Enhanced Time
Processing Unit
(eTPU)

CodeWarrior
Build Tools Reference

Document ID: ETPUTOOL SREF freescalte

RevO1082000 samicon ductor

Freescale, the Freescale logo, and CodeWarrior are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm.
Off. QUICC Engine istrademarks of Freescale Semiconductor, Inc. All other product or service names are the property
of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and
related marks are trademarks and service marks licensed by Power.org.

© 2005-2010 Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescal e Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and al liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “ Typ-
icals’, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systemsintended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.
6501 William Cannon Drive West
Austin, TX 78735

U.S.A.

World Wide Web http://ww. freescal e. com codewarri or

Technical Support http://ww. freescal e. com support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

Table of Contents

1 Introduction

Compiler Architecture
Linker Architecture. i e

2 Using Build Tools with the CodeWarrior IDE

Choosing Toolsand Files
IDEOptionsand Pragmas.ot
IDE SettingsPanels.
C/C++ Language SettingsPanel
CIC++ Preprocessor Panel
C/IC++WarningsPanel i

3 Using Build Tools on the Command Line

Configuring Command-LineTools.o,
Setting CodeWarrior Environment Variables
Setting the PATH Environment Variable.

Invoking Command-LineTools,

GettingHElp . ..o

File Name EXtEeNSIONS.ot e

4 Command-Line Options for Standard C Conformance

CodeWarrior Build Tools Reference for the eTPU

Table of Contents

SWAININGS. o v st et et et e
SWEAPINES oo

7 Command-Line Options for Preprocessing

—convertpaths.

CodeWarrior Build Tools Reference for the eTPU

Table of Contents

Dt 60
Sdefine . .. 60
O 61
SEP. 61
SgCCINCIUES. . . . oo 61
e 62
L 62
Sinclude . . e 63
1 P 63
P 63
SPreCOmMPIlE . o . 64
SPFEPIOCESS . . o v ettt et e e e e e e e e e 64
0] 16 o 65
PrEE X L 65
SNOPrECOMIPIlE . . . 66
SNOSYSPAN . L 66
SSEAINC L e 66
Ut 66
SUNAEfINE . o oo 67
8 Command-Line Options for Object Code 69
S e e e 69
SCOUBOEN .« oo 69
SBNUIML. oot et e e e e e e 69
SMIN_BNUML _SIZE . oo e e 70
SO e 70
SO NS, .« v et e 71
9 Command-Line Options for Optimization 73
SINlINE 73
L 74
SOt 74
0]) 75

CodeWarrior Build Tools Reference for the eTPU 3

Table of Contents

10 Command-Line Options for eTPU Code Generation 79
-kif | -keep_intermediate_files. it 79
DM 79
-big_memory model. 79
-not_engine relative 79
SN0 2D T, . 80
SWAM dala. . ..o e 80
Snojsched . ..o 80

11 Working with the Assembler 81

Understanding the eTPU Assembler. 81
Using the Command-Line Assembler. 81
FIlE@ EXIENSIONS . . . oot 82
Command-LineSyntaxt 83
Command-LineSwitches i 83
Assembly FileLayout. 87
Instructions, directivesand Packets. 87
YA . o\t 87
Statement Layout. e 88
SYMDOIS. . . 90
SHINgS « vttt 91
Instructionsand DIrectiVesot 92
Memory Spacesand SectionSot 92
Data SIOrage ot e 93
Symbol DireCtives.o e 95
TheCurrent LOCationvu e e 96
Change of FIOW o 96
CodeCheckingo 97
€TPU Assembler PreproCessoro v e e i 97
Preprocessor MaCroS. . .. oo vt e e e 98
Regular (Single-Ling) Macros.ot e 98
MUIti-liNEMaCIOSo 99
Macro-Related DireCtives oot e 101
Conditional Assembly. 103

CodeWarrior Build Tools Reference for the eTPU 4

Table of Contents

Including Files....................
Preprocessor Operations
Predefined Macros.

12 Working with the ELF Linker

Invocation and Command Line Switches
Structure of Linker Command Files
Memory Segment
SectionsSegment
ClosureBlocks
Linker Command File Syntax
Alignment.......................

Arithmetic Operations

Comments.ccoviiinn.

Dead Strip Prevention

Expressions, Variables and Integral Types
FileSelection.
Writing Datato Memory
Alphabetical Keyword Listing
. (locationcounter).
ALIGN ...
FORCE ACTIVE.................
KEEP SECTION
FORCE FILE....................
MEMORYo
REF_INCLUDE
SECTIONS ...
WRITEB ...
WRITEH......... ..o
WRITES
WRITEW
Code and Data Sections

13 C Compiler
Extensions to Standard C

CodeWarrior Build Tools Reference for the eTPU

Table of Contents

Controlling Standard C Conformance.cociv i, 129
CH+-style ComMmMENES. . ..ot 130
Unnamed ArgumentS.ot e 130
Extensionstothe Preprocessor ... 130
Non-Standard Keywords oo 131
Declaring Variablesby Address. i 131
COO EXIENSIONS . . . v v ettt ettt 132
Controlling C99 EXtensioNns.o vt 132
Trailing Commasin Enumerationsco ... 133
Compound Literal Valuest 133
Designated Initializers. 133
Predefined Symbol _func_ 134
Implicit Return Frommain() 134
Non-constant Static Data Initialization 134
Variable Argument Macroso et 134
ExtraCO9 Keywords i it e 135
CH+-Style CommeENtSot 135
C++-StyleDigraphs.o 136
Empty ArraySin SErUCIUrES oo e 136
Hexadecimal Floating-Point Constants. 136
Variable-Length Arrays.o 137
Unsuffixed Decimal Literal Values.t 138
C99 CompleX Data TYPES « o v vt v e ettt et 138
GCCEXIENSIONS . . o ottt et e e et e e et e e 138
Controlling GCC EXtENSIONS. . ..ot o et i e i e ie e ie i 139
Initializing Automatic Arraysand Structures 139
Thesizeof () Operator. 140
StatementSiN EXPreSSioNS. . ..o vt 140
Redefining Macros.t e e e 141
Thetypeof() Operatorot e e 141
Void and Function Pointer Arithmetic. 141
The _ builtin_constant_p() Operatorccovuiiiiinnnen.. 142
Forward Declarations of Static Arrays an. 142
Omitted Operandsin Conditional EXpressions. 142
The __builtin_expect() Operatorcoviiii i 142

6 CodeWarrior Build Tools Reference for the eTPU

Table of Contents

Void Return Statements.o 143
Minimum and Maximum Operators vev i e 143
Local Labelso 144
14 Intermediate Optimizations 145
Intermediate Optimizations.t 145
Dead Code Elimination. ..., 145
Expression Simplification. o i 146
Common Subexpression Elimination 148
Copy Propagationt 149
Dead Store Elimination.t 150
LiveRange Splittingt 151
Loop-Invariant Code MOtioN. ot 152
Strength Reduction 154
LoopUnrolling ... 155
INHNING . o 156
Choosing Which FunctionstoInline. oo, 156
INlining TEChNIQUES.o e 158

15 Declaration Specifications 161
Syntax for Declaration Specifications 161
Declaration Specificationst 161
_ declspec(never_inling).ot 161
Syntax for Attribute Specifications. L. 162
Attribute Specifications. 162
__dttribute_ ((deprecated)). 162
__attribute__((force_export)) ... 163
_dtribute (MalloC)) . ..o 163
dtribute (noalias)).oovv e 164
__attribute__ ((returns twice)). . ..o v 164
_attribute__((Unused)). ... 165
_atribute ((Used)). ..o 165
16 Predefined Macros 167
L COUNTER oottt e 167

CodeWarrior Build Tools Reference for the eTPU 7

L CPIUSPIUS o 168
WG i 168

o DATE o 168
_embedded cplusplUSot 169
CFILE o 169
func 170
CFUNCTION e e e 170
dde target(). . o e 170
CLINE 171
CMWERKS 171

_ PRETTY_FUNCTION ..ottt 172
profile . 172
STDC 172

LI = 173

17 Using Pragmas 175
Checking PragmaSettingst 175
Saving and Restoring Pragma Settings. oo 176
Determining Which Settings Are Saved and Restored 177
IMValid Pragmas.o 178
Pragma SCOPE . . o e e 178
18 Pragmas for Standard C Conformance 181
ANSI SiCt . oo 181
€00 . it 181

02) P 183
ignore oldstyle 183
only_std Keywords 184
FEQUITE PrOtOLYPES. o ottt et e et 184
19 Pragmas for Language Translation 187
asMmpoUNdCOMMENTottt e 187
aSMSEMICOICOMMENT ottt et e e e 187
CONSE_SHINGS .« v vttt et e e e e e e 188
dollar_identifiers. o 188

8 CodeWarrior Build Tools Reference for the eTPU

Table of Contents

OCC BXIENSIONS ..\ttt ittt e 189
MK . . 190
MPWC NEWlINE. e e e 190
MPWC Tl aX . . ot e e e e e e 191
multibyteaware 191
multibyteaware preserve literals.............. 192
text_ encodingo 192
trgraphs. . .o 193
unsigned Char e 194
20 Pragmas for Diagnostic Messages 197
extended errorcheck 197
MAXEITOICOUNTottt e e e e e e 198
MNESSAE . .« & v v vttt et et e 199
showmessagenumber. 199
show_error_filestack 200
SUPPIESS WANIMNGS . . o e v ettt et e et e et e 200
53 12 200
UNUSEA . oot e 201
WAIMING . o ottt e e e e e e e e e e 202
WaMING B OIS .\ ottt ettt ettt et et et et 203
warn_any ptr int_COMV.ttt e 203
warn_emptydecl 204
Warn_BXIraCOMIMAL. . . v ottt et ettt e 205
warn filenamecaps 206
warn_filenamecaps system. 206
warn_hiddenlocals. 207
Warn illpragma. 208
warn_illtokenpasting. 208
warn_illunionmemberso e 208
warn_impl f2i conv........ .. 209
warn_impl i2f Conv e 210
warn_impl_S2U_COMV 210
warn_impliCitConV. e 211
WA _JaIgEaIgS « o v vttt et e e et e 212

CodeWarrior Build Tools Reference for the eTPU 9

Table of Contents

Warn_MiSSINGretUMNot et e e et 212
warn_no_side effect 213
warn_ paddingt e 214
warn_pch portability. 214
Warn_POSSUNWENTottt e e e 215
Warn_Ptr it CONV. . ..o e e e 216
warn_resultnotused 217
Warn_UNdefmacro oot 217
warn_uninitializedvar 218
WA _UNUSEAAIG. . . . oottt e e e e e e e 218
WA _UNUSEAVAN ottt e e e e et e e e e e 219
21 Pragmas for Preprocessing 221
check header flags........ ... 221
faster pch gen. 221
fla_include 222
fullpath_file. 222
fullpath_prepdump.o 222
KEEPCOMMENLS. . . .o 223
[iNe Prepdump. . ..o 223
MACro_PrepduMD. . . oo e 224
MSg_Show_lineref 224
MSY_ShOW_realref 224
NOLONCE. . . . ottt ettt e et e e e 225
Old_Pragma ONCE. vttt et et e e et e e e 225
0 o 225
POP, PUSH . . oo 226
pragma prepdump. . ..o e 227
precompile target 227
simple prepdump 228
SPACe PrepauMp . o vt 228
SrCrelinCludes.o 229
SYSPAth OMNCEo 229

10 CodeWarrior Build Tools Reference for the eTPU

Table of Contents

22 Pragmas for Code Generation 231
aggressiVe iNliNe.o 231
dont_reuse StringS. . .. oot 231
ENUMSAIWAYSINE . . . oot e 232
ENUMS SIgNEot 233
BITNO_NAIME . . ottt ettt et e e e et et 234
explicit_zero data. ... e 235
float_CONStants.ot 235
instmgr_file. ... 235
IONQIONG. . . ot 236
[ONGIONG_BNUMS . . . oot e e e 236
MIN_ENUM _SIZE . . oottt e e e i e e e 237
POOI_StHNGS. . . oot 237
readonly_StriNgSot 238
reverse bitfields 238
store object files. 239

23 Pragmas for Optimization 241
global_optimizer............ 241
opt_common_ subsS. 241
opt_dead aSSigNmeNnts.ttt 242
opt dead code. 242
opt_lifetimes 243
opt_loop invariants. 243
Opt_Propagation.t 243
opt_strength_reduction i 244
opt_strength_reduction_stricto 244
opt_uUNroll_10o0PS. ... oo 245
OPt_VECLONZE JOOPS . . oot eeee 245
optimization_level. 245
optimize for_Sizeo 246
optimizewithasm 246
PBCK . . ot e 247
strictheaderchecking 248

CodeWarrior Build Tools Reference for the eTPU 11

Table of Contents

24 eTPU Specific Features 249
Restrictionson 32-bit Variables i 249

Host InterfaceFiles.o 250

€TPU FUNCtIONS SEFUCKUre. oo e e 250
pragmaETPU function. i 252

Memory ALTOCELION 252

Channel Structure 253

Tooth Program Register (TPR) Structuret 253

Entry Table Intrinsic Functions. oot 254

Predefined Symbols. 254

INtEgEr TYPES. . o o 255

Fractional TYPeS . ..ot 255

Inline Assembly. o e 255
InlineAssemblerUsage.t 255

Specifying Variablesand Labels.o i 255

Using Datatype SIZES. oo 256

HOragmaWIIteot 256

#Horagmafill 256
__attribute__ ((expects flags)).o 256

__attribute_ ((NO_Save registers)) .o vvvvii it e e 257
__attribute_ ((pure assembly))o 257

eTPU IntrinsiCFUNCLioNS 257

Index 259
12 CodeWarrior Build Tools Reference for the eTPU

Introduction

This manual documents the CodeWarrior build tools for the Enhanced Time Processing
Unit (eTPU). The document covers the CodeWarrior eTPU compiler and linker, versions
4.0 and higher.

In this chapter:

e Compiler Architecture
o Linker Architecture

Compiler Architecture

From aprogrammer’ s point of view, the CodeWarrior compiler translates source code into
object code. Internally, however, the CodeWarrior compiler organizesitswork between its
front-end and back-end, each end taking several steps. Figure 1.1 shows the steps the
compiler takes.

CodeWarrior Build Tools Reference for the eTPU 13

y
A

Introduction
Compiler Architecture

Figure 1.1 CodeWarrior compiler steps

settings from the IDE or
command line

read and

! |
! |
| |
! |
! |
| front-end source code file and |
| |
! |
! |
! |
| |

preprocess source :)
code included files
\ 4
translate to optimize
intermediate intermediate
representation representation
e e e e e 2
| translate to |
| processor object optimize object code |
| code |
| back-end |
| |
| output object code and object code and debugging |
debugging data data files
| |
Lo - - _

Front-end steps:

« read settings: retrieves your settings from the host’ s integrated devel opment
environment (IDE) or the command line to configure how to perform subsequent
steps

« read and preprocess source code: reads your program’s source code files and applies
preprocessor directives

« trandate to intermediate representation: translates your program'’ s preprocessed
source code into a platform-independent intermediate representation

 optimize intermediate representation: rearranges the intermediate representation to
reduce your program’s size, improve its performance, or both

Back-end steps:

« translateto processor object code: converts the optimized intermediate representation
into native object code, containing data and instructions, for the target processor

14 CodeWarrior Build Tools Reference for the eTPU

Introduction
Linker Architecture

« optimize object code: rearranges the native object code to reduce its size, improve
performance, or both

« output object code and diagnostic data: writes output files on the host system, ready
for the linker and diagnostic tools such as a debugger or profiler

Linker Architecture

A linker combines and arranges data and instructions from one or more object code files
into asinglefile, or image. Thisimageis ready to execute on the target platform. The
CodeWarrior linker uses settings from the host’ s integrated devel opment environment
(IDE) or command line to determine how to generate the imagefile.

The linker also optionally reads alinker command file. A linker command file allows you
to specify precise details of how data and instructions should be arranged in the imagefile.

Figure 1.2 shows the steps the CodeWarrior linker takes to build an executable image.

CodeWarrior Build Tools Reference for the eTPU 15

y
A

Introduction

Linker Architecture

Figure 1.2 CodeWarrior linker steps

read settings

delete unused objects
(“deadstripping”)

output link map and

settings from the IDE or

command line
h 4
read linker command file linker command file
h 4
read object code object code files

A 4

resolve references
among objects

link map and

image files executable image files

read settings: retrieves your settings from the IDE or the command line to determine
how to perform subsequent steps

read linker command file: retrieves commands to determine how to arrange object
code in the final image

read object code: retrieves data and executable objects that are the result of
compilation or assembly

delete unused objects (“ deadstripping”): deletes objectsthat are not referred to by the
rest of the program

resolve references among objects: arranges objects to compose the image then
computes the addresses of the objects

output link map and image files: writes files on the host system, ready to load onto
the target system

16

CodeWarrior Build Tools Reference for the eTPU

2

Using Build Tools with the
CodeWarrior IDE

The CodeWarrior Integrated Development Environment (IDE) uses settingsin aproject’s
build target to choose which compilers and linkers to invoke, which files those compilers
and linkers will process, and which options the compilers and linkers will use.

This chapter explains how to use CodeWarrior compilers and linkers with the
CodeWarrior IDE:

¢ Choosing Toolsand Files

¢ |DE Options and Pragmas
¢ |DE Settings Panels

Choosing Tools and Files

The IDE uses settings in the Tar get Settings panel to determine which compilers and
linkersto use. This panel isin the build-target Settings window, where build-target isthe
name of the current build target. The Linker option in this settings panel specifiesthe
platform or processor to build for. From this option, the IDE also determines which
compilers, pre-linkers, and post-linkers to use.

The I DE usesthe settingsin the File M appings panel of the build-target Settings window
to determine which types of files may be added to a project’ s build target and which
compiler should be invoked to process each file. The menu of compilersin the Compiler
option of this panel is determined by the Linker setting in the Target Settings panel.

The IDE uses the settings in abuild target’ s Access Paths and Sour ce Tr ees panels to
choose the source code and object code files to dispatch to the CodeWarrior build tools.
See the IDE User’ s Guide for more information on these panels.

IDE Options and Pragmas

Use IDE settings and directives in source code to configure the build tools.

The CodeWarrior compiler follows these steps to determine the settings to apply to each
file that the compiler translates under the IDE:

CodeWarrior Build Tools Reference for the eTPU 17

A 4
4\

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

« before tranglating the source code file, the compiler gets option settings from the
IDE’s settings panels in the current build target

« the compiler updates the settings for pragmas that correspond to panel settings

« the compiler translates the source code in the Prefix Text field of the build target’s
C/C++ Preprocessor panel

The compiler applies pragma directives and updates their settings as pragma
directives are encountered in this source code.

« the compiler translates the source code file and the files that it includes

The compiler applies pragma settings as it encounters them.

IDE Settings Panels

These CodeWarrior IDE settings panels control compiler and linker behavior:

¢ C/C++ L anguage Settings Panel

¢ C/C++ Preprocessor Panel
¢ C/C++ Warnings Panel

C/C++ Language Settings Panel

This settings panel controls compiler language features and some object code storage
features for the current build target.

18 CodeWarrior Build Tools Reference for the eTPU

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel

Template Parser

14882-1998 standard for C++ to
translate templates, enforcing more
careful use of the t ypenane and

t enpl at e keywords. The compiler
also follows stricter rules for resolving
names during declaration and
instantiation.

Clear—the C+++ compiler does not
expect template source code to
follow the ISO C++ standard as
closely.

This item... controls this behavior and is equivalent to
these options
Force C++ Checked—translates all C source pragma cpl uspl us and
Compilation files as C++ source code. the command-line option
Clear—uses the filename’s extension | | 2"9 ¢**
to determine whether to use the C or
C++ compiler. The entries in the
IDE’s File Mappings settings panel
specify the suffixes that the compiler
assigns to each compiler.
ISO C++ Checked—follows the ISO/IEC pragma

parse_func_t enpl and
the command-line option -
i so_tenpl ates

Use Instance
Manager

Checked—reduces compile time by
generating any instance of a C++
template (or non-inlined inline)
function only once.

Clear—generates a new instance of
a template or non-inlined function
each time it appears in source code.

Control where the instance database
is stored using #pr agna
instngr_file.

command-line option
-instngr

CodeWarrior Build Tools Reference for the eTPU

19

'
A

Using Build Tools with the CodeWarrior IDE

IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel (continued)

This item...

controls this behavior

and is equivalent to
these options

Enable C++
Exceptions

Checked—generates executable
code for C++ exceptions.

Clear—generates smaller, faster
executable code.

Enable the Enable C++ Exceptions
setting if you use the t ry, t hr ow,
and cat ch statements specified in
the ISO/IEC 14882-1998 C++
standard. Otherwise, disable this
setting to generate smaller and faster
code.

pragma excepti ons and
the command-line option

- cpp_exceptions

Enable RTTI

Checked—allows the use of the C++
runtime type information (RTTI)
capabilities, including the

dynam c_cast andtypei d
operators.

Clear—the compiler generates
smaller, faster object code but does
not allow runtime type information
operations.

pragma RTTI and the
command-line option
- RTTI

Enable bool
Support

Checked—the C++ compiler
recognizes the bool type and its
true and f al se values specified in
the ISO/IEC 14882-1998 C++
standard.

Clear—the compiler does not
recognize this type or its values.

pragma bool and the
command-line option
- bool

Enable wchar_t
Support

Checked—the C++ compiler
recognizes the wchar _t data type
specified in the ISO/IEC 14882-1998
C++ standard.

Clear—the compiler does not
recognize this type.

Turn off this option when compiling
source code that defines its own
wchar _t type.

pragmawchar _t ype and
the command-line option
-wchar _t

20

CodeWarrior Build Tools Reference for the eTPU

Using Build Tools with the CodeWarrior IDE

IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel (continued)

This item...

controls this behavior

and is equivalent to
these options

EC++
Compatibility
Mode

Checked—expects C++ source code
files to contain Embedded C++
source code.

Clear—the compiler expects regular

C++ source code in C++ source files.

pragma ecpl uspl us and
the command-line option
-dial ect ec++

Inline Depth

Don’t Inline—Inlines no functions, not
even C or C++ functions declared

inline.

Smart—Inlines small functions to a
depth of 2 to 4 inline functions deep.

1 to 8—Inlines to the depth specified
by the numerical selection.

The Don't Inline item
corresponds to the pragma
dont _i nl i ne and the
command-line option
-inline of f.The Smart
and 1 to 8 items
correspond to the pr agna
i nl'i ne_dept h and the
command-line option
-inline level =n,
where nis 1 to 8.

CodeWarrior Build Tools Reference for the eTPU

21

'
A

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel (continued)

This item... controls this behavior and is equivalent to
these options

IPA Specifies the Interprocedural command line option - i pa
Analysis (IPA) policy.

Off—No interprocedural analysis, but
still performs function-level
optimization. Equivalent to the “no
deferred inlining” compilation policy
of older compilers.

File—Completely parse each
translation unit before generating any
code or data. Equivalent to the
“deferred inlining” option of older
compilers. Also performs an early
dead code and dead data analysis in
this mode. Objects with unreferenced
internal linkages will be dead-
stripped in the compiler rather than in
the linker.

Program—completely parse the
entire program before optimizing and
generating code, providing many
optimization benefits. For example,
the compiler can auto-inline functions
that are defined in another translation
unit.

Auto-Inline Checked—the compiler chooses pragma aut o_i nl i ne
which functions to inline. Also inlines and the command-line
C++ functions declared i nl i ne and option -i nline auto
member functions defined within a
class declaration.

Clear—the compiler only considers
functions declared with i nl i ne.

Bottom-up Checked—performs inline analysis pragma
Inlining from the last function to the first i nline_bottom up and
function in a chain of function calls. the command-line option

- . . -inline bottonu
Clear—inline analysis begins at the ottomup

first function in a chain of function
calls.

22 CodeWarrior Build Tools Reference for the eTPU

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel (continued)

code that conforms to the ISO/IEC
9899-1990 standard for C.

Clear—recognize several
CodeWarrior extensions to the C
language:

* unnamed arguments in
function definitions

« a# not followed by a
macro directive

« using an identifier after a
#endi f directive

« using typecasted pointers
as Ivalues

¢ converting points to type of
the same size

« arrays of zero length in
structures

« the D constant suffix

* enumeration constant
definitions that cannot be
represented as signed
integers when the Enums
Always Int option is on in
the IDE's C/C++
Language settings panel
or the enunsal waysi nt
pragma is on

¢ aC++ main() function
that does not return an
integer value

This item... controls this behavior and is equivalent to
these options
ANSI Strict Checked—Only recognizes source pragma ANSI _stri ct

and the command-line
option - ansi strict

ANSI Keywords
Only

Checked—(ISO/IEC 9899-1990 C,
86.4.1) generates an error message
for all non-standard keywords. If you
must write source code that strictly
adheres to the ISO standard, enable
this setting.

Clear—the compiler recognizes only
these non-standard keywords: f ar,
inline, inline__,_ _inline,
and pascal .

pragma
only_std_keywords
and the command-line
option - st dkeywor ds

CodeWarrior Build Tools Reference for the eTPU

23

'
A

Using Build Tools with the CodeWarrior IDE

IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel (continued)

This item...

controls this behavior

and is equivalent to
these options

Expand
Trigraphs

Checked—recognizes trigraph
sequences (ISO/IEC 9899-1990 C,
§5.2.1.1).

Clear—ignores trigraph characters.
Many common character constants
look like trigraph sequences, and this
extension lets you use them without
including escape characters.

pragmatri graphs and
the command-line option
-trigraphs

Legacy for-
scoping

Checked—generates an error
message when the compiler
encounters a variable scope usage
that the ISO/IEC 14882-1998 C++
standard disallows, but is allowed in
the C++ language specified in The
Annotated C++ Reference Manual
(“ARM").

Clear—allows scope rules specified
in ARM.

pragma ARM scopi ng
and the command-line
option - f or _scopi ng

Require
Function
Prototypes

Checked—enforces the requirement
of function prototypes. the compiler
generates an error message if you
define a previously referenced
function that does not have a
prototype. If you define the function
before it is referenced but do not give
it a prototype, this setting causes the
compiler to issue a warning
message.

Clear—do not require prototypes.

pragma
require_prototypes
and the command-line
option - r equi r epr ot 0s

Enable C99
Extensions

Checked—recognizes ISO/IEC 9899-
1999 (“C99") language features.

Clear—recognizes only ISO/IEC
9899-1990 (“C90") language
features.

pragma c99 and the
command-line option
-dial ect c99

24

CodeWarrior Build Tools Reference for the eTPU

Using Build Tools with the CodeWarrior IDE

IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel (continued)

Collection (GCC) C compiler that are

supported by CodeWarrior compilers.

Clear—do not recognize GCC
extensions

This item... controls this behavior and is equivalent to
these options

Enable GCC Checked—recognizes language pragma

Extensions features of the GNU Compiler gcc_ext ensi ons and the

command-line option -
gcc_ext ensi ons

Enums Always
Int

Checked—uses signed integers to
represent enumerated constants.

Clear—uses smallest possible
integer type to represent enumerated
constants.

pragma
enunsal waysi nt andthe
command-line option
-enum

Use Unsigned

Checked—treats char declarations

pragma unsi gned_char

constants into a single data section in
the object code it generates.

Clear—creates a unique section for
each string constant.

Chars as unsi gned char declarations. and the command-line
Clear—char declarations are option - charunsi gned
si gned char declarations

Pool Strings Checked—collects all string pragma pool _strings

and the command-line
option - strings pool

Reuse Strings

Checked—stores only one copy of
identical string literals.

Clear—stores each string literal
separately.

opposite of the pragma
dont _reuse_strings
and the command-line
option -string reuse

C/C++ Preprocessor Panel

The C/C++ Preprocessor settings panel controls the operation of the CodeWarrior
compiler’s preprocessor.

CodeWarrior Build Tools Reference for the eTPU

25

y
A

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Table 2.2 C/C++ Preprocessor Panel

This item... controls this behavior

Prefix Text Contains source code that the compiler
inserts at the beginning of each translation
unit. A translation unit is the combination of a
source code file and all the files that it
includes.

Source encoding Allows you to specify the default encoding of
source files. The compiler recognizes
Multibyte and Unicode source text. To
replicate the obsolete option Multi-Byte
Aware, set this option to System or
Autodetect. Additionally, options that affect
the preprocess request appear in this panel.

Use prefix text in precompiled header Checked—inserts the source code in the
Prefix Text field at the beginning of a
precompiled header file.

Clear—does not insert Prefix Text contents
in a precompiled header file.

Defaults to clear to correspond with previous
versions of the compiler that ignore the prefix
file when building precompiled headers. If
any pragmas are imported from old C/C++
Language Panel settings, this option is
enabled.

Emit file changes Checked—noatification of file changes (or
#line changes) appear in the output.

Clear—no file changes appear in output.

Emit #pragmas Checked—pragma directives appear in the
preprocessor output. Essential for producing
reproducible test cases for bug reports.

Clear—pragma directives do not appear in
preprocessor output.

Show Full Paths Checked—show the full path of a file’s name.

Clear—show the base filename.

26 CodeWarrior Build Tools Reference for the eTPU

Using Build Tools with the CodeWarrior IDE

IDE Settings Panels
Table 2.2 C/C++ Preprocessor Panel (continued)
This item... controls this behavior
Keep comments Checked—comments appear in the

preprocessor output.

Clear—comments do not appear in
preprocessor output.

Use #line Checked—file changes appear in comments
(as before) or in #line directives.

Clear—file changes do not appear in
comments or in #line directives.

Keep whitespace Checked—whitespace is copied to
preprocessor output. This is useful for
keeping the starting column aligned with the
original source, though the compiler attempts
to preserve space within the line. This does
not apply when macros are expanded.

Clear—whitespace is stripped in
preprocessor output.

CodeWarrior Build Tools Reference for the eTPU 27

y
A

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

C/C++ Warnings Panel

The C/C++ Warnings settings panel contains options that control which warning
messages the CodeWarrior C/C++ compiler issues as it trang ates source code:

Table 2.3 C/C++ Warnings Panel

message if the compiler
encounters an unrecognized
pragma.

Clear—no action for
unrecognized pragma
directives.

This item controls this behavior and is equivalent to
these options
lllegal Pragmas Checked—issues a warning pragmawar n_i | | pragma

pragma and the command-
line option - war ni ngs
illpragmas

Possible Errors Checked—issues warning
messages for common, usually-
unintended logical errors: in
conditional statements, using
the assignment (=) operator
instead of the equality
comparison (==) operator, in
expression statements, using
the == operator instead of the =
operator, placing a semicolon

(;) immediately after a do,
whil e,if,orfor statement.

pragma war n_possunwant
and the command-line option
-war ni ngs possi bl e

Extended Error Checked—issues warning
Checking messages for common
programming errors: mis-
matched return type in a
function’s definition and the
return statement in the
function’s body, mismatched
assignments to variables of
enumerated types.

pragma

ext ended_errorcheck
and the command-line option
-war ni ngs ext ended

Hidden Virtual Checked—generates a warning
Functions message if you declare a non-
virtual member function that
prevents a virtual function, that
was defined in a superclass,
from being called.

pragma

war n_hi devi rtual and
the command-line option
-war ni ngs hi devi rtual

28 CodeWarrior Build Tools Reference for the eTPU

Using Build Tools with the CodeWarrior IDE

IDE Settings Panels

Table 2.3 C/C++ Warnings Panel

This item

controls this behavior

and is equivalent to
these options

Implicit Arithmetic
Conversions

Checked—issues a warning
message when the compiler
applies implicit conversions that
may not give results you intend:
assignments where the
destination is not large enough
to hold the result of the
conversion, a signed value
converted to an unsigned value,
an integer or floating-point value
is converted to a floating-point
or integer value, respectively.

pragma
war n_i npl i ci t conv and
the command-line option -

war ni ngs i nplicitconv

Float To Integer

Checked—issues a warning
message for implicit
conversions from floating point
values to integer values.

pragma
war n_i npl _f 2i _conv and
the command-line option -
war ni ngs

i mpl _f1 oat 2i nt

Signed/Unsigned

Checked—issues a warning
message for implicit
conversions from a signed or
unsigned integer value to an
unsigned or signed value,
respectively.

pragma
war n_i npl _s2u_conv and
the command-line option -
war ni ngs

si gnedunsi gned

Integer To Float

Checked—issues a warning
message for implicit
conversions from integer to
floating-point values.

pragma
war n_i npl _i 2f _conv and
the command-line option -
war ni ngs

i mpl _i nt 2f | oat

Pointer/Integral
Conversions

Checked—issues a warning
message for implicit
conversions from pointer values
to integer values and from
integer values to pointer values.

pragmas

war n_any_ptr_int_conv
and war n_ptr _i nt_conv
and the command-line option
-war ni ngs

ptrintconv, anyptrinvc
onv

Unused Variables

Checked—issues a warning
message for local variables that
are not referred to in a function.

pragma war n_unusedvar
and the command-line option
-war ni ngs unusedvar

CodeWarrior Build Tools Reference for the eTPU

29

y
A

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Table 2.3 C/C++ Warnings Panel

This item

controls this behavior

and is equivalent to
these options

Unused Arguments

Checked—issues a warning
message for function arguments
that are not referred to in a
function.

pragma war n_unusedar g
and the command-line option
-war ni ngs unusedar g

Missing ‘return’
Statements

Checked—issues a warning
message if a function that is
defined to return a value has no
r et ur n statement.

pragma
war n_m ssi ngreturn and
the command-line option -
war ni ngs

m ssingreturn

Expression Has No

Checked—issues a warning

pragma

Side Effect message if a statement does war n_no_si de_effect
not change the program’s state. | and the command-line option
-war ni ngs unusedexpr
Enable All Checked—turns on all warning
options.
Disable All Checked—turns off all warning

options.

Extra Commas

Checked—issues a warning
message if a list in an
enumeration terminates with a
comma. The compiler ignores
terminating commas in
enumerations when compiling
source code that conforms to
the ISO/IEC 9899-1999 (“C99")
standard.

pragma war n_ext r aconma
and the command-line option
-war ni ngs extracomm

Inconsistent ‘class’/
'struct’ Usage

Checked—issues a warning
message if the class and struct
keywords are used
interchangeably in the definition
and declaration of the same
identifier in C++ source code.

pragma
war n_structcl ass and
the command-line option -
war ni ngs structcl ass

Empty
Declarations

Checked—issues a warning
message if a declaration has no
variable name.

pragma war n_enpt ydecl
and the command-line option
-war ni ngs enptydecl

30

CodeWarrior Build Tools Reference for the eTPU

Using Build Tools with the CodeWarrior IDE

IDE Settings Panels

Table 2.3 C/C++ Warnings Panel

This item controls this behavior and is equivalent to
these options
Include File Checked—issues a warning pragma

Capitalization

message if the name of the file
specified in a #i ncl ude
"file" directive uses different
letter case from a file on disk.

war n_fi | enamecaps and
the command-line option -
war ni ngs fil ecaps

Check System
Includes

Checked—issues a warning
message if the name of the file
specified in a #i ncl ude

<fi | e> directive uses different
letter case from a file on disk.

pragma
war n_f i | enamecaps_sys
t emand the command-line
option - war ni ngs

sysfil ecaps

Pad Bytes Added

Checked—issues a warning
message when the compiler
adjusts the alignment of
components in a data structure.

pragma war n_paddi ng and
the command-line option -
war ni ngs paddi ng

Undefined Macroin
#if

Checked—issues a warning
message if an undefined macro
appears in #i f and #el i f
directives.

pragma war n_undef nacr o
and the command-line option
-war ni ngs undef nacro

Non-Inlined
Functions

Checked—issues a warning
message if a call to a function
defined with the i nl i ne,
_inline__,or__inline
keywords could not be replaced
with the function body.

pragma war n_not i nl i ned
and the command-line option
-war ni ngs notinlined

Treat All Warnings
As Errors

Checked—issues warning
messages as error messages.

pragma war ni ng_errors
pragma and the command-
line option - war ni ngs
error

CodeWarrior Build Tools Reference for the eTPU

31

A 4
4\

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

32 CodeWarrior Build Tools Reference for the eTPU

Using Build Tools on the
Command Line

CodeWarrior build tools may be invoked from the command-line. These command-line
tools operate amost identically to their counterparts in an integrated devel opment
environment (IDE). CodeWarrior command-line compilers and assemblers translate
source code files into object code files. CodeWarrior command-line linkers then combine
one or more object code files to produce an executable image file, ready to load and
execute on the target platform. Each command-line tool has options that you configure
when you invoke the tool.

* Configuring Command-Line Tools

¢ |nvoking Command-Line Tools

o Getting Help
« File Name Extensions

Configuring Command-Line Tools

¢ Setting CodeWarrior Environment Variables
¢ Setting the PATH Environment Variable

Setting CodeWarrior Environment
Variables

Use environment variables on the host system to specify to the CodeéWarrior command
line tools where to find CodeWarrior files for compiling and linking. Table 3.1 describes
these environment variables.

CodeWarrior Build Tools Reference for the eTPU 33

'
A

Using Build Tools on the Command Line
Configuring Command-Line Tools

Table 3.1 Environment variables for CodeWarrior command-line tools

This environment variable... specifies this information

MACI ncl udes Directories on the host system for system
header files for the CodeWarrior compiler.

MALI brari es Directories on the host system for system
libraries for the CodeWarrior linker.

A system header file is aheader file that is enclosed with the“<" and “>" charactersin
include directives. For example

#include <stdlib.h> /* stdlib.h system header. */

Typically, you define the MACI ncl udes and MALi br ar i es environment variablesto
refer to the header files and librariesin the subdirectories of your CodeWarrior software.

To specify more than one directory for the MACI ncl udes and MALi br ari es
variables, use the conventional separator for your host operating system command-line
shell.

Listing 3.1 Setting environment variables in Microsoft® Windows® operating systems

remUse ; to separate directory paths
set CWFol der =C: \ Program Fi | es\ Freescal e\ CodeVWarri or
set MACI ncl udes=%WFol der % MSL_Conmon\ | ncl ude

set MACI ncl udes=%W\Cl ncl udes% %CWFol der % MSL_Enbedded\ | ncl ude
set MALi brari es=%CWFol der % Suppor t\ ; %CWFol der % Support\ Runti ne

Setting the PATH Environment Variable

The PATH variable should include the paths for your CodeWarrior tools, shown in Listing
3.2. Toolset represents the name of the folder that contains the command line tools for
your build target.

Listing 3.2 Example of setting PATH

set CWFol der =C: \ Program Fi | es\ Freescal e\ CodeVWarri or
set PATH=%PATH®% %CWFol der % Bi n; %CWFol der % Conmand_Li ne_Tool s

34 CodeWarrior Build Tools Reference for the eTPU

Using Build Tools on the Command Line
Invoking Command-Line Tools

Invoking Command-Line Tools

To compile, assemble, link, or perform some other programming task with the
CodeWarrior command-line tools, you type acommand at acommand line’s prompt. This
command specifies the tool you want to run, what options to use while the tool runs, and
what files the tool should operate on.

The form of acommand to run acommand-linetool is
tool options files

where t ool isthe name of the CodeWarrior command-linetool toinvoke, opt i ons isa
list of zero or more options that specify to the tool what operation it should perform and
how it should be performed, and f i | es isalist of files zero or more files that the tool
should operate on.

Which options and files you should specify depend on what operation you want the tool to
perform.

The tool then performs the operation on the files you specify. If the tool is successful it
simply finishes its operation and a new prompt appears at the command line. If the tool
encounters problemsit reports these problems as text messages on the command-line
before a new prompt appears.

Scripts that automate the process to build a piece of software contain commandsto invoke
command-line tools. For example, the make tool, acommon software development tool,
uses scripts to manage dependencies among source code files and invoke command-line
compilers, assemblers and linkers as needed, much like the CodeWarrior IDE’s project
manager.

Getting Help

To show short descriptions of atool’s options, type this command at the command line:
tool -help
where tool isthe name of the CodeWarrior build tool.

To show only afew lines of help information at atime, pipe the tool’ s output to a pager
program. For example,

tool -help | nore
will use the mor e pager program to display the help information.

Enter the following command in a Command Prompt window to see alist of
specifications that describe how options are formatted:

tool -help usage
where tool isthe name of the CodeWarrior build tool.

CodeWarrior Build Tools Reference for the eTPU 35

3
4

y
A

Using Build Tools on the Command Line

Getting Help

Parameter Formats
Parameters in an option are formatted as follows:
¢ A parameter included in brackets“[] " is optional.

e Useof thedlipsis®. . . " character indicates that the previous type of parameter
may be repeated as alist.

Option Formats
Options are formatted as follows:

« For most options, the option and the parameters are separated by a space asin
“-xxx paranf.
When the option’s name is“- xxx+”, however, the parameter must directly follow
the option, without the “+" character (asin “- xxx45") and with no space separator.
e Anoptiongivenas“- [no] xxx” may beissued as“- xxx” or “- noxxx".

The use of “- noxxx” reverses the meaning of the option.

”

e When an optionisspecifiedas“- xxx | yy[y] | zzz”,theneither “- xxx”,
“-yy”, “-yyy”,or“-zzz" matchesthe option.

“w on

e Thesymbols*, ” and “=" separate options and parameters unconditionally; to
include one of these symbolsin a parameter or filename, escapeit (e.g., as“\, " in
mwce file.c\,v).

Common Terms
These common terms appear in many option descriptions:
« A “cased” optionis considered case-sensitive. By default, no options are case-
sengitive.
« “compatibility” indicates that the option is borrowed from ancther vendor’ s tool and
its behavior may only approximate its counterpart.

e A “global” option has an effect over the entire command line and is parsed before
any other options. When several global options are specified, they areinterpreted in
order.

* A “deprecated” option will be eliminated in the future and should no longer be used.
An dternative form is supplied.

* An“ignored” option is accepted by the tool but has no effect.

« A “meaningless’ option is accepted by the tool but probably has no meaning for the
target operating system.

« An“obsolete” option indicates a deprecated option that isno longer available.

36

CodeWarrior Build Tools Reference for the eTPU

Using Build Tools on the Command Line
File Name Extensions

* A “substituted” option has the same effect as another option. This points out a
preferred form and prevents confusion when similar options appear in the help.

¢ Useof “default” in the help text indicates that the given value or variation of an
option is used unless otherwise overridden.

Thistool callsthelinker (unless acompiler option such as- ¢ preventsit) and understands
linker options— use “- hel p t ool =ot her " to see them. Options marked “passed to
linker” are used by the compiler and the linker; options marked “for linker” are used only
by the linker. When using the compiler and linker separately, you must pass the common
options to both.

File Name Extensions

Files specified on the command line are identified by contents and file extension, asin the
CodeWarrior IDE.

The command-line version of the CodeWarrior C/C++ compiler accepts non-standard file
extensions as source code but also emits a warning message. By default, the compiler
assumes that afile with any extensionsbesides. c, . h, . pch is C++ source code. The
linker ignores all files that it can not identify as object code, libraries, or command files.

Linker command filesmustend in . | cf . They may be simply added to the link line, for
example (Listing 3.3).

Listing 3.3 Example of using linker command files

mM dtarget file.o lib.a conmandfile.lcf

For more information on linker command files, refer to the Targeting manual for your
platform.

CodeWarrior Build Tools Reference for the eTPU 37

A 4
4\

Using Build Tools on the Command Line
File Name Extensions

38 CodeWarrior Build Tools Reference for the eTPU

A

Command-Line Options for
Standard C Conformance

-ansi
Controls the 1SO/IEC 9899-1990 (“C90") conformance options, overriding the given
Ssettings.
Syntax
-ansi keyword
The argumentsfor keywor d are;
of f
Turns 1SO conformance off. Same as
-stdkeywords off -enummin -strict off.
on | rel axed
Turns 1SO conformance on in relaxed mode. Same as
-stdkeywords on -enummn -strict on
strict
Turns 1SO conformance on in strict mode. Same as
-stdkeywords on -enumint -strict on
-stdkeywords

Controls the use of 1SO/IEC 9899-1990 (“C90") keywords.

Syntax
-stdkeywords on | off

CodeWarrior Build Tools Reference for the eTPU 39

Command-Line Options for Standard C Conformance

Remarks
Default setting isof f .

-strict

Controls the use of non-standard | SO/IEC 9899-1990 (“ C90") language features.

Syntax
-strict on | off

Remarks

If this option ison, the compiler generates an error message if it encounters some
CodeWarrior extensions to the C language defined by the |SO/IEC 9899-1990
(“C90") standard:

e C++-style comments

¢ unnamed arguments in function definitions
¢ non-standard keywords

The default settingisof f .

40

CodeWarrior Build Tools Reference for the eTPU

5

Command-Line Options for
Language Translation

-char

Controls the default sign of thechar datatype.

Syntax

-char keyword

The arguments for keyword are:
si gned

char dataitems are signed.
unsi gned

char dataitems are unsigned.

Remarks
The defaultissi gned.

-defaults

Controls whether the compiler uses additional environment variables to provide default
settings.

Syntax

-defaults

-nodefaul ts

CodeWarrior Build Tools Reference for the eTPU 41

Command-Line Options for Language Translation

Remarks

This option is global. To tell the command-line compiler to use the same set of
default settings as the CodeWarrior IDE, use- def aul t s. For example, in the
IDE, all access paths and libraries are explicit. def aul t s isthe default setting.

Use- nodef aul t s to disable the use of additional environment variables.

-encoding
Specifies the default source encoding used by the compiler.

Syntax

-enc[odi ng] keyword

The options for keyword are:

asci i

American Standard Code for Information Interchange (ASCII) format. Thisis the default.
autodetect | nultibyte | nmb

Scan file for multibyte encoding.

system

Useslocal system format.

UTF[8 | -8]

Unicode Transformation Format (UTF).

SJIS | Shift-JIS | ShiftJIs

Shift Japanese Industrial Standard (Shift-JI'S) format.f
EUC[JP | -JP]

Japanese Extended UNIX Code (EUCJP) format.

| SO 2022JP | -2022-JP]

International Organization of Standards (ISO) Japanese format.

Remarks

The compiler automatically detects UTF-8 (Unicode Transformation Format)
header or UCS-2/UCS-4 (Uniform Communications Standard) encodings
regardless of setting. The default setting isasci i .

42 CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Language Translation

-flag
Specifies compiler #pr agna aseither on or of f.

Syntax
-fl[ag] [no-]pragm

Remarks
For example, this option setting
-flag require_prototypes
isequivalent to
#pragma require_prototypes on
This option setting
-flag no-require_prototypes
isthe same as
#pragma requi re_prototypes off

-gccext

Enables GCC (Gnu Compiler Collection) C language extensions.

Syntax
-gcc[ext] on | off

Remarks

See “GCC Extensions” on page 138 for alist of language extensions that the
compiler recognizes when this optionison.

The default settingisof f .

-gcc_extensions

Equivalent to the - gccext option.

CodeWarrior Build Tools Reference for the eTPU

43

Command-Line Options for Language Translation

Syntax
-gcc[_extensions] on | off

-M
Scans source files for dependencies and emit a Makefile, without generating object code.
Syntax
-M
Remarks
This command is global and case-sensitive.
-make
Scans source files for dependencies and emit a Makefile, without generating object code.
Syntax
- make
Remarks
This command is global.
-mapcr
Swaps the values of the\ n and\ r escape characters.
Syntax
- mapcr
- nomapcr
Remarks
The- mapcr option tellsthe compiler totreat the' \ n* character as ASCII 13 and
the' \ r' character as ASCII 10. The- nomapcr option tellsthe compiler to treat
these charactersas ASCII 10 and 13, respectively.
44 CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Language Translation

-MM
Scans source files for dependencies and emit a Makefile, without generating object code
or listing system #i ncl ude files.
Syntax
- W
Remarks
Thiscommand is global and case-sensitive.
-MD
Scans source files for dependencies and emit a M akefile, generate object code, and write a
dependency map.
Syntax
-MD
Remarks
Thiscommand is global and case-sensitive.
-MMD

Scans source files for dependencies and emit a Makefile, generate object code, write a
dependency map, without listing system #i ncl ude files.

Syntax
- WD

Remarks
This command is global and case-sensitive.

CodeWarrior Build Tools Reference for the eTPU 45

Command-Line Options for Language Translation

-msext

Allows Microsoft® Visual C++ extensions.

Syntax
-msext on | off

Remarks
Turn on this option to alow Microsoft Visual C++ extensions:
* Redefinition of macros
¢ Allows XXX: : yyy syntax when declaring method yyy of class XXX
* Allows extracommas
 Ignores casts to the same type

¢ Treatsfunction typeswith equivalent parameter lists but different return types as
equal

« Allows pointer-to-integer conversions, and various syntactical differences

-once

Prevents header files from being processed more than once.

Syntax

-once

Remarks
You can also add #pr agnma once on inaprefix file.

-pragma

Defines a pragma for the compiler.

Syntax
-pragma "nane [settingl"
The arguments are:

46

CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Language Translation

narme
Name of the pragma.

setting
Arguments to give to the pragma

Remarks
For example, this command-line option
-pragma "c99 on"
is equivalent to inserting this directive in source code

#pragma c99 on

-relax_pointers

Relaxes the pointer type-checking rulesin C.

Syntax
-rel ax_pointers

Remarks
Thisoption is equivaent to
#pragma nmpwc_rel ax on

-requireprotos

Controls whether or not the compiler should expect function prototypes.

Syntax
-r[equi reprotos]

-search

Globally searches across paths for source files, object code, and libraries specified in the
command line.

CodeWarrior Build Tools Reference for the eTPU 47

Command-Line Options for Language Translation

Syntax
-search

-trigraphs
Controls the use of trigraph sequences specified by the |SO/IEC standards for C and C++.

Syntax
-trigraphs on | off

Remarks
Default setting isof f .

48 CodeWarrior Build Tools Reference for the eTPU

6

Command-Line Options for
Diagnostic Messages

-disassemble

Tells the command-line tool to disassemble files and send result to st dout .

Syntax
-di s[assenbl e]

Remarks
Thisoption is global .

-help

Lists descriptions of the CodeWarrior tool’s command-line options.

Syntax
-help [keyword [,...1]
The options for keyword are:
al |
Show all standard options
group=keyword
Show help for groups whose names contain keyword (case-sensitive).
[no] conpati bl e

Useconpat i bl e to show options compatible with this compiler. Use
noconpat i bl e to show options that do not work with this compiler.

CodeWarrior Build Tools Reference for the eTPU 49

Command-Line Options for Diagnhostic Messages

[no] depr ecat ed
Shows deprecated options
[no]ignored
Shows ignored options
[no] meani ngl ess
Shows options meaningless for this target
[no] nor nal
Shows only standard options
[no] obsol ete
Shows obsol ete options
[no] spaces
Inserts blank lines between options in printout.
opt [i on] =nane
Shows help for a given option; for name, maximum length 63 chars
sear ch=keyword

Shows help for an option whose name or help contains keyword (case-sensitive),
maximum length 63 chars

tool =keyword[all | this | other | skipped | both]
Categorizes groups of options by tool; default.
e al | —show all options available in this tool
¢ t hi s—show options executed by thistool; default
« other | ski pped-show options passed to another tool
¢ bot h—show options used in all tools
usage
Displays usage information.

-maxerrors

Specifies the maximum number of errors messages to show.

Syntax

-nmaxerrors nax

50 CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Diagnhostic Messages

Use MBX to specify the number of error messages. Common values are:
¢ 0 (zero) — disable maximum count, show all error messages.
¢ 100 - Default setting.

-maxwarnings
Specifies the maximum number of warning messages to show.

Syntax

- maxerrors max

max
Specifies the number of warning messages. Common values are:
0 (zero) — Disable maximum count (default).
¢ n—Maximum number of warnings to show.

-msgstyle
Controls the style used to show error and warning messages.

Syntax
-nsgstyl e keyword
The options for keyword are:
gcc

Uses the message style that the Gnu Compiler Collection tools use.
i de

Uses CodeWarrior’s Integrated Development Environment (IDE) message style.
npw

Uses Macintosh Programmer’ s Workshop (MPW®) message style.
par seabl e

Uses context-free machine parseable message style.
std

Uses standard message style. Thisis the default.

CodeWarrior Build Tools Reference for the eTPU 51

Command-Line Options for Diagnhostic Messages

enterprisel DE
Uses Enterprise-IDE message style.

-nofail

Continues processing after getting error messages in earlier files.

Syntax

-nof ai l

-progress

Shows progress and version information.

Syntax
- progress

Disassembles all files and send output to afile. This command is globa and case-
sensitive.

Syntax
-S

-stderr

Uses the standard error stream to report error and warning messages.

Syntax
-stderr

52

CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Diagnhostic Messages

-nostderr

Remarks

The- st der r option specifiesto the compiler, and other tools that it invokes, that
error and warning messages should be sent to the standard error stream.

The- nost der r option specifiesthat error and warning messages should be sent
to the standard output stream.

-verbose

Tells the compiler to provide extra, cumulative information in messages.

Syntax
-v[er bose]

Remarks
This option also gives progress and version information.

-version

Displays version, configuration, and build data.

Syntax

-v[ersion]

-timing

Shows the amount of time that the tool used to perform an action.

Syntax

-timng

CodeWarrior Build Tools Reference for the eTPU 53

Command-Line Options for Diagnhostic Messages

-warnings
Specifies which warning messages the command-line tool issues. This command is global .

Syntax

-w arning] keyword [,...]

The options for keywor d are:

of f
Turns off all warning messages. Passed to al tools. Equivalent to
#pragma war ni ng of f

on
Turns on warning messages. Passed to all tools. Equivalent to
#pragma warni ng on

[no]lcmdl i ne
Passed to al tools.

[nolerr[or] | [no]iserr[or]
Treats warnings as errors. Passed to all tools. Equivaent to
#pragma war ni ng_errors

nost
Turns on most warnings

al |
Turns on amost all warnings and require prototypes

full

Turns on all warning messages and require prototypes. Thisoption islikely to
generate spurious warnings.

NOTE -warnings full should be used before using any other options that affect
warnings. For example, use
-war ni ngs full -warnings noanyptrintconv instead of
-war ni ngs noanyptrintconv -warnings full.

54 CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Diagnhostic Messages

[no] pragmas | [no]ill pragmas

Issues warning messages on invalid pragmas. Enabled when nmost is used.
Equivalent to

#pragma warn_i |l | pragma
[no] enpt y[decl]

Issues warning messages on empty declarations. Enabled when nost isused.
Equivalent to

#pragma war n_enpt ydecl
[no] possible | [no]unwanted

Issues warning messages on possible unwanted effects. Enabled when nost is
used. Equivalent to

#pragma war n_possunwant ed
[no] unusedarg

Issues warning messages on unused arguments. Enabled when nost is used.
Equivalent to

#pragnma war n_unusedar g
[no] unusedvar

I ssues warhing messages on unused variables. Enabled when nost isused.
Equivalent to

#pragma war n_unusedvar
[no] unused
Same as
-w [no] unusedar g, [no] unusedvar
Enabled when nost is used.
[no] extraconma | [no] comra

I ssues warning messages on extra commas in enumerations. The compiler ignores
terminating commasin enumerations when compiling source code that conformsto
the ISO/IEC 9899-1999 (“C99") standard. Enabled when nost isused. Equivalent
to

#pragma war n_extraconma

[no] ext ended_er r or check
Extended error checking. Enabled when nost isused. Equivalent to
#pragma ext ended_errorcheck

CodeWarrior Build Tools Reference for the eTPU 55

Command-Line Options for Diagnhostic Messages

[no] hidevirtual | [no]hidden[virtual]

Issues warning messages on hidden virtual functions. Enabled when nost isused.
Equivalent to

#pragma war n_hi devi r t ual
[no]implicit[conv]

Issues warning messages on implicit arithmetic conversions. Enabled whenal | is
used. Implies

-warn inpl_float2int,inpl_signedunsi gned
[no]inpl _i nt 2f | oat

Issues warning messages on implicit integral to floating conversions. Enabled
whenal | isused. Equivalent to

#pragma warn_i npl _i 2f _conv
[no]inpl _fl oat 2i nt

Issues warning messages on implicit floating to integral conversions. Enabled
whenal | isused. Equivalent to

#pragma war n_i mpl _f 2i _conv
[no] i mpl _si gnedunsi gned

I ssues warning messages on implicit signed/unsigned conversions. Enabled when
al | isused.

[no] notinlined

Issues warning messages for functions declared with thei nl i ne qualifier that are
not inlined. Enabled when f ul | isused. Equivalent to

#pragma war n_noti nlined
[no]l argeargs

I ssues warning messages when passing large arguments to unprototyped functions.
Enabled when nost isused. Equivalent to

#pragma war n_| ar gear gs
[no] structcl ass

Issues warning messages on inconsistent use of ¢l ass and st r uct . Enabled
when nost isused. Equivalent to

#pragma war n_structcl ass
[no] paddi ng

Issue warning messages when padding is added between st r uct members.
Enabled when f ul | isused. Equivalent to

#pragma war n_paddi ng

56

CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Diagnhostic Messages

[no] not used

I ssues warning messages when the result of non-void-returning functions are not
used. Enabled when f ul | isused. Equivalent to

#pragma war n_r esul t not used
[no] m ssingreturn

Issues warning messages when a return without a value in non-void-returning
function occurs. Enabled when nost is used. Equivalent to

#pragma war n_mni ssingreturn
[no] unusedexpr

Issues warning messages when encountering the use of expressions as statements
without side effects. Equivalent to

#pragma war n_no_si de_ef f ect
[no] ptrintconv

Issues warning messages when lossy conversions occur from pointers to integers.
Enabled whenf ul | isused.

[no] anyptri nt conv

Issues warning messages on any conversion of pointersto integers. Enabled when
ful |l isused. Equivalent to

#pragma warn_ptr_int_conv
[no] undef [macr o]

Issues warning messages on the use of undefined macrosin#i f and#el i f
conditionals. Enabled whenf ul | isused. Equivalent to

#pragma war n_undef macr o
[no]fil ecaps

Issues warning messages when #i ncl ude "" directives useincorrect
capitalization. Enabled when nost isused. Equivalent to

#pragma warn_fil enanecaps
[no] sysfil ecaps

Issue warning messages when #i ncl ude <> statements use incorrect
capitalization. Enabled when nost isused. Equivalent to

#pragma war n_fil enamecaps_syst em
[no] t okenpasti ng

Issue warning messages when token is not formed by the## preprocessor operator.
Enabled when nost is used. Equivalent to

#pragma warn_i | I t okenpasti ng

CodeWarrior Build Tools Reference for the eTPU 57

Command-Line Options for Diagnhostic Messages

[no] rel ax_i 2i _conv

Relax implicit arithmetic conversion warnings on certain implicit conversions.
Equivalent to

#pragma rel ax_i 2i _conv
di splay | dunp
Display list of active warnings.

-wraplines
Controls the word wrapping of messages.

Syntax
-wrapl i nes

-now apl i nes

58 CodeWarrior Build Tools Reference for the eTPU

v

Command-Line Options for
Preprocessing

-convertpaths

Instructs the compiler to interpret #i ncl ude file paths specified for aforeign operating
system. This command is global.

Syntax

-[no] convert pat hs

Remarks

The CodeWarrior compiler can interpret file paths from several different operating
systems. Each operating system uses unique characters as path separators. These
separators include:

¢ MacOS® —colon“: " (: sys: stat. h)
+ UNIX —forward slash*/ ” (Sys/ st at . h)
+ Windows® operating systems — backward sash“\ ” (Sys\ st at . h)

When convert pat hs isenabled, the compiler can correctly interpret and use
pathslike<sys/ st at . h>or <: sys: st at . h>. However, when enabled, (/)
and (:) separate directories and cannot be used in filenames.

NOTE Thisisnot aproblem on Windows systems since these characters are aready
disallowed in file names. It is safe to leave this option on.

Whennoconver t pat hs is enabled, the compiler can only interpret paths that
use the Windows form, like<\ sys\ st at . h>.

CodeWarrior Build Tools Reference for the eTPU 59

Command-Line Options for Preprocessing

-cwd

Controls where a search begins for #i ncl ude files.

Syntax
-cwd keyword
The options for keyword are:
explicit
No implicit directory. Search- | or - i r paths.
i ncl ude
Begins searching in directory of referencing file.
proj
Begins searching in current working directory (default).
source

Begins searching in directory that contains the source file.

Remarks

The path represented by keyword is searched before searching access paths defined
for the build target.

-D+

Same asthe - def i ne option.

Syntax
- Dtnane
The parameters are:
narme
The symbol name to define. Symbol isset to 1.

-define

Defines a preprocessor symbol.

60

CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Preprocessing

Syntax

-d[efine] nane[=val ue]
The parameters are:

name

The symbol name to define.
val ue

The value to assign to symbol name. If no value is specified, set symbol value
equal to 1.

Tells the command-line tool to preprocess source files.

Syntax
-E

Remarks
Thisoption is global and case sensitive.

-EP

Tells the command-line tool to preprocess source files that are stripped of #1 i ne
directives.

Syntax
-EP

Remarks
Thisoption is global and case sensitive.

-gccincludes

Controls the compilers use of GCC #i ncl ude semantics.

CodeWarrior Build Tools Reference for the eTPU 61

Command-Line Options for Preprocessing

Syntax
-gccinc[| udes]

Remarks

Use- gcci ncl udes to control the CodeWarrior compiler understanding of Gnu
Compiler Collection (GCC) semantics. When enabled, the semanticsinclude:

e Adds- | - pathstothesystemslistif - | - isnot already specified

¢ Search referencing file' s directory first for #i ncl ude files (same as- cwd
i ncl ude) The compiler and IDE only search access paths, and do not take the
currently #i ncl ude fileinto account.

This command is global.

Changes the build target’ s search order of access paths to start with the system paths list.

Syntax
-1 -

Remarks

The compiler can search #i ncl ude filesin several different ways. Use- | - to set
the search order as follows:

» For include statements of the form #i ncl ude " xyz", the compiler first
searches user paths, then the system paths

* For include statements of the form #i ncl ude <xyz>, the compiler searches
only system paths

This command is global.

Appends a non-recursive access path to the current #i ncl ude list.

Syntax
-l +pat h

62 CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Preprocessing

-i path
The parameters are:
pat h
The non-recursive access path to append.

Remarks
Thiscommand is global and case-sensitive.

-include
Defines the name of the text file or precompiled header file to add to every sourcefile
processed.
Syntax
-include file
file
Name of text file or precompiled header file to prefix to al sourcefiles.
Remarks
With the command line tool, you can add multiple prefix files all of which are
included in a meta-prefix file.
-ir
Appends arecursive access path to the current #i ncl ude list. This command is global.
Syntax
-ir path
pat h
The recursive access path to append.
-P

Preprocesses the source files without generating object code, and send output to file.

CodeWarrior Build Tools Reference for the eTPU 63

Command-Line Options for Preprocessing

Syntax
-P

Remarks

This option is global and case-sensitive.

-precompile

Precompiles a header file from selected source files.

Syntax
-preconpile file| dir | ""
file
If specified, the precompiled header name.
dir

If specified, the directory to store the header file.

If"" isspecified, write header file to location specified in source code. If neither
argument is specified, the header file name is derived from the source file name.
Remarks

The driver determines whether to precompile afile based on its extension. The
option

-preconpile filesource
isequivalent to
-c -o filesource

-preprocess

Preprocesses the source files. This command is global.

Syntax
- preprocess

64

CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Preprocessing

-ppopt
Specifies options affecting the preprocessed output.
Syntax
-ppopt keyword [,...]
The arguments for keyword are:
[no] br eak
Emitsfile and line breaks. This is the default.
[no]line
Controls whether #line directives are emitted or just comments. The default is
I'ine.
[no] ful I [path]
Controls whether full paths are emitted or just the base filename. The default is
full path.
[no] pragnma
Controls whether #pragma directives are kept or stripped. The default ispr agna.
[no] coment
Controls whether comments are kept or stripped.
[no] space
Controls whether whitespace is kept or stripped. The default isspace.
Remarks
The default settingsisbr eak.
-prefix

Adds contents of atext file or precompiled header as a prefix to all sourcefiles.

Syntax
-prefix file

CodeWarrior Build Tools Reference for the eTPU 65

Command-Line Options for Preprocessing

-noprecompile

Do not precompile any source files based upon the filename extension.

Syntax
-nopreconpi |l e

-nosyspath

Performs a search of both the user and system paths, treating #i ncl ude statements of the
form#i ncl ude <xyz>thesameastheform#i ncl ude "xyz".

Syntax

-nosyspath

Remarks

This command is global.

-stdinc

Uses standard system include paths as specified by the environment variable
9YMACI ncl udes%

Syntax
-stdinc
-nostdinc

Remarks
Add this option after all system- | paths.

-U+

Same as the -undefine option.

66

CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Preprocessing

Syntax
- Wnane

-undefine
Undefines the specified symbol name.

Syntax

-u[ndefine] nane
- Utnane

nane

The symbol name to undefine.

Remarks
This option is case-sensitive.

CodeWarrior Build Tools Reference for the eTPU 67

Command-Line Options for Preprocessing

68 CodeWarrior Build Tools Reference for the eTPU

38

Command-Line Options for
Object Code

Instructs the compiler to compile but not invoke the linker to link the object code.

Syntax

-C

Remarks
Thisoption is global.

-codegen

Instructs the compiler to compile without generating object code.

Syntax
- codegen
- nocodegen

Remarks
Thisoption is global.

-enum

Specifies the default size for enumeration types.

CodeWarrior Build Tools Reference for the eTPU 69

Command-Line Options for Object Code

Syntax
-enum keywor d
The arguments for keyword are:
i nt
Usesi nt sizefor enumerated types.

Uses minimum size for enumerated types. Thisis the default.

-min_enum_size

Specifiesthe size, in bytes, of enumerated types.

Syntax
-min_enumsize 1| 2| 4

Remarks

Specifying this option aso invokes the - enum mi n option by default.

-ext

Specifies which file name extension to apply to object files.

Syntax

-ext extension

ext ensi on
The extension to apply to object files. Use these rules to specify the extension:
¢ Limited to amaximum length of 14 characters

« Extensions specified without aleading period replace the source file's
extension. For example, if extensionis“0” (without quotes), then
sour ce. cpp becomessour ce. 0.

« Extensions specified with aleading period (. extension) are appended to the
object files name. For example, if ext ensi onis“. 0” (without quotes), then
sour ce. cpp becomessour ce. cpp. o.

70

CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Object Code

Remarks
Thiscommand is global. The default setting is. o.

-strings
Controls how string literals are stored and used.

Remarks

-str[ings] keyword[, ...]
The keyword arguments are:

[no] pool

All string constants are stored as a single data object so your program needs one
data section for al of them.

[no] reuse

All equivalent string constants are stored as a single data object so your program
can reuse them. Thisis the defaullt.

[no] readonly
Make all string constants read-only. Thisis the defaullt.

CodeWarrior Build Tools Reference for the eTPU 71

Command-Line Options for Object Code

72 CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Optimization

9

Command-Line Options for
Optimization

-inline

Specifiesinline options. Default settingsare snar t , noaut o.

Syntax
-inline keyword
The options for keyword are:
of f | none

Turns off inlining.
on | snmart

Turnson inlining for functions declared with thei nl i ne qualifier. Thisisthe
default.

auto

Attemptsto inline small functions even if they are declared withi nl i ne.
noaut o

Does not auto-inline. Thisis the default auto-inline setting.
deferred

Refrains from inlining until afile has been translated. This alows inlining of
functions in both directions.

| evel =n

Inlines functionsup to n levels deep. Level Oisthesameas- i nl i ne on. For n,
enter 1 to 8 levels. This argument is case-sensitive.

CodeWarrior Build Tools Reference for the eTPU 73

Command-Line Options for Optimization

al |

Turns on aggressive inlining. Thisoptionisthesameas-i nl i ne on,-i nli ne

aut o.

-O
Sets optimization settingsto - opt | evel =2.
Syntax
-0
Remarks
Provided for backwards compatibility.
-O+
Controls optimization settings.
Syntax
-Otkeyword [, ...]
The keyword arguments are:
0
Equivalentto- opt of f.
1
Equivalentto- opt | evel =1.
2
Equivalentto- opt | evel =2.
3
Equivalentto- opt | evel =3.
4
Equivalentto- opt | evel =4,intrinsics.
p
Equivalentto- opt speed.
74 CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Optimization

Equivalentto- opt space.

Remarks
Options can be combined into a single command. Command is case-sensitive.

-opt

Specifies code optimization options to apply to object code.

Remarks
-opt keyword [, ...]
The keyword arguments are:
of f | none
Suppresses all optimizations. Thisis the defaullt.
on
Sameas- opt | evel =2
all | full
Sameas- opt speed, | evel =4,intrinsics, nofranme
| [evel] =num
Sets a specific optimization level. The options for numare:

* 0 —Global register alocation only for temporary values. Equivaent to
#pragma optim zation_|l evel O.

¢ 1 - Addsdead code elimination, branch and arithmetic optimizations,
expression simplification, and peephole optimization. Equivalent to #pr agma
optimzation_|level 1.

¢ 2 —Adds common subexpression elimination, copy and expression propagation,
stack frame compression, stack alignment, and fast floating-point to integer
conversions. Equivalent to: #pr agnma. opti m zati on_| evel 2.

¢ 3 —Addsdead store elimination, live range splitting, loop-invariant code
motion, strength reduction, loop transformations, loop unrolling (with - opt
speed only), loop vectorization, lifetime-based register allocation, and
instruction scheduling. Equivalenttoopt i i zati on_| evel 3.

e 4 —Likelevel 3, but with more comprehensive optimizations from levels 1 and
2. Equivalent to#pragnma optim zation_| evel 4.

CodeWarrior Build Tools Reference for the eTPU 75

Command-Line Options for Optimization

For numoptions 0 through 4 inclusive, the default is 0.
[no] space

Optimizes object codefor size. Equivalent to#pr agnma opti m ze_for_si ze
on.

[no] speed

Optimizes object code for speed. Equivalent to #pr agna
optimze_for_size off.

[no]lcse | [no] commpnsubs

Common subexpression elimination. Equivalent to #pr agma
opt _common_subs.

[no] deadcode
Removes dead code. Equivalent to#pr agma opt _dead_code.
[no] deadst ore

Removes dead assignments. Equivalent to #pr agma
opt _dead_assi gnnent s.

[no]lifetinmes

Computes variable lifetimes. Equivalent to #pr agma opt _| i feti nes.
[no] I cop[i nvari ant s]

Removes loop invariants. Equivalent to #pr agma opt _| oop_i nvari ant s.
[no] prop[agati on]

Propagation of constant and copy assignments. Equivalent to #pr agna
opt _propagati on.

[no]strength

Strength reduction. Reducing multiplication by an array index variable to addition.
Equivalent to#pr agma opt _strengt h_r educti on.

[no] dead

Sameas- opt [no] deadcode and [no] deadst or e. Equivaent to
#pragma opt _dead_code on| of f and #pr agna
opt _dead_assi gnnent s.

[no] peep[hol €]

Peephole optimization. Equivalent to #pr agna peephol e.
[no] schedul e

Performs instruction scheduling.

76

CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for Optimization

di splay | dump
Displays complete list of active optimizations.

CodeWarrior Build Tools Reference for the eTPU

1

Command-Line Options for Optimization

78 CodeWarrior Build Tools Reference for the eTPU

Command-Line Options for eTPU Code Generation

10

Command-Line Options for
eTPU Code Generation

-kif | -keep_intermediate_ files

Keep intermediate files

-lpm

Use linking process model. In this mode, the compiler creates a separate object file for
each compilation unit and the linker links them all together. In the normal mode, all files
are compiled together one after the other. For this reason, in the normal modeit is not
possible to use libraries or any other old object file and link it together with another object
file.

-big_memory_model

Big memory model. Use indirect jumps. Thisis useful when using Ipm and the linker
issues errors, which imply that ajump istoo long.

-not_engine_relative

Do not use engine relative addressing mode in etpu2.

CodeWarrior Build Tools Reference for the eTPU 79

Command-Line Options for eTPU Code Generation

-no_32bit_err

Do not issue an error for 32 bit arithmetic operations.

-warn_data

Warn about stack and static data usage.

-[no]sched

Schedule assembly instructions. Thisis the default.

80 CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
Understanding the e TPU Assembler

11

Working with the Assembler

This chapter explains the Enhanced Time Processing Unit (€TPU) assembler, and shows
you how to use it with assembly source code.

This chapter contains these topics:
¢ Understanding the eTPU Assembler
* Using the Command-L ine Assembler

* Assembly File Layout

« |nstructions and Directives
e €TPU Assembler Preprocessor

Understanding the eTPU Assembler

Using

The eTPU assembler processes assembly-language source statements written for
Freescale's family of communication microcontrollers. The assembler translates source
statements into object files with aformat compatible with other eTPU assembler software
and hardware products.

The assembler processes assembly source files by reading the contents and preprocessing
each line, as described in “eTPU Assembler Preprocessor” on page 97.

The assembler parses each line of code (as described in “*Assembly File Layout” on
page 87) in order to verify correct syntax. It then encodes all recognized instructions and
directives as object code in the specified output layout.

the Command-Line Assembler

This section shows you how to invoke the assembler from the command line, for files
outside of the CodeWarrior development environment.

To run the assembler command-line executable, type the full path to the executable at the
Windows command prompt.

CodeWarrior Build Tools Reference for the eTPU 81

|
y

'
A

Working with the Assembler
Using the Command-Line Assembler

Optionally, you can add the path of the eTPU tools folder to your PATH environment
variable. Then you can simply enter the name of thetool, et pu_bi ns. exe, to run the
assembler.

etpu_bins

etpu_binsisawrapper used for al binary utilities such as assembling and linking.
e Assembler isinvoked with et pu_bins --asm inputFile
e Linkerisinvokedusinget pu_bins --1d inputFile
« Disassembler isinvoked using et pu_bi ns --el fdunp inputFile
e Sizeutility isusedwithet pu_bins --size inputFile

The remaining chapter relates to the assembler tool. The linker behaviour is described in
the next chapter. A singleinput fileisalowed. The-i (pre-include) option can be used
to specify moreinput files.

File Extensions

In case the type of file makes a difference to the toal, the type istaken from thefile's
suffix. Extensions and their meanings are shown in Table 11.1.

Table 11.1 File Extension Meanings

Extensions Type of File

.S, .asm, .uasm, .ucode An assembly source file

.h A C or assembly header file
.c A C source file

.0, .0bj, .eln An EIf relocatable file

.elf, .eld An EIf executable file

.a, .lib A library file

cf A linker command file

.d A makefile dependency file
.map An assembly map text file
.SrX, .srec An S-records file

82

CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
Using the Command-Line Assembler

In order to force one of these types on an arbitrary given input file, the option - ex can be
used with one of the regular extensions known to represent the requested type. For
example, - ex . 0 isused to convince et pu_bi ns that itsinput is an EIf relocatable
object file.

When no output format (- el f or - sr x) isexplicitly selected, asin the example
etpu_bins --asmfile.s,thetool will check syntax validity and no output will be
produced. When the

- sr x switch is added, the created file will have the extension . sr x (not . sr ec).

Command-Line Syntax

The command-line syntax for the assembler is:
etpu_bins --asm [options] inputFile

The assembler does not require special filename extensions for input file names and
ignores the actual filename extension specifed on the command line. Instead, the
assembler uses the base filename to append appropriate extensions when generating the
output file names.

For example, this command line causes the assembler to assemblefi |l e. sintoan S
record filenamedfi | e. srx:

etpu_bins --asm-srx file.s

The assembler normally reports error messagesto st der r, but you can redirect error
messagesto afile by supplyingthe-err fil epat h command-line switch. The
assembler indicates the total number of error messages in the tool exit status.

TIP Todetect and report invalid instruction sequences, use the- | i nt command-line
switch.

Command-Line Switches

All command line switches begin with the dash (-) character. If a switch requires an input
value, you can enter it as a space-delimited argument immediately following the switch.
Alternatively, you can attach the value to the switch name with the equals (=) character.
For example, both of these are valid:

-o outfile
-o=outfile

When the value is optional the argument must use the '=' notation (i.e. - swi t ch=val
andnot- swi t ch val). Each switch name determines whether the following command-
line word will serve asits argument, will be the next switch, or is an input file. For

CodeWarrior Build Tools Reference for the eTPU 83

3
4

'
A

Working with the Assembler
Using the Command-Line Assembler

example, the following command line causes the assembler to assemblef i | e. s into an
S-record file named new_nane. sr ec:

etpu_bins --asm-o0 new nane.srec -srx file.s

The assembler processes its arguments from left to right. For example, the following
command line defines the symbol one, readstheinput filepr e_i nc. s, definesthe
preprocessor macro TWD, then assembles mai n. s:

etpu_bins --asm-d one -i pre_inc.s -D TWO nain.s

NOTE Intheexampleabove, thefilepr e_i nc. s cannot use the preprocessor macro
TWO, since the macro is only defined after the assembler processes
pre_inc.s.

Table 11.2 describes each of the command-line switches the assembler supports.

Table 11.2 Assembler Command-Line Switches

Options Switch Description
General -h Print a short help message and quit
Options
-V Print the version of the et pu_bi ns tool and quit
-f filepath Read more command-line arguments from filepath
-ex ext Treat input as having extension ext
-arch arch Print a list of the supported architectures
Output Options | -o filename Set the output file name to filename
-Srx Create output file in S-Record format with filename extension
.SIX
-elf Create output file in relocatable ELF format with filename
extension . el f
84 CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
Using the Command-Line Assembler

Table 11.2 Assembler Command-Line Switches (continued)

Options

Switch

Description

-map -src [=val]

Create a text file with filename extension . map where each line
shows the address and data generated from the original source

The optional argument, val, is a consecutive string of one or
more of these characters:

* m — expand multi-line macros

¢ a— show addresses

¢ s — show memory address space

¢ j— show include nest levels

¢ n — show source line numbers

« r— show relative address offsets

* g — show debug sections

« w — track source file changes

To specify an explicit map file name use ":<file name>' as last
sub-option (for example -map=w:out_map will name the map
file ‘out_map".

-sym

Create a text file with the . sym filename extension, listing all
global symbols defined in the source code

Debugging
Options

-kl

Where relevant, keep track of local labels defined in source
code

Effective only when -elf is used

generate Dwarf2 debugging sections

Processor
Options

Expand all macros and other preprocessor directives and
operations to stdout — the - o switch can be used to save
results to a file

-D sym=val

Set the value of symbol sym to val as if defined by a source
code directive (#defi ne sym val).

Note: The assembler processes macro-related switches from
left to right on the command line.

-U sym

Clear the value of symbol sym as as if undefined by a source
code directive (#undef sym)

Note: The assembler processes macro-related switches from
left to right on the command line.

CodeWarrior Build Tools Reference for the eTPU 85

y
A

Working with the Assembler
Using the Command-Line Assembler

Table 11.2 Assembler Command-Line Switches (continued)

Options

Switch

Description

-d sym=val

Set the value of assembly symbol sym to val as if defined using
the . equ directive (. equ sym val)

Note: The assembler processes macro-related switches from
left to right on the command line.

-dg sym=val

Set the value of assembly symbol sym to val as if defined using
the . equ directive (. equ sym val), and declare it a global
symbol

Note: The assembler processes macro-related switches from
left to right on the command line.

-| path

Append path to the user path

(see “User and system paths” on page 105)

-IS path

Append path to the system path

(see “User and system paths” on page 105)

-i filepath

Include file filepath in the code before processing any following
argument input files

-is filepath

Include the system file filepath in the code before processing
any following argument input files

-M filepath

Emit Makefile rules for all input files to the file filepath

(Each rule makes its target dependant on all included source
files.)

-MM filepath

Emit Makefile rules for all input files to the file filepath, omitting
any system files

(Each rule makes its target dependant on all included source
files.)

-[no]sys

Treat ‘#i ncl ude <...>" as system files

Error Handling

-err filepath

Redirect error messages to filepath rather than to standard

Options error
-Wall Print extra (more strict) error messages
-Werror Treat warnings as errors
-Wnone Cause warnings not to be issued

86

CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
Assembly File Layout

Table 11.2 Assembler Command-Line Switches (continued)

Options Switch Description
Optimising -sched Schedule Instructions
Options
Miscellaneous -lint Dump a list of detected possible errors to stderr
Options (no object file is created)
-extern Assume all undefined symbols are external
-global Assume all defined symbols are global
Reserved -ide Reserved for IDE invocations
Options

Assembly File Layout

This section explains the assembly source file layout. eTPU assembly language includes
mnemonic operation codes for machine instructions in the microcontroller’ sinstruction
set and provides mnemonic directives for specifying assembler auxiliary actions. It also
explains how to define and use macro instructions with predefined statement sequences,
and how to use conditional assembly code.

Instructions, directives and Packets

The eTPU processes (fetches and executes) 32 bits words. Each word contains one or
more instructions that are all executed in parallel (but see"parallelismissues’ in the eTPU
block guide for exceptions). The set of instructions encoded into or decoded out of asingle
memory word is called 'a packet'.

NOTE Another terminology is using the pair Instruction/Sub-instruction for referring
to Packet/Instruction respectively.

Syntax

Each instruction (or directive) appears in the code as a separate line. To combine severa
instructions into a packet, one can either write the instructions in the same line or surround
them with curly braces ('{", '}"). Inside a packet, instructions are separated by the
semicolon char (';") or optionally (when braced) by the newline char. Eempty linesinside
braced packets are ignored.

For example, if 11 and 12 are instructions, the following are legal packets:

CodeWarrior Build Tools Reference for the eTPU

87

3
4

'
A

Working with the Assembler
Assembly File Layout

e 11
« {1}
e 11;12
{11;12}
{11
12}
* {
11;
12
}

NOTE Directives can not take part in packets.
Labels are not part of packets. they can only precede one.
A singleinstruction can not cross line boundaries (i.e. al of the instruction's
string must reside in the same line).
Comments inside packets should follow the last instruction in their line.

Statement Layout

Programs written in assembly language consist of a sequence of statements, each
occupying one line of text.

TIP You can extend asingle statement to several lines by ending each partial line of
the sequence with the line-continuation symbol, a backwards slash character (\).

NOTE Lines, including extended lines, can span up to a maximum of 512 characters.

Each source statement has the following syntax:
I abel: instruction conment (each field is optional)

Labelsistheleft-most non-blank token, and must follow immediately by a colon character
(:). Labelsare valid symbols (see “ Symbols’ on page 90).

Labels, instructions, mnemonics, directives, attributes, registers, and so on, are al case
sensitive.

Instructions, as well as assembly directives, use the following format:
menoni c[at tri but es] [operands]

88

CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
Assembly File Layout

NOTE Themnemonic field determines the number and format of the attributes and
operands fields.

« Mnemonics are machine instructions and aliases described in the eTPU assembly
manual .

 Attributes are optional extensions to instructions that can control the behavior of the
CPU during execution of agiven instruction. Attributes are concatenated to
instructions by a decimal character (.) and the attribute name, using this syntax:

meunoni c[. attributel]l[.attributeZ] (and so on)

Attributes are divided into groups, each group controlling a specific aspect of behavior.
For instance, the logical and instruction, and has the attribute group: ccsv (wi t h
four menbers .f .f8 .f16 and a default, nanel ess, nmenber).This
group controls the sampling of conditional codes.

NOTE Some attribute groups have default values that you can omit, while others
require an explicit value.

For example:
movei .f a, 1

Thismovei instruction has the attributes that sets appropriate condition flagsin the status
register. The attribute group involved has two attributes the default attribute does not have
an explicit name.

Operands appear in theinstruction portion of acommand asalist separated by the comma
character (,). Operands describe hardware entities such as addresses, registers, sizes, and
so on, that are subject to manipulation by instructions.

Comments begin at the left-most occurrence of two consecutive forward slash characters
(/ 1) and continue until the end of theline.

As described in the eTPU Assembler Manual, the elements you can use in operands are:
* Reqgisters
* Integer Immediate Values

NOTE Exact operand format and usage depend on the related instruction.

Registers

Register names appears in the €TPU assembler manual and are considered reserved
names, which means that these names cannot be used as identifier names for labels or
symbols.

CodeWarrior Build Tools Reference for the eTPU 89

3
4

'
A

Working with the Assembler
Assembly File Layout

Some instructions also mention bit names. Bit values are written as aregister and bit
combination (i.e. register[bitNumber]), or better, when given a specific namein the eTPU
Assembler Manual, as alowercase symbol. To determine exact use, consult the
instruction’ s description.

Integer Immediate Values

Use immediate integer values (in decimal, hexadecimal or binary notation) to describe
absolute and relative addresses and constants that are part of numeric calculations.

In most cases, you can replace an integer constant with a constant arithmetic expression,
using acombination of these operators: +, - , <<, >>,* [, & &&, | ,||,!,~, ==1=<,
<=, >, >=, and parentheses. Priority and interpretation follows the C language standard.
The assembler stores and manipulates integer constants by using 32-bit signed arithmetic.

Symbols

Symbols are placehol ders for integer constants. Y ou can use symbols wherever asingle
integer constant is required. Symbol names cannot contain spaces and can consist of
alpha-numeric characters, the underscore character (_), and the decimal character (.).
Symbol names can be up to 128 characters long.

Some symbol names are reserved for special purposes. Currently these include all names
beginning or ending with the underscore character (_) or decimal character (.), aswell as
all registers and bit names.

Declare and define symbols to assign them value, scope, size and other attributes.

Defining a symbol

Y ou can assign values to symbolsin two ways:

» create alabel — the valueisthe offset of the defined label, relative to the beginning
of the section in which the Iabel definition appears

e usethe‘. equ symbol, value or'.label synbol, value' directives
— thevalueis explicitly specified in the definition

Scope

A symbol's scopeis either local or global. Symbols not otherwise declared are local,
meaning they are defined and used only within the file in which they appear. To usea
symbol outside the filein which it is defined, you must use the. gl obal synbol
directive to declare that symbol as global so it will be visible to codein other files. To
allow code in other files to use the symbol, you must usethe . ext ern synbol
directive to declare the symbol as external.

90

CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
Assembly File Layout

Weak symbols

Weak symbols, defined usingthe. weak synbol directive, aretreated as global by the
assembler, however the linker handles them differently. When the linker resolves an
external symbol, the linker attempts to use the (single) global definition for that symbal. If
no such definition exists, the linker uses the first corresponding weak symbol definition it
encountersin one of the linked files.

Scope rules

All . gl obal declarations take precedence over . weak declarations. Both . gl obal
and . weak declarations take precedence over . ext er n declarations. To avoid link
errors, you must declare symbols used and not defined in afile as external.

NOTE Theassembler must be able to fully resolve symbols before you can use them
inthe definition of an. equ symbol, val ue directive or symbols
influencing the address location of the generated code (see “ Data Storage” on
page 93).

Strings

A string isa sequence of characters enclosed in double quotes (*). Characters preceded by
the backslash character (\) have specia meaning, as shown in Table 11.3.

Table 11.3 Special Characters In Strings

Special Characters Expands To
\b backspace

\n new line

\r return

\t tab

\’ double quote

CodeWarrior Build Tools Reference for the eTPU 91

'
A

Working with the Assembler
Instructions and Directives

Table 11.3 Special Characters In Strings (continued)

Special Characters Expands To

\\ backslash
\xnn hexadecimal equivalent — For example, \ x6B expands to
the letter k.

Note: Hexadecimal strings required by the . hexa directive
do not require the \ x prefix. Instead, the . hexa string is a
sequence of two-digit hexadecimal values, each digit
represented by one ASCII character. For example, . hexa
“4869" stores two bytes: 72, and 105.

Instructions and Directives

The assembler does not trandlate directives directly into machine-language instructions.
Instead, directives allow you to control issues such as memory layout (addresses for
storing data, data contents, data alignment), symbol manipulation, structural grouping of
statements, and so on.

Directives begin with the decimal character (.) and feature syntax similar to that of
instructions. A label preceding adirective is not considered part of the directive.

Memory Spaces and Sections

A section is a continuous memory block. Sections are basic logical units you can use to
organize code and data into groups, controlling size, content and starting point of each
group or section. At loading time, the content of the user-defined logical sections and
possible system-added extra sections are loaded into actual memory segments.

eTPU architecture has two types of memory space and each |oadabl e section belongsto
exactly one of them. Defining code or data from outside a section is not alowed:

» Code Space (denoted c) isintended for instruction storage. It features a32-bit access
width, within which the 32 bitsinstructions are stored (aligned to 4 bytes addresses).
The address range for this spaceis 24 hits.

« Data Space (denoted d) is used to load and store data. It aso has an access width of
8 bits and an address range of 24 bits.

NOTE Debug and other unloadable sections do not relate to a physical memory space
and have an imaginary access width of 8 hits.

Use of the term address should be understood as a shortcut to the full address. The latter is
space: addr inwhich addr istheinteger location for the word to be found in the

92

CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
Instructions and Directives

space memory space. For example: ' nop at c: 57" istheinstruction NOP located at
address 57 in the code memory space. In most cases, however, there is no need for a space
reference asit is uniquely inferred by the instruction. The only time space names are
explicitly mentioned is when a memory spaceis assigned to a section using the . or g
address orthe. secti on sec directive.

Sections can be either relative or absolute. Relative sections are declared by name and
space (using the. sect i on sec directive) and are assigned an address during the
linking stage. Section names are symbols. When the memory space is omitted, the section
is considered a code section. Some predefined specia sections (as well as absolute
sections, defined below) used by the EIf and Dwarf2 binary formats have names that begin
with thedot character (' . '). Asan exception, these sections might also be pre-assigned to
a space (for example, the . dat a section will be loaded as data).

Absolute sections are declared using the. or g addr ess directive. They are nameless -
the name is automatically built from space and address characteristics - but must have a
known memory space and address. When the memory space is omitted it is assumed to be
the code space. . or g sections can not be repeated, however - other address overlaps
between absol ute sections will be checked and flagged by the linker tool.

Upon meeting arelative section directive, the following content is added (without
alignment) at the end of the section portion generated so far.

. or g sections, on the other hand, can not be repeated. The. pr evi ous directive can be
used to switch back and forth between any two sections. Address overlaps between all
sections will be checked and flagged by the linker tool.

Data Storage

Each code statement stores 4 bytesinto memory. Data can be stored in different sizes and
ways.

In general, code and data statements are stored in the memory sequentially, following their
order in the text. At any given moment, the storing address is termed the current location
(see “The Current L ocation” on page 96) and is relative to the beginning of the current
section within which the next statement (code or data) will be stored. The current location
can be changed as shown in Table 11.4.

CodeWarrior Build Tools Reference for the eTPU 93

y
A

Working with the Assembler
Instructions and Directives

Table 11.4 Data Storage Directives

Directive

Action

.section sec

Associates the following code and data with section sec.

See “Memory Spaces and Sections” on page 92 for more
information.

.org address

Store the following code and data at the resolved address. This
statement begins a new section.

.previous Revert to the previous section (allows you to toggle between
.section and .org sections).
.endsec End the current section and returns to the previous section on

the stack.

.word integer

Starting at the current location, stores the numeric word integer
(in big endian).

The word’s default size is the current section’s natural word
width (in bytes), but can be explicitly stated using the .b1, .b2,
and .b4 attributes. The storage location is aligned according to
word size by default. You can use the attribute .n to skip
alignment.

leb 128

Store a 32-bit integer in LEB128 format (for use in DWARF
objects, for instance).

Size can vary from one to four bytes. Use attributes .s and .u to
store signed and unsigned integers (the default is unsigned).

.hexa string

Starting at the current location, stores the hexadecimal bytes
string.

For example, . hexa “65FF” stores two bytes: 101, and 255.

.ascii string

Starting at the current location, stores the ASCII bytes in string.

.asciz string

Starting at the current location, stores the ASCII bytes in string,
and append a zero byte to the end.

94

CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
Instructions and Directives

Table 11.4 Data Storage Directives (continued)

Directive Action

.skip integer Increment the current location integer bytes.

The number of bytes incremented is integer times the current
section’s natural word width (in bytes). You can explicitly
specify the number of bytes by using the .b1, .b2, and .b4
attributes. Skipped bytes are filled with zero in the data space,
and with OxFF in the code space.

.align integer Advance the current location (with padding) as required to be
aligned on a word address boundary set by 2”integer (where
integer has a range of 1 through 16). You can use the .b1, .b2,
and .b4 attributes to specify other word sizes

NOTE The. al i gn directive will aign the current location with respect to the base
of the current compilation unit only. If the object is linked with other objects,
effective alignment will depend on the linker’ s configuration.

Symbol Directives

During execution all symbols are stored in asingle table, the symbol table. Symbols must
be defined exactly once by placing them as labels, giving explicit values, using the . equ
and . def directives, or declaring them external through use of the. ext er n directive.

Table 11.5 Symbol Directives

Directive Description

.equ symbol, value Define symbol as an absolute symbol, and
set its value to value. value must be a
constant expression (all referenced symbols
must be resolved).

.global symbol Declare symbol as a global symbol whose
value is available to other modules outside
the current compilation unit. symbol must be
defined in the same compilation unit.

CodeWarrior Build Tools Reference for the eTPU 95

'
A

Working with the Assembler
Instructions and Directives

Table 11.5 Symbol Directives (continued)

Directive Description

.extern symbol Declare symbol as a symbol defined outside
the current compilation unit, whose value is
available in the current compilation unit.

.weak symbol Declare symbol as a global weak symbol.

The Current Location

The current location, explicitly referenced by the predefine symbol ' . ' , continuously
points to the address of instruction or data storage. Current location units reflect those of
the actual memory section (usually one or four bytes) wherein they will be located. For
absol ute sections, the location is the actual address. For relative sections, the location is
calculated as though the section begins at address zero.

Example:
jmp. +3
The above example transfers control to the third instruction appearing after the current one

.

CAUTION Explicit use of the current location symbol is not considered safe.

Change of Flow

Some instructions contain direct jumps to other pointsin the code. The target of the jump
can be specified as any lega expression. However, to create code that is less proneto error
and easier to maintain, it is better to make this expression alabel. When using the option
-\l |, etpu_binswill warn if this convention is violated, asillustrated in Listing 11.1.

Listing 11.1 Using Labels in Code

.extern There
.equ Here, 0x7686

Start:
j mp 0x3075 ; Warning - a constant
jmp Start ;o K
jmp Start+5 ; WArning - an expression
jmp There ; OK (assunming a | abel)
jmp Here ; Warning (a synbol that is not a |abel)
jmp . ; Warning (a synbol that is not a |abel)
96 CodeWatrrior Build Tools Reference for the eTPU

Working with the Assembler
eTPU Assembler Preprocessor

Code Checking

During code analysis, aswhen the- | i nt option is used, you can assume that:
« Every instruction and label defined in the code is reachable.

« Instructions without alabel at their address are reached only after following the
previousinstruction. This, inturn, is assumed to originate from the previous address.

¢ For every instruction, its following instruction must also be known (this does not
include indirect and scheduler related change of flow instructions).

Deviations from the last convention are flagged as ill-formed code and may cause the tool
torgect input, asshownin Listing 11.2.

Listing 11.2 Deviations from Convention in Code

Start:
nop

nove rl,rl2 ; can only be executed after the nop
Loop_prefix:
.align 4 : Invalid - current instruction is not known

Loop:
addi

r4,1

.word 0x187983 ; Invalid - code flow interrupted by data

sub. f

r2,r2,r3

jmp.n zero, Loop

nop

: Invalid - what next?

eTPU Assembler Preprocessor

The etpu_bins preprocessor enables macro definitions, conditional assembling, and multi-
level fileinclusion. These are achieved through preprocessor directives and operations.
Preprocessor directives features lines with specia syntax that are recognized and
processed (by the preprocessor) based on their meaning. All directives are placed at the
beginning of the line and start with the pound character (#). With 'operations, the
directives are placed inside lines and are replaced accordingly by the preprocessor.

All objects handled by the preprocessors are sequences of characters called 'tokens.
Tokens types can be numbers, symbals, attributes, strings and operators. Consequently,
the arguments for some preprocessor directives and operations might be limited to specific
types (e.g. the #i ncl ude’ directive expects its argument to be a single string) or behave
according to the type of the argument (e.g. the '%st r (X) ' operation tests for asingle
string token).

CodeWarrior Build Tools Reference for the eTPU 97

3
4

'
A

Working with the Assembler
eTPU Assembler Preprocessor

Operators, however, may require a specific kind or number of tokens as operands.
Operations experiencing bad input will either evaluate to the zero token (the %st r (X)
operation tests its argument as a single-string token) or will create an error (the

#i ncl ude directive expectsits argument to be a single string).

Preprocessor Macros

Macros, regular and multi-lined, enable the definition and use of named segments of text.
A macro invocation isalso named 'acall'. It is necessary to define macrosin the code prior
to invocation. Code expansion is done during the call (and not while preprocessing the
definition).

Regular (Single-Line) Macros
A single-line macro is defined on asingle line of code using the #def i ne directive:
#defi ne macroName[optional Args] definition

* macr oNane is acase-sensitive, valid identifier.

e optional Args isan optiona comma-separated list of uniqueidentifiers enclosed
by parentheses. When a macro has arguments, parentheses must immediately follow
the name - no white space is allowed.

e defini tionisanarbitrary combination of tokens intended to replace the call.
For example:
#def i ne START_OF _FUNC O0x1b3f

This example defines START_OF_FUNC as a macro with no arguments. The assembl er
replaces the identifier START_OF_FUNC with the number Ox1b3f wherever the
identifier appearsin the code.

To substitute the value of an argument within a definition, the argument’'s name must be
placed in the substituting code. For example:

#defi ne paran{of fset,word_size) offset + 4 * word_si ze

This example code replaces the call par an(MY_START, 11) with MY_START + 4
* 11,

NOTE Thetoken sequence4 * 11 doesnot evaluate to 44 at compiletime. To
evaluate an expression at compiletime, use %eval : expressi on
eval uati on.

98

CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
eTPU Assembler Preprocessor

TIP If you define macros with numerical calculations, we recommend that you enclose
each argument occurrence (or even the entire definition) with parentheses. Doing
so prevents unwanted side effects during evaluation.

For instance, the previous example definition would be better defined as:

#define paran{offset,word_size) ((offset) + 4 *
(word_si ze))

It is possible to nest macros by defining them inside of other macros. Macro expansion
normally occurs during invocation and not during compilation (you can use the

#xdef i ne directive to expand macros during compilation instead). For example, in the
following two lines, the assembler expands the BBB macroto 100 + 200 regardless of
the order of definition.

#defi ne AAA 100
#defi ne BBB AAA + 200

Circular definitions are allowed, but invocation of the macro will stop after one level of
expansion. For example, the following example code expands the next (10) only once
tonext (10) + 1.

#define next(a) next(a) + 1
next (10)

NOTE All macro definitions have a signature (name and parity). Therefore, the
assembler does not generate error messages for calls to macros with the same
namethat have a different number of arguments; instead, the assembler silently
ignores them (no expansion occurs).

Macro names are not assembly symbols. During assembly, the assembler does
not assign macros numeric values. When preprocessing is complete, all macros
have been expanded, and their corresponding names cease to exist.

Multi-line Macros

A multi-line macro includes all code lines between a#nacr o and the closest following
#endmdirective. To invoke a multi-line macro, the macro name must be the first, or left-
most, token in the line of code (the name can be prefixed by alabel and white space).
Multi-line macro arguments are similar to those for single line macros, except that the
former are defined and used without parentheses. Multi-line macros cannot be defined
within macros of the same type.

CodeWarrior Build Tools Reference for the eTPU 929

y
A

Working with the Assembler
eTPU Assembler Preprocessor

For example, the code in Listing 11.3 definesamacro that, given aregister (R), creates the
vaue3 * R + 2 andstoresthat valueinregister a. A possible invocation of this macro
isdo_it p.

Listing 11.3 Multi-line Macro Example

#macro do_it R
nove a, R
add a,a, R
add a, a, R

addi
#endm

a, 2

NOTE Theassembler does not perform type or semantic checking on the arguments.
Consequently the macro can be invoked, for example, with theargumenta +
4, which would result in the expansion of invalid code. Passing R1 as an
argument results in the calculation, with unexpected results, of 4 * a + 2.

Local Labels inside a Macro

When labels are defined or used inside a macro it follows that all macro invocations will
use that name. This may be problematic (and, in fact, invalid) aslabels are not singly
defined. To declare and use labels local to macros, the label name should be prepended
with\ @ For example, the following code causes the assembler to interpret the label
next intheepi | og macro differently each timeit is invoked:

#macro epil og
jmp.n zero, next\ @
next\ @

#endm

The mechanism implementing this behavior replaces these labels with new ones that use
an integer counter beginning with zero and incremented on each call.

Default values for Macros

Both types of macros accept default values for their parameters. Default values can be set
to the last parameters by using the equal character (=). The value assigned is the following
sequence of tokens ending at the first comma met. For the last parameter, default value
ends at the closing right parenthesis (in single-line macros) or at the end of theline (in
multi-line macros), as shown in Listing 11.4.

100

CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
eTPU Assembler Preprocessor

Listing 11.4 Appropriate Macro Ending

#macro ADD R, A =2, B=3
nmovei R, A+ B

#endm

ADD a, 34
ADD a, 78, 98
ADD a

The macroin Listing 11.4 expands to the code in Listing 11.5.

Listing 11.5 Macro Expansion

novei a, 34 + 3
novei a, 78 + 98
novei a, 2 + 3

TIP Theactua number of arguments passed in acall can be obtained using 9.

Macro-Related Directives
See Table 11.6 for macro-related directives.

Table 11.6 Macro-Related Directives

Directive Explanation

#assign Allows you to quickly delete and redefine the
value of a single-line macro with no
parameters.

#define Defines a single-line macro as explained in

“Regular (Single-Line) Macros” on page 98.
Single-line macros can be declared inside
multi-line macros.

#endm Ends a macro definition.

CodeWarrior Build Tools Reference for the eTPU 101

y
A

Working with the Assembler
eTPU Assembler Preprocessor

Table 11.6 Macro-Related Directives (continued)

Directive

Explanation

#macro

Begins the definition of a multi-line macro. As
macro names can override special
identifiers, you can create macros that
replace ordinary instructions. Single- and
multi-lined macros share the same name
space; so only one macro type can exist for
an identifier.

#rmdef

Deletes all user macro definitions. Effect the
same as using the #undef directive on all
existing user macros.

#undef

Use this directive to reverse the effect of a
#def i ne, #xdefi ne, or #macr o directive,
cancelling any definitions made for an
identifier. For example, #undef XYZ causes
the assembler not to expand further
references to the term XYZ.

#xdefine

Similar to the #def i ne directive, except that
the assembler does not postpone definition
expansion until the macro is invoked.
Instead, the assembler expands the
definition at compile time.

The#assi gn directive

#assi gn <nane> <nuneric expressi on>
first deletes the macro and then redefinesit asif defined using
#xdefi ne <nane> %val (<nuneric expressi on>)

An example of thisisshown in Listing 11.6.

Listing 11.6 Using the #assign Directive

#define
#assign
#assign
#assign

XXX 1
XXX 2

XXX XXX + 1
XXX YYY ; invalid

Thefirst three lines above will assign macro XXX thevalues 1, 2, and 3 respectively. The
last lineisinvalid since the defining expression is not a numeric constant.

102

CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
eTPU Assembler Preprocessor

Conditional Assembly

The assembler can assemble code portions in order to fulfill conditions set by the user
conditions defined with clausal directives similar tothei f statement of the C program, as
shownin Listing 11.7.

Listing 11.7 Assembler Directives

#if {conditionl}
/1 this code is processed only if conditionl is true
#elif {condition2}
/1 this code is processed if conditionl is false and
/1 condition2 is true
#el se
/1 this code is processed if both conditions are fal se
#endi f

NOTE The#el se and#el i f clausesareoptiona. You can use severd #el i f
clausesin succession. You can also nest #i f conditions.

Another illustration of conditional assembly is Listing 11.8.

Listing 11.8 Conditional Assembly

#i f 9%defi ned(| NTERRUPTS_LEVEL)
nop
#if | NTERRUPTS LEVEL < 3
or.f a,d,a
#endi f
#el se
ori.f a,d, TRNR
#endi f

#if
The#i f directive, defined as#i f expr, resultsin the processing of code only if the
numeric expression expr is evaluated to an integer other than zero. All expression

elements must be known at the preprocessing point when expressions are met, or error
messages occur.

The condition of the#i f clauseis preprocessed before evaluation. Thereforeit is possible
to use preprocessor macros and operators as parts of the expression.

CodeWarrior Build Tools Reference for the eTPU 103

3
4

y
A

Working with the Assembler
eTPU Assembler Preprocessor

#ifdef

The#i f def directive, defined as#i f def nacr o, resultsin the processing of code
only if the macr o has been defined by the #def i ne directive.

#ifndef

The#i f ndef directive, defined as#i f ndef nacr o, resultsin the processing of code
only if the macr o hasnot been defined by the#def i ne directive.

#elif

The#el i f directive, similar to#i f , must follow an#i f or #el i f directive. This
offers another expression to test in case the previous conditions failed.

#else

The#el se directive resultsin the processing of following code lines, in the instance that
all conditions defined by the el se' scorresponding #i f and #el i f havefailed.

#endif

Every #i f directive must end with amatching #endi f directive. A file shouldn't end
unless its active condition has been concluded.

#abort

The#abor t directive aborts preprocessor operations (also responsible for reading the
input). Assembling will continue only on the lines produced thus far.

#quit
The#qui t directive terminates overall assembling and, with an exit status of 1, returns
control to the user.

#error and #warn

The#er r or directive prints an error message to standard error as specified in its string
operand.

Likewise, #war n directives produce a warning message.

104

CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
eTPU Assembler Preprocessor

NOTE Any non-string arguments to these directives are subject to macro expansion,
thereby allowing messages containing previously calculated values or texts.

#rem

Like comments, #r emdirective lines are simply discarded by the preprocessor.

Including Files

The#i ncl ude fi/ e directiveresultsin the inclusion of the named source filein the
code. File names need to be quoted as described below. On all operating systems the slash
character (/) is used to separate directories and file names.

User and system files

The assembler makes a distinction between user and system files:
e User file names are double quoted (“ user _fil e”).

¢ Systemfilesareregular text files that are part of the tool distribution. Thefiles are
identified by name and, you are not concerned about their exact location. System
files are enclosed by angled bracketsinstead of double quotes (<syst em fi | e>).

#include

Thedirective#i ncl ude di rect ory isused to begin processing anew file. After
completing that file (and all files recursively related) the next line of the current file will
be read.

User and system paths

Search for user filesin the directory listswithin a user path list. When code is executed,
thislist contains the current directory and the directory from which the tool was invoked.
Thisisthen extended to contain new items from each ' #i ncl ude' directive met, and
the new file€'s directory is added to the user path.

Searches are retroactive — when files with the same name reside in the path, then thefile
chosen for inclusion is taken from the path's most recently added directory, unless the
file's absolute name is provided. Y ou can explicitly add more directories to the path from
within the code by using #pat h di r ect or y or acommand line option. All path
additions made by a file during its processing are deleted upon file completion. System
files are similarly searched in the 'system path'. The path begins from the directory
containing the etpu_bins tool.

CodeWarrior Build Tools Reference for the eTPU 105

y
A

Working with the Assembler
eTPU Assembler Preprocessor

Y ou are responsible for avoiding repeated inclusion of files. This can be achieved by
defining a distinct macro in the included file and testing for its definition.

Example: the following code can be used to prevent multiple inclusion of thefile
'f 00. def "

#i f ndef (FOO_DEF)

#def i ne FOO_DEF
actual content of file 'foo.def'

#endif // FOO_DEF //

#path

Thedirective' #path {di rectory}' addsdirectoriesto theinclude search path.
Enclose the directory name in double quotes. To add a directory to the system path,
enclose the directory name in angled brackets.

NOTE Asthisdirective seriously limits portability of source code, its useis not
generally recommended. It isusually preferable to update the path using the
IDE or from the command line.

Preprocessor Operations

Most operations begin with the modulo character (" %). Thissection lists all preprocessor
directives and operators. Nested operator behavior, however, is not defined.

%defined

The' %def i ned' operator checks the definition of single-line macros: %defined
(MACRO) will evaluate to true (the integer one) if asingle-line macro called ' MACRO'
exists, otherwise it will evaluate to zero. To test whether or not a macro has been defined,
the result of the above noted operation can be negated (e.g., ' #i f

I %def i ned(MACRO) ').

when testing definition of a single macro inside an #if condition, the shorter notation
(#ifdef / #ifndef) is preferred

% mac

The' %rac' operator checks for the existence of multi-line macros.

106

CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
eTPU Assembler Preprocessor

%id, %int, %attr, %reg and %str

The condition operators, % d, % nt, %ttr, % eg and %tr, testtheirsingle
token argument (normally an argument passed to a macro) in order to verify belonging to
acertain type. The operators perform as follows:

¢ % d testsfor identifiers

e 9% nt testsfor integers

e %t tr testsfor attributes
e O eg testsfor registers
e OUstr testsfor strings.

%streq

The' %t r eq’ operator compares the content of two strings.

%len

The' % en' operator evaluates the length (number of characters) of a string argument.
Example:

% en("abcd") // evaluates to 4

%eval

The' %eval ' operator reads and evaluates an integer expression. The expression is
replaced by the result token.

#

The' #' operator isused inside single line macros to convert macro argumentsinto
strings. During expansion every macro argument preceded by the character ' #' is
replaced (including the operator token) with the string constant token. The latter isformed
from the literd text of the argument.

#t

During macro expansion the' ##' operator is used inside single line macros to paste
tokens. Upon expansion the token pairs found on either side of each ' ##' operator (and
the operator itself), are replaced by a single token. The single token is a concatenation of a
replaced token pair. This operation will be performed only if one of the input tokensisa
macro argument and the result of the combination isavalid token.

CodeWarrior Build Tools Reference for the eTPU 107

3
4

y
A

Working with the Assembler
eTPU Assembler Preprocessor

%6#()

This operator will freeze itsresult, i.e., during subsegquent preprocessor activity the result
will not be further expanded automatically. Before doing so it might also do the
following:

. for one argument that is a string, the string will be broken into individua tokens.

. for more than one argument, the comma separated list of arguments will be
concatenated "asis" into asingle identifier token.

Yott()

Works like %#, but expands its arguments first.

%*()

Turns all tokens of its single argument non-frozen.

%**()
Same as %*, but expands its argument first

These operators can be used to create sophisticated macros, as demonstrated in the Dwarf2
header that comes with the standard distribution. However, as they tend to make the code
harder to follow, use should be considered with care.

Predefined Macros

The assembler defines a set of macros available for use.

__VERSION_NUM__

This macro expands to six digits hexadecimal integer 0xJJNNCC where JJ, NN and CC
are, respectively, the major, minor, and micro version numbers.

__VERSION_

This macro expands to a string containing the current version number.

108

CodeWarrior Build Tools Reference for the eTPU

Working with the Assembler
eTPU Assembler Preprocessor

__FILE__

This macro expands to a string and features the original file name (asit appearsin the
command line or theincluding' #i ncl ude' directive) within which it appears.

__ABS FILE__

Thismacro expandsto a string and features the absol ute path to the file name (asit appears
in the command line or the including ' #i ncl ude' directive) within which it appears.

__LINE__

This macro expands to the current number of source lines.

__DATE__

This macro expands to a string containing the current date.

__TIME__

This macro expands to a string containing the current time.

CodeWarrior Build Tools Reference for the eTPU 109

A 4
4\

Working with the Assembler
eTPU Assembler Preprocessor

110 CodeWarrior Build Tools Reference for the eTPU

Working with the ELF Linker
Invocation and Command Line Switches

12
Working with the ELF Linker

This chapter documents the CodeWarrior Executable and Linkable Format (ELF) Linker.
The linker is acommand line tool used to join relocatable ELF object files into an
executable ELF file. The linker accepts the names of object and library files as arguments
and produces its result by arranging their content according to directives and templates
that residein aLinker Command File. Most aspects of the linking process are described in
the LCF file, and some can be controlled by using command line arguments (for
contradicting options - the command line ones take precedence over the LCF).

The ELF Linker has several extended functions that allow you to manipulate code in
different ways. Y ou can define variables during linking, control the link order to the
granularity of asingle section, and change the alignment.

Y ou access these functions through commands in the linker command file (LCF). The
linker command file has its own syntax complete with keywords, directives, and
expressions, that you use to manipulate the linker. The command file syntax and structure
issimilar to that of a programming language, and is described in these sections:

* |nvocation and Command L ine Switches — describes the command line switches

« Structure of Linker Command Files—describes command file organization
e Linker Command File Syntax—shows how to direct the linker for specific tasks

 Alphabetical Keyword Listing—an alphabetical listing of LCF functions and
commands

¢ Code and Data Sections—shows how to determine to which memory space a section
loads

Invocation and Command Line Switches

This section shows the command line switches that linker supports.
Following is the syntax for linker usage:

etpu_bins --1d <linker argunments>

Table 12.1 describes each of the command line switches that linker supports.

CodeWarrior Build Tools Reference for the eTPU 111

y
A

Working with the ELF Linker
Invocation and Command Line Switches

Table 12.1 Linker Command Line Switches

Options Switch Description
General -h -help Display usage message
Options

-V -version Display version number

-err <file> Log errors to file

-0 -out <file> Specify output file name

-f <file> Read more arguments from a file

-arch <string> Choose architecture

Linking -Icf -script <file> Use a linker command file (a file with suffix .Icf is also
Options considered as the LCF file)

-xlcf Do not warn when using internal Icf (by default, in case no LCF
file is given, the linker issues a warning and uses a trivial LCF
template)

-e -m -main Set main entry point (this is the address execution will start

<sym> from)

-L <dir> Add <dir> to library search path

-| <file> Link library lib<file>.<ext> or <file>

-open_libs Consider all libs unconditionally

-d Perform sections dead stripping

-[no]links_abs Link all absolute ('.org’) sections

-zerobbs Expand and zero-initialize .bss data section

-T <mem=addr> Set segment <mem> start address to <addr>

Debug Options -g Keep debug information

-log <string> Log link closure to file

-map Generate link map file

-[no]check Check objects compatibility (recommended)

-t -trace Print name of input files upon processes

112 CodeWarrior Build Tools Reference for the eTPU

Working with the ELF Linker
Structure of Linker Command Files

Table 12.1 Linker Command Line Switches

Options Switch Description
-y -trace_sym Show all occurrences of symbol in objects
<string>

[noJcheck_segm
ents

Check segments address overlapping

-mseg

Use segments names for output sections

Structure of Linker Command Files

Linker command files consist of the following three main segments that should appear in

this order in each file:

¢ Mandatory—Memory Segment—maps memory segments
» Mandatory—Sections Segment—defines segment contents
¢ Optiona—Closure Blocks—forces functionsinto closure

Memory Segment

The memory segment divides available memory into segments. “MEMORY” on page 122
explains this segment type. Listing 12.1 shows an example MEMORY segment.

CodeWarrior Build Tools Reference for the eTPU 113

y
A

Working with the ELF Linker
Structure of Linker Command Files

Listing 12.1 Example MEMORY Segment

MEMORY {
segment_1 (RWK): ORI GIN = 0x800000, LENGTH = 0x190
segment_2 (RX): ORIG N = 0x801000, LENGTH = 0x19000

The (RAK) portion specifies these ELF flags:
¢ R—read
e W— write
e X — executable code

ORI G Nrepresents the memory segment’ s start address. The address may also denote the
relevant memory space (¢:0x800000), if the memory space is omitted, then the memory
space is determined according to the ELF flags.

LENGTH represents the memory segment’s size.

TIP If you cannot predict how much space a segment requires, you can use the
function AFTER and LENGTH = 0 (unlimited length) to have the linker
automaticaly fill in the unknown values.

Sections Segment

The sections segment defines the contents of memory segments and defines global
symbols used in the output file. “SECTIONS” on page 124 explains this segment type.
Listing 12.2 shows an example SECTI ONS segment.

Listing 12.2 Example SECTIONS Segment

SECTI ONS {
.section_nane : //the section nanme is for your reference
//the section nane nust begin with a '
filename.o (.text) //put the .text section fromfilenane.o
filename2.0 (.text) //then the .text section fromfilenane2.o
= ALI GN (0x10); /lalign next section on 16-byte boundary.

} > segnent _1 //this means "map these contents to
segnment _1"
. next _section_nane:
{
(nore content descriptions)
} > segnent _x /1 end of .next_section_nane
definition} /1 end of the sections block

114 CodeWarrior Build Tools Reference for the eTPU

Working with the ELF Linker
Linker Command File Syntax

Closure Blocks

The linker can automatically remove unused code and data (see “Dead Strip Prevention”
on page 117). Sometimes, however, certain symbols must be kept in output files, even if
code does not directly reference those symbols. For example, interrupt handlers are
usualy linked at special addresses without any explicit jumps to transfer control to these
addresses.

Closure blocks allow you to prevent the linker from dead stripping specified symbols. The
closure is transitive — all symbols referenced by the closed symbol are also forced into
closure.

There are two types of closure blocks:
¢ Symbol-Level Closure Blocks
¢ Section-Level Closure Blocks

Symbol-Level Closure Blocks

Use FORCE_ACTI VE when you want to include a symbol in the link that would not be
otherwise included. For example:

FORCE_ACTI VE { break_handl er, interrupt_handl er, ny_function}

Section-Level Closure Blocks

Use KEEP_SECTI ONwhen you want to keep a section (usually a user-defined section) in
thelink. For example:

KEEP_SECTION {.interruptl, .interrupt2}

A variant isREF_| NCLUDE. It keeps a section in the link, but only if the file from which
the section comesiis referenced. Thisis very useful for including version numbers. For
example:

REF_| NCLUDE {. versi on}

Linker Command File Syntax

This section describes some practical ways in which you can use the commands of the
linker command file to perform common tasks.

Thetopicsin this section are:
¢ Alignment
* Arithmetic Operations

 Comments

CodeWarrior Build Tools Reference for the eTPU 115

y
A

Working with the ELF Linker
Linker Command File Syntax

¢ Dead Strip Prevention

« Expressions, Variables and Integral Types
 File Selection

¢ Writing Data to Memory

Alignment

Use the ALI GN command to align data on a specific byte-boundary. For example, the
following fragment uses ALI GN to increment the location counter to the next 16-byte
boundary. Listing 12.3 shows an example of using the AL GN command.

Listing 12.3 Example ALIGN Command

file.o (.text)
ALI GN (0x10);
file.o (.data) // this is aligned on a 16-byte boundary

For more information, read “ALIGN” on page 121.

Arithmetic Operations

Y ou can use standard C arithmetic and logical operations when you define and use
symbolsin linker command files. Table 12.2 shows the order of precedence for each
operator. All operators are | eft-associative. To learn more about C operators, refer tothe C
Compiler.

Table 12.2 Arithmetic Operators

Precedence Operators

1 (highest) - 7

2 * 1 %

3 + -

4 >> <<

5 = I= > < <= >=
6 &

7 I

116 CodeWarrior Build Tools Reference for the eTPU

Working with the ELF Linker
Linker Command File Syntax

Table 12.2 Arithmetic Operators

Precedence Operators

8 &&

9 (lowest) |
Comments

Y ou can add comments to your file by using the C++ style double dash characters (/ /),
C-style slash and asterisks (/ *, */). The linker ignores comments. For example, the

comments shown in Listing 12.4 are valid comments.

Listing 12.4 Example Comments

/* This is a
mul tiline conmrent */
* (.text) // This is a partial-line coment

Y ou can also place commentsin a special section,. comrent .

.comment _section :

*(. comrent)
} > .coment

Dead Strip Prevention

Linkers remove unused code and data from the output file in a process known as dead
stripping. To prevent the linker from stripping unreferenced code and data, use the
FORCE_ACTI VE, KEEP_SECTI ON, and REF_| NCLUDE directives. Details about these
directives can be found in “FORCE_ACTIVE”" on page 122, “KEEP_SECTION” on
page 122, “REF_INCLUDE" on page 124 and “FORCE_FILE” on page 122.

Expressions, Variables and Integral Types

This section describes various expressions, and variable and integral types.

CodeWarrior Build Tools Reference for the eTPU 117

y
A

Working with the ELF Linker
Linker Command File Syntax

Variables and Symbols

Symbol namesin alinker command file consists of |etters, digits, and underscore
characters. Listing 12.5 shows examples of valid symbol names. Traditionally, symbols
defined inside alinker command file start with an underscore character

Listing 12.5 Valid Symbol Names

_dec_num = 99999999;
_hex_num_ = 0x9011276;

Expressions and Assignments

Y ou can create global symbols and assign addresses to these global symbols using the
standard assignment operator, as shown:

_synbol i cname = sone_expressi on;

Y ou must place a semicolon at the end of each assignment statement.

Y ou must place assignments only at the start of an expression. For example, the linker
would reject the following expression:
_syml + _syn?2 = _synB; // |LLEGAL!

When the linker evaluates an expression and assigns it to avariable, the linker givesit
either an absolute or arelocatable type. An absolute expression typeis one in which the
symbol contains the value that it will havein the output file. A relocatable expression is
onein which the value is expressed as a fixed offset from the base of a section.

Integer Types

The syntax for linker command file expressionsis very similar to the syntax of the C
programming language. The linker stores and manipulates integer constants by using 32-
bit signed arithmetic.

Octal integers (commonly known as base eight integers) start with aleading zero,
followed by numerals in the range zero through seven. For example, here are some valid
octal patternsyou could put in your linker command file:

e _octa_number = 01234567,
e _octa_number2 = 03245;

118

CodeWarrior Build Tools Reference for the eTPU

Working with the ELF Linker
Linker Command File Syntax

Decimal integers start with non-zero numeral, followed by numeralsin the range of zero
through nine. Here are some examples of valid decimal integers you could put in your
linker command file:

e _dec_num = 99999999;
e _decima_number = 123245;
e _decyone =9011276;

Hexadecimal (base 16) integers start with Ox or OX (azero followed by an X), followed by
numerals in the range of zero through nine, and/or characters A through F. Here are some
examples of valid hexadecimal integers you could put in your linker command file:

e _somenumber = 0x999999FF;
« _fudgefactorspace = 0X123245EE;
¢ _hexonyou = OXFFEE;
To create a hegative decimal integer, use the minus sign (-) in front of the number, asin:
e _decima_number = -123456;

File Selection

When defining the contents of a SECTI ON block, you must specify the source files that
are contributing their sections. The standard way of doing thisisto simply list thefiles, as
shown in Listing 12.6.

Listing 12.6 Source Files Listing

SECTI ONS {

. exanpl e_section :

{

}
}

main.o (.text)
file2.0 (.text)
file3.0 (.text)

In alarge project, the list can become very long. For this reason, the* keyword can be
used to represent the filenames of every file in your project. Note that since we have
aready added the . t ext sectionsfromthefilesmai n. o,fil e2. 0,andfil e3. o, the
"' keyword will not add the . t ext sections from those files again.

* (.text)

CodeWarrior Build Tools Reference for the eTPU 119

y
A

Working with the ELF Linker
Alphabetical Keyword Listing

Writing Data to Memory

Y ou can write data directly to memory using the WRI TEx commands in the linker
command file.

« Rl TEB writes a byte

* ARl TEH writes a two-byte half word

* WWRI TEWwrites a four-byte word.

* WWRI TES writesastring. The dataiis inserted at the section’s current address.
The examplein Listing 12.7 shows examples of the WRITEx commands.

Listing 12.7 Embedding data directly into the output.

.exanpl e_data_section :

{
WRI TEB (0x48); /[* 'H */
WRI TEB (0x69); /* 'i' */
WRI TEB (0x21); /* '1' %/

WRITES ("Hi ")
} > exanpl e_data_section

Alphabetical Keyword Listing

Table 12.3 lists all the functions, keywords, directives, and commands that linker
command files can include.

Table 12.3 Linker Command File Keywords

._(location counter) SECTIONS
ALIGN WRITEB
EORCE_ACTIVE WRITEH
KEEP_SECTION WRITES
MEMORY WRITEW

120 CodeWarrior Build Tools Reference for the eTPU

Working with the ELF Linker
Alphabetical Keyword Listing

. (location counter)

The period character (.) dways maintains the current position of the output location.
Since the period always refersto alocation in a SECTI ONS block, it cannot be used
outside a section definition.

. can appear anywhere a symbol isalowed. Assigning avalueto. that isgreater than its
current value causes the location counter to move, but the location counter can never be
decremented.

This keyword can be used to create empty space in an output section. In the example that
follows, the location counter is moved to a position that is 0x10000 bytes past the symbol
__start.

Listing 12.8 Moving the location counter

.data :

*. (data)
* . (bss)
* . (COMVON)
__start = .;
= __start + 0x10000;
_end = .;
} > DATA

ALIGN

Advance the location counter so that it will be aligned on a boundary specified by the
vaueof al i gnVal ue.

Prototype

ALl GN\(al i gnVal ue)

Parameter
al i gnval ue

The number of address lower bits that should be cleared, for example - ALIGN(3)
will align to the nearest aligned 8 byte address.

CodeWarrior Build Tools Reference for the eTPU 121

y
A

Working with the ELF Linker
Alphabetical Keyword Listing

FORCE_ACTIVE

Allows you to specify symbolsthat you do not want the linker to dead strip. When using
C++, you must specify symbols using their mangled names.

Prototype
FORCE_ACTI VE{ synbol[, synbol] }

KEEP_SECTION
Allows you to specify sections that you do not want the linker to dead strip.

Prototype
KEEP_SECTI ON{ sectionType[, sectionType] }

FORCE_FILE
Allows you to specify files that you do not want the linker to dead strip.

Prototype
FORCE FILE{file[, file]}

MEMORY

Allows you to describe the location and size of memory segment blocks on the target
system. Y ou use this directive to tell the linker the memory areas to avoid, and the
memory areas into which it should link your code and data.

NOTE Thelinker command file must contain only one MEMORY directive. Within the
confines of the MEMORY directive, however, you can define as many memory
segments as you wish.

Prototype
MEMORY { nmenory_spec}

122 CodeWarrior Build Tools Reference for the eTPU

Working with the ELF Linker
Alphabetical Keyword Listing

where menor y_spec isoneor more linesin this format:

segnent Nanme (flags) : ORIG N = address, LENGIH = /ength [>
fil eNane]

Parameters

segnent Nane

The name of the segment. This name must be a consecutive string of aphanumeric
and/or underscore (_) characters.

fl ags
Access flags for the output file (Phdr . p_f | ags). Flags can be any combination
of:
e R - rexd
e W- write
e X - executable code
address

One of the following:

¢ amemory address (optionally including the memory space name), in
hexadecimal format, such as 0x800400.

¢ an AFTER command — If you do not want to compute the addresses using
offsets, you can use the AFTER(nane [, nane]) command to tell the linker
to place the memory segment after the specified segment.

NOTE If you specify multiple memory segments as parameters for AFTER, the linker
uses the segment with the highest memory address. Thisis useful when you do
not know which overlay takes up the most memory space.

I engt h
One of the following:

« avadue greater than zero indicating the size (in bytes) of the segment. If you try to
put more code and datainto amemory segment than your specified length allows, the
linker generates an error at link time.

¢ zero (linker automatically calculates the segment size)

TIP Thelinker does not perform overflow checking when you specify zero. If you do
not leave enough memory free to hold the entire segment, you will get unexpected
results. For this reason, we recommend that whenever you specify zero, you aso
use the AFTER keyword to specify the start address.

CodeWarrior Build Tools Reference for the eTPU 123

y
A

Working with the ELF Linker
Alphabetical Keyword Listing

> fil eNane

An optiona argument to have the linker write the segment to a binary file on disk
instead of an ELF program header. The linker places thisfile into the same folder
asthe ELF output file. This option has two variants:

* > fj | eNane — writesthe segment to anew file
« >> fj| eNanme — appends the segment to an existing file

Examples

In Listing 12.9, the linker placesover | ay1 and over | ay2 immediately after
thecode segment. The linker placesdat a immediately after the overlay
segments.

Listing 12.9 MEMORY Example

MEMORY {
code (RWX) ORI G N = 0x800400, LENGTH = 0
data (RW ORIGN = 0, LENGTH = 0
datal (RW ORI G N = AFTER (data), LENGTH = 0
}
REF_INCLUDE
Allows you to specify sections that you do not want the linker to dead strip, but only if
they satisfy this condition: the file that contains the section must be referenced. Thisis
useful if you want to include version information from your source file components.
Prototype
REF_I NCLUDE{ sectionType [, sectionType]}
SECTIONS
Defines anew section.
Prototype
SECTIONS { section_spec }
where section_spec isin the format:
sectionNanme : [AT (/oadAddress)] {contents} > segnent Nane
124

CodeWarrior Build Tools Reference for the eTPU

Working with the ELF Linker
Alphabetical Keyword Listing

Parameters
secti onNane

The name of the section. This name must start with aperiod character (.), followed
by a consecutive string of alphanumeric and/or underscore characters (). For
example, . mysecti on.

| oadAddr ess

An optional parameter that specifies the address of the section. The linker sets this
to the relocation address if you do not specify it.

contents
One or more statements that:

* Assign avalueto asymbol. See “Alphabetical Keyword Listing” on page 120,
“Arithmetic Operations” on page 116, and “. (location counter)” on page 121.

« Describe the placement of an output section, including which input sections are
placed into it. See “File Selection” on page 119 and “Alignment” on page 116.

segment Nane

The name of the memory segment into which you want to put the contents of this
section. This option has two variants:

« > segnent Name — places the section contents at the beginning of the
memory segment segnent Nane

* >>segnent Name — appends the section contents to the memory segment
segment Nane

CodeWarrior Build Tools Reference for the eTPU 125

y
A

Working with the ELF Linker
Alphabetical Keyword Listing

Example
Listing 12.10 shows an example section definition.

Listing 12.10 Example Section Definition

SECTI ONS
{

. text

_text Segment Start =
foobar.o (.text)

= ALI GN (0x10);
barfoo.o (.text)
_text Segnment End = . ;

}
.data : { *(.data) }

. bss
*(. bss)
} !
}
WRITEB

Inserts a byte of data at the current address of a section.

Prototype
WRI TEB (expression);

Parameters
expressi on
A valuein therange 0x00 through Ox FF.

126 CodeWarrior Build Tools Reference for the eTPU

Working with the ELF Linker
Alphabetical Keyword Listing

WRITEH

Inserts a half word of data at the current address of a section.

Prototype
WRI TEH (expr essi on);

Parameters
expressi on
A valuein the range 0x0000 through Ox FFFF.

WRITES

Inserts a string at the current address of a section.

Prototype
WRI TES ("string")

Parameters
string
A quoted string.

Example
Listing 12.11 shows an example.

Listing 12.11 Example WRITES Command

.coment _section :

WRI TES("This is a .conment section")
} > .coment

CodeWarrior Build Tools Reference for the eTPU 127

y
A

Working with the ELF Linker
Code and Data Sections

WRITEW

Inserts aword of data at the current address of a section.

Prototype
WRI TEW (expr essi on) ;

Parameters
expr essi on
A valuein the range 0x00000000 through Ox FFFFFFFF.

Code and Data Sections

Because the €TPU has two memory spaces, it is not enough to specify an address for a
section. Y ou must also specify amemory space. Specifying amemory spaceisdonein the
L CF using the segments access permission flags.

A segment that has the X (executable) flag will be loaded to the instruction memory.
A segment that does not have the X (executable) flag will be loaded to the data memory.

TIP YoucanasousetheeTPU assembly . org address and. secti on sec
directives, to specify the memory space for a given section.

NOTE You should not assign sections from different memory spaces to the same
segment. If you do, the result is undefined.

128 CodeWarrior Build Tools Reference for the eTPU

13
C Compiler

This chapter explains the CodeWarrior implementation of the C programming language:
¢ Extensionsto Standard C
e C99 Extensions
* GCC Extensions

Extensions to Standard C

The CodeWarrior C compiler adds extra features to the C programming language. These
extensions make it easier to port source code from other compilers and offer some
programming conveniences. Note that some of these extensions do not conform to the

I SO/IEC 9899-1990 C standard (“C90").

¢ Controlling Standard C Conformance

¢ C++-style Comments

¢ Unnamed Arguments

« Extensions to the Preprocessor
¢ Non-Standard Keywords

* Declaring Variables by Address

Controlling Standard C Conformance

The compiler offers settings that verify how closely your source code conformsto the
ISO/IEC 9899-1990 C standard (“ C90"). Enable these settings to check for possible errors
or improve source code portability.

Some source code is too difficult or time-consuming to change so that it conforms to the
ISO/IEC standard. In this case, disable some or all of these settings.

CodeWarrior Build Tools Reference for the eTPU 129

'
A

C Compiler
Extensions to Standard C

Table 13.1 shows how to control the compiler’s features for SO conformance.
Table 13.1 Controlling conformance to the ISO/IEC 9899-1990 C language

To control this option from use this setting
here...
CodeWarrior IDE ANSI Strict and ANSI Keywords Only in

the C/C++ Languagepanel

source code #pragma ANSI _strict

#pragma only_std_keywords

command line -ansi

C++-style Comments

When ANSI strictness is off, the C compiler allows C++-style comments. Listing 13.1
shows an example.

Listing 13.1 C++ Comments

b; /!l This is a C++-style coment.
d; /* This is a regular Cstyle conment. */

Unnamed Arguments

When ANSI strictnessis off, the C compiler allows unnamed arguments in function
definitions. Listing 13.2 shows an example.

Listing 13.2 Unnamed Arguments

void f(int) {} /* OKif ANSI Strict is disabled. */
void f(int i) {} /* Always OK */

Extensions to the Preprocessor

When ANSI strictnessis off, the C compiler allows a# to prefix an item that is not a
macro argument. It also allows an identifier after an #endi f directive. Listing 13.3 and
Listing 13.4 show examples.

130 CodeWarrior Build Tools Reference for the eTPU

C Compiler
Extensions to Standard C

Listing 13.3 Using # in Macro Definitions

#defi ne addl(x) #x #1
/[* OK if ANSI_strict is disabled,
but probably not what you wanted:
addl(abc) creates "abc"#1
*/

#define add2(x) #x "2"
/[* Always OK: add2(abc) creates "abc2". */

Listing 13.4 Identifiers After #endif

#i f def (056

A
#endif __CWMC__ /* OKif ANSI_strict is disabled. */

#i f def (056

EEY
#endif /*_OWNCC_*/ /* Always OK. */

Non-Standard Keywords

When the ANSI keywords setting is off, the C compiler recognizes non-standard
keywords that extend the language.

Declaring Variables by Address

The C compiler lets you explicitly specify the address that contains the value of avariable.
For example, the following definition states that the variable MenEr r contains the
contents of the address 0x220:

short MenErr: 0x220;

Y ou cannot disable this extension, and it has no corresponding pragma or settingin a
panel.

CodeWarrior Build Tools Reference for the eTPU 131

y
A

C Compiler
C99 Extensions

C99 Extensions

The CodeWarrior C compiler accepts the enhancementsto the C language specified by the
ISO/IEC 9899-1999 standard, commonly referred to as “C99.”

« Controlling C99 Extensions

¢ Trailing Commas in Enumerations

¢ Compound Literal Values

¢ Designated Initializers

¢ Predefined Symbol __func

« |mplicit Return From main()

« Non-constant Static Data Initialization

* Variable Argument Macros
« Extra C99 Keywords
¢ C++-Style Comments

¢ C++-Style Digraphs

* Empty Arraysin Structures

¢ Hexadecimal Floating-Point Constants
¢ Variable-Length Arrays

¢ Unsuffixed Decimal Literal Vaues

¢ (C99 Complex Data Types

Controlling C99 Extensions

Table 13.2 shows how to control C99 extensions.
Table 13.2 Controlling C99 extensions to the C language

To control this option from use this setting

here...

CodeWarrior IDE Enable C99 Extensions in the C/C++
Languagepanel

source code #pragma c99

command line -c99

132 CodeWarrior Build Tools Reference for the eTPU

C Compiler
C99 Extensions

Trailing Commas in Enumerations

When the C99 extensions setting is on, the compiler allows acommaafter thefinal itemin
alist of enumerations. Listing 13.5 shows an example.

Listing 13.5 Trailing comma in enumeration example

enum
{

vi ol et

bl ue

green,

yel | ow,

or ange,

red, /* OK accepted if C99 extensions setting is on. */

Compound Literal Values

When the C99 extensions setting is on, the compiler alows literal values of structures and
arrays. Listing 13.6 shows an example.

Listing 13.6 Example of a Compound Literal

#pragma c99 on
struct ny_struct {
int i;
char c[2];
} ny_var;

ny_var = ((struct my_struct) {x +vy, 'a, 0});

Designated Initializers

When the C99 extensions setting is on, the compiler allows an extended syntax for
specifying which structure or array membersto initialize. Listing 13.7 shows an example.

Listing 13.7 Example of Designated Initializers

#pragma c99 on

struct X {
int a,b,c;
}x={ .c=3, .a=1, 2};

CodeWarrior Build Tools Reference for the eTPU 133

y
A

C Compiler
C99 Extensions

uni on U {
char a;
| ong b;
} u={ .b = 1234567 };

int arrl[6

1 ={ 12 [4 =34};
int arr2[6] =] =

{1 [1... 4 3,4}, /I* GConly, not part of C99. */

Predefined Symbol _ func__

When the C99 extensions setting is on, the compiler offersthe __f unc__ predefined
variable. Listing 13.8 shows an example.

Listing 13.8 Predefined symbol _ func___

voi d abc(voi d)

puts(__func__); /* Qutput: "abc" */

Implicit Return From main()

When the C99 extensions setting is on, the compiler inserts this statement at the end of a
program’s main() function if the function does not return avalue:

return O;

Non-constant Static Data Initialization

When the C99 extensions setting is on, the compiler allows static variables to be
initialized with non-constant expressions.

Variable Argument Macros

When the C99 extensions setting is on, the compiler allows macros to have avariable
number of arguments. Listing 13.9 shows an example.

Listing 13.9 Variable argument macros example

#define MYLOG(...) fprintf(nyfile, _ VA ARGS)
#defi ne MYVERSI ON 1
#defi ne MYNAME " SockSorter"

134 CodeWarrior Build Tools Reference for the eTPU

C Compiler
C99 Extensions

i nt mai n(void)

{
MYLOG("% %\ n", MYVERSI ON, MYNAME);
/* Expands to: fprintf(nmyfile, "% %\n", 1, "SockSorter"); */
return O;

}

Extra C99 Keywords

When the C99 extensions setting is on, the compiler recognizes extra keywords and the
language features they represent. Table 13.3 lists these keywords.

Table 13.3 Extra C99 Keywords

This keyword or combination of represents this language feature
keywords...

_Bool boolean data type

I ong | ong integer data type

restrict type qualifier

inline function qualifier

_Conpl ex complex number data type

_l magi nary imaginary number data type

C++-Style Comments

When the C99 extensions setting is on, the compiler allows C++-style comments as well
asregular C comments. A C++-style comment begins with

I

and continues until the end of a source code line.
A C-style comment begins with

/ *

ends with

*/

and may span more than one line.

CodeWarrior Build Tools Reference for the eTPU 135

'
A

C Compiler
C99 Extensions

C++-Style Digraphs

When the C99 extensions setting is on, the compiler recognizes C++-style two-character
combinations that represent single-character punctuation. Table 13.4 lists these digraphs.

Table 13.4 C++-Style Digraphs

This digraph is equivalent to this character
<: [

1> |

<% {

% }

% #

% % #H#

Empty Arrays in Structures

When the C99 extensions setting is on, the compiler allows an empty array to be the last
member in a structure definition. Listing 13.10 shows an example.

Listing 13.10 Example of an Empty Array as the Last struct Member

struct {
int r;
char arr[];

} s

Hexadecimal Floating-Point Constants

Precise representations of constants specified in hexadecimal notation to ensure an
accurate constant is generated across compilers and on different hosts. The compiler
generates a warning message when the mantissa is more precise than the host floating
point format. The compiler generates an error message if the exponent istoo wide for the
host float format.

Examples:
0x2f . 3a2p3
OxEp1f

0x1. 8p0OL

136 CodeWarrior Build Tools Reference for the eTPU

C Compiler
C99 Extensions

The standard library supports printing values of typef | oat inthisformat using the“%&”
and “YA" specifiers.

Variable-Length Arrays

Variable length arrays are supported within local or function prototype scope, as required
by the ISO/IEC 9899-1999 (“C99") standard. Listing 13.11 shows an example.

Listing 13.11 Example of C99 Variable Length Array usage

#pragma c99 on

void f(int n) {
int arr[n];
[* .00

While the example shown in Listing 13.12 generates an error message.

Listing 13.12 Bad Example of C99 Variable Length Array usage

#pragma c99 on

int n;

int arr[n];

/1 ERROR variable length array

/1 types can only be used in |ocal or
/1 function prototype scope.

A variable length array cannot be used in afunction template’ s prototype scope or in a
local templatet ypedef , asshownin Listing 13.13.

Listing 13.13 Bad Example of C99 usage in Function Prototype

#pragma c99 on

tenpl ate<typenane T> int f(int n, int Aln][n]);

{

H _

/1 ERROR variable length arrays

/] cannot be used in function tenplate prototypes
/] or local tenplate variables

CodeWarrior Build Tools Reference for the eTPU 137

y
A

C Compiler
GCC Extensions

Unsuffixed Decimal Literal Values

Listing 13.14 shows an example of specifying decimal literal values without a suffix to
specify the literal’ s type.

Listing 13.14 Examples of C99 Unsuffixed Constants

#pragma c99 on // Note: ULONG MAX == 4294967295

si zeof (4294967295) == si zeof (1 ong | ong)
si zeof (4294967295u) == si zeof (unsi gned | ong)

#pragma c99 of f

si zeof (4294967295) == si zeof (unsi gned | ong)
si zeof (4294967295u) == si zeof (unsi gned | ong)

C99 Complex Data Types

The compiler supports the C99 complex and imaginary data types when the
C99 ext ensi ons option isenabled. Listing 13.15 shows an example.

Listing 13.15 C99 Complex Data Type

#i ncl ude <conpl ex. h>
conmpl ex double cd = 1 + 2*[;

NOTE Thisfeatureiscurrently not available for all targets.
Use#i f _ has_feature(C99_COWLEX) to check if thisfeatureis
available for your target.

GCC Extensions

The CodeWarrior compiler accepts many of the extensionsto the C language that the GCC
(Gnu Compiler Collection) tools allow. Source code that uses these extensions does not
conform to the ISO/IEC 9899-1990 C (“C90") standard.

* Controlling GCC Extensions
¢ |nitializing Automatic Arrays and Structures

¢ The sizeof() Operator
« Statementsin Expressions

138 CodeWarrior Build Tools Reference for the eTPU

C Compiler
GCC Extensions

¢ Redefining Macros
» Thetypeof() Operator

« Void and Function Pointer Arithmetic

e The__ builtin_constant_p() Operator

« Forward Declarations of Static Arrays

¢ Omitted Operands in Conditional Expressions

e The__ builtin_ex| Operator

* Void Return Statements

¢ Minimum and Maximum Operators
e Local Labels

Controlling GCC Extensions

Table 13.5 shows how to turn GCC extensions on or off.
Table 13.5 Controlling GCC extensions to the C language

To control this option from use this setting

here...

CodeWarrior IDE Enable GCC Extensions in the C/C++
Language panel

source code #pragma gcc_ext ensi ons

command line -gcc_extensions

Initializing Automatic Arrays and
Structures

When the GCC extensions setting is on, array and structure variables that are local to a
function and have the automatic storage class may be initialized with values that do not
need to be constant. Listing 13.16 shows an example.

Listing 13.16 Initializing arrays and structures with non-constant values

void f(int i)

{
int j =i * 10; /* Always K. */

/* These initializations are only accepted when GCC extensions
* are on. */

CodeWarrior Build Tools Reference for the eTPU 139

y

A

C Compiler

GCC Extensions
struct { int x, y; } s={1i +1, i +21};
int a[2] ={ i, i +2};

}

The sizeof() Operator

When the GCC extensions setting ison, the si zeof () operator computes the size of
function and void types. In both cases, the si zeof () operator evaluatesto 1. The 1SO/
IEC 9899-1990 C Standard (“C90") does not specify the size of the voi d type and
functions. Listing 13.17 shows an example.

Listing 13.17 Using the sizeof() operator with void and function types

int f(int a)
{

}
voi d g(void)
{

return a * 10;

size_t voidsize
size_t funcsize

si zeof (void); /* voidsize contains 1 */
sizeof (f); /* funcsize contains 1 */

Statements in Expressions

When the GCC extensions setting is on, expressions in function bodies may contain
statements and definitions. To use a statement or declaration in an expression, enclose it
within braces. The last item in the brace-enclosed expression gives the expression its
value. Listing 13.18 shows an example.

Listing 13.18 Using statements and definitions in expressions

#define POR(N) ({ int i,r; for(r=1,i=n; i>0; --i) r *=2; r;})
int main()

return PONR2(4);

140 CodeWarrior Build Tools Reference for the eTPU

C Compiler
GCC Extensions

Redefining Macros

When the GCC extensions setting is on, macros may be redefined with the #def i ne
directive without first undefining them with the #undef directive. Listing 13.19 shows
an example.

Listing 13.19 Redefining a macro without undefining first

#defi ne SOCK_MAXCOLOR 100
#undef SOCK_MAXCOLOR
#define SOCK_MAXCOLOR 200 /* OK: this macro is previously undefined. */

#def i ne SOCK_MAXCOLCOR 300

The typeof() Operator

When the GCC extensions setting is on, the compiler recognizesthet ypeof () operator.
This compile-time operator returns the type of an expression. Y ou may use the value
returned by this operator in any statement or expression where the compiler expectsyou to
specify atype. The compiler evaluates this operator at compiletime. The

__typeof () __ operator isthe same as this operator. Listing 13.20 shows an example.

Listing 13.20 Using the typeof() operator

int *ip;

/* Variables iptr and jptr have the sane type. */
typeof (ip) iptr;

int *jptr;

/* Variables i and j have the sanme type. */

typeof (*ip) i;
int j;

Void and Function Pointer Arithmetic

The ISO/IEC 9899-1990 C Standard does not accept arithmetic expressions that use
pointersto voi d or functions. With GCC extensions on, the compiler accepts arithmetic
manipulation of pointersto voi d and functions.

CodeWarrior Build Tools Reference for the eTPU 141

y
A

C Compiler

GCC Extensions

The _ builtin_constant_p() Operator

When the GCC extensions setting is on, the compiler recognizes the
__builtin_constant _p() operator. Thiscompile-time operator takes asingle
argument and returns 1 if the argument is a constant expression or 0 if it isnot.

Forward Declarations of Static Arrays

When the GCC extensions setting is on, the compiler will not issue an error when you
declare a static array without specifying the number of elementsin the array if you later
declare the array completely. Listing 13.21 shows an example.

Listing 13.21 Forward declaration of an empty array

static int a[]; /* Allowed only when GCC extensions are on. */

I* ..

static int a[10]; /* Conplete declaration. */

Omitted Operands in Conditional
Expressions

When the GCC extensions setting is on, you may skip the second expressionin a
conditional expression. The default value for this expressionisthefirst expression. Listing
13.22 shows an example.

Listing 13.22 Using the shorter form of the conditional expression

void f(int

i, int j)

s

i ?
int b =1i ? j; /* Equivalent toint b =i ?2i : j; */
/* Variables a and b are both assigned the sane value. */

The _ builtin_expect() Operator

When the GCC extensions setting is on, the compiler recognizes the
__builtin_expect () operator. Use this compile-time operatorinani f orwhi | e
statement to specify to the compiler how to generate instructions for branch prediction.

This compile-time operator takes two arguments:
« thefirst argument must be an integral expression

142

CodeWarrior Build Tools Reference for the eTPU

C Compiler
GCC Extensions

« the second argument must be aliteral value

The second argument isthe most likely result of thefirst argument. Listing 13.23 showsan
example.

Listing 13.23 Example for __builtin_expect() operator

voi d search(int *array, int size, int key)

t
int i;
for (i =0; i < size; ++i)
/* W expect to find the key rarely. */
if (__builtin_expect(array[i] == key, 0))
{
rescue(i);
}
}

Void Return Statements

When the GCC extensions setting is on, the compiler alows you to place expressions of
typevoi dinar et ur n statement. Listing 13.24 shows an example.

Listing 13.24 Returning void

void f(int a)
[* ... 0%
return; /* Always OK */
}
void g(int b)
{

[* .0 %
return f(b); /* Alowed when GCC extensions are on. */

Minimum and Maximum Operators

When the GCC extensions setting is on, the compiler recognizes built-in minimum (<?)
and maximum (>7?) operators.

CodeWarrior Build Tools Reference for the eTPU 143

y
A

C Compiler
GCC Extensions

Listing 13.25 Example of minimum and maximum operators

int a

1<?2; // 1is assigned to a.
int b

1>?2; // 2is assigned to b.

Local Labels

When the GCC extensions setting is on, the compiler allows labels limited to ablock’s
scope. A label declared withthe | abel __ keyword is visible only within the scope of
its enclosing block. Listing 13.26 shows an example.

Listing 13.26 Example of using local labels

void f(int i)

{
if (i >=0)
_label __ again; /* First again. */
if (--i >0)
goto again; /* Junps to first again. */
el se
_label __ again; /* Second again. */
if (++i < 0)
goto again; /* Junps to second again. */
}
}

144 CodeWarrior Build Tools Reference for the eTPU

Intermediate Optimizations
Intermediate Optimizations

14

Intermediate Optimizations

After it translates a program’ s source code into its intermediate representation, the
compiler optionally applies optimizations that reduce the program’ s size, improve its
execution speed, or both. The topics in this chapter explains these optimizations and how
to apply them:

¢ |ntermediate Optimizations
 Inlining

Intermediate Optimizations

After it translates a function into its intermediate representation, the compiler may
optionally apply some optimizations. The result of these optimizations on the intermediate
representation will either reduce the size of the executable code, improve the executable
code’ s execution speed, or both.

¢ Dead Code Elimination
¢ Expression Simplification
¢ Common Subexpression Elimination

¢ Copy Propagation
¢ Dead Store Elimination

¢ Live Range Splitting

¢ L oop-Invariant Code Motion
« Strength Reduction
e Loop Unrolling

Dead Code Elimination

The dead code elimination optimization removes expressions that are not accessible or are
not referred to. This optimization reduces size and increases execution speed.

CodeWarrior Build Tools Reference for the eTPU 145

y
A

Intermediate Optimizations
Intermediate Optimizations

Table 14.1 explains how to control the optimization for dead code elimination.
Table 14.1 Controlling dead code elimination

Turn control this option use this setting

from here...

CodeWarrior IDE Choose Level 1, Level 2, Level 3, or Level 4 in the
Global Optimizations settings pane.|

source code #pragnma opt _dead_code on | off |
reset

command line -opt [no]deadcode

InListing 14.1, thecall tof unc1() will never execute becausethei f statement thatitis
associated with will never be true. Conseguently, the compiler can safely eliminate the call
tofuncl(), asshowninListing 14.2.

Listing 14.1 Before dead code elimination

voi d func_fromvoid)
if (0)
funcl();

}
func2();

Listing 14.2 After dead code elimination

voi d func_t o(voi d)

func2();

Expression Simplification

The expression simplification optimization attempts to replace arithmetic expressionswith
simpler expressions. Additionally, the compiler aso looks for operations in expressions
that can be avoided completely without affecting the final outcome of the expression. This
optimization reduces size and increases speed.

146 CodeWarrior Build Tools Reference for the eTPU

Intermediate Optimizations
Intermediate Optimizations

Table 14.2 explains how to control the optimization for expression simplification.
Table 14.2 Controlling expression simplification

Turn control this option use this setting

from here...

CodeWarrior IDE Choose Level 1, Level 2, Level 3, or Level 4 in the
Global Optimizations settings pane.|

source code There is no pragma to control this optimization.

command line -opt level =1,-opt level =2,-opt |evel =3, -
opt |evel =4

For example, Listing 14.3 contains a few assignments to some arithmetic expressions:
 addition to zero
¢ multiplication by a power of 2
« subtraction of avalue from itself
« arithmetic expression with two or more literal values

Listing 14.3 Before expression simplification

void func_from(int* resultl, int* result2, int* result3, int* result4,

int x)

{
*resultl = x + O;
*result2 = x * 2;
*result3 = x - X;
*resultd =1 + x + 4;

}

Listing 14.4 shows source code that is equivalent to expression simplification. The
compiler has modified these assignmentsto:

¢ remove the addition to zero

« replace the multiplication of apower of 2 with bit-shift operation
« replace asubtraction of x from itself with 0

 consolidate the additions of 1 and 4 into 5

Listing 14.4 After expression simplification

void func_to(int* resultl, int* result2, int* result3, int* result4,
int x){

CodeWarrior Build Tools Reference for the eTPU 147

y
A

Intermediate Optimizations
Intermediate Optimizations

*resultl = x;
*result2 = x << 1;
*result3 = 0;
*result4 = 5 + x;

Common Subexpression Elimination

Common subexpression elimination replaces multiple instances of the same expression
with asingle instance. This optimization reduces size and increases execution speed.

Table 14.3 explains how to control the optimization for common subexpression
elimination.

Table 14.3 Controlling common subexpression elimination

Turn control this use this setting
option from here...

CodeWarrior IDE Choose Level 2, Level 3, or Level 4 in the Global
Optimizations settings pane.l

source code #pragma opt _common_subs on | off | reset

command line -opt [no]cse

For example, in Listing 14.5, the subexpression x * 'y occurstwice.

Listing 14.5 Before common subexepression elimination

void func_fromlint* vec, int size, int x, int y, int value)

{

if (x *y < size)

vec[x * y - 1] = val ue;

Listing 14.6 shows equivalent source code after the compiler applies common
subexpression elimination. The compiler generates instructions to computex * 'y and
storeit in ahidden, temporary variable. The compiler then replaces each instance of the
subexpression with this variable.

148 CodeWarrior Build Tools Reference for the eTPU

Intermediate Optimizations
Intermediate Optimizations

Listing 14.6 After common subexpression elimination

void func_to(int* vec, int size, int x, int y, int value)

{
int temp = x * v;
if (tenp < size)
{

vec[tenp - 1] = val ue;

Copy Propagation
Copy propagation replaces variables with their original valuesif the variables do not
change. This optimization reduces runtime stack size and improves execution speed.

Table 14.4 explains how to control the optimization for copy propagation.
Table 14.4 Controlling copy propagation

Turn control this use this setting
option from here...

CodeWarrior IDE Choose Level 2, Level 3, or Level 4 in the Global
Optimizations settings pane.|

source code #pragma opt_propagation on | off | reset

command line -opt [no] prop[agation]

For example, in Listing 14.7, the variable isassigned the value of x. Butj 'svalueis
never changed, so the compiler replaces later instances of j with x, asshown in Listing
14.8.

By propagating x, the compiler is able to reduce the number of registersit uses to hold
variable values, allowing more variables to be stored in registers instead of slower
memory. Also, this optimization reduces the amount of stack memory used during
function calls.

Listing 14.7 Before copy propagation

void func_fromiint* a, int x)
{

int i;

int j;

i =X

CodeWarrior Build Tools Reference for the eTPU 149

y
A

Intermediate Optimizations
Intermediate Optimizations

for (i =0; i <j; i++4)

ali] =7j;

Listing 14.8 After copy propagation

void func_to(int* a, int x)
t

int i;

int j;

i =x

for (i =0; i <x; i++4)

{
}

ali] = x;

Dead Store Elimination

Dead store elimination removes unused assignment statements. This optimization reduces

size and improves speed.

Table 14.5 explains how to control the optimization for dead store elimination.

Table 14.5 Controlling dead store elimination

Turn control this
option from here...

use this setting

CodeWarrior IDE

Choose Level 3 or Level 4 in the Global Optimizations
settings pane.|

source code

#pragma opt _dead_assi gnments on | off |
reset

command line

-opt [no]deadstore

For example, in Listing 14.9 thevariable x isfirst assigned thevaueof y * y. However,
thisresult is not used before x is assigned the result returned by acall togetresul t () .

In Listing 14.10 the compiler can safely remove the first assignment to x since the result

of this assignment is never used.

150

CodeWarrior Build Tools Reference for the eTPU

Intermediate Optimizations
Intermediate Optimizations

Listing 14.9 Before dead store elimination

void func_fron(int x, int y)
{

X =y *y;

ot herfunci(y);

x = getresult();

ot herfunc2(y);

Listing 14.10 After dead store elimination

void func_to(int x, int y)
{

ot herfunci(y);

x = getresult();

ot herfunc2(y);

Live Range Splitting

Live range splitting attempts to reduce the number of variables used in afunction. This
optimization reduces a function’s runtime stack size, requiring fewer instructions to
invoke the function. This optimization potentially improves execution speed.

Table 14.6 explains how to control the optimization for live range splitting.

Table 14.6 Controlling live range splitting

option from here...

Turn control this use this setting

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings pane.|

source code There is no pragma to control this optimization.

command line - opt

| evel =3,-opt |evel =4

For example, in Listing 14.11 three variables, a, b, and ¢, are defined. Although each
variable is eventually used, each of their usesis exclusive to the others. In other words, a
isnot referred to in the same expressionsasb or ¢, b isnot referred towitha orc, and ¢

isnot used witha or b.

CodeWarrior Build Tools Reference for the eTPU

151

y
A

Intermediate Optimizations
Intermediate Optimizations

In Listing 14.12, the compiler hasreplaced a, b, and ¢, with asingle variable. This
optimization reduces the number of registers that the object code uses to store variables,
allowing more variables to be stored in registers instead of slower memory. This
optimization also reduces a function’s stack memory.

Listing 14.11 Before live range splitting

void func_fron(int x, int y)
{

int a;
int b;
int c;

a=x*y,
ot herfunc(a);

b =x+y;
ot herfunc(b);

C=X-Y,
ot herfunc(c);

Listing 14.12 After live range splitting

void func_to(int x, int y)

{

int a b or_c;

abor c=x*%*y;
ot her func(tenp);

abor c=x+y;
ot herfunc(tenp);

abor c=x-y;
ot herfunc(tenp);

Loop-Invariant Code Motion

Loop-invariant code motion moves expressions out of aloop if the expressions are not
affected by the loop or the loop does not affect the expression. This optimization improves
execution speed.

152 CodeWarrior Build Tools Reference for the eTPU

Intermediate Optimizations
Intermediate Optimizations

Table 14.7 explains how to control the optimization for loop-invariant code motion.
Table 14.7 Controlling loop-invariant code motion

Turn control this use this setting
option from here...

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings pane.|

source code #pragmae opt _| oop_invariants on | off | reset

command line -opt [no]l oop[invariants]

For example, in Listing 14.13, the assignment to the variable ci r ¢ does not refer to the
counter variable of thef or loop, i . But the assignment to ci r ¢ will be executed at each
loop iteration.

Listing 14.14 shows source code that is equivalent to how the compiler would rearrange
instructions after applying this optimization. The compiler has moved the assignment to
ci rc outsidethef or loop sothat it isonly executed once instead of each timethef or
loop iterates.

Listing 14.13 Before loop-invariant code motion

void func_from(float* vec, int nax, float val)

{
float circ;
int i;
for (i =0; i < max; ++i)
{
circ =val * 2 * PIl;
vec[i] = circ;
}

Listing 14.14 After loop-invariant code motion

void func_to(float* vec, int max, float val)

{
float circ;
int i;
circ =val * 2 * PIl;
for (i =0; i < max; ++i)
{

vec[i] = circ;

CodeWarrior Build Tools Reference for the eTPU 153

y
A

Intermediate Optimizations
Intermediate Optimizations

Strength Reduction

Strength reduction attempts to replace slower multiplication operations with faster
addition operations. This optimization improves execution speed but increases code size.

Table 14.8 explains how to control the optimization for strength reduction.
Table 14.8 Controlling strength reduction

Turn control this use this setting
option from here...

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings pane.|

source code #pragmae opt _strength_reduction on | off |
reset
command line -opt [no]strength

For example, in Listing 14.15, the assignment to elements of thevec array use a
multiplication operation that refersto the f or loop’s counter variable, i .

In Listing 14.16, the compiler has replaced the multiplication operation with a hidden
variable that isincreased by an equivalent addition operation. Processors execute addition
operations faster than multiplication operations.

Listing 14.15 Before strength reduction

void func_from(int* vec, int max, int fac)

t
int i;
for (i =0; i < max; ++i)

vec[i] = fac * i;

Listing 14.16 After strength reduction

void func_to(int* vec, int max, int fac)

{

int i;

154 CodeWarrior Build Tools Reference for the eTPU

Intermediate Optimizations
Intermediate Optimizations

int strength_red;
hi dden_strength_red = O;
for (i =0; i < max; ++i)

vec[i] = hidden_strength_red;
hi dden_strength_red = hidden_strength_red + i;

Loop Unrolling

Loop unrolling inserts extra copies of aloop’s body in aloop to reduce processor time
executing aloop’s overhead instructions for each iteration of the loop body. In other
words, this optimization attempts to reduce the ratio of time that the processor executes a
loop’ s completion test and branching instructions compared to the time the processor
executes the loop’ s body. This optimization improves execution speed but increases code
size.

Table 14.9 explains how to control the optimization for loop unrolling.
Table 14.9 Controlling loop unrolling

Turn control this use this setting
option from here...

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings pane.|

source code #pragma opt_unroll _l oops on | off | reset

command line -opt |evel =3,-opt |evel =4

For example, in Listing 14.17, thef or loop’sbody isasingle call to afunction,
ot her func() . For each time the loop’s compl etion test executes

for (i =0; i < MAX; ++i)
the function executes the loop body only once.

In Listing 14.18, the compiler has inserted another copy of the loop body and rearranged
theloop to ensure that variablei isincremented properly. With this arrangement, the
loop’ s completion test executes once for every 2 times that the loop body executes.

Listing 14.17 Before loop unrolling

const int MAX = 100;
void func_from(int* vec)

CodeWarrior Build Tools Reference for the eTPU 155

y
A

Intermediate Optimizations
Inlining

t
int 1;
for (i =0; i < MAX; ++i)

ot herfunc(vec[i]);

Listing 14.18 After loop unrolling

const int MAX = 100;
void func_to(int* vec)
t
int i;
for (i =0; i < MAX)
{
ot herfunc(vec[i]);
++i
ot herfunc(vec[i]);
++i

Inlining

Inlining replacesinstructions that call afunction and return from it with the actual
instructions of the function being called. Inlining functions makes your program faster
because it executes the function code immediately without the overhead of afunction call
and return. However, inlining can also make your program larger because the compiler
may insert the function’ s instructions many times throughout your program.

The rest of this section explains how to specify which functions to inline and how the
compiler performstheinlining:

¢ Choosing Which Functionsto Inline

¢ |nlining Techniques

Choosing Which Functions to Inline

The compiler offers several methods to specify which functions are eligible for inlining.

To specify that afunctioniseligible to be inlined, precedeits definition with thei nl i ne,
__inline__,or__inline keyword. To alow these keywordsin C source code, turn

156

CodeWarrior Build Tools Reference for the eTPU

Intermediate Optimizations
Inlining

off ANSI Keywords Only in the CodeWarrior IDE’s C/C++ L anguage settings panel or
turn off theonl y_st d_keywor ds pragmain your source code.

To verify that an eligible function has been inlined or not, use the Non-Inlined Functions
optioninthe IDE’'s C/C++ Warnings panel or thewar n_not i nl i ned pragma. Listing
14.19Listing 14.19 shows an example.

Listing 14.19 Specifying to the compiler that a function may be inlined

#pragma only_std_keywords off
inline int attenpt_to_inline(void)

{
}

return 10;

To specify that a function must never be inlined, follow its definition’s specifier with
_attribute__ ((never_inline)).Listing 14.20 shows an example.

Listing 14.20 Specifying to the compiler that a function must never be inlined

int never_inline(void) __attribute__((never_inline))

{
}

return 20;

To specify that no functionsin afile may be inlined, including those that are defined with
theinline,__inline__,or__inlinekeywords, usethedont _i nl i ne pragma
Listing 14.211 isting 14.21 shows an example.

Listing 14.21 Specifying that no functions may be inlined

#pragma dont _i nline on

/[* WIIl not be inlined. */
inline int attenpt_to_inline(void)

{

}

/* WIIl not be inlined. */
int never_inline(void) __attribute__((never_inline))

{
}

#pragma dont _inline off
/* WIIl be inlined, if possible. */

return 10;

return 20;

CodeWarrior Build Tools Reference for the eTPU 157

V¥ ¢
i

Intermediate Optimizations

Inlining

inline int also_attenpt_to_inline(void)

{
}

return 10;

Some kinds of functions are never inlined:
« functions with variable argument lists
e functionsdefinedwith __attri bute__((never_inline))

« functions compiled with #pr agma opti m ze_f or _si ze on or the Optimize
For Size setting in the IDE’s Global Optimizations panel

« functions which have their addresses stored in variables

The compiler will not inline these functions, even if they are defined with thei nl i ne,
__inline__,or__inline keywords.

Inlining Techniques

The depth of inlining explains how many levels of function calls the compiler will inline.
The Inline Depth setting in the IDE’'s C/C++ L anguage settings panel and the
i nl i ne_dept h pragma control inlining depth.

Normally, the compiler only inlines an eligible function if it has already translated the
function’s definition. In other words, if an eligible function has not yet been compiled, the
compiler has no object code to insert. To overcome this limitation, the compiler can
perform interprocedura analysis (IPA) either in file or program mode. This letsthe
compiler evaluate all the functionsin afile or even the entire program before inlining the
code. The | PA setting in the IDE’'s C/C++ Language settings panel and the i pa pragma
control this capability.

The compiler normally inlines functions from the first function in achain of function calls
to the last function called. Alternately, the compiler may inline functions from the last
function called to the first function in a chain of function calls. The Bottom-up Inlining
optionin the IDE’'s C/C++ L anguage settings panel and thei nl i ne_bot t om_up and
i nl i ne_bottom up_once pragmas control this reverse method of inlining.

Some functions that have not been defined withthei nl ine, _inline__,or
__inline keywords may still be good candidates to be inlined. Automatic inlining
allowsthe compiler to inline these functionsin addition to the functions that you explicitly
specify as digible for inlining. The Auto-Inline option in the IDE’s C/C++ Language
panel and the aut o_i nl i ne pragma control this capability.

When inlining, the compiler calculates the complexity of afunction by counting the
number of statements, operands, and operations in afunction to determine whether or not
toinline an eligible function. The compiler does not inline functions that exceed a

158

CodeWarrior Build Tools Reference for the eTPU

Intermediate Optimizations
Inlining

maximum complexity. The compiler uses three settings to control the extent of inlined
functions:

¢ maximum auto-inlining complexity: the threshold for which afunction may be auto-
inlined

« maximum complexity: the threshold for which any eligible function may be inlined

« maximum total complexity: the threshold for dl inlining in afunction

Theinl i ne_max_aut o_si ze,inline_max_si ze, and
i nline_max_total _si ze pragmas control these thresholds, respectively.

CodeWarrior Build Tools Reference for the eTPU 159

A 4

4\
Intermediate Optimizations
Inlining
160

CodeWarrior Build Tools Reference for the eTPU

15

Declaration Specifications

Declaration specifications describe special properties to associate with afunction or
variable at compile time. Y ou insert these specifications in the object’ s declaration.

» Syntax for Declaration Specifications

¢ Declaration Specifications

Syntax for Declaration Specifications

The syntax for a declaration specification is
__decl spec(spec [options]|) function-declaration;

where spec is the declaration specification, options represents possible arguments for the
declaration specification, and function-declaration represents the declaration of the
function. Unless otherwise specified in the declaration specification’s description, a
function’ s definition does not require a declaration specification.

Declaration Specifications

__declspec(never_inline)
Specifies that a function must not be inlined.

Syntax
__decl spec (never_inline) function_prototype;

Remarks

Declaring afunction’s prototype with this declaration specification tells the
compiler not to inline the function, even if the function is later defined with the
inline,__inline__,or__inlinekeywords.

CodeWarrior Build Tools Reference for the eTPU 161

y
A

Declaration Specifications
Syntax for Attribute Specifications

Syntax for Attribute Specifications

The syntax for an attribute specification is
__attribute__ ((/ist-of-attributes))

where list-of-attributes is a comma-separated list of zero or more attributes to associate
with the object. Place an attribute specification at the end of the delcaration and definition
of afunction, function parameter, or variable. Listing 15.1 shows an example.

Listing 15.1 Example of an attribute specification

int f(int x __attribute_ ((unused))) _ attribute_ ((never_inline));

int f(int x __attribute_ ((unused))) _ attribute_ ((never_inline))

{
}

return 20;

Attribute Specifications

__attribute__ ((deprecated))
Specifies that the compiler must issue awarning when a program refers to an object.

Syntax

vari abl e-decl aration __attribute__ ((deprecated));
variabl e-definition __attribute__((deprecated));
function-declaration __attribute__ ((deprecated));
function-definition __attribute__ ((deprecated));

Remarks

This attribute instructs the compiler to issue a warning when a program refersto a
function or variable. Use this attribute to discourage programmers from using
functions and variables that are obsolete or will soon be obsolete.

Listing 15.2 Example of deprecated attribute

int vel oci pede(int speed) _ attribute_ ((deprecated));
int bicycle(int speed);

162 CodeWarrior Build Tools Reference for the eTPU

Declaration Specifications
Attribute Specifications

int f(int speed)
{

}
int g(int speed)

return vel oci pede(speed); /* Warning. */

return bicycl e(speed * 2); /* OK */
}

__attribute__ ((force_export))
Prevents a function or static variable from being dead-stripped.

Syntax

function-declaration __attribute_ ((force_export));
function-definition __attribute__((force_export));
vari abl e-decl aration __attribute_ ((force_export));
variabl e-definition __attribute__ ((force_export));

Remarks

This attribute specifies that the linker must not dead-strip afunction or static
variable even if the linker determines that the rest of the program does not refer to
the object.

__attribute__((malloc))

Specifies that the pointers returned by afunction will not point to objects that are already
referred to by other variables.

Syntax

function-decl aration __attribute__((malloc));
function-definition __attribute_ ((malloc));

CodeWarrior Build Tools Reference for the eTPU 163

y
A

Declaration Specifications
Attribute Specifications

Remarks

This attribute specification gives the compiler extra knowledge about pointer
aliasing so that it can apply stronger optimizations to the object code it generates.

__attribute__((noalias))
Prevents access of data object through an indirect pointer access.

Syntax

function-paraneter __attribute__ ((noalias));
vari abl e-decl aration __attribute__((noalias));
variabl e-definition __attribute__ ((noalias));

Remarks

This attribute specifies to the compiler that a data object is only accessed directly,
hel ping the optimizer to generate a better code. The sample codein Listing 15.3
will not return a correct result if i p ispointedto a.

Listing 15.3 Example of the noalias attribute

extern int a __attribute_ ((noalias));
int f(int *ip)

urn a; /1 optimzed to return 1;

__attribute__ ((returns_twice))

Specifies that a function may return more than one time because of multithreaded or non-
linear execution.

Syntax
function-decl aration __attribute__((returns_twi ce));
function-definition __attribute_((returns_twice));

164 CodeWarrior Build Tools Reference for the eTPU

Declaration Specifications
Attribute Specifications

Remarks

This attribute specifies to the compiler that the program’s flow of execution might
enter and leave afunction without explicit function calls and returns. For example,

the standard library’sset j np() function alows a program to change its
execution flow arbitrarily.

With this information, the compiler limits optimizations that require explicit
program flow.

__attribute__ ((unused))

Specifiesthat the programmer is aware that a variable or function parameter is not referred
to.

Syntax

function-paraneter __attribute__((unused));

vari abl e-decl aration __attribute__((unused));

variabl e-definition __attribute__ ((unused));

Remarks

This attribute specifies that the compiler should not issue awarning for an object if
the object is not referred to. This attribute specification has no effect if the
compiler’s unused warning setting is off.

Listing 15.4 Example of the unused attribute

void f(int a __attribute_ ((unused))) /* No warning for a. */

int b __attribute_ ((unused)); /* No warning for b. */
int ¢c; /* Possible warning for c. */

return 20;

}

__attribute__ ((used))

Prevents a function or static variable from being dead-stripped.

CodeWarrior Build Tools Reference for the eTPU 165

A 4
4\

Declaration Specifications
Attribute Specifications

Syntax

function-declaration __attribute_ ((used));
function-definition __attribute_ ((used));
vari abl e-decl aration __attribute_ ((used));
variabl e-definition __attribute__((used));

Remarks

This attribute specifies that the linker must not dead-strip afunction or static
variable even if the linker determines that the rest of the program does not refer to
the object.

166 CodeWarrior Build Tools Reference for the eTPU

16

Predefined Macros

The compiler preprocessor has predefined macros (some refer to these as predefined
symbols). The compiler simulates variable definitions that describe the compile-time
environment and properties of the target processor.

This chapter lists the predefined macros that all CodeWarrior compilers make available.

« __COUNTER__

e _ cplusplus

e _CWCC _

¢ __embedded cplusplus

e _FILE _

e _ func

e __FUNCTION__

e __ide target()

e _LINE__

« _MWERKS _

e __PRETTY_FUNCTION__

e _ profile

e _SIDC _

o _TIME _
__COUNTER__

Preprocessor macro that expands to an integer.

Syntax
___COUNTER __

Remarks

The compiler defines this macro as an integer that has an initial value of O
incrementing by 1 every time the macro is used in the translation unit.

CodeWarrior Build Tools Reference for the eTPU 167

Predefined Macros

The value of this macro is stored in a precompiled header and is restored when the
precompiled header is used by atrandation unit.

__cplusplus
Preprocessor macro defined if compiling C++ source code.

Syntax
__cplusplus

Remarks

The compiler defines this macro when compiling C++ source code. Thismacro is
undefined otherwise.

__cwcee_

Preprocessor macro defined as the version of the CodeWarrior compiler frontend.

Syntax
cwee

Remarks

CodeWarrior compilersissued after 2006 define this macro with the compiler’s
frontend version. For example, if the compiler frontend version is 4.2.0, the value
of __COWCC__ is0x4200.

CodeWarrior compilersissued prior to 2006 used the pre-defined macro
__ MAERKS . The__ MAERKS__ predefined macrois still functional as an alias
for__ OWCC__

The 1SO standards do not specify this symbol.

__DATE__

Preprocessor macro defined as the date of compilation.

168 CodeWarrior Build Tools Reference for the eTPU

Predefined Macros

Syntax
_ DATE _

Remarks

The compiler defines this macro as a character string representation of the date of
compilation. The format of thisstring is

"Mm dd yyyy"

where Mmm s the a three-letter abbreviation of the month, dd is the day of the
month, and yyyy isthe year.

__embedded_cplusplus

Defined as 1 when compiling embedded C++ source code, undefined otherwise.

Syntax
__enbedded_cpl uspl us

Remarks

The compiler defines this macro as 1 when the compiler’s settings are configured
to restrict the compiler to translate source code that conforms to the Embedded
C++ proposed standard. The compiler does not define this macro otherwise.

__FILE__

Preprocessor macro of the name of the source code file being compiled.

Syntax
__FILE _

Remarks

The compiler defines this macro as a character string literal value of the name of
the file being compiled, or the name specified in the last instance of a#l i ne
directive.

CodeWarrior Build Tools Reference for the eTPU 169

Predefined Macros

__func__
Predefined variable of the name of the function being compiled.

Prototype
static const char _ func__[] = "function-nane";

Remarks

The compiler implicitly defines this variable at the beginning of each function if
the function refersto__ f unc__. The character string contained by this array,
function-name, is the name of the function being compiled.

Thisimplicit variable is undefined outside of afunction body. Thisvariableisalso
undefined when C99 (1SO/IEC 9899-1999) or GCC (GNU Compiler Collection)
extension settings are off.

__FUNCTION__
Predefined variable of the name of the function being compiled.

Prototype
static const char __FUNCTION_[] = "function-nane";

Remarks

The compiler implicitly defines this variable at the beginning of each function if
the function refersto__ FUNCTI ON__. The character string contained by this
array, function-name, is the name of the function being compiled.

Thisimplicit variable is undefined outside of afunction body.

__ide_target()
Preprocessor operator for querying the IDE about the active build target.

Syntax
__ide_target("target_nane")

170 CodeWarrior Build Tools Reference for the eTPU

Predefined Macros

t ar get - nane
The name of a build target in the active project in the CodeWarrior IDE.

Remarks

Expandsto 1 if target_name is the same as the active build target in the
CodeWarrior IDE’s active project. Expands to O otherwise. The 1SO standards do
not specify this symbol.

__LINE__

Preprocessor macro of the number of the line of the source code file being compiled.

Syntax
__LINE__

Remarks

The compiler defines this macro as ainteger value of the number of the line of the
source code file that the compiler istranslating. The#l i ne directive also affects
the value that this macro expands to.

__MWERKS__

Deprecated. Preprocessor macro defined as the version of the CodeWarrior compiler.

Syntax
__ MAERKS

Remarks
Replaced by the built-in preprocessor macro_ CWCC__

CodeWarrior compilersissued after 1995 define this macro with the compiler’s
version. For example, if the compiler versionis 4.0, thevalueof __ MAERKS__ is
0x4000.

Thismacroisdefined as 1 if the compiler wasissued before the CodeWarrior CW7
that was released in 1995.

The 1SO standards do not specify this symbol.

CodeWarrior Build Tools Reference for the eTPU 171

Predefined Macros

__PRETTY_FUNCTION__

Predefined variable containing a character string of the “unmangled” name of the C++
function being compiled.

Syntax

Prototype
static const char _ PRETTY_FUNCTION__[] = "function-nane";

Remarks

The compiler implicitly defines this variable at the beginning of each function if
the function refersto__ PRETTY_FUNCTI ON__. Thisname, function-name, is
the same identifier that appearsin source code, not the “mangled” identifier that
the compiler and linker use. The C++ compiler “mangles’ a function name by
appending extra characters to the function’sidentifier to denote the function’s
return type and the types of its parameters.

The ISO/IEC 14882-1998 C++ standard does not specify this symbal.

__profile__

Preprocessor macro that specifies whether or not the compiler is generating object code
for aprofiler.

Syntax

_profile__

Remarks

Defined as 1 when generating object code that works with a profiler. Undefined
otherwise. The 1SO standards does not specify this symbal.

__STDC__

Defined as 1 when compiling ISO/IEC Standard C source code, undefined otherwise.

172 CodeWarrior Build Tools Reference for the eTPU

Predefined Macros

Syntax
__STDC

Remarks
The compiler defines this macro as 1 when the compiler’s settings are configured
to restrict the compiler to translate source code that conformsto the | SO/IEC 9899-
1990 and 1SO/IEC 9899-1999 standards. The compiler does not define this macro
otherwise.

__TIME__

Preprocessor macro defined as a character string representation of the time of compilation.

Syntax
_TIME _

Remarks

The compiler defines this macro as a character string representation of the time of
compilation. The format of thisstringis

"hh: nm ss"

where hhisa?2-digit hour of the day, mmisa 2-digit minute of the hour, and ssisa
2-digit second of the minute.

CodeWarrior Build Tools Reference for the eTPU 173

Predefined Macros

174 CodeWarrior Build Tools Reference for the eTPU

17

Using Pragmas

The #pragma preprocessor directive specifies option settings to the compiler to control the
compiler and linker's code generation.

¢ Checking Pragma Settings
¢ Saving and Restoring Pragma Settings
* Determining Which Settings Are Saved and Restored

« Invalid Pragmas

Checking Pragma Settings

The preprocessor function __opt i on() returnsthe state of pragma settings at compile-
time. The syntax is

__option(setting-nane)

where setting-name is the name of a pragmathat acceptstheon, of f, andr eset
arguments.

If setting-nameison, __opti on(setti ng- nane) returns 1. If setting-nameisof f ,
__option(setting-nane) returnsO. If setting-name is not the name of a pragma,
__option(setting-nane) returnsfase. If setting-name is the name of a pragma
that does not accept the on, of f , and r eset arguments, the compiler issues awarning
message.

Listing 17.1 shows an example.

Listing 17.1 Using the __option() preprocessor function

#if _ option(ANSI _strict)

#i ncl ude "portable.h" /* Use the portable declarations. */
#el se

#i nclude “customh” /* Use the specialized declarations. */
#endi f

CodeWarrior Build Tools Reference for the eTPU 175

y
A

Using Pragmas
Saving and Restoring Pragma Settings

Saving and Restoring Pragma Settings

There are some occasions when you would like to apply pragma settings to a piece of
source code independently from the settings in the rest of the source file. For example, a
function might require unique optimization settings that should not be used in the rest of
the function’s sourcefile.

Remembering which pragmas to save and restore is tedious and error-prone. Fortunately,
the compiler has mechanisms that save and restore pragma settings at compile time.
Pragma settings may be saved and restored at two levels:

 al pragma settings
« someindividual pragma settings

Settings may be saved at one point in a compilation unit (a source code file and the files
that it includes), changed, then restored later in the same compilation unit. Pragma settings
cannot be saved in one source code file then restored in another unless both source code
files areincluded in the same compilation unit.

Pragmas push and pop save and restore, respectively, most pragma settingsin a
compilation unit. Pragmas push and pop may be nested to unlimited depth. Listing 17.2
shows an example.

Listing 17.2 Using push and pop to save and restore pragma settings

/* Settings for this file. */
#pragnma opt _unrol | _| oops on
#pragma optimnm ze_for_size off
void fast_func_A(voi d)

{

[* .00 %

}

/* Settings for slow func(). */

#pragma push /* Save file settings. */
#pragma optimni zation_size O

voi d sl ow_func(voi d)

{

[* .0 0%

}

#pragma pop /* Restore file settings. */

voi d fast_func_B(void)
{

[* ... %]

}

176 CodeWarrior Build Tools Reference for the eTPU

Using Pragmas
Determining Which Settings Are Saved and Restored

Pragmas that accept ther eset argument perform the same actions as pragmas push and
pop, but apply to asingle pragma. A pragma son and of f arguments save the pragma’s
current setting before changing it to the new setting. A pragma’ sr eset argument
restores the pragma’ s setting. Theon, of f , and r eset arguments may be nested to an
unlimited depth. Listing 17.3 shows an example.

Listing 17.3 Using the reset option to save and restore a pragma setting

/* Setting for this file. */
#pragnma opt _unrol | _| oops on

void fast_func_A(void)

{

1= .0 %

}

/* Setting for smallslowfunc(). */
#pragma opt _unrol | _I oops of f

voi d smal | _func(voi d)

{

1= .0 0%

/* Restore previous setting. */
#pragma opt_unrol | _| oops reset

voi d fast_func_B(voi d)
{

[* .0 %

}

Determining Which Settings Are Saved and
Restored

Not al pragma settings are saved and restored by pragmas push and pop. Pragmas that
do not change compiler settings are not affected by push and pop. For example, pragma
nmessage cannot be saved and restored.

Listing 17.4 shows an example that checksif the ANSI _stri ct pragmasetting is saved
and restored by pragmas push and pop.

Listing 17.4 Testing if pragmas push and pop save and restore a setting

/* Preprocess this source code. */
#pragma ANSI _strict on

CodeWarrior Build Tools Reference for the eTPU 177

'
A

Using Pragmas
Invalid Pragmas

#pragma push

#pragma ANSI _strict off

#pragma pop

#if __option(ANSI _strict)

#error "Saved and restored by push and pop."
#el se

#error "Not affected by push and pop."

#endi f

Invalid Pragmas

If you enable the compiler’s setting for reporting invalid pragmas, the compiler issues a
warning when it encounters a pragma it does not recognize. For example, the pragma
statements in Listing 17.5 generate warnings with the invalid pragmas setting enabled.

Listing 17.5 Invalid Pragmas

#pragma silly_data off /1 WARNING silly_data is not a pragna.
#pragma ANSI _strict select // WARNING select is not defined
#pragma ANSI _strict on Il K

Table 17.1 shows how to control the recognition of invalid pragmas.
Table 17.1 Controlling invalid pragmas

To control this option from use this setting
here...
CodeWarrior IDE Illegal Pragmas in the PowerPC Compiler

> Warnings panel

source code #pragma warn_il | pragnma

command line -warni ngs ill pragnas

Pragma Scope

The scope of a pragma setting is limited to a compilation unit (a source code file and the
filesthat it includes).

At the beginning of compilation unit, the compiler uses its default settings. The compiler
then uses the settings specified by the CodeWarrior IDE’ s build target or in command-line
options.

178 CodeWarrior Build Tools Reference for the eTPU

Using Pragmas
Pragma Scope

The compiler uses the setting in a pragma beginning at the pragma’ s location in the
compilation unit. The compilers continues using this setting:

« until another instance of the same pragma appears later in the source code
« until an instance of pragma pop appears later in the source code
« until the compiler finishes translating the compilation unit

CodeWarrior Build Tools Reference for the eTPU 179

A 4
4\

Using Pragmas
Pragma Scope

180 CodeWarrior Build Tools Reference for the eTPU

18

Pragmas for Standard C
Conformance

ANSI_strict

Controls the use of non-standard language features.

Syntax
#pragma ANSI _strict on | off | reset

Remarks

If you enablethe pragma ANSI _st ri ct , thecompiler generates an error message
if it encounters some CodeWarrior extensions to the C language defined by the
ISO/IEC 9899-1990 (“C90") standard:

e C++-style comments
¢ unnamed arguments in function definitions
¢ non-standard keywords

This pragma corresponds to the ANSI Srict setting in the CodeWarrior IDE’'s
Properties> C/C++ Build > Settings > Tool Settings> Power PC Compiler>
C/C++ Language panel. By defaullt, this pragmais of f .

c99
Controls the use of a subset of |SO/IEC 9899-1999 (“C99") language features.

Syntax
#pragnma c99 on | off | reset

CodeWarrior Build Tools Reference for the eTPU 181

Pragmas for Standard C Conformance

Remarks

If you enable this pragma, the compiler accepts many of the language features
described by the ISO/IEC 9899-1999 standard:

e Morerigid type checking.

¢ Trailing commas in enumerations.

¢ GCC/C99-style compound literal values.

¢ Designated initidizers.

e _ func__ predefined symbol.

e Implicitreturn O; inmai n() .

¢ Non-const static datainitializations.

¢ Variable argument macros (__ VA ARGS).
e bool and_Bool support.

* | ong | ong support (separate switch).

e restrict support.

e [/ comments.

e inline support.

« Digraphs.

e _Conpl ex and _I magi nary (treated as keywords but not supported).
* Empty arrays aslast struct members.

o Designated initializers

* Hexadecimal floating-point constants.

« Variablelength arrays are supported within local or function prototype scope (as
required by the C99 standard).

« Unsuffixed decimal constant rules.

e ++bool - - expressions.

e (T) (int-1ist) arehanded/parsed as cast-expressions and as literals.
e _ STDC HOSTED_ _ is1.

This pragma corresponds to the Enable C99 Extensions setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
Power PC Compiler > C/C++ Language pandl. By default, this pragmais
disabled.

182

CodeWarrior Build Tools Reference for the eTPU

Pragmas for Standard C Conformance

c9x

Equivalent to #pr agna c99.

ignore_oldstyle

Controls the recognition of function declarations that follow the syntax conventions used
before ISO/IEC standard C (in other words, “K&R” style).

Syntax
#pragma i gnore_oldstyle on | off | reset

Remarks

If you enable this pragma, the compiler ignores old-style function declarations and
lets you prototype a function any way you want. In old-style declarations, you
specify the types of arguments on separate lines instead of the function’s argument
list. For example, the code in Listing 18.1 defines a prototype for afunction with
an old-style definition.

Listing 18.1 Mixing Old-style and Prototype Function Declarations

int f(char x, short y, float z);
#pragna ignore_ol dstyl e on

f(x, y, 2)
char x;
short v;
float z;

return (int)x+y+z;

}

#pragma i gnore_ol dstyl e reset

This pragma does not correspond to any panel setting. By default, this setting is
disabled.

CodeWarrior Build Tools Reference for the eTPU 183

Pragmas for Standard C Conformance

only_std_keywords

Controls the use of 1SO/IEC keywords.

Syntax

#pragma only_std_keywords on | off | reset

Remarks

The compiler recognizes additional reserved keywords. If you are writing source
code that must follow the ISO/IEC C standards strictly, enable the pragma
only_std_keywords.

This pragma corresponds to the ANSI K eywords Only setting in the CodeWarrior
IDE’s Properties > C/C++ Build > Settings > Tool Settings >

Power PC Compiler> C/C++ Language panel. By default, this pragmais
disabled.

require_prototypes

Controls whether or not the compiler should expect function prototypes.

Syntax

#pragma require_prototypes on | off | reset

Remarks

This pragma only affects non-static functions.

If you enable this pragma, the compiler generates an error message if you use a
function that does not have a preceding prototype. Use this pragmato prevent error
messages caused by referring to a function before you defineit. For example,
without a function prototype, you might pass data of the wrong type. As aresult,
your code might not work as you expect even though it compiles without error.

In Listing 18.2, function mai n() callsPri nt Num() with an integer argument
even though Pr i nt Nunt) takesan argument of typef | oat .

Listing 18.2 Unnoticed Type-mismatch

#i ncl ude <stdio. h>

voi d mai n(voi d)

184

CodeWarrior Build Tools Reference for the eTPU

Pragmas for Standard C Conformance

PrintNum(1); /* PrintNun() tries to interpret the
integer as a float. Prints 0.000000. */

}
void PrintNun(float x)

printf("%\n", x);

When you run this program, you could get this result:
0. 000000

Although the compiler does not complain about the type mismatch, the function
does not give the result you intended. Since Pr i nt Num() doesnot have a
prototype, the compiler does not know to generate instructions to convert the
integer to afloating-point number beforecalling Pr i nt Nunt) . Consequently, the
function interprets the bits it received as a floating-point number and prints
nonsense.

A prototype for Pri nt Nun() , asin Listing 18.3, gives the compiler sufficient
information about the function to generate instructions to properly convert its
argument to a floating-point number. The function prints what you expected.

Listing 18.3 Using a Prototype to Avoid Type-mismatch

#i ncl ude <stdi o. h>
void PrintNun(float x); /* Function prototype. */
voi d mai n(voi d)

Print Num(1); /* Conpiler converts int to float.
} Prints 1.000000. */

void PrintNun{float x)

printf("%\n", Xx);

In other situations where automatic conversion is not possible, the compiler
generates an error message if an argument does not match the data type reguired by
afunction prototype. Such a mismatched data type error is easier to locate at
compile time than at runtime.

CodeWarrior Build Tools Reference for the eTPU 185

Pragmas for Standard C Conformance

This pragma corresponds to the Require Function Prototypes setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
Power PC Compiler > C/C++ Language panel.

186 CodeWarrior Build Tools Reference for the eTPU

19

Pragmas for Language
Translation

asmpoundcomment

Controls whether the “#’ symbol is treated as a comment character in inline assembly.

Syntax
#pragma asnpoundcomment on | off | reset

Remarks
Some targets may have additional comment characters, and may treat these
characters as comments even when

#pragma asnpoundconment of f

is used.
Using this pragma may interfere with the function-level inline assembly language.

This pragma does not correspond to any panel setting. By default, this pragmais
on.

asmsemicolcomment

Controls whether the “; " symbol is treated as a comment character in inline assembly.

Syntax
#pragma asnseni col comment on | off | reset

CodeWarrior Build Tools Reference for the eTPU 187

Pragmas for Language Translation

Remarks

Some targets may have additional comment characters, and may treat these
characters as comments even when

#pragma asnsemn col comment of f
is used.
Using this pragma may interfere with the assembly language of a specific target.

This pragma does not correspond to any panel setting. By default, this pragmais
on.

const_strings

Controlsthe const -ness of character string literals.

Syntax
#pragma const_strings [on | off | reset]

Remarks

If you enable this pragma, the type of string literalsisan array const char [n] ,
orconst wchar _t[n] for wide strings, where nisthe length of the string
literal plus 1 for aterminating NUL character. Otherwise, thetype char [n] or
wchar _t [n] isused.

By default, this pragmais on when compiling C++ source code and of f when
compiling C source code.

dollar_identifiers

Controls use of dollar signs ($) in identifiers.

Syntax
#pragma dollar_identifiers on | off | reset

Remarks

If you enable this pragma, the compiler accepts dollar signs ($) in identifiers.
Otherwise, the compiler issues an error if it encounters anything but underscores,
alphabetic, numeric character, and universal characters (\ uxxxx, \ UXXXXXXXX)
in an identifier.

188

CodeWarrior Build Tools Reference for the eTPU

Pragmas for Language Translation

This pragma does not correspond to any panel setting. By default, this pragmais
of f.

gcc_extensions

Controls the acceptance of GNU C language extensions.

Syntax

#pragma gcc_extensions on | off | reset

Remarks

If you enable this pragma, the compiler accepts GNU C extensionsin C source
code. Thisincludes the following non-ANS| C extensions:

Initialization of automatic st r uct or arr ay variables with non-const
values.

Illegal pointer conversions

sizeof (void) ==1

sizeof (function-type) ==

Limited support for GCC statements and declarations within expressions.
Macro redefinitions without a previous #undef .

The GCC keyword t ypeof

Function pointer arithmetic supported

voi d* arithmetic supported

Void expressionsin return statements of void
__builtin_constant_p (expr) supported

Forward declarations of arrays of incomplete type

Forward declarations of empty static arrays

Pre-C99 designated initializer syntax (deprecated)

shortened conditional expression (¢ ?: y)

long __builtin_expect (long exp, |ong c) now accepted

This pragma corresponds to the Enable GCC Extensions setting in the
CodeWarrior IDE’s Properties > C/C++ Build > Settings > Tool Settings >
Power PC Compiler > C/C++ Language pandl. By default, this pragmais
disabled.

CodeWarrior Build Tools Reference for the eTPU

189

Pragmas for Language Translation

mark

Adds an item to the Function pop-up menu in the IDE editor.

Syntax
#pragma mar k itemName

Remarks

This pragma adds itemName to the source file's Function pop-up menu. If you
open thefilein the CodeWarrior Editor and select the item from the Function pop-
up menu, the editor brings you to the pragma. Note that if the pragmaisinside a
function definition, the item does not appear in the Function pop-up menu.

If itemName begins with “- - ", amenu separator appearsin the IDE’'s Function
pop-up menu:

#pragma mark --
This pragma does not correspond to any panel setting.

mpwc_newline

Controls the use of newline character convention.

Syntax
#pragma nmpwc_new ine on | off | reset

Remarks

If you enable this pragma, the compiler trandates’ \ n' asa Carriage Return
(OxOD) and' \ r ' asaLine Feed (Ox0A). Otherwise, the compiler uses the ISO
standard conventions for these characters.

If you enable this pragma, use | SO standard libraries that were compiled when this
pragma was enabled.

If you enable this pragma and use the standard | SO standard libraries, your
program will not read and write' \' n' and' \ r' properly. For example, printing
"\'n" bringsyour program’s output to the beginning of the current line instead of
inserting anewline.

This pragma does not correspond to any |DE panel setting. By default, this pragma
is disabled.

190

CodeWarrior Build Tools Reference for the eTPU

Pragmas for Language Translation

mpwc_relax
Controls the compatibility of the char * and unsi gned char * types.

Syntax
#pragma mpwc_relax on | off | reset

Remarks

If you enable this pragma, the compiler treatschar * and unsi gned char * as
the same type. Use this setting to compile source code written before the ISO C
standards. Old source code frequently uses these types interchangeably.

This setting has no effect on C++ source code.

NOTE Turning this option on may prevent the compiler from detecting some
programming errors. We recommend not turning on this option.

Listing 19.1 shows how to use this pragmato relax function pointer checking.

Listing 19.1 Relaxing function pointer checking

#pragma npwe_rel ax on
extern void f(char *);

/* Normally an error, but allowed. */
extern void(*fpl)(void *) = &f;

/* Normally an error, but allowed. */
extern voi d(*fp2) (unsigned char *) = &f;

This pragma does not correspond to any panel setting. By default, this pragmais
disabled.

multibyteaware

Controls how the Sour ce encoding option in the IDE is treated

Syntax
#pragma mul ti byteaware on | off | reset

CodeWarrior Build Tools Reference for the eTPU 191

Pragmas for Language Translation

Remarks
This pragmais deprecated. See#pr agna t ext _encodi ng for more details.

This pragma does not correspond to any panel setting, but the replacement option
Sour ce encoding appears in the CodeWarrior IDE's Properties > C/C++ Build
> Settings > Tool Settings > Power PC Compiler > Preprocessor panel. By
default, this pragmaisof f .

multibyteaware_preserve_literals

Controls the treatment of multibyte character sequencesin narrow character string literals.

Syntax

#pragma nul ti byteaware_preserve_literals on | off | reset

Remarks

This pragma does not correspond to any panel setting. By default, this pragmais
on.

text_encoding

Identifies the character encoding of source files.

Syntax

#pragnma text _encoding ("name" | unknown | reset [, global])

Parameters
nane

The IANA or MIME encoding name or an OS-specific string that identifies the text
encoding. The compiler recognizes these names and maps them to itsinternal
decoders:

system US- ASCI | ASCI 1 ANSI _X3. 4-1968

ANSI _X3. 4-1968 ANSI _X3.4 UTF-8 UTF8 | SO 2022-JP
CSI SO2022JP | SO2022JP CSSHI FTJI'S SH FT-JI' S

SH FT_JI'S SJI'S EUC-JP EUCIP UCS-2 UCS- 2BE

UCS- 2LE UCS2 UCS2BE UCS2LE UTF- 16 UTF- 16BE

192

CodeWarrior Build Tools Reference for the eTPU

Pragmas for Language Translation

UTF- 16LE UTF16 UTF16BE UTF16LE UCS-4 UCS- 4BE
UCS-4LE UCS4 UCS4BE UCS4LE 10646-1: 1993
| SO-10646-1 | SO 10646 uni code

gl obal

Tells the compiler that the current and all subsequent files use the same text
encoding. By default, text encoding is effective only to the end of thefile.

Remarks

By default, #pr agma t ext _encodi ng isonly effective through the end of file.
To affect the default text encoding assumed for the current and all subsequent files,
supply the “global” modifier.

This pragma corresponds to the Sour ce Encoding option in the CodeWarrior
IDE's Properties> C/C++ Build > Settings > Tool Settings > Power PC
Compiler > Preprocessor panel. By default, this setting isASCI | .

trigraphs
Controls the use trigraph sequences specified in the 1SO standards.

Syntax
#pragma trigraphs on | off | reset

Remarks
If you are writing code that must strictly adhere to the ANSI standard, enable this
pragma.
Table 19.1 Trigraph table

Trigraph Character
?7= #

22/ \

272 n

?22([

2?)]

27! |

CodeWarrior Build Tools Reference for the eTPU 193

Pragmas for Language Translation

Table 19.1 Trigraph table

Trigraph Character
??< {
??7> }

27- ~

NOTE Useof thispragmamay cause a portability problem for some targets.

Be careful when initializing strings or multi-character constants that contain
question marks.

Listing 19.2 Example of Pragma trigraphs

char ¢
char d

'????'; /* ERROR Trigraph sequence expands to '??" */
NAAAN?; [P K Y

This pragma corresponds to the Expand Trigr aphs setting in the CodeWarrior
IDE's Properties> C/C++ Build > Settings > Tool Settings> Power PC
Compiler > C/C++ Language panel. By default, this pragmais disabled.

unsigned_char

Controls whether or not declarations of type char aretreated asunsi gned char.

Syntax
#pragma unsi gned_char on | off | reset

Remarks

If you enable this pragma, the compiler treatsachar declaration asif it were an
unsi gned char declaration.

NOTE If you enable this pragma, your code might not be compatible with libraries
that were compiled when the pragma was disabled. In particular, your code
might not work with the 1SO standard libraries included with CodeWarrior.

194 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Language Translation

This pragma corresponds to the Use unsigned chars setting in the CodeWarrior
IDE's Properties> C/C++ Build > Settings > Tool Settings > Power PC
Compiler > C/C++ Language panel. By default, this setting is disabled.

CodeWarrior Build Tools Reference for the eTPU 195

Pragmas for Language Translation

196 CodeWarrior Build Tools Reference for the eTPU

20

Pragmas for Diagnostic
Messages

extended_errorcheck
Controls the issuing of warning messages for possible unintended logical errors.

Syntax
#pragma ext ended_errorcheck on | off | reset

Remarks

If you enable this pragma, the compiler generates a warning message (not an error)
if it encounters some common programming errors:

« Aninteger or floating-point value assigned to an enumtype. Listing 20.1 shows
an example.

Listing 20.1 Assigning to an Enumerated Type

enum Day { Sunday, Monday, Tuesday, Wednesday,
Thur sday, Friday, Saturday } d;

5; /* WARNI NG */
Monday; /* OK */
(Day)3; /* OK */

[eljoRyoN
o n

e Anempty r et ur n statement in afunction that is not declared voi d. For
example, Listing 20.2 results in awarning message.

Listing 20.2 A non-void function with an empty return statement

int MyInit(void)
{

int err = Get MyResources();
if (err 1= -1)

CodeWarrior Build Tools Reference for the eTPU 197

Pragmas for Diaghostic Messages

{
err = Get MoreResources();

return; /* WARNING enpty return statenment */
}

Listing 20.3 shows how to prevent this warning message.

Listing 20.3 A non-void function with a proper return statement

int Mylnit(void)
{

int err = Get MyResources();
|

if (err 1= -1)
{
err = Get MbreResources();
}
return err; /* OK */
}
This pragma corresponds to the Extended Error Checking setting in the
CodeWarrior IDE's Properties > C/C++ Build > Settings > Tool Settings >
Power PC Compiler > Warnings panel. By default, this setting is of f .
maxerrorcount

Limits the number of error messages emitted while compiling asinglefile.

Syntax
#pragma maxerrorcount(num| off)

Parameters
num

Specifies the maximum number of error messages issued per source file.
of f

Does not limit the number of error messages issued per source file.

Remarks
The total number of error messages emitted may include one final message:
Too many errors enitted

198 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Diaghostic Messages

This pragma does not correspond to any panel setting. By default, this pragmais
of f.

message
Tells the compiler to issue atext message to the user.

Syntax

#pragna nessage(nsg)

Parameter
nsg

Actual message to issue. Does not have to be astring literal.

Remarks

In the CodeWarrior IDE, the message appearsin the Console view. On the
command line, the message is sent to the standard error stream.

This pragma does not correspond to any panel setting.

showmessagenumber
Controls the appearance of warning or error numbers in displayed messages.

Syntax

#pragma shownessagenunber on | off | reset

Remarks

When enabled, this pragma causes messages to appear with their numbersvisible.
Y ou can then use thewar ni ng pragma with awarning number to suppress the
appearance of specific warning messages.

This pragma does not correspond to any panel setting. By default, this pragmais
of f.

CodeWarrior Build Tools Reference for the eTPU 199

Pragmas for Diaghostic Messages

show_error_filestack

Controls the appearance of the current #i ncl ude file stack within error messages
occurring inside deeply-included files.
Syntax

#pragma show error_filestack on | off | reset

Remarks

This pragma does not correspond to any panel setting. By default, this pragmais
on.

suppress_warnings
Controls the issuing of warning messages.

Syntax

#pragma suppress_warnings on | off | reset

Remarks

If you enable this pragma, the compiler does not generate warning messages,
including those that are enabled.

This pragma does not correspond to any panel setting. By default, this pragmais
of f.

sym
Controls the generation of debugger symbol information for subsequent functions.

Syntax

#pragnma symon | off | reset

Remarks

The compiler pays attention to this pragmaonly if you enable the debug marker for
afilein the IDE project window. If you disable this pragma, the compiler does not

200 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Diaghostic Messages

put debugging information into the source file debugger symbol file (SYM or
DWARF) for the functions that follow.

The compiler always generates a debugger symbol file for a source file that has a
debug diamond next to it in the IDE project window. This pragma changes only
which functions have information in that symboal file.

This pragma does not correspond to any panel setting. By default, this pragmais
enabled.

unused

Controls the suppression of warning messages for variables and parameters that are not
referenced in afunction.

Syntax
#pragma unused (var_name [, var_name]...)
var_nane

The name of avariable.

Remarks

This pragma suppresses the compile time warning messages for the unused
variables and parameters specified in itsargument list. Y ou can use this pragma
only within afunction body. The listed variables must be within the scope of the
function.

In C++, you cannot use this pragmawith functions defined within a class definition
or with template functions.

Listing 20.4 Example of Pragma unused() in C

#pragma war n_unusedvar on
#pragnma war n_unusedarg on

static void ff(int a)
int b;

#pragma unused(a, b)
/* Conpiler does not warn that a and b are unused. */

}

CodeWarrior Build Tools Reference for the eTPU 201

Pragmas for Diaghostic Messages

Listing 20.5 Example of Pragma unused() in C++

#pragma war n_unusedvar on
#pragnma war n_unusedarg on

static void ff(int /* No warning */)
{
int b;

#pragma unused(b)
[* Conpiler does not warn that b is unused. */

}

This pragma does not correspond to any CodeWarrior IDE panel setting.

warning
Controls which warning numbers are displayed during compiling.

Syntax
#pragma warning on | off | reset (num[, ...])
This aternate syntax is alowed but ignored (message numbers do not match):
#pragma war ni ng(warni ng_type : warning_numl/list [,
warni ng_type: warning _numlist, ...])
Parameters
num
The number of the warning message to show or suppress.
war ni ng_type
Specifies one of the following settings:
e default
e disable
* enabl e
warni ng_num | i st

Thewarni ng_num | i st isalist of warning numbers separated by spaces.

202 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Diaghostic Messages

Remarks

Use the pragma shownessagenunber to display warning messages with their
warning numbers.

This pragma only applies to CodeWarrior front-end warnings. Using the pragma
for the Power Architecture back-end warnings returns invalid message number
warning.

The CodeWarrior compiler alows, but ignores, the alternative syntax for
compatibility with Microsoft® compilers.

This pragma does not correspond to any panel setting. By default, this pragmais
on.

warning_errors
Controls whether or not warnings are treated as errors.

Syntax

#pragma warni ng_errors on | off | reset

Remarks

If you enable this pragma, the compiler treats all warning messages as though they
were errors and does not translate your file until you resolve them.

This pragma corresponds to the Treat All Warnings as Errors setting in the
CodeWarrior IDE's Properties> C/C++ Build > Settings > Tool Settings >
Power PC Compiler > Warnings panel.

warn_any_ptr_int_conv

Controlsif the compiler generates a warning message when an integral typeis explicitly
converted to a pointer type or vice versa

Syntax

#pragma warn_any_ptr_int_conv on | off | reset

Remarks

This pragmais useful to identify potential 64-bit pointer portability issues. An
exampleisshownin.

CodeWarrior Build Tools Reference for the eTPU 203

Pragmas for Diaghostic Messages

Listing 20.6 Example of warn_any_ptr_int_conv

#pragma warn_ptr_int_conv on
short i, *ip

void func() {

i = (short)ip;

/* WARNI NG short type is not |arge enough to hold pointer. */
}

#pragma warn_any_ptr_int_conv on

void bar() {
i (int)ip; /* WARNING pointer to integral conversion. */
(short *)i; /* WARNING integral to pointer conversion. */

ip
}

Remarks

This pragma corresponds to the Pointer /I ntegral Conversions setting in the
CodeWarrior IDE's Properties > C/C++ Build > Settings > Tool Settings >
Power PC Compiler > Warnings panel. By default, this pragmaisof f .

warn_emptydecl
Controls the recognition of declarations without variables.

Syntax
#pragma war n_enptydecl on | off | reset

Remarks

If you enable this pragma, the compiler displays a warning message when it
encounters a declaration with no variables.

Listing 20.7 Examples of empty declarations in C and C++

#pragma war n_enpt ydecl on
int ; /* WARNING enpty variabl e declaration. */
int i; /* OK*/

204 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Diaghostic Messages

long j;; /* WARNING */
long j; /I* OK */

Listing 20.8 Example of empty declaration in C++

#pragnma war n_enpt ydecl on
extern "C' {
}: /* WARNI NG */

This pragma corresponds to the Empty Declarations setting in the CodeWarrior
IDE's Properties> C/C++ Build > Settings > Tool Settings > Power PC
Compiler > Warnings panel. By default, this pragmais disabled.

warn_extracomma

Controls the recognition of superfluous commas in enumerations.

Syntax
#pragma warn_extraconma on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters atrailing commain enumerations. For example, Listing 20.9is
acceptable source code but generates a warning message when you enable this
setting.

Listing 20.9 Warning about extra commas

#pragma war n_extraconma on
enum { nouse, cat, dog, };
/* WARNI NG conpil er expects an identifier after final comm. */

The compiler ignores terminating commas in enumerations when compiling source
code that conformsto the ISO/IEC 9899-1999 (“C99") standard.

This pragma corresponds to the Extra Commas setting in the CodeWarrior IDE's
Properties> C/C++ Build > Settings > Tool Settings > Power PC Compiler >
Warnings panel. By default, this pragmais disabled.

CodeWarrior Build Tools Reference for the eTPU 205

Pragmas for Diaghostic Messages

warn_filenamecaps

Controls the recognition of conflicts involving case-sensitive filenames within user
includes.

Syntax
#pragma warn_fil enanecaps on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when an

#i ncl ude directive capitalizes a filename within a user include differently from
the way the filename appears on adisk. It also detects use of “8.3" DOS filenames
in Windows® operating systems when along filenameis available. Use this
pragmato avoid porting problems to operating systems with case-sensitivefile
names.

By default, this pragma only checks the spelling of user includes such asthe
following:

#include "file"

For more information on checking system includes, see
warn_fil enanecaps_system

This pragma corresponds to the I nclude File Capitalization setting in the
CodeWarrior IDE's Properties> C/C++ Build > Settings > Tool Settings >
Power PC Compiler > Warnings panel. By default, this pragmaisof f .

warn_filenamecaps_system

Controls the recognition of conflicts involving case-sensitive filenames within system
includes.

Syntax
#pragma warn_fil enanecaps_systemon | off | reset

Remarks

If you enable this pragmaaongwithwar n_f i | enamecaps, the compiler issues
awarning message when an #i ncl ude directive capitalizes a filename within a
system include differently from the way the filename appears on adisk. It also
detects use of “8.3" DOS filenamesin Windows® systemswhen along filenameis

206

CodeWarrior Build Tools Reference for the eTPU

Pragmas for Diaghostic Messages

available. This pragma helps avoid porting problems to operating systems with
case-sengitive file names.

To check the spelling of system includes such as the following:
#i nclude <file>
Use this pragma aong with the warn_filenamecaps pragma.

This pragma corresponds to the Check System Includes setting in the
CodeWarrior IDE's Properties > C/C++ Build > Settings > Tool Settings >
Power PC Compiler > Warnings panel. By default, this pragmais off.

NOTE Some SDKs (Software Developer Kits) use “colorful” capitalization, so this
pragmamay issue alot of unwanted messages.

warn_hiddenlocals

Controls the recognition of alocal variable that hides another local variable.

Syntax
#pragma warn_hi ddenl ocals on | off | reset

Remarks

When on, the compiler issues a warning message when it encounters alocal
variable that hides another local variable. An example appearsin Listing 20.10.

Listing 20.10 Example of hidden local variables warning

#pragma war n_hi ddenl ocal s on

voi d func(int a)
{

{

}

int a; /* WARNING this 'a' obscures argurment 'a'.

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this setting is of f .

CodeWarrior Build Tools Reference for the eTPU 207

Pragmas for Diaghostic Messages

warn_illpragma
Controls the recognition of invalid pragma directives.

Syntax
#pragma warn_i ||l pragma on | off | reset

Remarks

If you enable this pragma, the compiler displays a warning message when it
encounters a pragma it does not recognize.
This pragmacorrespondsto thelllegal Pragmas setting in the CodeWarrior IDE's

Properties> C/C++ Build > Settings > Tool Settings > Power PC Compiler >
Warnings panel. By default, this setting isof f .

warn_illtokenpasting

Controls whether or not to issue awarning message for improper preprocessor token
pasting.

Syntax

#pragma warn_i | | t okenpasting on | off | reset

Remarks
An example of thisis shown below:
#define PTR(x) x##* | PTR(y)

Token pasting is used to create a single token. In this example, y and x cannot be
combined. Often the warning message indicates the macros uses “ ##”
unnecessarily.

This pragma does not correspond to any panel setting. By default, this pragmais
on.

warn_illunionmembers

Controls whether or not to issue awarning message for invalid union members, such as
unions with reference or non-trivial class members.

208 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Diaghostic Messages

Syntax

#pragma warn_i | | uni onmenbers on | off | reset

Remarks
This pragma does not correspond to any panel setting. By default, this pragmais
on.

warn_impl_f2i_conv
Controls the issuing of warning messages for implicit f | oat -to-i nt conversions.

Syntax
#pragma warn_i mpl _f2i _conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message for implicitly
converting floating-point valuesto integral values. Listing 20.11 provides an
example.

Listing 20.11 Example of Implicit f | oat -to-i nt Conversion

#pragma warn_i npl _f2i _conv on

float f;
signed int si;

int main()
f =si; /* WARNING */

#pragma warn_i nmpl _f2i _conv of f
si =f; I* K */
}

This pragma correspondsto the Float to I nteger setting in the CodeWarrior IDE's
Properties> C/C++ Build > Settings > Tool Settings> Power PC Compiler >
Warnings panel. By default, this pragmaison.

CodeWarrior Build Tools Reference for the eTPU 209

Pragmas for Diaghostic Messages

warn_impl_i2f_conv
Controls the issuing of warning messages for implicit i nt -to-f | oat conversions.

Syntax
#pragma warn_i npl _i 2f _conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message for implicitly
converting integral values to floating-point values. Listing 20.12 shows an
example.

Listing 20.12 Example of impliciti nt -to-f | oat conversion

#pragma warn_i npl _i 2f _conv on

float f;
signed int si;

int main()
si = f; /* WARNING */

#pragma warn_i npl _i 2f _conv of f
foo=si; [* OK*/

This pragma correspondsto thel nteger to Float setting in the CodeWarrior IDE’s
Properties> C/C++ Build > Settings > Tool Settings> Power PC Compiler >
Warnings panel. By default, this pragmaisof f .

warn_impl_s2u_conv

Controls the issuing of warning messages for implicit conversions between the si gned
i nt andunsi gned i nt datatypes.

Syntax
#pragnma warn_i npl _s2u_conv on | off | reset

210 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Diaghostic Messages

Remarks

If you enable this pragma, the compiler issues a warning message for implicitly
converting either fromsi gned i nt tounsi gned i nt orviceversa. Listing
20.13 provides an example.

Listing 20.13 Example of implicit conversions between si gned i nt and unsi gned i nt

#pragma warn_i npl _s2u_conv on

signed int si;
unsi gned int ui;

int main()
u = si; /* WARNING */
si = ui; /* WARNI NG */

#pragma warn_i mpl _s2u_conv of f
ui si; [* OK */
Si ui; /* K */

This pragma corresponds to the Signed / Unsigned setting in the CodeWarrior
IDE's Properties> C/C++ Build > Settings > Tool Settings > Power PC
Compiler > Warnings panel. By default, this pragmais enabled.

warn_implicitconv
Controls the issuing of warning messages for all implicit arithmetic conversions.

Syntax
#pragma warn_i mplicitconv on | off | reset

Remarks

If you enable this pragma, the compiler issues awarning message for all implicit
arithmetic conversions when the destination type might not represent the source
value. Listing 20.14 provides an example.

Listing 20.14 Example of Implicit Conversion

#pragma warn_i nplicitconv on

CodeWarrior Build Tools Reference for the eTPU 211

Pragmas for Diaghostic Messages

float f;
signed int si;
unsi gned int ui;

int main()

f si; /* WARNI NG */

si =f; /* WARNI NG */
ui = si; /* WARNI NG */
si = ui; /* WARNI NG */

NOTE Thisoption “opensthe gate” for the checking of implicit conversions. The sub-
pragmaswar n_i npl _f 2i _conv,war n_i npl _i 2f _conv, and
war n_i npl _s2u_conv control the classes of conversions checked.

This pragma corresponds to the Implicit Arithmetic Conver sions setting in the
CodeWarrior IDE's Properties > C/C++ Build > Settings > Tool Settings >
Power PC Compiler > Warnings panel. By default, this pragmaisof f .

warn_largeargs

Controls the issuing of warning messages for passing non-"int” numeric valuesto
unprototyped functions.

Syntax
#pragna warn_|l argeargs on | off | reset

Remarks

If you enable this pragma, the compiler issues awarning message if you attempt to
pass a non-integer numeric value, such asaf | oat orl ong | ong,toan
unprototyped function when ther equi r e_pr ot ot ypes pragmais disabled.

This pragma does not correspond to any panel setting. By default, this pragmais
of f.

warn_missingreturn

I ssues a warning message when a function that returnsavalueis missingar et urn
statement.

212 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Diaghostic Messages

Syntax
#pragma warn_mi ssingreturn on | off | reset

Remarks
An exampleis shown in Listing 20.15.

Listing 20.15 Example of warn_missingreturn pragma

#pragma warn_mi ssingreturn on

int func()

/* WARNING no return statenent. */
}

This pragma corresponds to the Missing ‘return’ Statements setting in the
CodeWarrior IDE's Properties> C/C++ Build > Settings > Tool Settings >

Power PC Compiler > Warnings panel.

warn_no_side_effect
Controls the issuing of warning messages for redundant statements.

Syntax
#pragma warn_no_si de_effect on | off | reset

Remarks
If you enable this pragma, the compiler issues a warning message when it
encounters a statement that produces no side effect. To suppress this warning
message, cast the statement with (voi d) . Listing 20.16 provides an example.

Listing 20.16 Example of Pragma warn_no_side_effect

#pragnma warn_no_si de_effect on
void func(int a,int b)

at+b; /* WARNI NG expression has no side effect */
(void)(a+b); /* OK void cast suppresses warning. */

CodeWarrior Build Tools Reference for the eTPU 213

Pragmas for Diaghostic Messages

This pragma corresponds to the Expression Has No Side Effect panel setting in
the CodeWarrior IDE's Properties> C/C++ Build > Settings > Tool Settings >
Power PC Compiler > Warnings panel. By default, this pragmaisof f .

warn_padding

Controls the issuing of warning messages for data structure padding.

Syntax
#pragnma warn_padding on | off | reset

Remarks

If you enable this pragma, the compiler warns about any bytes that were implicitly
added after an ANSI C st r uct member to improve memory alignment. Refer to
the appropriate Targeting manual for more information on how the compiler pads
data structures for a particular processor or operating system.

This pragma corresponds to the Pad Bytes Added setting in the CodeWarrior
IDE’'s Properties> C/C++ Build > Settings > Tool Settings> Power PC
Compiler > Warnings panel. By default, this setting isof f .

warn_pch_portability

Controlswhether or not to issue awarning message when #pr agna once onisusedina
precompiled header.

Syntax
#pragma warn_pch_portability on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when you use
#pragma once on inaprecompiled header. This helps you avoid
situations in which transferring a precompiled header from machine to machine
causes the precompiled header to produce different results. For more information,
seepragmaOnce.

This pragma does not correspond to any panel setting. By default, this setting is
of f.

214 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Diaghostic Messages

warn_possunwant

Controls the recognition of possible unintentional logical errors.

Syntax
#pragma war n_possunwant on | off | reset

Remarks

If you enable this pragma, the compiler checks for common, unintended logical
errors:

¢ Anassignment in either alogical expression or the conditional portion of ani f,
whi | e, or f or expression. Thiswarning message is useful if you use = when
you mean to use ==, Listing 20.17 shows an example.

Listing 20.17 Confusing = and ==in Comparisons

if (a=b) f(); /* WARNING a=b is an assignnent. */
if ((a=b)!=0) f(); /* OK (a=b)!=0 is a conparison. */

if (a==b) f(); /* OK (a==b) is a conparison. */

* Anequal comparison in a statement that contains a single expression. This
check is useful if you use == when you meant to use =. Listing 20.18 shows an
example.

Listing 20.18 Confusing = and == Operators in Assignments

a == 0; I/ WARNING This is a conparison.
a = 0; /]l OK This is an assignment, no warning

e A semicolon (;) directly afterawhi | e,i f, or f or statement.

For example, Listing 20.19 generates a warning message.

Listing 20.19 Empty statement

i = sockcount();
while (--i); /* WARNING enpty | oop. */
mat chsock(i);

CodeWarrior Build Tools Reference for the eTPU 215

Pragmas for Diaghostic Messages

If you intended to create an infinite loop, put white space or acomment between
thewhi | e statement and the semicolon. The statementsin Listing 20.20
suppress the above error or warning messages.

Listing 20.20 Intentional empty statements

while (i++)

/* OK Wiite space separation. */

while (i++) /* OK Comment separation */ ;

This pragma correspondsto the Possible Error s setting in the CodeWarrior IDE's
Properties> C/C++ Build > Settings > Tool Settings> Power PC Compiler >
Warnings panel. By default, this pragmaisof f .

warn_ptr_int_conv

Controls the recognition the conversion of pointer valuesto incorrectly-sized integral

values.

Syntax

#pragma warn_ptr_int_conv on | off | reset

Remarks

If you enable this pragma, the compiler issues awarning message if an expression
attempts to convert a pointer value to an integral type that is not large enough to
hold the pointer value.

Listing 20.21 Example for #pragma warn_ptr_int_conv

#pragma warn_ptr_int_conv on

char *ny_ptr;
char too_small

= (char)my_ptr; /* WARNING char is too snmall. */

Seealso“warn_any ptr_int_conv” on page 203.

This pragma corresponds to the Pointer / Integral Conversions setting in the
CodeWarrior IDE's Properties> C/C++ Build > Settings > Tool Settings >
Power PC Compiler > Warnings panel. By default, this pragmais off.

216

CodeWarrior Build Tools Reference for the eTPU

Pragmas for Diaghostic Messages

warn_resultnotused

Controls the issuing of warning messages when function results are ignored.

Syntax
#pragma warn_resul tnotused on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a statement that calls afunction without using itsresult. To prevent this,
cast the statement with (voi d) . Listing 20.22 provides an example.

Listing 20.22 Example of Function Calls with Unused Results

#pragma war n_r esul t not used on

extern int bar();
voi d func()

bar(); /* WARNING result of function call is not used. */
void(bar()); /* OK void cast suppresses warning. */

This pragma does not correspond to any panel setting. By default, this pragmais
off.

warn_undefmacro

Controls the detection of undefined macrosin #i f and #el i f directives.

Syntax
#pragma war n_undef nacro on | off | reset

Remarks
Listing 20.23 provides an example.

CodeWarrior Build Tools Reference for the eTPU 217

Pragmas for Diaghostic Messages

Listing 20.23 Example of Undefined Macro

#i f BADMACRO == 4 /* WARNI NG undefined nmacro. */

Use this pragma to detect the use of undefined macros (especially expressions)

where the default value O is used. To suppress this warning message, check if
defined first.

NOTE A warning messageisonly issued when amacro is evaluated. A short-circuited
“&&" or“| | " test or unevaluated “?: " will not produce a warning message.

This pragma corresponds to the Undefined Macro in #f setting in the
CodeWarrior IDE's Properties > C/C++ Build > Settings > Tool Settings >
Power PC Compiler > Warnings panel. By default, this pragmaisof f .

warn_uninitializedvar

Controls the compiler to perform some dataflow analysis and emits warning messages
whenever loca variables are initialized before being used.

Syntax

#pragma warn_uninitializedvar on | off | reset

Remarks

This pragma has no corresponding setting in the CodeWarrior IDE. By default, this
pragmaison.

warn_unusedarg
Controls the recognition of unreferenced arguments.

Syntax

#pragma warn_unusedarg on | off | reset

Remarks

If you enable this pragma, the compiler issues awarning message when it encounters an
argument you declare but do not use.

218 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Diaghostic Messages

This check helps you find arguments that you either misspelled or did not usein your
program. Listing 20.24 shows an example.

Listing 20.24 Warning about unused function arguments

void func(int tenp, int error);

{
}

error = do_sonething(); /* WARNING tenp is unused. */

To prevent this warning, you can declare an argument in afew ways:
¢ Usethe pragmaunused, asin Listing 20.25.

Listing 20.25 Using pragma unused() to prevent unused argument messages

void func(int tenmp, int error)

{
#pragma unused (tenp)

/* Conmpiler does not warn that tenp is not used. */

error=do_sonet hi ng();

}

« Do not give the unused argument a name. Listing 20.26 shows an example.

The compiler allows this feature in C++ source code. To allow thisfeaturein C
source code, disable ANSI strict checking.

Listing 20.26 Unused, Unnamed Arguments

void func(int /* tenp */, int error)
[* Conpiler does not warn that "tenp" is not used. */

error=do_sonet hi ng();

}

This pragma corresponds to the Unused Arguments setting in the C/C++
Warnings Panel. By default, this pragmaisof f .

warn_unusedvar

Controls the recognition of unreferenced variables.

CodeWarrior Build Tools Reference for the eTPU 219

Pragmas for Diaghostic Messages

Syntax
#pragma war n_unusedvar on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a variable you declare but do not use.

This check helps you find variables that you either misspelled or did not usein
your program. Listing 20.27 shows an example.

Listing 20.27 Unused Local Variables Example

int error;
voi d func(voi d)
{
int tenp, errer; /* NOTE: errer is msspelled. */
error = do_sonething(); /* WARNING tenp and errer are unused. */

}

If you want to use this warning but need to declare a variable that you do not use, include
the pragmaunused, asin Listing 20.28.

Listing 20.28 Suppressing Unused Variable Warnings

voi d func(void)

{
int i, tenp, error;
#pragma unused (i, tenp) /* Do not warn that i and tenp */
error = do_sonet hing(); /* are not used */

}

This pragma corresponds to the Unused Variables setting in the CodeWarrior
IDE's Properties> C/C++ Build > Settings > Tool Settings> Power PC
Compiler > Warnings panel. By default, this pragmais off.

220 CodeWarrior Build Tools Reference for the eTPU

21

Pragmas for Preprocessing

check_header_flags

Controls whether or not to ensure that a precompiled header’ s data matches a project’s
target settings.

Syntax

#pragma check_header _flags on | off | reset

Remarks
This pragma affects precompiled headers only.

If you enable this pragma, the compiler verifies that the precompiled header’s
preferences for doubl e size, i nt size, and floating point math correspond to the
build target’s settings. If they do not match, the compiler generates an error
message.

If your precompiled header file depends on these settings, enable this pragma.
Otherwise, disableit.

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragmaisof f .

faster_pch_gen
Controls the performance of precompiled header generation.

Syntax
#pragma faster_pch_gen on | off | reset

Remarks

If you enable this pragma, generating a precompiled header can be much faster,
depending on the header structure. However, the precompiled file can also be
slightly larger.

CodeWarrior Build Tools Reference for the eTPU 221

Pragmas for Preprocessing

This pragma does not correspond to any panel setting. By default, this setting is
of f.

flat_include

Controls whether or not to ignore relative path names in #i ncl ude directives.

Syntax
#pragma flat_include on | off | reset

Remarks
For example, when on, the compiler converts this directive
#i ncl ude <sys/stat.h>
to
#i ncl ude <stat. h>

Use this pragma when porting source code from a different operating system, or
when a CodeWarrior IDE project’ s access paths cannot reach a given file.

By default, this pragmaisof f .

fullpath_file

Controlsif __FI LE__ macro expands to afull path or the base file name.

Syntax
#pragma fullpath_file on | off | reset

Remarks

When thispragmaon, the__FI LE__ macro returns afull path to the file being
compiled, otherwiseit returns the base file name.

fullpath_prepdump

Shows the full path of included filesin preprocessor output.

222 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Preprocessing

Syntax
#pragma ful | path_prepdunp on | off | reset

Remarks

If you enable this pragma, the compiler shows the full paths of files specified by
the#i ncl ude directive as comments in the preprocessor output. Otherwise, only
the file name portion of the path appears.

This pragma corresponds to the Show full paths option in the CodeWarrior IDE’s
Properties> C/C++ Build > Settings > Tool Settings > Power PC Preprocessor
> Preprocessor Settings panel. By default, this pragmaisof f .

keepcomments

Controls whether comments are emitted in the preprocessor output.

Syntax
#pragma keepconments on | off | reset

Remarks

This pragma corresponds to the K eep comments option CodeWarrior IDE’s
Properties> C/C++ Build > Settings > Tool Settings> Power PC Preprocessor
> Preprocessor Settings panel. By default, this pragmaisof f .

line_prepdump
Shows#l i ne directivesin preprocessor output.

Syntax
#pragma |ine_prepdunp on | off | reset

Remarks
If you enable this pragma, #l i ne directives appear in preprocessing output. The
compiler also adjusts line spacing by inserting empty lines.
Use this pragma with the command-line compiler’s - E option to make sure that
#| i ne directives are inserted in the preprocessor output.

CodeWarrior Build Tools Reference for the eTPU 223

Pragmas for Preprocessing

This pragma corresponds to the Use #line option in the CodeWarrior IDE's
Properties> C/C++ Build > Settings > Tool Settings> Power PC Preprocessor
> Preprocessor Settings panel. By default, this pragmaisof f .

macro_prepdump

Controls whether the compiler emits#def i ne and #undef directivesin preprocessing
output.

Syntax
#pragma macro_prepdunp on | off | reset

Remarks

Use this pragmato help unravel confusing problems like macros that are aliasing
identifiers or where headers are redefining macros unexpectedly.

msg_show_lineref

Controls diagnostic output involving #1 i ne directivesto show line numbers specified by
the#l i ne directivesin error and warning messages.

Syntax

#pragma nmsg_show |ineref on | off | reset

Remarks

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragmaison.

msg_show_realref

Controls diagnostic output involving #l i ne directives to show actua line numbersin
error and warning messages.

Syntax

#pragma nmsg_show realref on | off | reset

224 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Preprocessing

Remarks

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragmaison.

notonce

Controls whether or not the compiler letsincluded files be repeatedly included, even with
#pragma once on.

Syntax

#pragma notonce

Remarks

If you enable this pragma, files can be repeatedly #i ncl uded, even if you have
enabled #pr agna once on. For more information, see “once” on page 225.

This pragma does not correspond to any CodeWarrior |DE panel setting.

old_pragma_once

This pragmais no longer available.

once

Controls whether or not a header file can be included more than once in the same
compilation unit.

Syntax
#pragnma once [on]

Remarks

Use this pragmato ensure that the compiler includes header filesonly oncein a
source file. This pragmais especially useful in precompiled header files.

There are two versions of this pragma:
#pragma once

CodeWarrior Build Tools Reference for the eTPU 225

Pragmas for Preprocessing

and
#pragnma once on

Use#pr agnma once inaheader fileto ensurethat the header fileisincluded only
oncein asource file. Use#pr agma once on inaheader file or sourcefileto
ensure that any fileisincluded only oncein asourcefile.

Beware that when using #pr agnma once on, precompiled headers transferred
from one host machine to another might not give the same results during
compilation. Thisinconsistency is because the compiler stores the full paths of
included files to distinguish between two distinct files that have identical file
names but different paths. Usethewar n_pch_port abi | i t y pragmatoissuea
warning message when you use#pr agnma once on in aprecompiled header.

Also, if you enabletheol d_pr agma_once on pragma, the once pragma
completely ignores path names.

This pragma does not correspond to any panel setting. By default, this pragmais
of f.

pop, push
Saves and restores pragma settings.

Syntax
#pragnma push
#pragma pop

Remarks

The pragma push saves all the current pragma settings. The pragmapop restores
all the pragma settings that resulted from the last push pragma. For example, see

Listing 21.1.

Listing 21.1 push and pop example

#pragma ANSI _strict on

#pragma push /* Saves all conpiler settings. */
#pragma ANSI _strict off

#pragma pop /* Restores ANSI _strict to on. */

This pragma does not correspond to any panel setting. By default, this pragmais
of f.

226 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Preprocessing

TIP Pragmasdirectivesthat accept on |of f |r eset already form astack of previous
option values. It is not necessary to use#pr agma pop or #pr agma push with
such pragmas.

pragma_prepdump
Controls whether pragma directives in the source text appear in the preprocessing output.
Syntax
#pragma pragna_prepdunp on | off | reset
Remarks

This pragma corresponds to the Emit #pragmas option in the CodeWarrior IDE’s
Properties> C/C++ Build > Settings > Tool Settings > Power PC Preprocessor
> Preprocessor Settings panel. By default, this pragmaisof f .

TIP When submitting bug reports with a preprocessor dump, be sure this option is
enabled.

precompile_target
Specifies the file name for a precompiled header file.

Syntax

#pragma preconpil e_target filenane
Parameters

filenane

A simplefile name or an absolute path name. If filename is asimple file name, the
compiler savesthe file in the same folder as the sourcefile. If filename is a path
name, the compiler saves the file in the specified folder.

Remarks

If you do not specify the file name, the compiler gives the precompiled header file
the same name asiits sourcefile.

CodeWarrior Build Tools Reference for the eTPU 227

Pragmas for Preprocessing

Listing 21.2 shows sample source code from a precompiled header source file. By

using the predefined symbols__cpl uspl us and the pragma
preconpi | e_t ar get , the compiler can use the same source code to create
different precompiled header files for C and C++.

Listing 21.2 Using #pragma precompile_target

#i fdef __cpl usplus
#pragna preconpil e_target "M CPPHeaders"

#el se

#pragma preconpil e_target "M/CHeaders"

#endi f

This pragma does not correspond to any panel setting.

simple_prepdump

Controls the suppression of comments in preprocessing output.

Syntax
#pragma si npl e_prepdunp on | off | reset

Remarks

By default, the compiler adds comments about the current include file being in
preprocessing output. Enabling this pragma disables these comments.

This pragma corresponds to the Emit file changes option in the CodeWarrior
IDE's Properties> C/C++ Build > Settings > Tool Settings > Power PC
Preprocessor > Preprocessor Settings panel. By defaullt, this pragmaisof f .

space_prepdump

Controls whether or not the compiler removes or preserves whitespace in the
preprocessor’ s output.

Syntax

#pragma space_prepdunp on | off | reset

228

CodeWarrior Build Tools Reference for the eTPU

Pragmas for Preprocessing

Remarks

This pragmais useful for keeping the starting column aligned with the original
source code, though the compiler attempts to preserve space within the line. This
pragma does not apply to expanded macros.

This pragma corresponds to the K eep whitespace option in the CodeWarrior
IDE's Properties> C/C++ Build > Settings > Tool Settings > Power PC
Preprocessor > Preprocessor Settings panel. By defaullt, this pragmaisof f .

srcrelincludes
Controls the lookup of #i ncl ude files.

Syntax

#pragma srcrelincludes on | off | reset

Remarks

When on, the compiler looks for #i ncl ude filesrelative to the previously
included file (not just the source file). When of f , the compiler uses the
CodeWarrior IDE’s access paths or the access paths specified with the- i r option.

Use this pragma when multiple files use the same file name and are intended to be
included by another header file in that directory. Thisisacommon practicein
UNIX programming.

By default, this pragmaisof f .

syspath_once
Controls how included files are treated when #pr agna once is enabled.
Syntax
#pragma syspath_once on | off | reset

Remarks

When this pragma and pragmaonce are set to on, the compiler distinguishes
between identically-named header filesreferred toin

#i ncl ude <fil e-nane>

CodeWarrior Build Tools Reference for the eTPU 229

Pragmas for Preprocessing

and
#i nclude "fil e-nane".

When this pragmais of f and pragmaonceison, the compiler will ignore afile
that uses a

#i ncl ude <file-nane>

directiveif it has previously encountered another directive of the form
#include "fil e-nane"

for an identically-named header file.

shows an example.

This pragma does not correspond to any panel setting. By default, this setting is
on.

Listing 21.3 Pragma syspath_once example

#pragma syspat h_once of f

#pragma once on /* Include all subsequent files only once. */
#i ncl ude "sock. h"

#i ncl ude <sock.h> /* Ski pped because syspath_once is off. */

230 CodeWarrior Build Tools Reference for the eTPU

22

Pragmas for Code
Generation

aggressive_inline
Specifies the size of enumerated types.

Syntax
#pragma aggressive_inline on | off | reset

Remarks
The IPA-based inliner (-ipafile) will inline more functions when this option
is enabled. This option can cause code bloat in programs that overuse inline
functions. Default is off.

dont_reuse_strings

Controls whether or not to store identical character string literals separately in object code.

Syntax
#pragna dont _reuse_strings on | off | reset

Remarks

Normally, C and C++ programs should not modify character string literals. Enable
this pragma if your source code follows the unconventional practice of modifying
them.

If you enable this pragma, the compiler separately storesidentical occurrences of
character string literalsin a sourcefile.

CodeWarrior Build Tools Reference for the eTPU 231

Pragmas for Code Generation

If this pragma s disabled, the compiler stores a single instance of identical string
literals in a source file. The compiler reduces the size of the object code it
generates for afileif the sourcefile has identical string literals.

The compiler always stores a separate instance of a string literal that is used to
initialize a character array. Listing 22.1 shows an example.

Although the source code contains 3 identical string literals, " cat ", the compiler
will generate 2 instances of the string in object code. The compiler will initialize
str1andstr 2 topoint to the first instance of the string and will initializest r 3
to contain the second instance of the string.

Using st r 2 to modify the string it points to also modifiesthe string that st r 1
pointsto. The array st r 3 may be safely used to modify the string it points to
without inadvertently changing any other strings.

This pragma corresponds to the Reuse setting in the CodeWarrior IDE's
Properties> C/C++ Build > Settings > Tool Settings > Power PC Compiler > C/
C++ Language panel. By default, this pragmaisof f .

Listing 22.1 Reusing string literals

#pragma dont _reuse_strings off
voi d strchange(voi d)

{

const char* strl = "cat";

char* str2 = "cat";

char str3[] = “cat”;

str2 = 'h'; / strl and str2 point to "hat"! */

str3[0] ="Db";

[* OK: str3 contains "bat", *strl and *str2 unchanged.
}

enumsalwaysint

Specifies the size of enumerated types.

Syntax
#pragma enunsal waysint on | off | reset

Remarks

If you enable this pragma, the C/C++ compiler makes an enumerated type the same
sizeasani nt . If an enumerated constant islarger thani nt , the compiler

232

CodeWarrior Build Tools Reference for the eTPU

Pragmas for Code Generation

generates an error message. Otherwise, the compiler makes an enumerated type the
size of any integral type. It chooses the integral type with the size that most closely
matches the size of the largest enumerated constant. The type could be assmall asa
char oraslargeasal ong | ong.

Listing 22.2 shows an example.

Listing 22.2 Example of Enumerations the Same as Size as int

enum Snpal | Number { One = 1, Two = 2 };
/* 1f you enabl e enunsal waysint, this type is
the sanme size as an int. Gtherwise, this type is
the sane size as a char. */

enum Bi gNunber
{ ThreeThousandM I lion = 3000000000 };
/* 1f you enabl e enunsal waysi nt, the conpiler m ght
generate an error nessage. Otherwise, this type is
the sanme size as a long long. */

This pragma corresponds to the Enums Always I nt setting in the CodeWarrior
IDE’'s Properties> C/C++ Build > Settings > Tool Settings > Power PC
Compiler > C/C++ Language panel. By default, this pragmaisof f .

enums_signed

Changes the underlying enumeration type search order.

Syntax
#pragma enuns_si gned on | off | reset

Remarks

Enabling this option changes the underlying enumeration type search order. The
underlying type for an enumeration where all enumerators are >= 0 isthe first one
of these typesin which all values can be represented:

signed char (*)
unsi gned char
signed short (*)
unsi gned short
signed int (*)

CodeWarrior Build Tools Reference for the eTPU 233

Pragmas for Code Generation

unsi gned i nt

signed long (*)

unsi gned | ong
signed long long (*)
unsi gned | ong | ong

Typeswith (*) are only considered with "#pragma enums_signed on". Thisoption
has no effect when #pragma enumsalwaysint is"on".

errno_name

Tells the optimizer how to find the er r no identifier.

Syntax
#pragma errno_nane id |

Remarks

When this pragmais used, the optimizer can use the identifier er r no (either a
macro or afunction call) to optimize standard C library functions better. If not
used, the optimizer makes worst-case assumptions about the effects of calsto the
standard C library.

NOTE TheMSL Clibrary already includes a use of this pragma, so you would only
need to useit for third-party C libraries.

If er r no resolves to avariable name, specify it like this:
#pragma errno_name _Errno

If er r no isafunction call accessing ordinarily inaccessible global variables, use
thisform:

#pragma errno_nane ...
Otherwise, do not use this pragmato prevent incorrect optimizations.

This pragma does not correspond to any panel setting. By default, this pragmais
unspecified (worst case assumption).

234

CodeWarrior Build Tools Reference for the eTPU

Pragmas for Code Generation

explicit_zero_data
Controls the placement of zero-initialized data.

Syntax
#pragma explicit_zero_data on | off | reset

Remarks

Places zero-initialized datainto the initialized data section instead of the BSS
section when on.

By default, this pragmaisof f .

float_constants

Controls how floating pointing constants are treated.

Syntax
#pragma fl oat_constants on | off | reset

Remarks

If you enable this pragma, the compiler assumes that all unqualified floating point
constant values are of typef | oat , not doubl e. This pragmais useful when
porting source code for programs optimized for the “f | oat ” rather than the
“doubl e” type.

When you enable this pragma, you can still explicitly declare a constant value as
double by appending a“D” suffix.

This pragma does not correspond to any panel setting. By default, this pragmais
disabled.

instmgr_file

Controlswhere theinstance manager database iswritten, to the target datadirectory or to a
separate file.

CodeWarrior Build Tools Reference for the eTPU 235

Pragmas for Code Generation

Syntax

#pragma i nstngr_file "nane"

Remarks

When the Use Instance Manager option ison, the IDE writes the instance
manager database to the project’s data directory. If the #pr agna
i nstngr _fil eisused, the database iswritten to a separate file.

Also, aseparate instance file is always written when the command-line tools are
used.

NOTE Should you need to report a bug, you can use this option to create a separate
instance manager database, which can then be sent to technical support with
your bug report.

longlong

Controls the availability of thel ong | ong type.

Syntax

#pragma | onglong on | off | reset

Remarks

When this pragmais enabled and the compiler istransating “C90” source code
(ISO/IEC 9899-1990 standard), the compiler recognizes a data type named | ong
| ong. Thel ong | ong type holds twice as many bits asthe| ong data type.

This pragma does not correspond to any CodeWarrior IDE panel setting.

By default, this pragmais ON for processors that support thistype. Itisof f when
generating code for processors that do not support, or cannot turn on, thel ong
| ong type.

longlong_enums

Controls whether or not enumerated types may have the size of thel ong | ong type.

Syntax

#pragma | ongl ong_enuns on | off | reset

236

CodeWarrior Build Tools Reference for the eTPU

Pragmas for Code Generation

Remarks

This pragma lets you use enumerators that are large enough to bel ong | ong
integers. Itisignored if you enablethe enunsal waysi nt pragma (described in
“enumsalwaysint” on page 232).

This pragma does not correspond to any panel setting. By default, this setting is
enabled.

min_enum_size

Specifiesthe size, in bytes, of enumeration types.
Syntax

#pragma min_enumsize 1 | 2| 4

Remarks

Turning on theenunsal waysi nt pragmaoverridesthis pragma The default is
1.

pool_strings

Controls how string literals are stored.

Syntax
#pragma pool _strings on | off | reset

Remarks

If you enable this pragma, the compiler collects al string constants into asingle
data object so your program needs one data section for all of them. If you disable
this pragma, the compiler creates a unique data object for each string constant.
While this decreases the number of data sections in your program, on some
processors it also makes your program bigger because it uses a less efficient
method to store the address of the string.

This pragmais especialy useful if your programis large and has many string
constants or uses the CodeWarrior Profiler.

CodeWarrior Build Tools Reference for the eTPU 237

Pragmas for Code Generation

NOTE If you enable this pragma, the compiler ignores the setting of the
pcrel strings pragma

This pragma corresponds to the Pool Strings setting in the CodeWarrior IDE’s
Properties> C/C++ Build > Settings > Tool Settings > Power PC Compiler > C/
C++ Language panel.

readonly_strings
Controls whether string objects are placed in aread-write or aread-only data section.

Syntax

#pragma readonly_strings on | off | reset

Remarks

If you enable this pragma, literal strings used in your source code are output to the
read-only data section instead of the global data section. In effect, these strings act
likeconst char *, eventhough their typeisreally char *.

This pragma does not correspond to any IDE panel setting.

reverse_bitfields
Controls whether or not the compiler reverses the bitfield allocation.

Syntax

#pragma reverse_bitfields on | off | reset

Remarks

This pragma reverses the bitfield allocation, so that bitfields are arranged from the
opposite side of the storage unit from that ordinarily used on the target. The
compiler still ordersthe bits within asingle bitfield such that the lowest-valued bit
isin the right-most position.

This pragma does not correspond to any panel setting. By default, this pragmais
disabled.

NOTE Limitation: please be aware of the following limitations when this pragmais
settoon:

238 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Code Generation

- the data types of the bit-fields must be the same data type
- the structure (st r uct) or ¢l ass must not contain non-bit-field members;
however, the structure (st r uct) can be the member of another structure

store_object_files

Controls the storage location of object data, either in the target data directory or asa
separate file.
Syntax

#pragna store_object _files on | off | reset

Remarks
By default, the IDE writes object data to the project’ s target data directory. When
this pragmais on, the object data is written to a separate object file.

NOTE For sometargets, the object file emitted may not be recognized as actual object
data.

This pragma does not correspond to any panel setting. By default, this pragmais
of f.

CodeWarrior Build Tools Reference for the eTPU 239

Pragmas for Code Generation

240 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Optimization

23

Pragmas for Optimization

global_optimizer
Controls whether the Global Optimizer isinvoked by the compiler.

Syntax

#pragnma gl obal _optim zer on | off | reset

Remarks

In most compilers, this #pragma determines whether the Global Optimizer is
invoked (configured by options in the panel of the same name). If disabled, only
simple optimizations and back-end optimizations are performed.

NOTE Thisisnot the sameas#pr agma opti m zati on_| evel . The Global
Optimizer isinvoked even at opt i m zati on_| evel O if #pragnma
gl obal _optim zer isenabled.

This pragma corresponds to the settings in the Global Optimizations panel. By
default, this setting ison.

opt_common_subs
Controls the use of common subexpression optimization.

Syntax

#pragnma opt_comon_subs on | off | reset

CodeWarrior Build Tools Reference for the eTPU 241

Pragmas for Optimization

Remarks

If you enable this pragma, the compiler replaces similar redundant expressions
with a single expression. For example, if two statements in a function both use the
expression

a*b*c+10

the compiler generates object code that computes the expression only once and
applies the resulting value to both statements.

The compiler applies this optimization to its own internal representation of the
object code it produces.

This pragma does not correspond to any panel setting. By default, this settingsis
related to the global_optimizer pragma.

opt_dead_assignments

Controls the use of dead store optimization.

Syntax
#pragna opt_dead_assi gnnents on | off | reset

Remarks
If you enable this pragma, the compiler removes assignments to unused variables
before reassigning them.

This pragma does not correspond to any panel setting. By default, this settingsis
related to the “global_optimizer” on page 241 level.

opt_dead_code
Controls the use of dead code optimization.

Syntax
#pragma opt _dead_code on | off | reset

Remarks

If you enable this pragma, the compiler removes a statement that other statements
never execute or call.

242 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Optimization

This pragma does not correspond to any panel setting. By default, this settingsis
related to the “global_optimizer” on page 241 level.

opt_lifetimes

Controls the use of lifetime analysis optimization.

Syntax
#pragma opt _|ifetines on | off | reset

Remarks

If you enable this pragma, the compiler uses the same processor register for
different variables that exist in the same routine but not in the same statement.

This pragma does not correspond to any panel setting. By default, this settingsis
related to the “global _optimizer” on page 241 level.

opt_loop_invariants

Controls the use of loop invariant optimization.

Syntax
#pragma opt _| oop_invariants on | off | reset

Remarks

If you enable this pragma, the compiler moves all computations that do not change
inside aloop outside the loop, which then runs faster.

This pragma does not correspond to any panel setting.

opt_propagation

Controls the use of copy and constant propagation optimization.

Syntax
#pragma opt _propagation on | off | reset

CodeWarrior Build Tools Reference for the eTPU 243

Pragmas for Optimization

Remarks

If you enable this pragma, the compiler replaces multiple occurrences of one
variable with a single occurrence.

This pragma does not correspond to any panel setting. By default, this settingsis
related to the “global_optimizer” on page 241 level.

opt_strength_reduction

Controls the use of strength reduction optimization.

Syntax
#pragnma opt_strength_reduction on | off | reset

Remarks

If you enable this pragma, the compiler replaces array element arithmetic
instructions with pointer arithmetic instructions to make loops faster.

This pragma does not correspond to any panel setting. By default, this settingsis
related to the “global _optimizer” on page 241 level.

opt_strength_reduction_strict

Uses a safer variation of strength reduction optimization.

Syntax
#pragma opt _strength_reduction_strict on | off | reset

Remarks

Liketheopt _strength_reducti on pragma, this setting replaces
multiplication instructions that are inside loops with addition instructions to speed
up the loops. However, unlike the regular strength reduction optimization, this
variation ensures that the optimization is only applied when the array element
arithmetic is not of an unsigned type that is smaller than a pointer type.

This pragma does not correspond to any panel setting. The default varies according
to the compiler.

244 CodeWarrior Build Tools Reference for the eTPU

Pragmas for Optimization

opt_unroll_loops
Controls the use of loop unrolling optimization.

Syntax
#pragma opt _unroll _loops on | off | reset

Remarks

If you enable this pragma, the compiler places multiple copies of aloop’s
statements inside aloop to improve its speed.

This pragma does not correspond to any panel setting. By default, this settingsis
related to the “global_optimizer” on page 241 level.

opt_vectorize_loops
Controls the use of loop vectorizing optimization.

Syntax
#pragma opt _vectorize_loops on | off | reset

Remarks
If you enable this pragma, the compiler improves |oop performance.

NOTE Do not confuse loop vectorizing with the vector instructions available in some
processors. Loop vectorizing is the rearrangement of instructionsin loops to
improve performance. This optimization does not optimize a processor's
vector data types.

By default, this pragmaisof f .

optimization_level
Controls global optimization.

Syntax
#pragma optim zation_level O | 1| 2] 3| 4] reset

CodeWarrior Build Tools Reference for the eTPU 245

Pragmas for Optimization

Remarks

This pragma specifies the degree of optimization that the global optimizer
performs.

To select optimizations, use the pragmaopt i m zati on_| evel withan
argument from O to 4. The higher the argument, the more optimizations performed
by the global optimizer. Ther eset argument specifies the previous optimization
level.

For more information on the optimization the compiler performs for each
optimization level, refer to the Targeting manual for your target platform.

These pragmas correspond to the settingsin the Global Optimizations panel. By
default, this pragmais disabled.

optimize_for_size

Controls optimization to reduce the size of object code.
#pragma optim ze_for_size on | off | reset

Remarks

This setting lets you choose what the compiler does when it must decide between
creating small code or fast code. If you enable this pragma, the compiler creates
smaller object code at the expense of speed. It alsoignoresthei Nl i ne directive
and generates function callsto call any function declaredi Nl i ne. If you disable
this pragma, the compiler creates faster object code at the expense of size.

The pragma corresponds to the Optimize for Size setting on the Global
Optimizations panel.

optimizewithasm

Controls optimization of assembly language.

Syntax
#pragma optim zewi thasmon | off | reset

Remarks

If you enable this pragma, the compiler also optimizes assembly language
statements in C/C++ source code.

246

CodeWarrior Build Tools Reference for the eTPU

Pragmas for Optimization

This pragma does not correspond to any panel setting. By default, this pragmais
disabled.

pack

Stores data to reduce data size instead of improving execution performance.

Syntax

#pragma pack()

#pragma pack(0 | n | push | pop)

n
One of

these integer values: 1, 2, 4, 8, or 16.

Remarks

NOTE

Usethis pragmato align data to use less storage even if the alignment might affect
program performance or does not conform to the target platform’s application
binary interface (ABI).

If this pragma’ s argument is a power of 2 from 1 to 16, the compiler will store
subsequent data structures to this byte alignment.

The push argument saves this pragma’ s setting on a stack at compiletime. The
pop argument restores the previously saved setting and removes it from the stack.
Using this pragma with no argument or with 0 as an argument specifies that the
compiler will use ABI-conformant alignment.

Not all processors support misaligned accesses, which could cause a crash or
incorrect results. Even on processors which allow misaligned access, your
program’s performance might be reduced. Y our program may have better
performanceif it treats the packed structure as a byte stream, then packs and
unpacks each byte from the stream.

Pragmapack isimplemented somewhat differently by most compiler vendors,
especially when used with bitfields. If you need portability, you are probably
better off using explicit shift and mask operationsin your program instead of
bitfields.

CodeWarrior Build Tools Reference for the eTPU 247

Pragmas for Optimization

strictheaderchecking
Controls how strict the compiler checks headers for standard C library functions.

Syntax
#pragma strictheaderchecking on | off | reset

Remarks

The 3.2 version compiler recognizes standard C library functions. If the correct
prototypeis used, and, in C++, if the function appearsinthe“st d” or root
namespace, the compiler recognizes the function, and is able to optimize callsto it
based on its documented effects.

When this#pragmais 0N (default), in addition to having the correct prototype, the
declaration must also appear in the proper standard header file (and not in a user
header or sourcefile).

This pragma does not correspond to any panel setting. By default, this pragmais
on.

248 CodeWarrior Build Tools Reference for the eTPU

eTPU Specific Features
Restrictions on 32-bit Variables

24

eTPU Specific Features

This chapter describes the eTPU specific features in the compiler:

“Restrictions on 32-bit Variables’
“Host Interface Files’
“eTPU Functions Structure”

“pragma ETPU_function”
“Memory Allocation”
“Channel Structure’

“Tooth Program Register (TPR) Structure”

“struct tpr_struct <varname> @ tpr:”

“Entry Table Intrinsic Functions”
“Predefined Symbols’

“Integer Types’
“Fractional Types’

“Inline Assembly”

“#pragma write”

“#pragma fill”

£__attribute ((expects flags))”

“__attribute ((no_save registers))”

“

__attribute ((pure_assembly))”
“€TPU Intrinsic Functions’

Restrictions on 32-bit Variables

eTPU has limited support for 32 bit variables. Thisis due to 24 bit natural word size of
€TPU. You can declare 32 bit variables, and perform moves (assignments). This allows
larger values to be moved around. Math operations are not supported for 32-bit values.

CodeWarrior Build Tools Reference for the eTPU

249

'
A

eTPU Specific Features
Host Interface Files

« Pointersto functions are not supported.
« Floating point are not supported.
» Standard libraries are not provided.

Host Interface Files

The compiler creates files intended for the CPU program, which configures eTPU. These
files are named as:

filename_CPU.letter

Where filename is the base name of the eTPU source file being compiled, and letter is an
aphabet letter from ato z.

eTPU Functions Structure

€TPU functions have a specia structure. An eTPU function consists of severa threads. A
thread is executed when the eTPU scheduler assigns execution to it. Using the special
structure the programmer can associ ate each thread's code with different conditionsin the
entry table. The specid structure of an eTPU function inludes the following elements:

¢ A #pragma ETPU_function declaration.
« A void function.

« Inthe main scope of the function, a series of if()/else statements, each testing one or
more elements of the channel condition see restrictions below.

— - hsr - Host service request 0..7
— -lsr - Link service request 0/1
— -ml- Matchl/Transition2 0/1
— -m2- Match2/Transitionl 0/1
- pin - Input pin 0/1

- flag0 0/1

- flagl 0/1

The threads code itself resides between these if then elses. Using the conditions the
compiler associates the thread's code with the correct entry points.

A final else (without if) should be present at the end of this structure to collect al the
unused entry points. A warning shall be issued if that else shall be omitted by the user.

In the thread's condition expression, usage of constantsis allowed as well as the following
operators: ==, 1=, &&, ||, !.

250

CodeWarrior Build Tools Reference for the eTPU

eTPU Specific Features
eTPU Functions Structure

There are restrictions on both possible conditions and the order in which they may occur.
The following notes give details:

¢ Inexpressionsthat do not explicitly test hsr, an implicit test of hsr==0 is assumed.

¢ The compiler would issue an error message if the condition expression is not valid
given the entry table that was chosen in the ETPU_function pragma. If thereis an x
in the column of acondition in the tablein al qualified entries, the condition cannot
be tested in that expression. For example the statement —if (Isr && pin) islegal
because after evaluating Isr==1 we have entries 10,11,24-31 qualified and in some of
them pin has a specific value.

e But,if (Isr && m1&& pin)isnotvalidsincelsr && ml qualifies10,11,30,31and in
all of them pin hasan X value and therefore none of them might be selected.

¢ Theorder of the conditions and events should be as follows. There are 3 groups.
Identifiers from alower group number should appear first. Thereis no order that
should be enforced within the group:

a hsr

b. lsr, m1,m2

c. pin, flago, flagl
An error should be generated when appropriate.
The order of the if then else blocks counts:

If (ml)

{

}

Else if (n2)

{

}

Wul d generate a different entry table than
If (nR)

{

}

Else if (ml)

{

}

since the first inplies
if ()

{

CodeWarrior Build Tools Reference for the eTPU 251

3
4

'
A

eTPU Specific Features
pragma ETPU_function

}
elseif (!'m && nR)
{
}

and the second inplies

if (nR)

{

}

else if (In2 && ml)
{

}

* Inevery expression, one of the following events must be tested and have a non zero
value: hsr, Isr, m1, m2.

pragma ETPU_function

#pragma ETPU_function name [, standardjalternate] [@ func_num];

This pragmatells the compiler that this function is an ETPU function. The compiler will
create the needed entry table section for this function so that execution would be given to
the different threads according to the condition expressions given in the function and the
standard|alternate specification. It would also locate this entry table section in the correct
location according to the given func_num.

If (standard|alternate) is not specified, standard is applied.
If afunc_numis not specified, the compiler would assign a number automatically.

Memory Allocation

The specia architecture of the eTPU is quite different from that of most common
architectures. The number of GPRsis small and there are alot of restrictions using them.
Thereis also no indirect access to memory with an offset from aregister. These
characteristics lead us to have a non standard memory allocation model.

Global addresses 0-7 are for internal compiler usage and should not be used by the
programmer.

252

CodeWarrior Build Tools Reference for the eTPU

eTPU Specific Features
Channel Structure

ETPU_functions arguments and static variables are allocated in a section that reside in the
channel parameter area pointed by the CPBA field. Access to these parameters shall be
using the selected channel relative addressing mode. The arguments and static variables of
an ETPU_function may occupy up to 512 bytes on the channel relative context. The
arguments are treated as static variables and continue to live after the thread ends.

Global variables are alocated in a section that residesin address 8 by default so that
access to these variables is done using the absol ute addressing mode when possible.

Spilled local variables are allocated along with the global variables and aso must be
accessed using the absol ute addressing mode when possible.

For eTPU2 spilled local variables are allocated in a separate section, which can be
accessed using the engine rel ative accessing mode.

Channel Structure

Tooth

Channels are represented by a C structure of type chan_struct, which is declared in the
standard header file.

Only constants must be assigned to the members. The compiler validates values specific to
each field and generates an error when required. When assigning a value to one of the
members, the compiler generates an instruction, which corresponds to afield name from
the architecture spec, and assigns this field the given constant.

NOTE Thereisabackward compatibility problem as some of the fields where
expanded in the HW and have an extra bit in eTPU2 so the users who used
CIRC and TDL in their eTPU application would have to check their code.

Program Register (TPR) Structure

The TPR structure exposes the TPR register fields to manipulation from the C language.
This structure is declared in the standard header file.

struct tpr_struct {
int TlICKS 1 10;
int TPR1O 1
i nt HOLD 1
int | PH 1
int MSSCNT : 2
int LAST 1

CodeWarrior Build Tools Reference for the eTPU 253

'
A

eTPU Specific Features
Entry Table Intrinsic Functions

}os

The user may use the following syntax to associate a variable with the TPR register:

struct tpr_struct <varname> @tpr;

Entry Table Intrinsic Functions

* Enabl

e _match()/Disable_match(): Sets or clears the ME bit in the entry table entries

which are associated with the thread.

o preload_pO1()/preload_p23(): Sets or clears the PP bit in the entry table entries,
which are associated with the thread.

NOTE

These functions are implemented only for backward compatibility. It is better
not to use them since if they are omitted, the compiler computes the best
preload option itself and optimizes the code accordingly.

« read_match(): Loads the values of the Match registersinto ERTA and ERTB.

Predefined

Symbols

The compiler supports the following predefined symbols:

Table 24.1
Symbol Description
_ DATE_ A string representing the compilation date.
__FILE__ A string representing the name of the file in which
the symbol appears.
__LINE__ A string representing the line number in which the
symbol appears.
__TIME__ A string representing the compilation time.
__ETPU__ A string representing the compilation for eTPU.
__ETPU2__ A string representing the compilation for eTPU2.
254 CodeWarrior Build Tools Reference for the eTPU

eTPU Specific Features
Integer Types

Integer Types

All standard C types are supported.

Two new integer data types are created such as int24, which would be the default for int
and unsigned int24, which would be the default for unsigned int.

long and unsigned long are the native types for 32 bits.

Thefollowing identifiers are also supported: _Boal, int8, int16, int32, int8 t, int16 t,
int24_t, int32_t, uint8, uint16, uint32, uint8_t, uint16_t, uint24 t, uint32_t.

Fractional Types

fract8, fract16, and fract24 types represent fractional numbers of the specified sizein bits.
Unsigned and signed modifiers can be applied to them. Unsigned fract can represent
numbers between 0 and 1. Signed fract can represent numbers between -1 and 1.

Inline Assembly

Theinline assembly statement syntax is:
asn{"<assenbly instructions>"};

Both multi line and single line assembly instructions may be omitted using this statement.
The <assembly instruction> would be according to the new assembly language which
shall be defined by DevTech.

Inline Assembler Usage

Usetheinline assembler in order to write assembler code that is €TPU specific and cannot
be expressed using the C language:

asmM{" add.f p, p, diob"};

Specifying Variables and Labels

Y ou may aso use local variable names and labels inside inline assembly statements to
reference variables of a C function or targets for change of flow directly.

In the example below, alocal variable name needs a @Rn suffix to be recognized. Do not
replace @Rn with an actual register number. It hasto be the verbatim text made of the
letters @, R, and n:

asm{" add x@un, p,diob"}; // x is a local variable

CodeWarrior Build Tools Reference for the eTPU 255

'
A

eTPU Specific Features
#pragma write

asm{" jnp | abel _nane"};
asm{" Id p, glob_var"}; // glob_var is a global variable

asn{" ldmp, chan_var"}; // chan_var is a variable allocated
on the channel paraneter ram

Finally, you can also declare labels using the inline assembler to, for example, mark the
beginning for a specia assembly loop or branch target:

asm{__nysnstart: jnp _ nysnstart};

Using Datatype Sizes

Y ou might want to reference the size of a structure from the inline assembler:
asm {addi x@wn, x@un, nyStruct @i zeof};

#pragma write

#pragma wite char, (text);

This pragma writes information into the host interface files. The created file would have
the name of the compiled file with the extension <char>. The <text> information can be
either direct text or ::ETPU macros, which are expanded at link time and can give the host
application information regarding the code and the data variables location and
initialization.

#pragma fill

#pragma fill =list, ...;
#pragma fill [size] @Il ocation = list,

The compiler will fill program memory with <list>. <list> items are any values or strings,
defined as constant data separated by commas.

When size is not specified the compiler will simply emit the list in memory. If <size> is
specified, the compiler will fill <size> words of memory with the data. The compiler will
truncate the list to fit size, or repeat it to fill exactly <size> words.

__attribute__ ((expects_flags))

Specifies that afunction is using the flags created in the caller function by the assignment
into the first argument

256 CodeWarrior Build Tools Reference for the eTPU

eTPU Specific Features
__attribute__((no_save_registers))

Syntax
attribute ((expects_flags)) function-declaration;
__attribute__ ((expects_flags)) function-definition;

__attribute__ ((no_save_registers))

Specifiesthat this function do not save and restore its registers. The only thing added in its
epilogue is an rtn instruction. This attribute is not recommended and is here only for
backwards compatibility with old code.

Syntax
__attribute_ ((no_save_registers)) function-declaration;
__attribute__((no_save_registers)) function-definition;

__attribute__ ((pure_assembly))

Specifies that this function contains only inline assembly instructions and it will not be
optimized. It would also not have any prologue or epilogue. This attribute is not
recommended and is here only for backwards compatibility with old code.

The recommended way of doing it is simply writing the code in an assembly file and not
as Cinline assembly.

Syntax
attribute ((pure_assenbly)) function-declaration;
__attribute__ ((pure_assenbly)) function-definition;

eTPU Intrinsic Functions

Fraction to integer conversion. Use the following intrinsics to smoothly convert afraction
variable into integer variable without causing it to round to O or 1.

_int_fromfract

Coverts from signed fraction to signed integer.
_int_fromufract

Converts from unsigned fraction to signed integer.
_uint_fromfract

Converts from signed fraction to unsigned integer.

CodeWarrior Build Tools Reference for the eTPU 257

A 4
4\

eTPU Specific Features
eTPU Intrinsic Functions

_uint_fromufract

Converts from unsigned fraction to unsigned integer.

258 CodeWarrior Build Tools Reference for the eTPU

Index

Symbols

#abort 104

#elif 104

#else 104

#endif 104

#error 104

#ifdef 104

#ifndef 104

#if 103

#include 105

#i ncl ude
diagnosing error messages 200
GCC policy 61
including once 225
letter case 57, 206
other operating systems 59
paths 222
searching 60, 229

#i ncl ude directive
IDE 26
letter case 31

#l i ne 223

#path 106

#quit 104

#rem 105

#warn 104

$ 188

* 119

. (location counter) 121

lef 37

See also assignment, equals.

See also equals, assignment.
__ABS FILE__ 109
attribute ((deprecated)) 162
attribute ((force_export)) 163
__attribute__((nalloc)) 163
__attribute_ ((returns_tw ce)) 164
__attribute__ ((unused)) 165
attribute ((used)) 164,165
__cplusplus 168

__onec - 168
__DATE__ 109

__DATE__ 167,168

__decl spec(never_inline) 161

__enbedded_cpl uspl us 169

__FILE__ 109
__FILE__ 169
__func__ 170

__FUNCTION__ 170
__ide_target 170
__label __ 144
__LINE__ 109
__LINE__ 171

_ MAERKS 171
__PRETTY_FUNCTI ON__ 172
_profile__ 172
_ QEASM__ 108
__STDC__ 172
__TIME__ 109
__TIME__ 173
__VERSION__ 108

A
after 123
aggressive_inline 231
aliasing 164
align 121
alignment 116
-ansi 39
ANSI strict 181
arguments
list 183
asnpoundconment 187
asmsem col conrment 187
assembler
about 81
command-line 81
command-line switches 83
command-line syntax 83
directives 92
preprocessor 97
assembly file

CodeWarrior Build Tools Reference for the eTPU

259

GNU Compiler Collection extensions 138
-c 69
C/C++ Warnings panel 28
c99 181
cat ch statement 20
-char 41
char type 25
character strings
See strings.
check_header _fl ags 221
- codegen 69
command files 37
command-line assembler 81
command-line options
-ansi 39
-Cc 69
-char 41
- codegen 69
-convert pat hs 59
-cwd 60
- D+ 60
-defaults 41
-define 60
-di sassenbl e 49
-E 61
- encodi ng 42
-enum 69
-EP 61
-ext 70
-flag 43
- gcc_ext ensi ons 43
-gccext 43
-gcci ncl udes 61

A
format 87 -hel p 49
assignment -1- 62
accidental 215 -1+ 62
assignment, in LCF 118 -incl ude 63
aut o_i nl i ne pragma 22 -inline 73
-ir 63
B -M44
bitfield 238 - make 44
-mapcr 44
C -maxerrors 50
c - maxwar ni ngs 51

-MD 45

-m n_enum si ze 70
- MM 45

- M\D 45

-nmsext 46
-nmegstyl e 51
-nofail 52

- nopreconpi | e 66
-nosyspat h 66
-074

-O+ 74

-once 46

-opt 75

-P 63

- ppopt 65

- pragna 46
-preconpil e 64
-prefix 65

- preprocess 64

- progress 52
-rel ax_pointers 47
-requireprotos 47
-S 52

-search 47
-stderr 52
-stdinc 66

- st dkeywor ds 39
-strict 40
-strings 71
-timng 53
-trigraphs 48

- U+ 66

-undefine 67

260

CodeWarrior Build Tools Reference for the eTPU

-verbose 53

-version 53

-war ni ngs 54

-wr apl i nes 58
command-line switches

assembler 83
compound literal 133
const_strings 188
-convert pat hs 59
current location 96
-cwd 60

D
- D+ 60
data storage 93
dead stripping

prevention 115, 117
-defaults 41
- define 60
directives

#l i ne 223

data storage 93

symbol 95
-di sassenbl e 49
dollar sign 188
dol | ar _i dentifiers 188
Don't Inline option 21
dont _i nl i ne pragma 21
dont _reuse_strings 231
dont _reuse_strings pragma 25
doubl e type 235
dynam c_cast keyword 20

E
-E61
-E option 223
Enable Exception Handling option 20
-encodi ng 42
-enum 69
enunal waysi nt 232,233
enumerated types 197
-EP 61
equals
instead of assignment 215

errno_nane 234
error messages

diagnosing #i ncl ude directives 200
exception handling 20
explicit_zero_data 235
expressions, in LCF 118
-ext 70
ext ended_errorcheck 197
extensions

GNU C 189

GNU Compiler Collection 138

F
faster_pch_gen 221
-flag 43

flat_include 222
fl oat type 235
float _constants 235
f or statement 215
force_active 115,117, 122
format
assembly file 87
assembly statement 88
fullpath_file 222
ful | pat h_prepdunp 222
function
declarations 183
prototypes 183

G

GCC. See Gnu Compiler Collection.

-gcc_ext ensi ons 43

gcc_ext ensi ons 189

-gccext 43

-gcci ncl udes 61

gl obal _optim zer 241

GNU C extensions 189

GNU Compiler Collection
extensionto C 138
fileinclude policy 61

H
header files

CodeWarrior Build Tools Reference for the eTPU

i gnore_ol dstyl e 183
immediate integer values 90
-include 63
infinite loop, creating 216
-inline 73
inlining

turning off 161
instmgr_file 235
integral types, in LCF 117
-ir 63

K
keep_section 115, 117, 122
keepcoment s 223
keywords
dynami c_cast 20
standard 130
typeid 20

L
labels
local 144
LCF. Seelinker command files
limitations
reverse_bitfields 238
| i ne_prepdunp 223

A

including once 225 alignment 116

searching 229 arithmetic operations 116
-hel p 49 assignment 118

comments 117

I dead stripping prevention 117
-1- 62 expressions 118
-1+ 62 file selection 119
identifier force_active 122

$ 188 integral types 117

dollar signsin 188 keep_section 122
i f statement 215 memory 113, 122-124

ref_include 124
sections 114, 124-126
segments 113
structure 113
symbols 118
syntax
syntax
LCF 115
variables 117
writeb 126
writeh 127
writes 127
writew 128
writing data 120
local
labels 144
| ongl ong 236
| ongl ong_enuns 236
loop
infinite 216

M

-M44

macro directives
assembler 101

macr o_prepdunp 224

linker macros 167
See alsolinker command files assembler preprocessor 98
linker command files 37 predefined 108
* 119 - make 44
after 123 Makefile 44, 45
align 121 -mapcr 44
262 CodeWatrrior Build Tools Reference for the eTPU

mar k 190

maxerrorcount 198

-maxerrors 50

- maxwar ni ngs 51

-MD 45

memory 122-124

message 199

-m n_enum size 70

m n_enum si ze 237

- MM 45

- MVD 45

mpwe_newl i ne 190

mpwe_r el ax 191

-meext 46

nsg_show | i neref 224

nsg_show real ref 224

-nmegstyl e 51

mul ti byt eawar e 191

mul ti byt eaware_preserve_literals
192

MWClIncludes 34

MWLibraries 34

N

-nofail 52

- nopreconpi | e 66
-nosyspat h 66
not once 225

@)

-074

-Or 74

-once 46

once 225

only_std_keywords 184
only_std_keywor ds pragma 130
-opt 75

opt _common_subs 241

opt _common_subs pragma 148
opt _dead_assi gnnment s 242
opt _dead_assi gnment s pragma 150
opt _dead_code 242

opt _dead_code pragma 146
opt_lifetinmes 243

opt _| oop_i nvari ant s pragma 153
opt _propagati on 243
opt _propagat i on pragma 149
opt _strengt h_reducti on 244
opt _strengt h_reducti on pragma 154
opt _strength_reduction_strict 244
opt _unrol | _| oops 245
opt _unrol | _I oops pragma 155
opt _vectorize_|l oops 245
optimization

loops 155

opt _unrol | _I oops pragma 155
optim zation_|level 245
optimze_for_size 246
optim zew t hasm 246

P

-P 63

pack 247

PATH 34

pointer
aliasing 164

pool _strings 237

pop 226

- ppopt 65

- pragna 46

pragma_pr epdunp 227

pragmas
aggressive_inline 231
ANSI strict 181
asnmpoundconmment 187
asmsem col conment 187
c99 181
check_header _fl ags 221
const _strings 188
dollar_identifiers 188
dont _reuse_strings 231
enunal waysi nt 232,233
errno_nane 234
explicit_zero_data 235
ext ended_errorcheck 197
faster_pch_gen 221
flat_include 222
fl oat _constants 235

CodeWarrior Build Tools Reference for the eTPU

263

fullpath_file 222

ful | pat h_prepdunp 222

gcc_ext ensi ons 189

gl obal _optim zer 241

i gnore_ol dstyl e 183

instmgr_file 235

keepcoment s 223

| i ne_prepdunp 223

| ongl ong 236

| ongl ong_enuns 236

macr o_pr epdunp 224

mar k 190

maxerrorcount 198

message 199

m n_enum si ze 237

npwc_newl i ne 190

mpwe_r el ax 191

nsg_show_| i neref 224

nsg_show real ref 224

mul ti byt eawar e 191

mul ti byt eaware_preserve_litera
I's 192

not once 225

once 225

only_std_keywords 184

opt _conmon_subs 241

opt _dead_assi gnnment s 242

opt _dead_code 242

opt _lifetines 243

opt _l oop_i nvari antsopt _| oop_in
vari ants 243

opt _propagati on 243

opt _strengt h_reducti on 244

opt _strengt h_reduction_strict
244

opt _unrol | _| oops 245

opt _vectorize_|l oops 245

optim zation_|l evel 245

optimze_for_size 246

opti m zew t hasm 246

pack 247

pool _strings 237

pop 226

pragma_prepdunp 227

preconpi |l e_target 227
push 226

readonl y_strings 238
requi re_prototypes 184
reverse bitfields 238
scope of 178

show error_fil estack 200
showressagenunber 199

si npl e_pr epdunp 228
space_prepdunp 228
srcrelincl udes 229
store_object_files 239
strict header checki ng 248
suppress_war ni ngs 200
sym 200

syspat h_once 229

t ext _encodi ng 192
trigraphs 193

unsi gned_char 194

unused 201

war n_any_ptr_i nt_conv 203
war n_enpt ydecl 204

war n_ext racomma 205

war n_f i | enanecaps 206
war n_fil enamecaps_syst em 206
war n_hi ddenl ocal s 207

warn_i | | pragnma 208
warn_i | | t okenpasti ng 208
war n_i | | uni onmenbers 208

war n_i nmpl _f 2i _conv 209

war n_i nmpl _i 2f _conv 210

war n_i npl _s2u_conv 210

war n_i mplicitconv 211

war n_| ar gear gs 212

war n_m ssi ngreturn 212

war n_no_si de_ef f ectwarn_no_si d
e_effect 213

war n_paddi ng 214

warn_pch_portability 214

war n_possunwant 215

warn_ptr_int_conv 216

war n_resul t not used 217

war n_undef macr o 217

warn_uninitializedvar 218

CodeWarrior Build Tools Reference for the eTPU

war n_unusedar g 218
war n_unusedvar 219
war ni ng 202
war ni ng_errors 203
pragmas, deprecated
mul ti byt eawar e 191
-preconpil e 64
preconpil e_target 227
predefined macros 167
-prefix 65
- preprocess 64
preprocessor
assembler 97
preprocessor directives 106
preprocessor operators 106
- progress 52
prototypes
and old-style declarations 183
not requiring 183
requiring 24
push 226

Q

ge _asm 83

R
readonly_strings 238
ref_include 115, 117, 124
-rel ax_pointers 47
requi re_prototypes 184
-requireprotos 47
ret ur n statement

empty 197
reverse_bitfields 238
runtime type information 20

S
-§52
-search 47
sections 114, 124-126
semicolon

accidental 215
setjnmp() 165

settings panel

C/C++ Warnings 28
show error _filestack 200
shownessagenunber 199
si nmpl e_pr epdunp 228
space_prepdunp 228
srcrelincludes 229
statements

catch 20

for 215

if 215

return 197

t hrow 20

try 20

whi | e 215
-stderr 52
-stdi nc 66
- st dkeywor ds 39
store_object_files 239
-strict 40
stri ct header checki ng 248
-strings 71
strings

reusing 25
suppr ess_war ni ngs 200
sym 200
symbol

directives 95
symbols 90

defining 90

globa 90

local 90

reserved 90

scope 90

weak 91
symbols, in LCF 118
syntax

assembler 83
syspat h_once 229
system files 105

T

t ext _encodi ng 192
t hr owstatement 20

CodeWarrior Build Tools Reference for the eTPU

265

-timng 53
-trigraphs 48
trigraphs 193
t ry statement 20
type
char 25
doubl e 235
float 235
unsi gned char 25
typei d keyword 20
typeof 189

U

- U+ 66

-undefine 67

unsi gned char type 25
unsi gned_char 194
unused 201

user files 105

V

variables, in LCF 117
-verbose 53
-version 53

wW

war n_any_ptr_i nt_conv 203
war n_enpt ydecl 204

war n_ext racomma 205

war n_f i | enanecaps 206

war n_fil enamecaps_syst em 206

war n_hi ddenl ocal s 207

warn_i | | pragnma 208
warn_i | | t okenpasti ng 208
war n_i | | uni onmenbers 208

war n_i mpl _f 2i _conv 209
war n_i mpl _i 2f _conv 210
war n_i mpl _s2u_conv 210
war n_i npl i citconv 211
war n_| ar gear gs 212

war n_m ssi ngreturn 212
war n_paddi ng 214

war n_pch_portability 214

war n_possunwant 215
warn_ptr_int_conv 216
war n_resul t notused 217
war n_undef macr o 217
warn_uninitializedvar 218
war n_unusedar g 218
war n_unusedvar 219
war ni ng 202
war ni ng pragma 54, 55, 56, 57
war ni ng_errors 203
-war ni ngs 54
warnings

setting inthe IDE 28
weak symbols 91
whi | e statement 215
-wr apl i nes 58
writeb 120, 126
writeh 120, 127
WRITES 120
writes 127
writew 120, 128

266

CodeWarrior Build Tools Reference for the eTPU

	Introduction
	Compiler Architecture
	Linker Architecture

	Using Build Tools with the CodeWarrior IDE
	Choosing Tools and Files
	IDE Options and Pragmas
	IDE Settings Panels
	C/C++ Language Settings Panel
	C/C++ Preprocessor Panel
	C/C++ Warnings Panel

	Using Build Tools on the Command Line
	Configuring Command-Line Tools
	Setting CodeWarrior Environment Variables
	Setting the PATH Environment Variable

	Invoking Command-Line Tools
	Getting Help
	File Name Extensions

	Command-Line Options for Standard C Conformance
	Command-Line Options for Language Translation
	Command-Line Options for Diagnostic Messages
	Command-Line Options for Preprocessing
	Command-Line Options for Object Code
	Command-Line Options for Optimization
	Command-Line Options for eTPU Code Generation
	Working with the Assembler
	Understanding the eTPU Assembler
	Using the Command-Line Assembler
	File Extensions
	Command-Line Syntax
	Command-Line Switches

	Assembly File Layout
	Instructions, directives and Packets
	Syntax
	Statement Layout
	Symbols
	Strings

	Instructions and Directives
	Memory Spaces and Sections
	Data Storage
	Symbol Directives
	The Current Location
	Change of Flow
	Code Checking

	eTPU Assembler Preprocessor
	Preprocessor Macros
	Regular (Single-Line) Macros
	Multi-line Macros
	Macro-Related Directives
	Conditional Assembly
	Including Files
	Preprocessor Operations
	Predefined Macros

	Working with the ELF Linker
	Invocation and Command Line Switches
	Structure of Linker Command Files
	Memory Segment
	Sections Segment
	Closure Blocks

	Linker Command File Syntax
	Alignment
	Arithmetic Operations
	Comments
	Dead Strip Prevention
	Expressions, Variables and Integral Types
	File Selection
	Writing Data to Memory

	Alphabetical Keyword Listing
	Code and Data Sections

	C Compiler
	Extensions to Standard C
	Controlling Standard C Conformance
	C++-style Comments
	Unnamed Arguments
	Extensions to the Preprocessor
	Non-Standard Keywords
	Declaring Variables by Address

	C99 Extensions
	Controlling C99 Extensions
	Trailing Commas in Enumerations
	Compound Literal Values
	Designated Initializers
	Predefined Symbol __func__
	Implicit Return From main()
	Non-constant Static Data Initialization
	Variable Argument Macros
	Extra C99 Keywords
	C++-Style Comments
	C++-Style Digraphs
	Empty Arrays in Structures
	Hexadecimal Floating-Point Constants
	Variable-Length Arrays
	Unsuffixed Decimal Literal Values
	C99 Complex Data Types

	GCC Extensions
	Controlling GCC Extensions
	Initializing Automatic Arrays and Structures
	The sizeof() Operator
	Statements in Expressions
	Redefining Macros
	The typeof() Operator
	Void and Function Pointer Arithmetic
	The __builtin_constant_p() Operator
	Forward Declarations of Static Arrays
	Omitted Operands in Conditional Expressions
	The __builtin_expect() Operator
	Void Return Statements
	Minimum and Maximum Operators
	Local Labels

	Intermediate Optimizations
	Intermediate Optimizations
	Dead Code Elimination
	Expression Simplification
	Common Subexpression Elimination
	Copy Propagation
	Dead Store Elimination
	Live Range Splitting
	Loop-Invariant Code Motion
	Strength Reduction
	Loop Unrolling

	Inlining
	Choosing Which Functions to Inline
	Inlining Techniques

	Declaration Specifications
	Syntax for Declaration Specifications
	Declaration Specifications
	Syntax for Attribute Specifications
	Attribute Specifications

	Predefined Macros
	Using Pragmas
	Checking Pragma Settings
	Saving and Restoring Pragma Settings
	Determining Which Settings Are Saved and Restored
	Invalid Pragmas
	Pragma Scope

	Pragmas for Standard C Conformance
	Pragmas for Language Translation
	Pragmas for Diagnostic Messages
	Pragmas for Preprocessing
	Pragmas for Code Generation
	Pragmas for Optimization
	eTPU Specific Features
	Restrictions on 32-bit Variables
	Host Interface Files
	eTPU Functions Structure
	pragma ETPU_function
	Memory Allocation
	Channel Structure
	Tooth Program Register (TPR) Structure
	Entry Table Intrinsic Functions
	Predefined Symbols
	Integer Types
	Fractional Types
	Inline Assembly
	Inline Assembler Usage
	Specifying Variables and Labels
	Using Datatype Sizes

	#pragma write
	#pragma fill
	__attribute__((expects_flags))
	__attribute__((no_save_registers))
	__attribute__((pure_assembly))
	eTPU Intrinsic Functions

	Index

