The Rise and Evolution of Gateways and Vehicle Network Processing

Brian Carlson

Director, Product Line Management Automotive Microcontrollers & Processors – Connectivity & Security

June 2019 | Session #AMF-AUT-T3619

Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

Agenda

- What is a Automotive Gateway?
- Gateway Evolution
 - -Overview, Market Trends, Architecture
- NXP Gateway Reference Solutions
- Summary

For More Information

What is an Automotive Gateway?

https://www.nxp.com/video/:AUTOMOTIVE-GATEWAY-VID

Local Video

The Automotive Gateway is Central to the Vehicle

Automotive Gateway is Central for Vehicle Communications

Key Gateway Functions

Gateway Capability	Description
Protocol Translation	Translating data and control information to/from incompatible networks to enable communications between them
Data Routing	Routing of data on a path to reach its intended destination. It may be on different networks requiring protocol translation.
Diagnostic Routing	Routing of diagnostic messages between external diagnostic devices and ECUs which may involve translation between diagnostic protocols such as DoIP and UDS.
Firewall	Filtering inbound and outbound network traffic based on rules, disallowing data transfers from unauthorized sources. Advanced firewalls may include context-aware filtering.
Message Mirroring	Capturing data from received interfaces to transmit over another interface for diagnostics or data logging (storage)
Intrusion Detection	Monitoring network traffic for anomalies that may indicate intrusion
Network Management	Manages the states and configuration of the network and ECUs connected to network, and support diagnostics
Key Management	Secure processing and storage of network keys and certificates
OTA Management	Managing remote OTA firmware updates of ECUs within the vehicle that are accessible from the gateway

Automotive Industry Megatrends

Megatrends Force Vehicle Architecture Transformation

Gateway Rise and Evolution

- No or limited connectivity
- No or limited security
- Basic routing
- Limited bandwidth / scalability (kilobit / Megabit interfaces)

- High-speed wireless interfaces (4G→5G, Wi-Fi)
- High security, isolation, public key crypto, contextual firewall, intrusion detection
- Advanced routing, vehicle OTA, analytics, ECU consolidation, new services
- High-bandwidth, scalable architectures (Gigabit interfaces)

Key Gateway Use Cases

- The Gateway is becoming the central, critical component in vehicle architectures
 - System security, OTA management, applications/services, analytics, vehicle compute, and more
- Gateways are shifting to software-centric solutions \rightarrow introducing new services
 - Enables OEM differentiation, operational efficiency, and new revenue generation
 - Improves customer satisfaction
- Protocol and Data Translation
 - Network protocol-to-protocol translation
 - Raw data-to-contextual information
- Network Security
 - High-performance contextual firewall
 - Intrusion Detection and Prevention System
 - Authentication and Secure Messages
 - Network Key Management

- Over-the-Air (OTA) Updates Management
 - Remote upgrades (new features, safety/security patches...)
- Apps Processing / Services
 - ECU consolidation
 - Analytics (edge processing and edge-to-cloud)
 - Remote monitoring and condition-based maintenance (prognostics / vehicle health monitoring)
 - Centralized functions (vehicle identity, power strategy...)
 - Agile deployment of future functionality

Market Trends: Networking

- Move to a predominately Ethernet backbone
 - Bandwidth needs autonomous driving platforms, infotainment
 - Domain controller approach domain isolation; simplifies logistics of deploying vehicle platform
 - IP Routing, VLAN & >L3 firewalling to isolate & protect Ethernet domains
 - Diagnostics over IP (DoIP) usage widespread
- Hybrid Approach during 2020 to 2025
 - Typical: 3-5 Ethernet domains + 10+ CAN
- # of CAN channels increasing
 - Isolation of increasing number of ECUs
 - Up to ~175 ECUs in some high-end vehicles!

Market Trends: Network Security

- Gateway is considered as a central location for security
 - Policing vehicle information, monitoring traffic between networks, security key management
- Growth of Ethernet
 - Wider range of known attacks
 - Ways to protect:
 - Layered network hierarchy
 - Contextual firewalls, deep packet inspection (DPI), etc...
 - Firewalling & Security brings significantly greater performance requirements than CAN
 - Need for a processor with network security in mind

Market Trends: Processor Security

- Industry attention after security hacks publicized in 2015
- Need to secure gateway processors from malicious attacks
 - Taking control of the ECU
 - Stealing Intellectual Property
- Connected services driving additional layers of security in the gateway
 - Public Key handling acceleration, connecting through internet
 - Physical protection of keys guaranteed strong root of trust.
 Extremely high value keys that need protected

Market Trends: Over-The-Air (OTA)

- Over-the-Air firmware/software updates is a key
 trend in the industry
- Trend to move OTA Management function in Gateway ECU
 - Centralized management of OTA deployment in-vehicle
 - Interface to OEM servers
 - Security is paramount
- Utilizing OTA mechanism to deploy new features via SW in field (Agile SW deployment)
 - Build performance overhead into hardware
 - In-field, test & deploy new customer features as use cases emerge

Market Trends: Connectivity

- Trusted & untrusted connectivity
 - Untrusted infotainment (IVI) system
 - Connected car vs In-Vehicle Network
 - New services being introduced to vehicles (e.g., OTA)
- Move to separation of connectivity
 - Trusted: Gateway
 - Untrusted/Consumer: IVI
- Enabling new features
 - OTA Updates
 - Remote Diagnostics Tester in gateway (Diagnostics over IP)
 - IoT Connectivity Translation of raw data into rich information
 - Cloud Offload e.g., Analytics, Modelling vehicle behaviour

Market Trends: Processing

- 1000's of DMIPS performance needed to support future service-oriented gateway providing new capabilities and services
- ECU consolidation: Feature deployment by SW package rather than new ECU
- Data Analytics: Descriptive / Diagnostics / Predictive
 - Edge analytics
 - Cloud connectivity
 - Machine Learning (ML)

Gateway Evolution – Architectures

0

CAN Central Gateway Architecture

- Legacy Automotive Networks
 - Typically 3-8 CAN networks
 - Typically 1-2 FlexRay networks
- Increased Bandwidth
 - but, small compared to consumer / networking world
 - Proprietary protocols for higher bandwidth
- Physical Isolation
 - Functional domains
 - Safety / Non-safety
- Gateway Role
 - Firewall internal traffic
 - Protocol translation

Hybrid Ethernet Architecture

- Legacy + Ethernet Networks
 - CAN, FlexRay & Ethernet
- High-bandwidth Data
 - 100Mbit →1Gbit Ethernet
 - ADAS and Infotainment drive higher data rates
 - Improved ECU program time in factory
- Gateway role
 - Firewall internal & external
 - Efficient protocol translation
 - ECU consolidation
 - New apps & services

Ethernet Backbone with Domain Controllers

- Ethernet
 Backbone with
 Domain
 Controllers
 - ECU consolidation
 - Distributed gateway
- Central Compute
 - Strategy / Decision making
 - Distributed vs Centralized

Central Compute Architecture

- Central Compute + I/O Gateways
 - No functional domains
 - Strategy for vehicle fully owned by Central Compute
- I/O Gateways Connect Edge Nodes to Central Compute
 - Distributed processing
 - Optimize network utilization
- Benefits:
 - Network architecture optimised to vehicle topology
 - Less wires (less weight, power, cost)

'Edge Nodes' e.g. Radar ECU, Powertrain ECU

Moving Towards Central Compute: "Server in the Car"

- Network Security
 - -Intrusion Detection and Prevention
 - -Firewall
- Applications Server
- Integration of Cloud and Fog Services into the Vehicle Architecture
- Proliferation of PHY Technologies
 - -100Base-T1 -> 1000Base-T1, 10 Mbps, 10 Gbps, 25 Gbps, 10GBASE-KR (802.3ap), ...
- Communication Paradigms Evolve
 - -Service-based versus signal-based
 - -Authentication
 - -Encryption

NXP Secure Ethernet Gateway Reference Design

Hardware Features

- 5 x 100Mbit/s Ethernet
 - 4x100Base-T1
 - 1x100Base-TX for Diagnosis/SW Update
- 8 x CAN (CAN-FD compatible)
- 2 x LIN
- eMMC (4GB)
- 3 x PWM / Digital IN
- 2 x Analog IN
- 2 x HS Switch OUT
- Wake IN/Wake OUT
- 1 x RS232 (option)
- JTAG Debug

Based on NXP MPC5748G Gateway Microcontroller

MPC5748G-GW-RDB

Information: <u>MPC5748G-GW-RDB Secure Ethernet</u> <u>Gateway</u>

NXP Components:

MPC5748G (Gateway MCU), S32K144 (Monitor MCU), FS6522 (Power SBC), SJA1105Q (5-Port Ethernet switch), TJA1044 (CAN PHY), TJA1043 (CAN PHY), TJA1021T (LIN PHY), TJA1102 (Ethernet PHY), TJA1100 (Ethernet PHY)

Cost: \$449

How to buy: NXP.com

Get to Know the MPC5748G-GW-RDB

NXP Secure Ethernet Gateway Block Diagram

Hardware Resources:

- 5 x 100Mbit/s Ethernet
 - 4x100Base-T1
 - 1x100Base-TX for DoIP
- 8 x CAN(CAN-FD compatible)
- 2 x LIN
- eMMC (4GB)
- 3 x PWM / Digital IN
- 2 x Analog IN
- 2 x HS Switch OUT
- Wake IN/Wake OUT
- 1 x RS232
- JTAG Debug
- Support ISO26262 functional safety features:
 - ASIL D Safety power SBC FS65xx
 - ASIL B MPC5748G as main MCU
 - ASIL B S32K144 as sub-MCU for monitoring/supervising
 - ASIL A SJA1105Q 5-ports Ethernet Switch
 - Fault management and reset logic circuit

Gateway Demo Architecture

MPC-LS Vehicle Network Processing Solution

- Enables Next-gen VNP Solutions
 - Automotive Microcontroller + Network Processing
 - (Gigabit Ethernet Packet Routing) + Applications
 - MPC5748G + LS1043A (MCU + MPU)
 - Available today

Feature Set

- CAN Signal Gateway (ASIL B)
- 4x Arm Cortex-A53 (LS1043A)
- Packet Forwarding Engine

OS Support

- AUTOSAR: Real-time CAN gateway
- FreeRTOS: limited support
- Linux: Ethernet routing, applications processing

MPC-LS Vehicle Network Processing (VNP) Reference Design Board (RDB)

- Real-time Gateway Processing
- Applications Processing
- Gigabit Ethernet Acceleration
- Embedded Security

Part Number: MPC-LS-VNP-RDB

- Price: \$749 Available: July'19 for approved customers
- Reference Design: 90% of BOM is Automotive Grade
- Includes SW enablement and demonstrations

NXP Components:

- MPC5748G (MCU), LS1043A (Comms Processor), SJA1105SEL (5-port Ethernet switch), PF8200 (Power Management IC)
- TJA1081TS (FlexRay), TJA1024HG (Quad LIN), TJ1102HN (Dual Ethernet PHY), TJA1048T (Dual CAN Transceiver)
- NTS0102 (Dual Supply Transceiver), NX5P3090UK (USB Power Switch)

 \mathbb{N}

www.nxp.com/MPC-LS-VNP-RDB

MPC-LS VNP Reference Design Board Key Components

LS1043A Console connector En la Dual-stacked USB connector **RGMII EC1 and EC2 connector** Aquantia 10G connector Auto Ethernet Port 1 Auto Ethernet Port 2 **RGMII Ethernet Phy connected to** SJA1105 switch CALT PORTS

MPC5748G Console connector

Reset button

MPC-LS-VNP-RDB Block Diagram

NXP Device

Processors

- MPC5748G Automotive Microcontroller
- LS1043A Communications Processor

• Memory

- 2 GB DDR3L @ up to 1.6 GT/s
- 1 GB NAND flash
- 64 MB Serial NOR flash
- 8 GB eMMC

• Storage

M.2 M-Slot for optional PCIe SSD

• NXP Support Devices

- PF8200 Power Management IC
- SJA1105SEL Ethernet Switch
- TJA1024 LIN PHY
- TJA1048 CAN PHY
- TJA1081 FlexRay PHY
- TJA1102 100 Mbps Ethernet PHY

• PCB

- Single 6-layer board ~ 6.1 x 6.4 inches
- 90% of BOM Automotive Grade

Demonstration Software

MPC-LS Demo Applications Software

Value Proposition:

Ethernet Packet Acceleration vs SW-based competition

Ethernet Packet Acceleration

Web-based Application with below functionalities:

- Demonstrating packet acceleration during network load
- □ Enabling and disabling of HW acceleration (Slow Path/Fast path with load on primary cores)
- □ Realtime CPU Load monitoring
- Router setup/configuration connecting two PCs

Automotive Data Logger

- □ Vehicle Health Parameters recorder "relevant" data from Vehicle logged into a mass storage.
- □ Calypso receiving the CAN data from an external CAN traffic generator.
- Data transmitted via IPC to Layerscape for logging.
- Logged Data shared over cloud
- Data fetched from cloud for monitoring.

Value Propositions:

- Cloud connectivity (Apps Processing)
- PCle memory
- MCU to MPU (CAN-Eth)
- Security (CAN, Eth & Cloud)

Software Defined Network (SDN) in Vehicular Networks

Full functional SDN Stack showcased on one Arm Cortex-A53 core in Layerscape

COMPANY PUBLIC 37

Value Propositions:

Summary

- Automotive Gateways are critical for providing secure communications between vehicle domains, but are evolving to provide more capabilities:
 - Over-the-Air Updates, Intrusion Detection, Analytics, Vehicle Health/Prognostics, Apps/Services...
- Multiple approaches to In-Vehicle Network architectures across carmakers and over the next decade:
 - No gateways \rightarrow Central Gateway
 - Central Gateways + Domain Controllers
 - Central Compute \rightarrow Server in the Car
- Gateways are evolving quickly to meet new demands driven by vehicle electronics: connected car, infotainment, ADAS/autonomous driving,...
 - More performance, security, connectivity, higher bandwidth, safety
- NXP is leading the way in / vehicle network processors to help drive the Gateway Evolution and enable carmakers' innovations

For More Information

- NXP.com resources:
 - NXP Central Gateway Site
 - NXP Secure Gateway & In-Vehicle Networking
- NXP Connects Sessions and Demo:
 - AMF-AUT-T3662 "Layerscape in Automotive—Multi-Arm Processors for Telematics, Gateway and AD Sensor Fusion"
 - AMF-AUT-T3657 "Service-Oriented Architecture— Design and Implementation Using Automotive Linux BSP"
 - AMF-AUT-T3697 "PF81/PF82 PMICs for High-Performance Applications Processors"
 - Demonstration Technology Lab Kiosk #209 "Unlocking Vehicle Data with the MPC-LS Chipset"

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.