
Freescale Semiconductor
Porting eTPU Code to the
Freescale eTPU Build Tools

© Freescale Semiconductor, Inc., 2010. All rights reserved.

1 Overview
This guide takes you through the process of porting your
application to the new Freescale eTPU compiler (FC).

The FC is as backward compatible with the old tools as
possible. However, in cases where the behavior of the old
tools is ambiguous or does not comply with a standard in a
way that harms quality, the FC implements a different
behavior that corrects the situation. For this reason, and
because of lack of support by old tools and incomplete or
ambiguous features, programmers may have written non-
portable code. This document covers the topics that must be
considered while porting code to the FC.

1.1 Converting Inline Assembly
Language to the New Syntax

The new assembly language syntax is mnemonic-based,
which is the de facto standard in the semiconductor industry.
The first step in porting your code is converting your files to
this new assembly language syntax.

Document ID: ETPUPORTCODE
Rev. 0.1, 08/2010

Contents
1. Overview . 1
2. Non-Standard Syntax . 2
3. Functional Incompatibilities . 2

Porting eTPU Code to the Freescale
eTPU Build Tools

Porting eTPU Code to the Freescale eTPU Build Tools, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

2

Non-Standard Syntax

The easiest way to do this is to put all your source code files into a single folder and issue the command:

etpu_asm_converter.exe -c <folder-name>

The converter converts all C language files in the folder and renames each file into
<filename>.converted.c.

For more information regarding the converter tool, please refer to etpu_asm_converter.doc. Make
sure you read the Limitations section of this document, and make any changes required.

2 Non-Standard Syntax
The Freescale eTPU compiler is built on a standard Freescale compiler infrastructure. Further, the
compiler conforms to industry standards and therefore generates all mandated warning and error messages.
In some cases, non-compliant code that compiled using the old tools will not compile using the FC and
therefore requires minor changes. These changes are easy to make because the FC issues an error in such
cases and identifies the location of the problem code.

After you fix all non-standard code, the FC should be able to compile your files.

3 Functional Incompatibilities
Once the FC can compile your application, the next step is to ensure that the program still does what is
supposed to. This section covers the main topics that should be considered when porting your code. There
are two main reasons for incompatibilities: 1) the old tools generated code that does not comply with the
standards and 2) code was written in an unsafe way and is therefore sometimes ambiguous or incorrect.
This document suggests the best way to fix such ambiguity and to write safer code that is not
implementation dependent.

3.1 C99 and TR18037 Compliance

3.1.1 Types
• int and fract interaction: applications that use fract arithmetic should be reviewed carefully.

TR18037 specifically says that a conversion from fract to int implies rounding towards 0.
While porting several functions, we noticed that some programmers use int and fract variables
together, as if no conversion occurs between them — this is the ByteCraft tool’s behavior. If you
want no conversion to occur, use the _int_from_fract intrinsic function. Notice that the type
of a variable determines the code generated for it. For example, if you multiply two fract
variables, the compiler generates a fract multiplication instruction; however, if the variables are
of type int, the compiler generates an int multiplication instruction. As result, you should
review such code carefully.

• Specifying a register should be considered as a type modifier and not as a type by itself. If the type
is not specified, then the variable is made the default type — int24. For example:

register_diob x; // x is of type int24 and is stored in diob

register_diob fract8 x; // x is of type fract8 and is stored in diob

Porting eTPU Code to the Freescale eTPU Build Tools, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

3

Functional Incompatibilities

• Division of signed variables is correctly handled by the Freescale compiler, while the ByteCraft
compiler generated an unsigned division. If you want an unsigned division, then change the types
of the variables involved or do a type caste before the division.

NOTE

• Signed division is much more expensive (in terms of code size and
cycles); as a result, unless you really need signed variables, stick to
unsigned variables.

• Signed bitfields are handled correctly by Freescale compiler; the
ByteCraft compiler treated them as unsigned.

3.2 Inline Assembly Language Topics

3.2.1 %hex <opcode>

While porting several applications, we noticed that in some cases, programmers inserted hex directives
in their code. Although the converter successfully converts this directive to a .word directive and the code
compiles, this is a non-portable feature that relies on specific code generation. For example, if the opcode
in question were a load from address 9 in memory in which the user expected that a specific variable was
allocated, it might be that it will not be allocated to this location by the FC. If the opcode in question were
a function call, then it encodes the address that was given to the function by the old tools and will not work
with the new ones. Therefore, in most cases, programmers should avoid writing such code and should use
specific inline assembly instructions instead.

3.2.2 C-Inline Assembly Language Interaction
The programmer must not make any assumptions regarding issues such as register allocation, variable
storage location, or code location.

All interaction between C source code and inline assembly language should be done symbolically.

The following code example is a sure way to get into trouble:

tmp = accel_tbl[tmp];

#asm(alu a = d; ram p <- start_period.)

Here, the programmer assumes (based on the old tool’s behavior) that tmp will reside in register d.

This code can be easily fixed:

asm{move a,tmp@Rn; ldm p,start_period};

For details regarding inline assembly language usage, refer to the Inline Assembly chapter of
eTPU_Build_Tools_Reference.pdf.

3.2.3 Inline Assembly Language Functions
Many users have written functions that are fully implemented using inline assembly.

A few changes might be needed for such functions.

Porting eTPU Code to the Freescale eTPU Build Tools, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

4

Functional Incompatibilities

Let's take as an example this code sample (which is an extract from Freescale set4) and see how to change
it to standard, safe code:

/*

fract24 mc_ctrl_pid(fract24 error,

 mc_ctrl_pid_t *p_pid)

*/

#asm

MC_CTRL_PID:

 /* Inputs: */

 /* register a error */

 /* register diob ... p_pid */

 /* Limit error to range <MIN24, MAX24> */

 if V == 0 then goto MC_CTRL_PID_I, flush.

 if N == 0 then goto MC_CTRL_PID_I, no_flush.

…

#endasm

1. All inline assembly language code should reside inside a function, so we should first uncomment
the function's prototype. We should also make sure that the function's name is the name used to call
this function. Notice that in many cases, programmers call a label at the beginning of the inline
assembly language; however, since label names are local, this will not work, so we must name our
function using the label name. The label itself might now be redundant (if it is not referenced from
within the function), in which case we can remove it or comment it out:

fract24 MC_CTRL_PID(fract24 error,

 mc_ctrl_pid_t *p_pid)

{

#asm

//MC_CTRL_PID:

 /* Inputs: */

 /* register a error */

 /* register diob ... p_pid */

 /* Limit error to range <MIN24, MAX24> */

 if V == 0 then goto MC_CTRL_PID_I, flush.

 if N == 0 then goto MC_CTRL_PID_I, no_flush.

…

#endasm

}

2. The function's prototype is a very important feature that was disregarded by the old tools. The
prototype contains information that is used by the calling function to create correct and safe code
that does not destroy local variables used in the calling function. This is why it is very important

Porting eTPU Code to the Freescale eTPU Build Tools, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

5

Functional Incompatibilities

to create a full prototype for the function. In this function, we can see that the function expects the
arguments to be passed through registers a and diob. This information should be in the
prototype. Now, the comments that describe this are also redundant, so we remove them:

fract24 MC_CTRL_PID(register_a fract24 error,

 register_diob mc_ctrl_pid_t *p_pid)

{

#asm

 /* Limit error to range <MIN24, MAX24> */

 if V == 0 then goto MC_CTRL_PID_I, flush.

 if N == 0 then goto MC_CTRL_PID_I, no_flush.

…

#endasm

}

3. Since this is a pure assembly language function, and we do not want the compiler to generate a
prologue and epilogue for the function and do not perform any optimizations inside it, we should
add pure_assembly as an attribute to the function. If the function does not contain an rtn
instruction at its end, and you want the compiler to generate this instruction, you can use attribute
no_save_registers instead of pure_assembly.

4. Since the function has a hidden argument — the flags V and N in the first two lines of the function
— you should include this information in the function's prototype, so the optimizer knows that
flags are important to this function and does not optimize away flags generation in the calling
function:

__attribute__((expects_flags)) __attribute__((pure_assembly)) fract24 MC_CTRL_PID(
register_a fract24 error, register_diob mc_ctrl_pid_t *p_pid)

{

#asm

 /* Limit error to range <MIN24, MAX24> */

 if V == 0 then goto MC_CTRL_PID_I, flush.

 if N == 0 then goto MC_CTRL_PID_I, no_flush.

…

#endasm

}

5. If your function contains inline assembly rtn instructions, you must add the -inline off
argument to the compiler's command line, so this function is not inlined into a calling function.
Such a function cannot be inlined since it contains explicit use of the ret instruction which, if
inlined, causes undesired results.

Porting eTPU Code to the Freescale eTPU Build Tools, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

6

Functional Incompatibilities

NOTE

The correct and standard way to write a function that is fully implemented
in assembly language is to put the function in an assembly language file
(.asm), so the function is assembled by the assembler. This is the
recommended way of writing assembly language functions.

Porting eTPU Code to the Freescale eTPU Build Tools, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

7

Functional Incompatibilities

ETPUPORTCODE
Rev. 0.1
08/2010

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2010.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
(800) 521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 2666 8080
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	Porting eTPU Code to the Freescale eTPU Build Tools
	1 Overview
	1.1 Converting Inline Assembly Language to the New Syntax

	2 Non-Standard Syntax
	3 Functional Incompatibilities
	3.1 C99 and TR18037 Compliance
	3.1.1 Types

	3.2 Inline Assembly Language Topics
	3.2.1 %hex <opcode>
	3.2.2 C-Inline Assembly Language Interaction
	3.2.3 Inline Assembly Language Functions

