WLAN FEIC Update

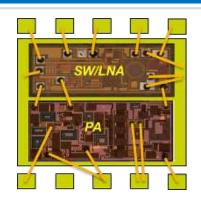
Pierre Guillot & Awanish Mishra

June 2019 | Session #AMF-NET-T3712

SECURE CONNECTIONS FOR A SMARTER WORLD

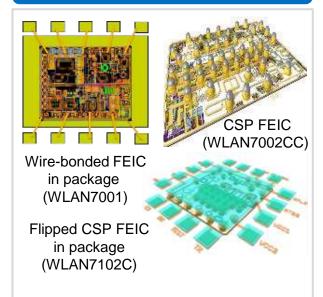
Agenda

- WLAN FEIC Roadmap
- WiFi 6 (11ax) FEICs
- 5.8GHz KPI
- Next Gen FEIC to support 7GHz
- 2.4GHz KPI
- Summary

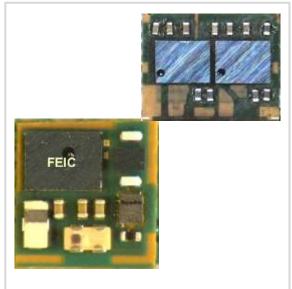


NXP's High Performance Monolithic Solutions for WLAN

NXP offers solutions for all integration levels Integration 2019-**WLAN FEIC** 2018 య 5-7.2 GHz WLAN FEIC Performance 802.11a/n/ac/ax 2.4 & 5.8 GHz **WLAN FEIC CSP** and Module 802.11a/n/ac/ax 15 5.8 GHz 16 dBm Pout LNA/Switch QFN 2.0x1.7 @ -43dB EVM 2.4 & 5.8 GHz 17.5dBm Pout and 1024 QAM for 1.8% EVM QFN 1.2x1.4 Bluetooth PA LNA Concept RF (MCS9) **CSP** and Module 2.4 & 5.8 GHz QFN 1.5x1.5 in development in production


WLAN RF Front-End Product Families

FEMs


- FEM = Front-End module (multiple dies)
- 1 die for XLNA
- 1 die for PA
- Wire bonds packaged

FEICs

- FEIC = Front-End IC (monolithic)
- 1 Monolithic die integrating PA, LNA and Switch
- Wire bond or <u>CSP</u>

RFFEs

- RFFE = RF Front-End
- Module with FEICs or FEMs + SAW/BAW filters and combiners / splitters inside

SiPs

IphoneX WLAN SiP Module

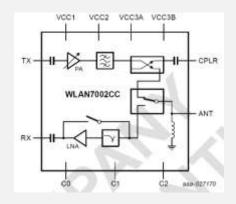
- SiP = System in Package
- Module with FEICs or FEMs, BT PA + WLAN Chipset inside

*with leading RF module partner

WLAN7002CC 5GHz

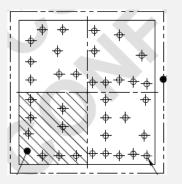
PA + Switch + LNA WLAN FEIC device

Features / Benefits


- √ 802.11ac/ax and legacy compliant 5 6 GHz FEIC
- ✓ LNA + PA + switch
- ✓ 3 TX gain modes with varying power efficiency and linearity
- √ 2 RX gain modes
- ✓ Directional power coupler
- ✓ High linearity @ -47dB EVM levels
- ✓ Version with Power Detector available July 2019

Schedule

- ✓ Final samples available now
- ✓ MP Sep 2019



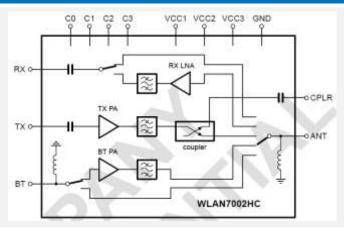
Block Diagram

Package

WLCSP36 1.63 x 1.53 x 0.225

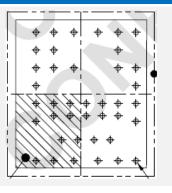
WLAN7002HC 2.4GHz

PA + Switch + LNA WLAN FEIC device


Features / Benefits

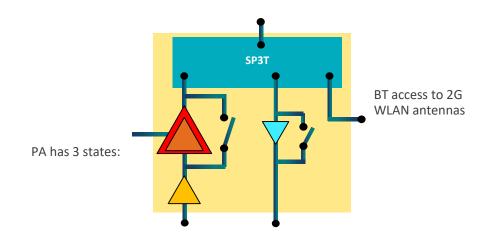
- √ 802.11ac/ax and legacy compliant 2.4 GHz FEIC
- ✓ LNA + PA + switch
- ✓ Bluetooth (BT) high-gain / high-efficiency and bypass modes
- √ 5 TX gain modes with varying power efficiency and linearity
- √ 2 RX gain modes
- ✓ Directional power coupler
- √ High linearity @ -47dB EVM levels

Schedule


- ✓ Final samples available May 2019
- ✓ MP Sep 2019

Package

WLCSP40 1.83 x 1.62 x 0.225



Multi-Mode FEICs Optimized for 11ax EVM & Efficiency

FEMs optimized for 11ax, with 3 operating modes as needed:

- Mode 1: High Gain with Low EVM
 - -47 dB EVM for output power up to +16 dBm
 - Used for 11ax when high power is needed.
- Mode 2: High Gain, High Efficiency
 - -2x2 + 2x2 use case.
 - ~ 50% current consumption of High gain low EVM mode.
 - Pout vs. EVM curve is shifted down by 3dB.
- Mode 3: Low Gain with Low EVM
 - -47dB EVM for PA output powers from -15dBm to 4dBm
 - Used for 11ax when RF power requirements are modest
 - Offers much reduced DC power consumption for short links

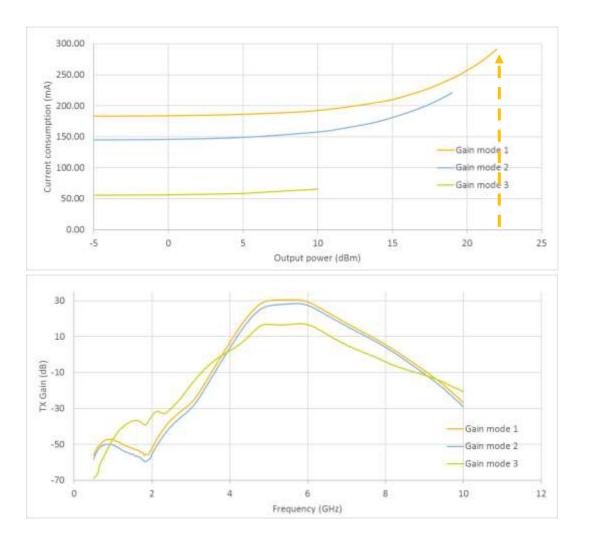
Allows 4x TX to be used for extended durations								
	High Gain Low EVM	High Gain High Efficiency	Low Gain (power save)					
Supply Current (mA)	<260 mA	<162 mA	<65 mA					
DC Power	~1.0 W	~ 0.62 W	~0.25 W					
EVM	<-47dBc @ 16.5 dBm <-20dBc @ 22.5 dBm	<-43dBc @ 16.5 dBm <-20dBc @ 19.5 dBm	<-47dBc @ 4.5 dBm <-20dBc @ 8.5 dBm					

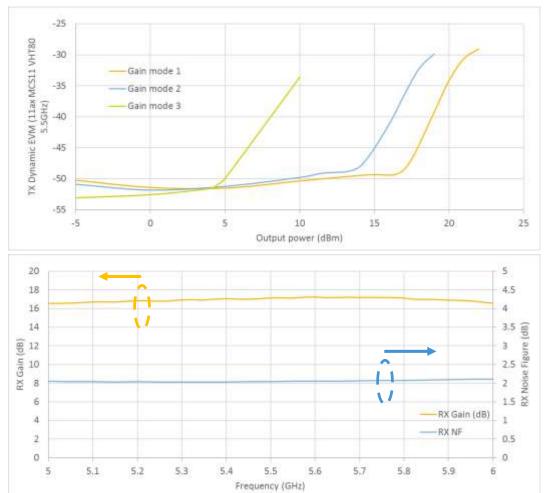
Key Performance Summary: General

Parameter	Min	Тур	Max	Unit	Conditions
General					
Supply voltage	3.0	3.85	4.81)	V	Designed for direct battery supply 1) Short peak voltage up to 5.25V during charger transitions allowed
Operating temperature	-20		85	С	
Frequency range	5.15		5.95	GHz	
Channel BW	20		80	MHz	
Control IO		1.8		V	Supports 1.8V/2.5V logic
Standby current			20	uA	

Key Performance Summary: RX

Parameter	Min	Тур	Max	Unit	Conditions
RX					
Gain	15	17	19	dB	
Gain flatness		+/-0.5		dB	160MHz channel
NF		2.3	2.9	dB	
IIP3		2		dB	
ICC		11.5		mA	
BYPASS					
Bypass gain		-5		dB	
IIP3 bypass		28		dB	
ICC			20	uA	


Key Performance Summary: TX

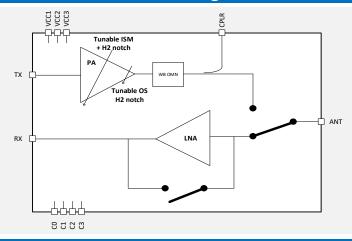

Parameter	Min	Тур	Max	Unit	Conditions
TX					
Gain		30		dB	
Gain flatness		+/-0.5		dB	160MHz channel
DEVM					
MCS9 / VHT80		-45	-38	dB	@17.5dBm / 50Ohm / Vnom / high linearity mode
MCS11 / VHT80		-46	-39	dB	@16.5dBm / 50Ohm / Vnom / high linearity mode
MCS11 / VHT80		-48	-41	dB	@14.5dBm / 50Ohm / Vnom / high linearity mode
ICC					
MCS9 / VHT80		245	270	mA	@17.5dBm / 50Ohm / Vnom / high linearity mode

NXP patent-pending technology ensures header, short payload, long payload performance are all identical

WLAN 11ax 5.8GHz Data Summary

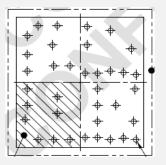
5+6GHz Switchable FEIC

PA + Switch + LNA WLAN FEIC device


Features / Benefits

- √ 802.11ac/ax and legacy compliant 5 6 GHz & 6 7 Ghz FEIC (band switchable)
- ✓ LNA + PA + switch
- √ 3 TX gain modes with varying power efficiency and linearity
- √ 2 RX gain modes
- ✓ Directional power coupler/Detector
- √ High linearity @ -47dB EVM levels
- ✓ Industry smallest area and lowest height

Schedule


- ✓ ES October 2019
- ✓ MP- Q3-2020

Block Diagram



Package

- WLCSP36
- ✓ 1.63 x 1.63 x 0.225
- Bump map compatible with WLAN7002CC

Key Performance Summary: General

Parameter	Min	Тур	Max	Unit	Conditions			
General								
Supply voltage	3.0	3.85	4.81)	V	Designed for direct battery supply 1) Short peak voltage up to 5.25V during charger transitions allowed			
Operating temperature	-20		85	С				
Frequency range	2.4		2.5	GHz				
Channel BW	20		40	MHz				
Control IO		1.8		V	Supports 1.8V/2.5V logic			
Standby current			25	uA				

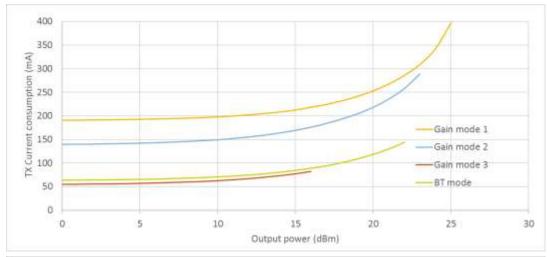
Key Performance Summary: RX

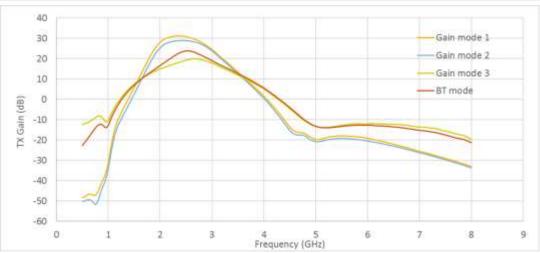
Parameter	Min	Тур	Max	Unit	Conditions
RX					
Gain	13.5	16.5	20	dB	
Gain flatness		+/-0.1		dB	40MHz channel
NF		1.9	2.5	dB	
IIP3		2.5		dB	
ICC		11.5		mA	
BYPASS					
Bypass gain		-5		dB	
IIP3 bypass		40		dB	
ICC			25	uA	

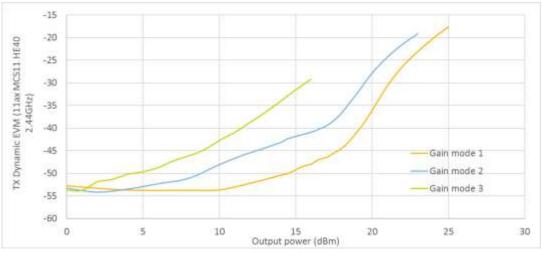
Key Performance Summary: TX WLAN

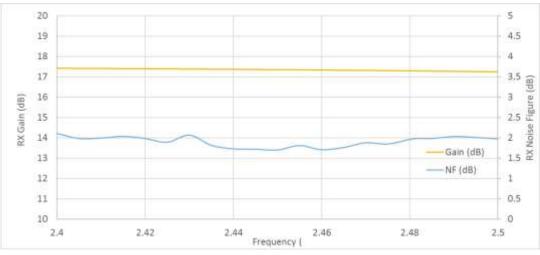
Parameter	Min	Тур	Max	Unit	Conditions
TX					
Gain		30		dB	
Gain flatness		+/-0.2		dB	40MHz channel
DEVM					
MCS9 / VHT40		-42	-35	dB	@19dBm / 50Ohm / Vnom / high <u>linearity</u> mode
MCS11 / VHT40		-49	-41	dB	@16.5dBm / 50Ohm / Vnom / high linearity mode
MCS11 / VHT40		-49	-43	dB	@14.5dBm / 50Ohm / Vnom / high linearity mode
ICC					
MCS9 / VHT80		285	310	mA	@19dBm / 50Ohm / Vnom / high linearity mode

NXP patent-pending technology ensures header, short payload, long payload performance are all identical




Key Performance Summary: TX BT


Parameter	Min	Тур	Max	Unit	Conditions
TX					
Gain		20		dB	
DEVM					
EDR / 8DPSK (rms)			2	%	
EDR / 8DPSK (peak)			5	%	
ICC					
GFSK		85	95	mA	@16.5dBm / 50Ohm / Vnom
		100	110	mA	@18.5dBm / 50Ohm / Vnom
		120	130	mA	@20.5dBm / 50Ohm / Vnom



WLAN 11ax 2.4Ghz Data Summary

Summary

- NXP WLAN 11AX (WIFI 6) FEIC are best in class
- Qualified on QCOM Hastings platform (QCA6390/91)
- Suitable for smartphones, handheld devices, mobile devices etc.

SECURE CONNECTIONS FOR A SMARTER WORLD