversions. Enabled
when all is used. Equivalent to

#pragma warn_impl_i2f_conv

[no]impl_float2int

Issues warning messages on implicit floating to integral conversions. Enabled
when all is used. Equivalent to

#pragma warn_impl_f2i_conv

[no]impl_signedunsigned

Issues warning messages on implicit signed/unsigned conversions. Enabled when
all is used.

[no]notinlined

Issues warning messages for functions declared with the inline qualifier that are
not inlined. Enabled when full is used. Equivalent to

#pragma warn_notinlined

[no]largeargs

Issues warning messages when passing large arguments to unprototyped functions.
Enabled when most is used. Equivalent to

#pragma warn_largeargs

[no]structclass

Issues warning messages on inconsistent use of class and struct. Enabled
when most is used. Equivalent to

#pragma warn_structclass

[no]padding

Issue warning messages when padding is added between struct members.
Enabled when full is used. Equivalent to

#pragma warn_padding

Command-Line Options for Diagnostic Messages

57CodeWarrior Build Tools Reference for the eTPU

[no]notused

Issues warning messages when the result of non-void-returning functions are not
used. Enabled when full is used. Equivalent to

#pragma warn_resultnotused

[no]missingreturn

Issues warning messages when a return without a value in non-void-returning
function occurs. Enabled when most is used. Equivalent to

#pragma warn_missingreturn

[no]unusedexpr

Issues warning messages when encountering the use of expressions as statements
without side effects. Equivalent to

#pragma warn_no_side_effect

[no]ptrintconv

Issues warning messages when lossy conversions occur from pointers to integers.
Enabled when full is used.

[no]anyptrintconv

Issues warning messages on any conversion of pointers to integers. Enabled when
full is used. Equivalent to

#pragma warn_ptr_int_conv

[no]undef[macro]

Issues warning messages on the use of undefined macros in #if and #elif
conditionals. Enabled when full is used. Equivalent to

#pragma warn_undefmacro

[no]filecaps

Issues warning messages when #include "" directives use incorrect
capitalization. Enabled when most is used. Equivalent to

#pragma warn_filenamecaps

[no]sysfilecaps

Issue warning messages when #include <> statements use incorrect
capitalization. Enabled when most is used. Equivalent to

#pragma warn_filenamecaps_system

[no]tokenpasting

Issue warning messages when token is not formed by the ## preprocessor operator.
Enabled when most is used. Equivalent to

#pragma warn_illtokenpasting

Command-Line Options for Diagnostic Messages

58 CodeWarrior Build Tools Reference for the eTPU

[no]relax_i2i_conv

Relax implicit arithmetic conversion warnings on certain implicit conversions.
Equivalent to

#pragma relax_i2i_conv

display | dump

Display list of active warnings.

-wraplines

Controls the word wrapping of messages.

Syntax

-wraplines

-nowraplines

59CodeWarrior Build Tools Reference for the eTPU

7
Command-Line Options for
Preprocessing

-convertpaths

Instructs the compiler to interpret #include file paths specified for a foreign operating
system. This command is global.

Syntax

-[no]convertpaths

Remarks

The CodeWarrior compiler can interpret file paths from several different operating
systems. Each operating system uses unique characters as path separators. These
separators include:

• Mac OS® – colon “:” (:sys:stat.h)

• UNIX – forward slash “/” (sys/stat.h)

• Windows® operating systems – backward slash “\” (sys\stat.h)

When convertpaths is enabled, the compiler can correctly interpret and use
paths like <sys/stat.h> or <:sys:stat.h>. However, when enabled, (/)
and (:) separate directories and cannot be used in filenames.

NOTE This is not a problem on Windows systems since these characters are already
disallowed in file names. It is safe to leave this option on.

When noconvertpaths is enabled, the compiler can only interpret paths that
use the Windows form, like <\sys\stat.h>.

Command-Line Options for Preprocessing

60 CodeWarrior Build Tools Reference for the eTPU

-cwd

Controls where a search begins for #include files.

Syntax

-cwd keyword

The options for keyword are:

explicit

No implicit directory. Search -I or -ir paths.

include

Begins searching in directory of referencing file.

proj

Begins searching in current working directory (default).

source

Begins searching in directory that contains the source file.

Remarks

The path represented by keyword is searched before searching access paths defined
for the build target.

-D+

Same as the -define option.

Syntax

-D+name

The parameters are:

name

The symbol name to define. Symbol is set to 1.

-define

Defines a preprocessor symbol.

Command-Line Options for Preprocessing

61CodeWarrior Build Tools Reference for the eTPU

Syntax

-d[efine] name[=value]

The parameters are:

name

The symbol name to define.

value

The value to assign to symbol name. If no value is specified, set symbol value
equal to 1.

-E

Tells the command-line tool to preprocess source files.

Syntax

-E

Remarks

This option is global and case sensitive.

-EP

Tells the command-line tool to preprocess source files that are stripped of #line
directives.

Syntax

-EP

Remarks

This option is global and case sensitive.

-gccincludes

Controls the compilers use of GCC #include semantics.

Command-Line Options for Preprocessing

62 CodeWarrior Build Tools Reference for the eTPU

Syntax

-gccinc[ludes]

Remarks

Use -gccincludes to control the CodeWarrior compiler understanding of Gnu
Compiler Collection (GCC) semantics. When enabled, the semantics include:

• Adds -I- paths to the systems list if -I- is not already specified

• Search referencing file’s directory first for #include files (same as -cwd
include) The compiler and IDE only search access paths, and do not take the
currently #include file into account.

This command is global.

-I-

Changes the build target’s search order of access paths to start with the system paths list.

Syntax

-I-

-i-

Remarks

The compiler can search #include files in several different ways. Use -I- to set
the search order as follows:

• For include statements of the form #include "xyz", the compiler first
searches user paths, then the system paths

• For include statements of the form #include <xyz>, the compiler searches
only system paths

This command is global.

-I+

Appends a non-recursive access path to the current #include list.

Syntax

-I+path

Command-Line Options for Preprocessing

63CodeWarrior Build Tools Reference for the eTPU

-i path

The parameters are:

path

The non-recursive access path to append.

Remarks

This command is global and case-sensitive.

-include

Defines the name of the text file or precompiled header file to add to every source file
processed.

Syntax

-include file

file

Name of text file or precompiled header file to prefix to all source files.

Remarks

With the command line tool, you can add multiple prefix files all of which are
included in a meta-prefix file.

-ir

Appends a recursive access path to the current #include list. This command is global.

Syntax

-ir path

path

The recursive access path to append.

-P

Preprocesses the source files without generating object code, and send output to file.

Command-Line Options for Preprocessing

64 CodeWarrior Build Tools Reference for the eTPU

Syntax

-P

Remarks

This option is global and case-sensitive.

-precompile

Precompiles a header file from selected source files.

Syntax

-precompile file | dir | ""

file

If specified, the precompiled header name.

dir

If specified, the directory to store the header file.

""

If "" is specified, write header file to location specified in source code. If neither
argument is specified, the header file name is derived from the source file name.

Remarks

The driver determines whether to precompile a file based on its extension. The
option

-precompile filesource

is equivalent to

-c -o filesource

-preprocess

Preprocesses the source files. This command is global.

Syntax

-preprocess

Command-Line Options for Preprocessing

65CodeWarrior Build Tools Reference for the eTPU

-ppopt

Specifies options affecting the preprocessed output.

Syntax

-ppopt keyword [,...]

The arguments for keyword are:

[no]break

Emits file and line breaks. This is the default.

[no]line

Controls whether #line directives are emitted or just comments. The default is
line.

[no]full[path]

Controls whether full paths are emitted or just the base filename. The default is
fullpath.

[no]pragma

Controls whether #pragma directives are kept or stripped. The default is pragma.

[no]comment

Controls whether comments are kept or stripped.

[no]space

Controls whether whitespace is kept or stripped. The default is space.

Remarks

The default settings is break.

-prefix

Adds contents of a text file or precompiled header as a prefix to all source files.

Syntax

-prefix file

Command-Line Options for Preprocessing

66 CodeWarrior Build Tools Reference for the eTPU

-noprecompile

Do not precompile any source files based upon the filename extension.

Syntax

-noprecompile

-nosyspath

Performs a search of both the user and system paths, treating #include statements of the
form #include <xyz> the same as the form #include "xyz".

Syntax

-nosyspath

Remarks

This command is global.

-stdinc

Uses standard system include paths as specified by the environment variable
%MWCIncludes%.

Syntax

-stdinc

-nostdinc

Remarks

 Add this option after all system -I paths.

-U+

Same as the -undefine option.

Command-Line Options for Preprocessing

67CodeWarrior Build Tools Reference for the eTPU

Syntax

-U+name

-undefine

Undefines the specified symbol name.

Syntax

-u[ndefine] name

-U+name

name

The symbol name to undefine.

Remarks

This option is case-sensitive.

Command-Line Options for Preprocessing

68 CodeWarrior Build Tools Reference for the eTPU

69CodeWarrior Build Tools Reference for the eTPU

8
Command-Line Options for
Object Code

-c

Instructs the compiler to compile but not invoke the linker to link the object code.

Syntax

-c

Remarks

This option is global.

-codegen

Instructs the compiler to compile without generating object code.

Syntax

-codegen

-nocodegen

Remarks

This option is global.

-enum

Specifies the default size for enumeration types.

Command-Line Options for Object Code

70 CodeWarrior Build Tools Reference for the eTPU

Syntax

-enum keyword

The arguments for keyword are:

int

Uses int size for enumerated types.

min

Uses minimum size for enumerated types. This is the default.

-min_enum_size

Specifies the size, in bytes, of enumerated types.

Syntax

-min_enum_size 1 | 2 | 4

Remarks

Specifying this option also invokes the -enum min option by default.

-ext

Specifies which file name extension to apply to object files.

Syntax

-ext extension

extension

The extension to apply to object files. Use these rules to specify the extension:

• Limited to a maximum length of 14 characters

• Extensions specified without a leading period replace the source file’s
extension. For example, if extension is “o” (without quotes), then
source.cpp becomes source.o.

• Extensions specified with a leading period (.extension) are appended to the
object files name. For example, if extension is “.o” (without quotes), then
source.cpp becomes source.cpp.o.

Command-Line Options for Object Code

71CodeWarrior Build Tools Reference for the eTPU

Remarks

This command is global. The default setting is .o.

-strings

Controls how string literals are stored and used.

Remarks

-str[ings] keyword[, ...]

The keyword arguments are:

[no]pool

All string constants are stored as a single data object so your program needs one
data section for all of them.

[no]reuse

All equivalent string constants are stored as a single data object so your program
can reuse them. This is the default.

[no]readonly

Make all string constants read-only. This is the default.

Command-Line Options for Object Code

72 CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Optimization

73CodeWarrior Build Tools Reference for the eTPU

9
Command-Line Options for
Optimization

-inline

Specifies inline options. Default settings are smart, noauto.

Syntax

-inline keyword

The options for keyword are:

off | none

Turns off inlining.

on | smart

Turns on inlining for functions declared with the inline qualifier. This is the
default.

auto

Attempts to inline small functions even if they are declared with inline.

noauto

Does not auto-inline. This is the default auto-inline setting.

deferred

Refrains from inlining until a file has been translated. This allows inlining of
functions in both directions.

level=n

Inlines functions up to n levels deep. Level 0 is the same as -inline on. For n,
enter 1 to 8 levels. This argument is case-sensitive.

Command-Line Options for Optimization

74 CodeWarrior Build Tools Reference for the eTPU

all

Turns on aggressive inlining. This option is the same as -inline on, -inline
auto.

-O

Sets optimization settings to -opt level=2.

Syntax

-O

Remarks

Provided for backwards compatibility.

-O+

Controls optimization settings.

Syntax

-O+keyword [,...]

The keyword arguments are:

0

Equivalent to -opt off.

1

Equivalent to -opt level=1.

2

Equivalent to -opt level=2.

3

Equivalent to -opt level=3.

4

Equivalent to -opt level=4,intrinsics.

p

Equivalent to -opt speed.

Command-Line Options for Optimization

75CodeWarrior Build Tools Reference for the eTPU

s

Equivalent to -opt space.

Remarks

Options can be combined into a single command. Command is case-sensitive.

-opt

Specifies code optimization options to apply to object code.

Remarks

-optkeyword [,...]

The keyword arguments are:

off | none

Suppresses all optimizations. This is the default.

on

Same as -opt level=2

all | full

Same as -opt speed,level=4,intrinsics,noframe

l[evel]=num

Sets a specific optimization level. The options for num are:

• 0 – Global register allocation only for temporary values. Equivalent to
#pragma optimization_level 0.

• 1 – Adds dead code elimination, branch and arithmetic optimizations,
expression simplification, and peephole optimization. Equivalent to #pragma
optimization_level 1.

• 2 – Adds common subexpression elimination, copy and expression propagation,
stack frame compression, stack alignment, and fast floating-point to integer
conversions. Equivalent to: #pragma optimization_level 2.

• 3 – Adds dead store elimination, live range splitting, loop-invariant code
motion, strength reduction, loop transformations, loop unrolling (with -opt
speed only), loop vectorization, lifetime-based register allocation, and
instruction scheduling. Equivalent to optimization_level 3.

• 4 – Like level 3, but with more comprehensive optimizations from levels 1 and
2. Equivalent to #pragma optimization_level 4.

Command-Line Options for Optimization

76 CodeWarrior Build Tools Reference for the eTPU

For num options 0 through 4 inclusive, the default is 0.

[no]space

Optimizes object code for size. Equivalent to #pragma optimize_for_size
on.

[no]speed

Optimizes object code for speed. Equivalent to #pragma
optimize_for_size off.

[no]cse | [no]commonsubs

Common subexpression elimination. Equivalent to #pragma
opt_common_subs.

[no]deadcode

Removes dead code. Equivalent to #pragma opt_dead_code.

[no]deadstore

Removes dead assignments. Equivalent to #pragma
opt_dead_assignments.

[no]lifetimes

Computes variable lifetimes. Equivalent to #pragma opt_lifetimes.

[no]loop[invariants]

Removes loop invariants. Equivalent to #pragma opt_loop_invariants.

[no]prop[agation]

Propagation of constant and copy assignments. Equivalent to #pragma
opt_propagation.

[no]strength

Strength reduction. Reducing multiplication by an array index variable to addition.
Equivalent to #pragma opt_strength_reduction.

[no]dead

Same as -opt [no]deadcode and [no]deadstore. Equivalent to
#pragma opt_dead_code on|off and #pragma
opt_dead_assignments.

[no]peep[hole]

Peephole optimization. Equivalent to #pragma peephole.

[no]schedule

Performs instruction scheduling.

Command-Line Options for Optimization

77CodeWarrior Build Tools Reference for the eTPU

display | dump

Displays complete list of active optimizations.

Command-Line Options for Optimization

78 CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for eTPU Code Generation

79CodeWarrior Build Tools Reference for the eTPU

10
Command-Line Options for
eTPU Code Generation

-kif | -keep_ intermediate_ files

Keep intermediate files

-lpm

Use linking process model. In this mode, the compiler creates a separate object file for
each compilation unit and the linker links them all together. In the normal mode, all files
are compiled together one after the other. For this reason, in the normal mode it is not
possible to use libraries or any other old object file and link it together with another object
file.

-big_memory_model

Big memory model. Use indirect jumps. This is useful when using lpm and the linker
issues errors, which imply that a jump is too long.

-not_engine_relative

Do not use engine relative addressing mode in etpu2.

Command-Line Options for eTPU Code Generation

80 CodeWarrior Build Tools Reference for the eTPU

-no_32bit_err

Do not issue an error for 32 bit arithmetic operations.

-warn_data

Warn about stack and static data usage.

-[no]sched

Schedule assembly instructions. This is the default.

Working with the Assembler
Understanding the eTPU Assembler

81CodeWarrior Build Tools Reference for the eTPU

11
Working with the Assembler

This chapter explains the Enhanced Time Processing Unit (eTPU) assembler, and shows
you how to use it with assembly source code.

This chapter contains these topics:

• Understanding the eTPU Assembler

• Using the Command-Line Assembler

• Assembly File Layout

• Instructions and Directives

• eTPU Assembler Preprocessor

Understanding the eTPU Assembler
The eTPU assembler processes assembly-language source statements written for
Freescale's family of communication microcontrollers. The assembler translates source
statements into object files with a format compatible with other eTPU assembler software
and hardware products.

The assembler processes assembly source files by reading the contents and preprocessing
each line, as described in “eTPU Assembler Preprocessor” on page 97.

The assembler parses each line of code (as described in “Assembly File Layout” on
page 87) in order to verify correct syntax. It then encodes all recognized instructions and
directives as object code in the specified output layout.

Using the Command-Line Assembler
This section shows you how to invoke the assembler from the command line, for files
outside of the CodeWarrior development environment.

To run the assembler command-line executable, type the full path to the executable at the
Windows command prompt.

Working with the Assembler
Using the Command-Line Assembler

82 CodeWarrior Build Tools Reference for the eTPU

Optionally, you can add the path of the eTPU tools folder to your PATH environment
variable. Then you can simply enter the name of the tool, etpu_bins.exe, to run the
assembler.

etpu_bins
etpu_bins is a wrapper used for all binary utilities such as assembling and linking.

• Assembler is invoked with etpu_bins --asm inputFile

• Linker is invoked using etpu_bins --ld inputFile

• Disassembler is invoked using etpu_bins --elfdump inputFile

• Size utility is used with etpu_bins --size inputFile

The remaining chapter relates to the assembler tool. The linker behaviour is described in
the next chapter. A single input file is allowed. The -i (pre-include) option can be used
to specify more input files.

File Extensions
In case the type of file makes a difference to the tool, the type is taken from the file’s
suffix. Extensions and their meanings are shown in Table 11.1.

Table 11.1 File Extension Meanings

Extensions Type of File

.s, .asm, .uasm, .ucode An assembly source file

.h A C or assembly header file

.c A C source file

.o, .obj, .eln An Elf relocatable file

.elf, .eld An Elf executable file

.a, .lib A library file

.lcf A linker command file

.d A makefile dependency file

.map An assembly map text file

.srx, .srec An S-records file

Working with the Assembler
Using the Command-Line Assembler

83CodeWarrior Build Tools Reference for the eTPU

In order to force one of these types on an arbitrary given input file, the option -ex can be
used with one of the regular extensions known to represent the requested type. For
example, -ex .o is used to convince etpu_bins that its input is an Elf relocatable
object file.

When no output format (-elf or -srx) is explicitly selected, as in the example
etpu_bins --asm file.s, the tool will check syntax validity and no output will be
produced. When the
-srx switch is added, the created file will have the extension .srx (not .srec).

Command-Line Syntax
The command-line syntax for the assembler is:

etpu_bins --asm [options] inputFile

The assembler does not require special filename extensions for input file names and
ignores the actual filename extension specifed on the command line. Instead, the
assembler uses the base filename to append appropriate extensions when generating the
output file names.

For example, this command line causes the assembler to assemble file.s into an S-
record file named file.srx:

etpu_bins --asm -srx file.s

The assembler normally reports error messages to stderr, but you can redirect error
messages to a file by supplying the -err filepath command-line switch. The
assembler indicates the total number of error messages in the tool exit status.

TIP To detect and report invalid instruction sequences, use the -lint command-line
switch.

Command-Line Switches
All command line switches begin with the dash (-) character. If a switch requires an input
value, you can enter it as a space-delimited argument immediately following the switch.
Alternatively, you can attach the value to the switch name with the equals (=) character.
For example, both of these are valid:

-o outfile

-o=outfile

When the value is optional the argument must use the '=' notation (i.e. -switch=val
and not -switch val). Each switch name determines whether the following command-
line word will serve as its argument, will be the next switch, or is an input file. For

Working with the Assembler
Using the Command-Line Assembler

84 CodeWarrior Build Tools Reference for the eTPU

example, the following command line causes the assembler to assemble file.s into an
S-record file named new_name.srec:

etpu_bins --asm -o new_name.srec -srx file.s

The assembler processes its arguments from left to right. For example, the following
command line defines the symbol one, reads the input file pre_inc.s, defines the
preprocessor macro TWO, then assembles main.s:

etpu_bins --asm -d one -i pre_inc.s -D TWO main.s

NOTE In the example above, the file pre_inc.s cannot use the preprocessor macro
TWO, since the macro is only defined after the assembler processes
pre_inc.s.

Table 11.2 describes each of the command-line switches the assembler supports.

Table 11.2 Assembler Command-Line Switches

Options Switch Description

General
Options

-h Print a short help message and quit

-V Print the version of the etpu_bins tool and quit

-f filepath Read more command-line arguments from filepath

-ex ext Treat input as having extension ext

-arch arch Print a list of the supported architectures

Output Options -o filename Set the output file name to filename

-srx Create output file in S-Record format with filename extension
.srx

-elf Create output file in relocatable ELF format with filename
extension .elf

Working with the Assembler
Using the Command-Line Assembler

85CodeWarrior Build Tools Reference for the eTPU

-map -src [=val] Create a text file with filename extension .map where each line
shows the address and data generated from the original source

The optional argument, val, is a consecutive string of one or
more of these characters:

• m — expand multi-line macros

• a — show addresses

• s — show memory address space

• j — show include nest levels

• n — show source line numbers

• r — show relative address offsets

• g — show debug sections

• w — track source file changes

To specify an explicit map file name use ':<file name>' as last
sub-option (for example -map=w:out_map will name the map
file 'out_map'.

-sym Create a text file with the .sym filename extension, listing all
global symbols defined in the source code

Debugging
Options

-kl Where relevant, keep track of local labels defined in source
code

-g Effective only when -elf is used

generate Dwarf2 debugging sections

Processor
Options

-E Expand all macros and other preprocessor directives and
operations to stdout — the -o switch can be used to save
results to a file

-D sym=val Set the value of symbol sym to val as if defined by a source
code directive (#define sym val).

Note: The assembler processes macro-related switches from
left to right on the command line.

-U sym Clear the value of symbol sym as as if undefined by a source
code directive (#undef sym)

Note: The assembler processes macro-related switches from
left to right on the command line.

Table 11.2 Assembler Command-Line Switches (continued)

Options Switch Description

Working with the Assembler
Using the Command-Line Assembler

86 CodeWarrior Build Tools Reference for the eTPU

-d sym=val Set the value of assembly symbol sym to val as if defined using
the .equ directive (.equ sym val)

Note: The assembler processes macro-related switches from
left to right on the command line.

-dg sym=val Set the value of assembly symbol sym to val as if defined using
the .equ directive (.equ sym val), and declare it a global
symbol

Note: The assembler processes macro-related switches from
left to right on the command line.

-I path Append path to the user path

(see “User and system paths” on page 105)

-IS path Append path to the system path

(see “User and system paths” on page 105)

-i filepath Include file filepath in the code before processing any following
argument input files

-is filepath Include the system file filepath in the code before processing
any following argument input files

-M filepath Emit Makefile rules for all input files to the file filepath

(Each rule makes its target dependant on all included source
files.)

-MM filepath Emit Makefile rules for all input files to the file filepath, omitting
any system files

(Each rule makes its target dependant on all included source
files.)

-[no]sys Treat ‘#include <...>’ as system files

Error Handling
Options

-err filepath Redirect error messages to filepath rather than to standard
error

-Wall Print extra (more strict) error messages

-Werror Treat warnings as errors

-Wnone Cause warnings not to be issued

Table 11.2 Assembler Command-Line Switches (continued)

Options Switch Description

Working with the Assembler
Assembly File Layout

87CodeWarrior Build Tools Reference for the eTPU

Assembly File Layout
This section explains the assembly source file layout. eTPU assembly language includes
mnemonic operation codes for machine instructions in the microcontroller’s instruction
set and provides mnemonic directives for specifying assembler auxiliary actions. It also
explains how to define and use macro instructions with predefined statement sequences,
and how to use conditional assembly code.

Instructions, directives and Packets
The eTPU processes (fetches and executes) 32 bits words. Each word contains one or
more instructions that are all executed in parallel (but see "parallelism issues" in the eTPU
block guide for exceptions). The set of instructions encoded into or decoded out of a single
memory word is called 'a packet'.

NOTE Another terminology is using the pair Instruction/Sub-instruction for referring
to Packet/Instruction respectively.

Syntax
Each instruction (or directive) appears in the code as a separate line. To combine several
instructions into a packet, one can either write the instructions in the same line or surround
them with curly braces ('{', '}'). Inside a packet, instructions are separated by the
semicolon char (';') or optionally (when braced) by the newline char. Eempty lines inside
braced packets are ignored.

For example, if I1 and I2 are instructions, the following are legal packets:

Optimising
Options

-sched Schedule Instructions

Miscellaneous
Options

-lint Dump a list of detected possible errors to stderr

(no object file is created)

-extern Assume all undefined symbols are external

-global Assume all defined symbols are global

Reserved
Options

-ide Reserved for IDE invocations

Table 11.2 Assembler Command-Line Switches (continued)

Options Switch Description

Working with the Assembler
Assembly File Layout

88 CodeWarrior Build Tools Reference for the eTPU

• I1

• { I1 }

• I1 ; I2

• { I1 ; I2 }

• { I1

I2 }

• {

I1 ;

I2

}

NOTE Directives can not take part in packets.
Labels are not part of packets. they can only precede one.
A single instruction can not cross line boundaries (i.e. all of the instruction's
string must reside in the same line).
Comments inside packets should follow the last instruction in their line.

Statement Layout
Programs written in assembly language consist of a sequence of statements, each
occupying one line of text.

TIP You can extend a single statement to several lines by ending each partial line of
the sequence with the line-continuation symbol, a backwards slash character (\).

NOTE Lines, including extended lines, can span up to a maximum of 512 characters.

Each source statement has the following syntax:

label: instruction comment (each field is optional)

Labels is the left-most non-blank token, and must follow immediately by a colon character
(:). Labels are valid symbols (see “Symbols” on page 90).

Labels, instructions, mnemonics, directives, attributes, registers, and so on, are all case
sensitive.

Instructions, as well as assembly directives, use the following format:

mnemonic[attributes] [operands]

Working with the Assembler
Assembly File Layout

89CodeWarrior Build Tools Reference for the eTPU

NOTE The mnemonic field determines the number and format of the attributes and
operands fields.

• Mnemonics are machine instructions and aliases described in the eTPU assembly
manual.

• Attributes are optional extensions to instructions that can control the behavior of the
CPU during execution of a given instruction. Attributes are concatenated to
instructions by a decimal character (.) and the attribute name, using this syntax:

mneumonic[.attribute1][.attribute2] (and so on)

Attributes are divided into groups, each group controlling a specific aspect of behavior.
For instance, the logical and instruction, and has the attribute group: ccsv (with
four members .f .f8 .f16 and a default, nameless, member). This
group controls the sampling of conditional codes.

NOTE Some attribute groups have default values that you can omit, while others
require an explicit value.

For example:

movei.f a,1

This movei instruction has the attributes that sets appropriate condition flags in the status
register. The attribute group involved has two attributes the default attribute does not have
an explicit name.

Operands appear in the instruction portion of a command as a list separated by the comma
character (,). Operands describe hardware entities such as addresses, registers, sizes, and
so on, that are subject to manipulation by instructions.

Comments begin at the left-most occurrence of two consecutive forward slash characters
(//) and continue until the end of the line.

As described in the eTPU Assembler Manual, the elements you can use in operands are:

• Registers

• Integer Immediate Values

NOTE Exact operand format and usage depend on the related instruction.

Registers
Register names appears in the eTPU assembler manual and are considered reserved
names, which means that these names cannot be used as identifier names for labels or
symbols.

Working with the Assembler
Assembly File Layout

90 CodeWarrior Build Tools Reference for the eTPU

Some instructions also mention bit names. Bit values are written as a register and bit
combination (i.e. register[bitNumber]), or better, when given a specific name in the eTPU
Assembler Manual, as a lowercase symbol. To determine exact use, consult the
instruction’s description.

Integer Immediate Values
Use immediate integer values (in decimal, hexadecimal or binary notation) to describe
absolute and relative addresses and constants that are part of numeric calculations.

In most cases, you can replace an integer constant with a constant arithmetic expression,
using a combination of these operators: +, -, <<, >>, *, /, &, &&, |, ||, !, ~, ==, !=, <,
<=, >, >=, and parentheses. Priority and interpretation follows the C language standard.
The assembler stores and manipulates integer constants by using 32-bit signed arithmetic.

Symbols
Symbols are placeholders for integer constants. You can use symbols wherever a single
integer constant is required. Symbol names cannot contain spaces and can consist of
alpha-numeric characters, the underscore character (_), and the decimal character (.).
Symbol names can be up to 128 characters long.

Some symbol names are reserved for special purposes. Currently these include all names
beginning or ending with the underscore character (_) or decimal character (.), as well as
all registers and bit names.

Declare and define symbols to assign them value, scope, size and other attributes.

Defining a symbol
You can assign values to symbols in two ways:

• create a label — the value is the offset of the defined label, relative to the beginning
of the section in which the label definition appears

• use the ‘.equ symbol, value’ or '.label symbol, value' directives
— the value is explicitly specified in the definition

Scope
A symbol's scope is either local or global. Symbols not otherwise declared are local,
meaning they are defined and used only within the file in which they appear. To use a
symbol outside the file in which it is defined, you must use the .global symbol
directive to declare that symbol as global so it will be visible to code in other files. To
allow code in other files to use the symbol, you must use the .extern symbol
directive to declare the symbol as external.

Working with the Assembler
Assembly File Layout

91CodeWarrior Build Tools Reference for the eTPU

Weak symbols
Weak symbols, defined using the .weak symbol directive, are treated as global by the
assembler, however the linker handles them differently. When the linker resolves an
external symbol, the linker attempts to use the (single) global definition for that symbol. If
no such definition exists, the linker uses the first corresponding weak symbol definition it
encounters in one of the linked files.

Scope rules
All .global declarations take precedence over .weak declarations. Both .global
and .weak declarations take precedence over .extern declarations. To avoid link
errors, you must declare symbols used and not defined in a file as external.

NOTE The assembler must be able to fully resolve symbols before you can use them
in the definition of an .equ symbol, value directive or symbols
influencing the address location of the generated code (see “Data Storage” on
page 93).

Strings
A string is a sequence of characters enclosed in double quotes (“). Characters preceded by
the backslash character (\) have special meaning, as shown in Table 11.3.

Table 11.3 Special Characters In Strings

Special Characters Expands To

\b backspace

\n new line

\r return

\t tab

\” double quote

Working with the Assembler
Instructions and Directives

92 CodeWarrior Build Tools Reference for the eTPU

Instructions and Directives
The assembler does not translate directives directly into machine-language instructions.
Instead, directives allow you to control issues such as memory layout (addresses for
storing data, data contents, data alignment), symbol manipulation, structural grouping of
statements, and so on.

Directives begin with the decimal character (.) and feature syntax similar to that of
instructions. A label preceding a directive is not considered part of the directive.

Memory Spaces and Sections
A section is a continuous memory block. Sections are basic logical units you can use to
organize code and data into groups, controlling size, content and starting point of each
group or section. At loading time, the content of the user-defined logical sections and
possible system-added extra sections are loaded into actual memory segments.

eTPU architecture has two types of memory space and each loadable section belongs to
exactly one of them. Defining code or data from outside a section is not allowed:

• Code Space (denoted c) is intended for instruction storage. It features a 32-bit access
width, within which the 32 bits instructions are stored (aligned to 4 bytes addresses).
The address range for this space is 24 bits.

• Data Space (denoted d) is used to load and store data. It also has an access width of
8 bits and an address range of 24 bits.

NOTE Debug and other unloadable sections do not relate to a physical memory space
and have an imaginary access width of 8 bits.

Use of the term address should be understood as a shortcut to the full address. The latter is
space:addr in which addr is the integer location for the word to be found in the

\\ backslash

\xnn hexadecimal equivalent — For example, \x6B expands to
the letter k.

Note: Hexadecimal strings required by the .hexa directive
do not require the \x prefix. Instead, the .hexa string is a
sequence of two-digit hexadecimal values, each digit
represented by one ASCII character. For example, .hexa
“4869” stores two bytes: 72, and 105.

Table 11.3 Special Characters In Strings (continued)

Special Characters Expands To

Working with the Assembler
Instructions and Directives

93CodeWarrior Build Tools Reference for the eTPU

space memory space. For example: 'nop at c:57' is the instruction NOP located at
address 57 in the code memory space. In most cases, however, there is no need for a space
reference as it is uniquely inferred by the instruction. The only time space names are
explicitly mentioned is when a memory space is assigned to a section using the .org
address or the .section sec directive.

Sections can be either relative or absolute. Relative sections are declared by name and
space (using the .section sec directive) and are assigned an address during the
linking stage. Section names are symbols. When the memory space is omitted, the section
is considered a code section. Some predefined special sections (as well as absolute
sections, defined below) used by the Elf and Dwarf2 binary formats have names that begin
with the dot character ('.'). As an exception, these sections might also be pre-assigned to
a space (for example, the .data section will be loaded as data).

Absolute sections are declared using the.org address directive. They are nameless -
the name is automatically built from space and address characteristics - but must have a
known memory space and address. When the memory space is omitted it is assumed to be
the code space. .org sections can not be repeated, however - other address overlaps
between absolute sections will be checked and flagged by the linker tool.

Upon meeting a relative section directive, the following content is added (without
alignment) at the end of the section portion generated so far.

.org sections, on the other hand, can not be repeated. The .previous directive can be
used to switch back and forth between any two sections. Address overlaps between all
sections will be checked and flagged by the linker tool.

Data Storage
Each code statement stores 4 bytes into memory. Data can be stored in different sizes and
ways.

In general, code and data statements are stored in the memory sequentially, following their
order in the text. At any given moment, the storing address is termed the current location
(see “The Current Location” on page 96) and is relative to the beginning of the current
section within which the next statement (code or data) will be stored. The current location
can be changed as shown in Table 11.4.

Working with the Assembler
Instructions and Directives

94 CodeWarrior Build Tools Reference for the eTPU

Table 11.4 Data Storage Directives

Directive Action

.section sec Associates the following code and data with section sec.

See “Memory Spaces and Sections” on page 92 for more
information.

.org address Store the following code and data at the resolved address. This
statement begins a new section.

.previous Revert to the previous section (allows you to toggle between
.section and .org sections).

.endsec End the current section and returns to the previous section on
the stack.

.word integer Starting at the current location, stores the numeric word integer
(in big endian).

The word’s default size is the current section’s natural word
width (in bytes), but can be explicitly stated using the .b1, .b2,
and .b4 attributes. The storage location is aligned according to
word size by default. You can use the attribute .n to skip
alignment.

.leb 128 Store a 32-bit integer in LEB128 format (for use in DWARF
objects, for instance).

Size can vary from one to four bytes. Use attributes .s and .u to
store signed and unsigned integers (the default is unsigned).

.hexa string Starting at the current location, stores the hexadecimal bytes
string.

For example, .hexa “65FF” stores two bytes: 101, and 255.

.ascii string Starting at the current location, stores the ASCII bytes in string.

.asciz string Starting at the current location, stores the ASCII bytes in string,
and append a zero byte to the end.

Working with the Assembler
Instructions and Directives

95CodeWarrior Build Tools Reference for the eTPU

NOTE The .align directive will align the current location with respect to the base
of the current compilation unit only. If the object is linked with other objects,
effective alignment will depend on the linker’s configuration.

Symbol Directives
During execution all symbols are stored in a single table, the symbol table. Symbols must
be defined exactly once by placing them as labels, giving explicit values, using the .equ
and .def directives, or declaring them external through use of the .extern directive.

.skip integer Increment the current location integer bytes.

The number of bytes incremented is integer times the current
section’s natural word width (in bytes). You can explicitly
specify the number of bytes by using the .b1, .b2, and .b4
attributes. Skipped bytes are filled with zero in the data space,
and with 0xFF in the code space.

.align integer Advance the current location (with padding) as required to be
aligned on a word address boundary set by 2^integer (where
integer has a range of 1 through 16). You can use the .b1, .b2,
and .b4 attributes to specify other word sizes

Table 11.5 Symbol Directives

Directive Description

.equ symbol, value Define symbol as an absolute symbol, and
set its value to value. value must be a
constant expression (all referenced symbols
must be resolved).

.global symbol Declare symbol as a global symbol whose
value is available to other modules outside
the current compilation unit. symbol must be
defined in the same compilation unit.

Table 11.4 Data Storage Directives (continued)

Directive Action

Working with the Assembler
Instructions and Directives

96 CodeWarrior Build Tools Reference for the eTPU

The Current Location
The current location, explicitly referenced by the predefine symbol '.', continuously
points to the address of instruction or data storage. Current location units reflect those of
the actual memory section (usually one or four bytes) wherein they will be located. For
absolute sections, the location is the actual address. For relative sections, the location is
calculated as though the section begins at address zero.

Example:

jmp.+3

The above example transfers control to the third instruction appearing after the current one
('.').

CAUTION Explicit use of the current location symbol is not considered safe.

Change of Flow
Some instructions contain direct jumps to other points in the code. The target of the jump
can be specified as any legal expression. However, to create code that is less prone to error
and easier to maintain, it is better to make this expression a label. When using the option
–Wall, etpu_bins will warn if this convention is violated, as illustrated in Listing 11.1.

Listing 11.1 Using Labels in Code

.extern There

.equ Here,0x7686
Start:

jmp 0x3075 ; Warning - a constant
jmp Start ; OK
jmp Start+5 ; Warning - an expression
jmp There ; OK (assuming a label)
jmp Here ; Warning (a symbol that is not a label)
jmp . ; Warning (a symbol that is not a label)

.extern symbol Declare symbol as a symbol defined outside
the current compilation unit, whose value is
available in the current compilation unit.

.weak symbol Declare symbol as a global weak symbol.

Table 11.5 Symbol Directives (continued)

Directive Description

Working with the Assembler
eTPU Assembler Preprocessor

97CodeWarrior Build Tools Reference for the eTPU

Code Checking
During code analysis, as when the -lint option is used, you can assume that:

• Every instruction and label defined in the code is reachable.

• Instructions without a label at their address are reached only after following the
previous instruction. This, in turn, is assumed to originate from the previous address.

• For every instruction, its following instruction must also be known (this does not
include indirect and scheduler related change of flow instructions).

Deviations from the last convention are flagged as ill-formed code and may cause the tool
to reject input, as shown in Listing 11.2.

Listing 11.2 Deviations from Convention in Code

Start:
nop
move r1,r12 ; can only be executed after the nop

Loop_prefix:
.align 4 ; Invalid - current instruction is not known

Loop:
addi r4,1
.word 0x187983 ; Invalid - code flow interrupted by data
sub.f r2,r2,r3
jmp.n zero,Loop
nop ; Invalid - what next?

eTPU Assembler Preprocessor
The etpu_bins preprocessor enables macro definitions, conditional assembling, and multi-
level file inclusion. These are achieved through preprocessor directives and operations.
Preprocessor directives features lines with special syntax that are recognized and
processed (by the preprocessor) based on their meaning. All directives are placed at the
beginning of the line and start with the pound character (#). With 'operations', the
directives are placed inside lines and are replaced accordingly by the preprocessor.

All objects handled by the preprocessors are sequences of characters called 'tokens'.
Tokens types can be numbers, symbols, attributes, strings and operators. Consequently,
the arguments for some preprocessor directives and operations might be limited to specific
types (e.g. the '#include' directive expects its argument to be a single string) or behave
according to the type of the argument (e.g. the '%str(X)' operation tests for a single
string token).

Working with the Assembler
eTPU Assembler Preprocessor

98 CodeWarrior Build Tools Reference for the eTPU

Operators, however, may require a specific kind or number of tokens as operands.
Operations experiencing bad input will either evaluate to the zero token (the %str(X)
operation tests its argument as a single-string token) or will create an error (the
#include directive expects its argument to be a single string).

Preprocessor Macros
Macros, regular and multi-lined, enable the definition and use of named segments of text.
A macro invocation is also named 'a call'. It is necessary to define macros in the code prior
to invocation. Code expansion is done during the call (and not while preprocessing the
definition).

Regular (Single-Line) Macros
A single-line macro is defined on a single line of code using the #define directive:

#define macroName[optionalArgs] definition

• macroName is a case-sensitive, valid identifier.

• optionalArgs is an optional comma-separated list of unique identifiers enclosed
by parentheses. When a macro has arguments, parentheses must immediately follow
the name - no white space is allowed.

• definition is an arbitrary combination of tokens intended to replace the call.

For example:

#define START_OF_FUNC 0x1b3f

This example defines START_OF_FUNC as a macro with no arguments. The assembler
replaces the identifier START_OF_FUNC with the number 0x1b3f wherever the
identifier appears in the code.

To substitute the value of an argument within a definition, the argument's name must be
placed in the substituting code. For example:

#define param(offset,word_size) offset + 4 * word_size

This example code replaces the call param(MY_START, 11) with MY_START + 4
* 11.

NOTE The token sequence 4 * 11 does not evaluate to 44 at compile time. To
evaluate an expression at compile time, use %eval: expression
evaluation.

Working with the Assembler
eTPU Assembler Preprocessor

99CodeWarrior Build Tools Reference for the eTPU

TIP If you define macros with numerical calculations, we recommend that you enclose
each argument occurrence (or even the entire definition) with parentheses. Doing
so prevents unwanted side effects during evaluation.

For instance, the previous example definition would be better defined as:

#define param(offset,word_size) ((offset) + 4 *
(word_size))

It is possible to nest macros by defining them inside of other macros. Macro expansion
normally occurs during invocation and not during compilation (you can use the
#xdefine directive to expand macros during compilation instead). For example, in the
following two lines, the assembler expands the BBB macro to 100 + 200 regardless of
the order of definition.

#define AAA 100

#define BBB AAA + 200

Circular definitions are allowed, but invocation of the macro will stop after one level of
expansion. For example, the following example code expands the next(10) only once
to next(10) + 1.

#define next(a) next(a) + 1

next(10)

NOTE All macro definitions have a signature (name and parity). Therefore, the
assembler does not generate error messages for calls to macros with the same
name that have a different number of arguments; instead, the assembler silently
ignores them (no expansion occurs).

Macro names are not assembly symbols. During assembly, the assembler does
not assign macros numeric values. When preprocessing is complete, all macros
have been expanded, and their corresponding names cease to exist.

Multi-line Macros
A multi-line macro includes all code lines between a #macro and the closest following
#endm directive. To invoke a multi-line macro, the macro name must be the first, or left-
most, token in the line of code (the name can be prefixed by a label and white space).
Multi-line macro arguments are similar to those for single line macros, except that the
former are defined and used without parentheses. Multi-line macros cannot be defined
within macros of the same type.

Working with the Assembler
eTPU Assembler Preprocessor

100 CodeWarrior Build Tools Reference for the eTPU

For example, the code in Listing 11.3 defines a macro that, given a register (R), creates the
value 3 * R + 2 and stores that value in register a. A possible invocation of this macro
is do_it p.

Listing 11.3 Multi-line Macro Example

#macro do_it R
 move a,R
 add a,a,R
 add a,a,R
 addi a,2
#endm

NOTE The assembler does not perform type or semantic checking on the arguments.
Consequently the macro can be invoked, for example, with the argument a +
4, which would result in the expansion of invalid code. Passing R1 as an
argument results in the calculation, with unexpected results, of 4 * a + 2.

Local Labels inside a Macro
When labels are defined or used inside a macro it follows that all macro invocations will
use that name. This may be problematic (and, in fact, invalid) as labels are not singly
defined. To declare and use labels local to macros, the label name should be prepended
with \@. For example, the following code causes the assembler to interpret the label
next in the epilog macro differently each time it is invoked:

#macro epilog

jmp.n zero,next\@

next\@:

#endm

The mechanism implementing this behavior replaces these labels with new ones that use
an integer counter beginning with zero and incremented on each call.

Default values for Macros
Both types of macros accept default values for their parameters. Default values can be set
to the last parameters by using the equal character (=). The value assigned is the following
sequence of tokens ending at the first comma met. For the last parameter, default value
ends at the closing right parenthesis (in single-line macros) or at the end of the line (in
multi-line macros), as shown in Listing 11.4.

Working with the Assembler
eTPU Assembler Preprocessor

101CodeWarrior Build Tools Reference for the eTPU

Listing 11.4 Appropriate Macro Ending

#macro ADD R, A = 2, B = 3
movei R, A + B

#endm

ADD a, 34
ADD a,78,98
ADD a

The macro in Listing 11.4 expands to the code in Listing 11.5.

Listing 11.5 Macro Expansion

movei a, 34 + 3
movei a, 78 + 98
movei a, 2 + 3

TIP The actual number of arguments passed in a call can be obtained using %0.

Macro-Related Directives
See Table 11.6 for macro-related directives.

Table 11.6 Macro-Related Directives

Directive Explanation

#assign Allows you to quickly delete and redefine the
value of a single-line macro with no
parameters.

#define Defines a single-line macro as explained in
“Regular (Single-Line) Macros” on page 98.
Single-line macros can be declared inside
multi-line macros.

#endm Ends a macro definition.

Working with the Assembler
eTPU Assembler Preprocessor

102 CodeWarrior Build Tools Reference for the eTPU

The #assign directive

#assign <name> <numeric expression>

first deletes the macro and then redefines it as if defined using

#xdefine <name> %eval(<numeric expression>)

An example of this is shown in Listing 11.6.

Listing 11.6 Using the #assign Directive

#define XXX 1
#assign XXX 2
#assign XXX XXX + 1
#assign XXX YYY ; invalid

The first three lines above will assign macro XXX the values 1, 2, and 3 respectively. The
last line is invalid since the defining expression is not a numeric constant.

#macro Begins the definition of a multi-line macro. As
macro names can override special
identifiers, you can create macros that
replace ordinary instructions. Single- and
multi-lined macros share the same name
space; so only one macro type can exist for
an identifier.

#rmdef Deletes all user macro definitions. Effect the
same as using the #undef directive on all
existing user macros.

#undef Use this directive to reverse the effect of a
#define, #xdefine, or #macro directive,
cancelling any definitions made for an
identifier. For example, #undef XYZ causes
the assembler not to expand further
references to the term XYZ.

#xdefine Similar to the #define directive, except that
the assembler does not postpone definition
expansion until the macro is invoked.
Instead, the assembler expands the
definition at compile time.

Table 11.6 Macro-Related Directives (continued)

Directive Explanation

Working with the Assembler
eTPU Assembler Preprocessor

103CodeWarrior Build Tools Reference for the eTPU

Conditional Assembly
The assembler can assemble code portions in order to fulfill conditions set by the user
conditions defined with clausal directives similar to the if statement of the C program, as
shown in Listing 11.7.

Listing 11.7 Assembler Directives

#if {condition1}
// this code is processed only if condition1 is true

#elif {condition2}
// this code is processed if condition1 is false and
// condition2 is true

#else
// this code is processed if both conditions are false

#endif

NOTE The #else and #elif clauses are optional. You can use several #elif
clauses in succession. You can also nest #if conditions.

Another illustration of conditional assembly is Listing 11.8.

Listing 11.8 Conditional Assembly

#if %defined(INTERRUPTS_LEVEL)
nop
#if INTERRUPTS_LEVEL < 3

or.f a,d,a
#endif

#else
ori.f a,d,TRNR

#endif

#if
The #if directive, defined as #if expr, results in the processing of code only if the
numeric expression expr is evaluated to an integer other than zero. All expression
elements must be known at the preprocessing point when expressions are met, or error
messages occur.

The condition of the #if clause is preprocessed before evaluation. Therefore it is possible
to use preprocessor macros and operators as parts of the expression.

Working with the Assembler
eTPU Assembler Preprocessor

104 CodeWarrior Build Tools Reference for the eTPU

#ifdef
The #ifdef directive, defined as #ifdef macro, results in the processing of code
only if the macro has been defined by the #define directive.

#ifndef
The #ifndef directive, defined as #ifndef macro, results in the processing of code
only if the macro has not been defined by the #define directive.

#elif
The #elif directive, similar to #if, must follow an #if or #elif directive. This
offers another expression to test in case the previous conditions failed.

#else
The #else directive results in the processing of following code lines, in the instance that
all conditions defined by the else's corresponding #if and #elif have failed.

#endif
Every #if directive must end with a matching #endif directive. A file shouldn't end
unless its active condition has been concluded.

#abort
The #abort directive aborts preprocessor operations (also responsible for reading the
input). Assembling will continue only on the lines produced thus far.

#quit
The #quit directive terminates overall assembling and, with an exit status of 1, returns
control to the user.

#error and #warn
The #error directive prints an error message to standard error as specified in its string
operand.

Likewise, #warn directives produce a warning message.

Working with the Assembler
eTPU Assembler Preprocessor

105CodeWarrior Build Tools Reference for the eTPU

NOTE Any non-string arguments to these directives are subject to macro expansion,
thereby allowing messages containing previously calculated values or texts.

#rem
Like comments, #rem directive lines are simply discarded by the preprocessor.

Including Files
The #include file directive results in the inclusion of the named source file in the
code. File names need to be quoted as described below. On all operating systems the slash
character (/) is used to separate directories and file names.

User and system files
The assembler makes a distinction between user and system files:

• User file names are double quoted (“user_file”).

• System files are regular text files that are part of the tool distribution. The files are
identified by name and, you are not concerned about their exact location. System
files are enclosed by angled brackets instead of double quotes (<system_file>).

#include
The directive #include directory is used to begin processing a new file. After
completing that file (and all files recursively related) the next line of the current file will
be read.

User and system paths
Search for user files in the directory lists within a user path list. When code is executed,
this list contains the current directory and the directory from which the tool was invoked.
This is then extended to contain new items from each '#include' directive met, and
the new file's directory is added to the user path.

Searches are retroactive — when files with the same name reside in the path, then the file
chosen for inclusion is taken from the path's most recently added directory, unless the
file's absolute name is provided. You can explicitly add more directories to the path from
within the code by using #path directory or a command line option. All path
additions made by a file during its processing are deleted upon file completion. System
files are similarly searched in the 'system path'. The path begins from the directory
containing the etpu_bins tool.

Working with the Assembler
eTPU Assembler Preprocessor

106 CodeWarrior Build Tools Reference for the eTPU

You are responsible for avoiding repeated inclusion of files. This can be achieved by
defining a distinct macro in the included file and testing for its definition.

Example: the following code can be used to prevent multiple inclusion of the file
'foo.def':

#ifndef(FOO_DEF)
#define FOO_DEF
; actual content of file 'foo.def'

#endif // FOO_DEF //

#path
The directive '#path {directory}' adds directories to the include search path.
Enclose the directory name in double quotes. To add a directory to the system path,
enclose the directory name in angled brackets.

NOTE As this directive seriously limits portability of source code, its use is not
generally recommended. It is usually preferable to update the path using the
IDE or from the command line.

Preprocessor Operations
Most operations begin with the modulo character ('%'). This section lists all preprocessor
directives and operators. Nested operator behavior, however, is not defined.

%defined
The '%defined' operator checks the definition of single-line macros: %defined
(MACRO) will evaluate to true (the integer one) if a single-line macro called 'MACRO'
exists, otherwise it will evaluate to zero. To test whether or not a macro has been defined,
the result of the above noted operation can be negated (e.g., '#if
!%defined(MACRO)').

when testing definition of a single macro inside an #if condition, the shorter notation
(#ifdef / #ifndef) is preferred

%mac
The '%mac' operator checks for the existence of multi-line macros.

Working with the Assembler
eTPU Assembler Preprocessor

107CodeWarrior Build Tools Reference for the eTPU

%id, %int, %attr, %reg and %str
The condition operators, %id, %int, %attr, %reg and %str, test their single
token argument (normally an argument passed to a macro) in order to verify belonging to
a certain type. The operators perform as follows:

• %id tests for identifiers

• %int tests for integers

• %attr tests for attributes

• %reg tests for registers

• %str tests for strings.

%streq
The ‘%streq’operator compares the content of two strings.

%len
The '%len' operator evaluates the length (number of characters) of a string argument.

Example:

%len("abcd") // evaluates to 4

%eval
The '%eval' operator reads and evaluates an integer expression. The expression is
replaced by the result token.

#
The '#' operator is used inside single line macros to convert macro arguments into
strings. During expansion every macro argument preceded by the character '#' is
replaced (including the operator token) with the string constant token. The latter is formed
from the literal text of the argument.

##
During macro expansion the '##' operator is used inside single line macros to paste
tokens. Upon expansion the token pairs found on either side of each '##' operator (and
the operator itself), are replaced by a single token. The single token is a concatenation of a
replaced token pair. This operation will be performed only if one of the input tokens is a
macro argument and the result of the combination is a valid token.

Working with the Assembler
eTPU Assembler Preprocessor

108 CodeWarrior Build Tools Reference for the eTPU

%#()
This operator will freeze its result, i.e., during subsequent preprocessor activity the result
will not be further expanded automatically. Before doing so it might also do the
following:

• for one argument that is a string, the string will be broken into individual tokens.

• for more than one argument, the comma separated list of arguments will be
concatenated "as is" into a single identifier token.

%##()
Works like %#, but expands its arguments first.

%*()
Turns all tokens of its single argument non-frozen.

%**()
Same as %*, but expands its argument first

These operators can be used to create sophisticated macros, as demonstrated in the Dwarf2
header that comes with the standard distribution. However, as they tend to make the code
harder to follow, use should be considered with care.

Predefined Macros
The assembler defines a set of macros available for use.

__VERSION_NUM__
This macro expands to six digits hexadecimal integer 0xJJNNCC where JJ, NN and CC
are, respectively, the major, minor, and micro version numbers.

__VERSION__
This macro expands to a string containing the current version number.

Working with the Assembler
eTPU Assembler Preprocessor

109CodeWarrior Build Tools Reference for the eTPU

__FILE__
This macro expands to a string and features the original file name (as it appears in the
command line or the including '#include' directive) within which it appears.

__ABS_FILE__
This macro expands to a string and features the absolute path to the file name (as it appears
in the command line or the including '#include' directive) within which it appears.

__LINE__
This macro expands to the current number of source lines.

__DATE__
This macro expands to a string containing the current date.

__TIME__
This macro expands to a string containing the current time.

Working with the Assembler
eTPU Assembler Preprocessor

110 CodeWarrior Build Tools Reference for the eTPU

Working with the ELF Linker
Invocation and Command Line Switches

111CodeWarrior Build Tools Reference for the eTPU

12
Working with the ELF Linker

This chapter documents the CodeWarrior Executable and Linkable Format (ELF) Linker.
The linker is a command line tool used to join relocatable ELF object files into an
executable ELF file. The linker accepts the names of object and library files as arguments
and produces its result by arranging their content according to directives and templates
that reside in a Linker Command File. Most aspects of the linking process are described in
the LCF file, and some can be controlled by using command line arguments (for
contradicting options - the command line ones take precedence over the LCF).

The ELF Linker has several extended functions that allow you to manipulate code in
different ways. You can define variables during linking, control the link order to the
granularity of a single section, and change the alignment.

You access these functions through commands in the linker command file (LCF). The
linker command file has its own syntax complete with keywords, directives, and
expressions, that you use to manipulate the linker. The command file syntax and structure
is similar to that of a programming language, and is described in these sections:

• Invocation and Command Line Switches — describes the command line switches

• Structure of Linker Command Files—describes command file organization

• Linker Command File Syntax—shows how to direct the linker for specific tasks

• Alphabetical Keyword Listing—an alphabetical listing of LCF functions and
commands

• Code and Data Sections—shows how to determine to which memory space a section
loads

Invocation and Command Line Switches
This section shows the command line switches that linker supports.

Following is the syntax for linker usage:

etpu_bins --ld <linker arguments>

Table 12.1 describes each of the command line switches that linker supports.

Working with the ELF Linker
Invocation and Command Line Switches

112 CodeWarrior Build Tools Reference for the eTPU

Table 12.1 Linker Command Line Switches

Options Switch Description

General
Options

-h -help Display usage message

-V -version Display version number

-err <file> Log errors to file

-o -out <file> Specify output file name

-f <file> Read more arguments from a file

-arch <string> Choose architecture

Linking
Options

-lcf -script <file> Use a linker command file (a file with suffix .lcf is also
considered as the LCF file)

-xlcf Do not warn when using internal lcf (by default, in case no LCF
file is given, the linker issues a warning and uses a trivial LCF
template)

-e -m -main
<sym>

Set main entry point (this is the address execution will start
from)

-L <dir> Add <dir> to library search path

-l <file> Link library lib<file>.<ext> or <file>

-open_libs Consider all libs unconditionally

-d Perform sections dead stripping

-[no]links_abs Link all absolute ('.org') sections

-zerobbs Expand and zero-initialize .bss data section

-T <mem=addr> Set segment <mem> start address to <addr>

Debug Options -g Keep debug information

-log <string> Log link closure to file

-map Generate link map file

-[no]check Check objects compatibility (recommended)

-t -trace Print name of input files upon processes

Working with the ELF Linker
Structure of Linker Command Files

113CodeWarrior Build Tools Reference for the eTPU

Structure of Linker Command Files
Linker command files consist of the following three main segments that should appear in
this order in each file:

• Mandatory—Memory Segment—maps memory segments

• Mandatory—Sections Segment—defines segment contents

• Optional—Closure Blocks—forces functions into closure

Memory Segment
The memory segment divides available memory into segments. “MEMORY” on page 122
explains this segment type. Listing 12.1 shows an example MEMORY segment.

-y -trace_sym
<string>

Show all occurrences of symbol in objects

-
[no]check_segm
ents

Check segments address overlapping

-mseg Use segments names for output sections

Table 12.1 Linker Command Line Switches

Options Switch Description

Working with the ELF Linker
Structure of Linker Command Files

114 CodeWarrior Build Tools Reference for the eTPU

Listing 12.1 Example MEMORY Segment

MEMORY {
segment_1 (RWX): ORIGIN = 0x800000, LENGTH = 0x190
segment_2 (RX): ORIGIN = 0x801000, LENGTH = 0x19000

}

The (RWX) portion specifies these ELF flags:

• R — read

• W — write

• X — executable code

ORIGIN represents the memory segment’s start address. The address may also denote the
relevant memory space (c:0x800000), if the memory space is omitted, then the memory
space is determined according to the ELF flags.

LENGTH represents the memory segment’s size.

TIP If you cannot predict how much space a segment requires, you can use the
function AFTER and LENGTH = 0 (unlimited length) to have the linker
automatically fill in the unknown values.

Sections Segment
The sections segment defines the contents of memory segments and defines global
symbols used in the output file. “SECTIONS” on page 124 explains this segment type.
Listing 12.2 shows an example SECTIONS segment.

Listing 12.2 Example SECTIONS Segment

SECTIONS {
.section_name : //the section name is for your reference
{ //the section name must begin with a '.'

filename.o (.text) //put the .text section from filename.o
filename2.o (.text) //then the .text section from filename2.o
. = ALIGN (0x10); //align next section on 16-byte boundary.

} > segment_1 //this means "map these contents to
segment_1"

.next_section_name:
{

(more content descriptions)
} > segment_x // end of .next_section_name

definition} // end of the sections block

Working with the ELF Linker
Linker Command File Syntax

115CodeWarrior Build Tools Reference for the eTPU

Closure Blocks
The linker can automatically remove unused code and data (see “Dead Strip Prevention”
on page 117). Sometimes, however, certain symbols must be kept in output files, even if
code does not directly reference those symbols. For example, interrupt handlers are
usually linked at special addresses without any explicit jumps to transfer control to these
addresses.

Closure blocks allow you to prevent the linker from dead stripping specified symbols. The
closure is transitive — all symbols referenced by the closed symbol are also forced into
closure.

There are two types of closure blocks:

• Symbol-Level Closure Blocks

• Section-Level Closure Blocks

Symbol-Level Closure Blocks
Use FORCE_ACTIVE when you want to include a symbol in the link that would not be
otherwise included. For example:

FORCE_ACTIVE {break_handler, interrupt_handler, my_function}

Section-Level Closure Blocks
Use KEEP_SECTION when you want to keep a section (usually a user-defined section) in
the link. For example:

KEEP_SECTION {.interrupt1, .interrupt2}

A variant is REF_INCLUDE. It keeps a section in the link, but only if the file from which
the section comes is referenced. This is very useful for including version numbers. For
example:

REF_INCLUDE {.version}

Linker Command File Syntax
This section describes some practical ways in which you can use the commands of the
linker command file to perform common tasks.

The topics in this section are:

• Alignment

• Arithmetic Operations

• Comments

Working with the ELF Linker
Linker Command File Syntax

116 CodeWarrior Build Tools Reference for the eTPU

• Dead Strip Prevention

• Expressions, Variables and Integral Types

• File Selection

• Writing Data to Memory

Alignment
Use the ALIGN command to align data on a specific byte-boundary. For example, the
following fragment uses ALIGN to increment the location counter to the next 16-byte
boundary. Listing 12.3 shows an example of using the ALIGN command.

Listing 12.3 Example ALIGN Command

file.o (.text)
 ALIGN (0x10);
file.o (.data) // this is aligned on a 16-byte boundary

For more information, read “ALIGN” on page 121.

Arithmetic Operations
You can use standard C arithmetic and logical operations when you define and use
symbols in linker command files. Table 12.2 shows the order of precedence for each
operator. All operators are left-associative. To learn more about C operators, refer to the C
Compiler.

Table 12.2 Arithmetic Operators

Precedence Operators

1 (highest) - ˜ !

2 * / %

3 + -

4 >> <<

5 == != > < <= >=

6 &

7 |

Working with the ELF Linker
Linker Command File Syntax

117CodeWarrior Build Tools Reference for the eTPU

Comments
You can add comments to your file by using the C++ style double slash characters (//),
C-style slash and asterisks (/*, */). The linker ignores comments. For example, the
comments shown in Listing 12.4 are valid comments.

Listing 12.4 Example Comments

/* This is a
multiline comment */

* (.text) // This is a partial-line comment

You can also place comments in a special section,.comment.

.comment_section :
{

*(.comment)
} > .comment

Dead Strip Prevention
Linkers remove unused code and data from the output file in a process known as dead
stripping. To prevent the linker from stripping unreferenced code and data, use the
FORCE_ACTIVE, KEEP_SECTION, and REF_INCLUDE directives. Details about these
directives can be found in “FORCE_ACTIVE” on page 122, “KEEP_SECTION” on
page 122, “REF_INCLUDE” on page 124 and “FORCE_FILE” on page 122.

Expressions, Variables and Integral Types
This section describes various expressions, and variable and integral types.

8 &&

9 (lowest) ||

Table 12.2 Arithmetic Operators

Precedence Operators

Working with the ELF Linker
Linker Command File Syntax

118 CodeWarrior Build Tools Reference for the eTPU

Variables and Symbols
Symbol names in a linker command file consists of letters, digits, and underscore
characters. Listing 12.5 shows examples of valid symbol names. Traditionally, symbols
defined inside a linker command file start with an underscore character

Listing 12.5 Valid Symbol Names

_dec_num = 99999999;
_hex_num_ = 0x9011276;

Expressions and Assignments
You can create global symbols and assign addresses to these global symbols using the
standard assignment operator, as shown:

_symbolicname = some_expression;

You must place a semicolon at the end of each assignment statement.

You must place assignments only at the start of an expression. For example, the linker
would reject the following expression:

_sym1 + _sym2 = _sym3; // ILLEGAL!

When the linker evaluates an expression and assigns it to a variable, the linker gives it
either an absolute or a relocatable type. An absolute expression type is one in which the
symbol contains the value that it will have in the output file. A relocatable expression is
one in which the value is expressed as a fixed offset from the base of a section.

Integer Types
The syntax for linker command file expressions is very similar to the syntax of the C
programming language. The linker stores and manipulates integer constants by using 32-
bit signed arithmetic.

Octal integers (commonly known as base eight integers) start with a leading zero,
followed by numerals in the range zero through seven. For example, here are some valid
octal patterns you could put in your linker command file:

• _octal_number = 01234567;

• _octal_number2 = 03245;

Working with the ELF Linker
Linker Command File Syntax

119CodeWarrior Build Tools Reference for the eTPU

Decimal integers start with non-zero numeral, followed by numerals in the range of zero
through nine. Here are some examples of valid decimal integers you could put in your
linker command file:

• _dec_num = 99999999;

• _decimal_number = 123245;

• _decyone = 9011276;

Hexadecimal (base 16) integers start with 0x or 0X (a zero followed by an X), followed by
numerals in the range of zero through nine, and/or characters A through F. Here are some
examples of valid hexadecimal integers you could put in your linker command file:

• _somenumber = 0x999999FF;

• _fudgefactorspace = 0X123245EE;

• _hexonyou = 0xFFEE;

To create a negative decimal integer, use the minus sign (-) in front of the number, as in:

• _decimal_number = -123456;

File Selection
When defining the contents of a SECTION block, you must specify the source files that
are contributing their sections. The standard way of doing this is to simply list the files, as
shown in Listing 12.6.

Listing 12.6 Source Files Listing

SECTIONS {
 .example_section :
 {
 main.o (.text)
 file2.o (.text)
 file3.o (.text)
 }
 }

In a large project, the list can become very long. For this reason, the * keyword can be
used to represent the filenames of every file in your project. Note that since we have
already added the .text sections from the files main.o, file2.o, and file3.o, the
'*' keyword will not add the .text sections from those files again.

* (.text)

Working with the ELF Linker
Alphabetical Keyword Listing

120 CodeWarrior Build Tools Reference for the eTPU

Writing Data to Memory
You can write data directly to memory using the WRITEx commands in the linker
command file.

• WRITEB writes a byte

• WRITEH writes a two-byte half word

• WRITEW writes a four-byte word.

• WRITES writes a string. The data is inserted at the section’s current address.

The example in Listing 12.7 shows examples of the WRITEx commands.

Listing 12.7 Embedding data directly into the output.

.example_data_section :
{
 WRITEB (0x48); /* 'H' */
 WRITEB (0x69); /* 'i' */
 WRITEB (0x21); /* '!' */
 WRITES ("Hi!")
} > example_data_section

Alphabetical Keyword Listing
Table 12.3 lists all the functions, keywords, directives, and commands that linker
command files can include.

Table 12.3 Linker Command File Keywords

. (location counter) SECTIONS

ALIGN WRITEB

FORCE_ACTIVE WRITEH

KEEP_SECTION WRITES

MEMORY WRITEW

Working with the ELF Linker
Alphabetical Keyword Listing

121CodeWarrior Build Tools Reference for the eTPU

. (location counter)

The period character (.) always maintains the current position of the output location.
Since the period always refers to a location in a SECTIONS block, it cannot be used
outside a section definition.

. can appear anywhere a symbol is allowed. Assigning a value to . that is greater than its
current value causes the location counter to move, but the location counter can never be
decremented.

This keyword can be used to create empty space in an output section. In the example that
follows, the location counter is moved to a position that is 0x10000 bytes past the symbol
__start.

Listing 12.8 Moving the location counter

.data :
{
 *.(data)
 *.(bss)
 *.(COMMON)
 __start = .;
 . = __start + 0x10000;
 __end = .;
} > DATA

ALIGN

Advance the location counter so that it will be aligned on a boundary specified by the
value of alignValue.

Prototype

ALIGN(alignValue)

Parameter

alignValue

The number of address lower bits that should be cleared, for example - ALIGN(3)
will align to the nearest aligned 8 byte address.

Working with the ELF Linker
Alphabetical Keyword Listing

122 CodeWarrior Build Tools Reference for the eTPU

FORCE_ACTIVE

Allows you to specify symbols that you do not want the linker to dead strip. When using
C++, you must specify symbols using their mangled names.

Prototype

FORCE_ACTIVE{ symbol[, symbol] }

KEEP_SECTION

Allows you to specify sections that you do not want the linker to dead strip.

Prototype

KEEP_SECTION{ sectionType[, sectionType] }

FORCE_FILE

Allows you to specify files that you do not want the linker to dead strip.

Prototype

FORCE_FILE{file[, file]}

MEMORY

Allows you to describe the location and size of memory segment blocks on the target
system. You use this directive to tell the linker the memory areas to avoid, and the
memory areas into which it should link your code and data.

NOTE The linker command file must contain only one MEMORY directive. Within the
confines of the MEMORY directive, however, you can define as many memory
segments as you wish.

Prototype

MEMORY {memory_spec}

Working with the ELF Linker
Alphabetical Keyword Listing

123CodeWarrior Build Tools Reference for the eTPU

where memory_spec is one or more lines in this format:

segmentName (flags) : ORIGIN = address, LENGTH = length [>
fileName]

Parameters

segmentName

The name of the segment. This name must be a consecutive string of alphanumeric
and/or underscore (_) characters.

flags

Access flags for the output file (Phdr.p_flags). Flags can be any combination
of:

• R - read

• W - write

• X - executable code

address

One of the following:

• a memory address (optionally including the memory space name), in
hexadecimal format, such as 0x800400.

• an AFTER command — If you do not want to compute the addresses using
offsets, you can use the AFTER(name [,name]) command to tell the linker
to place the memory segment after the specified segment.

NOTE If you specify multiple memory segments as parameters for AFTER, the linker
uses the segment with the highest memory address. This is useful when you do
not know which overlay takes up the most memory space.

length

One of the following:

• a value greater than zero indicating the size (in bytes) of the segment. If you try to
put more code and data into a memory segment than your specified length allows, the
linker generates an error at link time.

• zero (linker automatically calculates the segment size)

TIP The linker does not perform overflow checking when you specify zero. If you do
not leave enough memory free to hold the entire segment, you will get unexpected
results. For this reason, we recommend that whenever you specify zero, you also
use the AFTER keyword to specify the start address.

Working with the ELF Linker
Alphabetical Keyword Listing

124 CodeWarrior Build Tools Reference for the eTPU

> fileName

An optional argument to have the linker write the segment to a binary file on disk
instead of an ELF program header. The linker places this file into the same folder
as the ELF output file. This option has two variants:

• > fileName — writes the segment to a new file

• >> fileName — appends the segment to an existing file

Examples

In Listing 12.9, the linker places overlay1 and overlay2 immediately after
the code segment. The linker places data immediately after the overlay
segments.

Listing 12.9 MEMORY Example

MEMORY {
 code (RWX) : ORIGIN = 0x800400, LENGTH = 0
 data (RW) : ORIGIN = 0, LENGTH = 0
 data1 (RW) : ORIGIN = AFTER (data), LENGTH = 0
}

REF_INCLUDE

Allows you to specify sections that you do not want the linker to dead strip, but only if
they satisfy this condition: the file that contains the section must be referenced. This is
useful if you want to include version information from your source file components.

Prototype

REF_INCLUDE{ sectionType [, sectionType]}

SECTIONS

Defines a new section.

Prototype

SECTIONS { section_spec }

where section_spec is in the format:

sectionName : [AT (loadAddress)] {contents} > segmentName

Working with the ELF Linker
Alphabetical Keyword Listing

125CodeWarrior Build Tools Reference for the eTPU

Parameters

sectionName

The name of the section. This name must start with a period character (.), followed
by a consecutive string of alphanumeric and/or underscore characters (_). For
example, .mysection.

loadAddress

An optional parameter that specifies the address of the section. The linker sets this
to the relocation address if you do not specify it.

contents

One or more statements that:

• Assign a value to a symbol. See “Alphabetical Keyword Listing” on page 120,
“Arithmetic Operations” on page 116, and “. (location counter)” on page 121.

• Describe the placement of an output section, including which input sections are
placed into it. See “File Selection” on page 119 and “Alignment” on page 116.

segmentName

The name of the memory segment into which you want to put the contents of this
section. This option has two variants:

• > segmentName — places the section contents at the beginning of the
memory segment segmentName

• >> segmentName — appends the section contents to the memory segment
segmentName

Working with the ELF Linker
Alphabetical Keyword Listing

126 CodeWarrior Build Tools Reference for the eTPU

Example

Listing 12.10 shows an example section definition.

Listing 12.10 Example Section Definition

SECTIONS
{

.text :
{

_textSegmentStart = .;
foobar.o (.text)
. = ALIGN (0x10);
barfoo.o (.text)
_textSegmentEnd = .;

}
.data : { *(.data) }
.bss :
{

*(.bss)
*(COMMON)

}
}

WRITEB

Inserts a byte of data at the current address of a section.

Prototype

WRITEB (expression);

Parameters

expression

A value in the range 0x00 through 0xFF.

Working with the ELF Linker
Alphabetical Keyword Listing

127CodeWarrior Build Tools Reference for the eTPU

WRITEH

Inserts a half word of data at the current address of a section.

Prototype

WRITEH (expression);

Parameters

expression

A value in the range 0x0000 through 0xFFFF.

WRITES

Inserts a string at the current address of a section.

Prototype

WRITES ("string")

Parameters

string

A quoted string.

Example

Listing 12.11 shows an example.

Listing 12.11 Example WRITES Command

.comment_section :
{

WRITES("This is a .comment section")
} > .comment

Working with the ELF Linker
Code and Data Sections

128 CodeWarrior Build Tools Reference for the eTPU

WRITEW

Inserts a word of data at the current address of a section.

Prototype

WRITEW (expression);

Parameters

expression

A value in the range 0x00000000 through 0xFFFFFFFF.

Code and Data Sections
Because the eTPU has two memory spaces, it is not enough to specify an address for a
section. You must also specify a memory space. Specifying a memory space is done in the
LCF using the segments access permission flags.

A segment that has the X (executable) flag will be loaded to the instruction memory.

A segment that does not have the X (executable) flag will be loaded to the data memory.

TIP You can also use the eTPU assembly .org address and .section sec
directives, to specify the memory space for a given section.

NOTE You should not assign sections from different memory spaces to the same
segment. If you do, the result is undefined.

129CodeWarrior Build Tools Reference for the eTPU

13
C Compiler

This chapter explains the CodeWarrior implementation of the C programming language:

• Extensions to Standard C

• C99 Extensions

• GCC Extensions

Extensions to Standard C
The CodeWarrior C compiler adds extra features to the C programming language. These
extensions make it easier to port source code from other compilers and offer some
programming conveniences. Note that some of these extensions do not conform to the
ISO/IEC 9899-1990 C standard (“C90”).

• Controlling Standard C Conformance

• C++-style Comments

• Unnamed Arguments

• Extensions to the Preprocessor

• Non-Standard Keywords

• Declaring Variables by Address

Controlling Standard C Conformance
The compiler offers settings that verify how closely your source code conforms to the
ISO/IEC 9899-1990 C standard (“C90”). Enable these settings to check for possible errors
or improve source code portability.

Some source code is too difficult or time-consuming to change so that it conforms to the
ISO/IEC standard. In this case, disable some or all of these settings.

C Compiler
Extensions to Standard C

130 CodeWarrior Build Tools Reference for the eTPU

Table 13.1 shows how to control the compiler’s features for ISO conformance.

C++-style Comments
When ANSI strictness is off, the C compiler allows C++-style comments. Listing 13.1
shows an example.

Listing 13.1 C++ Comments

a = b; // This is a C++-style comment.
c = d; /* This is a regular C-style comment. */

Unnamed Arguments
When ANSI strictness is off, the C compiler allows unnamed arguments in function
definitions. Listing 13.2 shows an example.

Listing 13.2 Unnamed Arguments

void f(int) {} /* OK if ANSI Strict is disabled. */
void f(int i) {} /* Always OK. */

Extensions to the Preprocessor
When ANSI strictness is off, the C compiler allows a # to prefix an item that is not a
macro argument. It also allows an identifier after an #endif directive. Listing 13.3 and
Listing 13.4 show examples.

Table 13.1 Controlling conformance to the ISO/IEC 9899-1990 C language

To control this option from
here...

use this setting

CodeWarrior IDE ANSI Strict and ANSI Keywords Only in
the C/C++ Languagepanel

source code #pragma ANSI_strict

#pragma only_std_keywords

command line -ansi

C Compiler
Extensions to Standard C

131CodeWarrior Build Tools Reference for the eTPU

Listing 13.3 Using # in Macro Definitions

#define add1(x) #x #1
 /* OK, if ANSI_strict is disabled,
 but probably not what you wanted:
 add1(abc) creates "abc"#1
 */

#define add2(x) #x "2"
 /* Always OK: add2(abc) creates "abc2". */

Listing 13.4 Identifiers After #endif

#ifdef __CWCC__
 /* . . . */
#endif __CWCC__ /* OK if ANSI_strict is disabled. */

#ifdef __CWCC__
 /* . . . */
#endif /*__CWCC__*/ /* Always OK. */

Non-Standard Keywords
When the ANSI keywords setting is off, the C compiler recognizes non-standard
keywords that extend the language.

Declaring Variables by Address
The C compiler lets you explicitly specify the address that contains the value of a variable.
For example, the following definition states that the variable MemErr contains the
contents of the address 0x220:

short MemErr:0x220;

You cannot disable this extension, and it has no corresponding pragma or setting in a
panel.

C Compiler
C99 Extensions

132 CodeWarrior Build Tools Reference for the eTPU

C99 Extensions
The CodeWarrior C compiler accepts the enhancements to the C language specified by the
ISO/IEC 9899-1999 standard, commonly referred to as “C99.”

• Controlling C99 Extensions

• Trailing Commas in Enumerations

• Compound Literal Values

• Designated Initializers

• Predefined Symbol __func__

• Implicit Return From main()

• Non-constant Static Data Initialization

• Variable Argument Macros

• Extra C99 Keywords

• C++-Style Comments

• C++-Style Digraphs

• Empty Arrays in Structures

• Hexadecimal Floating-Point Constants

• Variable-Length Arrays

• Unsuffixed Decimal Literal Values

• C99 Complex Data Types

Controlling C99 Extensions
Table 13.2 shows how to control C99 extensions.

Table 13.2 Controlling C99 extensions to the C language

To control this option from
here...

use this setting

CodeWarrior IDE Enable C99 Extensions in the C/C++
Languagepanel

source code #pragma c99

command line -c99

C Compiler
C99 Extensions

133CodeWarrior Build Tools Reference for the eTPU

Trailing Commas in Enumerations
When the C99 extensions setting is on, the compiler allows a comma after the final item in
a list of enumerations. Listing 13.5 shows an example.

Listing 13.5 Trailing comma in enumeration example

enum
{
 violet,
 blue
 green,
 yellow,
 orange,
 red, /* OK: accepted if C99 extensions setting is on. */
};

Compound Literal Values
When the C99 extensions setting is on, the compiler allows literal values of structures and
arrays. Listing 13.6 shows an example.

Listing 13.6 Example of a Compound Literal

#pragma c99 on
struct my_struct {
 int i;
 char c[2];
} my_var;

my_var = ((struct my_struct) {x + y, 'a', 0});

Designated Initializers
When the C99 extensions setting is on, the compiler allows an extended syntax for
specifying which structure or array members to initialize. Listing 13.7 shows an example.

Listing 13.7 Example of Designated Initializers

#pragma c99 on

struct X {
 int a,b,c;
} x = { .c = 3, .a = 1, 2 };

C Compiler
C99 Extensions

134 CodeWarrior Build Tools Reference for the eTPU

union U {
 char a;
 long b;
} u = { .b = 1234567 };

int arr1[6] = { 1,2, [4] = 3,4 };
int arr2[6] = { 1, [1 ... 4] = 3,4 }; /* GCC only, not part of C99. */

Predefined Symbol __func__
When the C99 extensions setting is on, the compiler offers the __func__ predefined
variable. Listing 13.8 shows an example.

Listing 13.8 Predefined symbol __func__

void abc(void)
{
 puts(__func__); /* Output: "abc" */
}

Implicit Return From main()
When the C99 extensions setting is on, the compiler inserts this statement at the end of a
program’s main() function if the function does not return a value:

return 0;

Non-constant Static Data Initialization
When the C99 extensions setting is on, the compiler allows static variables to be
initialized with non-constant expressions.

Variable Argument Macros
When the C99 extensions setting is on, the compiler allows macros to have a variable
number of arguments. Listing 13.9 shows an example.

Listing 13.9 Variable argument macros example

#define MYLOG(...) fprintf(myfile, __VA_ARGS__)
#define MYVERSION 1
#define MYNAME "SockSorter"

C Compiler
C99 Extensions

135CodeWarrior Build Tools Reference for the eTPU

int main(void)
{
 MYLOG("%d %s\n", MYVERSION, MYNAME);
 /* Expands to: fprintf(myfile, "%d %s\n", 1, "SockSorter"); */

 return 0;
}

Extra C99 Keywords
When the C99 extensions setting is on, the compiler recognizes extra keywords and the
language features they represent. Table 13.3 lists these keywords.

C++-Style Comments
When the C99 extensions setting is on, the compiler allows C++-style comments as well
as regular C comments. A C++-style comment begins with

//

and continues until the end of a source code line.

A C-style comment begins with

/*

ends with

*/

and may span more than one line.

Table 13.3 Extra C99 Keywords

This keyword or combination of
keywords...

represents this language feature

_Bool boolean data type

long long integer data type

restrict type qualifier

inline function qualifier

_Complex complex number data type

_Imaginary imaginary number data type

C Compiler
C99 Extensions

136 CodeWarrior Build Tools Reference for the eTPU

C++-Style Digraphs
When the C99 extensions setting is on, the compiler recognizes C++-style two-character
combinations that represent single-character punctuation. Table 13.4 lists these digraphs.

Empty Arrays in Structures
When the C99 extensions setting is on, the compiler allows an empty array to be the last
member in a structure definition. Listing 13.10 shows an example.

Listing 13.10 Example of an Empty Array as the Last struct Member

struct {
 int r;
 char arr[];
} s;

Hexadecimal Floating-Point Constants
Precise representations of constants specified in hexadecimal notation to ensure an
accurate constant is generated across compilers and on different hosts. The compiler
generates a warning message when the mantissa is more precise than the host floating
point format. The compiler generates an error message if the exponent is too wide for the
host float format.

Examples:

0x2f.3a2p3

0xEp1f

0x1.8p0L

Table 13.4 C++-Style Digraphs

This digraph is equivalent to this character

<: [

:>]

<% {

%> }

%: #

%:%: ##

C Compiler
C99 Extensions

137CodeWarrior Build Tools Reference for the eTPU

The standard library supports printing values of type float in this format using the “%a”
and “%A” specifiers.

Variable-Length Arrays
Variable length arrays are supported within local or function prototype scope, as required
by the ISO/IEC 9899-1999 (“C99”) standard. Listing 13.11 shows an example.

Listing 13.11 Example of C99 Variable Length Array usage

#pragma c99 on

void f(int n) {
 int arr[n];
 /* ... */
}

While the example shown in Listing 13.12 generates an error message.

Listing 13.12 Bad Example of C99 Variable Length Array usage

#pragma c99 on

int n;
int arr[n];
// ERROR: variable length array
// types can only be used in local or
// function prototype scope.

A variable length array cannot be used in a function template’s prototype scope or in a
local template typedef, as shown in Listing 13.13.

Listing 13.13 Bad Example of C99 usage in Function Prototype

#pragma c99 on

template<typename T> int f(int n, int A[n][n]);
{
};
// ERROR: variable length arrays
// cannot be used in function template prototypes
// or local template variables

C Compiler
GCC Extensions

138 CodeWarrior Build Tools Reference for the eTPU

Unsuffixed Decimal Literal Values
Listing 13.14 shows an example of specifying decimal literal values without a suffix to
specify the literal’s type.

Listing 13.14 Examples of C99 Unsuffixed Constants

#pragma c99 on // Note: ULONG_MAX == 4294967295

sizeof(4294967295) == sizeof(long long)
sizeof(4294967295u) == sizeof(unsigned long)

#pragma c99 off

sizeof(4294967295) == sizeof(unsigned long)
sizeof(4294967295u) == sizeof(unsigned long)

C99 Complex Data Types
The compiler supports the C99 complex and imaginary data types when the
C99 extensions option is enabled. Listing 13.15 shows an example.

Listing 13.15 C99 Complex Data Type

#include <complex.h>
complex double cd = 1 + 2*I;

NOTE This feature is currently not available for all targets.
Use #if __has_feature(C99_COMPLEX) to check if this feature is
available for your target.

GCC Extensions
The CodeWarrior compiler accepts many of the extensions to the C language that the GCC
(Gnu Compiler Collection) tools allow. Source code that uses these extensions does not
conform to the ISO/IEC 9899-1990 C (“C90”) standard.

• Controlling GCC Extensions

• Initializing Automatic Arrays and Structures

• The sizeof() Operator

• Statements in Expressions

C Compiler
GCC Extensions

139CodeWarrior Build Tools Reference for the eTPU

• Redefining Macros

• The typeof() Operator

• Void and Function Pointer Arithmetic

• The __builtin_constant_p() Operator

• Forward Declarations of Static Arrays

• Omitted Operands in Conditional Expressions

• The __builtin_expect() Operator

• Void Return Statements

• Minimum and Maximum Operators

• Local Labels

Controlling GCC Extensions
Table 13.5 shows how to turn GCC extensions on or off.

Initializing Automatic Arrays and
Structures
When the GCC extensions setting is on, array and structure variables that are local to a
function and have the automatic storage class may be initialized with values that do not
need to be constant. Listing 13.16 shows an example.

Listing 13.16 Initializing arrays and structures with non-constant values

void f(int i)
{
 int j = i * 10; /* Always OK. */

 /* These initializations are only accepted when GCC extensions
 * are on. */

Table 13.5 Controlling GCC extensions to the C language

To control this option from
here...

use this setting

CodeWarrior IDE Enable GCC Extensions in the C/C++
Language panel

source code #pragma gcc_extensions

command line -gcc_extensions

C Compiler
GCC Extensions

140 CodeWarrior Build Tools Reference for the eTPU

 struct { int x, y; } s = { i + 1, i + 2 };
 int a[2] = { i, i + 2 };
}

The sizeof() Operator
When the GCC extensions setting is on, the sizeof() operator computes the size of
function and void types. In both cases, the sizeof() operator evaluates to 1. The ISO/
IEC 9899-1990 C Standard (“C90”) does not specify the size of the void type and
functions. Listing 13.17 shows an example.

Listing 13.17 Using the sizeof() operator with void and function types

int f(int a)
{
 return a * 10;
}

void g(void)
{
 size_t voidsize = sizeof(void); /* voidsize contains 1 */
 size_t funcsize = sizeof(f); /* funcsize contains 1 */
}

Statements in Expressions
When the GCC extensions setting is on, expressions in function bodies may contain
statements and definitions. To use a statement or declaration in an expression, enclose it
within braces. The last item in the brace-enclosed expression gives the expression its
value. Listing 13.18 shows an example.

Listing 13.18 Using statements and definitions in expressions

#define POW2(n) ({ int i,r; for(r=1,i=n; i>0; --i) r *= 2; r;})

int main()
{
 return POW2(4);
}

C Compiler
GCC Extensions

141CodeWarrior Build Tools Reference for the eTPU

Redefining Macros
When the GCC extensions setting is on, macros may be redefined with the #define
directive without first undefining them with the #undef directive. Listing 13.19 shows
an example.

Listing 13.19 Redefining a macro without undefining first

#define SOCK_MAXCOLOR 100
#undef SOCK_MAXCOLOR
#define SOCK_MAXCOLOR 200 /* OK: this macro is previously undefined. */

#define SOCK_MAXCOLOR 300

The typeof() Operator
When the GCC extensions setting is on, the compiler recognizes the typeof() operator.
This compile-time operator returns the type of an expression. You may use the value
returned by this operator in any statement or expression where the compiler expects you to
specify a type. The compiler evaluates this operator at compile time. The
__typeof()__ operator is the same as this operator. Listing 13.20 shows an example.

Listing 13.20 Using the typeof() operator

int *ip;

/* Variables iptr and jptr have the same type. */
typeof(ip) iptr;
int *jptr;

/* Variables i and j have the same type. */
typeof(*ip) i;
int j;

Void and Function Pointer Arithmetic
The ISO/IEC 9899-1990 C Standard does not accept arithmetic expressions that use
pointers to void or functions. With GCC extensions on, the compiler accepts arithmetic
manipulation of pointers to void and functions.

C Compiler
GCC Extensions

142 CodeWarrior Build Tools Reference for the eTPU

The __builtin_constant_p() Operator
When the GCC extensions setting is on, the compiler recognizes the
__builtin_constant_p() operator. This compile-time operator takes a single
argument and returns 1 if the argument is a constant expression or 0 if it is not.

Forward Declarations of Static Arrays
When the GCC extensions setting is on, the compiler will not issue an error when you
declare a static array without specifying the number of elements in the array if you later
declare the array completely. Listing 13.21 shows an example.

Listing 13.21 Forward declaration of an empty array

static int a[]; /* Allowed only when GCC extensions are on. */
/* ... */
static int a[10]; /* Complete declaration. */

Omitted Operands in Conditional
Expressions
When the GCC extensions setting is on, you may skip the second expression in a
conditional expression. The default value for this expression is the first expression. Listing
13.22 shows an example.

Listing 13.22 Using the shorter form of the conditional expression

void f(int i, int j)
{
 int a = i ? i : j;
 int b = i ?: j; /* Equivalent to int b = i ? i : j; */
 /* Variables a and b are both assigned the same value. */
}

The __builtin_expect() Operator
When the GCC extensions setting is on, the compiler recognizes the
__builtin_expect() operator. Use this compile-time operator in an if or while
statement to specify to the compiler how to generate instructions for branch prediction.

This compile-time operator takes two arguments:

• the first argument must be an integral expression

C Compiler
GCC Extensions

143CodeWarrior Build Tools Reference for the eTPU

• the second argument must be a literal value

The second argument is the most likely result of the first argument. Listing 13.23 shows an
example.

Listing 13.23 Example for __builtin_expect() operator

void search(int *array, int size, int key)
{
 int i;

 for (i = 0; i < size; ++i)
 {
 /* We expect to find the key rarely. */
 if (__builtin_expect(array[i] == key, 0))
 {
 rescue(i);
 }
 }
}

Void Return Statements
When the GCC extensions setting is on, the compiler allows you to place expressions of
type void in a return statement. Listing 13.24 shows an example.

Listing 13.24 Returning void

void f(int a)
{
 /* ... */
 return; /* Always OK. */
}

void g(int b)
{
 /* ... */
 return f(b); /* Allowed when GCC extensions are on. */
}

Minimum and Maximum Operators
When the GCC extensions setting is on, the compiler recognizes built-in minimum (<?)
and maximum (>?) operators.

C Compiler
GCC Extensions

144 CodeWarrior Build Tools Reference for the eTPU

Listing 13.25 Example of minimum and maximum operators

int a = 1 <? 2; // 1 is assigned to a.
int b = 1 >? 2; // 2 is assigned to b.

Local Labels
When the GCC extensions setting is on, the compiler allows labels limited to a block’s
scope. A label declared with the __label__ keyword is visible only within the scope of
its enclosing block. Listing 13.26 shows an example.

Listing 13.26 Example of using local labels

void f(int i)
{
 if (i >= 0)
 {
 __label__ again; /* First again. */
 if (--i > 0)
 goto again; /* Jumps to first again. */
 }
 else
 {
 __label__ again; /* Second again. */
 if (++i < 0)
 goto again; /* Jumps to second again. */
 }
}

Intermediate Optimizations
Intermediate Optimizations

145CodeWarrior Build Tools Reference for the eTPU

14
Intermediate Optimizations

After it translates a program’s source code into its intermediate representation, the
compiler optionally applies optimizations that reduce the program’s size, improve its
execution speed, or both. The topics in this chapter explains these optimizations and how
to apply them:

• Intermediate Optimizations

• Inlining

Intermediate Optimizations
After it translates a function into its intermediate representation, the compiler may
optionally apply some optimizations. The result of these optimizations on the intermediate
representation will either reduce the size of the executable code, improve the executable
code’s execution speed, or both.

• Dead Code Elimination

• Expression Simplification

• Common Subexpression Elimination

• Copy Propagation

• Dead Store Elimination

• Live Range Splitting

• Loop-Invariant Code Motion

• Strength Reduction

• Loop Unrolling

Dead Code Elimination
The dead code elimination optimization removes expressions that are not accessible or are
not referred to. This optimization reduces size and increases execution speed.

Intermediate Optimizations
Intermediate Optimizations

146 CodeWarrior Build Tools Reference for the eTPU

Table 14.1 explains how to control the optimization for dead code elimination.

In Listing 14.1, the call to func1() will never execute because the if statement that it is
associated with will never be true. Consequently, the compiler can safely eliminate the call
to func1(), as shown in Listing 14.2.

Listing 14.1 Before dead code elimination

void func_from(void)
{
 if (0)
 {
 func1();
 }
 func2();
}

Listing 14.2 After dead code elimination

void func_to(void)
{
 func2();
}

Expression Simplification
The expression simplification optimization attempts to replace arithmetic expressions with
simpler expressions. Additionally, the compiler also looks for operations in expressions
that can be avoided completely without affecting the final outcome of the expression. This
optimization reduces size and increases speed.

Table 14.1 Controlling dead code elimination

Turn control this option
from here...

use this setting

CodeWarrior IDE Choose Level 1, Level 2, Level 3, or Level 4 in the
Global Optimizations settings pane.l

source code #pragma opt_dead_code on | off |
reset

command line -opt [no]deadcode

Intermediate Optimizations
Intermediate Optimizations

147CodeWarrior Build Tools Reference for the eTPU

Table 14.2 explains how to control the optimization for expression simplification.

For example, Listing 14.3 contains a few assignments to some arithmetic expressions:

• addition to zero

• multiplication by a power of 2

• subtraction of a value from itself

• arithmetic expression with two or more literal values

Listing 14.3 Before expression simplification

void func_from(int* result1, int* result2, int* result3, int* result4,
int x)
{
 *result1 = x + 0;
 *result2 = x * 2;
 *result3 = x - x;
 *result4 = 1 + x + 4;
}

Listing 14.4 shows source code that is equivalent to expression simplification. The
compiler has modified these assignments to:

• remove the addition to zero

• replace the multiplication of a power of 2 with bit-shift operation

• replace a subtraction of x from itself with 0

• consolidate the additions of 1 and 4 into 5

Listing 14.4 After expression simplification

void func_to(int* result1, int* result2, int* result3, int* result4,
int x){

Table 14.2 Controlling expression simplification

Turn control this option
from here...

use this setting

CodeWarrior IDE Choose Level 1, Level 2, Level 3, or Level 4 in the
Global Optimizations settings pane.l

source code There is no pragma to control this optimization.

command line -opt level=1, -opt level=2, -opt level=3, -
opt level=4

Intermediate Optimizations
Intermediate Optimizations

148 CodeWarrior Build Tools Reference for the eTPU

 *result1 = x;
 *result2 = x << 1;
 *result3 = 0;
 *result4 = 5 + x;
}

Common Subexpression Elimination
Common subexpression elimination replaces multiple instances of the same expression
with a single instance. This optimization reduces size and increases execution speed.

Table 14.3 explains how to control the optimization for common subexpression
elimination.

For example, in Listing 14.5, the subexpression x * y occurs twice.

Listing 14.5 Before common subexepression elimination

void func_from(int* vec, int size, int x, int y, int value)
{
 if (x * y < size)
 {
 vec[x * y - 1] = value;
 }
}

Listing 14.6 shows equivalent source code after the compiler applies common
subexpression elimination. The compiler generates instructions to compute x * y and
store it in a hidden, temporary variable. The compiler then replaces each instance of the
subexpression with this variable.

Table 14.3 Controlling common subexpression elimination

Turn control this
option from here...

use this setting

CodeWarrior IDE Choose Level 2, Level 3, or Level 4 in the Global
Optimizations settings pane.l

source code #pragma opt_common_subs on | off | reset

command line -opt [no]cse

Intermediate Optimizations
Intermediate Optimizations

149CodeWarrior Build Tools Reference for the eTPU

Listing 14.6 After common subexpression elimination

void func_to(int* vec, int size, int x, int y, int value)
{
 int temp = x * y;
 if (temp < size)
 {
 vec[temp - 1] = value;
 }
}

Copy Propagation
Copy propagation replaces variables with their original values if the variables do not
change. This optimization reduces runtime stack size and improves execution speed.

Table 14.4 explains how to control the optimization for copy propagation.

For example, in Listing 14.7, the variable j is assigned the value of x. But j’s value is
never changed, so the compiler replaces later instances of j with x, as shown in Listing
14.8.

By propagating x, the compiler is able to reduce the number of registers it uses to hold
variable values, allowing more variables to be stored in registers instead of slower
memory. Also, this optimization reduces the amount of stack memory used during
function calls.

Listing 14.7 Before copy propagation

void func_from(int* a, int x)
{
 int i;
 int j;
 j = x;

Table 14.4 Controlling copy propagation

Turn control this
option from here...

use this setting

CodeWarrior IDE Choose Level 2, Level 3, or Level 4 in the Global
Optimizations settings pane.l

source code #pragma opt_propagation on | off | reset

command line -opt [no]prop[agation]

Intermediate Optimizations
Intermediate Optimizations

150 CodeWarrior Build Tools Reference for the eTPU

 for (i = 0; i < j; i++)
 {
 a[i] = j;
 }
}

Listing 14.8 After copy propagation

void func_to(int* a, int x)
{
 int i;
 int j;
 j = x;
 for (i = 0; i < x; i++)
 {
 a[i] = x;
 }
}

Dead Store Elimination
Dead store elimination removes unused assignment statements. This optimization reduces
size and improves speed.

Table 14.5 explains how to control the optimization for dead store elimination.

For example, in Listing 14.9 the variable x is first assigned the value of y * y. However,
this result is not used before x is assigned the result returned by a call to getresult().

In Listing 14.10 the compiler can safely remove the first assignment to x since the result
of this assignment is never used.

Table 14.5 Controlling dead store elimination

Turn control this
option from here...

use this setting

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings pane.l

source code #pragma opt_dead_assignments on | off |
reset

command line -opt [no]deadstore

Intermediate Optimizations
Intermediate Optimizations

151CodeWarrior Build Tools Reference for the eTPU

Listing 14.9 Before dead store elimination

void func_from(int x, int y)
{
 x = y * y;
 otherfunc1(y);
 x = getresult();
 otherfunc2(y);
}

Listing 14.10 After dead store elimination

void func_to(int x, int y)
{
 otherfunc1(y);
 x = getresult();
 otherfunc2(y);
}

Live Range Splitting
Live range splitting attempts to reduce the number of variables used in a function. This
optimization reduces a function’s runtime stack size, requiring fewer instructions to
invoke the function. This optimization potentially improves execution speed.

Table 14.6 explains how to control the optimization for live range splitting.

For example, in Listing 14.11 three variables, a, b, and c, are defined. Although each
variable is eventually used, each of their uses is exclusive to the others. In other words, a
is not referred to in the same expressions as b or c, b is not referred to with a or c, and c
is not used with a or b.

Table 14.6 Controlling live range splitting

Turn control this
option from here...

use this setting

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings pane.l

source code There is no pragma to control this optimization.

command line -opt level=3, -opt level=4

Intermediate Optimizations
Intermediate Optimizations

152 CodeWarrior Build Tools Reference for the eTPU

In Listing 14.12, the compiler has replaced a, b, and c, with a single variable. This
optimization reduces the number of registers that the object code uses to store variables,
allowing more variables to be stored in registers instead of slower memory. This
optimization also reduces a function’s stack memory.

Listing 14.11 Before live range splitting

void func_from(int x, int y)
{
 int a;
 int b;
 int c;

 a = x * y;
 otherfunc(a);

 b = x + y;
 otherfunc(b);

 c = x - y;
 otherfunc(c);
}

Listing 14.12 After live range splitting

void func_to(int x, int y)
{
 int a_b_or_c;

 a_b_or_c = x * y;
 otherfunc(temp);

 a_b_or_c = x + y;
 otherfunc(temp);

 a_b_or_c = x - y;
 otherfunc(temp);
}

Loop-Invariant Code Motion
Loop-invariant code motion moves expressions out of a loop if the expressions are not
affected by the loop or the loop does not affect the expression. This optimization improves
execution speed.

Intermediate Optimizations
Intermediate Optimizations

153CodeWarrior Build Tools Reference for the eTPU

Table 14.7 explains how to control the optimization for loop-invariant code motion.

For example, in Listing 14.13, the assignment to the variable circ does not refer to the
counter variable of the for loop, i. But the assignment to circ will be executed at each
loop iteration.

Listing 14.14 shows source code that is equivalent to how the compiler would rearrange
instructions after applying this optimization. The compiler has moved the assignment to
circ outside the for loop so that it is only executed once instead of each time the for
loop iterates.

Listing 14.13 Before loop-invariant code motion

void func_from(float* vec, int max, float val)
{
 float circ;
 int i;
 for (i = 0; i < max; ++i)
 {
 circ = val * 2 * PI;
 vec[i] = circ;
 }
}

Listing 14.14 After loop-invariant code motion

void func_to(float* vec, int max, float val)
{
 float circ;
 int i;
 circ = val * 2 * PI;
 for (i = 0; i < max; ++i)
 {
 vec[i] = circ;

Table 14.7 Controlling loop-invariant code motion

Turn control this
option from here...

use this setting

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings pane.l

source code #pragma opt_loop_invariants on | off | reset

command line -opt [no]loop[invariants]

Intermediate Optimizations
Intermediate Optimizations

154 CodeWarrior Build Tools Reference for the eTPU

 }
}

Strength Reduction
Strength reduction attempts to replace slower multiplication operations with faster
addition operations. This optimization improves execution speed but increases code size.

Table 14.8 explains how to control the optimization for strength reduction.

For example, in Listing 14.15, the assignment to elements of the vec array use a
multiplication operation that refers to the for loop’s counter variable, i.

In Listing 14.16, the compiler has replaced the multiplication operation with a hidden
variable that is increased by an equivalent addition operation. Processors execute addition
operations faster than multiplication operations.

Listing 14.15 Before strength reduction

void func_from(int* vec, int max, int fac)
{
 int i;
 for (i = 0; i < max; ++i)
 {
 vec[i] = fac * i;
 }
}

Listing 14.16 After strength reduction

void func_to(int* vec, int max, int fac)
{
 int i;

Table 14.8 Controlling strength reduction

Turn control this
option from here...

use this setting

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings pane.l

source code #pragma opt_strength_reduction on | off |
reset

command line -opt [no]strength

Intermediate Optimizations
Intermediate Optimizations

155CodeWarrior Build Tools Reference for the eTPU

 int strength_red;
 hidden_strength_red = 0;
 for (i = 0; i < max; ++i)
 {
 vec[i] = hidden_strength_red;
 hidden_strength_red = hidden_strength_red + i;
 }
}

Loop Unrolling
Loop unrolling inserts extra copies of a loop’s body in a loop to reduce processor time
executing a loop’s overhead instructions for each iteration of the loop body. In other
words, this optimization attempts to reduce the ratio of time that the processor executes a
loop’s completion test and branching instructions compared to the time the processor
executes the loop’s body. This optimization improves execution speed but increases code
size.

Table 14.9 explains how to control the optimization for loop unrolling.

For example, in Listing 14.17, the for loop’s body is a single call to a function,
otherfunc(). For each time the loop’s completion test executes

for (i = 0; i < MAX; ++i)

the function executes the loop body only once.

In Listing 14.18, the compiler has inserted another copy of the loop body and rearranged
the loop to ensure that variable i is incremented properly. With this arrangement, the
loop’s completion test executes once for every 2 times that the loop body executes.

Listing 14.17 Before loop unrolling

const int MAX = 100;
void func_from(int* vec)

Table 14.9 Controlling loop unrolling

Turn control this
option from here...

use this setting

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings pane.l

source code #pragma opt_unroll_loops on | off | reset

command line -opt level=3, -opt level=4

Intermediate Optimizations
Inlining

156 CodeWarrior Build Tools Reference for the eTPU

{
 int i;
 for (i = 0; i < MAX; ++i)
 {
 otherfunc(vec[i]);
 }
}

Listing 14.18 After loop unrolling

const int MAX = 100;
void func_to(int* vec)
{
 int i;
 for (i = 0; i < MAX;)
 {
 otherfunc(vec[i]);
 ++i;
 otherfunc(vec[i]);
 ++i;
 }
}

Inlining
Inlining replaces instructions that call a function and return from it with the actual
instructions of the function being called. Inlining functions makes your program faster
because it executes the function code immediately without the overhead of a function call
and return. However, inlining can also make your program larger because the compiler
may insert the function’s instructions many times throughout your program.

The rest of this section explains how to specify which functions to inline and how the
compiler performs the inlining:

• Choosing Which Functions to Inline

• Inlining Techniques

Choosing Which Functions to Inline
The compiler offers several methods to specify which functions are eligible for inlining.

To specify that a function is eligible to be inlined, precede its definition with the inline,
__inline__, or __inline keyword. To allow these keywords in C source code, turn

Intermediate Optimizations
Inlining

157CodeWarrior Build Tools Reference for the eTPU

off ANSI Keywords Only in the CodeWarrior IDE’s C/C++ Language settings panel or
turn off the only_std_keywords pragma in your source code.

To verify that an eligible function has been inlined or not, use the Non-Inlined Functions
option in the IDE’s C/C++ Warnings panel or the warn_notinlined pragma. Listing
14.19Listing 14.19 shows an example.

Listing 14.19 Specifying to the compiler that a function may be inlined

#pragma only_std_keywords off
inline int attempt_to_inline(void)
{
 return 10;
}

To specify that a function must never be inlined, follow its definition’s specifier with
__attribute__((never_inline)). Listing 14.20 shows an example.

Listing 14.20 Specifying to the compiler that a function must never be inlined

int never_inline(void) __attribute__((never_inline))
{
 return 20;
}

To specify that no functions in a file may be inlined, including those that are defined with
the inline, __inline__, or __inline keywords, use the dont_inline pragma.
Listing 14.21Listing 14.21 shows an example.

Listing 14.21 Specifying that no functions may be inlined

#pragma dont_inline on

/* Will not be inlined. */
inline int attempt_to_inline(void)
{
 return 10;
}

/* Will not be inlined. */
int never_inline(void) __attribute__((never_inline))
{
 return 20;
}

#pragma dont_inline off
/* Will be inlined, if possible. */

Intermediate Optimizations
Inlining

158 CodeWarrior Build Tools Reference for the eTPU

inline int also_attempt_to_inline(void)
{
 return 10;
}

Some kinds of functions are never inlined:

• functions with variable argument lists

• functions defined with __attribute__((never_inline))

• functions compiled with #pragma optimize_for_size on or the Optimize
For Size setting in the IDE’s Global Optimizations panel

• functions which have their addresses stored in variables

The compiler will not inline these functions, even if they are defined with the inline,
__inline__, or __inline keywords.

Inlining Techniques
The depth of inlining explains how many levels of function calls the compiler will inline.
The Inline Depth setting in the IDE’s C/C++ Language settings panel and the
inline_depth pragma control inlining depth.

Normally, the compiler only inlines an eligible function if it has already translated the
function’s definition. In other words, if an eligible function has not yet been compiled, the
compiler has no object code to insert. To overcome this limitation, the compiler can
perform interprocedural analysis (IPA) either in file or program mode. This lets the
compiler evaluate all the functions in a file or even the entire program before inlining the
code. The IPA setting in the IDE’s C/C++ Language settings panel and the ipa pragma
control this capability.

The compiler normally inlines functions from the first function in a chain of function calls
to the last function called. Alternately, the compiler may inline functions from the last
function called to the first function in a chain of function calls. The Bottom-up Inlining
option in the IDE’s C/C++ Language settings panel and the inline_bottom_up and
inline_bottom_up_once pragmas control this reverse method of inlining.

Some functions that have not been defined with the inline, __inline__, or
__inline keywords may still be good candidates to be inlined. Automatic inlining
allows the compiler to inline these functions in addition to the functions that you explicitly
specify as eligible for inlining. The Auto-Inline option in the IDE’s C/C++ Language
panel and the auto_inline pragma control this capability.

When inlining, the compiler calculates the complexity of a function by counting the
number of statements, operands, and operations in a function to determine whether or not
to inline an eligible function. The compiler does not inline functions that exceed a

Intermediate Optimizations
Inlining

159CodeWarrior Build Tools Reference for the eTPU

maximum complexity. The compiler uses three settings to control the extent of inlined
functions:

• maximum auto-inlining complexity: the threshold for which a function may be auto-
inlined

• maximum complexity: the threshold for which any eligible function may be inlined

• maximum total complexity: the threshold for all inlining in a function

The inline_max_auto_size, inline_max_size, and
inline_max_total_size pragmas control these thresholds, respectively.

Intermediate Optimizations
Inlining

160 CodeWarrior Build Tools Reference for the eTPU

161CodeWarrior Build Tools Reference for the eTPU

15
Declaration Specifications

Declaration specifications describe special properties to associate with a function or
variable at compile time. You insert these specifications in the object’s declaration.

• Syntax for Declaration Specifications

• Declaration Specifications

Syntax for Declaration Specifications
The syntax for a declaration specification is

__declspec(spec [options]) function-declaration;

where spec is the declaration specification, options represents possible arguments for the
declaration specification, and function-declaration represents the declaration of the
function. Unless otherwise specified in the declaration specification’s description, a
function’s definition does not require a declaration specification.

Declaration Specifications

__declspec(never_inline)

Specifies that a function must not be inlined.

Syntax

__declspec (never_inline) function_prototype;

Remarks

Declaring a function’s prototype with this declaration specification tells the
compiler not to inline the function, even if the function is later defined with the
inline, __inline__, or __inline keywords.

Declaration Specifications
Syntax for Attribute Specifications

162 CodeWarrior Build Tools Reference for the eTPU

Syntax for Attribute Specifications
The syntax for an attribute specification is

__attribute__((list-of-attributes))

where list-of-attributes is a comma-separated list of zero or more attributes to associate
with the object. Place an attribute specification at the end of the delcaration and definition
of a function, function parameter, or variable. Listing 15.1 shows an example.

Listing 15.1 Example of an attribute specification

int f(int x __attribute__((unused))) __attribute__((never_inline));

int f(int x __attribute__((unused))) __attribute__((never_inline))
{
 return 20;
}

Attribute Specifications

__attribute__((deprecated))

Specifies that the compiler must issue a warning when a program refers to an object.

Syntax

variable-declaration __attribute__((deprecated));

variable-definition __attribute__((deprecated));

function-declaration __attribute__((deprecated));

function-definition __attribute__((deprecated));

Remarks

This attribute instructs the compiler to issue a warning when a program refers to a
function or variable. Use this attribute to discourage programmers from using
functions and variables that are obsolete or will soon be obsolete.

Listing 15.2 Example of deprecated attribute

int velocipede(int speed) __attribute__((deprecated));
int bicycle(int speed);

Declaration Specifications
Attribute Specifications

163CodeWarrior Build Tools Reference for the eTPU

int f(int speed)
{
 return velocipede(speed); /* Warning. */
}

int g(int speed)
{
 return bicycle(speed * 2); /* OK */
}

__attribute__((force_export))

Prevents a function or static variable from being dead-stripped.

Syntax

function-declaration __attribute__((force_export));

function-definition __attribute__((force_export));

variable-declaration __attribute__((force_export));

variable-definition __attribute__((force_export));

Remarks

This attribute specifies that the linker must not dead-strip a function or static
variable even if the linker determines that the rest of the program does not refer to
the object.

__attribute__((malloc))

Specifies that the pointers returned by a function will not point to objects that are already
referred to by other variables.

Syntax

function-declaration __attribute__((malloc));

function-definition __attribute__((malloc));

Declaration Specifications
Attribute Specifications

164 CodeWarrior Build Tools Reference for the eTPU

Remarks

This attribute specification gives the compiler extra knowledge about pointer
aliasing so that it can apply stronger optimizations to the object code it generates.

__attribute__((noalias))

Prevents access of data object through an indirect pointer access.

Syntax

function-parameter __attribute__((noalias));

variable-declaration __attribute__((noalias));

variable-definition __attribute__((noalias));

Remarks

This attribute specifies to the compiler that a data object is only accessed directly,
helping the optimizer to generate a better code. The sample code in Listing 15.3
will not return a correct result if ip is pointed to a.

Listing 15.3 Example of the noalias attribute

extern int a __attribute__((noalias));
int f(int *ip)
{
 a = 1;
 *ip = 0;
 return a; // optimized to return 1;
}

__attribute__((returns_twice))

Specifies that a function may return more than one time because of multithreaded or non-
linear execution.

Syntax

function-declaration __attribute__((returns_twice));

function-definition __attribute__((returns_twice));

Declaration Specifications
Attribute Specifications

165CodeWarrior Build Tools Reference for the eTPU

Remarks

This attribute specifies to the compiler that the program’s flow of execution might
enter and leave a function without explicit function calls and returns. For example,
the standard library’s setjmp() function allows a program to change its
execution flow arbitrarily.

With this information, the compiler limits optimizations that require explicit
program flow.

__attribute__((unused))

Specifies that the programmer is aware that a variable or function parameter is not referred
to.

Syntax

function-parameter __attribute__((unused));

variable-declaration __attribute__((unused));

variable-definition __attribute__((unused));

Remarks

This attribute specifies that the compiler should not issue a warning for an object if
the object is not referred to. This attribute specification has no effect if the
compiler’s unused warning setting is off.

Listing 15.4 Example of the unused attribute

void f(int a __attribute__((unused))) /* No warning for a. */
{
 int b __attribute__((unused)); /* No warning for b. */
 int c; /* Possible warning for c. */

 return 20;
}

__attribute__((used))

Prevents a function or static variable from being dead-stripped.

Declaration Specifications
Attribute Specifications

166 CodeWarrior Build Tools Reference for the eTPU

Syntax

function-declaration __attribute__((used));

function-definition __attribute__((used));

variable-declaration __attribute__((used));

variable-definition __attribute__((used));

Remarks

This attribute specifies that the linker must not dead-strip a function or static
variable even if the linker determines that the rest of the program does not refer to
the object.

167CodeWarrior Build Tools Reference for the eTPU

16
Predefined Macros

The compiler preprocessor has predefined macros (some refer to these as predefined
symbols). The compiler simulates variable definitions that describe the compile-time
environment and properties of the target processor.

This chapter lists the predefined macros that all CodeWarrior compilers make available.

• __COUNTER__

• __cplusplus

• __CWCC__

• __embedded_cplusplus

• __FILE__

• __func__

• __FUNCTION__

• __ide_target()

• __LINE__

• __MWERKS__

• __PRETTY_FUNCTION__

• __profile__

• __STDC__

• __TIME__

__COUNTER__

Preprocessor macro that expands to an integer.

Syntax

__COUNTER__

Remarks

The compiler defines this macro as an integer that has an initial value of 0
incrementing by 1 every time the macro is used in the translation unit.

Predefined Macros

168 CodeWarrior Build Tools Reference for the eTPU

The value of this macro is stored in a precompiled header and is restored when the
precompiled header is used by a translation unit.

__cplusplus

Preprocessor macro defined if compiling C++ source code.

Syntax

__cplusplus

Remarks

The compiler defines this macro when compiling C++ source code. This macro is
undefined otherwise.

__CWCC__

Preprocessor macro defined as the version of the CodeWarrior compiler frontend.

Syntax

__CWCC__

Remarks

CodeWarrior compilers issued after 2006 define this macro with the compiler’s
frontend version. For example, if the compiler frontend version is 4.2.0, the value
of __CWCC__ is 0x4200.

CodeWarrior compilers issued prior to 2006 used the pre-defined macro
__MWERKS__. The __MWERKS__ predefined macro is still functional as an alias
for __CWCC__.

The ISO standards do not specify this symbol.

__DATE__

Preprocessor macro defined as the date of compilation.

Predefined Macros

169CodeWarrior Build Tools Reference for the eTPU

Syntax

__DATE__

Remarks

The compiler defines this macro as a character string representation of the date of
compilation. The format of this string is

"Mmm dd yyyy"

where Mmm is the a three-letter abbreviation of the month, dd is the day of the
month, and yyyy is the year.

__embedded_cplusplus

Defined as 1 when compiling embedded C++ source code, undefined otherwise.

Syntax

__embedded_cplusplus

Remarks

The compiler defines this macro as 1 when the compiler’s settings are configured
to restrict the compiler to translate source code that conforms to the Embedded
C++ proposed standard. The compiler does not define this macro otherwise.

__FILE__

Preprocessor macro of the name of the source code file being compiled.

Syntax

__FILE__

Remarks

The compiler defines this macro as a character string literal value of the name of
the file being compiled, or the name specified in the last instance of a #line
directive.

Predefined Macros

170 CodeWarrior Build Tools Reference for the eTPU

__func__

Predefined variable of the name of the function being compiled.

Prototype

static const char __func__[] = "function-name";

Remarks

The compiler implicitly defines this variable at the beginning of each function if
the function refers to __func__. The character string contained by this array,
function-name, is the name of the function being compiled.

This implicit variable is undefined outside of a function body. This variable is also
undefined when C99 (ISO/IEC 9899-1999) or GCC (GNU Compiler Collection)
extension settings are off.

__FUNCTION__

Predefined variable of the name of the function being compiled.

Prototype

static const char __FUNCTION__[] = "function-name";

Remarks

The compiler implicitly defines this variable at the beginning of each function if
the function refers to __FUNCTION__. The character string contained by this
array, function-name, is the name of the function being compiled.

This implicit variable is undefined outside of a function body.

__ide_target()

Preprocessor operator for querying the IDE about the active build target.

Syntax

__ide_target("target_name")

Predefined Macros

171CodeWarrior Build Tools Reference for the eTPU

target-name

The name of a build target in the active project in the CodeWarrior IDE.

Remarks

Expands to 1 if target_name is the same as the active build target in the
CodeWarrior IDE’s active project. Expands to 0 otherwise. The ISO standards do
not specify this symbol.

__LINE__

Preprocessor macro of the number of the line of the source code file being compiled.

Syntax

__LINE__

Remarks

The compiler defines this macro as a integer value of the number of the line of the
source code file that the compiler is translating. The #line directive also affects
the value that this macro expands to.

__MWERKS__

Deprecated. Preprocessor macro defined as the version of the CodeWarrior compiler.

Syntax

__MWERKS__

Remarks

Replaced by the built-in preprocessor macro __CWCC__.

CodeWarrior compilers issued after 1995 define this macro with the compiler’s
version. For example, if the compiler version is 4.0, the value of __MWERKS__ is
0x4000.

This macro is defined as 1 if the compiler was issued before the CodeWarrior CW7
that was released in 1995.

The ISO standards do not specify this symbol.

Predefined Macros

172 CodeWarrior Build Tools Reference for the eTPU

__PRETTY_FUNCTION__

Predefined variable containing a character string of the “unmangled” name of the C++
function being compiled.

Syntax

Prototype

static const char __PRETTY_FUNCTION__[] = "function-name";

Remarks

The compiler implicitly defines this variable at the beginning of each function if
the function refers to __PRETTY_FUNCTION__. This name, function-name, is
the same identifier that appears in source code, not the “mangled” identifier that
the compiler and linker use. The C++ compiler “mangles” a function name by
appending extra characters to the function’s identifier to denote the function’s
return type and the types of its parameters.

The ISO/IEC 14882-1998 C++ standard does not specify this symbol.

__profile__

Preprocessor macro that specifies whether or not the compiler is generating object code
for a profiler.

Syntax

__profile__

Remarks

Defined as 1 when generating object code that works with a profiler. Undefined
otherwise. The ISO standards does not specify this symbol.

__STDC__

Defined as 1 when compiling ISO/IEC Standard C source code, undefined otherwise.

Predefined Macros

173CodeWarrior Build Tools Reference for the eTPU

Syntax

__STDC__

Remarks

The compiler defines this macro as 1 when the compiler’s settings are configured
to restrict the compiler to translate source code that conforms to the ISO/IEC 9899-
1990 and ISO/IEC 9899-1999 standards. The compiler does not define this macro
otherwise.

__TIME__

Preprocessor macro defined as a character string representation of the time of compilation.

Syntax

__TIME__

Remarks

The compiler defines this macro as a character string representation of the time of
compilation. The format of this string is

"hh:mm:ss"

where hh is a 2-digit hour of the day, mm is a 2-digit minute of the hour, and ss is a
2-digit second of the minute.

Predefined Macros

174 CodeWarrior Build Tools Reference for the eTPU

175CodeWarrior Build Tools Reference for the eTPU

17
Using Pragmas

The #pragma preprocessor directive specifies option settings to the compiler to control the
compiler and linker’s code generation.

• Checking Pragma Settings

• Saving and Restoring Pragma Settings

• Determining Which Settings Are Saved and Restored

• Invalid Pragmas

Checking Pragma Settings
The preprocessor function __option() returns the state of pragma settings at compile-
time. The syntax is

__option(setting-name)

where setting-name is the name of a pragma that accepts the on, off, and reset
arguments.

If setting-name is on, __option(setting-name) returns 1. If setting-name is off,
__option(setting-name) returns 0. If setting-name is not the name of a pragma,
__option(setting-name) returns false. If setting-name is the name of a pragma
that does not accept the on, off, and reset arguments, the compiler issues a warning
message.

Listing 17.1 shows an example.

Listing 17.1 Using the __option() preprocessor function

#if __option(ANSI_strict)
#include "portable.h" /* Use the portable declarations. */
#else
#include “custom.h” /* Use the specialized declarations. */
#endif

Using Pragmas
Saving and Restoring Pragma Settings

176 CodeWarrior Build Tools Reference for the eTPU

Saving and Restoring Pragma Settings
There are some occasions when you would like to apply pragma settings to a piece of
source code independently from the settings in the rest of the source file. For example, a
function might require unique optimization settings that should not be used in the rest of
the function’s source file.

Remembering which pragmas to save and restore is tedious and error-prone. Fortunately,
the compiler has mechanisms that save and restore pragma settings at compile time.
Pragma settings may be saved and restored at two levels:

• all pragma settings

• some individual pragma settings

Settings may be saved at one point in a compilation unit (a source code file and the files
that it includes), changed, then restored later in the same compilation unit. Pragma settings
cannot be saved in one source code file then restored in another unless both source code
files are included in the same compilation unit.

Pragmas push and pop save and restore, respectively, most pragma settings in a
compilation unit. Pragmas push and pop may be nested to unlimited depth. Listing 17.2
shows an example.

Listing 17.2 Using push and pop to save and restore pragma settings

/* Settings for this file. */
#pragma opt_unroll_loops on
#pragma optimize_for_size off
void fast_func_A(void)
{
/* ... */
}

/* Settings for slow_func(). */
#pragma push /* Save file settings. */
#pragma optimization_size 0
void slow_func(void)
{
/* ... */
}
#pragma pop /* Restore file settings. */

void fast_func_B(void)
{
/* ... */
}

Using Pragmas
Determining Which Settings Are Saved and Restored

177CodeWarrior Build Tools Reference for the eTPU

Pragmas that accept the reset argument perform the same actions as pragmas push and
pop, but apply to a single pragma. A pragma’s on and off arguments save the pragma’s
current setting before changing it to the new setting. A pragma’s reset argument
restores the pragma’s setting. The on, off, and reset arguments may be nested to an
unlimited depth. Listing 17.3 shows an example.

Listing 17.3 Using the reset option to save and restore a pragma setting

/* Setting for this file. */
#pragma opt_unroll_loops on

void fast_func_A(void)
{
/* ... */
}

/* Setting for smallslowfunc(). */
#pragma opt_unroll_loops off
void small_func(void)
{
/* ... */
}
/* Restore previous setting. */
#pragma opt_unroll_loops reset

void fast_func_B(void)
{
/* ... */
}

Determining Which Settings Are Saved and
Restored

Not all pragma settings are saved and restored by pragmas push and pop. Pragmas that
do not change compiler settings are not affected by push and pop. For example, pragma
message cannot be saved and restored.

Listing 17.4 shows an example that checks if the ANSI_strict pragma setting is saved
and restored by pragmas push and pop.

Listing 17.4 Testing if pragmas push and pop save and restore a setting

/* Preprocess this source code. */
#pragma ANSI_strict on

Using Pragmas
Invalid Pragmas

178 CodeWarrior Build Tools Reference for the eTPU

#pragma push
#pragma ANSI_strict off
#pragma pop
#if __option(ANSI_strict)
#error "Saved and restored by push and pop."
#else
#error "Not affected by push and pop."
#endif

Invalid Pragmas
If you enable the compiler’s setting for reporting invalid pragmas, the compiler issues a
warning when it encounters a pragma it does not recognize. For example, the pragma
statements in Listing 17.5 generate warnings with the invalid pragmas setting enabled.

Listing 17.5 Invalid Pragmas

#pragma silly_data off // WARNING: silly_data is not a pragma.
#pragma ANSI_strict select // WARNING: select is not defined
#pragma ANSI_strict on // OK

Table 17.1 shows how to control the recognition of invalid pragmas.

Pragma Scope
The scope of a pragma setting is limited to a compilation unit (a source code file and the
files that it includes).

At the beginning of compilation unit, the compiler uses its default settings. The compiler
then uses the settings specified by the CodeWarrior IDE’s build target or in command-line
options.

Table 17.1 Controlling invalid pragmas

To control this option from
here...

use this setting

CodeWarrior IDE Illegal Pragmas in the PowerPC Compiler
> Warnings panel

source code #pragma warn_illpragma

command line -warnings illpragmas

Using Pragmas
Pragma Scope

179CodeWarrior Build Tools Reference for the eTPU

The compiler uses the setting in a pragma beginning at the pragma’s location in the
compilation unit. The compilers continues using this setting:

• until another instance of the same pragma appears later in the source code

• until an instance of pragma pop appears later in the source code

• until the compiler finishes translating the compilation unit

Using Pragmas
Pragma Scope

180 CodeWarrior Build Tools Reference for the eTPU

181CodeWarrior Build Tools Reference for the eTPU

18
Pragmas for Standard C
Conformance

ANSI_strict

Controls the use of non-standard language features.

Syntax

#pragma ANSI_strict on | off | reset

Remarks

If you enable the pragma ANSI_strict, the compiler generates an error message
if it encounters some CodeWarrior extensions to the C language defined by the
ISO/IEC 9899-1990 (“C90”) standard:

• C++-style comments

• unnamed arguments in function definitions

• non-standard keywords

This pragma corresponds to the ANSI Strict setting in the CodeWarrior IDE’s
Properties > C/C++ Build > Settings > Tool Settings > PowerPC Compiler>
C/C++ Language panel. By default, this pragma is off.

c99

Controls the use of a subset of ISO/IEC 9899-1999 (“C99”) language features.

Syntax

#pragma c99 on | off | reset

Pragmas for Standard C Conformance

182 CodeWarrior Build Tools Reference for the eTPU

Remarks

If you enable this pragma, the compiler accepts many of the language features
described by the ISO/IEC 9899-1999 standard:

• More rigid type checking.

• Trailing commas in enumerations.

• GCC/C99-style compound literal values.

• Designated initializers.

• __func__ predefined symbol.

• Implicit return 0; in main().

• Non-const static data initializations.

• Variable argument macros (__VA_ARGS__).

• bool and _Bool support.

• long long support (separate switch).

• restrict support.

• // comments.

• inline support.

• Digraphs.

• _Complex and _Imaginary (treated as keywords but not supported).

• Empty arrays as last struct members.

• Designated initializers

• Hexadecimal floating-point constants.

• Variable length arrays are supported within local or function prototype scope (as
required by the C99 standard).

• Unsuffixed decimal constant rules.

• ++bool-- expressions.

• (T) (int-list) are handled/parsed as cast-expressions and as literals.

• __STDC_HOSTED__ is 1.

This pragma corresponds to the Enable C99 Extensions setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler > C/C++ Language panel. By default, this pragma is
disabled.

Pragmas for Standard C Conformance

183CodeWarrior Build Tools Reference for the eTPU

c9x

Equivalent to #pragma c99.

ignore_oldstyle

Controls the recognition of function declarations that follow the syntax conventions used
before ISO/IEC standard C (in other words, “K&R” style).

Syntax

#pragma ignore_oldstyle on | off | reset

Remarks

If you enable this pragma, the compiler ignores old-style function declarations and
lets you prototype a function any way you want. In old-style declarations, you
specify the types of arguments on separate lines instead of the function’s argument
list. For example, the code in Listing 18.1 defines a prototype for a function with
an old-style definition.

Listing 18.1 Mixing Old-style and Prototype Function Declarations

int f(char x, short y, float z);

#pragma ignore_oldstyle on

f(x, y, z)
char x;
short y;
float z;
{
 return (int)x+y+z;
}

#pragma ignore_oldstyle reset

This pragma does not correspond to any panel setting. By default, this setting is
disabled.

Pragmas for Standard C Conformance

184 CodeWarrior Build Tools Reference for the eTPU

only_std_keywords

Controls the use of ISO/IEC keywords.

Syntax

#pragma only_std_keywords on | off | reset

Remarks

The compiler recognizes additional reserved keywords. If you are writing source
code that must follow the ISO/IEC C standards strictly, enable the pragma
only_std_keywords.

This pragma corresponds to the ANSI Keywords Only setting in the CodeWarrior
IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler> C/C++ Language panel. By default, this pragma is
disabled.

require_prototypes

Controls whether or not the compiler should expect function prototypes.

Syntax

#pragma require_prototypes on | off | reset

Remarks

This pragma only affects non-static functions.

If you enable this pragma, the compiler generates an error message if you use a
function that does not have a preceding prototype. Use this pragma to prevent error
messages caused by referring to a function before you define it. For example,
without a function prototype, you might pass data of the wrong type. As a result,
your code might not work as you expect even though it compiles without error.

In Listing 18.2, function main() calls PrintNum() with an integer argument
even though PrintNum() takes an argument of type float.

Listing 18.2 Unnoticed Type-mismatch

#include <stdio.h>

void main(void)

Pragmas for Standard C Conformance

185CodeWarrior Build Tools Reference for the eTPU

{
 PrintNum(1); /* PrintNum() tries to interpret the
 integer as a float. Prints 0.000000. */
}

void PrintNum(float x)
{
 printf("%f\n", x);
}

When you run this program, you could get this result:

0.000000

Although the compiler does not complain about the type mismatch, the function
does not give the result you intended. Since PrintNum() does not have a
prototype, the compiler does not know to generate instructions to convert the
integer to a floating-point number before calling PrintNum(). Consequently, the
function interprets the bits it received as a floating-point number and prints
nonsense.

A prototype for PrintNum(), as in Listing 18.3, gives the compiler sufficient
information about the function to generate instructions to properly convert its
argument to a floating-point number. The function prints what you expected.

Listing 18.3 Using a Prototype to Avoid Type-mismatch

#include <stdio.h>

void PrintNum(float x); /* Function prototype. */

void main(void)
{
 PrintNum(1); /* Compiler converts int to float.
} Prints 1.000000. */

void PrintNum(float x)
{
 printf("%f\n", x);
}

In other situations where automatic conversion is not possible, the compiler
generates an error message if an argument does not match the data type required by
a function prototype. Such a mismatched data type error is easier to locate at
compile time than at runtime.

Pragmas for Standard C Conformance

186 CodeWarrior Build Tools Reference for the eTPU

This pragma corresponds to the Require Function Prototypes setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler > C/C++ Language panel.

187CodeWarrior Build Tools Reference for the eTPU

19
Pragmas for Language
Translation

asmpoundcomment

Controls whether the “#” symbol is treated as a comment character in inline assembly.

Syntax

#pragma asmpoundcomment on | off | reset

Remarks

Some targets may have additional comment characters, and may treat these
characters as comments even when

#pragma asmpoundcomment off

is used.

Using this pragma may interfere with the function-level inline assembly language.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

asmsemicolcomment

Controls whether the “;” symbol is treated as a comment character in inline assembly.

Syntax

#pragma asmsemicolcomment on | off | reset

Pragmas for Language Translation

188 CodeWarrior Build Tools Reference for the eTPU

Remarks

Some targets may have additional comment characters, and may treat these
characters as comments even when

#pragma asmsemicolcomment off

is used.

Using this pragma may interfere with the assembly language of a specific target.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

const_strings

Controls the const-ness of character string literals.

Syntax

#pragma const_strings [on | off | reset]

Remarks

If you enable this pragma, the type of string literals is an array const char[n],
or const wchar_t[n] for wide strings, where n is the length of the string
literal plus 1 for a terminating NUL character. Otherwise, the type char[n] or
wchar_t[n] is used.

By default, this pragma is on when compiling C++ source code and off when
compiling C source code.

dollar_identifiers

Controls use of dollar signs ($) in identifiers.

Syntax

#pragma dollar_identifiers on | off | reset

Remarks

If you enable this pragma, the compiler accepts dollar signs ($) in identifiers.
Otherwise, the compiler issues an error if it encounters anything but underscores,
alphabetic, numeric character, and universal characters (\uxxxx, \Uxxxxxxxx)
in an identifier.

Pragmas for Language Translation

189CodeWarrior Build Tools Reference for the eTPU

This pragma does not correspond to any panel setting. By default, this pragma is
off.

gcc_extensions

Controls the acceptance of GNU C language extensions.

Syntax

#pragma gcc_extensions on | off | reset

Remarks

If you enable this pragma, the compiler accepts GNU C extensions in C source
code. This includes the following non-ANSI C extensions:

• Initialization of automatic struct or array variables with non-const
values.

• Illegal pointer conversions

• sizeof(void) == 1

• sizeof(function-type) == 1

• Limited support for GCC statements and declarations within expressions.

• Macro redefinitions without a previous #undef.

• The GCC keyword typeof

• Function pointer arithmetic supported

• void* arithmetic supported

• Void expressions in return statements of void

• __builtin_constant_p (expr) supported

• Forward declarations of arrays of incomplete type

• Forward declarations of empty static arrays

• Pre-C99 designated initializer syntax (deprecated)

• shortened conditional expression (c ?: y)

• long __builtin_expect (long exp, long c) now accepted

This pragma corresponds to the Enable GCC Extensions setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler > C/C++ Language panel. By default, this pragma is
disabled.

Pragmas for Language Translation

190 CodeWarrior Build Tools Reference for the eTPU

mark

Adds an item to the Function pop-up menu in the IDE editor.

Syntax

#pragma mark itemName

Remarks

This pragma adds itemName to the source file’s Function pop-up menu. If you
open the file in the CodeWarrior Editor and select the item from the Function pop-
up menu, the editor brings you to the pragma. Note that if the pragma is inside a
function definition, the item does not appear in the Function pop-up menu.

If itemName begins with “--”, a menu separator appears in the IDE’s Function
pop-up menu:

#pragma mark --

This pragma does not correspond to any panel setting.

mpwc_newline

Controls the use of newline character convention.

Syntax

#pragma mpwc_newline on | off | reset

Remarks

If you enable this pragma, the compiler translates '\n' as a Carriage Return
(0x0D) and '\r' as a Line Feed (0x0A). Otherwise, the compiler uses the ISO
standard conventions for these characters.

If you enable this pragma, use ISO standard libraries that were compiled when this
pragma was enabled.

If you enable this pragma and use the standard ISO standard libraries, your
program will not read and write '\n' and '\r' properly. For example, printing
'\n' brings your program’s output to the beginning of the current line instead of
inserting a newline.

This pragma does not correspond to any IDE panel setting. By default, this pragma
is disabled.

Pragmas for Language Translation

191CodeWarrior Build Tools Reference for the eTPU

mpwc_relax

Controls the compatibility of the char* and unsigned char* types.

Syntax

#pragma mpwc_relax on | off | reset

Remarks

If you enable this pragma, the compiler treats char* and unsigned char* as
the same type. Use this setting to compile source code written before the ISO C
standards. Old source code frequently uses these types interchangeably.

This setting has no effect on C++ source code.

NOTE Turning this option on may prevent the compiler from detecting some
programming errors. We recommend not turning on this option.

Listing 19.1 shows how to use this pragma to relax function pointer checking.

Listing 19.1 Relaxing function pointer checking

#pragma mpwc_relax on
extern void f(char *);

/* Normally an error, but allowed. */
extern void(*fp1)(void *) = &f;

/* Normally an error, but allowed. */
extern void(*fp2)(unsigned char *) = &f;

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

multibyteaware

Controls how the Source encoding option in the IDE is treated

Syntax

#pragma multibyteaware on | off | reset

Pragmas for Language Translation

192 CodeWarrior Build Tools Reference for the eTPU

Remarks

This pragma is deprecated. See #pragma text_encoding for more details.

This pragma does not correspond to any panel setting, but the replacement option
Source encoding appears in the CodeWarrior IDE’s Properties > C/C++ Build
> Settings > Tool Settings > PowerPC Compiler > Preprocessor panel. By
default, this pragma is off.

multibyteaware_preserve_literals

Controls the treatment of multibyte character sequences in narrow character string literals.

Syntax

#pragma multibyteaware_preserve_literals on | off | reset

Remarks

This pragma does not correspond to any panel setting. By default, this pragma is
on.

text_encoding

Identifies the character encoding of source files.

Syntax

#pragma text_encoding ("name" | unknown | reset [, global])

Parameters

name

The IANA or MIME encoding name or an OS-specific string that identifies the text
encoding. The compiler recognizes these names and maps them to its internal
decoders:

system US-ASCII ASCII ANSI_X3.4-1968

ANSI_X3.4-1968 ANSI_X3.4 UTF-8 UTF8 ISO-2022-JP

CSISO2022JP ISO2022JP CSSHIFTJIS SHIFT-JIS

SHIFT_JIS SJIS EUC-JP EUCJP UCS-2 UCS-2BE

UCS-2LE UCS2 UCS2BE UCS2LE UTF-16 UTF-16BE

Pragmas for Language Translation

193CodeWarrior Build Tools Reference for the eTPU

UTF-16LE UTF16 UTF16BE UTF16LE UCS-4 UCS-4BE

UCS-4LE UCS4 UCS4BE UCS4LE 10646-1:1993

ISO-10646-1 ISO-10646 unicode

global

Tells the compiler that the current and all subsequent files use the same text
encoding. By default, text encoding is effective only to the end of the file.

Remarks

By default, #pragma text_encoding is only effective through the end of file.
To affect the default text encoding assumed for the current and all subsequent files,
supply the “global” modifier.

This pragma corresponds to the Source Encoding option in the CodeWarrior
IDE’s Properties > C/C++ Build > Settings > Tool Settings > PowerPC
Compiler > Preprocessor panel. By default, this setting is ASCII.

trigraphs

Controls the use trigraph sequences specified in the ISO standards.

Syntax

#pragma trigraphs on | off | reset

Remarks

If you are writing code that must strictly adhere to the ANSI standard, enable this
pragma.

Table 19.1 Trigraph table

Trigraph Character

??= #

??/ \

??' ^

??([

??)]

??! |

Pragmas for Language Translation

194 CodeWarrior Build Tools Reference for the eTPU

NOTE Use of this pragma may cause a portability problem for some targets.

Be careful when initializing strings or multi-character constants that contain
question marks.

Listing 19.2 Example of Pragma trigraphs

char c = '????'; /* ERROR: Trigraph sequence expands to '??^ */
char d = '\?\?\?\?'; /* OK */

This pragma corresponds to the Expand Trigraphs setting in the CodeWarrior
IDE’s Properties > C/C++ Build > Settings > Tool Settings > PowerPC
Compiler > C/C++ Language panel. By default, this pragma is disabled.

unsigned_char

Controls whether or not declarations of type char are treated as unsigned char.

Syntax

#pragma unsigned_char on | off | reset

Remarks

If you enable this pragma, the compiler treats a char declaration as if it were an
unsigned char declaration.

NOTE If you enable this pragma, your code might not be compatible with libraries
that were compiled when the pragma was disabled. In particular, your code
might not work with the ISO standard libraries included with CodeWarrior.

??< {

??> }

??- ~

Table 19.1 Trigraph table

Trigraph Character

Pragmas for Language Translation

195CodeWarrior Build Tools Reference for the eTPU

This pragma corresponds to the Use unsigned chars setting in the CodeWarrior
IDE’s Properties > C/C++ Build > Settings > Tool Settings > PowerPC
Compiler > C/C++ Language panel. By default, this setting is disabled.

Pragmas for Language Translation

196 CodeWarrior Build Tools Reference for the eTPU

197CodeWarrior Build Tools Reference for the eTPU

20
Pragmas for Diagnostic
Messages

extended_errorcheck

Controls the issuing of warning messages for possible unintended logical errors.

Syntax

#pragma extended_errorcheck on | off | reset

Remarks

If you enable this pragma, the compiler generates a warning message (not an error)
if it encounters some common programming errors:

• An integer or floating-point value assigned to an enum type. Listing 20.1 shows
an example.

Listing 20.1 Assigning to an Enumerated Type

enum Day { Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday } d;

d = 5; /* WARNING */
d = Monday; /* OK */
d = (Day)3; /* OK */

• An empty return statement in a function that is not declared void. For
example, Listing 20.2 results in a warning message.

Listing 20.2 A non-void function with an empty return statement

int MyInit(void)
{

int err = GetMyResources();
 if (err != -1)

Pragmas for Diagnostic Messages

198 CodeWarrior Build Tools Reference for the eTPU

 {
 err = GetMoreResources();
 }

return; /* WARNING: empty return statement */
}

Listing 20.3 shows how to prevent this warning message.

Listing 20.3 A non-void function with a proper return statement

int MyInit(void)
{

int err = GetMyResources();
 if (err != -1)
 {
 err = GetMoreResources();
 }

return err; /* OK */
}

This pragma corresponds to the Extended Error Checking setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler > Warnings panel. By default, this setting is off.

maxerrorcount

Limits the number of error messages emitted while compiling a single file.

Syntax

#pragma maxerrorcount(num | off)

Parameters

num

Specifies the maximum number of error messages issued per source file.

off

Does not limit the number of error messages issued per source file.

Remarks

The total number of error messages emitted may include one final message:

Too many errors emitted

Pragmas for Diagnostic Messages

199CodeWarrior Build Tools Reference for the eTPU

This pragma does not correspond to any panel setting. By default, this pragma is
off.

message

Tells the compiler to issue a text message to the user.

Syntax

#pragma message(msg)

Parameter

msg

Actual message to issue. Does not have to be a string literal.

Remarks

In the CodeWarrior IDE, the message appears in the Console view. On the
command line, the message is sent to the standard error stream.

This pragma does not correspond to any panel setting.

showmessagenumber

Controls the appearance of warning or error numbers in displayed messages.

Syntax

#pragma showmessagenumber on | off | reset

Remarks

When enabled, this pragma causes messages to appear with their numbers visible.
You can then use the warning pragma with a warning number to suppress the
appearance of specific warning messages.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

Pragmas for Diagnostic Messages

200 CodeWarrior Build Tools Reference for the eTPU

show_error_filestack

Controls the appearance of the current #include file stack within error messages
occurring inside deeply-included files.

Syntax

#pragma show_error_filestack on | off | reset

Remarks

This pragma does not correspond to any panel setting. By default, this pragma is
on.

suppress_warnings

Controls the issuing of warning messages.

Syntax

#pragma suppress_warnings on | off | reset

Remarks

If you enable this pragma, the compiler does not generate warning messages,
including those that are enabled.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

sym

Controls the generation of debugger symbol information for subsequent functions.

Syntax

#pragma sym on | off | reset

Remarks

The compiler pays attention to this pragma only if you enable the debug marker for
a file in the IDE project window. If you disable this pragma, the compiler does not

Pragmas for Diagnostic Messages

201CodeWarrior Build Tools Reference for the eTPU

put debugging information into the source file debugger symbol file (SYM or
DWARF) for the functions that follow.

The compiler always generates a debugger symbol file for a source file that has a
debug diamond next to it in the IDE project window. This pragma changes only
which functions have information in that symbol file.

This pragma does not correspond to any panel setting. By default, this pragma is
enabled.

unused

Controls the suppression of warning messages for variables and parameters that are not
referenced in a function.

Syntax

#pragma unused (var_name [, var_name]...)

var_name

The name of a variable.

Remarks

This pragma suppresses the compile time warning messages for the unused
variables and parameters specified in its argument list. You can use this pragma
only within a function body. The listed variables must be within the scope of the
function.

In C++, you cannot use this pragma with functions defined within a class definition
or with template functions.

Listing 20.4 Example of Pragma unused() in C

#pragma warn_unusedvar on
#pragma warn_unusedarg on

static void ff(int a)
{
 int b;
#pragma unused(a,b)
/* Compiler does not warn that a and b are unused. */

}

Pragmas for Diagnostic Messages

202 CodeWarrior Build Tools Reference for the eTPU

Listing 20.5 Example of Pragma unused() in C++

#pragma warn_unusedvar on
#pragma warn_unusedarg on

static void ff(int /* No warning */)
{
 int b;
#pragma unused(b)
/* Compiler does not warn that b is unused. */

}

This pragma does not correspond to any CodeWarrior IDE panel setting.

warning

Controls which warning numbers are displayed during compiling.

Syntax

#pragma warning on | off | reset (num [, ...])

This alternate syntax is allowed but ignored (message numbers do not match):

#pragma warning(warning_type : warning_num_list [,
warning_type: warning_num_list, ...])

Parameters

num

The number of the warning message to show or suppress.

warning_type

Specifies one of the following settings:

• default

• disable

• enable

warning_num_list

The warning_num_list is a list of warning numbers separated by spaces.

Pragmas for Diagnostic Messages

203CodeWarrior Build Tools Reference for the eTPU

Remarks

Use the pragma showmessagenumber to display warning messages with their
warning numbers.

This pragma only applies to CodeWarrior front-end warnings. Using the pragma
for the Power Architecture back-end warnings returns invalid message number
warning.

The CodeWarrior compiler allows, but ignores, the alternative syntax for
compatibility with Microsoft® compilers.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

warning_errors

Controls whether or not warnings are treated as errors.

Syntax

#pragma warning_errors on | off | reset

Remarks

If you enable this pragma, the compiler treats all warning messages as though they
were errors and does not translate your file until you resolve them.

This pragma corresponds to the Treat All Warnings as Errors setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler > Warnings panel.

warn_any_ptr_int_conv

Controls if the compiler generates a warning message when an integral type is explicitly
converted to a pointer type or vice versa.

Syntax

#pragma warn_any_ptr_int_conv on | off | reset

Remarks

This pragma is useful to identify potential 64-bit pointer portability issues. An
example is shown in.

Pragmas for Diagnostic Messages

204 CodeWarrior Build Tools Reference for the eTPU

Listing 20.6 Example of warn_any_ptr_int_conv

#pragma warn_ptr_int_conv on

short i, *ip

void func() {
 i = (short)ip;
 /* WARNING: short type is not large enough to hold pointer. */
}

#pragma warn_any_ptr_int_conv on

void bar() {
 i = (int)ip; /* WARNING: pointer to integral conversion. */
 ip = (short *)i; /* WARNING: integral to pointer conversion. */
}

Remarks

This pragma corresponds to the Pointer/Integral Conversions setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler > Warnings panel. By default, this pragma is off.

warn_emptydecl

Controls the recognition of declarations without variables.

Syntax

#pragma warn_emptydecl on | off | reset

Remarks

If you enable this pragma, the compiler displays a warning message when it
encounters a declaration with no variables.

Listing 20.7 Examples of empty declarations in C and C++

#pragma warn_emptydecl on
int ; /* WARNING: empty variable declaration. */
int i; /* OK */

Pragmas for Diagnostic Messages

205CodeWarrior Build Tools Reference for the eTPU

long j;; /* WARNING */
long j; /* OK */

Listing 20.8 Example of empty declaration in C++

#pragma warn_emptydecl on
extern "C" {
}; /* WARNING */

This pragma corresponds to the Empty Declarations setting in the CodeWarrior
IDE’s Properties > C/C++ Build > Settings > Tool Settings > PowerPC
Compiler > Warnings panel. By default, this pragma is disabled.

warn_extracomma

Controls the recognition of superfluous commas in enumerations.

Syntax

#pragma warn_extracomma on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a trailing comma in enumerations. For example, Listing 20.9 is
acceptable source code but generates a warning message when you enable this
setting.

Listing 20.9 Warning about extra commas

#pragma warn_extracomma on
enum { mouse, cat, dog, };
/* WARNING: compiler expects an identifier after final comma. */

The compiler ignores terminating commas in enumerations when compiling source
code that conforms to the ISO/IEC 9899-1999 (“C99”) standard.

This pragma corresponds to the Extra Commas setting in the CodeWarrior IDE’s
Properties > C/C++ Build > Settings > Tool Settings > PowerPC Compiler >
Warnings panel. By default, this pragma is disabled.

Pragmas for Diagnostic Messages

206 CodeWarrior Build Tools Reference for the eTPU

warn_filenamecaps

Controls the recognition of conflicts involving case-sensitive filenames within user
includes.

Syntax

#pragma warn_filenamecaps on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when an
#include directive capitalizes a filename within a user include differently from
the way the filename appears on a disk. It also detects use of “8.3” DOS filenames
in Windows® operating systems when a long filename is available. Use this
pragma to avoid porting problems to operating systems with case-sensitive file
names.

By default, this pragma only checks the spelling of user includes such as the
following:

#include "file"

For more information on checking system includes, see
warn_filenamecaps_system.

This pragma corresponds to the Include File Capitalization setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler > Warnings panel. By default, this pragma is off.

warn_filenamecaps_system

Controls the recognition of conflicts involving case-sensitive filenames within system
includes.

Syntax

#pragma warn_filenamecaps_system on | off | reset

Remarks

If you enable this pragma along with warn_filenamecaps, the compiler issues
a warning message when an #include directive capitalizes a filename within a
system include differently from the way the filename appears on a disk. It also
detects use of “8.3” DOS filenames in Windows® systems when a long filename is

Pragmas for Diagnostic Messages

207CodeWarrior Build Tools Reference for the eTPU

available. This pragma helps avoid porting problems to operating systems with
case-sensitive file names.

To check the spelling of system includes such as the following:

#include <file>

Use this pragma along with the warn_filenamecaps pragma.

This pragma corresponds to the Check System Includes setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler > Warnings panel. By default, this pragma is off.

NOTE Some SDKs (Software Developer Kits) use “colorful” capitalization, so this
pragma may issue a lot of unwanted messages.

warn_hiddenlocals

Controls the recognition of a local variable that hides another local variable.

Syntax

#pragma warn_hiddenlocals on | off | reset

Remarks

When on, the compiler issues a warning message when it encounters a local
variable that hides another local variable. An example appears in Listing 20.10.

Listing 20.10 Example of hidden local variables warning

#pragma warn_hiddenlocals on

void func(int a)
{
 {
 int a; /* WARNING: this 'a' obscures argument 'a'.
 }
}

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this setting is off.

Pragmas for Diagnostic Messages

208 CodeWarrior Build Tools Reference for the eTPU

warn_illpragma

Controls the recognition of invalid pragma directives.

Syntax

#pragma warn_illpragma on | off | reset

Remarks

If you enable this pragma, the compiler displays a warning message when it
encounters a pragma it does not recognize.

This pragma corresponds to the Illegal Pragmas setting in the CodeWarrior IDE’s
Properties > C/C++ Build > Settings > Tool Settings > PowerPC Compiler >
Warnings panel. By default, this setting is off.

warn_illtokenpasting

Controls whether or not to issue a warning message for improper preprocessor token
pasting.

Syntax

#pragma warn_illtokenpasting on | off | reset

Remarks

An example of this is shown below:

#define PTR(x) x##* / PTR(y)

Token pasting is used to create a single token. In this example, y and x cannot be
combined. Often the warning message indicates the macros uses “##”
unnecessarily.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

warn_illunionmembers

Controls whether or not to issue a warning message for invalid union members, such as
unions with reference or non-trivial class members.

Pragmas for Diagnostic Messages

209CodeWarrior Build Tools Reference for the eTPU

Syntax

#pragma warn_illunionmembers on | off | reset

Remarks

This pragma does not correspond to any panel setting. By default, this pragma is
on.

warn_impl_f2i_conv

Controls the issuing of warning messages for implicit float-to-int conversions.

Syntax

#pragma warn_impl_f2i_conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message for implicitly
converting floating-point values to integral values. Listing 20.11 provides an
example.

Listing 20.11 Example of Implicit float-to-int Conversion

#pragma warn_impl_f2i_conv on

float f;
signed int si;

int main()
{
 f = si; /* WARNING */

#pragma warn_impl_f2i_conv off
 si = f; /* OK */
}

This pragma corresponds to the Float to Integer setting in the CodeWarrior IDE’s
Properties > C/C++ Build > Settings > Tool Settings > PowerPC Compiler >
Warnings panel. By default, this pragma is on.

Pragmas for Diagnostic Messages

210 CodeWarrior Build Tools Reference for the eTPU

warn_impl_i2f_conv

Controls the issuing of warning messages for implicit int-to-float conversions.

Syntax

#pragma warn_impl_i2f_conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message for implicitly
converting integral values to floating-point values. Listing 20.12 shows an
example.

Listing 20.12 Example of implicit int-to-float conversion

#pragma warn_impl_i2f_conv on

float f;
signed int si;

int main()
{
 si = f; /* WARNING */

#pragma warn_impl_i2f_conv off
 f = si; /* OK */

}

This pragma corresponds to the Integer to Float setting in the CodeWarrior IDE’s
Properties > C/C++ Build > Settings > Tool Settings > PowerPC Compiler >
Warnings panel. By default, this pragma is off.

warn_impl_s2u_conv

Controls the issuing of warning messages for implicit conversions between the signed
int and unsigned int data types.

Syntax

#pragma warn_impl_s2u_conv on | off | reset

Pragmas for Diagnostic Messages

211CodeWarrior Build Tools Reference for the eTPU

Remarks

If you enable this pragma, the compiler issues a warning message for implicitly
converting either from signed int to unsigned int or vice versa. Listing
20.13 provides an example.

Listing 20.13 Example of implicit conversions between signed int and unsigned int

#pragma warn_impl_s2u_conv on

signed int si;
unsigned int ui;

int main()
{
 ui = si; /* WARNING */
 si = ui; /* WARNING */

#pragma warn_impl_s2u_conv off
 ui = si; /* OK */
 si = ui; /* OK */
}

This pragma corresponds to the Signed / Unsigned setting in the CodeWarrior
IDE’s Properties > C/C++ Build > Settings > Tool Settings > PowerPC
Compiler > Warnings panel. By default, this pragma is enabled.

warn_implicitconv

Controls the issuing of warning messages for all implicit arithmetic conversions.

Syntax

#pragma warn_implicitconv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message for all implicit
arithmetic conversions when the destination type might not represent the source
value. Listing 20.14 provides an example.

Listing 20.14 Example of Implicit Conversion

#pragma warn_implicitconv on

Pragmas for Diagnostic Messages

212 CodeWarrior Build Tools Reference for the eTPU

float f;
signed int si;
unsigned int ui;

int main()
{
 f = si; /* WARNING */
 si = f; /* WARNING */
 ui = si; /* WARNING */
 si = ui; /* WARNING */
}

NOTE This option “opens the gate” for the checking of implicit conversions. The sub-
pragmas warn_impl_f2i_conv, warn_impl_i2f_conv, and
warn_impl_s2u_conv control the classes of conversions checked.

This pragma corresponds to the Implicit Arithmetic Conversions setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler > Warnings panel. By default, this pragma is off.

warn_largeargs

Controls the issuing of warning messages for passing non-”int” numeric values to
unprototyped functions.

Syntax

#pragma warn_largeargs on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message if you attempt to
pass a non-integer numeric value, such as a float or long long, to an
unprototyped function when the require_prototypes pragma is disabled.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

warn_missingreturn

Issues a warning message when a function that returns a value is missing a return
statement.

Pragmas for Diagnostic Messages

213CodeWarrior Build Tools Reference for the eTPU

Syntax

#pragma warn_missingreturn on | off | reset

Remarks

An example is shown in Listing 20.15.

Listing 20.15 Example of warn_missingreturn pragma

#pragma warn_missingreturn on

int func()
{
 /* WARNING: no return statement. */
}

This pragma corresponds to the Missing ‘return’ Statements setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler > Warnings panel.

warn_no_side_effect

Controls the issuing of warning messages for redundant statements.

Syntax

#pragma warn_no_side_effect on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a statement that produces no side effect. To suppress this warning
message, cast the statement with (void). Listing 20.16 provides an example.

Listing 20.16 Example of Pragma warn_no_side_effect

#pragma warn_no_side_effect on
void func(int a,int b)
{
 a+b; /* WARNING: expression has no side effect */
 (void)(a+b); /* OK: void cast suppresses warning. */
}

Pragmas for Diagnostic Messages

214 CodeWarrior Build Tools Reference for the eTPU

This pragma corresponds to the Expression Has No Side Effect panel setting in
the CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler > Warnings panel. By default, this pragma is off.

warn_padding

Controls the issuing of warning messages for data structure padding.

Syntax

#pragma warn_padding on | off | reset

Remarks

If you enable this pragma, the compiler warns about any bytes that were implicitly
added after an ANSI C struct member to improve memory alignment. Refer to
the appropriate Targeting manual for more information on how the compiler pads
data structures for a particular processor or operating system.

This pragma corresponds to the Pad Bytes Added setting in the CodeWarrior
IDE’s Properties > C/C++ Build > Settings > Tool Settings > PowerPC
Compiler > Warnings panel. By default, this setting is off.

warn_pch_portability

Controls whether or not to issue a warning message when #pragma once on is used in a
precompiled header.

Syntax

#pragma warn_pch_portability on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when you use
#pragma once on in a precompiled header. This helps you avoid
situations in which transferring a precompiled header from machine to machine
causes the precompiled header to produce different results. For more information,
see pragma once.

This pragma does not correspond to any panel setting. By default, this setting is
off.

Pragmas for Diagnostic Messages

215CodeWarrior Build Tools Reference for the eTPU

warn_possunwant

Controls the recognition of possible unintentional logical errors.

Syntax

#pragma warn_possunwant on | off | reset

Remarks

If you enable this pragma, the compiler checks for common, unintended logical
errors:

• An assignment in either a logical expression or the conditional portion of an if,
while, or for expression. This warning message is useful if you use = when
you mean to use ==. Listing 20.17 shows an example.

Listing 20.17 Confusing = and == in Comparisons

if (a=b) f(); /* WARNING: a=b is an assignment. */

if ((a=b)!=0) f(); /* OK: (a=b)!=0 is a comparison. */

if (a==b) f(); /* OK: (a==b) is a comparison. */

• An equal comparison in a statement that contains a single expression. This
check is useful if you use == when you meant to use =. Listing 20.18 shows an
example.

Listing 20.18 Confusing = and == Operators in Assignments

a == 0; // WARNING: This is a comparison.
a = 0; // OK: This is an assignment, no warning

• A semicolon (;) directly after a while, if, or for statement.

For example, Listing 20.19 generates a warning message.

Listing 20.19 Empty statement

i = sockcount();
while (--i); /* WARNING: empty loop. */
 matchsock(i);

Pragmas for Diagnostic Messages

216 CodeWarrior Build Tools Reference for the eTPU

If you intended to create an infinite loop, put white space or a comment between
the while statement and the semicolon. The statements in Listing 20.20
suppress the above error or warning messages.

Listing 20.20 Intentional empty statements

while (i++) ; /* OK: White space separation. */
while (i++) /* OK: Comment separation */ ;

This pragma corresponds to the Possible Errors setting in the CodeWarrior IDE’s
Properties > C/C++ Build > Settings > Tool Settings > PowerPC Compiler >
Warnings panel. By default, this pragma is off.

warn_ptr_int_conv

Controls the recognition the conversion of pointer values to incorrectly-sized integral
values.

Syntax

#pragma warn_ptr_int_conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message if an expression
attempts to convert a pointer value to an integral type that is not large enough to
hold the pointer value.

Listing 20.21 Example for #pragma warn_ptr_int_conv

#pragma warn_ptr_int_conv on

char *my_ptr;
char too_small = (char)my_ptr; /* WARNING: char is too small. */

See also “warn_any_ptr_int_conv” on page 203.

This pragma corresponds to the Pointer / Integral Conversions setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler > Warnings panel. By default, this pragma is off.

Pragmas for Diagnostic Messages

217CodeWarrior Build Tools Reference for the eTPU

warn_resultnotused

Controls the issuing of warning messages when function results are ignored.

Syntax

#pragma warn_resultnotused on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a statement that calls a function without using its result. To prevent this,
cast the statement with (void). Listing 20.22 provides an example.

Listing 20.22 Example of Function Calls with Unused Results

#pragma warn_resultnotused on

extern int bar();
void func()
{
 bar(); /* WARNING: result of function call is not used. */
 void(bar()); /* OK: void cast suppresses warning. */
}

This pragma does not correspond to any panel setting. By default, this pragma is
off.

warn_undefmacro

Controls the detection of undefined macros in #if and #elif directives.

Syntax

#pragma warn_undefmacro on | off | reset

Remarks

Listing 20.23 provides an example.

Pragmas for Diagnostic Messages

218 CodeWarrior Build Tools Reference for the eTPU

Listing 20.23 Example of Undefined Macro

#if BADMACRO == 4 /* WARNING: undefined macro. */

Use this pragma to detect the use of undefined macros (especially expressions)
where the default value 0 is used. To suppress this warning message, check if
defined first.

NOTE A warning message is only issued when a macro is evaluated. A short-circuited
“&&” or “||” test or unevaluated “?:” will not produce a warning message.

This pragma corresponds to the Undefined Macro in #if setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
PowerPC Compiler > Warnings panel. By default, this pragma is off.

warn_uninitializedvar

Controls the compiler to perform some dataflow analysis and emits warning messages
whenever local variables are initialized before being used.

Syntax

#pragma warn_uninitializedvar on | off | reset

Remarks

This pragma has no corresponding setting in the CodeWarrior IDE. By default, this
pragma is on.

warn_unusedarg

Controls the recognition of unreferenced arguments.

Syntax

#pragma warn_unusedarg on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it encounters an
argument you declare but do not use.

Pragmas for Diagnostic Messages

219CodeWarrior Build Tools Reference for the eTPU

This check helps you find arguments that you either misspelled or did not use in your
program. Listing 20.24 shows an example.

Listing 20.24 Warning about unused function arguments

void func(int temp, int error);
{

error = do_something(); /* WARNING: temp is unused. */
}

To prevent this warning, you can declare an argument in a few ways:

• Use the pragma unused, as in Listing 20.25.

Listing 20.25 Using pragma unused() to prevent unused argument messages

void func(int temp, int error)
{
 #pragma unused (temp)
 /* Compiler does not warn that temp is not used. */

error=do_something();
}

• Do not give the unused argument a name. Listing 20.26 shows an example.

The compiler allows this feature in C++ source code. To allow this feature in C
source code, disable ANSI strict checking.

Listing 20.26 Unused, Unnamed Arguments

void func(int /* temp */, int error)
{
 /* Compiler does not warn that "temp" is not used. */

error=do_something();
}

This pragma corresponds to the Unused Arguments setting in the C/C++
Warnings Panel. By default, this pragma is off.

warn_unusedvar

Controls the recognition of unreferenced variables.

Pragmas for Diagnostic Messages

220 CodeWarrior Build Tools Reference for the eTPU

Syntax

#pragma warn_unusedvar on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a variable you declare but do not use.

This check helps you find variables that you either misspelled or did not use in
your program. Listing 20.27 shows an example.

Listing 20.27 Unused Local Variables Example

int error;
void func(void)
{

int temp, errer; /* NOTE: errer is misspelled. */
error = do_something(); /* WARNING: temp and errer are unused. */

}

If you want to use this warning but need to declare a variable that you do not use, include
the pragma unused, as in Listing 20.28.

Listing 20.28 Suppressing Unused Variable Warnings

void func(void)
{

int i, temp, error;

 #pragma unused (i, temp) /* Do not warn that i and temp */
error = do_something(); /* are not used */

}

This pragma corresponds to the Unused Variables setting in the CodeWarrior
IDE’s Properties > C/C++ Build > Settings > Tool Settings > PowerPC
Compiler > Warnings panel. By default, this pragma is off.

221CodeWarrior Build Tools Reference for the eTPU

21
Pragmas for Preprocessing

check_header_flags

Controls whether or not to ensure that a precompiled header’s data matches a project’s
target settings.

Syntax

#pragma check_header_flags on | off | reset

Remarks

This pragma affects precompiled headers only.

If you enable this pragma, the compiler verifies that the precompiled header’s
preferences for double size, int size, and floating point math correspond to the
build target’s settings. If they do not match, the compiler generates an error
message.

If your precompiled header file depends on these settings, enable this pragma.
Otherwise, disable it.

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is off.

faster_pch_gen

Controls the performance of precompiled header generation.

Syntax

#pragma faster_pch_gen on | off | reset

Remarks

If you enable this pragma, generating a precompiled header can be much faster,
depending on the header structure. However, the precompiled file can also be
slightly larger.

Pragmas for Preprocessing

222 CodeWarrior Build Tools Reference for the eTPU

This pragma does not correspond to any panel setting. By default, this setting is
off.

flat_include

Controls whether or not to ignore relative path names in #include directives.

Syntax

#pragma flat_include on | off | reset

Remarks

For example, when on, the compiler converts this directive

#include <sys/stat.h>

to

#include <stat.h>

Use this pragma when porting source code from a different operating system, or
when a CodeWarrior IDE project’s access paths cannot reach a given file.

By default, this pragma is off.

fullpath_file

Controls if __FILE__ macro expands to a full path or the base file name.

Syntax

#pragma fullpath_file on | off | reset

Remarks

When this pragma on, the __FILE__ macro returns a full path to the file being
compiled, otherwise it returns the base file name.

fullpath_prepdump

Shows the full path of included files in preprocessor output.

Pragmas for Preprocessing

223CodeWarrior Build Tools Reference for the eTPU

Syntax

#pragma fullpath_prepdump on | off | reset

Remarks

If you enable this pragma, the compiler shows the full paths of files specified by
the #include directive as comments in the preprocessor output. Otherwise, only
the file name portion of the path appears.

This pragma corresponds to the Show full paths option in the CodeWarrior IDE’s
Properties > C/C++ Build > Settings > Tool Settings > PowerPC Preprocessor
> Preprocessor Settings panel. By default, this pragma is off.

keepcomments

Controls whether comments are emitted in the preprocessor output.

Syntax

#pragma keepcomments on | off | reset

Remarks

This pragma corresponds to the Keep comments option CodeWarrior IDE’s
 Properties > C/C++ Build > Settings > Tool Settings > PowerPC Preprocessor
> Preprocessor Settings panel. By default, this pragma is off.

line_prepdump

Shows #line directives in preprocessor output.

Syntax

#pragma line_prepdump on | off | reset

Remarks

If you enable this pragma, #line directives appear in preprocessing output. The
compiler also adjusts line spacing by inserting empty lines.

Use this pragma with the command-line compiler’s -E option to make sure that
#line directives are inserted in the preprocessor output.

Pragmas for Preprocessing

224 CodeWarrior Build Tools Reference for the eTPU

This pragma corresponds to the Use #line option in the CodeWarrior IDE’s
Properties > C/C++ Build > Settings > Tool Settings > PowerPC Preprocessor
> Preprocessor Settings panel. By default, this pragma is off.

macro_prepdump

Controls whether the compiler emits #define and #undef directives in preprocessing
output.

Syntax

#pragma macro_prepdump on | off | reset

Remarks

Use this pragma to help unravel confusing problems like macros that are aliasing
identifiers or where headers are redefining macros unexpectedly.

msg_show_lineref

Controls diagnostic output involving #line directives to show line numbers specified by
the #line directives in error and warning messages.

Syntax

#pragma msg_show_lineref on | off | reset

Remarks

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is on.

msg_show_realref

Controls diagnostic output involving #line directives to show actual line numbers in
error and warning messages.

Syntax

#pragma msg_show_realref on | off | reset

Pragmas for Preprocessing

225CodeWarrior Build Tools Reference for the eTPU

Remarks

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is on.

notonce

Controls whether or not the compiler lets included files be repeatedly included, even with
#pragma once on.

Syntax

#pragma notonce

Remarks

If you enable this pragma, files can be repeatedly #included, even if you have
enabled #pragma once on. For more information, see “once” on page 225.

This pragma does not correspond to any CodeWarrior IDE panel setting.

old_pragma_once

This pragma is no longer available.

once

Controls whether or not a header file can be included more than once in the same
compilation unit.

Syntax

#pragma once [on]

Remarks

Use this pragma to ensure that the compiler includes header files only once in a
source file. This pragma is especially useful in precompiled header files.

There are two versions of this pragma:

#pragma once

Pragmas for Preprocessing

226 CodeWarrior Build Tools Reference for the eTPU

and

#pragma once on

Use #pragma once in a header file to ensure that the header file is included only
once in a source file. Use #pragma once on in a header file or source file to
ensure that any file is included only once in a source file.

Beware that when using #pragma once on, precompiled headers transferred
from one host machine to another might not give the same results during
compilation. This inconsistency is because the compiler stores the full paths of
included files to distinguish between two distinct files that have identical file
names but different paths. Use the warn_pch_portability pragma to issue a
warning message when you use #pragma once on in a precompiled header.

Also, if you enable the old_pragma_once on pragma, the once pragma
completely ignores path names.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

pop, push

Saves and restores pragma settings.

Syntax

#pragma push

#pragma pop

Remarks

The pragma push saves all the current pragma settings. The pragma pop restores
all the pragma settings that resulted from the last push pragma. For example, see
Listing 21.1.

Listing 21.1 push and pop example

#pragma ANSI_strict on
#pragma push /* Saves all compiler settings. */
#pragma ANSI_strict off
#pragma pop /* Restores ANSI_strict to on. */

This pragma does not correspond to any panel setting. By default, this pragma is
off.

Pragmas for Preprocessing

227CodeWarrior Build Tools Reference for the eTPU

TIP Pragmas directives that accept on | off | reset already form a stack of previous
option values. It is not necessary to use #pragma pop or #pragma push with
such pragmas.

pragma_prepdump

Controls whether pragma directives in the source text appear in the preprocessing output.

Syntax

#pragma pragma_prepdump on | off | reset

Remarks

This pragma corresponds to the Emit #pragmas option in the CodeWarrior IDE’s
Properties > C/C++ Build > Settings > Tool Settings > PowerPC Preprocessor
> Preprocessor Settings panel. By default, this pragma is off.

TIP When submitting bug reports with a preprocessor dump, be sure this option is
enabled.

precompile_target

Specifies the file name for a precompiled header file.

Syntax

#pragma precompile_target filename

Parameters

filename

A simple file name or an absolute path name. If filename is a simple file name, the
compiler saves the file in the same folder as the source file. If filename is a path
name, the compiler saves the file in the specified folder.

Remarks

If you do not specify the file name, the compiler gives the precompiled header file
the same name as its source file.

Pragmas for Preprocessing

228 CodeWarrior Build Tools Reference for the eTPU

Listing 21.2 shows sample source code from a precompiled header source file. By
using the predefined symbols __cplusplus and the pragma
precompile_target, the compiler can use the same source code to create
different precompiled header files for C and C++.

Listing 21.2 Using #pragma precompile_target

#ifdef __cplusplus
 #pragma precompile_target "MyCPPHeaders"
#else
 #pragma precompile_target "MyCHeaders"
#endif

This pragma does not correspond to any panel setting.

simple_prepdump

Controls the suppression of comments in preprocessing output.

Syntax

#pragma simple_prepdump on | off | reset

Remarks

By default, the compiler adds comments about the current include file being in
preprocessing output. Enabling this pragma disables these comments.

This pragma corresponds to the Emit file changes option in the CodeWarrior
IDE’s Properties > C/C++ Build > Settings > Tool Settings > PowerPC
Preprocessor > Preprocessor Settings panel. By default, this pragma is off.

space_prepdump

Controls whether or not the compiler removes or preserves whitespace in the
preprocessor’s output.

Syntax

#pragma space_prepdump on | off | reset

Pragmas for Preprocessing

229CodeWarrior Build Tools Reference for the eTPU

Remarks

This pragma is useful for keeping the starting column aligned with the original
source code, though the compiler attempts to preserve space within the line. This
pragma does not apply to expanded macros.

This pragma corresponds to the Keep whitespace option in the CodeWarrior
IDE’s Properties > C/C++ Build > Settings > Tool Settings > PowerPC
Preprocessor > Preprocessor Settings panel. By default, this pragma is off.

srcrelincludes

Controls the lookup of #include files.

Syntax

#pragma srcrelincludes on | off | reset

Remarks

When on, the compiler looks for #include files relative to the previously
included file (not just the source file). When off, the compiler uses the
CodeWarrior IDE’s access paths or the access paths specified with the -ir option.

Use this pragma when multiple files use the same file name and are intended to be
included by another header file in that directory. This is a common practice in
UNIX programming.

 By default, this pragma is off.

syspath_once

Controls how included files are treated when #pragma once is enabled.

Syntax

#pragma syspath_once on | off | reset

Remarks

When this pragma and pragma once are set to on, the compiler distinguishes
between identically-named header files referred to in

#include <file-name>

Pragmas for Preprocessing

230 CodeWarrior Build Tools Reference for the eTPU

and

#include "file-name".

When this pragma is off and pragma once is on, the compiler will ignore a file
that uses a

#include <file-name>

directive if it has previously encountered another directive of the form

#include "file-name"

for an identically-named header file.

 shows an example.

This pragma does not correspond to any panel setting. By default, this setting is
on.

Listing 21.3 Pragma syspath_once example

#pragma syspath_once off
#pragma once on /* Include all subsequent files only once. */
#include "sock.h"
#include <sock.h> /* Skipped because syspath_once is off. */

231CodeWarrior Build Tools Reference for the eTPU

22
Pragmas for Code
Generation

aggressive_inline

Specifies the size of enumerated types.

Syntax

#pragma aggressive_inline on | off | reset

Remarks

The IPA-based inliner (-ipa file) will inline more functions when this option

is enabled. This option can cause code bloat in programs that overuse inline

functions. Default is off.

dont_reuse_strings

Controls whether or not to store identical character string literals separately in object code.

Syntax

#pragma dont_reuse_strings on | off | reset

Remarks

Normally, C and C++ programs should not modify character string literals. Enable
this pragma if your source code follows the unconventional practice of modifying
them.

If you enable this pragma, the compiler separately stores identical occurrences of
character string literals in a source file.

Pragmas for Code Generation

232 CodeWarrior Build Tools Reference for the eTPU

If this pragma is disabled, the compiler stores a single instance of identical string
literals in a source file. The compiler reduces the size of the object code it
generates for a file if the source file has identical string literals.

The compiler always stores a separate instance of a string literal that is used to
initialize a character array. Listing 22.1 shows an example.

Although the source code contains 3 identical string literals, "cat", the compiler
will generate 2 instances of the string in object code. The compiler will initialize
str1 and str2 to point to the first instance of the string and will initialize str3
to contain the second instance of the string.

Using str2 to modify the string it points to also modifies the string that str1
points to. The array str3 may be safely used to modify the string it points to
without inadvertently changing any other strings.

This pragma corresponds to the Reuse setting in the CodeWarrior IDE’s
Properties > C/C++ Build > Settings > Tool Settings > PowerPC Compiler > C/
C++ Language panel. By default, this pragma is off.

Listing 22.1 Reusing string literals

#pragma dont_reuse_strings off
void strchange(void)
{
 const char* str1 = "cat";
 char* str2 = "cat";
 char str3[] = “cat”;

 str2 = 'h'; / str1 and str2 point to "hat"! */
 str3[0] = 'b';
 /* OK: str3 contains "bat", *str1 and *str2 unchanged.
}

enumsalwaysint

Specifies the size of enumerated types.

Syntax

#pragma enumsalwaysint on | off | reset

Remarks

If you enable this pragma, the C/C++ compiler makes an enumerated type the same
size as an int. If an enumerated constant is larger than int, the compiler

Pragmas for Code Generation

233CodeWarrior Build Tools Reference for the eTPU

generates an error message. Otherwise, the compiler makes an enumerated type the
size of any integral type. It chooses the integral type with the size that most closely
matches the size of the largest enumerated constant. The type could be as small as a
char or as large as a long long.

Listing 22.2 shows an example.

Listing 22.2 Example of Enumerations the Same as Size as int

enum SmallNumber { One = 1, Two = 2 };
 /* If you enable enumsalwaysint, this type is
 the same size as an int. Otherwise, this type is
 the same size as a char. */

enum BigNumber
 { ThreeThousandMillion = 3000000000 };
 /* If you enable enumsalwaysint, the compiler might
 generate an error message. Otherwise, this type is
 the same size as a long long. */

This pragma corresponds to the Enums Always Int setting in the CodeWarrior
IDE’s Properties > C/C++ Build > Settings > Tool Settings > PowerPC
Compiler > C/C++ Language panel. By default, this pragma is off.

enums_signed

Changes the underlying enumeration type search order.

Syntax

#pragma enums_signed on | off | reset

Remarks

Enabling this option changes the underlying enumeration type search order. The
underlying type for an enumeration where all enumerators are >= 0 is the first one
of these types in which all values can be represented:

signed char (*)

unsigned char

signed short (*)

unsigned short

signed int (*)

Pragmas for Code Generation

234 CodeWarrior Build Tools Reference for the eTPU

unsigned int

signed long (*)

unsigned long

signed long long (*)

unsigned long long

Types with (*) are only considered with "#pragma enums_signed on". This option
has no effect when #pragma enumsalwaysint is "on".

errno_name

Tells the optimizer how to find the errno identifier.

Syntax

#pragma errno_name id | ...

Remarks

When this pragma is used, the optimizer can use the identifier errno (either a
macro or a function call) to optimize standard C library functions better. If not
used, the optimizer makes worst-case assumptions about the effects of calls to the
standard C library.

NOTE The MSL C library already includes a use of this pragma, so you would only
need to use it for third-party C libraries.

If errno resolves to a variable name, specify it like this:

#pragma errno_name _Errno

If errno is a function call accessing ordinarily inaccessible global variables, use
this form:

#pragma errno_name ...

Otherwise, do not use this pragma to prevent incorrect optimizations.

This pragma does not correspond to any panel setting. By default, this pragma is
unspecified (worst case assumption).

Pragmas for Code Generation

235CodeWarrior Build Tools Reference for the eTPU

explicit_zero_data

Controls the placement of zero-initialized data.

Syntax

#pragma explicit_zero_data on | off | reset

Remarks

Places zero-initialized data into the initialized data section instead of the BSS
section when on.

By default, this pragma is off.

float_constants

Controls how floating pointing constants are treated.

Syntax

#pragma float_constants on | off | reset

Remarks

If you enable this pragma, the compiler assumes that all unqualified floating point
constant values are of type float, not double. This pragma is useful when
porting source code for programs optimized for the “float” rather than the
“double” type.

When you enable this pragma, you can still explicitly declare a constant value as
double by appending a “D” suffix.

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

instmgr_file

Controls where the instance manager database is written, to the target data directory or to a
separate file.

Pragmas for Code Generation

236 CodeWarrior Build Tools Reference for the eTPU

Syntax

#pragma instmgr_file "name"

Remarks

When the Use Instance Manager option is on, the IDE writes the instance
manager database to the project’s data directory. If the #pragma
instmgr_file is used, the database is written to a separate file.

Also, a separate instance file is always written when the command-line tools are
used.

NOTE Should you need to report a bug, you can use this option to create a separate
instance manager database, which can then be sent to technical support with
your bug report.

longlong

Controls the availability of the long long type.

Syntax

#pragma longlong on | off | reset

Remarks

When this pragma is enabled and the compiler is translating “C90” source code
(ISO/IEC 9899-1990 standard), the compiler recognizes a data type named long
long. The long long type holds twice as many bits as the long data type.

This pragma does not correspond to any CodeWarrior IDE panel setting.

By default, this pragma is on for processors that support this type. It is off when
generating code for processors that do not support, or cannot turn on, the long
long type.

longlong_enums

Controls whether or not enumerated types may have the size of the long long type.

Syntax

#pragma longlong_enums on | off | reset

Pragmas for Code Generation

237CodeWarrior Build Tools Reference for the eTPU

Remarks

This pragma lets you use enumerators that are large enough to be long long
integers. It is ignored if you enable the enumsalwaysint pragma (described in
“enumsalwaysint” on page 232).

This pragma does not correspond to any panel setting. By default, this setting is
enabled.

min_enum_size

Specifies the size, in bytes, of enumeration types.

Syntax

#pragma min_enum_size 1 | 2 | 4

Remarks

Turning on the enumsalwaysint pragma overrides this pragma. The default is
1.

pool_strings

Controls how string literals are stored.

Syntax

#pragma pool_strings on | off | reset

Remarks

If you enable this pragma, the compiler collects all string constants into a single
data object so your program needs one data section for all of them. If you disable
this pragma, the compiler creates a unique data object for each string constant.
While this decreases the number of data sections in your program, on some
processors it also makes your program bigger because it uses a less efficient
method to store the address of the string.

This pragma is especially useful if your program is large and has many string
constants or uses the CodeWarrior Profiler.

Pragmas for Code Generation

238 CodeWarrior Build Tools Reference for the eTPU

NOTE If you enable this pragma, the compiler ignores the setting of the
pcrelstrings pragma.

This pragma corresponds to the Pool Strings setting in the CodeWarrior IDE’s
Properties > C/C++ Build > Settings > Tool Settings > PowerPC Compiler > C/
C++ Language panel.

readonly_strings

Controls whether string objects are placed in a read-write or a read-only data section.

Syntax

#pragma readonly_strings on | off | reset

Remarks

If you enable this pragma, literal strings used in your source code are output to the
read-only data section instead of the global data section. In effect, these strings act
like const char *, even though their type is really char *.

This pragma does not correspond to any IDE panel setting.

reverse_bitfields

Controls whether or not the compiler reverses the bitfield allocation.

Syntax

#pragma reverse_bitfields on | off | reset

Remarks

This pragma reverses the bitfield allocation, so that bitfields are arranged from the
opposite side of the storage unit from that ordinarily used on the target. The
compiler still orders the bits within a single bitfield such that the lowest-valued bit
is in the right-most position.

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

NOTE Limitation: please be aware of the following limitations when this pragma is
set to on:

Pragmas for Code Generation

239CodeWarrior Build Tools Reference for the eTPU

- the data types of the bit-fields must be the same data type
- the structure (struct) or class must not contain non-bit-field members;
however, the structure (struct) can be the member of another structure

store_object_files

Controls the storage location of object data, either in the target data directory or as a
separate file.

Syntax

#pragma store_object_files on | off | reset

Remarks

By default, the IDE writes object data to the project’s target data directory. When
this pragma is on, the object data is written to a separate object file.

NOTE For some targets, the object file emitted may not be recognized as actual object
data.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

Pragmas for Code Generation

240 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Optimization

241CodeWarrior Build Tools Reference for the eTPU

23
Pragmas for Optimization

global_optimizer

Controls whether the Global Optimizer is invoked by the compiler.

Syntax

#pragma global_optimizer on | off | reset

Remarks

In most compilers, this #pragma determines whether the Global Optimizer is
invoked (configured by options in the panel of the same name). If disabled, only
simple optimizations and back-end optimizations are performed.

NOTE This is not the same as #pragma optimization_level. The Global
Optimizer is invoked even at optimization_level 0 if #pragma
global_optimizer is enabled.

This pragma corresponds to the settings in the Global Optimizations panel. By
default, this setting is on.

opt_common_subs

Controls the use of common subexpression optimization.

Syntax

#pragma opt_common_subs on | off | reset

Pragmas for Optimization

242 CodeWarrior Build Tools Reference for the eTPU

Remarks

If you enable this pragma, the compiler replaces similar redundant expressions
with a single expression. For example, if two statements in a function both use the
expression

a * b * c + 10

the compiler generates object code that computes the expression only once and
applies the resulting value to both statements.

The compiler applies this optimization to its own internal representation of the
object code it produces.

This pragma does not correspond to any panel setting. By default, this settings is
related to the global_optimizer pragma.

opt_dead_assignments

Controls the use of dead store optimization.

Syntax

#pragma opt_dead_assignments on | off | reset

Remarks

If you enable this pragma, the compiler removes assignments to unused variables
before reassigning them.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global_optimizer” on page 241 level.

opt_dead_code

Controls the use of dead code optimization.

Syntax

#pragma opt_dead_code on | off | reset

Remarks

If you enable this pragma, the compiler removes a statement that other statements
never execute or call.

Pragmas for Optimization

243CodeWarrior Build Tools Reference for the eTPU

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global_optimizer” on page 241 level.

opt_lifetimes

Controls the use of lifetime analysis optimization.

Syntax

#pragma opt_lifetimes on | off | reset

Remarks

If you enable this pragma, the compiler uses the same processor register for
different variables that exist in the same routine but not in the same statement.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global_optimizer” on page 241 level.

opt_loop_invariants

Controls the use of loop invariant optimization.

Syntax

#pragma opt_loop_invariants on | off | reset

Remarks

If you enable this pragma, the compiler moves all computations that do not change
inside a loop outside the loop, which then runs faster.

This pragma does not correspond to any panel setting.

opt_propagation

Controls the use of copy and constant propagation optimization.

Syntax

#pragma opt_propagation on | off | reset

Pragmas for Optimization

244 CodeWarrior Build Tools Reference for the eTPU

Remarks

If you enable this pragma, the compiler replaces multiple occurrences of one
variable with a single occurrence.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global_optimizer” on page 241 level.

opt_strength_reduction

Controls the use of strength reduction optimization.

Syntax

#pragma opt_strength_reduction on | off | reset

Remarks

If you enable this pragma, the compiler replaces array element arithmetic
instructions with pointer arithmetic instructions to make loops faster.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global_optimizer” on page 241 level.

opt_strength_reduction_strict

Uses a safer variation of strength reduction optimization.

Syntax

#pragma opt_strength_reduction_strict on | off | reset

Remarks

Like the opt_strength_reduction pragma, this setting replaces
multiplication instructions that are inside loops with addition instructions to speed
up the loops. However, unlike the regular strength reduction optimization, this
variation ensures that the optimization is only applied when the array element
arithmetic is not of an unsigned type that is smaller than a pointer type.

This pragma does not correspond to any panel setting. The default varies according
to the compiler.

Pragmas for Optimization

245CodeWarrior Build Tools Reference for the eTPU

opt_unroll_loops

Controls the use of loop unrolling optimization.

Syntax

#pragma opt_unroll_loops on | off | reset

Remarks

If you enable this pragma, the compiler places multiple copies of a loop’s
statements inside a loop to improve its speed.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global_optimizer” on page 241 level.

opt_vectorize_loops

Controls the use of loop vectorizing optimization.

Syntax

#pragma opt_vectorize_loops on | off | reset

Remarks

If you enable this pragma, the compiler improves loop performance.

NOTE Do not confuse loop vectorizing with the vector instructions available in some
processors. Loop vectorizing is the rearrangement of instructions in loops to
improve performance. This optimization does not optimize a processor’s
vector data types.

By default, this pragma is off.

optimization_level

Controls global optimization.

Syntax

#pragma optimization_level 0 | 1 | 2 | 3 | 4 | reset

Pragmas for Optimization

246 CodeWarrior Build Tools Reference for the eTPU

Remarks

This pragma specifies the degree of optimization that the global optimizer
performs.

To select optimizations, use the pragma optimization_level with an
argument from 0 to 4. The higher the argument, the more optimizations performed
by the global optimizer. The reset argument specifies the previous optimization
level.

For more information on the optimization the compiler performs for each
optimization level, refer to the Targeting manual for your target platform.

These pragmas correspond to the settings in the Global Optimizations panel. By
default, this pragma is disabled.

optimize_for_size

Controls optimization to reduce the size of object code.

#pragma optimize_for_size on | off | reset

Remarks

This setting lets you choose what the compiler does when it must decide between
creating small code or fast code. If you enable this pragma, the compiler creates
smaller object code at the expense of speed. It also ignores the inline directive
and generates function calls to call any function declared inline. If you disable
this pragma, the compiler creates faster object code at the expense of size.

The pragma corresponds to the Optimize for Size setting on the Global
Optimizations panel.

optimizewithasm

Controls optimization of assembly language.

Syntax

#pragma optimizewithasm on | off | reset

Remarks

If you enable this pragma, the compiler also optimizes assembly language
statements in C/C++ source code.

Pragmas for Optimization

247CodeWarrior Build Tools Reference for the eTPU

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

pack

Stores data to reduce data size instead of improving execution performance.

Syntax

#pragma pack()

#pragma pack(0 | n | push | pop)

n

One of these integer values: 1, 2, 4, 8, or 16.

Remarks

Use this pragma to align data to use less storage even if the alignment might affect
program performance or does not conform to the target platform’s application
binary interface (ABI).

If this pragma’s argument is a power of 2 from 1 to 16, the compiler will store
subsequent data structures to this byte alignment.

The push argument saves this pragma’s setting on a stack at compile time. The
pop argument restores the previously saved setting and removes it from the stack.
Using this pragma with no argument or with 0 as an argument specifies that the
compiler will use ABI-conformant alignment.

Not all processors support misaligned accesses, which could cause a crash or
incorrect results. Even on processors which allow misaligned access, your
program’s performance might be reduced. Your program may have better
performance if it treats the packed structure as a byte stream, then packs and
unpacks each byte from the stream.

NOTE Pragma pack is implemented somewhat differently by most compiler vendors,
especially when used with bitfields. If you need portability, you are probably
better off using explicit shift and mask operations in your program instead of
bitfields.

Pragmas for Optimization

248 CodeWarrior Build Tools Reference for the eTPU

strictheaderchecking

Controls how strict the compiler checks headers for standard C library functions.

Syntax

#pragma strictheaderchecking on | off | reset

Remarks

The 3.2 version compiler recognizes standard C library functions. If the correct
prototype is used, and, in C++, if the function appears in the “std” or root
namespace, the compiler recognizes the function, and is able to optimize calls to it
based on its documented effects.

When this #pragma is on (default), in addition to having the correct prototype, the
declaration must also appear in the proper standard header file (and not in a user
header or source file).

This pragma does not correspond to any panel setting. By default, this pragma is
on.

eTPU Specific Features
Restrictions on 32-bit Variables

249CodeWarrior Build Tools Reference for the eTPU

24
eTPU Specific Features

This chapter describes the eTPU specific features in the compiler:

• “Restrictions on 32-bit Variables”

• “Host Interface Files”

• “eTPU Functions Structure”

• “pragma ETPU_function”

• “Memory Allocation”

• “Channel Structure”

• “Tooth Program Register (TPR) Structure”

• “struct tpr_struct <varname> @ tpr;”

• “Entry Table Intrinsic Functions”

• “Predefined Symbols”

• “Integer Types”

• “Fractional Types”

• “Inline Assembly”

• “#pragma write”

• “#pragma fill”

• “__attribute__((expects_flags))”

• “__attribute__((no_save_registers))”

• “__attribute__((pure_assembly))”

• “eTPU Intrinsic Functions”

Restrictions on 32-bit Variables
eTPU has limited support for 32 bit variables. This is due to 24 bit natural word size of
eTPU. You can declare 32 bit variables, and perform moves (assignments). This allows
larger values to be moved around. Math operations are not supported for 32-bit values.

eTPU Specific Features
Host Interface Files

250 CodeWarrior Build Tools Reference for the eTPU

• Pointers to functions are not supported.

• Floating point are not supported.

• Standard libraries are not provided.

Host Interface Files
The compiler creates files intended for the CPU program, which configures eTPU. These
files are named as:

filename_CPU.letter

Where filename is the base name of the eTPU source file being compiled, and letter is an
alphabet letter from a to z.

eTPU Functions Structure
eTPU functions have a special structure. An eTPU function consists of several threads. A
thread is executed when the eTPU scheduler assigns execution to it. Using the special
structure the programmer can associate each thread's code with different conditions in the
entry table. The special structure of an eTPU function inludes the following elements:

• A #pragma ETPU_function declaration.

• A void function.

• In the main scope of the function, a series of if()/else statements, each testing one or
more elements of the channel condition see restrictions below.

– - hsr - Host service request 0..7

– - lsr - Link service request 0/1

– - m1 - Match1/Transition2 0/1

– - m2 - Match2/Transition1 0/1

– - pin - Input pin 0/1

– - flag0 0/1

– - flag1 0/1

The threads code itself resides between these if then elses. Using the conditions the
compiler associates the thread's code with the correct entry points.

A final else (without if) should be present at the end of this structure to collect all the
unused entry points. A warning shall be issued if that else shall be omitted by the user.

In the thread's condition expression, usage of constants is allowed as well as the following
operators: ==, !=, &&, ||, !.

eTPU Specific Features
eTPU Functions Structure

251CodeWarrior Build Tools Reference for the eTPU

There are restrictions on both possible conditions and the order in which they may occur.
The following notes give details:

• In expressions that do not explicitly test hsr, an implicit test of hsr==0 is assumed.

• The compiler would issue an error message if the condition expression is not valid
given the entry table that was chosen in the ETPU_function pragma. If there is an x
in the column of a condition in the table in all qualified entries, the condition cannot
be tested in that expression. For example the statement – if (lsr && pin) is legal
because after evaluating lsr==1 we have entries 10,11,24-31 qualified and in some of
them pin has a specific value.

• But, if (lsr && m1 && pin) is not valid since lsr && m1 qualifies 10,11,30,31 and in
all of them pin has an X value and therefore none of them might be selected.

• The order of the conditions and events should be as follows. There are 3 groups.
Identifiers from a lower group number should appear first. There is no order that
should be enforced within the group:

a. hsr

b. lsr, m1,m2

c. pin, flag0, flag1

An error should be generated when appropriate.

The order of the if then else blocks counts:

If (m1)

{

}

Else if (m2)

{

}

Would generate a different entry table than

If (m2)

{

}

Else if (m1)

{

}

since the first implies

if (m1)

{

eTPU Specific Features
pragma ETPU_function

252 CodeWarrior Build Tools Reference for the eTPU

}

else if (!m1 && m2)

{

}

and the second implies

if (m2)

{

}

else if (!m2 && m1)

{

}

• In every expression, one of the following events must be tested and have a non zero
value: hsr, lsr, m1, m2.

pragma ETPU_function
#pragma ETPU_function name [, standard|alternate] [@ func_num];

This pragma tells the compiler that this function is an ETPU function. The compiler will
create the needed entry table section for this function so that execution would be given to
the different threads according to the condition expressions given in the function and the
standard|alternate specification. It would also locate this entry table section in the correct
location according to the given func_num.

If (standard|alternate) is not specified, standard is applied.

If a func_num is not specified, the compiler would assign a number automatically.

Memory Allocation
The special architecture of the eTPU is quite different from that of most common
architectures. The number of GPRs is small and there are a lot of restrictions using them.
There is also no indirect access to memory with an offset from a register. These
characteristics lead us to have a non standard memory allocation model.

Global addresses 0-7 are for internal compiler usage and should not be used by the
programmer.

eTPU Specific Features
Channel Structure

253CodeWarrior Build Tools Reference for the eTPU

ETPU_functions arguments and static variables are allocated in a section that reside in the
channel parameter area pointed by the CPBA field. Access to these parameters shall be
using the selected channel relative addressing mode. The arguments and static variables of
an ETPU_function may occupy up to 512 bytes on the channel relative context. The
arguments are treated as static variables and continue to live after the thread ends.

Global variables are allocated in a section that resides in address 8 by default so that
access to these variables is done using the absolute addressing mode when possible.

Spilled local variables are allocated along with the global variables and also must be
accessed using the absolute addressing mode when possible.

For eTPU2 spilled local variables are allocated in a separate section, which can be
accessed using the engine relative accessing mode.

Channel Structure
Channels are represented by a C structure of type chan_struct, which is declared in the
standard header file.

Only constants must be assigned to the members. The compiler validates values specific to
each field and generates an error when required. When assigning a value to one of the
members, the compiler generates an instruction, which corresponds to a field name from
the architecture spec, and assigns this field the given constant.

NOTE There is a backward compatibility problem as some of the fields where
expanded in the HW and have an extra bit in eTPU2 so the users who used
CIRC and TDL in their eTPU application would have to check their code.

Tooth Program Register (TPR) Structure
The TPR structure exposes the TPR register fields to manipulation from the C language.
This structure is declared in the standard header file.

struct tpr_struct {

 int TICKS : 10;

 int TPR10 : 1;

 int HOLD : 1;

 int IPH : 1;

 int MISSCNT : 2;

 int LAST : 1;

eTPU Specific Features
Entry Table Intrinsic Functions

254 CodeWarrior Build Tools Reference for the eTPU

 } ;

The user may use the following syntax to associate a variable with the TPR register:

struct tpr_struct <varname> @ tpr;

Entry Table Intrinsic Functions
• Enable_match()/Disable_match(): Sets or clears the ME bit in the entry table entries

which are associated with the thread.

• preload_p01()/preload_p23(): Sets or clears the PP bit in the entry table entries,
which are associated with the thread.

NOTE These functions are implemented only for backward compatibility. It is better
not to use them since if they are omitted, the compiler computes the best
preload option itself and optimizes the code accordingly.

• read_match(): Loads the values of the Match registers into ERTA and ERTB.

Predefined Symbols
The compiler supports the following predefined symbols:

Table 24.1

Symbol Description

__DATE__ A string representing the compilation date.

__FILE__ A string representing the name of the file in which
the symbol appears.

__LINE__ A string representing the line number in which the
symbol appears.

__TIME__ A string representing the compilation time.

__ETPU__ A string representing the compilation for eTPU.

__ETPU2__ A string representing the compilation for eTPU2.

eTPU Specific Features
Integer Types

255CodeWarrior Build Tools Reference for the eTPU

Integer Types
All standard C types are supported.

Two new integer data types are created such as int24, which would be the default for int
and unsigned int24, which would be the default for unsigned int.

long and unsigned long are the native types for 32 bits.

The following identifiers are also supported: _Bool, int8, int16, int32, int8_t, int16_t,
int24_t, int32_t, uint8, uint16, uint32, uint8_t, uint16_t, uint24_t, uint32_t.

Fractional Types
fract8, fract16, and fract24 types represent fractional numbers of the specified size in bits.
Unsigned and signed modifiers can be applied to them. Unsigned fract can represent
numbers between 0 and 1. Signed fract can represent numbers between -1 and 1.

Inline Assembly
The inline assembly statement syntax is:

asm{"<assembly instructions>"};

Both multi line and single line assembly instructions may be omitted using this statement.
The <assembly instruction> would be according to the new assembly language which
shall be defined by DevTech.

Inline Assembler Usage
Use the inline assembler in order to write assembler code that is eTPU specific and cannot
be expressed using the C language:

asm{" add.f p, p, diob"};

Specifying Variables and Labels
You may also use local variable names and labels inside inline assembly statements to
reference variables of a C function or targets for change of flow directly.

In the example below, a local variable name needs a @Rn suffix to be recognized. Do not
replace @Rn with an actual register number. It has to be the verbatim text made of the
letters @, R, and n:

asm{" add x@Rn,p,diob"}; // x is a local variable

eTPU Specific Features
#pragma write

256 CodeWarrior Build Tools Reference for the eTPU

asm{" jmp label_name"};

asm{" ld p, glob_var"}; // glob_var is a global variable

asm{" ldm p, chan_var"}; // chan_var is a variable allocated
on the channel parameter ram

Finally, you can also declare labels using the inline assembler to, for example, mark the
beginning for a special assembly loop or branch target:

asm{__mysmstart: jmp __mysmstart};

Using Datatype Sizes
You might want to reference the size of a structure from the inline assembler:

asm {addi x@Rn, x@Rn, myStruct@sizeof};

#pragma write
#pragma write char, (text);

This pragma writes information into the host interface files. The created file would have
the name of the compiled file with the extension <char>. The <text> information can be
either direct text or ::ETPU macros, which are expanded at link time and can give the host
application information regarding the code and the data variables location and
initialization.

#pragma fill
#pragma fill = list, ...;

#pragma fill [size] @ location = list, ... ;

The compiler will fill program memory with <list>. <list> items are any values or strings,
defined as constant data separated by commas.

When size is not specified the compiler will simply emit the list in memory. If <size> is
specified, the compiler will fill <size> words of memory with the data. The compiler will
truncate the list to fit size, or repeat it to fill exactly <size> words.

__attribute__((expects_flags))
Specifies that a function is using the flags created in the caller function by the assignment
into the first argument

eTPU Specific Features
__attribute__((no_save_registers))

257CodeWarrior Build Tools Reference for the eTPU

Syntax

__attribute__((expects_flags)) function-declaration;

__attribute__((expects_flags)) function-definition;

__attribute__((no_save_registers))
Specifies that this function do not save and restore its registers. The only thing added in its
epilogue is an rtn instruction. This attribute is not recommended and is here only for
backwards compatibility with old code.

Syntax

__attribute__((no_save_registers)) function-declaration;

__attribute__((no_save_registers)) function-definition;

__attribute__((pure_assembly))
Specifies that this function contains only inline assembly instructions and it will not be
optimized. It would also not have any prologue or epilogue. This attribute is not
recommended and is here only for backwards compatibility with old code.

The recommended way of doing it is simply writing the code in an assembly file and not
as C inline assembly.

Syntax

__attribute__((pure_assembly)) function-declaration;

__attribute__((pure_assembly)) function-definition;

eTPU Intrinsic Functions
Fraction to integer conversion. Use the following intrinsics to smoothly convert a fraction
variable into integer variable without causing it to round to 0 or 1.

_int_from_fract

Coverts from signed fraction to signed integer.

_int_from_ufract

Converts from unsigned fraction to signed integer.

_uint_from_fract

Converts from signed fraction to unsigned integer.

eTPU Specific Features
eTPU Intrinsic Functions

258 CodeWarrior Build Tools Reference for the eTPU

_uint_from_ufract

Converts from unsigned fraction to unsigned integer.

259CodeWarrior Build Tools Reference for the eTPU

Index

Symbols
#abort 104
#elif 104
#else 104
#endif 104
#error 104
#ifdef 104
#ifndef 104
#if 103
#include 105
#include

diagnosing error messages 200
GCC policy 61
including once 225
letter case 57, 206
other operating systems 59
paths 222
searching 60, 229

#include directive
IDE 26
letter case 31

#line 223
#path 106
#quit 104
#rem 105
#warn 104
$ 188
* 119
. (location counter) 121
.lcf 37
=

See also assignment, equals.
==

See also equals, assignment.
__ABS_FILE__ 109
__attribute__((deprecated)) 162
__attribute__((force_export)) 163
__attribute__((malloc)) 163
__attribute__((returns_twice)) 164
__attribute__((unused)) 165
__attribute__((used)) 164, 165
__cplusplus 168

__CWCC__ 168
__DATE__ 109
__DATE__ 167, 168
__declspec(never_inline) 161
__embedded_cplusplus 169
__FILE__ 109
__FILE__ 169
__func__ 170
__FUNCTION__ 170
__ide_target 170
__label__ 144
__LINE__ 109
__LINE__ 171
__MWERKS__ 171
__PRETTY_FUNCTION__ 172
__profile__ 172
__QEASM__ 108
__STDC__ 172
__TIME__ 109
__TIME__ 173
__VERSION__ 108

A
after 123
aggressive_inline 231
aliasing 164
align 121
alignment 116
-ansi 39
ANSI_strict 181
arguments

list 183
asmpoundcomment 187
asmsemicolcomment 187
assembler

about 81
command-line 81
command-line switches 83
command-line syntax 83
directives 92
preprocessor 97

assembly file

260 CodeWarrior Build Tools Reference for the eTPU

format 87
assignment

accidental 215
assignment, in LCF 118
auto_inline pragma 22

B
bitfield 238

C
C

GNU Compiler Collection extensions 138
-c 69
C/C++ Warnings panel 28
c99 181
catch statement 20
-char 41
char type 25
character strings

See strings.
check_header_flags 221
-codegen 69
command files 37
command-line assembler 81
command-line options

-ansi 39
-c 69
-char 41
-codegen 69
-convertpaths 59
-cwd 60
-D+ 60
-defaults 41
-define 60
-disassemble 49
-E 61
-encoding 42
-enum 69
-EP 61
-ext 70
-flag 43
-gcc_extensions 43
-gccext 43
-gccincludes 61

-help 49
-I- 62
-I+ 62
-include 63
-inline 73
-ir 63
-M 44
-make 44
-mapcr 44
-maxerrors 50
-maxwarnings 51
-MD 45
-min_enum_size 70
-MM 45
-MMD 45
-msext 46
-msgstyle 51
-nofail 52
-noprecompile 66
-nosyspath 66
-O 74
-O+ 74
-once 46
-opt 75
-P 63
-ppopt 65
-pragma 46
-precompile 64
-prefix 65
-preprocess 64
-progress 52
-relax_pointers 47
-requireprotos 47
-S 52
-search 47
-stderr 52
-stdinc 66
-stdkeywords 39
-strict 40
-strings 71
-timing 53
-trigraphs 48
-U+ 66
-undefine 67

261CodeWarrior Build Tools Reference for the eTPU

-verbose 53
-version 53
-warnings 54
-wraplines 58

command-line switches
assembler 83

compound literal 133
const_strings 188
-convertpaths 59
current location 96
-cwd 60

D
-D+ 60
data storage 93
dead stripping

prevention 115, 117
-defaults 41
-define 60
directives

#line 223
data storage 93
symbol 95

-disassemble 49
dollar sign 188
dollar_identifiers 188
Don’t Inline option 21
dont_inline pragma 21
dont_reuse_strings 231
dont_reuse_strings pragma 25
double type 235
dynamic_cast keyword 20

E
-E 61
-E option 223
Enable Exception Handling option 20
-encoding 42
-enum 69
enumalwaysint 232, 233
enumerated types 197
-EP 61
equals

instead of assignment 215

errno_name 234
error messages

diagnosing #include directives 200
exception handling 20
explicit_zero_data 235
expressions, in LCF 118
-ext 70
extended_errorcheck 197
extensions

GNU C 189
GNU Compiler Collection 138

F
faster_pch_gen 221
-flag 43
flat_include 222
float type 235
float_constants 235
for statement 215
force_active 115, 117, 122
format

assembly file 87
assembly statement 88

fullpath_file 222
fullpath_prepdump 222
function

declarations 183
prototypes 183

G
GCC. See Gnu Compiler Collection.
-gcc_extensions 43
gcc_extensions 189
-gccext 43
-gccincludes 61
global_optimizer 241
GNU C extensions 189
GNU Compiler Collection

extension to C 138
file include policy 61

H
header files

262 CodeWarrior Build Tools Reference for the eTPU

including once 225
searching 229

-help 49

I
-I- 62
-I+ 62
identifier

$ 188
dollar signs in 188

if statement 215
ignore_oldstyle 183
immediate integer values 90
-include 63
infinite loop, creating 216
-inline 73
inlining

turning off 161
instmgr_file 235
integral types, in LCF 117
-ir 63

K
keep_section 115, 117, 122
keepcomments 223
keywords

dynamic_cast 20
standard 130
typeid 20

L
labels

local 144
LCF. See linker command files
limitations

reverse_bitfields 238
line_prepdump 223
linker

See alsolinker command files
linker command files 37

* 119
after 123
align 121

alignment 116
arithmetic operations 116
assignment 118
comments 117
dead stripping prevention 117
expressions 118
file selection 119
force_active 122
integral types 117
keep_section 122
memory 113, 122–124
ref_include 124
sections 114, 124–126
segments 113
structure 113
symbols 118
syntax

syntax

LCF 115
variables 117
writeb 126
writeh 127
writes 127
writew 128
writing data 120

local
labels 144

longlong 236
longlong_enums 236
loop

infinite 216

M
-M 44
macro directives

assembler 101
macro_prepdump 224
macros 167

assembler preprocessor 98
predefined 108

-make 44
Makefile 44, 45
-mapcr 44

263CodeWarrior Build Tools Reference for the eTPU

mark 190
maxerrorcount 198
-maxerrors 50
-maxwarnings 51
-MD 45
memory 122–124
message 199
-min_enum_size 70
min_enum_size 237
-MM 45
-MMD 45
mpwc_newline 190
mpwc_relax 191
-msext 46
msg_show_lineref 224
msg_show_realref 224
-msgstyle 51
multibyteaware 191
multibyteaware_preserve_literals

192
MWCIncludes 34
MWLibraries 34

N
-nofail 52
-noprecompile 66
-nosyspath 66
notonce 225

O
-O 74
-O+ 74
-once 46
once 225
only_std_keywords 184
only_std_keywords pragma 130
-opt 75
opt_common_subs 241
opt_common_subs pragma 148
opt_dead_assignments 242
opt_dead_assignments pragma 150
opt_dead_code 242
opt_dead_code pragma 146
opt_lifetimes 243

opt_loop_invariants pragma 153
opt_propagation 243
opt_propagation pragma 149
opt_strength_reduction 244
opt_strength_reduction pragma 154
opt_strength_reduction_strict 244
opt_unroll_loops 245
opt_unroll_loops pragma 155
opt_vectorize_loops 245
optimization

loops 155
opt_unroll_loops pragma 155

optimization_level 245
optimize_for_size 246
optimizewithasm 246

P
-P 63
pack 247
PATH 34
pointer

aliasing 164
pool_strings 237
pop 226
-ppopt 65
-pragma 46
pragma_prepdump 227
pragmas

aggressive_inline 231
ANSI_strict 181
asmpoundcomment 187
asmsemicolcomment 187
c99 181
check_header_flags 221
const_strings 188
dollar_identifiers 188
dont_reuse_strings 231
enumalwaysint 232, 233
errno_name 234
explicit_zero_data 235
extended_errorcheck 197
faster_pch_gen 221
flat_include 222
float_constants 235

264 CodeWarrior Build Tools Reference for the eTPU

fullpath_file 222
fullpath_prepdump 222
gcc_extensions 189
global_optimizer 241
ignore_oldstyle 183
instmgr_file 235
keepcomments 223
line_prepdump 223
longlong 236
longlong_enums 236
macro_prepdump 224
mark 190
maxerrorcount 198
message 199
min_enum_size 237
mpwc_newline 190
mpwc_relax 191
msg_show_lineref 224
msg_show_realref 224
multibyteaware 191
multibyteaware_preserve_litera
ls 192

notonce 225
once 225
only_std_keywords 184
opt_common_subs 241
opt_dead_assignments 242
opt_dead_code 242
opt_lifetimes 243
opt_loop_invariantsopt_loop_in
variants 243

opt_propagation 243
opt_strength_reduction 244
opt_strength_reduction_strict

244
opt_unroll_loops 245
opt_vectorize_loops 245
optimization_level 245
optimize_for_size 246
optimizewithasm 246
pack 247
pool_strings 237
pop 226
pragma_prepdump 227

precompile_target 227
push 226
readonly_strings 238
require_prototypes 184
reverse_bitfields 238
scope of 178
show_error_filestack 200
showmessagenumber 199
simple_prepdump 228
space_prepdump 228
srcrelincludes 229
store_object_files 239
strictheaderchecking 248
suppress_warnings 200
sym 200
syspath_once 229
text_encoding 192
trigraphs 193
unsigned_char 194
unused 201
warn_any_ptr_int_conv 203
warn_emptydecl 204
warn_extracomma 205
warn_filenamecaps 206
warn_filenamecaps_system 206
warn_hiddenlocals 207
warn_illpragma 208
warn_illtokenpasting 208
warn_illunionmembers 208
warn_impl_f2i_conv 209
warn_impl_i2f_conv 210
warn_impl_s2u_conv 210
warn_implicitconv 211
warn_largeargs 212
warn_missingreturn 212
warn_no_side_effectwarn_no_sid
e_effect 213

warn_padding 214
warn_pch_portability 214
warn_possunwant 215
warn_ptr_int_conv 216
warn_resultnotused 217
warn_undefmacro 217
warn_uninitializedvar 218

265CodeWarrior Build Tools Reference for the eTPU

warn_unusedarg 218
warn_unusedvar 219
warning 202
warning_errors 203

pragmas, deprecated
multibyteaware 191

-precompile 64
precompile_target 227
predefined macros 167
-prefix 65
-preprocess 64
preprocessor

assembler 97
preprocessor directives 106
preprocessor operators 106
-progress 52
prototypes

and old-style declarations 183
not requiring 183
requiring 24

push 226

Q
qe_asm 83

R
readonly_strings 238
ref_include 115, 117, 124
-relax_pointers 47
require_prototypes 184
-requireprotos 47
return statement

empty 197
reverse_bitfields 238
runtime type information 20

S
-S 52
-search 47
sections 114, 124–126
semicolon

accidental 215
setjmp() 165

settings panel
C/C++ Warnings 28

show_error_filestack 200
showmessagenumber 199
simple_prepdump 228
space_prepdump 228
srcrelincludes 229
statements

catch 20
for 215
if 215
return 197
throw 20
try 20
while 215

-stderr 52
-stdinc 66
-stdkeywords 39
store_object_files 239
-strict 40
strictheaderchecking 248
-strings 71
strings

reusing 25
suppress_warnings 200
sym 200
symbol

directives 95
symbols 90

defining 90
global 90
local 90
reserved 90
scope 90
weak 91

symbols, in LCF 118
syntax

assembler 83
syspath_once 229
system files 105

T
text_encoding 192
throw statement 20

266 CodeWarrior Build Tools Reference for the eTPU

-timing 53
-trigraphs 48
trigraphs 193
try statement 20
type

char 25
double 235
float 235
unsigned char 25

typeid keyword 20
typeof 189

U
-U+ 66
-undefine 67
unsigned char type 25
unsigned_char 194
unused 201
user files 105

V
variables, in LCF 117
-verbose 53
-version 53

W
warn_any_ptr_int_conv 203
warn_emptydecl 204
warn_extracomma 205
warn_filenamecaps 206
warn_filenamecaps_system 206
warn_hiddenlocals 207
warn_illpragma 208
warn_illtokenpasting 208
warn_illunionmembers 208
warn_impl_f2i_conv 209
warn_impl_i2f_conv 210
warn_impl_s2u_conv 210
warn_implicitconv 211
warn_largeargs 212
warn_missingreturn 212
warn_padding 214
warn_pch_portability 214

warn_possunwant 215
warn_ptr_int_conv 216
warn_resultnotused 217
warn_undefmacro 217
warn_uninitializedvar 218
warn_unusedarg 218
warn_unusedvar 219
warning 202
warning pragma 54, 55, 56, 57
warning_errors 203
-warnings 54
warnings

setting in the IDE 28
weak symbols 91
while statement 215
-wraplines 58
writeb 120, 126
writeh 120, 127
WRITES 120
writes 127
writew 120, 128

	Introduction
	Compiler Architecture
	Linker Architecture

	Using Build Tools with the CodeWarrior IDE
	Choosing Tools and Files
	IDE Options and Pragmas
	IDE Settings Panels
	C/C++ Language Settings Panel
	C/C++ Preprocessor Panel
	C/C++ Warnings Panel

	Using Build Tools on the Command Line
	Configuring Command-Line Tools
	Setting CodeWarrior Environment Variables
	Setting the PATH Environment Variable

	Invoking Command-Line Tools
	Getting Help
	File Name Extensions

	Command-Line Options for Standard C Conformance
	Command-Line Options for Language Translation
	Command-Line Options for Diagnostic Messages
	Command-Line Options for Preprocessing
	Command-Line Options for Object Code
	Command-Line Options for Optimization
	Command-Line Options for eTPU Code Generation
	Working with the Assembler
	Understanding the eTPU Assembler
	Using the Command-Line Assembler
	File Extensions
	Command-Line Syntax
	Command-Line Switches

	Assembly File Layout
	Instructions, directives and Packets
	Syntax
	Statement Layout
	Symbols
	Strings

	Instructions and Directives
	Memory Spaces and Sections
	Data Storage
	Symbol Directives
	The Current Location
	Change of Flow
	Code Checking

	eTPU Assembler Preprocessor
	Preprocessor Macros
	Regular (Single-Line) Macros
	Multi-line Macros
	Macro-Related Directives
	Conditional Assembly
	Including Files
	Preprocessor Operations
	Predefined Macros

	Working with the ELF Linker
	Invocation and Command Line Switches
	Structure of Linker Command Files
	Memory Segment
	Sections Segment
	Closure Blocks

	Linker Command File Syntax
	Alignment
	Arithmetic Operations
	Comments
	Dead Strip Prevention
	Expressions, Variables and Integral Types
	File Selection
	Writing Data to Memory

	Alphabetical Keyword Listing
	Code and Data Sections

	C Compiler
	Extensions to Standard C
	Controlling Standard C Conformance
	C++-style Comments
	Unnamed Arguments
	Extensions to the Preprocessor
	Non-Standard Keywords
	Declaring Variables by Address

	C99 Extensions
	Controlling C99 Extensions
	Trailing Commas in Enumerations
	Compound Literal Values
	Designated Initializers
	Predefined Symbol __func__
	Implicit Return From main()
	Non-constant Static Data Initialization
	Variable Argument Macros
	Extra C99 Keywords
	C++-Style Comments
	C++-Style Digraphs
	Empty Arrays in Structures
	Hexadecimal Floating-Point Constants
	Variable-Length Arrays
	Unsuffixed Decimal Literal Values
	C99 Complex Data Types

	GCC Extensions
	Controlling GCC Extensions
	Initializing Automatic Arrays and Structures
	The sizeof() Operator
	Statements in Expressions
	Redefining Macros
	The typeof() Operator
	Void and Function Pointer Arithmetic
	The __builtin_constant_p() Operator
	Forward Declarations of Static Arrays
	Omitted Operands in Conditional Expressions
	The __builtin_expect() Operator
	Void Return Statements
	Minimum and Maximum Operators
	Local Labels

	Intermediate Optimizations
	Intermediate Optimizations
	Dead Code Elimination
	Expression Simplification
	Common Subexpression Elimination
	Copy Propagation
	Dead Store Elimination
	Live Range Splitting
	Loop-Invariant Code Motion
	Strength Reduction
	Loop Unrolling

	Inlining
	Choosing Which Functions to Inline
	Inlining Techniques

	Declaration Specifications
	Syntax for Declaration Specifications
	Declaration Specifications
	Syntax for Attribute Specifications
	Attribute Specifications

	Predefined Macros
	Using Pragmas
	Checking Pragma Settings
	Saving and Restoring Pragma Settings
	Determining Which Settings Are Saved and Restored
	Invalid Pragmas
	Pragma Scope

	Pragmas for Standard C Conformance
	Pragmas for Language Translation
	Pragmas for Diagnostic Messages
	Pragmas for Preprocessing
	Pragmas for Code Generation
	Pragmas for Optimization
	eTPU Specific Features
	Restrictions on 32-bit Variables
	Host Interface Files
	eTPU Functions Structure
	pragma ETPU_function
	Memory Allocation
	Channel Structure
	Tooth Program Register (TPR) Structure
	Entry Table Intrinsic Functions
	Predefined Symbols
	Integer Types
	Fractional Types
	Inline Assembly
	Inline Assembler Usage
	Specifying Variables and Labels
	Using Datatype Sizes

	#pragma write
	#pragma fill
	__attribute__((expects_flags))
	__attribute__((no_save_registers))
	__attribute__((pure_assembly))
	eTPU Intrinsic Functions

	Index

