

 PUBLIC

www.nxp.com

Table of Contents
Objectives .. 3

Hardware... 3

Software ... 3

Lab description ... 3

Power operating .. 4

Power rails ... 4

LDO_ENABLE .. 4

External power supplies using Power Management IC (PMIC) ... 4

Power configuration .. 5

Active mode... 5

Sleep mode .. 6

Deep Sleep mode .. 6

Deep Power Down mode .. 6

Full Deep Power Down mode ... 6

Wake up source .. 6

Timers function during deep sleep and deep power down ... 6

Peripherals to wake from deep sleep ... 7

Wake up process ... 8

RAM partitions and power consumption .. 8

Core operation in Active Mode ... 9

Maximum core operation frequencies and minimum core voltage in Active Mode 9

Body Bias ... 9

Power Lab 1 – Cortex M33 Operating frequency at 0.7V VDDCore 10

MCUXpresso SDK power_manager example .. 10

PCA9420 and powerlib API .. 12

Core Frequency .. 14

MCUXpresso SDK power_manager example .. 15

Serial Terminal ... 16

Build the project .. 17

Run the project ... 18

 PUBLIC

www.nxp.com

Power Lab 2 – Wake from deep sleep using RTC, Pin Interrupt and USART 21

RTC wake (high resolution counter) as wake up source ... 21

Pin Interrupt as wake up source .. 22

USART as another wake up source ... 23

Understanding deep sleep parameters that passes to deep sleep power API 24

Build the project .. 25

Run the project ... 25

Deep sleep wake by RTC .. 27

Deep sleep wake by Pin .. 28

Deep sleep wake by USART .. 29

Power Lab 3 – Using RTC to wake from deep power down ... 30

Build the project .. 30

Run the project ... 31

Deep power down wake by deep sleep .. 32

Deep power down wake by reset .. 35

Measuring power consumption on VDDCore JP29 .. 35

 PUBLIC

www.nxp.com

Objectives
In this lab, you will learn:

- Utilize the Powerlib for PMIC
- Low power modes
- Operating modes

Hardware
- NXP MIMXRT685-EVK Rev E
- Micro-USB cable
- Digital Multimeter

- Jumper wire (Female-to-female)

- One pin header (Male-to-male)

Software
- Download the latest MCUXpresso IDE version 11.4.0 and above at

(https://mcuxpresso.nxp.com)
- Download the latest SDK 2.10.0 and above for EVK-MIMXRT685 at

(https://mcuxpresso.nxp.com)
- Power management labs
- Serial Terminal Console such as Putty, minicom, TeraTerm, etc.

Lab description
This lab shows user how to use the RT685 powerlib API functions to achieve desired
operating mode and low power modes.

https://mcuxpresso.nxp.com/
https://mcuxpresso.nxp.com/

 PUBLIC

www.nxp.com

Power operating
Power rails
There are four power rails:

- 1.8V Always On - VDD_AO1V8
- 3.3V for IOs USB, and System - VDDIO0, VDDIO1, VDDIO2, USB1_VDD3V3,

VDDA_BIAS
- 1.8V for IOS and System - VDDIO0, VDDIO1, VDDIO2, VDD1V8,

VDDA_ADC1V8, VDDA_BIAS
- VDDCORE.

Only RTC wakeup timers, LDO_ENABLE, PMC_PMIC (interrupt and mode pins) and
Reset Pin are on VDD_AO1V8 “Always On” domain when voltage (1.71 – 1.89V) is
supplied.

LDO_ENABLE
LDO_ENABLE pin is used to select whether VDDCore is using internal LDO or from
external. When LDO_ENALBE pin is pulled high, VDDCore will be supplied from
internal LDO and the LDO is powered from the VDD1V8. When LDO_ENABLE pin is
pulled low, VDDCore will be supplied from external supply.

External power supplies using Power Management IC (PMIC)
Using external PMIC provides flexibility to configure the power supply rails as
application needs. For example, uSDHC may change the VDDIO rail from 3.3V to
1.8V, or deep sleep power rail configuration.

RT685 has a dedicated I2C pins to communicate with PMIC, this allows different
power configuration for low power modes or different operating mode at certain
core voltage. RT685 allows PMIC to wake CM33 from PMIC_IRQ interrupt pin. The
two PMIC_MODE pins allows CM33 to enter pre-configured PMIC power
configuration without going through setup every time via I2C.

 PUBLIC

www.nxp.com

Figure 1 Power rails, LDO_ENABLE and PMIC connections

Power configuration
There are four type of power modes in RT6xx: Active, Sleep, Deep Sleep, Deep
Power Down and Full Deep Power Down. The external PMIC referencing the
PMIC_MODE pins from RT685 to provide appropriate power configurations.

Table 1 PMIC Mode Pins and Low Power modes

PMIC_MODE[1:0] 00 01 10 11
Low Power Modes Active / Sleep Deep Sleep Deep Power

Down
Full Deep

Power Down

Active mode
The power consumption in Active mode is determined by PSCCTL, PDRUNCFG, clock
sources, peripheral clocks and/or CPU operating modes.

Figure 2 PSCCTL

 PUBLIC

www.nxp.com

Figure 3 Power Control RUNCFG or SLEEPCFG

Sleep mode
Clock to the CM33 is gated, execution of instruction is suspended until interrupt
occurs. Memories, clocks, and peripherals can be operation, and there are
determined by PSCCTL, PDRUNCFG, clock sources, peripheral clocks. Any interrupt
can wake up the CM33.

Deep Sleep mode
main_clk and CM33 will be gated to be in Deep Sleep. Memories, certain clocks and
certain peripherals can be active are determined by PDSLEEPCFG.

Deep Power Down mode
VDDCore, memories, clocks and peripherals are shutoff except RTC “Always on”
Domain. RTC wake-up timers, reset or PMIC interrupt can be used to wake up the
system.

Full Deep Power Down mode
VDDCore, VDD1V8, 3V3 power rail, memories, clocks and peripherals are shutoff
except RTC on Always on Domain. RTC wake timers, reset or PMIC interrupt can be
used to wake up the system.

Wake up source
There are many peripherals that can be served as the wake-up function for the deep
sleep low power mode. (Refer to STARTEN0 and STARTEN1 of SYSCTL0 in RT685
User Manual)

Timers function during deep sleep and deep power down
Table 2 shows timers’ comparison in deep sleep, it also shows which clock source it
requires to stay active. RTC is the only timer active during deep power down or full
deep power down.

 PUBLIC

www.nxp.com

Table 2 Timers comparison in low power modes

Peripherals to wake from deep sleep
The following peripherals can be used as a wake up source for deep sleep: DMA,
GPIOs, Flexcomm (SPI, I2C, I2S, USART), ADC, DMIC, Hypervisor, Secureviolation, HW
VAD, RNG, MU, FlexSPI, SDIO, I3C, USB, PUF, PowerQuad, Casper, PMIC, and SHA.

 PUBLIC

www.nxp.com

Wake up process

Figure 4 Wake up time from low power modes

RAM partitions and power consumption
• Running advanced-while1 in different partition (2 to 29)
• Typical, 1.1V, 25, NBB, 198 MHz(PLL)
• All SRAM array/periphery are ON (set in PDRUNCFG2 and PDRUNCFG3) and

one partition clocked using AHB_SRAM_ACCESS_DISABLE register.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

V
D

D
1

V
8

_D
R

V
 C

u
rr

e
n

t
(m

A
)

Partition #

typical, 1.1V, NBB, 198MHz, advanced-while1 (clock
only enable per partition)

32KB

64kB

128KB

256KB

 PUBLIC

www.nxp.com

Core operation in Active Mode
Maximum core operation frequencies and minimum core voltage in Active Mode
Some power consumption can be achieved by lowing the core voltage and core
frequency. Below are the table showing the maximum operation frequencies and
minimum voltage. The CPU frequencies show below must have SYSCPUAHBCLKDIV
set to 0 (divided by 1).

Table 3 Maximum Core frequency and Core Voltage

Maximum Core Frequency
(-20 °C to +70 °C)

Maximum Core Frequency
(0 °C to +70 °C)

Minimum VDD Core
Voltage

65 MHz 75 MHz 0.7V

140 MHz 155 MHz 0.8V

210 MHz 220 MHz 0.9V

270 MHz 275 MHz 1.0V

300 MHz 300 MHz 1.13V

Body Bias
CMOS transistors usually have three terminals – a source, gate and drain, it is also
common to have a fourth terminal to the body or substrate. The threshold voltage
can be affected by voltage source and voltage body.

RT685 has three type of body bias: Forward Body Bias (FBB), Reverse Body Bias
(RBB) and Normal Body Bias (NBB).

Table 4 Body Bias

Body Bias Description

FBB Lower the threshold voltage and allows the device to turn on
quickly for high performance, but has higher current leakage

RBB Increase the threshold voltage and allows the device to turn on
slowly, and it reduces current leakage

NBB Source voltage and body voltage are matching

 PUBLIC

www.nxp.com

Power Lab 1 – Cortex M33 Operating frequency at 0.7V VDDCore
MCUXpresso SDK power_manager example
1. Open the MCUXpresso IDE 11.1.1 or later.

Figure 5 MCUXpresso IDE

2. Creating MCUXpresso new workspace.

Figure 6 workspace

Create a project name and click to continue.

3. Skip this step if SDK 2.7.0 and above is installed.

Drag and drop downloaded MCUXpresso SDK to panel at the bottom of

MCUXpresso IDE.

Figure 7 Installed SDK

4. Import project.

Select and click link at the bottom left corner panel of

IDE.

 PUBLIC

www.nxp.com

Figure 8 Import project

5. Import project from file system.

Click to select power_manager.zip project. Select to go to next step.

Figure 9 Board selection

6. Select project to complete the project import.

Make sure is selected, then press

 to complete the import.

 PUBLIC

www.nxp.com

Figure 10 Select project

PCA9420 and powerlib API
7. SW1_OUT of PCA9420 and VDDCore

VDDCore voltage is connected to SW1_OUT of PCA9420. Current SW1_OUT is

programmed to output at 1.00V.

Figure 11 PCA9420 and VDDCore

 PUBLIC

www.nxp.com

8. Understanding PCA9420 MODECFG register and using powerlib API

There are 6-bit settings for SW1_OUT in MODECFG_0_0 registers

(MODECFG_0_0, address 22h).

Table 5 PCA9420 MODECFG register

The BOARD_SetPmicVoltageForFreq() power API in pmic_support.c setups desired

VDDCore voltage without user provides value in above table. Simply passing

Core and DSP frequency (Table 2), the power API will assign appropriate voltage

for the VDDCore.

void BOARD_SetPmicVoltageForFreq(power_part_temp_range temp_range, uint32_t main_clk_freq,
uint32_t dsp_main_clk_freq)

power_part_temp_range = { kPartTemp_0C_P70C = 0U or kPartTemp_N20C_P70C = 1U }
main_clk_freq or dsp_main_clk_freq range up to 600,000,000

(NOTE: Do NOT use PCA9420_WriteModeConfigs() to write value over 011010b!!! This

will cause permanent damage to the core.)

9. PCA9420 comes with voltage comparator on each rail (LDO1_OUT, LDO2_OUT,

SW1_OUT and SW2_OUT), it compares the actual output voltage against 90% and

110% of its target value. When power-good is enabled, the voltage comparator

reports “power-good” status if the nominal voltage is within 90% to 110%.

When power-good is disabled, the nominal voltage is set outside the range of

90% to 110%.

Current power_manager example has power-good disabled, when calling

BOARD_SetPmicVoltageForFreq() to set VDDCore at 0.70 V. Actual measurement on

VDDCore is approx. 0.74 V. Change the kPCA9420_PgoodDisabled to kPCA9420_PgoodEnabled

in BOARD_InitPmic(). This will put the VDDCore close to 0.70 V.

 PUBLIC

www.nxp.com

pca9420Config.powerGoodEnable = kPCA9420_PGoodEnabled;

Core Frequency
10. Changing Core frequency

Before calling BOARD_BootClockRUN(), the default 48 MHz (FFRO or 48/60m_irC) CPU

frequency is derived from 40/60m_irc (MAINCLKSELA = 3, MAINCLKSELB = 0,

and SYSCPUAHBCLKDIV = 0, see green highlight in Figure 12).

Code executes after BOARD_BootClockRUN() sets the CPU to run at 250 MHz from

main_pll_clk (MAINCLKSELB = 2, and SYSCPUAHBCLKDIV = 1, see orange

highlight in Figure 12). The current value from VCO to Main PLL is 528 MHz, the

PFD output frequency formula is FPFDn = FSYSPLL_OUT * (18 / PFDn). In

BOARD_BootClockRUN(), PFD0 is set to 19. main_clk is 528,000,000 * (18 / 19) =

500,210,526 Hz. MAINPLLCLKDIV is 0 (divided by 1). However,

SYSCPUAHBCLKDIV is divided by 2; therefore, the CPU clock is 500,210,526 / 2

= 250,105,263 Hz.

Figure 12 CPU Clock Source Overview

We will be focused more on the clock setup at main_clk (after MAINCLKSELA

and MAINCLKSELB). To setup CPU to run less than 65 MHz, the closer frequency

it can output is 60 MHz from 48/60m_IRC.

If the CPU clock source from the same clock source tries to change, the CPU clock

must switch to another clock source before lowering the CPU clock. For example,

 PUBLIC

www.nxp.com

the CPU is now using FFRO 48 MHz as clock source, and will be changed to FFRO

60 MHz. The CPU clock must be on another clock source such as SFRO or PLL

before the change can be taken place.

In this lab example, the FFRO is set to run at 60 MHz from 48 MHz after the CPU

is set to use the clock source from main_clk, then change the CPU clock source to

16m_irc (SFRO see blue highlight in Figure 12). The CPU frequency is now

running at 8 MHz, the SYSCPUAHBCLKDIV is still divided by 2. The flash clock

needs to adjust not to exceed core frequency. The flash is using main_pll_clk, so

500 MHz divided by 5 will generate 100 MHz flash clock. Switch the flash clock

to FFRO with divided by 10 before switch the CPU clock source, this put the flash

clock at 6 MHz. Set the SYSCPUAHBCLKDIV to 0 (divided by 1), the CPU

frequency is at 16 MHz. Call BOARD_SetPmicVoltageForFreq() to set VDDCore to 0.70 V.

Attach CPU clock source from SFRO to FFRO, the CPU is now running at 60 MHz.

Adjust the flash clock again to run from FFRO at 30 MHz.

CLOCK_EnableFfroClk(kCLOCK_Ffro60M);

BOARD_SetFlexspiClock(3U, 10U);
CLOCK_AttachClk(kSFRO_to_MAIN_CLK); /* Let CPU run on ffro before configure SYS PLL. */
CLOCK_SetClkDiv(kCLOCK_DivSysCpuAhbClk, 1U); /* Set SYSCPUAHBCLKDIV divider to value 1 */

BOARD_SetPmicVoltageForFreq(kPartTemp_0C_P70C, 60000000, 0);
CLOCK_AttachClk(kFFRO_to_MAIN_CLK); /* Let CPU run on ffro before configure SYS PLL. */
BOARD_SetFlexspiClock(3U, 2U);
SystemCoreClock = CLOCK_GetFreq(kCLOCK_CoreSysClk);

When using internal LDO, replace BOARD_SetPmicVoltageForFreq() with

POWER_SetLdoVoltageForFreq(), the parameters are the same as PMIC. Remove JP29

and change JP22 to 1-2 as shown in Figure 13 VDDCore and LDO_Enable

locationFigure 13.

NOTE: JP12 1-2 MUST be shunt when using internal LDO, make sure SW2_OUT

1.8V is supplied to VDDIO1 for the internal core voltage. DO NOT use internal

LDO if JP12 2-3 is shunt.

MCUXpresso SDK power_manager example
11. VDDCore and LDO_ENABLE location

Take an unused jumper as indicated in the image below and

place in on 2-3 of JP22. Place multimeter to JP29 to measure

VDDCore or place amp meter to JP29 (remove jumper) to

 PUBLIC

www.nxp.com

measure current.

Figure 13 VDDCore and LDO_Enable location

Figure 14 LDO_ENABLE
selection

NOTE: JP12 1-2 MUST be shunt when using internal LDO, make sure SW2_OUT

1.8V is supplied to VDDIO1 for the internal core voltage. DO NOT use internal

LDO if JP12 2-3 is shunt.

Figure 15 JP12 VDDIO1 power source selection

12. Power the board

Connects USB micro cable from PC to J5 (LPCLink as indicated in Figure 13).

Serial Terminal
13. Open Serial Terminal program such as TeraTerm as shown below.

Select serial port listed as Jlink CDC UART Port, and press to continue.

 PUBLIC

www.nxp.com

Figure 16 Select LPC-LINKII serial port

Setup the serial port settings, and press to continue.

Figure 17 Serial port setup

Build the project
14. Build the example

Under the Quickstart Panel at the bottom left, click the under the

.

Figure 18 Quickstart Panel - Build

At the middle bottom of IDE, the console will show the project built successfully.

 PUBLIC

www.nxp.com

Figure 19 CDT Build Console

Run the project
15. Program the application

Make sure the SW5 (ISPs) is ON, OFF, ON from left to right.

Under the Quickstart Panel at the bottom left, click the under the

.

Figure 20 Quickstart Panel - Debug

16. A window will pop up to select debugger connects to the EVK. Select
 and press to continue.

 PUBLIC

www.nxp.com

Figure 21 Selecting debugger

When it is successfully programmed, the program count will be halted at main()

as shown in the source window.

Figure 22 Program counter stops at main()

You can continue to run the program by pressing (resume) . Or

terminate the debug program by pressing , then press the reset

button on the board (see Figure 13).

17. Either continue to run the program from debug or from reset, message will be

shown as below.

 PUBLIC

www.nxp.com

Figure 23 Serial output

18. Press 5 on the Terminal to change the VDDCore to 0.70 V, or press 6 to change

the VDDCore to 1.15 V. Place a multimeter on JP29 to measure the voltage

change when pressing number 5 or 6 key on the serial terminal.

 PUBLIC

www.nxp.com

Power Lab 2 – Wake from deep sleep using RTC, Pin Interrupt and
USART
RTC wake (high resolution counter) as wake up source
1. Initialize RTC module and enable the RTC wake in STARTEN

Enable the RTC output of the RTC oscillator 32,768 Hz. Failure to do so, the RTC

counter will not function.

After initialize the RTC by calling RTC_Init(), calls RTC_StartTimer() to enable the RTC.

There are two type of wake-up features in RTC : WAKE and ALARM. WAKE is

using 1 khz counter (milli seconds) up to 65.5s (0xFFFF) and ALARM is using

RTC counter (seconds) up to 100+ years (0xFFFF_FFFF). WAKE interrupts are

enabled in RTC by calling RTC_EnableInterrupts(). STARTEN and IRQ will be set when

calling EnableDeepSleepIRQ().

int main(void)
{
 …
 CLKCTL0->OSC32KHZCTL0 = 1;

 /* Initialize RTC timer */
 RTC_Init(RTC);
 RTC_StartTimer(RTC);

 /* enable RTC interrupt */
 RTC_EnableInterrupts(RTC, RTC_CTRL_WAKEDPD_EN_MASK);

 /* Enable RTC wake */
 EnableDeepSleepIRQ(RTC_IRQn);

 EnableIRQ(RTC_IRQn);
 BOARD_InitPins();
 BOARD_BootClockRUN();
 …

2. RTC IRQ Handle

It is essential to have RTC IRQ to clear the flag after woke up from deep sleep.

The flag needs to be cleared in order to avoid deadlock.

void RTC_IRQHandler(void)
{
 if (RTC_GetStatusFlags(RTC) & kRTC_WakeupFlag)
 {
 /* Clear wake flag */
 RTC_ClearStatusFlags(RTC, kRTC_WakeupFlag);
 }
 if (RTC_GetStatusFlags(RTC) & kRTC_AlarmFlag)
 {
 /* Clear alarm flag */
 RTC_ClearStatusFlags(RTC, kRTC_AlarmFlag);

 PUBLIC

www.nxp.com

 }

/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
 exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
 __DSB();
#endif
}

3. Provides a counter value to RTC to wake from deep sleep. A write to this register

will immediately start count down sequence in ms. In the example, 10000 (ms)

is passed to RTC_SetWakeupCount(), the RT685 will wake from deep sleep after 10s.

 case kPmu_Deep_Sleep: /* Enter deep sleep mode. */
#if POWER_DOWN_PLL_BEFORE_DEEP_SLEEP
 /* Disable Pll before enter deep sleep mode */
 BOARD_DisablePll();
#endif
 RTC_SetWakeupCount(RTC, 10000);
 POWER_EnterDeepSleep(APP_EXCLUDE_FROM_DEEPSLEEP);
#if POWER_DOWN_PLL_BEFORE_DEEP_SLEEP
 /* Restore Pll before enter deep sleep mode */
 BOARD_RestorePll();
#endif
 break;

Note: Other timers that described in Timers function during deep sleep and deep

power down use similar approach – setup timer IRQ Handle, setup timer clock

source with the clock source excludes from deep sleep, set STARTEN and

interrupt for the timer, and set time out on the timer before entering deep sleep.

static void UTickCallback(void)
{
}

CLOCK_AttachClk(kLPOSC_to_UTICK_CLK);
UTICK_Init(UTICK0);
UTICK_SetTick(UTICK0, kUTICK_Onetime, 1000000UL - 1, UTickCallback);
EnableDeepSleepIRQ(UTICK0_IRQn);
POWER_EnterDeepSleep(APP_EXCLUDE_FROM_DEEPSLEEP);

Pin Interrupt as wake up source
GPIO pins can be used as wake up source for deep sleep. Two type of interrupts

for GPIO – Pin Interrupt (PINT) or GPIO interrupt. There are a total of 8 Pin

Interrupts and 2 GPIO group interrupts in RT685. Current example is using Pin

interrupt. During the deep sleep, user can press SW1 user button to wake from

deep sleep.

static void APP_InitWakeupPin(void)

 PUBLIC

www.nxp.com

{
 gpio_pin_config_t gpioPinConfigStruct;

 /* Set SW pin as GPIO input. */
 gpioPinConfigStruct.pinDirection = kGPIO_DigitalInput;
 GPIO_PinInit(APP_USER_WAKEUP_KEY_GPIO, APP_USER_WAKEUP_KEY_PORT, APP_USER_WAKEUP_KEY_PIN,
&gpioPinConfigStruct);

 /* Configure the Input Mux block and connect the trigger source to PinInt channle. */
 INPUTMUX_Init(INPUTMUX);
 INPUTMUX_AttachSignal(INPUTMUX, kPINT_PinInt0, APP_USER_WAKEUP_KEY_INPUTMUX_SEL); /* Using
channel 0. */
 INPUTMUX_Deinit(INPUTMUX); /* Turnoff clock to inputmux to save power. Clock is only
needed to make changes */

 /* Configure the interrupt for SW pin. */
 PINT_Init(PINT);
 PINT_PinInterruptConfig(PINT, kPINT_PinInt0, kPINT_PinIntEnableFallEdge,
pint_intr_callback);
 PINT_EnableCallback(PINT); /* Enable callbacks for PINT */

 EnableDeepSleepIRQ(PIN_INT0_IRQn);
}

USART as another wake up source
There are two methods in deep sleep mode for USART. One is using 32 khz (RTC or

lp_32k) runs in async mode, and another is sync mode that requires additional pin

for clock to provide from master.

In this example, before RT685 goes to deep sleep, enabled the 32 khz clock source in

USARTn->CFG. The WAKECLK32KHZSEL selection is assigned USART to use either RTC 32

khz or lp_32k (derived from 1m_osc then divided by 32, 1m_osc must be excluded

from deep sleep).

This example uses RTC since it is turned on and its accuracy is better than lp_32k.

Next step is to store the BRG and OSR value for baudrate restore before switching to

9600 baudrate. Enable USART Rx Interrupt(s), STARTEN and Flexcomm IRQ before

going deep sleep.

Any data receive from USART Rx will wake up from deep sleep. Disable the 32k

clock and quickly turn off the IRQ to prevent next Rx data to trigger interrupt since

the current console output does not use interrupt for serial console. Restore the

baud rate from 9600 to 115200.

void FLEXCOMM0_IRQHandler(void)
{
 uint8_t data;

 /* If new data arrived. */
 if ((kUSART_RxFifoNotEmptyFlag | kUSART_RxError) & USART_GetStatusFlags(USART0))
 {
 data = USART_ReadByte(USART0);
 }

 PUBLIC

www.nxp.com

/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
 exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
 __DSB();
#endif
}

int main(void)
{
 ...

 uint32_t i, brg, osr;
 rtc_datetime_t date;
 ...

 case kPmu_Deep_Sleep: /* Enter deep sleep mode. */
#if POWER_DOWN_PLL_BEFORE_DEEP_SLEEP
 /* Disable Pll before enter deep sleep mode */
 BOARD_DisablePll();
#endif
 USART0->CFG |= USART_CFG_MODE32K_MASK;
 CLKCTL0->WAKECLK32KHZSEL = 0;

 brg = USART0->BRG;
 osr = USART0->OSR;
 USART0->BRG = 0;
 USART0->OSR = 13;

 USART_EnableInterrupts(USART0, kUSART_RxLevelInterruptEnable |
kUSART_RxErrorInterruptEnable);
 EnableDeepSleepIRQ(FLEXCOMM0_IRQn);
 RTC_SetWakeupCount(RTC, 10000);
 POWER_EnterDeepSleep(APP_EXCLUDE_FROM_DEEPSLEEP);
 USART0->CFG &= ~USART_CFG_MODE32K_MASK;
 DisableIRQ(FLEXCOMM0_IRQn);
 USART0->BRG = brg;
 USART0->OSR = osr;
#if POWER_DOWN_PLL_BEFORE_DEEP_SLEEP
 /* Restore Pll before enter deep sleep mode */
 BOARD_RestorePll();
#endif
 break;

Understanding deep sleep parameters that passes to deep sleep power API
The power API to enter deep sleep is POWER_EnterDeepSleep(), the API passes value of
array.
Parameter 0: RUN/SLEEPCFG
Parameter 1: Peripherals RAM
Parameter 2: Array RAM partitions
Parameter 3: Periphery RAM partitions

When the bit is set in the parameter, it will be excluded from deep sleep. For
example, FFRO needs to be active during deep sleep, set bit 16 of parameter 0.
(SYSCTL0->PDSLEEPCFG0 in User Manual).

 PUBLIC

www.nxp.com

In the example, parameter 1 has FLEXSPI RAM excluded, parameter 2 has 21 array
partitions excluded.

#define APP_DEEPSLEEP_RUNCFG0 (SYSCTL0_PDSLEEPCFG0_RBB_PD_MASK | SYSCTL0_PDSLEEPCFG0_FFRO_PD_MASK)
#define APP_DEEPSLEEP_RAM_APD 0xFFFFF8U
#define APP_DEEPSLEEP_RAM_PPD 0x0U
#define APP_EXCLUDE_FROM_DEEPSLEEP
\
 (((const uint32_t[]){APP_DEEPSLEEP_RUNCFG0,
\
 (SYSCTL0_PDSLEEPCFG1_FLEXSPI_SRAM_APD_MASK |
SYSCTL0_PDSLEEPCFG1_FLEXSPI_SRAM_PPD_MASK), \
 APP_DEEPSLEEP_RAM_APD, APP_DEEPSLEEP_RAM_PPD}))

Build the project
4. Build the example

Under the Quickstart Panel at the bottom left, click the under the

.

Figure 24 Quickstart Panel - Build

At the middle bottom of IDE, the console will show the project built successfully.

Figure 25 CDT Build Console

Run the project
5. Program the application

 PUBLIC

www.nxp.com

Make sure the SW5 (ISPs) is ON, OFF, ON from left to right.

Under the Quickstart Panel at the bottom left, click the under the

.

Figure 26 Quickstart Panel - Debug

6. A window will pop up to select debugger connects to the EVK. Select
 and press to continue.

Figure 27 Selecting debugger

When it is successfully programmed, the program count will be halted at main()

in the source window as shown below.

 PUBLIC

www.nxp.com

Figure 28 Program counter stops at main()

Terminate the debug program by pressing , then press the reset

button on the board (see Figure 13).

NOTE: Do not use debugger when the code is going to perform low power

modes. The debugger will shut off during low power modes, this will cause the

IDE not response.

Deep sleep wake by RTC
7. After reset, message will be shown as below. Press 2 on the serial terminal

window to enter deep sleep.

Figure 29 Deep sleep

8. After wake has elapsed, it will back to the selections.

 PUBLIC

www.nxp.com

Figure 30 Deep sleep by RTC

Deep sleep wake by Pin
9. Press 2 again to enter deep sleep, this time using SW1 User button to wake from

deep sleep prior to RTC wake (10s).

Figure 31 SW1 location

10. After wake, it will back to the selections.

Figure 32 Deep sleep by Pin

 PUBLIC

www.nxp.com

Deep sleep wake by USART
11. Press 2 again to enter deep sleep, this time enter any key on the serial terminal

window to wake from deep sleep prior to RTC wake (10s).

12. After wake, it will back to the selections.

Figure 33 Deep sleep wake by USART

 PUBLIC

www.nxp.com

Power Lab 3 – Using RTC to wake from deep power down
1. Configure the RTC alarm to wake from deep power down. Append

RTC_CTRL_ALARMDPD_EN_MASK to RTC_EnableInterrupts().

 RTC_StartTimer(RTC);

 /* enable RTC interrupt */
 RTC_EnableInterrupts(RTC, RTC_CTRL_WAKEDPD_EN_MASK | RTC_CTRL_ALARMDPD_EN_MASK);
 /* Enable RTC wake */
 EnableDeepSleepIRQ(RTC_IRQn);

2. Setup RTC time and alarm

Setup the date and convert to seconds using RTC_SetDatetime(). Add 20s to the

date.second and pass it to RTC_SetAlarm(). Or, direct register write using RTC-

>MATCH = RTC->COUNT + 20;

int main(void)
{
 /* Init board hardware. */
 pca9420_modecfg_t pca9420ModeCfg[4];
 uint32_t i;
 rtc_datetime_t date;

 …

 case kPmu_Deep_PowerDown: /* Enter deep power down mode. */
 PRINTF(
 "Press any key to confirm to enter the deep power down mode and wakeup the
device by "
 "reset.\r\n\r\n");
 GETCHAR();

 date.year = 2020;
 date.month = 4;
 date.day = 6;
 date.hour = 9;
 date.minute = 0;
 date.second = 0;
 RTC_SetDatetime(RTC, &date);
 date.second += 20;
 RTC_SetAlarm(RTC, &date);
 POWER_EnterDeepPowerDown(APP_EXCLUDE_FROM_DEEP_POWERDOWN);
 break;

Build the project
3. Build the example

Under the Quickstart Panel at the bottom left, click the under the

.

 PUBLIC

www.nxp.com

Figure 34 Quickstart Panel - Build

At the middle bottom of IDE, the console will show the project built successfully.

Figure 35 CDT Build Console

Run the project
4. Program the application

Make sure the SW5 (ISPs) is ON, OFF, ON from left to right.

Under the Quickstart Panel at the bottom left, click the under the

.

Figure 36 Quickstart Panel - Debug

5. A window will pop up to select debugger connects to the EVK. Select
 and press to continue.

 PUBLIC

www.nxp.com

Figure 37 Selecting debugger

When it is successfully programmed, the program count will be halted at main()

in the source window as shown below.

Figure 38 Program counter stops at main()

Terminate the debug program by pressing , then press the reset

button on the board (see Figure 13).

Deep power down wake by deep sleep
6. After reset, selection message will show. Press 3 in the serial terminal to enter

deep power down.

 PUBLIC

www.nxp.com

Figure 39 Deep sleep

7. Manually reset the flash while in deep power down.

Use a female to female jumper wire, one end connects to GND (see Figure 40),

one end connects to male to male header.

Figure 40 GND point

The reason is when RT685 wakes up by RTC from deep power down, the flash is

still in previous mode (Quad or Octal). ROM will not be able to access flash

content correctly; therefore, RT685 is not able to execute code from flash.

There is an GPIO pin connects to nRESET_OSPI of the reset pin on the SPI flash.

User can configure the P2_12 to be asserted in the OTP. This lab chooses not to

use OTP to configure the P2_12;incorrectly programming the OTP will cause

unpredictable behavior.

 PUBLIC

www.nxp.com

Figure 41 Flash reset pin

8. Locate TP34 or TP33 near the standard SD slot.

Figure 42 TP34

9. Press any key in the serial terminal to confirm to enter the deep power down

mode.

10. Quickly use the female-to-female jumper wire with male header to touch TP33

or TP34, and untouch it.

11. When RT685 wake up by RTC and boot up, it will back to the selection.

 PUBLIC

www.nxp.com

Figure 43 Wake and boot up

Deep power down wake by reset
12. Press 3 to enter deep power down.

13. Press any key to confirm in the serial terminal to enter the deep power down

mode.

14. Press reset to wake from deep power down.

Figure 44 Reset button

Measuring power consumption on VDDCore JP29
Different multi-meter has different burden voltage when using the current
measurement (mA/A and mA/uA). High end current measurement equipment
provides wider range of burden voltage that will not draw current from the
VDDCore. Handheld such as Fluke 83 is 0.03V in A, 1.8mV in mA and 100uV in uA,
and the resistance between the input terminals is 0.03 ohm for A, 1.8 ohm for mA,

 PUBLIC

www.nxp.com

and 100 ohm for uA. Assuming 40mA VDDCore is requirement in active mode, 40mA
* 1.8mV = 74mV. The VDDCore is dropped below 1.0V (1.0V – 74mV = 926mV).

The solution is to raise the VDDCore voltage from 1.0V to 1.1V before changing the
core frequency from FFRO to PLL. Enable SFRO after BOARD_InitPins() and before
BOARD_BootClockRUN(). It is required for PMIC configuration before BOARD_BootClockRUN().
void BOARD_ConfigPMICModes(pca9420_modecfg_t *cfg, uint32_t num)
{
 assert(cfg);

 /* Configuration PMIC mode to align with power lib like below:
 * 0b00 run mode, no special.
 * 0b01 deep sleep mode, vddcore 0.7V.
 * 0b10 deep powerdown mode, vddcore off.
 * 0b11 full deep powerdown mode vdd1v8 and vddcore off. */

cfg[0].sw1OutVolt = kPCA9420_Sw1OutVolt1V100;
…

}

int main(void)
{

…

BOARD_InitPins();

 /* Configure SFRO clock */
 POWER_DisablePD(kPDRUNCFG_PD_SFRO); /* Power on SFRO (16MHz) */
 CLOCK_EnableSfroClk(); /* Wait until SFRO stable */

 /* PMIC PCA9420 */
 BOARD_InitPmic();
 for (i = 0; i < ARRAY_SIZE(pca9420ModeCfg); i++)
 {
 PCA9420_GetDefaultModeConfig(&pca9420ModeCfg[i]);
 }
 BOARD_ConfigPMICModes(pca9420ModeCfg, ARRAY_SIZE(pca9420ModeCfg));
 PCA9420_WriteModeConfigs(&pca9420Handle, kPCA9420_Mode0, &pca9420ModeCfg[0],
ARRAY_SIZE(pca9420ModeCfg));

 BOARD_BootClockRUN();
 BOARD_InitDebugConsole();

 CLOCK_EnableFfroClk(kCLOCK_Ffro60M);

POWER_SetPadVolRange(&vrange);

…

}

	Objectives
	Hardware
	Software
	Lab description
	Power operating
	Power rails
	LDO_ENABLE
	External power supplies using Power Management IC (PMIC)

	Power configuration
	Active mode
	Sleep mode
	Deep Sleep mode
	Deep Power Down mode
	Full Deep Power Down mode

	Wake up source
	Timers function during deep sleep and deep power down
	Peripherals to wake from deep sleep
	Wake up process

	RAM partitions and power consumption
	Core operation in Active Mode
	Maximum core operation frequencies and minimum core voltage in Active Mode

	Body Bias
	Power Lab 1 – Cortex M33 Operating frequency at 0.7V VDDCore
	MCUXpresso SDK power_manager example
	PCA9420 and powerlib API
	Core Frequency
	MCUXpresso SDK power_manager example (1)
	Serial Terminal
	Build the project
	Run the project

	Power Lab 2 – Wake from deep sleep using RTC, Pin Interrupt and USART
	RTC wake (high resolution counter) as wake up source
	Pin Interrupt as wake up source
	USART as another wake up source
	Understanding deep sleep parameters that passes to deep sleep power API
	Build the project
	Run the project
	Deep sleep wake by RTC
	Deep sleep wake by Pin
	Deep sleep wake by USART

	Power Lab 3 – Using RTC to wake from deep power down
	Build the project
	Run the project
	Deep power down wake by deep sleep
	Deep power down wake by reset

	Measuring power consumption on VDDCore JP29

