
TM

October 2013

TM 2

• A brief intro to MQX Lite

− Overview, Main features and Code Size

• Real work: hands-on labs

− Create a new MQX-Lite project, add ConsoleIO and BitIO

components

− Create tasks, watch the flashing lights

TM 3

• You will use Processor Expert (PEx) to configure MQX Lite

(a PEx component) and initialize multiple tasks on the

Kinetis E series processor. Light the LED and print

message from UART.

4 TM

• A real-time operating system (RTOS) manages the time of

a microprocessor or microcontroller

• Features of an RTOS:

Allows multi-tasking

Scheduling of the tasks with priorities

Synchronization of the resource access

Inter-task communication

Time predictable

Interrupt handling

5 TM

• Adding ~450 new users every month

6 TM

• Very light MQX kernel for resource-limited MCUs

− Targeted at the Kinetis L family initially

− Packaged as a Processor Expert component

• I/O capability provided by Processor Expert

− USB via FSL bare-metal stack, also a Processor Expert component

− No file access

• Programming model allows upward code migration

− Code built with MQX Lite should move to full MQX RTOS easily

7 TM

• Scheduler

− Priority pre-emptive schedule

− Support for lightweight semaphore, and mutex (with polling)

• Task Management will not support dynamic task creation

− All task resources allocated at compile time

• Lightweight events and messaging only

• Dynamic memory management not allowed

• Lightweight timer included (one shot, and periodic notification)

8 TM

• Minimal App – Hello Task, Idle task, interrupt stack

− Code = 10.4K

− Data = 3.7K (including 1.5K for stacks)

• Typical App – 7 tasks + idle, lightweight events, queues

− Code = 27K

− Data = 10K (5K for stacks)

• Your mileage will vary

9 TM

• MQX Lite delivered as an RTOS adapter

− Interrupt mechanism in MQX is unchanged

− Processor Expert LDDs work with the
RTOS

• The entire I/O from standard MQX
removed

− I/O provided by LDD components

• Set up and configure tasks in
Component Inspector

• Easy to add MQX Lite to existing app

− Just drop in the MQX Lite component

10 TM

• Board for work – FRDM-KE02Z

 - Freescale Freedom development

platform, ideal for rapid prototyping.

 - Featuring a Kinetis E series MCU,

the industry’s first 5-volt MCU built

on the ARM® Cortex™-M0+ core.

 - MKE02Z64VQH2 - 20MHZ, 64KB

Flash, 4KB SRAM, 64QFP

 - Easy access to MCU I/O

 - OpenSDA debug interface, easy to

download and debug applications.

MCU with limited resources for the application,

Ideal to verify MQX Lite !

11 TM

• Work for today

 IDE: CodeWarrior 10.5

 - Create a workspace

 - Create a new MQX Lite project

 - Add and configure ConsoleIO component to send messages

through UART

 - Add and configure three BitIO components to control the tri-

color LED

 - Configure the MQX Lite component

 - Define tasks and write the code

 - Build it and run it – watch the blinking lights

12 TM

• This makes sure we don’t have any confusion

• FileSwitch WorkspaceOther

• Type in E:\MQXLiteWorkspace

• For the sake of others, turn off “Use this as the default…”

• Then you can hide the Welcome Screen that appears.

13 TM

• Click Import Project in Commander view

− FilenewMQX-Lite Project

14 TM

• Choose openSDA as connection interface

15 TM

• This takes a few second on first

launch

• Double click the .pe file

• The Components view opens
1

Double

click

16 TM

• Provided and configured in starter project

• Select CPU, go to component inspector, look at System Clock

• 16.7MHZ

17 TM

• Open Components Library

• CPU External Devices -> Display -> ConsoleIO

• Double click the component to add it into project

18 TM

19 TM

• Logical Device Drivers -> Port I/O -> BitIO_LDD

20 TM

• Rename the component BLUE and configure it.

21 TM

• Add the second BitIO component, rename the component

GREE and configure it.

22 TM

• Add last BitIO component, rename the component RED and

configure it.

23 TM

• Double-click MQXLite

• Go to the Component

 Inspector, look at MQX1.

24 TM

• We will have three tasks, so increase by two.

• Task Template

 List = 3

• Other values

are default

2

1

25 TM

• Select the task

• Examine the properties

• Actually, default values for all properties

• Task 1

− Name = Task1 (default)

 Case matters!

Code depends on this

− Entry point function

− Stack size = 400

1

26 TM

• Task2

− Name = Task2 (Default)

 Case matters! Code depends

on this

− Priority = 8

− AUTO_START_TASK =

 Enable

 we will instantiate and start

the task in our code

1

27 TM

• Task3

− Name = Task3 (Default)

 Case matters! Code

depends on this

− Priority = 8

− AUTO_START_TASK =

 Disable

 we will instantiate and start

the task in our code

1

2

28 TM

• Click to generate PE code

1

29 TM

• Open ProcessorExpert.c

• RTOS initialization – auto generated code

• That Macro = a call to _mqxlite() – which sets up the OS

30 TM

31 TM

• Open task_template_list.c

• – in Generated_Code

folder

• Here are our tasks

− Based on the properties set

in the component

− One is an auto-start task as

we specified

32 TM

• In mqx_tasks.c

 - in Sources folder

• Function header automatic

− You will still need to create body

of function obviously

• Loops endlessly flashing

BLUE LED

33 TM

• Loops endlessly
flashing GREE

• Setup task3

• The OS handles task priority and switching

34 TM

• Loops endlessly

flashing RED

• The OS handles task priority and switching

35 TM

• Just click Build in the Commander view OR…

• Select the project

• ProjectBuild Project

• Should be no errors

36 TM

• Installing Drivers

 Optional: Download and Install the P&E OpenSDA USB Drivers found

at www.pemicro.com/opensda

 Plug in a USB cable (not included) from a USB host to the OpenSDA

mini-B USB connector. The FRDM-KE02Z will be powered by this USB

connection.

 a. Open Device Manager

 b. Locate and right-click on “OpenSDA – CDC Serial Port”

 c. Select “Update Driver Software”

 d. “Browse” and select the FRDM-KE02Z drive

 e. Click “Next” to complete the installation

1

2

3

http://www.pemicro.com/opensda

37 TM

- Open-standard serial and debug adapter.

- Bridges serial and debug communications between a USB host

and an embedded target processor.

- OpenSDA software includes a flash-resident USB mass-

storage device (MSD) bootloader and a collection of OpenSDA

Applications. FRDM-KE02Z preinstalled with the MSD Flash

Programmer OpenSDA Application.

38 TM

• MSD Flash Programmer - a composite USB application that provides a virtual

serial port and an easy and convenient way to program applications into the

KE02Z MCU. It emulates a FAT16 file system, appearing as a removable

drive in the host file system with a volume label of FRDM-KE02Z.

 Locate the Precompiled Examples folder in the FRDM-KE02Z Quick

Start Package.

 Copy & paste or drag & drop one of the .srec files to the FRDM-KE02Z

drive.

 The new application should now be running on the FRDM-KE02Z. Starting

with the MSD Flash Programmer, you can program repeatedly without the

need to unplug and reattach the USB cable before reprogramming.

1

2

39 TM

 Bootloader mode

1. Unplug the USB cable if attached.

2. Press and hold the Reset

button.(SW1).

3. Plug in a USB cable between a

USB host and the OpenSDA USB

connector (labeled “SDA”).

4. Release the Reset button.

 A removable drive should now be

visible in the host file system with

a volume label of BOOTLOADER.

 Load OpenSDA Application

1. Locate the OpenSDA Applications

folder in the FRDM-KE02Z Quick Start

Package.

2. Copy & paste or drag & drop the

Debug Application (DEBUG-

APP_Pemicro_v106.SDA)to the

BOOTLOADER drive.

3. Unplug the USB cable and plug it in

again. Open device manager.

 Now we can

 download and debug!

Enter bootloader mode and copy & paste or drag & drop the MSD Flash

Programmer Application (MSD-FRDM-KE02Z_Pemicro_vXYZ.SDA)to the

BOOTLOADER drive to use the MSD Flash Programmer again.

40 TM

• Choose the project, right click and choose Properties ->

Run/Debug Settings -> OpenSDA ->Edit

• Edit Configuration -> Debugger -> OS Awareness

41 TM

• RunDebug AsCodeWarrior Download

− Pick the OpenSDA connection

• Debug perspective appears

• Code stops at first line of main()

• Set a breakpoint at line 132 of mqx_tasks.c

1

2

42 TM

• Click resume to run the application, the application will stop

at the break point.

43 TM

• Click MQX in the menu, MQX debug options appears. Including

Task summary, Stack usage…..

44 TM

• Click task summary to watch the task status.

 - When MQX Lite RTOS starts, three tasks are created.

• Click stack usage to watch the stack usage of all tasks.

 - Stack size = 400 byte

45 TM

• Click to continue running application –four tasks.

46 TM

• Click the Resume button

• Resume each time you stop

− You’ll see the count variable

increase, and the lights on the

board flash

• Remove the breakpoint to

run the app without

interference

− Right click, Toggle breakpoint

47 TM

• Click the Terminate button

• You have built an app using

− the MQX Lite component and PEx

− Adding a PEx component template

• You should understand some of the key differences between

MQX RTOS and MQX Lite

1

TM

