

Jeff Steinheider

Director Product Marketing Industrial Applications Processors

June 2019 | Session #AMF-EDG-T3667

SECURE CONNECTIONS FOR A SMARTER WORLD

Agenda

- Security at the Edge
- NXP Secure Gateways With the LS1012A
- Software Solutions for Secure Cloud Connected Devices
- Turnkey Systems

The AI / IoT Era is Driving Growth for Connected Devices

"The 4th Tectonic Shift in Computing"

AI / IoT Disruption is the New Growth Engine 1, 2, 3, 4...

... Changing the Rules of Engagement with the Market

Very diverse end devices Fragmented customer base Wide range of applications & ecosystem

The Gartner Report(s) described herein, (the "Gartner Report(s)") represent(s) research opinion or viewpoints published, as part of a syndicated subscription service, by Gartner, Inc. ("Gartner"), and are not representations of fact. Each Gartner Report speaks as of its original publication

Customer Pain Point: Rising Cost of IoT Solutions

Customer Pain Points: System Complexity & Security¹

"70% of embedded developers decide on the processor's ecosystem first"

2017 Embedded Developers Survey Diverse cloud & AI solutions

Fragmented connectivity protocols

Operating system
& software
portability

Data Privacy & Security Concerns

Data Breach Examples

Retail / Healthcare Jun 2018, Feb 2015, May 2014, Sep 2014, Dec 2013

Social Media / Search June 2016, Aug 2013

Banking / Credit Rating July 2017, June 2014

Airlines Sep 2018

Government regulations

NXP Solutions for Edge Computing

NXP Scalable Industrial & IoT Processing Continuum

LS1012A: First 64-bit Single Core ARM Cortex A53 Processor

World's Lowest Power 64-bit ARM Based Processor

Target Applications

- Trust-enabled IoT Gateways
- Consumer NAS
- Mobile NAS

- Ethernet drives for data center storage
- Entry-level broadband Ethernet gateways
- Building and Factory automation

Development platforms:

- LS1012A-RDB
- FRWY-LS1012A

Core complex

- 1x 64-bit Cortex-A53 with Neon SIMD engine
- Speed up to 800 MHz
- Parity-protected 32 KB L1 instruction and 32 KB L1 data cache
- 256 KB L2 cache with ECC protection

Basic peripheral and Interconnect

- 1x USB 3.0/2.0 controller with integrated PHY
- 1x USB 2.0 controller with ULPI
- 2x eSDHC controllers supporting SD 3.0, eMMC 4.4 and eMMC 4.5 modes
- Five SAI supporting I2S

Networking elements

- 2x quad-speed Ethernet MACs supporting 2.5G, 1G, 100M, 10M
- Supports RGMII, SGMII 1G, SGMII 2.5G
- Up to 2 x SGMII supporting 1 or 2.5 Gbps
- 1x PCI Express Gen 2 controller
- 1x SATA Gen 3.0 controller

Accelerators and Memory Control

- 1x 16-bit DDR3L Controller up to 1.0 GT/s
- Security Engine (SEC)
- QorlQ Trust architecture: Secure boot, ARM Trust zone and security monitor

Qualification

 Commercial and extended temperature

Trust Architecture Provides a Trusted Platform

Hardware based security features to ease the development of trustworthy systems

All QorlQ SoCs support Trust Architecture

Management and Security Challenges

Traditional PC, Mobile devices

Multiple authentication mechanisms

 Cloud based security and application management

- No physical access/lack display
- Many (10s, 100s, 1000s) per
- Many (10s, 100s, 1000s) per user

Solution: Cloud based Management & Security for Edge

- Manage devices, apps remotely
- Secure provisioning, upgrades

EdgeScale for Device Management

Edge Apps Applications Embedded **Edge Compute** Framework Apps **Operating System Device Mgmt Device Management Device Provisioning IoT** Edge Gateways nodes

Application
Management
Service

Customer have choice for Application Management

- AWS, Azure, Aliyun, Google
- Home-grown or 3rd Party
- Optionally, use Edgescale for Docker application mgmt.

Device Management Service

EdgeScale provides

- Device Management
- Security via Hardware Root of Trust

Edge Computing Frameworks

EdgeScale enables multiple Compute frameworks to run at the same time, and can dynamically provision them.

EdgeScale – Flexible Architecture

Multiple compute and usage models Proposite Mathy & Dags Tomore Street are Managerian

Dashboard, CLI

Customer Private Cloud Google Cloud

Amazon AWS

Microsoft Azure

Edge Compute Frameworks

AliYun

RESTful APIs

Common device management service

Hardware Root of Trust

Multiple platforms supported

SDK - EdgeScale

Trust Architecture

Layerscape

SDK - EdgeScale
Trust Architecture

i.MX

EdgeScale Device Management Services

3rd Party SDK

Secure Element
Other SoC

vendors

Managing Edge nodes vs. IoT end-nodes

- IoT end-nodes have device manageability capabilities: provisioning, OTA firmware updates, monitoring
- IoT end-nodes can be managed directly from the cloud, or via an Edge Gateway
- IoT end-nodes may support targeted applications managed directly from the cloud – e.g. AWS GG

Chain of Trust

- Hardware forms the Root of trust
- Multiple layers of tamper-detection each level validates the next
- Multiple levels of secrets can revoke at any layer
- Mutual authentication between device and cloud using Asymmetric cryptography

Security Requirements for the Edge

Chain of Trust

- Security starts with hardware root of trust.
- End-to-end security is a chain of inter-locked security elements

Credentials may be installed in on-chip Layerscape fused memory or via external Secure Element

Device Management

Secure

Application Deployment

- Secure Manufacturing
- Secure Enrollment
- Secure Device Monitoring and Firmware Management
- Secure Container Deployment
- Secure App Management and Deployment

AI/ML DX Example – Bring Your Own Model

Uniquely Positioned for Industrial & IoT Edge Compute

Scalys TrustBox

Based on NXP LS1012A

 CES2019 Best Of Innovation: Cybersecurity and Personal Privacy

 Available world wide in Arrow store end of June 2019

Scalys TrustBox Features

Microsoft Azure IoT Edge

Cooperation with Microsoft to support "Open Enclave" on TrustBox

Open Enclave adds additional security software to Azure IoT Edge

Azure IoT Edge and Open Enclave pre-installed

Summary

- The IoT and AI Era will drive the next wave of growth for embedded devices
- NXP offers solutions for securely connecting edge devices to the cloud
- The LS1012 is an excellent choice for secure IoT gateways

SECURE CONNECTIONS FOR A SMARTER WORLD