
Hello and welcome to this presentation of the I2C, or inter-integrated circuit, module
for Kinetis MCUs. In this session, you’ll learn about the I2C’s main features and the
application benefits of leveraging this function.

0

In this presentation, we’ll cover:

• An overview of the module

• The on-chip interconnections and inter-module dependencies

• Hardware and software configurations

• An example use case for reference

• And a few frequently asked questions

1

First, let’s take a brief look at the I2C protocol and overall features of the Kinetis
MCU I2C module.

2

I2C Protocol Overview

I2C is a widely used communication protocol to transfer data between devices.

It uses only 2 bus lines: SCL (or clock) and SDA (or data). Note that your system
may also require a ground connection if a master and slave device do not reference
the same ground connectionthe same ground connection.

Data transfer is made in a simple master-slave relationship between components
with each slave possessing its own, unique bus address.

The protocol does not define a strict baud rate, but the standard transfer rates areThe protocol does not define a strict baud rate, but the standard transfer rates are
up to 1 MHz. The master device determines the frequency.

It is possible to have multiple I2C devices in a multi-master or multi-slave bus
configuration with arbitration loss and collision detection.

3

I2C Module Main Features

The key features of the I2C module in Kinetis MCUs include:

- I2C bus specification support

- Support for 10-bit addressing scheme

- SMBUS version 2 specification support

- Programmable input filter to absorb and eliminate glitches on the bus

- and the ability to wake up the MCU with a slave address match

4

I2C Module Functional Block Diagram

This is a general block diagram of the I2C module. The most relevant parts are the
register blocks – outlined in yellow here. The registers provide status flags that
serve as an interface to configure the module. The data register provides an
interface for the application to send or receive data to or from the I2C bus.

5

Next, let’s discuss on-chip interconnection and inter-module dependencies.

6

I2C Module On-chip Interconnections and Inter Module Dependencies

This diagram displays the I2C interconnections and it’s relationship with other
peripherals or systems.

On left, we see the path for the I2C module source clock. The clock is initially
generated by the MCG module passing then to the SIM module which delivers angenerated by the MCG module, passing then to the SIM module which delivers an
equal or divided frequency. Note the doted lines for system and bus clocks; this
means that the I2C clock source will depend on the specific Kinetis device and the
specific I2C module instance. Please refer to your Kinetis MCU reference manual
for help determining the exact clock source.

From the SIM mod le it is er important to enable the I2C clock gate beforeFrom the SIM module, it is very important to enable the I2C clock gate before
accessing the I2C registers.

On the right, the possible interrupt triggers are displayed. The triggers marked with
a red star are not present in all Kinetis devices. Refer to your device specific
reference manual for details. All of the interrupts in an I2C module instance share a
i l i t t t d t th NVIC d l Th t i d t tsingle interrupt vector mapped to the NVIC module. There are two required steps to

enable interrupts:

1. Enable the desired interrupt triggers in the I2C module, and

2. Enable the common interrupt vector in the NVIC module for the
corresponding I2C module instance

7

Now let’s examine a basic hardware setup.

8

I2C Hardware Configuration

An important hardware component of the I2C bus are the pull-up resistors. There
should be one pull-up resistor per I2C line. This is because the I2C specification
requires I2C devices to have open drain output stages. Usually the lines of the bus
are pulled up to the same voltage level of the MCUs’ VDD. If the Kinetis device has
true open drain pins, then it is permissible to pull the pins up to 5 volts.

9

In this section, we will examine the I2C driver provided by the Kinetis Software
Development Kit (or KSDK).

10

Kinetis Software Development Kit (KSDK) I2C Master Driver

The I2C master driver functions require a structure variable of type
“i2c_master_state”. This should be a persistent structure, so it is recommended to
make it global, static or defined in the main function.

A simple structure variable of type “i2c_device” is also needed. This variable should
be initialized with the I2C slave address and the desired baud ratebe initialized with the I2C slave address and the desired baud rate.

APIs initialize and de-initialize the driver, as well as set the baud rate.

The transmission APIs are for data transmission. There are blocking and non-
blocking calls.

• Blocking calls do not exit the function until the I2C transfer is complete.

• Non-blocking functions simply start the I2C transfer and then exit the function.

Finally there are APIs for data reception, which also have blocking or non-blocking
variants.

11

Kinetis Software Development Kit (KSDK) I2C Slave Driver

The slave driver requires a structure variable of type “i2c_slave_state” and a
structure of type “i2c_slave_user_config”. The “i2c_slave_user_config” variable
holds the slave address, slave callback, callback parameter, slave listening mode,
and start/stop detection depending on the device.

There are simple APIs for initialization, de-initialization and to retrieve a pointer to
the slave’s state structure.

12

Kinetis Software Development Kit (KSDK) I2C Slave Driver – Continued

These are the data transmission APIs.

and APIs for data reception.

13

Let’s take a look at an I2C example available with Kinetis SDK.

14

Kinetis SDK I2C Example – Master Code

The next three slides are an example of basic master – slave communication. The
code in this slide is the I2C master project.

The application consists of continuous iterations of the master sending 1 byte or
more to the slave along with a command byte indicating to the slave how manymore to the slave, along with a command byte indicating to the slave how many
bytes to expect. Then the master waits for the slave to echo the bytes it received
from the master. The communication continues with the master incrementing the
number of bytes sent or received within each iteration.

15

This is the continuation of the I2C master code.

16

… and the final section of the master code.

17

Kinetis SDK I2C Example – Slave Code

In the next two slides is the code for an I2C slave application. The first byte
received by the slave indicates the incoming number of bytes. Then the slave
receives the specified number of bytes in a buffer and sends them back to the
master. The communication continues by the slave receiving and echoing as many
bytes as indicated by the master.

18

And here is the remaining piece of the slave code.

19

I2C Single-Master / Multiple-Slave Use Case

This diagram represents one use case with one I2C master and three I2C slave
devices. In this case, the three slaves are an EEPROM memory device, a DAC, and
a LCD device. Please note the use of pull-up resistors.

20

Now, let’s review a few FAQs that arise when using the I2C module.

21

I2C FAQs

Question: What is the maximum bus frequency of the I2C module?

Answer: The module is targeted for up to 1 MHz frequencies depending on the
Kinetis device.

Question: Why is the low level signal on SDA or SCL not completely pulled
down to 0 Volts?

Answer: For Kinetis MCUs, you may need to configure the I2C pins for open drain
mode by setting the PORTx_PCR [ODE] bit. Another cause for this may be a poor
ground connection between your master device and slave device.

22

I2C FAQs – Continued

Question: What is the difference between pseudo open drain and true open
drain pins?

Answer: Pseudo open drain pins are compatible with I2C specification, but these
pins cannot be pulled up to a voltage higher than VDD.

True open drain pins are also compatible with I2C specification and can be pulled
up to 5V.

23

Resources

This concludes our presentation on the I2C module for Kinetis MCUs.

For additional references, please visit the application notes listed here.

We also invite you to visit us on the web at Freescale.com/Kinetis and check out our
community page.

24

25

