
Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP

B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

FAE

Todd Nuzum

NFC Integration in Real-Time and
Non-Real-Time Operating Systems

April 2019 | AMF-SOL-T3522

COMPANY PUBLIC 1COMPANY PUBLIC 1

• NFC Readers Software Development Design-
in Support

• NFC Frontend Integration in Linux

• Integrating the NFC Reader Library in Linux

• Host Interface Access on Linux Systems

• Latency Analysis: Linux vs Bare Metal

• What is Real-time

• Overcoming Linux Higher Latency for Time-
sensitive Applications

• Selecting the Right Product

Agenda

COMPANY PUBLIC 2

NFC Readers Software

Development Design-in Support

COMPANY PUBLIC 3

We Make NFC Easy

Decide the
functionality

NFC implementation process
We reduce complexity, streamline tasks, and add flexibility at every point in development,

so you can deliver a competitive advantage in record time.

Select
IC

Evaluate
features

Hardware
design

Software
development

Test &
debug

Get
certified

We know each step in the NFC implementation process

Our support package simplifies the process and reduces time to market

We have the right material for each design step

Full range of development kits, design files, sample code, app notes, online training, tutorials

Directly find answers to your questions

Through our technical NFC community and NXP certified Independent Design Houses (IDHs)

COMPANY PUBLIC 4

NXP’s Software Development Support

NFC Reader Library

Sample code

Design files for
development kits

App notes

Online training on SW
integration & tutorials

NFC Cockpit

You can re-use design of NXP development boards and sample code

examples to speed up your SW development tasks.

Decide the
functionality

Select
IC

Evaluate
features

Hardware
design

Software
development

Test &
debug

Get
certified

NFC implementation process

COMPANY PUBLIC 5

NXP Software Support for Integration Into Any Platform

Connected NFC tags

Connected NFC

tag

NTAG I2C plus

NFC frontends

NFC controllers with integrated FW

NFC controllers with customizable FW

NFC

frontend

PN5180

NFC controller

with integrated

firmware

PN71xx

NFC controller with

application

PN7462

Software integration

Bare metal

RTOS

Linux OS

Other

OS

This session covers related topics about

NFC frontend software integration in Linux

COMPANY PUBLIC 6

An Increasing Number of Devices Running Linux

IoT gateways.

Healthcare
and medical devices

Set top boxesAccess control &
Ticketing readers

Audio devices

Payment terminals

COMPANY PUBLIC 7

NFC Frontend Integration in Linux

COMPANY PUBLIC 8

Host interface

• This register interface is a low level
access to the contactless interface
providing full access to this IP.

• This could be a direct CLIF-mapped
interface (CLRC663, PN512) or a
software emulated register interface
(PN5180).

• The host controller uses the register
access to the contactless interface for:
– to configure RF framing and

signaling .
– to finally transfer the RF digital

protocol based blocks to/from a
counterpart.

NFC Frontend Expose a Host Interface and a Contactless

Interface

NFC frontends expose a ‘register interface’ towards the host controller through the host interface

NFC frontend

H
o

s
t

in
te

rf
a

c
e

R
F

 in
te

rf
a

c
e

RF interface

• An NFC frontend is an RF transceiver
enabling the contactless
communication.

• It deals with the signal modulation and
handles the data transmission through
the RF interface.

• The NFC frontend needs to be selected
according to application requirements:

• RF performance
• RF protocols
• NFC modes of operation
• Host interfaces
• Power consumption
• Device to interact with
• Others…

COMPANY PUBLIC 9

NFC Frontend is Controlled by the External Host Controller

SW

NFC frontend

H
o

s
t

in
te

rf
a

c
e

R
F

 in
te

rf
a

c
e

Host controller

Host controller

M
a

tc
h

in
g

Register configs RF communication

• Contains the software
implementing the application logic

• The RF digital protocols are
implemented on the host
controller

• The host controller platform
needs to be selected according to
system requirements:
– Memory requirements
– Clock frequency
– MCU architecture
– Host interfaces
– Power consumption
– GPIOs and other peripherals

TODAY: Based on Linux OS architecture

SW stack

The host controller drives and controls the NFC frontend according to register settings configuration

COMPANY PUBLIC 10

Host Controller SW: Linux OS Architecture – User Space

Host controller

Linux OS

stack

H
o

s
t

in
te

rf
a

c
e

HW platform

Syscall Dispatcher

Generic Kernel

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

Hardware Dependent Kernel

System Libraries

App 1 App 2 App 3 App n

GNU C

Library

DRM

Library
Other libs

• Applications and user programs run
in User Space (non-privileged mode).

• User Space code has no ability
to access hardware or drivers
directly.

• Due to the protection afforded by this
sort of isolation, crashes in user
mode are always recoverable.

• Each process in user space process
occupies its own virtual address
space

User Space

Syscall Interface

COMPANY PUBLIC 11

i386

Privilege Separation: i386 and ARM Architecture

• Most processors define so
called privilege levels.

• i386 knows 4.

• ARM v7 knows 3.

• ARM v7

• PL0 – Unprivileged level for
user applications. User mode

• PL1 – Privileged level for
operating system.

• PL2 – Hypervisor mode. Can
switch between guest OS that
execute in PL0.

Level 0
OS Kernel

Level 1
OS Services -
Device drivers

Level 2
OS Services -
Device drivers

Level 3
Applications

L
o

w
e

s
t

3 2 1

H
ig

h
e

s
t

0

Privilege Levels

COMPANY PUBLIC 12

Privilege Separation: Switching the Level

• Switching the privilege level

must be controlled

• On ARM a super visor call

(SVC) is used to enable user

mode code to access OS

functions

• SVC provides a well defined

handler to switch the

processor mode

• The SVC triggers a

processor exception

ARM

Platform

OS

Application

Code

Privileged Mode

User Mode

SVC

COMPANY PUBLIC 13

Privilege Separation: Context Switch
• Changing privilege level on an OS

always comes with a context switch.

• Storing current processor state and
restoring another.

• The interrupt handler manages the
context switch.

• The interrupt handler has to:

− Switch to privileged mode

− Save defined registers to the
process stack.

− Save current task’s Process Stack
Pointer (PSP) to memory.

− Load next tasks stack pointer and
assign to PSP.

− Load registers from process stack.

− Switch back to unprivileged mode.

Registers

Stack ptr

Prgm ctrt0

Registers

Stack ptr

Prgm ctrt1

Save Restore

Thread t0 Thread t1Context switch

Time

Processor

What is a context switch?

COMPANY PUBLIC 14

Host Controller SW: Linux OS Architecture – System Call

Interface

Host controller

Linux OS

stack

HW platform

• Provides the means to perform

function calls from user space into

the kernel space

• Code running in user mode must

delegate to system call APIs to

access hardware or memory.

• Most operations interacting with the

system require permissions not

available to a user level process

(e.g. Input / Output operations)

• Input/output (I/O) is any program,

operation or device that transfers

data to or from the CPU and to or

from a peripheral device

System call interface

H
o

s
t
in

te
rf

a
c
e

Syscall Interface

Syscall Dispatcher

K
e

rn
e

l
S

p
a

c
e

U
s
e

r
S

p
a

c
e

COMPANY PUBLIC 15

Host Controller SW: Linux OS Architecture – Kernel Space

Host controller

Linux OS

stack

HW platform

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager
Virtual File

System

Network

Stack

USB driver
Display

Driver
I2C driver SPI driver

• The kernel connects the application
software to the hardware platform.

• The executing code has complete
and unrestricted access to the
underlying hardware.

• Kernel mode is generally reserved
for the lowest-level, most trusted
functions of the operating system

• Kernel Mode "prevents" User Mode
applications from damaging the
system or its features Crashes in
kernel mode are catastrophic.

• Kernel space runs on the single
address space.

Kernel Space

H
o

s
t

in
te

rf
a

c
e

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

COMPANY PUBLIC 16

Integrating the NFC Reader

Library in Linux

COMPANY PUBLIC 17

NFC Reader Library: The SW Stack to Develop NFC Apps

Host controller

Linux OS

stack

H
o
s
t
in

te
rf

a
c
e

HW platform

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager
Virtual File

System

Network

Stack

USB driver
Display

Driver
I2C driver SPI driver

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

NFC Reader Library SW integration

• The NFC Reader Library provides an

API including everything you need to

deploy for NFC applications:

– Host platform drivers

– RF digital protocols

– Full feature set according to NFC

Forum

– NXP NFC frontends hardware

drivers

– MIFARE cards and NFC Forum

tag operation

• The NFC Reader Library runs within

the User Space.

• The customer NFC app is built on top

of the NFC Reader Library, taking

advantage of the offered API

The NFC Reader Library is the NXP software stack to develop NFC applications and there is an

existing version for Linux OS architecture!

COMPANY PUBLIC 18

NFC Reader Library & Available Resources
NFC Reader Library

For additional information and source code, please visit: www.nxp.com/pages/:NFC-READER-LIBRARY

Software examples

Example 1: BasicDiscoveryLoop
Example 2: AdvancedDiscoveryLoop
Example 3: NFCForum
Example 4: MIFARE Classic
Example 5: ISO15693
Example 6: EMVCo Loopback
Example 7: EMVCo Polling
Example 8: HCE T4T
Example 9: NTAG I2C
Example 10: SimplifiedAPI_EMVCo
Example 11: SimplifiedAPI_ISO

Don’t start from scratch, available software

examples to test and re-use

Features: Modular, multi-layered, ANSI-C language, portable to multiple

platforms and free download

The NFC Reader Library is everything you need to create your own software stack and application

for a contactless reader

http://www.nxp.com/pages/:NFC-READER-LIBRARY

COMPANY PUBLIC 19

NFC Reader Library Architecture

AL contains application-specific implementations

for various contactless cards (card command sets)

Discovery loop component implements a poll

mode* and a listen mode** for contactless card

and NFC device detection

HCE component implements the card emulation of

NFC Forum Type 4A tag

Contains the implementation of LLPC and SNEP

protocol for NFC P2P mode

High level abstraction of the

NFC Reader Library. Two

profiles for: EMVCo and ISO

COMPANY PUBLIC 20

NFC Reader Library Architecture (II)

The common layer implements a set of utilities

independent of any card and hardware

BAL layer implement the interface between host

controller and the NFC reader IC

HAL components abstract the functionality of

the NFC reader IC to a generic interface

PAL components contain hardware-independent

implementations of contactless protocols

Raspberry Pi is used as reference platform for Linux version of the NFC Reader Library

COMPANY PUBLIC 21

NFC Reader Library – Building the SW Stack

• The build setup and functionality is set

in the file: ../intfs/ph_NxpBuild.h.

• This file defines the modules to be

included into the build setup or to be

excluded from the build setup .

• There is a specific macro defined for

including / excluding each SW

component

• Components can be included /

excluded depending on the application

requirements or to optimize memory

footprint.

#define NXPBUILD__PHBAL_REG_LINUX_USER_SPI

#define NXPBUILD__PHHAL_HW_PN5180

Modules can be enabled / disabled to

optimize code size and memory footprint

Components not included in the project build

COMPANY PUBLIC 22

Host Interface Access on Linux

Systems

COMPANY PUBLIC 23

Linux Based Application: System Call Interface

Host controller

Linux OS

stack

HW platform

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager
Virtual File

System

Network

Stack

USB driver
Display

Driver
I2C driver SPI driver

NFC
frontend

H
o

s
t

in
te

rf
a

c
e

The NFC application needs to switch from User Space to

Kernel Space for every SPI interface access

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

s
y
s
te

m
 c

a
ll

fu
n

c
ti
o

n
 c

a
ll

A system call leads to a so-called
context switch. This context switch
changes the execution context from
user space to kernel space

COMPANY PUBLIC 24

Transition Between User Mode and Kernel Mode

User

application
System Call

System

Call API

Triggered soft

interrupt

Interrupt vector

table

Address SWI

routine

IVT do the

necessary

steps

Kernel

mode

Switching from User mode to Kernel mode Advantage:

• Well defined interface.

• Horizontal separation: Avoids that a crashing

application crashes the whole system and

protects system resources.

• User application initiate switching to kernel mode making a system call

(e.g. open, read, write, etc)

• A software interrupt (SWI) is triggered

• The interrupt vector table launch the handler routine which performs all

the required steps to switch the user application to kernel mode

• Start execution of kernel instructions on behalf of the user process.

Disadvantage:

• Performance degradation: A syscall is much

slower than a direct function call

Could challenge the design of

time-critical NFC applications

COMPANY PUBLIC 25

Latency Analysis: Linux vs Bare

Metal

COMPANY PUBLIC 26

Hardware Setup

PN5180

H
o

s
t
in

te
rf

a
c
e

R
F

 i
n

te
rf

a
c
e

Raspberry Pi

M
a

tc
h

in
g

PN5180

H
o

s
t
in

te
rf

a
c
e

R
F

 i
n

te
rf

a
c
e

LPC 1769

M
a

tc
h

in
g

Linux hardware platform

▪ Raspberry Pi 3 Model B

▪ 1.2 GHz 64-bit quad-core ARMv8 CPU

❖Limited to 1 Core @ 100 MHz (3 cores disabled)

▪ 1 GB RAM

▪ PNEV5180B (with LPC bypassed)

▪ SPI host interface

Bare metal hardware platform

▪ NXP LPC1769 uC

▪ ARM 1 core @ 96 MHz

▪ LPC-Link2 connected for debugging

▪ PNEV5180B

▪ SPI host interface

We limited Raspberry Pi clock and MCU cores to

achieve a comparable setup with LPC1769

Bare metal setupLinux setup

COMPANY PUBLIC 27

Software Setup

ARMv8 CPU

Raspbian Jessie
Kernel 4.4

NFC Reader Library

EMVCo polling example

NXP LPC1769

NFC Reader Library

EMVCo polling example

We execute the NFC

Reader Library and the

same SW example in

both platforms

EMVCo polling example:

Discovery loop for EMVCo

card detection and APDU

command exchange

PN5180

H
o

s
t
in

te
rf

a
c
e

R
F

 i
n

te
rf

a
c
e

Raspberry Pi

M
a

tc
h

in
g

PN5180

H
o

s
t
in

te
rf

a
c
e

R
F

 i
n

te
rf

a
c
e

LPC 1769

M
a

tc
h

in
g

Bare metal setupLinux setup

COMPANY PUBLIC 28

PN5180

H
o

s
t
in

te
rf

a
c
e

R
F

 i
n

te
rf

a
c
e

Raspberry Pi

M
a

tc
h

in
g

PN5180

H
o

s
t
in

te
rf

a
c
e

R
F

 i
n

te
rf

a
c
e

LPC 1769

M
a

tc
h

in
g

Bare metal setupLinux setup

Measurement Setup

Logical analyzer / scope Logical analyzer / scope

Perform transaction RF communication Perform transaction RF communication

Measurements conducted

• Time to set up SPI transfer

• Time between two SPI transfers

• Time for EMVCo polling initialization

• Time for EMVCo loopback transaction

We compared the results in

the next slides

We use a logical analyzer /

scope connected in the SPI

interface between the Host

controller & PN5180

We use a logical analyzer /

scope connected in the SPI

interface between the Host

controller & PN5180

COMPANY PUBLIC 29

Measured Time Setting Up SPI Transfer

* GPIO toggling execution takes less than 350us

1. Set_GPIO(High)*;

2. phhalHw_PN5180_WriteRegister(…);

3. Set_GPIO(Low);

* GPIO toggling execution takes less than 3us

1. Set_GPIO(High)*;

2. phhalHw_PN5180_WriteRegister(…);

3. Set_GPIO(Low);

Until we start writing into the
SPI interface, it takes 0.478 ms

Until we start writing into
the SPI interface, it takes 2.5
us

* Pseudo-code extracted from the real EMVCo polling source code
example from the NFC Reader Library

200x

slower

Bare metal setupLinux setup

COMPANY PUBLIC 30

Measured Time Between Two SPI Transfers

Until we start writing the second
SPI transfer, it takes 1.8 ms

Until we start writing the second
SPI transfer, it takes 74.5us

1. Set_GPIO(High)*;

2. phhalHw_PN5180_WriteRegister(…);

3. phhalHw_PN5180_WriteRegister(…);

4. Set_GPIO(Low);

1. Set_GPIO(High)*;

2. phhalHw_PN5180_WriteRegister(…);

3. phhalHw_PN5180_WriteRegister(…);

4. Set_GPIO(Low);

* Pseudo-code extracted from the real EMVCo polling source code example from the NFC Reader
Library

20x

slower

Bare metal setupLinux setup

COMPANY PUBLIC 31

Measured Time for EMVCo Polling Initialization (Multiple

Transfers)

* During the initialization, several registers are written.
The process is repeated 10 times to get an average

Measured time for 10
EMVCo polling inits.
1 init ~30.1ms

Measured time for 10
EMVCo polling inits.
1 init ~8.07 ms

3x

slower

Bare metal setupLinux setup

COMPANY PUBLIC 32

Measured Time for EMVCo Loopback

Measured time for a

EMVCo loopback

transaction takes

33.5ms

Measured time for a

EMVCo loopback

transaction takes

6.9ms

*phStatus EMVCoDataLoopBack(…){

1. Set_GPIO(High);

2. EMVCoDataExchange(…);

3. phhalHw_PN5180_WriteRegister();

* Pseudo-code extracted from the real EMVCo polling source code example from the NFC Reader Library

5x

slower

Bare metal setupLinux setup

COMPANY PUBLIC 33

Real Time
What is real-time

COMPANY PUBLIC 34

Soft real-time – Examples

What is Real Time?

Real Time – Definition

• In case a system needs to execute a
certain action or task within a given
time frame then we are talking about
real time

• Hard real-time means that exceeding
this time frame is not allowed and
could lead to malfunction/failure

• In Soft real-time there is no hard
deadline but rather a typical limit until
certain tasks can be finished

• Firm real-time also “allows”
exceeding the deadline, but the result
could be invalid/outdated

• During EMVCo L1 certification of a
terminal the measured guard time
between a WUPA and a WUPB must
not exceed 10ms

• So, the system must guarantee that
the WUPB frame is sent after latest
10ms

• If this is not achieved the device is
not EMVCo L1 compliant and fails
certification

Hard real-time – Examples

• The same terminal in field operation
should not exceed the guard time of
10ms between a WUPA and a WUPB

• If it’s exceeded the system is still
working and operable with typically no
negative impact

COMPANY PUBLIC 35

Overcoming Linux Higher Latency

for Time-sensitive Applications

COMPANY PUBLIC 36

Recommendations to Reduce Linux Latency

NFC

frontend

H
o

s
t
in

te
rf

a
c
e

R
F

 i
n

te
rf

a
c
e

Host controller

M
a

tc
h

in
g

Linux-based NFC reader architecture

Linux OS stack

HW platform

The major parameter influencing the Linux

latency is the large time required to access the

host interface from the host controller due to

the Linux SW stack architecture

Solutions

• Increase CPU/SPI clock as much as the MCU can

process

• Reduce SPI / host interface interactions as much as

possible: Linux driver are optimized for few long

transactions rather than lots of short ones

• Move NFC Reader Library BAL module to

Kernel space
The most effective solution !!

COMPANY PUBLIC 37

NFC Reader Library Support of BAL Module in Kernel

Space

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager

Virtual

File

System

Network

Stack

USB

driver

Display

Driver
I2C driver SPI driver

K
e

rn
e

l
S

p
a
c
e

U
s
e

r
S

p
a
c
e

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager

Virtual

File

System

Network

Stack

USB

driver

Display

Driver

I2C

driver

NFC Reader

Library BAL

layer

K
e

rn
e

l
S

p
a
c
e

U
s
e

r
S

p
a
c
e

SPI

driver

NFC frontend NFC frontend

Linux architecture Linux architecture

Option 1: Default NFC Reader Library

integration in Linux with all lib in user space

Option 2: NFC Reader Library integration in

Linux with BAL module in kernel space

COMPANY PUBLIC 38

NFC Reader Library BAL Module: User Space vs Kernel

Space

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager
Virtual File

System

Network

Stack

USB

driver
Display

Driver

I2C

driver

NFC Reader

Library BAL

layer

K
e

rn
e

l
S

p
a

c
e

U
s
e

r
S

p
a

c
e

SPI

driver

NFC frontend

Linux architecture
1. Read GPIO to wait for BUSY line from

previous command going low.
2. Setup and start first SPI transfer.
3. Read GPIO to wait for BUSY going

low.
4. Setup and start second SPI transfer.
5.

BAL layer in User Space

1. System call read() leading to a context
switch

2. Access BAL kernel module with direct
access to the SPI and GPIO
frameworks.

BAL layer in Kernel Space
ONLY ONE

SYSTEM CALL

 Much more

efficient instead

of having

individual

access from

user space

Plenty of

system calls

and context

switching

operations

COMPANY PUBLIC 39

NFC Reader Library BAL Module: User Space vs Kernel

Space

Until we start

writing into

the SPI

interface, it

takes 86us

BAL layer in User Space: Measured time for setting up one SPI transfer (Raspberry Pi 2 running Linux OS)

BAL layer in Kernel Space: Measured time for setting up one SPI transfer (Raspberry Pi 2 running Linux OS)

Until we

start writing

into the SPI

interface, it

takes 2us

43x

faster

COMPANY PUBLIC 40

NFC Reader Library BAL Module in Kernel Space:

Resources

Syscall Interface

System Libraries

App 1 App 2 App 3 NFC app

GNU C

Library

DRM

Library

NFC Reader

library

Syscall Dispatcher

Generic Kernel

Hardware Dependent Kernel

Process

scheduler

Memory

manager

Virtual File

System

Network

Stack

USB

driver
Display

Driver

I2C

driver

NFC Reader

Library BAL

layer

K
e

rn
e

l
S

p
a

c
e

U
s
e
r

S
p

a
c
e

SPI

driver

NFC frontend

Linux architecture

[1] GitHub repo with:

• Information about building, configuring and

• An example the integration on Raspberry Pi is given.

[2] http://www.nxp.com/documents/application_note/AN11802.pdf

[2] App note with:

• Explanation of how the NFC Reader Library needs to be
changed in order to call the kernel module instead of
using the default BAL module running in user-space.

[1] https://github.com/NXPNFCLinux/nxprdlib-kernel-bal

http://www.nxp.com/documents/application_note/AN11802.pdf
https://github.com/NXPNFCLinux/nxprdlib-kernel-bal

COMPANY PUBLIC 41

Further Considerations

• Changing the scheduling policy

− FIFO and RT.

• RT-Preempt Linux Kernel patch [1]

− Not part of Linux mainline. Needs to be applied manually.

• Dedicated MCU for timing sensitive parts

− E.g. i.MX6 CPU with dedicated Cortex-M4 core.

[1] https://rt.wiki.kernel.org/index.php/Main_Page

COMPANY PUBLIC 42

Selecting the Right Product

COMPANY PUBLIC 43

Latest Non-mobile NFC Products

PN5180 CLRC663 plus NTAG I²C plus
PN7462

& derivates
PN7150

Commercial

tagline

The best full NFC

frontend in the market

Best performance at

lowest power

consumption

Simplest and lowest BoM

NFC solution
All-in-one full NFC solutions

Best plug’n play, high-

performance full NFC solution -

Easy integration into any OS

environment

Positioning

Building on NXP’s trusted

leadership in the core

NFC markets

NXP next-gen multi-

protocol NFC frontend

Easy and reliable entry to

the world of NFC, incl.

password protection

The true innovation:

The all-in-one product

Following the success of

PN7120, PN7150 brings the

same plug ‘n play experience

with higher performance

Target markets
Payment

Access

Access

Payment

Gaming

Industrial

IoT

Mass market

Access

Gaming

Home banking

IoT

Consumer

Mass market

Required NFC

know-how,

targeted

applications

› NFC experts who want

to further optimize

and/or customize their

implementation

› NFC intermediates

› High performance with

low power

requirements for the

most demanding

applications

› NFC beginners

› Simple applications,

where no reader

functionality needed

› Applications requiring

simple protection of data

› Applications requiring

multiple functionalities

(NFC, CT, USB)

› Freely programmable

› NFC integration into Linux

and Android

› Small and medium sized

enterprises (SMEs)

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

