elQ 1.MX Hands-on

v1.0, Apr 22, 2019

Table of Contents

Overview
Hands-On Kit
Software Requirement
Preparing the Board
Preparing the Image
Arm NN Demos
elQ TensorFlow InceptionV3 Demo
Modified Demo
MNIST Handwritten Digits
MNIST Comparison Applications
OpenCV Inference
Why OpenCV?
Comparison with Arm NN
Setting Up the Board
OpenCV Applications
Example Using Caffe with Images

Example Using Caffe with MIPI Camera

Appendix A: Running on Linux
Preparing the Image
Setting Up the Board
Arm NN Demos
MNIST Demos
Setting Up the Host
OpenCV Demos
Setting Up the Host

© © o0 O O U N B ==

e O o Y e S S e T e T e S S S Sy o St Gy S N SN
N3 O O U R R W NN R R R e

Overview

This document targets the eIQ ML Hands-On training and it is divided in three sections: Arm NN
demos, MNIST demos and OpenCV demo.

The Arm NN section shows how to run the prebuilt demo from elQ to recognize three types of
animals. The second part of this section shows a modified demo to extend this for any object
detection.

The MNIST section focuses on a comparison of inference time between different models
(TensorFlow and Caffe) for handwritten digits recognition.

Finally, the OpenCV section uses the DNN module for inference from a TensorFlow model for object
detection from an image. The second part of this section shows a similar demonstration for
face/object detection using the camera input.

The procedures described in this document target a Windows host PC.

For the detailed procedures on how to get the source code, prepare the models for inference and
build new applications on top of eIQ using ArmNN, check the Running on Linux Appendix chapter.
These procedures require a Linux host PC.

Hands-On Kit

Your hands-on kit contains:

1.MX 8MM EVK board

» USB cable (micro-B to standard-A)

* USB Type-C to A Adapter

» USB Type-C 45W Power Delivery Supply
* IMX-MIPI-HDMI Daughter Card

* MINISASTOCSI Camera Daughter Card
* 2xMini-SAS cable

» AI/ML BSP flashed into the SDCard

» Ethernet cable

* USB Mouse

« HDMI Cable

e Monitor

Software Requirement

On the Windows PC, install a terminal application like PuTTY for communicating with the board.

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Preparing the Board
The following section describes the steps to boot the i MX 8MM EVK.

On/Off Reset

Display: MIPI-DSI IR Receiver
Power Switch

JTAG

Camera: MIPI-CSI

CPU Board Expansion Connector

BOOT Switches

Debug Port Wi-Fi/BT Antenna

TypeC TypeC Ethernet Audio
Port1 Port2 Lineout

Figure 1. i.MX 8MM EVK board top view

MicroSD Card
Connector

M2 Connector
(PCle)

Audio Board
Connector

Figure 2. i.MX 8MM EVK board back view

Connect the IMX-MIPI-HDMI daughter card to the Mini-SAS cable and into connector labeled DSI
MIPI (J801) and then connect the HDMI monitor cable into it.

Figure 3. IMX-MIPI-HDMI daughter card

Connect the MINISASTOCSI camera daughter card to the Mini-SAS cable and into connector labeled
CSI MIPI (1802).

Figure 4. MINISASTOCSI camera daughter card

Connect the micro-B end of the supplied USB cable into Debug UART port J901. Connect the other
end of the cable to the host Windows PC. Configure PuTTY with the board COM port number and set
the baud rate to 115200.

You can find the board COM port on the Windows Device Manager. The board
NOTE mounts two COM ports. Take the one with the highest number, which is used to
communicate with Cortex-A.

Connect the MicroSD Card to the MicroSD Card Connector]701 in the board back side. In order to
Boot the board from the MicroSD Card, change the Boot Switches SW1101 and SW1102 (Figure 5)
according to the table below:

Table 1. Boot Device Setting
BOOT Device SW1101 SW1102

MicroSD/uSDHC2 0110110010 0001101000

123456?8910'

5w1101|IIII!IIIII|T

R R R

Figure 5. Boot Device Settings

The boot device settings above apply to the revision C i.MX 8MM EVK board. Other
revisions of the boards may have a different number of boot mode switches and
slightly different settings. Please follow the SW1101 and SW1102 values printed on
your specific board for booting from the MicroSD Card.

NOTE

Connect the power supply cable to the power connector J302 and power on the board by flipping
the switch button SW101.

For more details on the board peripherals, please consult the i. MX 8MM EVK Getting

NOTE
Started.

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-8-processors/evaluation-kit-for-thebr-i.mx-8m-mini-applications-processor:8MMINILPD4-EVK?tab=In-Depth_Tab
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-8-processors/evaluation-kit-for-thebr-i.mx-8m-mini-applications-processor:8MMINILPD4-EVK?tab=In-Depth_Tab

Preparing the Image

The SD card provided for this training is flashed with an image built following the eIQ User Guide
and all the code and needed input files for running each demo presented here.

Some of the demos need write permission to run correctly. After booting, grant the needed
permissions by running the following command lines:

root@imx8mmevk:# chmod 777 /opt/armnn
root@imx8mmevk:# chmod 777 /opt/mnist
root@imx8mmevk:# chmod 777 /opt/opencv

https://community.nxp.com/servlet/JiveServlet/download/343013-7-443936/eIQv1_EAR1.pdf

Arm NN Demos

elQ TensorFlow InceptionV3 Demo

1. At user space, enter the armnn folder which holds the demo files:

root@imx8mmevk:~# cd /opt/armnn
root@imx8mmevk:/opt/armnn#

This image already includes all needed files to run the eIQ demo. Here is what the armnn folders
should look like:

|
data
| Cat.jpg
| F—— Dog.jpg
| L—— shark.jpg
—— model
L—— inception_v3_2016_08_28_frozen_transformed.pb

|
| ...
2. Run the demo:

root@imx8mmevk:/opt/armnn# TfInceptionV3-Armnn --data-dir=data --model-dir=models

= Prediction values for test #0

Top(1) prediction is 208 with confidence: 93.5791%
Top(2) prediction is 209 with confidence: 2.06653%
Top(3) prediction is 223 with confidence: 0.693557%
Top(4) prediction is 170 with confidence: 0.210818%
Top(5) prediction is 232 with confidence: 0.177887%
= Prediction values for test #1

Top(1) prediction is 283 with confidence: 72.4617%
Top(2) prediction is 282 with confidence: 22.5384%
Top(3) prediction is 286 with confidence: 0.838241%
Top(4) prediction is 288 with confidence: 0.0822042%
Top(5) prediction is 841 with confidence: 0.05987%
= Prediction values for test #2

Top(1) prediction is 3 with confidence: 62.0632%
Top(2) prediction is 4 with confidence: 12.8319%
Top(3) prediction is 5 with confidence: 1.25482%
Top(4) prediction is 154 with confidence: 0.177708%
Top(5) prediction is 149 with confidence: 0.116998%
Total time for 3 test cases: 2.369 seconds

Average time per test case: 789.765 ms

Overall accuracy: 1.000

The TfInceptionV3-Armnn demo runs the inference on the three expected input images: one
containing a dog, one with a cat and one with a shark. The output shows the top 5 inference results
and their confidence percentage. The higher the confidence, the better the input image fits the
expected content.

There is a chance to get the following result by running the demo:

Prediction for test case @ (x) is incorrect (should be y)
One or more test cases failed

NOTE (x) refers to the ID of the detected object, (y) refers to the ID expected object.

This is not an execution error. This occurs because the TfInceptionV3-Armnn test expects a specific
type of dog, cat and shark to be found so if a different type/breed of these animals is passed to the
test, it returns a case failed.

The expected inputs for this test are:

Table 2. Expected inference results

ID Label File name
208 Golden Retriever Dog.jpg
283 Tiger Cat Cat.jpg

3 White Shark shark.jpg

The complete list of supported objects can be found here.

Try passing different . jpg images to the test, including the expected types as well as other types and
see the confidence percentage increasing when you match the expected breeds. Remember to
rename the images according to the expect input (Dog. jpg, Cat.jpg, shark.jpg, case sensitive).

To rename a file, use the mv command:
root@imx8mmevk:/opt/armnn/data#f mv <name>.jpg <new_name>.jpg

The next section shows how to modify this demo to identify any object.

https://github.com/ARM-software/armnn/blob/branches/armnn_18_11/tests/TfLiteMobilenetQuantized-Armnn/labels.txt

Modified Demo

This section shows how to use the TfInceptionV3-Armnn test from elQ for general object detection.
The list of all object detection supported by this model can be found here.

1. Enter the demo directory and run the demo:
root@imx8mmevk:/opt/armnn# python3 2-example.py

This runs the TfInceptionV3-Armnn test and parses the inference results to return any recognized
object, not only the three expected types of animals.

2. Show the provided flash cards to the camera and wait for the detection message: Image
captured, wait. The flash cards should not be twisted or curved on this step.

3. After a few seconds, the demo returns the detected object.

This can return False if the image was not correctly captured. In this case, try
showing the flash card again.

‘v#tiﬂﬁﬁﬁﬂﬁ'

NOTE

s,

(x=321, y=12) ~ R:152 G:179 B:170
Figure 6. Captured Flash Card

https://github.com/ARM-software/armnn/blob/branches/armnn_18_11/tests/TfLiteMobilenetQuantized-Armnn/labels.txt

MNIST Handwritten Digits

The MNIST is a large database of handwritten digits commonly used for training various image
processing systems. This section provides a comparison of a Caffe and TensorFlow models for

Handwritten Digit Recognition.

The data set used for these applications is from Yann Lecun. Follow a MNIST data set sample:

O¢go=00 00¢°O
S LT a dn i i
LLZ?.L_,:?QO’)JQ
e L
FAdSE g4 4 oy
S 5585 5 548 546
CLeéebch LG 6 &
Vil e st Sty R S)
i e i i i
S a Al B

Figure 7. MNIST data set

MNIST Comparison Applications

1. At user space, enter the mnist folder which holds the demo files:

root@imx8mmevk:/opt/mnist#

This is how the mnist folder structure should look like:

...

—— 1-example

—— 2-example

—— 3-example

—— data

—— t10k-images-idx3-ubyte

| L—— t10k-labels-idx1-ubyte

L—— model
F—— lenet_iter 9000.caffemodel
—— optimized_mnist_tf.pb
F—— simple_mnist_tf.pb
L—— simple_mnist_tf.prototxt

2. Run the applications:

NOTE

For running these applications, please provide the wanted number of

predictions, which can vary from 0 to 9999 since the dataset has 10k images.

https://caffe.berkeleyvision.org/
https://www.tensorflow.org/
http://yann.lecun.com/exdb/mnist/

a. The 1-example uses a Caffe model for inference:

root@imx8mmevk:/opt/mnist#

(0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

Caffe
Caffe
Caffe
Caffe
Caffe
Caffe
Caffe
Caffe
Caffe
Caffe

Total Time: 0.

root@imx8mmevk :
[0] Tensor
[1] Tensor
[2] Tensor
[3] Tensor
[4] Tensor
[5] Tensor
[6] Tensor
[7] Tensor
[8] Tensor
[9] Tensor

./1-example 10
>> Actual: 7 Predict: 7 Time: 0.0336484s
>> Actual: 2 Predict: 2 Time: 0.028399s
>> Actual: 1 Predict: 1 Time: 0.0283713s
>> Actual: @ Predict: 0 Time: 0.0284133s
>> Actual: 4 Predict: 4 Time: 0.0280637s
>> Actual: 1 Predict: 1 Time: 0.0281574s
>> Actual: 4 Predict: 4 Time: 0.0285136s
>> Actual: 9 Predict: 9 Time: 0.0283779s
>> Actual: 5 Predict: 5 Time: 0.0283902s
>> Actual: 9 Predict: 9 Time: 0.0283282s
296081s Sucessfull: 10 Failed: 0
b. The 2-example uses a TensorFlow model for inference:
/opt/mnist# ./2-example 10
>> Actual: 7 Predict: 7 Time: 0.00670075s
>> Actual: 2 Predict: 2 Time: 0.00377025s
>> Actual: 1 Predict: 1 Time: 0.0036785s
>> Actual: @ Predict: @ Time: 0.0036815s
>> Actual: 4 Predict: 4 Time: 0.00372875s
>> Actual: 1 Predict: 1 Time: 0.003669s
>> Actual: 4 Predict: 4 Time: 0.00367825s
>> Actual: 9 Predict: 9 Time: 0.0036955s
>> Actual: 5 Predict: 6 Time: 0.00367488s
>> Actual: 9 Predict: 9 Time: 0.0036025s
Sucessfull: 10 Failed: 1

Total Time: 0.0414569s

NOTE

These tests run the inference on the input MNIST dataset images (Actual), showing the inference

FAILED

The argument 10 refers to the number of predictions for each test.

results (Predict) and how long it took to complete the prediction.

The input images for this test are in the binary form and can be found at the t10k-images-idx3-

ubyte.gz package from Yann Lecun.

By the output results, it is possible to notice that the Caffe model is slower than TensorFlow, but in
the other hand it is also more accurate than the latter. Change the argument to compare further

results between the two models.

10

http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/

OpenCV Inference

Why OpenCV?

OpenCV offers a unitary solution for both neural network inference (DNN module) and classic
machine learning algorithms (ML module). Moreover, it includes many computer vision functions,
making it easier to build complex machine learning applications in a short amount of time and
without having dependencies on other libraries.

The OpenCV DNN model is basically an inference engine. It does not aim to provide any model
training capabilities. For training, one should use dedicated solutions, such as machine learning
frameworks. OpenCV’s inference engine supports a wide set of input model formats: TensorFlow,
Caffe, Torch/PyTorch.

Comparison with Arm NN

Arm NN is a library deeply focused on neural networks. It offers acceleration for Arm Neon, while
Vivante GPUs are not currently supported. Arm NN does not support classical non-neural machine
learning algorithmes.

OpenCV is a more complex library focused on computer vision. Besides image and vision specific
algorithms, it offers support for neural network machine learning, but also for traditional non-
neural machine learning algorithms. OpenCV is the best choice in case your application needs a
neural network inference engine, but also other computer vision functionalities.

Setting Up the Board

In the target device, export the required variables:

root@imx8mmevk:~# export LD_LIBRARY_PATH=/usr/local/lib
root@imx8mmevk:~# export PYTHONPATH=/usr/local/lib/python3.5/site-packages/

11

https://opencv.org/

OpenCV Applications

This application was based on SSD: Single Shot MultiBox Detector and Caffe SSD Implementation.

Example Using Caffe with Images

The folder structure must be equal to:

$ tree
—— 1-example.py
—— 2-example.py
F—— Makefile
F—— media
| L
—— model
| —— MobileNetSSD_deploy.caffemodel
| L—— MobileNetSSD_deploy.prototxt

This example runs a single picture for example, but you pass as many pictures as you want and
save them inside media/ folder. The application tries to recognize all the objects in the picture.

For copying new images to the media/ folder:

root@imx8mmevk:/opt/opencv/media#f cp <path_to_image> .

Run the example image:

root@imx8mmevk:/opt/opencv# ./1-example.py

NOTE If GPU is available, the example shows: [INFO:0] Initialize OpenCL runtime

This demo runs the inference using a Caffe model to recognize a few type of objects for all the
images inside the media/ folder. It includes labels for each recognized object in the input images.

The processed images are available in the media-labeled/ folder. See before and after labeling:

Display the labeled image with the following line:

12

https://arxiv.org/abs/1512.02325
https://github.com/weiliu89/caffe/tree/ssd

root@imx8mmevk:/opt/opencv/media-labeled# gst-launch-1.0 filesrc location=<image> \
I jpegdec ! imagefreeze ! autovideosink

Example Using Caffe with MIPI Camera

This example is the same as above, except that it uses a camera input. It enables the MIPI camera
and runs an inference on each captured frame, then displays it in a window interface in real time:

root@imx8mmevk:/opt/opencv# ./2-example.py

13

Appendix A: Running on Linux

While this document focus on how to run the demos, this Appendix shows detailed information and
steps on where to get the source code and models, how to prepare models for inference, how to
build new C++ applications and further information not suitable for Windows OS. This shows the
procedure of getting an image built following the eIQ User Guide and enabling all the
demonstrations of this training in a fresh new image.

Preparing the Image

1. Download a prebuilt image for . MX 8MM EVK from here.
NOTE Prebuilt image with demos for i.MX 8MM EVK from here.

1. Extract the image and flash it to the SD card:

$ bunzip2 -f eig-handson-8mm.sdcard.bz2
$ dd if=eigq-handson-8mm.sdcard of=/dev/sd<x> status=progress && sync

<x> refers to the SD card device. You may need root privileges (sudo) for

NOTE
running the dd command.

Setting Up the Board

1. Create the following folders and grant them permission as it follows:

root@imx8mmevk:# mkdir -p /opt/armnn/model
root@imx8mmevk:# mkdir -p /opt/armnn/data
root@imx8mmevk:# chmod 777 /opt/armnn

root@imx8mmevk:~# mkdir -p /opt/mnist
root@imx8mmevk:~# chmod 777 /opt/mnist

root@imx8mmevk:# mkdir -p /opt/opencv/model
root@imx8mmevk:# mkdir -p /opt/opencv/media
root@imx8mmevk:# chmod 777 /opt/opencv

2. To easily deploy the demos to the board, get the boards IP address using ifconfig command,
then set the IMX_INET_ADDR environment variable as it follows:

$ export IMX_INET_ADDR=<imx_ip>

14

https://community.nxp.com/servlet/JiveServlet/download/343013-7-443936/eIQv1_EAR1.pdf
https://nxp1.sharepoint.com/:f:/s/SE-AITEC/EqBIdWJuS8RPiXQXS4DCG8UB5bOOp0er94YAvFXePZ6ScA?e=oPGMoL
https://nxp1.sharepoint.com/:u:/s/SE-AITEC/EWzVYl2E_VBBv-1kx-IblCEBz8PQ0m0i6Rk154XtIUBUEQ?e=cgeJwA

Arm NN Demos

1. Install TensorFlow on Host PC for preparing the model for inference:

$ apt-get install python-pip
$ pip install tensorflow
$ git clone https://github.com/tensorflow/tensorflow.git

NOTE You may need root privileges (sudo) for running the apt-get command.

2. Generate the graph used to prepare the TensorFlow InceptionV3 model for inference:

$ mkdir checkpoints

$ git clone https://github.com/tensorflow/models.qgit

$ cd models/research/slim/

$ python export_inference_graph.py --model_name=inception_v3 \
--output_file=../../../checkpoints/inception_v3_inf_graph.pb

3. Download the pretrained model and prepare it for inference with the generated graph:

$ c¢d ../../../checkpoints

$ wget http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz \

-q0- | tar -xvz # download pretrained model

$ python <path_to_tensorflow_repo>/tensorflow/python/tools/freeze_graph.py \
--input_graph=inception_v3_inf_graph.pb --input_checkpoint=inception_v3.ckpt \
--input_binary=true --output_graph=inception_v3_2016_08_28_frozen_transformed.pb \
--output_node_names=InceptionV3/Predictions/Reshape_1

NOTE <path_to_tensorflow_repo> refers to the cloned TensorFlow path from Step 1.

4. Copy the prepared model inception_v3_2016_08_28_frozen_transformed.pb to /opt/armnn/models:
$ scp inception_v3_2016_08_28_frozen_transformed.pb root@<imx_ip>:/opt/armnn/model

5. Find three .jpg images on Google, one containing a dog, one with a cat and one with a shark.
Rename them to Dog.jpg, Cat.jpg and shark.jpg accordingly (case sensitive) and copy them to
the /opt/armnn/data folder on the device.

$ scp Dog.jpg Cat.jpg shark.jpg root@<imx_ip>:/opt/armnn/data

6. Run the demo following section elQ TensorFlow InceptionV3 Demo.

NOTE For the modified demo, download this application and put it in /opt/armnn.

15

https://source.codeaurora.org/external/imxsupport/eiq_sample_apps/tree/examples-armnn/2-example

MNIST Demos

Setting Up the Host

Download this toolchain for cross-compiling the applications:

$ chmod +x fsl-imx-xwayland-glibc-x86_64-fsl-image-qui-aarch64-toolchain-4.14-sumo.sh
$./fsl-imx-xwayland-glibc-x86_64-fsl-image-qui-aarch64-toolchain-4.14-sumo.sh

This provides all needed setup for building ARM64 applications on a X86 machine.

1. Download this application.

2. Get the models and dataset. The following command-line creates the needed folder structure for
the demos and retrieves the mnist dataset and the Caffe and TensorFlow models:

$ mkdir -p bin data model

$ wget -gN https://github.com/ARM-software/ML-examples/raw/master/armnn-
mnist/data/t10k-1mages-idx3-ubyte -P data/

$ wget -gN https://github.com/ARM-software/ML-examples/raw/master/armnn-
mnist/data/t10k-1abels-idx1-ubyte -P data/

$ wget -gN https://github.com/ARM-software/ML-examples/raw/master/armnn-
mnist/model/lenet_iter_9000.caffemodel -P model/

$ wget -gN https://github.com/ARM-software/ML-examples/raw/master/armnn-
mnist/model/simple_mnist_tf.pb -P model/

$ wget -gN https://github.com/ARM-software/ML-examples/raw/master/armnn-
mnist/model/simple_mnist_tf.prototxt -P model/

$ wget -gN https://github.com/ARM-software/Tool-Solutions/raw/master/ml-tool-
examples/mnist-draw/model/optimized_mnist_tf.pb -P model/

3. Compile the source code using the downloaded toolchain:

$ source /opt/fsl-imx-xwayland/4.14-sumo/environment-setup-aarch64-poky-1linux
$ ${CXX} -Wall -Wextra -03 -std=c++14 1-example.cpp -0 1-example -larmnn

-larmnnCaffeParser

$§ ${CXX} -Wall -Wextra -03 -std=c++14 2-example.cpp -0 2-example -larmnn
-larmnnTfParser

$ ${CXX} -Wall -Wextra -03 -std=c++14 3-example.cpp -0 3-example -larmnn
-larmnnTfParser

4. Deploy the built files to the board:

$ scp -r 1-example 2-example 3-example data/ model/
root@${IMX_INET_ADDR}:/opt/mnist

5. Run the demo following section MNIST Comparison Applications.

16

https://nxp1.sharepoint.com/:u:/s/SE-AITEC/EWG4sZDliQZJqpuRrhSJGlUBU3vD3omT5Vp6dDcbfPmDGA?e=rxSLWo
https://source.codeaurora.org/external/imxsupport/eiq_sample_apps/tree/examples-mnist/src

OpenCV Demos

Setting Up the Host

1. Download this application.

2. Get the models and dataset. The following command-line creates the needed folder structure for
the demos and retrieves all needed data and model files for the demo:

$ mkdir -p model

$ wget -gN
https://github.com/diegohdorta/models/raw/master/caffe/MobileNetSSD_deploy.caffemod
el -P model/

$ wget -gN
https://qithub.com/diegohdorta/models/raw/master/caffe/MobileNetSSD_deploy.prototxt
-P model/

3. Deploy the built files to the board:
$ scp -r T-example.py 2-example.py model/ root@${IMX_INET_ADDR}:/opt/opencv

4. Run the demo following section Example Using Caffe with Images.

17

https://source.codeaurora.org/external/imxsupport/eiq_sample_apps/tree/examples-opencv

	eIQ i.MX Hands-on
	Table of Contents
	Overview
	Hands-On Kit
	Software Requirement
	Preparing the Board
	Preparing the Image
	Arm NN Demos
	eIQ TensorFlow InceptionV3 Demo
	Modified Demo

	MNIST Handwritten Digits
	MNIST Comparison Applications

	OpenCV Inference
	Why OpenCV?
	Comparison with Arm NN
	Setting Up the Board
	OpenCV Applications
	Example Using Caffe with Images
	Example Using Caffe with MIPI Camera

	Appendix A: Running on Linux
	Preparing the Image
	Setting Up the Board
	Arm NN Demos
	MNIST Demos
	Setting Up the Host

	OpenCV Demos
	Setting Up the Host

