
MEXTRAM (level 504)
the Philips model for bipolar transistors

Jeroen Paasschens, Willy Kloosterman, Ramses van der Toorn

FSA modeling workshop 2002

©Philips Electronics N.V. 2002

Philips
Research � PHILIPS



Contents

History

Modelled effects
some basic bipolar characteristics

Improved description of output conductance and fT

How an improved description gives smoother behaviour

Some optional features:
The effect of a graded Ge content in the base
Neutral base recombination
Self-heating
Advanced avalanche modelling: snapback

Geometric scaling

Status of Mextram 504



History

• Mextram has been developed by Philips Research

• Physics based, suitable for digital and analog applications

• Introduced in 1985

• Updates

! level 502: 1987

! level 503: 1993

! level 504: 2000

• In public domain since 1995

http://www.semiconductors.philips.com/Philips Models
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Modelled effects: Gummel plot

Collector current, base current and current gain
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Non-ideal base current ( VBE < 0:55V)

Bias dependent reverse Early effect (o.a. in hfe: VBE = 0:5–0:9V)

High current effects (resistances, knee, Kirk effect) ( VBE > 0:9V)



Modelled effects: Output characteristic
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Bias dependent Early effect ( gout not constant)

Quasi-saturation/Kirk effect: current reduction at lower voltages/

high current densities

Hard saturation ( VCE < 0:6V)

Avalanche ( VCE > 4V)



Depletion capacitances

Depletion capacitances in Mextram:
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When diffusion charge becomes important ( VBC > 0:5V):

depletion capacitance levels off (not important anymore)



Diffusion charges

Spice-Gummel-Poon: as function of current

Qdi� = ���fIf

Mextram: as function of carrier densities

Qdi� ;E=���E Is e
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n0, nB: electron concentration in base

p0: hole concentration in epilayer



Modelled effects: Cut-off frequency (Research SiGe)
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Capacitances (low currents)

Transit times (around top of fT )

Quasi-saturation/Kirk effect (beyond top fT )

Reverse transit time (hard saturation, negative VCB)



Independence of parameters

Capacitance values and transit times do not influence

DC behaviour

Base parameters Is, Ik , ���B

are separate from

epilayer parameters RCv , SCRCv , Ihc, ���epi

) Ge in base does not influence epilayer parameters

Independency simplifies parameter extraction



Small-signal parameters VCB = �0:4; 0; 0:75; 1:5V (Research SiGe)
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Temp. scaling VCB = �0:36V, T = �50; 25; 62:5; 137:5; 200ÆC

Ic
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RF noise model ( 0:5� 20:3 µm2, f = 1, 2, 5:5GHz, VCE = 2V)
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Parameters of Mextram
Forward current modelling : 25

Reverse current modelling (including PNP) : 6

Extra parameters used only in charge modelling : 14

Temperature scaling model : 14

Self-heating : 2

Noise model ( 1=f ) : 3

HBT options : 2

General parameters (level, flags, reference temperature) : 7

Total : 73



Equivalent circuit describing the elements of a bipolar transistor
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Substrate resistance

N

P

N

Mextram substrate node

Substrate Base Emitter Collector

Mextram does not contain substrate network:

• On-wafer characterization layout differs from final design

• Never complex enough when really needed



List of modelled effects

Modelled better in Mextram than in Spice-Gummel-Poon

• Current gain (incl. reverse Early effect)

• Early effect (bias dependent) ! output conductance

• Reverse behaviour

• Cut-off frequency fT ! all high-frequency behaviour

• Both low and high-frequency distortion

• Large signal modelling ! e.g. power amplifiers



List of modelled effects (cont.)

Modelled in Mextram, but not in Spice-Gummel-Poon

• AC and DC Current crowding in base-resistance

• Substrate effects (parasitic transistor)

• descriptions for emitter-base sidewall region

• descriptions for collector-base extrinsic region

• Splitting of capacitances ! extra delay times

• Overlap capacitances



List of modelled effects (cont.)

Modelled in Mextram, but not in Spice-Gummel-Poon

• Specific SiGe effects

• Self-heating

• Weak avalanche, also at high currents

• Quasi-saturation and Kirk effect ! better HF behaviour

These last effects are important when supply voltage is low
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Quasi saturation/Kirk effect
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For large enough currents base widening occurs:

a lot of charge gets injected into the collector epilayer.

Consequence: reduction of current and of cut-off frequency.

Not modelled in Spice-Gummel-Poon model



Modelling quasi-saturation/Kirk effect

The intrinsic part of Mextram looks like
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Model for epilayer resistance:

Iepi (VBCi ; VBCx )

The model contains:

• Ohmic resistance

• Resistance modulation due to

excess electrons

• Quasi-saturation (incl. Kirk effect)



504 improvement: model comparison

old model: shows kinks in output conductance

Mextram (new model): smoother behaviour
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504 improvement: experimental results: (12V BiCMOS process)

Mextram (new model). As one can see: measurements do not

show kink at the point where quasi-saturation starts
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Blue line: current where quasi-saturation starts

Green line: result from old model



504 improvement: experimental results: (12V BiCMOS process)

old model

Mextram (new model)

Also for cut-off frequency description improved
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504 improvement: experimental results: (12V BiCMOS process)

2nd and 3th derivative of collector current IC in Gummel plot

Temperature = 25 , 75 , 125 ÆC
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Optional features of Mextram

SiGe transistor in case of a graded Ge -profile

Collector-bias dependent base current for SiGe

Self-heating

Advanced avalanche modelling at high currents



SiGe transistors

Mextram 504 tested on on various SiGe processes

• Device simulations

• Philips (QUBiC4G, various versions from research)

• Infineon, ST (data from international model comparison)

• Temic/Atmel

For most processes no special SiGe options needed, however : : :



Graded Ge profile or box-like profile

Doping profile

Ge content
ECBE B C

First IBM process and Infineon process have graded Ge-content

Philips has box-like Ge profile

For both cases an option is available in Mextram



Graded Ge profile: Reverse Early effect (Infineon SiGe)

Reverse Early effect can be seen in two different measurements:

Reverse Early measurement Forward current gain
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Blue lines are for one parameter set:

not possible to fit both forward and reverse measurement.



Graded Ge profile: Reverse Early effect

Reverse Early measurement Forward current gain
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green lines are for another parameter set:

Better result for VEC < 0:5V, but not for larger voltages.



Graded Ge profile: model improvement
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Graded Ge profile: model improvement
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Graded Ge profile: Reverse Early effect

With new Mextram option, now including the Ge grading:

Reverse Early measurement Forward current gain
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Optional features of Mextram

SiGe transistor in case of a graded Ge -profile

Collector-bias dependent base current for SiGe

Self-heating

Advanced avalanche modelling at high currents



Modern Ge profile

Doping profile: high base doping, smaller emitter-cap doping

Ge content: square profile

electron

B CE Ge

concentration

Due to high base doping Neutral Base Recombination (NBR) be-

comes important.



Modern Ge profile: Neutral base recombination (Atmel SiGe)

dotted: without Neutral Base Recombination (NBR)
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Modern Ge profile: Neutral base recombination

dotted: without Neutral Base Recombination (NBR)

solid: with NBR: new Mextram 504 option, one extra parameter
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Modern Ge profile: NBR effect on output conductance

Constant VBE with or without Neutral Base Recombination (NBR)

Constant IB without NBR (dashed)

Constant IB with NBR (new model option)
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Optional features of Mextram

SiGe transistor in case of a graded Ge -profile

Collector-bias dependent base current for SiGe

Self-heating

Advanced avalanche modelling at high currents



Self-heating

Self-heating:

an increase in temperature due to power dissipation

• Standard extra sub-circuit

e
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6

• Dissipation Pdiss: sum over the dissipation in every branch



Selfheating: output characteristic at constant IB
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Mextram 504 is first Philips model with full self-heating

(our simulator allowed a trick to handle self-heating)

In case of selfheating: VBE decreases always

For pure Si transistors: IC increases with VCE

For SiGe transistors: IC decreases with VCE



Selfheating and mutual heating

It is possible to model mutual heating using an external network
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Optional features of Mextram

SiGe transistor in case of a graded Ge -profile

Collector-bias dependent base current for SiGe

Self-heating

Advanced avalanche modelling at high currents



Extended avalanche: low currents
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Breakdown voltage BVceo is where IB = 0 (at constant VBE)

For this process BVceo ' 12V.



Extended avalanche: breakdown voltage depends on current level

Base current BVceo = Vce@ IB=0
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For increasing currents BVceo normally increases

For high currents BVceo can decrease again due to Kirk effect



Extended avalanche: snapback

Mextram is the only model capable of describing snapback

output characteristic at constant base current
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Snapback is bad for convergence ! optional feature
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Geometric scaling

The model parameters for a single transistor are called

electrical parameters

These electrical parameters are a function of geometry

Geometry is given by Wem � Lem , Wbase � Lbase etc.

Example:

Is = Ibottom
s WemLem + 2 Isidewall

s (Wem + Lem)

) Ibottom
s and Isidewall

s are unity parameters



Geometric scaling

MOS transistors

Miniset

! Electrical parameters and temperature scaling

Maxiset

! Geometry scaling parameters

Bipolar technologies have more geometric variations

Bipolar transistors

Within Mextram

! Electrical parameters and temperature scaling

Outside of Mextram

! Geometry scaling



Equivalent circuit describing the elements of a bipolar transistor
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Example: cut-off frequency fT (0.35µm BiCMOS)
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! a designer is free to choose any length within layout rules.
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Status of Mextram 504

Companies using Mextram:

• Philips (of course), TSMC, TI

Companies evaluating Mextram:

• Analog Devices, Samsung, IBM

Mextram is implemented in (as far as we know):

Spectre (Cadence) (DLL: on our web—4.4.6: Dec. 2001)

HSpice (Synopsys/Avant!) (2002)

ADS (Agilent) (March 2002)

Eldo (Mentor Graphics) (March 2001)

Pstar (In-house) (4.1, June 2001)



Summary

Mextram is an advanced compact bipolar model:

• is based on physics

• can be used for analogue and digital applications

• special attention is paid to (higher-order) derivatives

• describes the various regions of the transistor

• contains temperature scaling and can be scaled geometrically



Summary (cont.)

• Mextram gives excellent description of

– Early effect and output conductance

– High-current effects

– High-frequency behaviour

– Noise behaviour

• Mextram contains features for

– Non-constant Ge profiles

– Early effect on the base current

– Extended avalanche for high currents

– Self- and mutual heating

• Mextram is implemented in various commercial simulators



More information

Our Web-site [1] contains:

Documentation

! Model definition [2]

! Derivation of all equations [3]

! Parameter extraction [4]

! Comparison between Mextram 503 and Vbic 95 [5]

! A number of publications like [6, 7, 8, 9, 10]

! A number of presentations like [11,12,13,14]

Source code

! Full Mextram 504 code including simple solver

! Spectre Model Kit (dynamically linkable library)



Real example

World’s first 20 �20 10Gb/s crosspoint switch (optical networking)

Designed using Mextram (first time right)

Based on 1D simulations combined with measured scaling rules
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