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1 Overview
This guide takes you through the process of porting your 
application to the new Freescale eTPU compiler (FC). 

The FC is as backward compatible with the old tools as 
possible. However, in cases where the behavior of the old 
tools is ambiguous or does not comply with a standard in a 
way that harms quality, the FC implements a different 
behavior that corrects the situation. For this reason, and 
because of lack of support by old tools and incomplete or 
ambiguous features, programmers may have written non- 
portable code. This document covers the topics that must be 
considered while porting code to the FC.

1.1 Converting Inline Assembly 
Language to the New Syntax

The new assembly language syntax is mnemonic-based, 
which is the de facto standard in the semiconductor industry. 
The first step in porting your code is converting your files to 
this new assembly language syntax.
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The easiest way to do this is to put all your source code files into a single folder and issue the command:

etpu_asm_converter.exe -c <folder-name> 

The converter converts all C language files in the folder and renames each file into 
<filename>.converted.c.

For more information regarding the converter tool, please refer to etpu_asm_converter.doc. Make 
sure you read the Limitations section of this document, and make any changes required.

2 Non-Standard Syntax
The Freescale eTPU compiler is built on a standard Freescale compiler infrastructure. Further, the 
compiler conforms to industry standards and therefore generates all mandated warning and error messages. 
In some cases, non-compliant code that compiled using the old tools will not compile using the FC and 
therefore requires minor changes. These changes are easy to make because the FC issues an error in such 
cases and identifies the location of the problem code.

After you fix all non-standard code, the FC should be able to compile your files.

3 Functional Incompatibilities
Once the FC can compile your application, the next step is to ensure that the program still does what is 
supposed to. This section covers the main topics that should be considered when porting your code. There 
are two main reasons for incompatibilities: 1) the old tools generated code that does not comply with the 
standards and 2) code was written in an unsafe way and is therefore sometimes ambiguous or incorrect. 
This document suggests the best way to fix such ambiguity and to write safer code that is not 
implementation dependent.

3.1 C99 and TR18037 Compliance

3.1.1 Types
• int and fract interaction: applications that use fract arithmetic should be reviewed carefully. 

TR18037 specifically says that a conversion from fract to int implies rounding towards 0. 
While porting several functions, we noticed that some programmers use int and fract variables 
together, as if no conversion occurs between them — this is the ByteCraft tool’s behavior. If you 
want no conversion to occur, use the _int_from_fract intrinsic function. Notice that the type 
of a variable determines the code generated for it. For example, if you multiply two fract 
variables, the compiler generates a fract multiplication instruction; however, if the variables are 
of type int, the compiler generates an int multiplication instruction. As result, you should 
review such code carefully.

• Specifying a register should be considered as a type modifier and not as a type by itself. If the type 
is not specified, then the variable is made the default type — int24. For example:

register_diob x; // x is of type int24 and is stored in diob

register_diob fract8 x; // x is of type fract8 and is stored in diob
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• Division of signed variables is correctly handled by the Freescale compiler, while the ByteCraft 
compiler generated an unsigned division. If you want an unsigned division, then change the types 
of the variables involved or do a type caste before the division.

NOTE

• Signed division is much more expensive (in terms of code size and 
cycles); as a result, unless you really need signed variables, stick to 
unsigned variables.

• Signed bitfields are handled correctly by Freescale compiler; the 
ByteCraft compiler treated them as unsigned.

3.2 Inline Assembly Language Topics

3.2.1 %hex <opcode>

While porting several applications, we noticed that in some cases, programmers inserted hex directives 
in their code. Although the converter successfully converts this directive to a .word directive and the code 
compiles, this is a non-portable feature that relies on specific code generation. For example, if the opcode 
in question were a load from address 9 in memory in which the user expected that a specific variable was 
allocated, it might be that it will not be allocated to this location by the FC. If the opcode in question were 
a function call, then it encodes the address that was given to the function by the old tools and will not work 
with the new ones. Therefore, in most cases, programmers should avoid writing such code and should use 
specific inline assembly instructions instead.

3.2.2 C-Inline Assembly Language Interaction
The programmer must not make any assumptions regarding issues such as register allocation, variable 
storage location, or code location.

All interaction between C source code and inline assembly language should be done symbolically.

The following code example is a sure way to get into trouble:

tmp = accel_tbl[tmp];

#asm( alu a = d;  ram p <- start_period. )

Here, the programmer assumes (based on the old tool’s behavior) that tmp will reside in register d.

This code can be easily fixed:

asm{move a,tmp@Rn; ldm p,start_period};

For details regarding inline assembly language usage, refer to the Inline Assembly chapter of 
eTPU_Build_Tools_Reference.pdf.

3.2.3 Inline Assembly Language Functions
Many users have written functions that are fully implemented using inline assembly. 

A few changes might be needed for such functions.
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Let's take as an example this code sample (which is an extract from Freescale set4) and see how to change 
it to standard, safe code:

/*

fract24 mc_ctrl_pid( fract24 error,

                     mc_ctrl_pid_t *p_pid)

*/

#asm

MC_CTRL_PID:

  /* Inputs:                                          */

  /* register a ...... error */

  /* register diob ... p_pid */

  /* Limit error to range <MIN24, MAX24>              */

  if V == 0 then goto MC_CTRL_PID_I, flush.

  if N == 0 then goto MC_CTRL_PID_I, no_flush.

…

#endasm

1. All inline assembly language code should reside inside a function, so we should first uncomment 
the function's prototype. We should also make sure that the function's name is the name used to call 
this function. Notice that in many cases, programmers call a label at the beginning of the inline 
assembly language; however, since label names are local, this will not work, so we must name our 
function using the label name. The label itself might now be redundant (if it is not referenced from 
within the function), in which case we can remove it or comment it out:

fract24 MC_CTRL_PID( fract24 error,

                     mc_ctrl_pid_t *p_pid)

{

#asm

//MC_CTRL_PID:

  /* Inputs:                                          */

  /* register a ...... error */

  /* register diob ... p_pid */

  /* Limit error to range <MIN24, MAX24>              */

  if V == 0 then goto MC_CTRL_PID_I, flush.

  if N == 0 then goto MC_CTRL_PID_I, no_flush.

…

#endasm

}

2. The function's prototype is a very important feature that was disregarded by the old tools. The 
prototype contains information that is used by the calling function to create correct and safe code 
that does not destroy local variables used in the calling function. This is why it is very important 
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to create a full prototype for the function. In this function, we can see that the function expects the 
arguments to be passed through registers a and diob. This information should be in the 
prototype. Now, the comments that describe this are also redundant, so we remove them:

fract24 MC_CTRL_PID( register_a fract24 error,

                     register_diob mc_ctrl_pid_t *p_pid)

{

#asm

  /* Limit error to range <MIN24, MAX24>              */

  if V == 0 then goto MC_CTRL_PID_I, flush.

  if N == 0 then goto MC_CTRL_PID_I, no_flush.

…

#endasm

}

3. Since this is a pure assembly language function, and we do not want the compiler to generate a 
prologue and epilogue for the function and do not perform any optimizations inside it, we should 
add pure_assembly as an attribute to the function. If the function does not contain an rtn 
instruction at its end, and you want the compiler to generate this instruction, you can use attribute 
no_save_registers instead of pure_assembly.

4. Since the function has a hidden argument — the flags V and N in the first two lines of the function 
— you should include this information in the function's prototype, so the optimizer knows that 
flags are important to this function and does not optimize away flags generation in the calling 
function:

__attribute__((expects_flags)) __attribute__((pure_assembly)) fract24 MC_CTRL_PID( 
register_a fract24 error, register_diob mc_ctrl_pid_t *p_pid)

{

#asm

  /* Limit error to range <MIN24, MAX24>              */

  if V == 0 then goto MC_CTRL_PID_I, flush.

  if N == 0 then goto MC_CTRL_PID_I, no_flush.

…

#endasm

}

5. If your function contains inline assembly rtn instructions, you must add the -inline off 
argument to the compiler's command line, so this function is not inlined into a calling function. 
Such a function cannot be inlined since it contains explicit use of the ret instruction which, if 
inlined, causes undesired results.
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NOTE

The correct and standard way to write a function that is fully implemented 
in assembly language is to put the function in an assembly language file 
(.asm), so the function is assembled by the assembler. This is the 
recommended way of writing assembly language functions.
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