CodeWarrior Development Studio for
Microcontrollers V10.x HC(S)08/RS08
Assembler Reference Manual

Document Number: CWMCUSO08ASMREF
Rev 10.6, 02/2014

<&,

Z“ freescale

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

2 Freescale Semiconductor, Inc.

g |

Contents
Section number Title Page
Chapter 1
Using HC(S)08/RS08 Assembler
Lol HIGRIZRES ottt b et et b et 25
1.2 Structure of thiS DOCUMENL.c.cciiiiiiiiiiiiiii et s 25
Chapter 2
Working with Assembler
2.1 Programiming OVETVIEW.......ccuiiiuitiiiieeitteitteeteestte et e sttt ebteesbeesttesbeesateeabteeaseabtesabeessteeabeeeabeenstesabeessteeabeesabeebeesabeenaeenases 27
2.1.1 PrOJECE DITECIOTY ... eutiuieniintitentetete sttt sttt ettt ettt ettt et ettt ettt a et e ae e e nenbesaenes 29
2.1.2 EXEEINAl EAITOT ..ottt ettt 29
2.2 Managing Assembly Language Project Using CodeWarrior IDE............ccoooiiiiiiiiiiniiiiiece e 30
2.2.1 CrEALE INEW PIOJECE. ... cuiiiitieteee ettt ettt e e e s b e bt et e et e s et e s bt e bt entesaeeeaee bt eneeeneeeaeanseens 30
222 Additional Project INfOrmation..........cccueouieuiriiriiniiiierterit ettt ettt et ettt et eas 32
2.3 Analysis of Groups and Files i @ PTOJECT........coouiiiiiiiiiiieciecte ettt ettt sttt sttt e sbaeebeenaee s 35
2.3.1 COAEWAITION GIOUPS. ...t tteutteiiettete et ce ettt et e e te st e e e s et e bt et e sb e e bt ese e bt e aeesbeembeesee bt emseeseenbeentenbeanseeneanseensenseans 36
232 CrEatiNg INEW GIOUD. c..ceutieititieteeiteet ettt sttt sttt eat e s ht e s bt et e ae e sb e e bt eae e e bt e bt eateebeesbeenteeatesbeenbeenbesbeenbeens 37
233 Adding New File t0 the PrOJECt......couiiiiiiiiiiieeieeie ettt ettt sttt et sat e e beesaneebee e 37
234 ReNAMING FIlE OF GIOUP.iiuiiiiiiiieiieit ettt ettt ettt e b et e e et e s et e sbe e bt enbeeneesneesneabeens 38
235 IMOVING FALE.... ettt ettt et sttt et s bt et e bt e bt e st e sbe e b e eba e beeanenbeens 38
2.3.6 REMOVING FAIE.......eiiiiiiiiie ettt sttt et e bt e it e bt e s ab e e bt e sabeesate e baeenbeenaeen 38
2.3.7 ReStOring DEleted File.......cooiiiiiiiiiiiiiiicee ettt sttt 39
238 USINEZ EITOT. .ttt ettt ettt b et e at e bt et ea b e bt et e et e eba e bt esbesbnenbeens 39
2.3.9 Generating LiStNG FILES.....coouiiiiiiiieiie ettt sttt sttt e bt st e st e e eebeenaee s 40
2.4 Writing your ASSEMDbLY SOUICE FAIES.c..oouiiiiiiiiiieie ettt ettt e bt et se et st e naeenee 41
2.5 ANALYZING PrOJECE FHIES. .. .coiiiiiiiiititi ettt ettt b et b et et bbbt et e b e e 42
2.6 ASSEMDBIING SOUICE FIIES. ...ttt ettt ettt et e sat e e bt e s it e e bt e s st e e bt e sabeenbeesateebaesnseenss 46
2.6.1 Assembling and Linking with CodeWarrior IDE...........c.ccociiiiiiiiiiiieieeee e 46
2.6.2 ASSemMDbIING With ASSEIMDICT........coiiiiiiiiiiiieee ettt et sttt et e i et eas 47
2.6.2.1 Configuring ASSEIMDIET......ccueiiiiiiiiieiie ettt ettt ettt st e et e sabe et e e bbeebeesabeesaneeaees 48

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 3

h o
g |

|
Section number Title Page
2.0.2.2 INPUL FILES. .ttt ettt et ettt ettt e s bbbt e a b e bt e abe e bt e aaeenbee s 52
2.6.2.3 Assembling Assembly Source-code FIles..........cccoiiiiiiiiiiiiiiiiiieeeeee e 54
2.7 LINKING APPLICAION.eiutiiiiiitiitieiteettete ettt ettt ettt ettt et et s bt et e bt e sb e eat e e bt e bt e st e ebe et e eatesbe et e ebtesbeentesbeeaeenee 60
2.7.1 Linking with CodeWarrior IDE............coccuiiiiiiiiiiiieteneee ettt ettt ettt e s e st esneeaee s 60
2701 PRM FILC.cuiiiiiiiiiiciiete ettt ettt st b et sttt saene 60
2.7.1.2 Linking ODbjJect-code FIlEs.......ccooiiiiiiiiiiiiiieste et 62
2.7.2 LinKing With LANKET......coouiiiiiiiiieiieeetee ettt ettt ettt e et e s it e e it e ebe e e bt e sabeesabeesateesaneenseean 64
2.8 Directly Generating ABS FIE......c.ccueiiiiiiiiiiiieneeeeet ettt 69
2.8.1 Creating Absolute ASSEMDBLY PIOJECT........couiiiiiiiiiiiiiiieeet ettt 69
2.8.2 Adapting Absolute Assembly File Created by Wizard...........coocueeviiiiiiiiiieniiieiiieieeeeeee et 70
2.8.3 Generating Absolute Assembly Using CodeWarrior IDEcc.cooiiiiiiiiiiiiieeeee e 74
2.8.4 Generating Absolute Assembly Using Assembler Build ToOl..........cocooiiiiiiiiiiiniiiiiiiiccccececeee 74
2.9 Assembler Build Properties Panels...........cooueiiiiiiiiiiiiiieiiee ettt et sttt st 75
291 HCSO08 Assembler Build Properties Panels..........cccccoeriiiriiiiieiiieienieseeeeeeeeseerese e 76
2.9.1.1 HCSO08 ASSEIMDIET......c.ocuiiiiiiiiiiiiec ettt 77
2.9.1.2 HCSO08 ASSEMDIET > OULPUL.eerieieriiieeiiieeiieeite et eite et esite ettt ettt e sibeesabeesabeesabeesbeesabeesbaeenseenn 77
2.9.1.3 HCS08 Assembler > Output > Configure listing file..........ccccoevireneniiniiiiineininiiieencseeeene 79
2.9.1.4 HCSO08 ASSEMDIET > INPUL....c.eeiiiiiiiiiiiiiierieceteeet ettt sttt et 79
2.9.1.5 HCS08 AssembIer > LaNGUAZE......ccueeriiriiiiiiieriieeiie ettt ettt ettt ettt e bt e s esiteebeeebeenaee s 80
2.9.1.6 HCS08 Assembler > Language > Compatibility modes..........c..cccerereririnininenieieieieicieneennen 81
2.9.1.7 HCS08 ASSEMDIET > HOSE......couiiiiiiiiiiiiiiiiiciciecece et 83
2.9.1.8 HCS08 Assembler > Code GENEration............cccoiiuiiiiiiiniiiiiiiiiiieieie e 83
2.9.1.9 HCSO08 Assembler > MESSAZES.ccueeuiiiiiiiiiiiii ittt s 84
2.9.1.10 HCSO08 Assembler > Messages > Disable USer MESSAZES.......coverreeiirienieeiienieniieieeitenieeienirenieens 85
2.9.1.11 HCS08 Assembler > General............ccooiiiiiiiiiiiiiiiiiiice e 86
29.2 RS08 Assembler Build Properties Panels...........ccecvecieiiriiniininininiiieieececceseeese e 87
2.9.2.1 RSO8 ASSEIMDIET......couiiiiiiiiiiiieiiceeee et 87
2.9.2.2 RS08 ASSEMDIET > OULPUL.c...eeeiiiiiiieiieeiie ettt ettt rite ettt et e et esabeebeessbteebeeesbaesbeesbaeenbees 88
2.9.2.3 RS08 Assembler > Output > Configure Listing File.........cc.ocoecieviininininiinininiiiccienceeeeen 89

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

4 Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page

2.9.2.4 RS08 ASSEMDIET > INPUL....ccuiiiiiiiiieiieeiieet ettt ettt e st et e e b e s bee st e e saneeaee s 90

2.9.2.5 RSO08 Assembler > LaNGUAZE.c.ccuerveteiiieiiieieieietetet ettt ettt ettt st sa e s see s 92

2.9.2.6 RS08 Assembler > Language > Compatibility modes.........c..cecuerieriiriiniiniinienieiieieneeieeeeniens 93

2.9.277 RSO08 Assembler > HOSt........occoiiiiiiiiiiiiiiiic s 94

2.9.2.8 RS08 Assembler > Code GENETATION.ccueeuuiruieriiertietteteeeeeteeeteeteeteeteseeseeesteenaeeteeneesaeesseenseens 95

2.9.2.9 RSO8 ASSEMDIET > IMESSAZES.ccvveeeeriiriieriieieaitenieete ettt et site st et sbtesaeeate st esbeestesbeenbeeseesaeeneeenee 95

2.9.2.10 RS08 Assembler > Messages > Disable USer MeSSAZES.eevverrueerieerierriieeieeniieeieeeeeenieeeieenieeas 97

2.9.2.11 RS08 ASSEMDIET > GENETAL......ccueiiiiiiiitiiieitiee ettt sttt ettt et es e sbeenbeebeebeeneeeseens 98

Chapter 3
Assembler Graphical User Interface

3.1 StArtiNG ASSEIMIDIET......eouiiiiiiieiiitiitietiete ettt ettt ettt ettt et ettt et et b et a e bt a e a e e bt ae bbbt et ea b b sa b 99
3.2 Assembler Main WINAOW.......ccoouiiiiiiiiiiiiiiii et sttt ettt b e 100
321 WINAOW TILLE. ...ttt ettt sttt ne s 100
322 COMEIIE AT .eeueteeuteeritteeiie ettt ettt ettt et e bt e st eeb et e bt e e bt e st e e e st e e sbt e e ebae e b et e bt e eab e e sabeeeateebe e e bt e sabeeeabeenateesaneenseean 101
323 TOOIDAT ...ttt ettt 102
324 STATUS BAL.....oiiiiiiiiiiiii e e 102
325 ASSEMDIET MENU BAT.......coiiiiiiiii ettt ettt et st sae ettt et ene et e beens 103
3.2.6 FHLIE IMIEINUL ..ottt et ettt ettt ettt s 103
3.2.7 ASSEMDIET IMEINUL ...ttt e 104
328 VIEW MBI ...ttt et et a et e et et e a et sh e et e e st e bt eaeeebeemaesa e e et emeenbeembeebeenbeeseenbeeneenbeeneenneans 105
3.3 Editor Setting DIalog BOX......cotiitiiiiiiieieiiesieeestt ettt ettt et sttt b et a et b et bt ettt e e saeen 105
3.3.1 Global Editor (shared by all tools and PIOJECLS).....eeeuveerrieeriitiriiieniieeiiie ettt ettt e sree st e eiteesbteesareesabeesaree s 105
332 Local Editor (Shared bY all t00IS).......ccuiiuieiiiieiieieeieeie ettt ettt ettt ettt e st eneeeneens 106
333 Editor Started with Command LINe..........ccccceiiiiiiiiiiiiiiiiiieie e 107
3.3.3.1 Example of Configuring a Command Line Editor...........cccceoviiriiiiiiiiniiiiieiienieeeieeiee e 108
334 Editor Started With DDE..........cooiiiii ettt ettt ettt et e se ettt e sneens 108
335 CodeWarrior With COML........cciiiiiiiiiiiiiiice ettt s e 109
3.3.6 IMLOGITIETS. ...ttt ettt h ettt et st saenee 110

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

h o
g |

Section number Title Page
3.4 Save Configuration DIalo@ BOX......uiiuiiiiiiiieiiieiieete ettt ettt e st e b e et e b ettt a bt e bt et e nbaesbeenaee s 111
34.1 Environment Configuration Dialog BOX.........ccoiiiiiiiiiiiiiiieie ettt 113

3.5 Option Settings DIAloZ BOX....coueiiiiiiiiiieiteiete ettt ettt h et ettt ettt sb e e 114
3.6 Message Settings DIaloZ BOX . ..uiiuiiiiiiiiiiiie ettt ettt et e bt bt e et e bt e e bt e st e e sabeebee s 115
3.6.1 Changing the Class Associated With @ MESSAZE.........couierieriiiiieieitieieete ettt sttt saeenieens 117
3.0.1.1 EXAMIPIC...ciiiiiiiiiiieieee ettt ettt et ettt ettt sbe e e 117

3.7 ADOUL DIAIOZ BOX..iiiiiiiiiiiieiiieite ettt ettt e s e et e st eea e e bt e e a bt e bt e e bt e ea b e e bt e e bt e ea bt e bt e et e e st e e eateebeesabeenaeeen 118
3.8 SPECIfYINg INPUL FILE.....cuiiiiiiiiiiiiieiee ettt ettt s ettt et ettt et ebe b saeeaenes 119
3.8.1 Use Command Line in Toolbar to ASSEmDIE...........cccciviiiiiiiiiiiiiiiiiiciceceece e 119

3.8.2 ASSEMDBIING @ NEW FHlE...cc.uiiiiiiiiiiiie ettt ettt et e sbt e e bee st esbeeaee s 119

3.83 Assembling a File which has Already been Assembled...........cocoecvevieriinininieiiinienineeecceseeeeeeeeee 119

3.84 Use File > ASSEMDIE ENIY...cc..oiiiiiiiiiiiiieiieee ettt ettt a e et e e eas 120

3.8.5 USE DIag and DIIOP....coeeiiiieeiie ettt sttt et e st e bt e st e bt e e s et e bt e e bt ebt e e baeenbee s 120

3.9 MesSaZE/EITOT FEEADACK.ccueoiiiiiiiiiiieiicitette ettt sttt ettt ettt eae et be et saenaens 120
3.9.1 Use Information from Assembler WindOW...........ccceciiiiiiiiiiiiiiiiiiiieeies s 121

392 Use User-defined Bditor............ccooiiiiiiiiiiiiiiiiciccic e 121

393 Line Number can be Specified on the Command Line..........c.cccecveviiriininininininiiieenceeereeeeeeeeeeneenes 121

394 Line Number cannot be Specified on the Command Line...........ccccevueeiiniiiiiiiiniiniiinieieieeieeeieeeeseens 121

Chapter 4
Environment

41 CUITENE QITECTOTY ..cuteutiiteiieiteett ettt ettt ettt ettt et e h et e st sb e et e sa e e s bt e st e sb e e bt eate s bt emae s bt e bt eatesbeembesbt e bt ebtenbeenneebaenbeeanenbeens 124
4.2 ENVITONMENE IMACTOS. .. .cviiiiiiiitiitiitietiitt ittt ettt et e st e e et et e e et st e b s e s e s st e s e s s s et e s e sae b e saesaene e 125
4.3 Global initialization file - MCtOOIS.iNT (PC ONLY)...cc.eiiuiiiiiiiiiiitie ettt ettt eee s eens 126
4.4 Local configuration file (USUALLY PIOJECT.ANL)....ccueeruiriiriiiiiieniteieeteet ettt ettt ettt ettt sb et saeesbe et sinenbeens 126
4.5 LINE CONTMUALION. c....eitiiiiiiiiiiiiicii ettt eb s b e bbbttt e e st e s e b saesaesne e 128
4.6 Environment Variables detailS...........eeiuiiiiiiiiiiieiieiiete ettt sttt ettt et sh ettt et e bt e te s bt et eneenbeennenneens 129
4.6.1 ABSPATH: AbSOIULE file PAthi....cc.eooiiiiiiiiiiiiiiiiiieeee ettt sttt 129

4.6.2 ASMOPTIONS: Default assembIEr OPLIOMNS.ccvuvieiieiriieeitieeriie ettt eite ettt eriteeieeesiteebeessieeebeeesbtesbeessbaesaees 130

4.6.3 COPYRIGHT: Copyright entry in ObjJECt fIle.......cc.eeiuiiieiiiiieieeeee ettt 131

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
4.6.4 DEFAULTDIR: Default CUITENt dir€CLOTY ... eevutieiieriiieriieeieeiieesite st e st eiee st esitesbeessbeesbeeebeesateenbeesbeenaeen 132

4.6.5 ENVIRONMENT: Environment file SpeCifiCation..........ccevuieriirieriirieie et 132

4.6.6 ERRORFILE: Filename SpecifiCation @ITOT.........c.ccerutriiriirierienieetenieeie sttt et st ettt ei st eaesieenbesanesieens 133

4.6.7 GENPATH: Search path fOr iINPUL file.........cooiiiiiiiiiiiieieeie ettt st 135

4.6.8 INCLUDETIME: Creation time in the 0bject file..........ccocoiiiiiiiiiiiieiee e 136

4.6.9 OBJPATH: ObjJect file Pathi....c..coouiiiiiiiiieiieeete ettt ettt ettt et st e b 137
4.6.10 SRECORD: S-RECOTA LYPC....eieuiiiiuiieiiieiiiteiieeiit ettt sttt sttt ettt e st e st e sabeesite e bt e ebtesabeeenbeesateesabeenseean 138
4.6.11 TEXTPATH: TeXt file PAthl....c.couirieiiiiiiiiiiiiietiiteet ettt sttt sttt st b st saeneas 139
4.6.12 TMP: TeMPOTATY QITECTOTYerteeutieitiriteriieteeitentt ettt ettt et sttt et e eatesbeesbeeste e bt e sbeesaeesteebee bt enbeeabesbeenbeens 139
4.6.13 USERNAME: User Name in ObJECE fIl€......ccouiiiiiiiiiiiiieiiieeieeitee ettt et 140

Chapter 5
Files

ST INPUL FILES ettt ettt ettt e e s et e bt e bt e e it e e sh bt e bt e ea bt e eab e e ht e e b bt e bt e eab e e ea bt e bt e e bt e e bt e s hteebeeeates 143
5.1.1 SOUICE TILES. ...ttt ettt ettt ettt et h et e e bt e bt e et e bt e et e e bt eabeeseenbees e e nbeen b e ebeenteeneenbeeneeneeenee 143

5.1.2 INCIUAR FIIES. ...ttt s et s 143

5.2 OUIPUL FILES..c ettt ettt ettt e b e et e s bt e et e e sa bt e eab e e bt e e st e eabeeeab e e eab e e s abeeeabeesabeeeht e e bt e e aee e baeenbeenates 144
5.2.1 (00) [T 1 (<SOSR PTRPRURRO: 144

522 ADSOIULE FILES. ...ttt 144

523 S-RECOTd FIIES....c.oiiiiiiiiiiiii e 145

5.2.4 LISEINE FTI@S. .. eettetteieeete ettt ettt ettt et e a et e bt ea b e es e e e bt en bt et e ea e e ehee e bt e bt enteeaeeeae e beenteeneeeneebeens 145

5.2.5 DEbUZ LISHINE TIIES. ¢ ettt ettt ettt et ettt e bbbttt et e bt e bt et e sanenbeens 145

5.2.6 EITOT TISTINE f1E...ceueteeiiieiiieee ettt ettt b e et e sab e e s st e e bt e sabeesatesabeesaseeaeean 146
5.2.6.1 Interactive mode (Assembler WindOW OPEI)........ccueeuerierierieriieniienteenieeieeteeteseeseeeseeeseeeneeeeeens 146

5.2.6.2 Batch mode (Assembler WindOW NOt OPEI).....c..eerueeruiriiriieriieieiientenie ettt ettt ettt eiresieenieeas 146

5.3 FLE PIOCESSINE. ... veeieiiiiiteiteeitte ettt ettt ettt et et e et eea et e bt e e bt e ea bt e s ab e ettt e bt e sab e e sabeen st e ea bt e eabeeeabeesabeenbeesabeesateesbbeeseenates 147

Chapter 6
Assembler Options
6.1 ASSEINDIET OPTIOMS. c...eeutieiieeiieerite ettt ettt ettt et e et sbe e et e e bt e e bt e sut e e baeeabe e bteeabeessteeabeeeabeensteeabeesabeeabeeenbeebeesabeenaneeases 149

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 7

h o
g |

Section number Title Page
6.2 ASSEMDIET OPLON AELATLS. ...c..eiitieiiiiiiieeiee ettt ettt e bt e b e sat e e bt e eabeesh bt e s bt e eabeesabeenseesabeessbeenbeesabeenseesases 149
6.2.1 USING SPECIAL MOMITICTS. ...c..veeienie ettt ettt ettt et et et e bt s ettt e bt e st e be et et e enseebeeneeseeenes 150
6.2.1.1 Examples using special MOGIfIEIS.cccueiuiriiriiiiiriiniiiieeteeeeetee ettt 150

0.3 LiSt Of ASSEMDIET OPTIOM....ceiuiiiiiiiiiieiiit ettt ettt ettt ettt bt e sttt e bt e et e e bte s bt esbte e beeeabeenseeeabeesabeeabeesnbeebeesabeesaeenases 152
6.3.1 -ArgFile: Specify a file from which additional command line options will be read...........ccccceevvuierueennenne. 154

6.3.2 -AsmDbg: Emit assembly source file information in debug SECtions...........cecereereeniiniiniiniinieneeieneeeeenn 155

6.3.3 -Ci: Switch case sensitivity on label names OFF............ccoccoiiiiiiiiiiiiieee e 155

6.3.4 -CMacAngBrack: Angle brackets for grouping Macro Arguments............ccecverueeeerueeriereesieneeeeneeeneeseeneeens 156

6.3.5 -CMacBrackets: Square brackets for macro arguments SroUPING........cocueevvereerierueruerierieneeneenreseeneenans 157

6.3.6 -Compat: COmMPAtiDIIILY MOAES.....cccueiiiieiiiiiiieiie ettt et s e st e e bt e sbeesbeesaeeenbaesabee e 158

6.3.7 -CS08/-CO8/-CRS08: Derivative familY........ccceeriiieriieieiieie ettt 161

6.3.8 SDiDefine Label.......couviiiiiiiii e 162

6.3.9 -DefLabel: Improves support for data allocation dir€CIVES..........eeeueiirieeriieiiieiiieestee sttt 164
6.3.10 -Env: Set environment VAriable..........cc.oeiiiieiirieie ettt ettt ettt sttt et nae s 165
6.3.11 -F (-Fh, -F2o0, -FA20, -F2, -FA2): Output file format...........ccccoceriiriimiiniiiinieiececeeeeeeeseeee e 166
6.3.12 sHi SO HEIP. ..ot 168
6.3.13 I INCIUAE fI1€ PALh...ceiiiiiiiii ittt 169
6.3.14 -L: Generate a lIStNG fIle......ccuiriiiiiiiiiieiiie ettt et st st 169
6.3.15 -Lasme: Configure HSUNG fIle......couiiiiiiiiiiieeie ettt ettt ettt e esbeesaree e 171
6.3.16 -Lasms: Configure the address size in the liSting file..........ocoeiiiiiiiiiiiiiiee e 174
6.3.17 -Lc: No Macro call in TSN fIle......coveriiiiiniiiiiieiieeeee ettt e 175
6.3.18 -Ld: No macro definition in HStNG fl€.......ccouiiiiiiiiiiii ittt 177
6.3.19 -Le: No Macro expansion in lIStING FIle........cccoiririiiiiiiiiiiiicicicncencee ettt 180
6.3.20 -Li: No included file in IStNG fIle......cccveriiiiiiiiiiiieiiecec ettt 182
6.3.21 -Lic: License infOormation............ccooiiiiiiiiiiiiiiiiiii e 184
6.3.22 -LicA: License information about every feature in dir€CtOrY........ccouerierierierienienieeie et 185
6.3.23 -LicBorrow: Borrow license fEatUIE...........ccoeouiriiiiiiiiiiiiiiiicicietcierccc e 186
6.3.24 -LicWait: Wait until floating license is available from floating License Server.........cccccovvuerviiiiniieeinieenns 187
6.3.25 o) BN s T B 1S B e L] (PSP SRP 188

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

h o
g |

Section number Title Page
6.3.26 -M (-Ms, -Mt): MemOTY MOAEL......ccciiiiiiiiiiiiiieiteett ettt ettt ettt et e sba e e bt e sateesaaeenbee e 189
6.3.27 -MacroNest: Configure maximum MACTO NESHINZ......c.cecueruerrirtererientereertetenteneeteetesestesteeseessessessesseennensens 190
6.3.28 Message A1004 (available in the Onling Help).........cooieiiriiniiiiiiiiieiceteeeee e 191
6.3.29 -MCUasm: Switch compatibility with MCUaSM ON.........cccceiiiiiiiiiiiiiiiiie ittt 191
6.3.30 -MMU: Enable Memory Management Unit (MMU) SUPPOIT.........cccceririririnieieieieieneneee e 192
6.3.31 SN DISPLAY NOTEY DOX. ittt ettt ettt ettt ettt st be et et s st e b e 192
6.3.32 -NoBeep: NO beep N CASE Of AN BTTOT.........eevtiiiiiiiiiiiieeieeite ettt ettt ettt e st e st e sbeesbeesabeesaeesaree e 193
6.3.33 -NoDebuglnfo: No debug information for ELF/DWARF files........cccoceeviiriiininiiiiininieeicneseeeeens 194
6.3.34 -NOEnV: DO NOt USE ENVITONIMIEIIL.eutiiiiieiiiiieiieietete sttt ettt ettt sttt ese et sa e besaeebeeaeeseesneaenaesnens 195
6.3.35 -ObjN: Object filename SPECIfiCAION.eirutiiriiiiiieiieett ettt ettt st e et e st e sabeesabeesaeeens 196
6.3.36 -Prod: Specify project file at SLATTUP.cc.ccueruiriiriririeietet ettt ettt be et sae 197
6.3.37 -Struct: SUPPOIt fOr STIUCTUIEA LYPES..ccuviruiirriiiiriteriieie ittt ettt ettt ettt ettt sttt st sae ettt esbeeeeene 198
6.3.38 -V: Prints the ASSEMDIET VEISION.......ccuciiiiiiiiiiiiiiiiiiiiiciic e 199
6.3.39 -View: Application Standard OCCUITEINCE.coueruirierierieieieieiieiiet ettt sttt ettt ettt sae s sre e 200
6.3.40 -W1: NO iNfOrMAatioN MIESSAZES. ..c.ueeuverteeuientieitentieteettenteettesteeite st eitesteeste s bt estesbeesbe s bt eabeebe et e sbeeseesbeentesbeeneesnees 201
6.3.41 -W2: No information and Warning MESSAZES.c..ueeruuerrreerieertreereenteerieesaeesiteesseesaeessaesseessseesseesseessessseesns 201
6.3.42 -WErrFile: Create "err.Jog" error fIle.........ooiiiiiiiiiiieieeee ettt 202
6.3.43 -Wmsg8x3: Cut filenames in Microsoft format to 8.3........ccociiiiriiniiiiiniiiieee e 203
6.3.44 -WmSZCE: RGB COlOT fOr ETTOT NESSAZES. ...ccuveerurieiieiiieniieeitie ettt et e sttt et e st e sitesabeesibesbeesabeesasessee e 204
6.3.45 -WmsgCF: RGB color for fatal MESSAZES. ceuvertirieiieieieeieeteete sttt ettt e e st sae e seeeneas 205
6.3.46 -WmsgCIL: RGB color for information MeESSAZES.......c..eeruerreriirieriieniinienieetesiteteete et sieesae e sie e eneeneeene 206
6.3.47 -WmsgCU: RGB COLOT fOr USET MESSAZES.eevtieruiieriiieriieeritieeteeeittesite st e eieesbeeeteesbeeesaeesbaeesaeessbeeesaseenns 206
6.3.48 -WmsgCW: RGB color fOor Warning MESSAZES.ccueerueeuiriertientieteeieentieteateeseesseeseeeesseesseesaesneesneesseenseenes 207
6.3.49 -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode...........cc.ccooceviiiiniinncnnnn 208
6.3.50 -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode............cccocceeervvierniieennns 210
6.3.51 -WmsgFob: Message format for batch mode...........c.ooiiiiiiiiiiiiiieeeeeeee e 212
6.3.52 -WmsgFoi: Message format for interactive mMode..........c...coeerieriiiniiriiniinieniere et 213
6.3.53 -WmsgFonf: Message format for no file information..............ccoceeviiiiiiniiiiieiic e 215
6.3.54 -WmsgFonp: Message format for no position information.............cecueeueereeneenienieniesiesee e 217

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 9

h o
g |

|
Section number Title Page
6.3.55 -WmsgNe: NUMDET Of ETTOT TNESSAZES. ...ccuveriieriiiiriieitieetteite et et st et e st e sateebeesbeesabeebeesbeesaseenbeesseenas 218
6.3.56 -WmsgNi: Number of Information mMeSSAZES.........eeueeuieuieieiiieniiniieeneeteet ettt naens 219
6.3.57 -WmSZNU: DiSable USET MESSAZES.ccveruiiriieiiriinitenieeite ettt sttt ettt esteeate bt esaeestesbeenaeestesbee et eneesbeenaeenee 220
6.3.58 -WmsgNw: Number of Warning mMeSSAZES.ccvveerurerririeriieiriieeeteesite sttt esitesiteesireesateesbeesebeessseessbeeesaseenns 222
6.3.59 -WmsgSd: Setting @ message to diSAbIe.........coiviiieiiiiiriiiiiieiecete e 222
6.3.60 -WmsgSe: Setting @ MeSSAZE t0 EITOT.......cc.ocoiiriiiiiiiiiiiiiceteet ettt 223
6.3.61 -WmsgSi: Setting a message to INfOrmMation.......c.c.eiiieiiiiiiiiiiee et 224
6.3.62 -WmsgSw: Setting a MesSage t0 WaITiNG.........cccueeuiiiiiieriieniiesitest ettt st seee st et et ebeebeeaeeneeens 225
6.3.63 -WOutFile: Create error listing file.........cooueriiriiiiiniiiiriienee ettt 226
6.3.64 -WStdout: Write tO Standard OULPUL..........eeriiiriieiieeiie ettt ettt sttt et e e st e s bt e sateesabesbeesbeesaneenns 227
Chapter 7
Sections

Tl SECHON ALLIIDULES. ...ttt s eb e s et ea e e ea b e sa s 229
7.1.1 (0T [Tt (o) OO PRRTRUPRURRTON: 229

7.1.2 CONSLANE SECLIOMS. ...ttt ettt sttt ettt ettt ettt b e b sa e bbbt e a et ae et et eneeueebesaees 230

7.1.3 DA SECTIONS. ...ttt a e e 230

T2 SECLIOM LY PES. e ueteeeneieuieeuiesteeuteettesteeuteette et eaeeest e st eaeeeueeaeeeaeeeaeemeesa e e et emeeeaee bt emteese e bt eaeeeseenseemeeeaeenseeaeeneeeneeeneeseenseeneeneeenee 230
7.2.1 ADSOIULE SECLIOMS. ...ttt ettt ettt et s sb e b et n e s sae s 231

722 RelOCatable SECTIONS.cuiiiiiiiiiiiiiiiici e e s 233
7.2.2.1 Example: Defining one RAM and one ROM area..........cccceoueiieiieniiiiiiieiieieeeeeeseee e 233

7.2.2.2 Example: Defining multiple RAM and ROM areas.............cccccveenerieneniininienieeieieeeenieeeeseeenne 235

7.3 Relocatable vS. abSOIULE SECIOMS.ccuiiiiiiiiiiiiiieiieiee et st st s s s 236
7.3.1 IMIOAULATIEY ..ttt ettt et ettt ea e b e at e eh et e e st e bt e st e eaeemaesseemaeemeeeaeemsesbeenbeeseanbeensanbeenseeneans 236

7.3.2 IMUIIPLE AEVEIOPETS. ...ttt ettt sttt sttt st sae bttt e bt et s bt bt e it e bt ea b e bt eatenaeenee 236

7.3.3 Early deVEIOPIMENT.iiiiiiiiieiiieite ettt ettt sttt e sht ettt e bt et e s bt eeabeesabeesabeesabeesabeenbbeenaneenbeean 237

7.3.4 ENhanced POrtabilify.........ccooieiuieiieieeeeee ettt ettt et sh ettt et esh ettt eae e bt e b enteeneenbeens 237

7.3.5 TTACKING OVEIIAPS . ..c.vtiuieiieieeitet ettt ettt ettt et b et sb e bt et s bt et s bt e b e eanenbeeanesbeens 237

7.3.6 REUSADIIILY ...ttt ettt et ettt e b bttt e e bt e e bt e s bt e eabeesabeesabeenabeesabeebb e e nbeenbee s 238

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

10

Freescale Semiconductor, Inc.

h o
g |

Section number

8.1

8.2

Comment line

Source line

8.2.1

8.2.2

8.2.3

Title Page
Chapter 8

Assembler Syntax
.. 239
.. 239
| BF:1 oY I 1<) Lo OSSPSR 240
OPETALION FIEIA...ecuiiiiiiiiiie ettt b ettt b e bttt s at e sae e bt et sbeesbeenbeeas 240
8.2.2.1 INSIIUCHION SEL.....iiiiiiiiiiiiiiiiiiiicie et s s et s 241
8.2.2.1.1 HECO8 INSLIUCTION SCL.....eeutieutieieeieeieeiieeiteettesttenteeteenteeeteeiteeseesseesseenteenbeenseeneeeneesneenneas 241
8.2.2.1.2 Special HCSO8 INSITUCTIONS. ..c..eevutriiriiiriiiniientietteieeieeite sttt siee st et ettt sitesiaesieeniees 245
8.2.2.1.3 RSO8 INSIUCHION SL.....ccuiiiiiuiiiiiiiiiiiiiiiiicieie e 245
I B 1 (<11 4 /<SOSR 248
8.2.2.3 IMIACTO. ittt e et ettt a e 248
Operand field: Addressing modes (HC(S)08).....couiiiiiiiiiiiieiiieie ettt et 248
TG T B £ 1S5 (<) 1| TSRS 249
8.2.3.2 IMMEAIALE.....cviiiiiiiieieicie ettt et e 249
B.2.3.3 DHICCT. .ttt et et 250
8.2.3.4 EXENACM.cuteeiiiiieieet ettt ettt h et h et e e h et ae et en e et eneeeeeenes 251
8.2.3.5 INAEXEA, 1O OFTSEL. ..ttt ettt et a st st et et e eeeaeeeeeeeeeeeeeeesssesennnes 251
AR T T 1016 (5 (e TR T o7 (0o 11 SRS 252
8.2.3.7 INAEXEA, 10Dt OFFSE ettt e e e e e e e e 253
8.2.3.8 RELAIVE. ...ttt ettt 254
8.2.3.9 Stack PoINter, 8-DIt OFTSEL......cccceieiiiiiiiiiiiiiiieeeee ettt et e e e e e eeeeeeeeeeeseseasssaaaasaeaees 254
8.2.3.10 Stack POINtEr, 10-DIt OFTSEL. ...ttt ettt eeeeeeeeeeeeeeaeseseeeeeaenenees 255
8.2.3.11 Memory-to-memory immediate-tO-AireCt..........cocueruirriiriiriiriieiietentee ettt 255
8.2.3.12 Memory-to-memory dir€Ct-L0-GITECL.eeruuiiriiriieiiieite ettt ettt st sieeesbeeeabee e 255
8.2.3.13 Memory-to-memory indexed-to-direct with post- iINCIEMENt............ccueeuerriirieeiiieieeie e 256
8.2.3.14 Memory-to-memory direct-to-indexed with post- iINCIEMENt...........cccueecveriiriiriiinienienicnieneee 257
8.2.3.15 Indexed With POSt-TNCTEIMENL.c..eiitiiiiieriieeiie ettt ettt ettt ettt e st e eeabeesaaeesbeesabeesaaeenbeenas 258
8.2.3.16 Indexed, 8-bit offset, With POSt-INCIEMENL.certeriiaiieieitietieie ettt st 258

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 11

h o
g |

|
Section number Title Page
8.2.4 Operand Field: Addressing Modes (RSO8)......coouiiiiiiiiiiieeiieeee ettt s 259
8.2.4.1 INherent (RSO8B).....c.iri ittt ettt sttt ettt 260

8242 THNY ettt sttt b et ettt b e 260

82043 SHOT. ..ttt ettt 261

LI I) 1 (< PSSO PR SRR 261

8.2.4.5 EXIENAC......iiiiiiciiiciiicit ettt ettt 262

8.2:4.6 REIALIVE.....oiuiiiiiiiiiiiic e 262

8.2.4.7 TIMMEAIALE.eeuiitieiiitiete ettt ettt ettt a et e et et e e e e sb e et e sbe et e eae et e ene et e eneenbeeneeeneenes 263

8.2.4.8 INAEXEM....eeuiiiiiiriiiitceee ettt 263

8.2.5 Comment FIEld........ccocoiiiiiiiiiii s 264

T TN % 101010 F OSSPSR 264
8.3.1 USEr-defined SYMDOLS.coouiiiiiiiiieiiet ettt ettt st st ae ettt sbe e b ebeens 264

8.3.2 EXIETNAL SYIMIDOIS. ... eiitiiiiieeiit ettt et e st e st et e st e e bt e eabeeeab e e bt e s beeeabe e beeebeenaee s 265

8.3.3 UNAEfiNed SYMDOLS.eiuiiiiieiiei ettt ettt ettt ettt et eae e e bt e bt e beeabesaeesseenaeenbeeneeeneesseanseens 265

8.34 RESEIVEA SYIMDOIS.cuiiiieiiiiieit ettt ettt b ettt st sbe e bt et eatesbaesbeenbeeas 266

B4 COMSIANS. ...ttt b e e et a e et a e n s ea e 266
8.4.1 INE@@ET COMSTANES. ...ttt ettt ettt ettt ettt ettt e e et e et e eat e ese e bt et e en b e embeeseeabe e bt embesmeesseesaeenseeneeeneenneanseans 266

8.4.2 STINE COMSLANES.eenteriieiieteeite sttt sttt ettt et eb e e sb e esteebtesa e et e sbee s bt eatesbeenbeeatesbeesaeemtesbee bt emteebeenbeeneesbeeneeenee 267

8.4.3 FLOAting-POINE CONSTANES.eeiutiiiiiritieitieeiee ettt ettt ettt e sbt e e bt e s et e e bt e sabeesbbeenbeesabeebaesabeenbaeenseenaeean 267

T T 0511 21 (0) OO RPTSRTRRRRP 268
8.5.1 Addition and subtraction Operators (DINATY)........ccccevueriirieriiiiiinienterieete ettt ettt ettt s sieeaeeas 268

8.5.2 Multiplication, division and modulo Operators (DINATY).........c.eerueirriieriiieiriieriee ettt ettt 269

853 SIZN OPETALOTS (UIATY). c.veevevirreruietinterteetiete st stetestess e sensessententensessens et enseatestesteateateuteseeuteueebesbesbeebesbesaeenesbenaens 269

8.54 Shift OPETAtorS (DINATY)...c.eirtieiieiiiriieieeeet ettt ettt ettt et bt e bt et saeesbeeeeeae 270

8.5.5 BitwiSe OPETatOrS (DINATY)...cccuvteruierieeriieeitenitt et te ettt et ettt et e st e sbte e bt e sae e e bt e sabeesbbeenbeesbbeenbaesaseenbaeenseenaeean 271

8.5.6 BitWiSE OPEIAtOIS (TMATY). .eveeuteeueertieeeeuierteetesteenteeutesteestesseesteeasesseenseameeabeensesseebeemseaseenseestenseanseeseanseennenneans 271

8.5.7 LOZICAl OPETALOIS (LNMATY). veveenteriieriteieeiienteete st st ettt ete st sbe et e sbe e bt eatesbeesbesbte bt eebesb e et e ebbenbeesbesbeenbesanenbeens 272

8.5.8 Relational OPerators (DINATY).......coouieiiieiiieiiie ittt sttt e st eb e st esabeesbtesabeesbaeeabeesnbaeenseenn 272

8.5.9 HIGH OPETALOT ...t st st et e st e e e e eaeene e 273

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

12

Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
8.5.10 HIGH_O_13 OPETALOT......eeiutieitieriieeeiieeiiteeeite ettt ettt ettt ettt ettt e atesabteebtesbaeebeesabaesabeesabeeenbeesabeesnbeesabeesnseenates 274
8.5.11 LLIOW OPETALOT ...ttt ettt ettt e sb e bt e bt et e e ab e s ab e e eateebe e e bt e st e e eabeesateesaneenbeenn 274
8.5.12 MAP_ADDR _0 OPETALOT.......cerutiiieiiieiiieitietteett ettt ettt sttt ettt e atesbt e bt et e esbeeetesbtesbeesbeenaeentesaeesbeenbeenbeens 275
8.5.13 PAGE O PCIALOT...ccuuiiiiiieiiiteieetee ettt ettt ettt et et e et e s et e e bt e s bt e s st e e bt e eabeesabeessbeeabeesabeenatesabeeenbeeseean 275
8.5.14 FOICE OPETALOL (UNMATY). ..eeiuteeiieeiteeite ettt ettt ettt e tte ettt e bt sttt e bt e s bt e e bt e s b e e eabeesabeeeabeesabeeeabeesabeeembeesabeesareenanee 276
8.5.15 OPETAtOr PIECEACIICE.cvveitiiieiiieiieeite ettt ettt et ettt ettt ea e b e sb e e bt e bt et s bt e sbe e s bt et e eateebtesbe e bt eabeeaneeaeenbeen 277

LI R 25 4 3) (I (o) 1 OO OO OSSPSR URRTOPRORTPOP 277
8.6.1 A DSOIULE EXPIESSION. ... eeuteuietieteeitestterteeteete et e e bt eatesueesueeateeaeesae e et eaeeeaee st ameeesee st eneeeneeeseenteenseeseanseenseeneanseans 278
80.1.1 EXAMIPIC...ciiiiiiiiiiiiieieie ettt ettt ettt et ettt nae e 279

8.6.2 SiMPIe 1E10CALADIE EXPIESSION.eeueieririeriieeiieiittette et et et te sttt e tte st e st e ebeesateebtesateessaeeabeesaseeseesaseessseenseenns 279

8.6.3 UNATY OPETAtION TESUIL......eeutieiiitieitietiete ettt ettt ettt e bt et e st e et e s aeebeeseesbeeaeesseenaesseenseemeesbeenteeseanseeneenbeensenneans 280

8.6.4 Binary OPerations TESUIL.........coouiiiirtiriietietiertt ettt ettt ettt et et s bt e sbe e bt eat e ebeenbeeabesbaesbeenbeens 280

8.7 Translation TIMIIES........ccoiiiiiiiiiiiiii et 281

Chapter 9
Assembler Directives

9.1 DIECHVE OVEIVIBW.....oviiiiiiiiiiiiciiiic ettt s b e sa e bbb b s eb b s eb b s st sb e saesae e 283
9.1.1 SeCtioN-DEfiNItION QITECHIVES.eeutiieieitieiiett ettt ettt e e ettt e et et e bt e e e st e b e e bt enbeeneesseeseeeneeeneeenes 283

9.1.2 Constant-Definition dIFECHIVES.ccueiiiiiiiiiiiriiiiicre e 283

9.1.3 Data-Allocation dirCTIVES.ccuiiuiiiiiiiiiiiiiiiiccie e s 284

9.14 SYMDBOI-LINKAZE QITECHIVES. c..cuveuvetitiitieiieieeiteie ettt sttt ettt ettt ettt be s sttt eae st nenenenaens 284

9.1.5 ASSEMDLY-CONIIOL QITECTIVES. ...ceuviiieniiiiiiteeiteiteetet ettt ettt ettt sttt et st sab e b e e b e e et este e enee 284

9.1.6 Listing-File COntrol QiT@CHIVES.eeiuiiiiieitieeieeitie ettt sttt ettt ettt e st e bt e sbaeebeesabeesabeebaesbeesabeesaneeaeean 285

9.1.7 MACTO CONLIOL QITECLIVES. ...eueeeietieit ettt ettt ettt ettt e st e bt et e et ees e e ae e bt enbeemteemeesseesseaaeenseeneesneenseanseens 286

9.1.8 Conditional ASSEMDLY QIFECHIVES.couuirtiiiiiiiiiiertteie ettt ettt ettt ettt ettt st e st et et sbeesaeenbeeas 286

9.2 Detailed descriptions of all asSEMDbIET AITECIIVES.c...eeruiiirtieriiiiiie ettt ettt ettt e st esibeebeesbeesaeeeans 287
9.2.1 ABSENTRY - Application €Ntry POINL....c..cceeueruirueriruinenieeieeieeiteieeitee ettt ettt et seesenesseaesaesaesaesaeseenes 287

9.2.2 ALIGN - AlIgN LOCAtION COUNLET......eoutiiieitieiieiieitinteete ettt sttt sttt st sae e sbeesae st esbe e tesbeebesbeenbeeanesbeens 288

9.23 BASE - Set NUMDET DASE.......ccuiiiiiiiiiiiiiiiic s 289

9.2.4 CLIST - List conditional aSSEMDBLY.........cccccuiriiriiriiniriiiinieieteeet ettt ettt sae s 290

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 13

h o
g |

|
Section number Title Page
9.2.5 DC - Define CONSANL......cc.oiuiiiiiiiiiiiiiiiiecicee e ea e 292
9.2.6 DCB - Define Constant BIOCK...........coiiiiiiiiiiieieeiee ettt et et s e b ens 293
9.2.7 DS = DETINE SPACE....ccutiiiiniiiiiiitete ettt sttt ettt b bt sttt b bt et b ettt b e e b ens 295
9.2.8 ELSE - COonditional @SSEMDLY.......coiiiiiiiiiiieiiteiie ettt ettt sttt ettt e st et e b e s beesabeesaneebee s 296
9.2.9 END - ENd @SSEIMIDLY ...c..eiviiiiiiiiiiiiieiieitetieeeee ettt st s st s st sttt s e b e sa s 297
9.2.10 ENDFOR - End of FOR DIOCK.......cccoiiiiiiiiiiiiiiiiiiicicicetc ettt st 298
9.2.11 ENDIF - End conditional @SSEIMDILY.........cccuiiiiiiiiiiiiiieiie ettt sttt ettt et ettt et e bt e esiaeeaee s 299
9.2.12 ENDM - End mMacro defiNitiON.........c.eiuieiiiriieiieiiete ettt ettt sttt ettt e e et e e eseete et e naesneeneeeneas 300
9.2.13 EQU - EQUAate SYMDOL VALUE........ccuiiiiriiiiiniiitieiteteettete ettt sttt ettt s b et sttt nae s nae e 300
9.2.14 EVEN - Force Word ali@NMENLt.........cccuiiiiieriiieiiieeiieeiteeieesieeeieestee st e st e sabeesabeesaseesabeesaseesabeesaneesaneenaneenns 301
9.2.15 FAIL - Generate EITOr MESSAZE.uoiuiiiiiiiiiiiiiiii ittt ettt 302
9.2.16 FOR - Repeat assembLy DIOCK.ccciiiiriiiiiiiiiiieeeetee ettt 305
9.2.17 TF - CONditioNal @SSEIMDLY...c...iiiuiiiiiiiiieiiiieite ettt ettt et sb e et e st ee st e e beeeabeesabeesabesbeesbeesaseens 307
9.2.18 IFcc - Conditional @SSEIMDLY......cceeuiiuiiiiiiiirtinieitieitetet ettt ettt sttt ettt st naen 308
9.2.19 INCLUDE - Include text from another file.............cccociiiiiiiiiiiiiiiiiiiiiii e 310
0220 LIST - ENAbIE LASHIIZ. c..c.eouiiiiiiiiieiieieeeie ettt st st s 310
9.2.21 LLEN - Set Line Length.......ccccociiiiiiiiiiiiiniieneeet ettt 312
9.2.22 LONGEVEN - Forcing Long-Word aligNment............c..cocuerieriinienieiieiieiienieenieeieeteete sttt 313
9.2.23 MACRO - Begin Macro defiNTtiON..........oecuiiiiieriiiiiienieeiee sttt ettt ettt et e st e bt e sateebeesareebee e 314
9.224 MEXIT - Terminate Macro EXPanSIOn.........coceeeririiririnineniniineeie ettt ettt ettt et sae s 315
9.2.25 MLIST - LiSt MACIO EXPANSIONS. ...ccuveeutiitirttetteteeiteettenttenteeste et etesitesteesteeteeateettesteeseesbeeasessaesbeesseenseeneennes 317
0226 NOLIST - DiSable LISHIIZ.cveuiieiiieiiitciieicieicteteieteseet ettt 320
9.2.27 NOPAGE - DiSable PaAZINg.......ccceririririiitiiiiietinesieetese sttt sttt st sae st et be et sae e 321
9.2.28 OFFSET - Create absolUte SYMDOIS.c..ccuirtiiiiriiiietiniieteeiteet ettt ettt ettt ettt sbe e e e ene 321
9.229 ORG - Set Location COUNLET ..ottt s s 323
9.2.30 PAGE - INSert Page DIEak.......c..ccueiiiiiiiiiiiniiiirieitieit ettt ettt 324
9.2.31 PLEN - Set Page Len@th......cc.coouiiiiiiiiiieiiece ettt ettt ettt st nbeea 325
9.2.32 RADSO0 - RADS0-encoded String CONSLANTS......cc.ueeruieriierieeiieiitesteeiteeteesiteesiteeteesbeesieesbeessbeesseeenssesseesas 326
9.2.33 SECTION - Declare Relocatable S@CHION.cc..ciuiiriiiiiiieriieie ettt ettt st s eee e 328

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

14

Freescale Semiconductor, Inc.

g |

Section number Title Page
9.2.34 SET - Set SYMDOI VAIUE.......eiiiiiiiiiiiiiiiit ettt ettt ettt e sb e et e st e e sabeesbteesbaesnbeesbeesaneenes 329
9.2.35 SPC - INSErt BIANK LINES. .. .eeuiiitieiiitieie ettt ettt ettt b et es et e es e s bt et e eseebeeneeneeenes 330
9.2.36 TABS - Set Tab Len@th......cc.ooiiiiiiiiiieiieeteee ettt ettt et sttt et e 331
9.2.37 TITLE - Provide Listing Title........cc.ccoriiiiiiiiiiniiirieieereeeeeeteee et s 331
9.2.38 XDEEF - External Symbol Definition........c..ccceeieieriiiiininiiieicieenie ettt 332
9.2.39 XREF - External Symbol REfEIENCE.coeiriiiiiiiiiiiiiniiieirtee ettt 333
9.2.40 XREFB - External Reference for Symbols located on the Direct Page.........ccccovvueiiiiiniiiiiiiniiniiciiieniees 333

Chapter 10
Macros

LO.1 IMIACTO OVEIVIBW.....uviiiiiiiiiiiititeite sttt s a e s b b sh e b b ea e s s e e ea e et ne e 335

10.2 DEfINING @ INACIO.c..c.teeutetieteetiete ettt te et e e et etesteete e s e ebe et e ent e et tentees e e bt es e e bt eaeeeaeemeeeeeemsesheemseeseemseeseenseeneenteeneenseeneenseenes 335

10.3 CallINE IIACIOS. c. ettt ettt sttt et sb et et sb et eatesb e e bt e st e sb e e s bt eateeb e e bt eateshtesbeembesheesbeembeebtesbe e bt eseenbeenteeatesbeenaeenee 336

10.4 IVIACTO PATAIMELETS. c...eeuvteeuieeiteetteriteetteeateeteesuteettesateessteeaseeabaeesbeanseesabeastesaseensaeeabeenbeeeabeenstesabeensbeeabeensseenseenstesnbeanaeennses 336
10.4.1 MaACTO ArGUMENE GIOUPINE. .. c.eeeutieutetientieteateeueeateenteeteeeeeseesteeneesaeanseeseeaseemsesseansesseeseensesseensesseanseeneanseensesseans 337

10.5 Labels INSIAE MACTOS.ccueeuiriiiiieititetet ettt ettt et ettt et et et e b e et eae e b e bt st eb e e b sa e et e b saeene b e 339

10.6 IMIACTO ©XPANSION. .e..uteeutieiutieeiieetteettesite et e sateestteeabeeeateebte e bt eshte e bt e eabe e bteaaseesas e e steeaseesabeestesabeesabeenseesabeesnbeanbeesaseanneenases 340

10,7 INESEEA IMACTOS.eeiteeniit ettt ettt ettt ettt et e it e b e et eeh e b e e e ab e e bt e e bt e eat e e eb e e e ab e e sat e e ebte s et e e sabe e bt e saneesmbeeabeesaneenneesanee 341

Chapter 11
Assembler Listing File

L B o T 1 1. U [OSSPSR 343

L1.2 0 SOUICE LISTINME. . evtetteiteieeit ettt ettt ettt ettt e b e s bt et ea e eb e e s bt et e et e eb b e bt emb e eb b e sb e enbe et e s bt e sbee bt emtesaeenbeenaeenee 344
LL2.1 DS e ettt et ettt 344
T1.2.2 Rl ettt bbbt h et b et bbbt bttt b et bbb e 346
T1.2.3 LiOCu ittt ettt h et h ettt a et bttt h et a e bt b e a et h et b e 348
L1.2:4 ODBJ. COUE...c.uiiiniiiiciietete ettt st sttt ettt et 350
11.2.5 SOUICE INC.. ..ttt ettt et b et h et e bt et e eb e et e e st et e e et e ebeeaeeeheembesaeembesneenbeemeenbeensenbeeneenseenee 351

Chapter 12
Mixed C and Assembler Applications
L B\ (513 1o) 28 1T T[S OSSPSR 353
12.2 Parameter PaSSING SCHEIME.ccueiuiiiiriiiiiiie ittt ettt ettt ettt b et e et s bt e bt et e bt e sbeesbeeabesbbesbee bt eatesaeenbeeneeeaee 354

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 15

h o
g |

Section number Title Page
12.3 RETUIN VALUC.....coiiiiiiiiiiiic et s 354
12.4 Accessing assembly variables in an ANSI-C SOUICE file........ccuiiieiiiiiiieiieeeeee e 354
12.5 Accessing ANSI-C variables in an assembly SOUICE fIl€........ccueruiriiriiiiiiiiiiiiciceeee e 355
12.6 Invoking an assembly function in an ANSI-C SOUTCE file.........corruiiriiiiiiiiiiiiieie e 356

| BT N =5 €100 (S o) i W O 1 (<O USR USSP 357

12,7 SUPPOIT FOI SLIUCTUIEA LYPES....uviiiiniieiiirtieiieiteie ettt ettt ettt et b et s b et sb e bt e et e s bt e st e e bt et eb b e bt eatesbe et e ebeenaeenee 359
12.7.1 Structured type defINIION.eiiiiiiiiiiiie ettt et sttt e st e bt e st e e bt e sareenae 359
12.7.2 Types allowed for structured tyPe fIeldS........couiririiiiiiee et 360
12.7.3 Variable defiNition.........ccccoiiiiiiiiiiiiiiii ettt 361
1274 Variable deClaration...........cccciiuiiiiiiiiiiiiii e 361
12.7.5 Accessing a Structured VAriabIe..........cc.eoiiiiiiiriieiieiee ettt ettt sttt e naeenean 362

12.7.5.1 Accessing a field address.......c.ueeuieriieiiriinieiieieeteet ettt ettt 362
12.7.5.2 Accessing @ fleld OFfSeL......cc.eeiiuiiiiiiiiieiie ettt 363
12.8 Structured tyPe: LAMILATIONS. . .. teuieuietieteeteetieet et ettt e st e e ete st e bt e bt eaeeeteesseenteenbeeseeaseenbeenteeseesseeseenseeneesneenseenseenes 364
Chapter 13
Make Applications
13,1 ASSEIMDLY APPLICALIONS.eiutieutietietiete ettt ettt et e et e et e e bt et e stee bt e teeseesbeembeeaeese e e bt emeesaee st emeesmeesbeenseemeesaeenseeneesseenseenes 365
13.1.1 Directly generating an abSOIULE fI1€.........eoiiriiiiiiiiiiiiiiceie ettt 365
13.1.1.1 Generating ODJECE fI1ES...cccuuiiriiiriiiirieeite ettt et et e st e e bt e e sareebee s 365
13.1.2 Mixed C and assembly apPlICALIONS.c.ivuietirtieiietieteeiieste ettt ettt ettt et eet et en et e b e saeeteeseeneeeneesaeeneas 366
13.2 Memory maps aNd SEZMENEATION.c.eeutirttirtietieiteetteteeate ettt et etteste et e eabesbeesbe et e eatesbeenbeestesbtesbeenteeabesbtenbeentesaeenbeeneeenee 366
Chapter 14
How to...

14.1 Working With abDSOIULE SECTIOMS. c...euviruiiiiiiiiiteti ettt ettt ettt ettt ettt sb et e b e bt et ebe e bt et sb e e bt et e sbee e enee 369
14.1.1 Defining absolute sections in an assembly SOUICE fil€..........coouiriiiriiiniiiiiiiiieee e 369
14.1.2 Linking an application containing absolUute SECTIONS.eerutrruerrieeiieieeiieeiieette sttt e et enee e 371

14.2 Working with relocatable SECTIONS.co.titiriiriiiiirtiei ettt ettt et be et ebt et eatesbe et e ebee e enee 372
14.2.1 Defining relocatable sections in @ SOUTCE fIl€.......cc.uiiiiiiiiiiiiiiiiieiiieee et 372
14.2.2 Linking an application containing relocatable SECHIONS.eveertieriirierrie ettt 373

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

16

Freescale Semiconductor, Inc.

h o
g |

L __4
Section number Title Page
14.3 InitialiZING VECLOT TADIE....ccutiiiiiiiiieitie ittt ettt ettt e b e ettt s bt e e bt e s et e e sab e e bt e e beeeabeesabeeeabeesabeennteenbaeanseesases 375

14.3.1 Initializing the Vector table in the linker PRM file...........ccoiiiiiiiiiiiiiieee e 375
14.3.2 Initializing the Vector Table in a source file using a relocatable SECtion............coceeeverieriierncenceniienieneen 378
14.3.3 Initializing the Vector Table in a source file using an absolute SECtION...........ccevveerrieeeiiiieriieeniieeriee e 381
14.4 Splitting Application Nt MOGULES.cc.uiruieiirieie ettt ettt et e e et e st e et esbeesee s et enbesbeenbeebeenbeeseebeeneenseenes 383
14.4.1 Example of an Assembly File (TeSt1.aSm)......ccueriiriiiiniiniiiiieieitesiteteeeee ettt 384
14.4.2 Corresponding include file (TeStT.AMNC)....ueiuiiriiiiiieiiieeie ettt ettt et et et esane e 384
14.43 Example of AsSembly File (TeSt2.aSIM)....cccueeiiiiiiieiieitierie ettt ettt ettt ettt sae et eaee e eneeenes 385
14.4.3.1 Example of a PRM file (TeSt2.PIM)..c...couiriiriiriiniieiiniieienieeie sttt 385
14.5 Using Direct Addressing Mode t0 ACCESS SYMDOLS.cccuiiiiiiiiiiiiieiie ettt ettt et st e st sbeeeaee s 386
14.5.1 Using the direct addressing mode to access external SYMbOIS.cc.cooueririiiieiiinieiee e 386
14.5.2 Using the direct addressing mode to access exported SymbOIS..........coceerieriiriiiiiniiniiiceeeeeeeeee e 387
14.5.3 Defining symbols in the dir€Ct PAZE.....cccuveerreeriieiiieiiieeite ettt ettt ettt ettt e st e e sbeesabeesbeesabeesbaeenbee s 387
14.5.4 USING the fOICE OP@IALOT.etiiiiitieieeiieett ettt ettt ettt ettt et e et e e e e st e bt es et e e s e es e et e ese e beenseeseenteeneenseenes 388
14.5.5 USING SHORT SECHOMS.eeutiriieiiiitieitentieteeiteeit ettt ettt et ettt s bttt eatesbeesbeestesbeesbeebesatesbee bt entesaeenbeeneeeaee 388

Chapter 15

Appendices
I5.1 APPEIAICES. ¢ ittt ettt ettt et b et bttt s b et b e bt e h bbbt e a e eh e et h e e bt bt bt e a b bt ea e h e et bt et b et eaee 391

Chapter 16

Global Configuration File Entries

16.1 [INStAllAtiON] SECTION. . .uuvviiiiiieiiiieieee ettt eeet e e eet e eeeer e e e e eeataeeeeeeenaaeeeeeeeaataseeeesesasaseseeeensteseseesenstareeeeeennsrreeees 3903
LO.L.T Pathiccccicicee ettt 393
TO.1.2 GIOUP .ttt sttt ettt ettt bt bbbt bt a ettt et b a e eb bt bt bt et sttt nenaen 394
160.2 [OPLIONS] SECHIOM. ...ttt ettt ettt b ettt sb e bt et b e e bt eatesb e e bt eatesh e e s bt e bt sbeesbeemtesbtesbe e bt eseesbeenbeeaeesbeenaeenee 394
L16.2.1 DELAUIDIL ...ttt ettt st st sttt et 394
16.3 [XXX _ASSEMDIET] SECIOMN.cciutiiiiteie ettt ettt e et e ettt e e et e e et e e e et te e e eeaaeeeeaeeeeesaeeeeeaseeeeeaeseeeaseeeeesseeeeeteeeeeseeeeenneas 395
160.3.1 SAVEONEXIL ...ttt ettt ettt ettt sttt sttt st h ettt r e 395
16.3.2 SAVEAPPEATAINICE.eeuteieiieeiteeiteeite ettt ettt et e sate et e sateesaaeebtesabeesase e beesabeessteeabeesabeebbeenbeesabeebbeenseesabeensbesnseenns 395
16.3.3 SAVEEILOTttt ettt ettt et e at e b et e h e et ea e e e bt e bt ea e e bt en bt eh e et e eateeh e e bt ene e bt enteeneeneeenee 395

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 17

h o
g |

|
Section number Title Page
16.3.4 SAVEOPLIONS. .euetieniititieeiee ettt ettt ettt et e et e st e e sttt e b et e beesabeesabeeeate e b bt eabee e bt e eabeesabeeeabeenbbe e baeeabeesbeeeabeens 396
16.3.5 RecentProject, RECENIPIOJEC]......c.couiriiiiiiiiriiiiierietcerctc ettt sttt et st 396
J L | e o) o I Y=Te 5 (o) s FO PRSP R 397
16.4.1 Editor _INAMIE. ..ottt 397
16.4.2 |G Lo ol 5 =TT 397
16.4.3 EIEOT _OPES. .ttt ettt ettt et h et e h e bt et e h e bt bt ea e bttt et eb e e bt enbeebee b en 398
16.5 EXAIMPIE.....iiiuiiiiiiiiiieiitt ettt ettt ettt e h e e bt e et e s a bt e sab e e bt e e bt e sab e e e et e e eat e e b aeeab e e eab e e eab e e bt e e bt e eab e e sabeeeabe e baeeneeeates 398
Chapter 17
Local Configuration File Entries
17,1 [EEQIOr] S@CHIOM. .. .eeiiiiiitiiiieeeeeeiiee e e e eeee e e e eeect e e e e e ettt e e e eeeetaaeeeeeeeeataaeeeeeeaasseseeeeaaatasaeeeeesnsseseeeeaantsasseeeeetaseeeeeeanarreeens 401
17.1.1 B0 INAITIC ...t ettt ettt et e e e e e eeeeaeeaaeaaaeaaeaeeens 401
17.1.2 S 7o)l) (=TT URRTT 402
17.1.3 EdIEOT_OPLS..uiiiuiitiiciieieieteseee sttt sttt sttt st et 402
17.2 [XXX ASSEIMDIET] SECLIOMN.ciiutiiiiiee ettt e e ettt e e e e ettt e e e e e eeaaaaeeeeeeesataseeesseesaaaeeeeeeesansaaseeeeeenaraeeeas 403
17.2.1 RecentCommandLineX, X= INTEEET......c..ccecttriiriiriiiiieieeteeit ettt ettt ettt ettt e bt ebe et st e saeesbeenaeebeens 403
17.2.2 CurrentCommandLine.............ccoooiiiiiiiiiiiiiiiiiiic e 404
17.2.3 StatuSDATENADIEA.c.eiiiiiiieiee ettt ettt a et eneenee s 404
17.2.4 ToOIDArENabIEd.......c.coviiiiiiiiiiiiiiiiicic ettt st st st 404
17.2.5 WINAOWPOS.....cooiiiiiiiiiiiiii et s 405
17.2.6 WINAOWEONL ..ottt ettt et e et be et e e bt e s e e bt e a b e eb e n b e es e e et eseenseeneenbeeneenaeeneas 405
L7207 TAPFILEPOS. c..eeiiieeee ettt et sttt et s h e sbe et s ht e bt et sbeesbe et st e sbeeneeeaee 406
17.2.8 SROWTIPOTIDAY......ceiiiiiiiiiieiiereeer ettt ettt ettt st 406
17.2.9 OPHONS. c.eitiiiriietieteettet ettt ettt ettt et et ettt ettt ettt ettt a ettt ettt b na e ne b naen 407
L7.2.10 EIOITYPR. ettt sttt et et st b et e a e e bt bt e bt e st eb b eb e s bt e bt eatesbeesaeenaeeneeeaee 407
17.2.11 EditorCommandLine..........c.cccooiiiiiiiiiiiiiiiiieieieee e e 408
17.2.12 EditorDDECHENTNAINIE.eiuiiiieiieiieetiet ettt sttt te st e b e eetesaee s bt etesseesseebeeneeseee bt eneesneesseeneeenes 408
17.2.13 EditorDDETOPICNAIIIC.c..eetiiiiiiiriteitieiteniteit ettt ettt ettt sttt st b et sb et b ettt e bt sbeentesbeenteeseenaeeneen 408
17.2.14 EditorDDESEIVICENAME.c.couiiiiiiiiiiiiiiiiiiiiic et s 409
I7.3 EXAIMIPIE.....oiiiiiiiiii et st st h e s s h e bt e he e e she e a e e st sa e e sae e 409

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

18 Freescale Semiconductor, Inc.

g |

Section number Title Page
Chapter 18
MASM Compatibility
18.1 COMMENT LINE.....ciiiiiiiiiiiiiiiiiiicee ettt et st bbbt ettt be e 411
18.2 CONSLANLS (TNLEZETS)..eeuvrteureiutieiieeeite ettt ettt ettt e sttt et e et e et eeab e e s bt e e st e eabeesabeeeab e e bbeeabeesabeesabeensbeessseeabeesabeesnbeesaeanseenases 411
18,3 OPEIALOTS. ...ttt ettt ettt ettt e b et sa et e be e e at e e bt e e bt e bt e e b e e e ab e e bt e e ab e e bt e e bt e e ab e e bt et e e eh et e bt e e b e e bt e s beeeaeeeanee 412
18.3.1 DITECTIVES. ...ttt ettt b et e b b sa e bbbttt ettt sa s 412
Chapter 19
MCUasm Compatibility
LO.T LLADRIS ..o b e e h e b e s b e bbb s s ea e 415
19.2 SET IFECHIVE. ...ttt st a e e b e s sb e bbb e ne e 415
1.3 ODSOLELE QITECIIVES. ...uveutieutieuietieiteeti ettt ettt et e e et ete et e s teeateshe e et esee st eaeesbeemaees e e s e em e e bt emteebeemteeseenseeneeebeanteeneenteeneenseenes 416
Chapter 20
Assembler Messages
20.1 ASSCIMIDICT IMESSAZES.ceuviuieitienieeiteite ettt et et et e et e st e e bt e et e ebe e te et e ea bt es e e bt embeeseensees e e s e emeees e et e eneeabeenteeseebeeneeeseenseeneeneeenes 417
20.1.1 AT: UnKknown meSSAZE OCCUITEAeeuvirutiriiiniieiiiieeite ittt et ettt ettt et et e tesbtesbeesbeeaeeatesaeesbeenaeebeeas 417
20.1.2 A2: Message overflow, skipping <Kind> MESSAZESeerveerurirriieriiieniieeiiesieesieesieesteesieeesbtesbeesireesisesseenns 418
20.1.3 AS50: Input file '<file>" N0t FOUNMeiitiiiiiiii ettt s 418
20.1.4 AS1: Cannot open statistic 10g file “<Ile>"cocoiiiiiiniiiiii e 418
20.1.5 AS52: Error in command line "<CmMd>".........ccoooiiiiiiiiiiiiiii e 419
20.1.6 AS53: Message <Messageld> is not used by this version. The mapping of this message is ignored. 419
20.1.7 AS4: OPON KOPLIOMD « .eetiiiiieeiteniteteeit ettt ettt ettt s bt e bt s bt e sb e e bt sbte s bt e besbte s bt esbesbaenbeentesbtenbeensesaees 420
20.1.8 AS56: Option value overriden for option <OptionName>. Old value “<OldValue>', new value
TRINEWVALUES'. ..ottt ettt ettt s e et e e st e et e en et ea e e bt enbeese e bt enbees e et e enteentenseanteeneanseans 420
20.1.9 A64: Line Continuation occurred in <FIIENAmMe>ccccccooiiiiiiiiiiiiiiiiiiiceee e 420
20.1.10 A65: Environment macro expansion message '<description>' for <variablename>cccccevcverrvennennne. 421
20.1.11 A66: Search path KINAME> A0S MO EXISEeeveeueieuieriieiieiierteeteetie st et e eteesteeteeseesteeteeeee et eneesaee st eneeeneeneeenes 422
20.1.12 A1000: Conditional directive NOt CIOSEAcc.ccuiruiiuieiiiiiiiiiiiieieiee et 422
20.1.13 A1001: Conditional else not allowed herec.ccooiiiiiiiiiiiiiiiie 424
20.1.14 A1002: CASE, DEFAULT or ENDSW detected outside from a SWITCH blocKoovvvevueeeeeiieeeeeeeeennn. 424
20.1.15 A1003: CASE O DEFAULT 1S MUSSINE ..eerveeuttritenieritenieeieniienteetesitesteeite st entesitesteesaesitesaeesaesbeeaesstesbeesesanes 425
CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 19

h o
g |

Section number

20.1.16

20.1.17

20.1.18

20.1.19

20.1.20

20.1.21

20.1.22

20.1.23

20.1.24

20.1.25

20.1.26

20.1.27

20.1.28

20.1.29

20.1.30

20.1.31

20.1.32

20.1.33

20.1.34

20.1.35

20.1.36

20.1.37

20.1.38

20.1.39

20.1.40

20.1.41

20.1.42

20.1.43

20.1.44

Title Page
A1004: Macro nesting too deep. Possible recursion? Stop processing. (Set level with -MacroNest) 426
AT1051: Zero DivVISION 1IN @XPIESSIONeeuvieurertietieuteatientieteesteettesteeteeeesseesseenseesesseesseensesnseeneesseanseensesseenseans 427
A1052: Right parenthesis €XPECEAcoueriiriiriiriirieriieieete ettt sttt sttt ettt et see e 428
A1053: Left parenthesis @XPECEA ...cc..eiruiiiiieriiiiiieeiee ettt ettt et eb e st e st e e bt e sabeesatesbeesabeenaees 429
A1054: References on non-absolute objects are not allowed when options -FA1 or -FA2 are enabled 429
ATO55: EITOT 1N XPIESSION onviiiiiiiniiiiiinitenie ettt et sttt ettt e st et eat e bt et estesbee bt eatesbe et e eabeebaebeennesbeenbeens 430
A1056: Error at €nd Of @XPIESSION ..ceuveeiiiiiiieiiieiiiieste ettt et etee st e st esibeesateesbaeesttesabeessbeesabeessbeesateesaneeseens 431
A1057: Cutting constant because of OVEITlOWccciiiiiiiiiiiieiiee e 432
A1058: Tllegal floating POINt OPETALIONcc.eevueeiiriirieeiiriteie ettt sttt ettt ettt et st sbe et sbeebesbeenbeeanesbeens 432
A1059: !=is taken as EQUALLccviiiiiiiieeiiie ettt ettt ettt e e et e e e ata e e etaeaesntbeeeessaeeessaaeansseeennes 432
AT060: IMPLICIt COMIMENE SEATTeeeeitietieteeieeeie et tete ettt e et et eateeseeebee bt ebeeaeesseesseenbeensesseesaeenseensesneesseenseans 433
A1061: Floating Point format is not supported for this CaSecccceevirviriiiiiiiiiiciceeeeeee e 433
A1062: Floating Point NUMDBET @XPECLEAeevuviiriiiriiiiiieiiie ettt et ettt e bt e sabeesabaeenbee s 433
AT1101: Tllegal 1abel: 1aDel 1S T@SEIVEMc..eeuiiiiriiiiieiieitieie ettt ettt ettt ene e e e see e 434
AT1103: Tllegal redefinition Of IabELc.coouiiiiiiiiiiiiiiic et 434
A1104: Undeclared user defined symbol: <SYmbOL>coociiiiiiiiiiiiiiiiieeeeeeeee e 435
AT105: CloSING DIaCe EXPECTEA.eiuietietieiieeiteeiee ittt ettt ee st e bt et esteett et e e bt eabeeseesseesbeenaeenbeeneesneesseaseens 436
A1106: Undeclared user defined symbol: <Symbol>. Symbol name is expected as macro argument......... 436
A1201: Label <Label> referenced in directive ABSENTRY is not absolute...........c.ccccceecuivviinienincienienncns 437
AT1202: ELF OUtPUL: KACTAIISSeitiitieieeiieeiieit ettt ettt ettt et s et st e st ebe et e st e saeenbeenbeeneeeneenbeens 437
AT203: ettt et e a bt et et sa e 438
A1251: Cannot open object file: Object file NAME t00 10Neevviiiiiiiiiiiiiiieiee e 438
A1252: The exported label <name> is using an ELF eXteNSIONcccceeuerieiienieiieiie e 438
A1253: Limitation: code size > <SIZELIMIt> DYIES .o..covueriiriiriiiiiiinieicitesteceteee ettt 439
A1301: Structured type redefinition: KTYPENAMEScccouiiiiiiiiiiiiiieiiieeieertee et 439
A1302: Type <TypeName> is previously defined as 1abelcccoooiriiiiiiiiiiiiiieeeeeeee e 440
AT303: NO tYPE EFINGM ..ottt ettt ettt et sb bt e bbbt et sane b ens 441
A1304: Field <FieldName> is not declared in Specified tYPEeccevueirrieiiiiiriieiiieeeiee et 442
AT1305: TYPE NAME EXPECLEA ...cnveeeeieiiieteeiieteeiiet ettt ettt et e ste et e eteetesaeeaesseebeeseenbeeseebeeneenbeeneenseeneeneeenes 445

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

20

Freescale Semiconductor, Inc.

h o
g |

Section number

20.1.45

20.1.46

20.1.47

20.1.48

20.1.49

20.1.50

20.1.51

20.1.52

20.1.53

20.1.54

20.1.55

20.1.56

20.1.57

20.1.58

20.1.59

20.1.60

20.1.61

20.1.62

20.1.63

20.1.64

20.1.65

20.1.66

20.1.67

20.1.68

20.1.69

20.1.70

20.1.71

20.1.72

Title Page
AT401: Value out Of 1ange -128.. 127 ..ccuuiiiiiiiiiteieeetee ettt ettt et ettt e s bt e st e st e sabeesabaesnbee s 448
A1402: Value out of range -327608..32707cccueeiuieieee ettt ettt ettt sae e beeas 450
A1405: PAGE with initialized RAM NOt SUPPOITEAcouveruiiriiiiiiiiiiieiienieiteieeteete ettt 450
A1406: HIGH with initialized RAM NOt SUPPOTLEMcccveiriiiiiiriiieiieeie ettt 451
A1407: LOW with initialized RAM N0t SUPPOITEAeoruiiiiiiiiiiiiieiiieeiieiiest ettt 451
A1408: Out of memory, Code SIiZ€ t00 AIZEcocueriiiiiriiniiiieiieeteeee ettt 452
A1410: EQU or SET labels are not allowed in a PC relative addressing mode...........ccccceeevviveniiennieeennennn 452
A1411: PC Relative addressing mode is not supported t0 CONSLANESccuerueeriierueerierierieneeneeeeeeieesieeniens 453
A1412: Relocatable object “<Symbol>' not allowed if generating absolute fileccccevvvirviiiieniennens 454
A1413: Value out Of TEIAtIVE TANZEeevviiiiieiiiiiiieeiie ettt ettt et ebee st e satesbeeebeenaee s 455
AT4T4: CaNNOL SEE FIXUP.c..eetientteiieetiete ettt et ettt et e st e bt e e et e bt e bt eatesseesbee bt emeesseesbee bt eneeeneenseenseeneeeneanseans 455
AT415: Cutting fiXUP OVEITIOW ..eeiiiiiiiiiiiiiit ettt ettt eas 456
A1416: Absolute section starting at <Address> size <Size> overlaps with absolute section starting at
CAAAIESS ..ttt ettt ettt et e a et e e a et e s e bt et e e st et e en et e st e bt en bt en e e bt en b e es e e bt enteenteebeenteeneenbeen 456
A1417: Value out of possible range: Value<value> not in range [<LowValue>..<HighValue>]................. 457
A1418: Negative offset is not propagated into the page in the fiXUpccceeeveeeiiiiniiiinieieceeceee 458
A1419: Constant fixup failure <DESCIIPLONScoiiieieiiriiniiniieiieeeterteete ettt 458
A1502: Reserved identifiers are not allowed as instruction or dir€CtiVececuevuerieriieeieniiernieeieeieeiens 458
A1503: Error in option -D: “<DESCIIPHONS" ...c..uiiiiiiiiieeiieeiteeite ettt ettt ettt e st et e s bt e sabeesbaeenbee s 459
A1601: Label must be terminated With @ <:>oociiiiiiiii e s 459
A1602: Invalid character at end of label (<LabelName>): semicolon or space expectedccoceeecueenueene 460
A1603: Directive, instruction or macro name expected: <Symbol> detectedceecvevrrieenieenieeinieenneenn 460
A1604: Invalid character detected at the beginning of the line: <Character>cccecceeveeiienienieneeenenns 461
A1605: Invalid label name: <LabelINAME>ccouiiiiriiiiiniiiinieieetescee ettt 462
A2301: Label 18 MUISSINE ..vveeureeiiieiieiiteeite ettt et ettt st e ettt et e e bt e ebte ettt ebtessbeeesbbeenbteebtesnbeeebaeenbeessaeenseeas 462
A2302: MACIO NAME 1S TNISSIIZ +..vveutientieieenteeiieetieetieteete et estesitesaeessee bt enteenseesseeseeabeesseeseenseensesneesseanseenseans 463
A2303: ENDM IS TIEEAL ...cueiiiiiiiiiieieeiteetet ettt sttt ettt st et st sttt e e satesaee b eas 464
A2304: Macro definition within definitionccoccooiiiiiiiiiiiiice e 465
A2305: Illegal redefinition of instruction Or dir€CtiVe NAIMEcecveeuieueeiieieeteeieeee et eteeteeeeeeeeeeeneeens 466

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 21

h o
g |

Section number

20.1.73

20.1.74

20.1.75

20.1.76

20.1.77

20.1.78

20.1.79

20.1.80

20.1.81

20.1.82

20.1.83

20.1.84

20.1.85

20.1.86

20.1.87

20.1.88

20.1.89

20.1.90

20.1.91

20.1.92

20.1.93

20.1.94

20.1.95

20.1.96

20.1.97

20.1.98

20.1.99

20.1.100

20.1.101

Title Page
A2306: Macro not closed at end Of SOUICEcccciiuiiiiiiiiiiiiiiiiii e 466
A2307: MACTO T@AETINITIONeeuiiiieieieieite ettt ettt ettt ettt e bt e et e e st e beeae e beeae e beeneenbeeneeneeenes 467
A2308: File NAME EXPECTEAeeuiiiiiiiiiiiiiiiteteetet ettt ettt ettt sttt st ettt s bbbt e et e ee e bt eateneeenee 468
A2309: File DOt fOUN ..ot s 469
A2310: Size specifiCation EXPECIEAoeeeeieiiieierieienteeterte sttt ettt sttt sttt saenes 469
A2311: Symbol NAME EXPECTEAeevieniiriiiriiiiiieitieieete ettt ettt ettt ettt sbeenae ettt sbaesbeebeeas 470
A2312: SIING EXPECLEA ..envieiiieiieeitt ettt ettt ettt et ettt e st e sbt e e bt e s bt e e bt e sabeesbbeenbeessbeenbaesabeenbaeenbeenaeean 471
A2313: Nesting of include files eXCeedS 50couiiiiiiiieiiiieeeee et et 472
A2314: Expression MUSt DE aDSOIULEcouviiiiiriiiiiiiiiiiiiiiieeec ettt ettt ettt sttt 472
A2316: SECtion NAME TEQUITEAeeuvieiieiieeiie ettt ettt ettt et e et e bt e e bt e sateebaeeabeesabeeabeesaseebaesbeenaeean 473
A2317: Illegal redefinition Of SECLION NAIMNEeccueeeiiieiieriiertierttete et et et teeeeeateeseeeseeseeesseesaeesaeenseenseens 474
A2318: Section NOt AECIATEAc.ooiiuiiiiiiiiiiicice e 474
A2319: No section link to this 1abelcccciiiiiiiiiiiiiiiiiiee 475
A2320: Valtue t00 SINALLc..iiiiiiiiiitieti ettt ettt b ettt este s bt e s bt et e et e et e eae e bt et e eneeeneebeens 475
A2321: ValUE t00 DIZ vttt ettt ettt b et sb e bbbt b e e b et eibe b ens 477
A2323: Label 1S IZNOTEA ...veieiiiniieeiieeite ettt ettt ettt e sb e e bt e s bt e e bt e s bt e bt e enbeesate e beesabeenbaeebeenaeean 477
A2324: Tllegal Base (2,8,10,10) ..c..eeiiiieieee ettt ettt ettt ettt ettt ettt et eneeeneens 478
A2325: Comma 0or Line end eXPeCtedcccuiiiiriiriiniiiiieieeie ittt ettt st 479
A2326: Label <Label> is redefinedcccoeoiviiiiiiiiiiiiiiic e 480
A2327: ON OF OFF @XPECLEAeetieieiiieitieie ettt sttt ettt sttt et e st e e e st e sae et e eaeeese et e eneeeseeseenseeneanseans 481
A2328: Value 1S trUNCAEAc.eouiiiiiiiiiiiiiiiiii ittt st sttt et s 482
A2329: FAIL fOUNM ..ottt ettt st 482
A2330: String iS NOT AILOWEMeeueiiuiiiiieiiett ettt ettt ettt et e et eebee s bt e bt ebeentesaeesneenaeebeens 483
A2332: FAIL fOUNM ..ot st et 484
A2333: Forward reference not allowedccooiiiiiiiiiiiiiiiiiii e 485
A2335: Exported SET label<name> iS NOt SUPPOITEAerueeruiiriiiriieeiieeiieeiieitie ettt e ens 485
A2330: VAIUE t00 DIZ ..ttt ettt et b ettt et b ettt b et eate b ea 486
A2338: <FailREASOMSoouiiiiiiiiiiiiii s 487
A2340: Macro parameter already definedcooieiiiiiiiiiee e 488

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

22

Freescale Semiconductor, Inc.

h o
g |

Section number

20.1.102

20.1.103

20.1.104

20.1.105

20.1.106

20.1.107

20.1.108

20.1.109

20.1.110

20.1.111

20.1.112

20.1.113

20.1.114

20.1.115

20.1.116

20.1.117

20.1.118

20.1.119

20.1.120

20.1.121

20.1.122

20.1.123

20.1.124

20.1.125

20.1.126

20.1.127

20.1.128

20.1.129

20.1.130

Title Page
A2341: Relocatable Section Not Allowed: an Absolute file is currently directly generated 488
A2342: Label in an OFFSET section cannot be eXportedccccverierieniniinieneninieienienieeeeeese e 489
A2345: Embedded type definition not alloWedcooceiviiiiiiiiiiiniiiinececceceeeete e 490
A2346: Directive or instruction not allowed in a type definitionccovcveerciiiiniiiniieniienieee e 491
A2350: MEXIT is illegal (detected outside Of @ MACTO)cevueriiiiieniiiieitieie et 492
A2351: Expected Comma to separate macro argUIMENLSc..eeeueerreerreerueerieerueeueeueneeseeseeseeseeseesseensenns 492
A2352: Invalid CRATACETc.ccuiiiiiiiiiiiiiiiiii i 493
A2353: Illegal or unsupported directive SECTccoiiiriiiiiiiiiiiiniieecsesteeeeetee et 493
A2354: Ignoring direCtive 'SAITECHIVES'couiiiiiiiiiiiiericeteee ettt ettt ettt ettt et sbeeas 494
A2355: Tllegal $1Z€ SPECIIICALIONeevuviiriiiiiieiiiieiie ettt ettt et e e st e st e et esabeesateebeeeabeenaees 494
A2356: Tllegal RADS0 ChATACLETcceeouiriiriiriiiiiiieicieteetesee ettt sttt sttt et 494
A2357: Tllegal macro argument 'SATZUMEIES'cc.eiriiiiiiierienieeie ettt ettt et st st sieesae et st sbeesaeenbeens 495
A2358: SiZ€ PIefixX 1ZNOTEM .. .eeieeiiiiiiiiie ettt ettt ettt e st e st e e bt e e beesabeesabeebee s 495
A2359: String indeX out Of DOUNAS......cc.eiiiiiiiiiiiiiiceceeee et s 495
A2360: Maximum SUBSTR recursion level reached............cccocooviiiiiiiiiiiiiiiiiiiiiiicceceee 496
A2380: Cutting VErY 1ONZ TINEcoouviiiiiiiiiiiiiieiitetee ettt sttt e st sab e e st esabeesbaeeabeesbaeenbee s 496
A2381: Previous message was in this context "<CONIEXE>"ccuevieririiririnieieieieene st 496
A2382: Illegal character ((\0") in SOUTCE fIl€oouiiriiiiiiiiiiiiieiee ettt 497
A2383: INPUL 1IN L0 LOMZ ..ttt ettt e bt e sat e et e st e e st e e sbteebeesabeesaneeaeeas 498
A2400: End Of LINE @XPECLEAcuviiiriiriiiiieiieiieieietenteeteet ettt ettt ettt sa e bbbt nae s 499
A2401: Complex relocatable expression N0t SUPPOTTEAoouveeureriiriiriiiiieierteete ettt 499
A2402: COMMA EXPECLEA ..euvieririeiieiiieeteerite ettt ettt et e sttt e st e et e st e e atesabeesabeebeesabeessbeebeesabeesaseebeesnseenseean 503
A2500: EQUAL XPECLEA ...ttt ettt ettt st e et ettt e et ettt e eae e bt e bt et e ete e teenteeneenneen 504
A2501: TO EXPECLEA ...ttt ettt ettt ettt ettt sb et eat e s bt et e st e ebtesbe et e eateebe e bt eabeebeenbeens 505
A2502: ENDFOR IUSSINE ...ttt sttt sttt sttt sttt et et se et se s saeseenesaenean 505
A2503: ENDFOR WithOut FORcooiiiiiiiiiiiiiic ettt sttt s 506
A2600: Addition of values from a different address SPACEc.c.coveevuerieiiirienieiirieeeeeeeeee e 507
A2601: Subtraction of values from a different address SPACEeevverriieriiiriiiniieieee e 507
A2602: Operation of values from a different address SPACEc.eeoveeeerieriiniiii et 507

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 23

h o
g |

Section number

20.1.131

20.1.132

20.1.133

20.1.134

20.1.135

20.1.136

20.1.137

20.1.138

20.1.139

20.1.140

20.1.141

20.1.142

20.1.143

20.1.144

20.1.145

20.1.146

20.1.147

20.1.148

20.1.149

20.1.150

20.1.151

20.1.152

Title Page
A3000: USET TEQUESLEA STOP .vveeuvrerurierieenitieriteerite ettt erttesiteestee sttt estteebeesbeesateesabeessseebeeestesabeesaseesaseesaneenseen 507
A4000: Recursive definition of label <Label Name>="">c.ccccerriiiiiriiiiit e 508
A4001: Data directive contains N0 dAtAcceeveieieiiiieniinieniieiie ettt 508
A4002: Variable access size differs from previous declarationcoeceeveerieeniiinieniienieeieeeeeeee 509
A4003: Found XREF, but no XDEF for label <Label>, ignoring XREFccccoooiiiiiiininiiicee 509
A4004: QUABITICT IZNOTEAeonviiiiiiiiieite ettt ettt ettt ettt bt et et ebae bt esbesanenbeens 510
A4005: Access size mismatch fOr <KSYMDBOL>coouiiiiiiiiiii e 510
A4006: Tllegal value "<ErrorDesCIIPiON"oouieiiieiieieitietieie ettt ettt sttt e st et e st e e st eneesneesaeenseens 511
A4100: Address space clash for KSYMDBOLI>cc.oiiiiiiiiiiiiiiie et 511
A13001: Tllegal Addressing Mode. KAAAIMOAES>ccouviiiiiiiiiiiiieiie ettt s 512
A13003: Value is truncated t0 ONE DYLEcc.eeruiriiiiiieiieiieieeie ettt et ettt ettt e e st eenbeestesbeebeeneesreens 512
A13004: Value is truncated t0 tWO DYLES ..c..cecueriiriiiriiiieriieritee ettt sttt ettt ettt et s e b eas 514
A13101: Tllegal operand fOTMALcoceiiiiiiriieiie ettt st sb ettt e st e e sateebeesabeesabeeaeen 515
AT13102: Operand N0t AlIOWEcccuiiuiiiiieiieiie ettt sttt ettt e st et e s bt et eneeeneeebeens 515
A13106: T1legal $1Z€ SPECITICALIONeuveiieniiriiiiiiieriteteet ettt sttt ettt st sbeeebe bt eanesbeens 516
A13109: POSItIVE VAIUE EXPECLEA ..eouvveeutieiiiiiiieeiiie ettt ettt ettt ettt ettt e sate ettt s bt e s beesabeebeesabeesabeeaeen 517
AT3110: Bit NUMDET @XPECEEAceveetietietieiieeiteeit ettt ettt eece st e bt e bt es e et et e e beenbeesaesseeseeenaeenteeaeesneesseeseans 518
AT3111: Value OUL OF TANZE ..covveiiiiiiiieiiieieete ettt ettt ettt sb bbb bt e b e eanesbeens 518
A13203: Not a HCOS8 instruction Or dir€CtIVEcccuiviiiiiiiiiiiiiiiiiiiiiiiic e 519
A13204: Instruction not supported by RSO8 COIecciiiiiiiiiiiiiieieeeeeee e 520
A13205: RS08 instructions only supported in RSO8 mode (use option -Crs08)coceeveerveriiieieeneennens 520
A13206: This instruction is only available for derivatives with MMU.........c.ccccoviiiiiiiniiniiiiieiiceeeeen 521

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

24

Freescale Semiconductor, Inc.

Chapter 1
Using HC(S)08/RS08 Assembler

This document explains how to effectively use the HC(S)08/RS08 Macro Assembler.

1.1 Highlights

The major features of the HC(S)08/RS08 Assembler are:

 Graphical User Interface

* On-line Help

» 32-bit Application

* Conformation to the Freescale Assembly Language Input Standard

1.2 Structure of this Document

This section has the following chapters:

* Working with Assembler : Tutorial using the CodeWarrior Development Studio for
Microcontrollers V10.x to create and configure an assembly-code project. In
addition, there is a description of using the Assembler and the Linker as standalone
Build Tools.

» Assembler Graphical User Interface : Description of the Macro Assembler's
Graphical User Interface (GUI).

* Environment : Detailed description of the Environment variables used by the Macro
Assembler.

* Files : Description of the input and output file the Assembles uses or generates.

» Assembler Options : Detailed description of the full set of assembler options.

* Sections : Description of the attributes and types of sections.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 25

ouucture of this Document

» Assembler Syntax : Detailed description of the input syntax used in the assembly
input files.

» Assembler Directives : List of every directive that the Assembler supports.

* Macros : Description of how to use macros with the Assembler.

» Assembler Listing File : Description of the assembler output files.

* Mixed C and Assembler Applications : Description of the important issues to be
considered when mixing both the assembly and C source files in the same project.

* Make Applications : Description of special issues for the Linker.

* How to... : Examples of the assembly source code, linker PRM, and assembler output
listings.

» Assembler Messages : Description of the assembler messages.

In addition to the chapters in this section, there are the following chapters of Appendices:

* Global Configuration File Entries : Description of the sections and entries that can
appear in the global configuration file - ncutools. ini.

 Local Configuration File Entries : Description of the sections and entries that can
appear in the local configuration file - project.ini.

* MASM Compatibility : Description of extensions for compatibility with the MASM
Assembler.

* MCUasm Compatibility : Description of extensions for compatibility with the
MCUasm Assembler.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

26 Freescale Semiconductor, Inc.

Chapter 2
Working with Assembler

This chapter is primarily a tutorial for creating and managing HC(S)08/RS08 assembly
projects with CodeWarrior Development Studio for Microcontrollers V10.x. In addition,
there are directions to utilize the Assembler and Smart Linker Build Tools in the
CodeWarrior Development Studio for assembling and linking assembly projects.

NOTE
The CodeWarrior Development Studio tools actually support
both the HCO8 and HCS08 microcontroller derivatives. For
brevity, this document uses the label HC(S)08 to describe
where the tools support both Microcontrollers derivatives.
Where information is specific to the HCO8, the label HCOS is
used, and where it is specific to the HCS0S, the label HCSO0S is
used.

In this chapter:

e Programming Overview

* Managing Assembly Language Project Using CodeWarrior IDE
 Analysis of Groups and Files in a Project

e Writing your Assembly Source Files

* Analyzing Project Files

* Assembling Source Files

 Linking Application

 Directly Generating ABS File

e Assembler Build Properties Panels

2.1 Programming Overview

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 27

rrogramming Overview

In general terms, an embedded systems developer programs small but powerful
microprocessors to perform specific tasks. These software programs for controlling the
hardware are often referred to as firmware. One such use for firmware might be
controlling small stepping motors in an automobile seat.

The developer instructs what the hardware should do with one or more programming
languages, which have evolved over time. The three principal languages in use to
program embedded microprocessors are C and its variants, various forms of C++, and
assembly languages that are specially tailored to families of microcontrollers. C and C++
have been fairly standardized through years of use, whereas assembly languages vary
widely and are usually designed by semiconductor manufacturers for specific families or
even subfamilies, which are often called derivatives, of their embedded microprocessors.

Assembly language instructions are considered as being at a lower level (closer to the
hardware) than the essentially standardized C statements. Programming in C may require
some additional assembly instructions to be generated over and beyond what an
experienced developer could do in straight assembly language to accomplish the same
result. As a result, assembly language programs are usually faster to execute than C
instructions, but require much more programming effort. In addition, each chip series
usually has its own specialized assembly language which is only applicable for that
family (or subfamily) of CPU derivatives.

Higher-level languages, such as C use assemblers to translate the syntax used by the
programmer to the machine-language of the microprocessor, whereas assembly language
uses assemblers. It is also possible to mix assembly and C source code in a single project.
For more information, refer to the Mixed C and Assembler Applications chapter.

This manual covers the Assembler dedicated to the Freescale 8-bit HC(S)08/RS08 series
of microcontrollers. There is a companion manual for this series that covers the HC(S)08
assembler.

The HC(S)08/RS08 Assembler can be used as a transparent, integral part of CodeWarrior
Development Studio for Microcontrollers V10.x. This is the recommended way to get
your project up and running in minimal time. Alternatively, the Assembler can also be
configured and used as a standalone macro assembler as a member of Build Tool
Utilities, such as a (Smart) Linker, Assembler, ROM Burner, Simulator, or Debugger.

The typical configuration of an Assembler is its association with a Project Directory and
an External Editor. The CodeWarrior software uses the project directory for storing the
files it creates and coordinates the various tools integrated into the CodeWarrior suite.
The Assembler is but one of these tools that the IDE coordinates for your projects. The
tools used most frequently within the CodeWarrior IDE are its Editor, Compiler,
Assembler, Linker, the Simulator/Debugger, and Processor Expert. Most of these Build

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

28 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

Tools are located in the <mcus\prog subfolder of the CodeWarrior installation directory.
The others are directly integrated into CodeWarrior Development Studio for
Microcontrollers V10.x.

The textual statements and instructions of the assembly-language syntax are written by
editors. The CodeWarrior IDE has its own editor, although any external text editor can be
used for writing assembly code programs. If you have a favorite editor, chances are that it
can be configured so as to provide both error and positive feedback from either the
CodeWarrior IDE or the standalone Assembler.

2.1.1 Project Directory

A project directory contains all of the environment files that you need to configure your
development environment.

There are three methods of designing a project.

e Start from scratch, make your project configuration (*.ini) and layout files for use
with the Build Tools,

» Use CodeWarrior IDE to coordinate and manage the entire project, or

» Begin project construction with CodeWarrior IDE and use the standalone build tools
to complete the project.

NOTE
The Build Tools (including Assembler, Compiler, Linker,
Simulator/ Debugger, and others) are a part of the
CodeWarrior Suite and are located in the prog folder in the
CodeWarrior installation. The default location this folder
is:

2.1.2 External Editor

The CodeWarrior IDE reduces programming effort because its internal editor is
configured with the Assembler to enable error feedback. You can use the Configuration
dialog box of the standalone Assembler or other standalone CodeWarrior Tools to
configure or to select your choice of editors. Refer to the Editor Setting Dialog Box
section of this manual.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 29

managing Assembly Language Project Using CodeWarrior IDE

2.2 Managing Assembly Language Project Using
CodeWarrior IDE

The CodeWarrior IDE has an integrated wizard to easily configure and manage the
creation of your project. The wizard will get your project up and running in short order
by following a short series of steps to create and coordinate the project and to generate
the basic files that are located in the project directory.

This section will create a basic CodeWarrior project that uses assembly source code. A
sample program is included for a project created using the wizard. For example, the
program included for an assembly project calculates the next number in a Fibonacci
series. It is much easier to analyze any program if you already have some familiarity with
solving the result in advance.

A Fibonacci series is an easily visualized infinite mathematical series:

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... to infinity--»>

It is simple to calculate the next number in this series. The first calculated result is
actually the third number in the series because the first two numbers make up the starting
point: 0 and 1. The next term in a Fibonacci series is the sum of the preceding two terms.
The first sum is then: 0 + 1 = 1. The second sum is 1 + 1 = 2. The sixth sumis 5 + 8 = 13.
And so on to infinity.

Let's now create a project with the wizard and analyze the assembly source and the
Linker's parameter files to calculate a Fibonacci series for a particular 8-bit
microprocessor in the Freescale HC(S)08 family - MC9S08GT60 . Along the way, some
tips demonstrate how the CodeWarrior IDE helps manage your projects.

2.2.1 Create New Project

This section demonstrates creating a new project using the New Bareboard Project
wizard.

1. Select Start > Programs > Freescale CodeWarrior > CW for MCU v10.x >
CodeWarrior.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

30 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

The Workspace Launcher dialog box appears, prompting you to select a workspace
to use.

2. Click OK to accept the default workspace. To use a workspace different from the
default, click the Browse button and specify the desired workspace.
3. Select File > New > Bareboard Project from the IDE menu bar.

The New Bareboard Project wizard launches - the Create an MCU Bareboard
Project page appears.

4. Specify a name for the new project. For example, enter the project name as
Project_1.
5. Click Next.

The Devices page appears.

6. Expand the tree control and select the derivative or board you would like to use. For
example, select SO08 > HCS08G Family > MC9S08GT60.
7. Click Next.

The Connections page appears.

*®

Select the appropriate connection(s).
9. Click Next.

The Languages page appears.

10. Check the Relocatable Assembly checkbox and make sure that both the C and C++
checkboxes are clear. By default C option is checked.
11. Click Next.

The Rapid Application Development page appears.

12. Select the appropriate rapid application development tool.
13. Click Finish.

The wizard creates a project according to your specifications. The newly created project
is displayed in the CodeWarrior Projects view.

NOTE
For detailed descriptions of the options available in the New
Bareboard Project wizard pages, refer to the Microcontrollers
V10.x Targeting Manual.

Select the project in the CodeWarrior Projects view. From the IDE menu bar, select
Project > Build Project to build the project. The Console view displays the statements
that direct the build tools to compile and link the project. The Binaries link appears, and
so does the rrasu folder (Additional Project Information).

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 31

managing Assembly Language Project Using CodeWarrior IDE

NOTE
You can configure the IDE to build the project automatically.
To configure the IDE to build the project automatically, check
the Build automatically checkbox in the Window >
Preferences > General > Workspace page.

2.2.2 Additional Project Information

The New Bareboard Project wizard sets up the HCS08 project in few minutes. You can
add additional components to your project afterwards. A number of files and folders are

automatically generated in the project folder. This folder is referred to in this manual as
the project directory.

The major GUI component for your project is the CodeWarrior Projects view, as when

the project is created, the project appears in the CodeWarrior Projects view in the
Workbench window.

The following figure shows the project in the CodeWarrior Projects view.

1 Codewarrior Projects 22 =0

B2|1% | [© 5 & File hame =

+ d} Binaries
+ (2= FLASH
+ [~ Project_Headers
=l [= Praject_Settings
+ = Debugger
4 = Linker_Files
= Startup_Code
+ [= Sources

Figure 2-1. CodeWarrior Projects View

NOTE
The contents of the project directory vary depending upon the
options selected while creating the project.

If you expand the folder icons, actually groups of files, by clicking in the CodeWarrior
Project view, you can view the files created by the New Bareboard Project wizard.

The following figure shows the expanded project in the CodeWarrior Projects view.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

32 Freescale Semiconductor, Inc.

A . ___4
Chapter 2 Working with Assembler

3 Codewarrior Projects £ =0
2= | B & L Fiename =
File: Marre Build

B & Project_1 : FLASH

= d} Binaries
% Project_1.abs v
[FLASH
= [Project_Headers
D derivative.inc
[E] mcosoeaTe0.ine
= [= Project_Settings
= = Debugger
= MC9508GTa0. merm
3 MC9S08GETAD
=l = Linker_Files
=] burner.bbl v
= Projeck.prm
== Startup_Code
= [= Sources
E3 main.asm v

F

Figure 2-2. CodeWarrior Projects View Showing Files

The expanded view displays the logical arrangement of the project files. At this stage,
you can safely close the project and reopen it later, if desired.

The following is the list of default groups and files displayed in the project window.

* pinaries 1S a link to the generated binary (.abs) files.

* riasu 1S the directory that contains all of the files used to build the application for
project_1. This includes the source, header, generated binary files, and the makefiles
that manage the build process.

* project_Headers 1S the directory that contains any Microcontrollers-specific header
files.

® project_Settings Eroup contains the pebugger folder, the rinker riies folder, and the
Startup Code folder.

* The pebugger folder stores the memory configuration (.mem), launch configuration,
and debug configuration file.

e The vinker riles folder stores the linker command file (.prm) and the burner
command file (.ob1).

e The startup codge folder has a C file that initializes the Microcontrollers's stack
and critical registers when the program launches.

* The sources folder contains the assembly source code files. For this example, the
wizard has created the main.asn file.

Examine the project folder that the IDE generated when you created the project. To do
this, right-click on the project's name (project_1 : rrasu) in the CodeWarrior Projects
view, and select Show in Windows Explorer. Windows displays the Eclipse workspace
folder, along with the project folder, rroject_1, within it.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 33

A\ 4

N
managing Assembly Language Project Using CodeWarrior IDE
These are the actual folders and files generated for your project. When working with
standalone tools, you may need to specify the paths to these files, so it is best that you
know their locations and functions.

Note that there are some files (.proj ect, .cproject, and .chenerateFileSetLog) that store
critical information about the project's state. The CodeWarrior Projects view does not
display these files, and they should not be deleted.

The rrasu\sources folder, which is created after the project is built, holds an object file for
every assembly source-code file. In this case, main.obj 1S generated.

Double-click the main.asn file in the Sources group. The main.asm file opens in the editor
area.

The following image displays the main.asn file in the editor view.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

34 Freescale Semiconductor, Inc.

r
4\ . ___4

Chapter 2 Working with Assembler

5] main.asm 53 =8

'-ﬂ‘ﬁﬁ L

* This stationery serves as the frawmework for a user application.
* For a mwore comprehensive prograomn Chat demonstrates the more
;% advanced functionality of this processor, please see the
*
* subdirectory of the "Freescale CodelWarrior for HCOS"™ program
*

+*
*
+*
demonstration applications, located in the examples *
+*
*
+*

;% directory.
;'ﬂ"ﬂ"k‘k‘k'ﬂ"ﬂ"k‘k‘k'ﬂ"ﬂ"k‘k‘k'ﬂ"ﬂ"k‘k‘k'ﬂ"ﬂ"k‘k‘k'ﬂ"ﬂ"k‘k‘k##‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k1:

; Include derivative-specific definitions
INCLUDE 'derivative.inc'

; export symbols
ZDEF _Startup, main
; we export hoth ' Jtartup' and 'main' a2 sywbols. Either can
; be referenced in the linker .prm file or from C/C++ later on

ZREF _ SEG END 33TACK ; symbol defined by the linker for the end of the stack

; wariahle/data section
MY ZEROPAGE: 3ECTICN SHORT ; Insert here your data definition

; code section

HyCode: SECTICHN

main:

_Startup:
LDHX #__SEG_END_SSTACK ; dnitialize the stack pointer
TZS
CLI ; enable interrupts

mainLoop:
; Insert your code here
MNOFP

feed watchdog
ERL mainLoop

Figure 2-3. main.asm File

You can use this sample main.asn file as a base to rewrite your own assembly source
program. Otherwise, you can import other assembly-code files into the project and delete
the default main.asm file from the project. For this project, the main.asm file contains the
sample Fibonacci program.

2.3 Analysis of Groups and Files in a Project

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 35

nnaiysis of Groups and Files in a Project

In the CodeWarrior Projects view, the project files are distributed into four major
groups, each with their own folder within the project_1 folder. You can add, rename, or
delete files or groups, or you can move files or groups anywhere in the CodeWarrior
Projects view.

2.3.1 CodeWarrior Groups

These groups and their usual functions are:
* Sources
This group contains the assembly source code files.

* Project_Settings
* Debugger

The pebugger folder stores the memory configuration file containing commands
that define the legally accessible areas of memory for your specific part, the
launch configuration file, and the debug configuration file.

e Linker Files

This group contains the burner file (.ob1), and the linker command file

(. prm).
 Startup Code

This group contains the source code that manages the Microcontrollers
initialization and startup functions. For HCSO08 derivatives, these functions
appear in the source file startos.c.

* Project_Headers

This group holds include files. One include file is for the particular CPU derivative.
In this case, the mcososaTso. inc file 1s for the MC9S08GT60 derivative.

NOTE
The default configuration of the project by the wizard does
not generate an assembler output listing file for every «.asm
source file. However, you can afterwards select Generate a
listing file in the assembler options for the Assembler to
generate a format-configurable listing file of the assembly
source code (with the inclusion of include files, if desired).
Assembler listing files (with the «.1st file extension) are

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

36 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

located in the project directory when «.asn files are
assembled with this option set.

This initial building of your project shows whether it is created and configured correctly.
Now, you can utilize some of the CodeWarrior IDE features for managing your project.

However, it is not at all necessary to rename files and groups in the CodeWarrior IDE, so
you can skip the following sections and resume the Assembler part of this tutorial at
Writing your Assembly Source Files.

2.3.2 Creating New Group

To create a new group:
1. Select File > New > Other from the IDE menu bar.
The New dialog box appears.

2. Expand the General tree node and select Group.
3. Click Next.

The Group wizard appears.

4. Enter the project directory to which you want to add the new group in the Enter or
select the parent folder text box or select the required directory in the area below
the Enter or select the parent folder text box.

5. Enter the name of the new group in the Folder name text box.

6. Click Finish.

The new group appears under the selected parent folder.

2.3.3 Adding New File to the Project

To add a new file to the project:
1. Select File > New > Other from the IDE menu bar.
The New dialog box appears.

2. Expand the General tree node and select File.
3. Click Next.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 37

nnaiysis of Groups and Files in a Project

The File page appears.

4. Enter the project directory to which you want to add the new file in the Enter or
select the parent folder text box or select the required directory in the area below
the Enter or select the parent folder text box.

5. Enter the name of the new file with appropriate extension in the File name text box.

6. Click Finish .

The new file appears under the selected parent folder.

2.3.4 Renaming File or Group

To rename a file or group:

1. Right-click the file or group you want to rename in the CodeWarrior Projects view
and select Rename from the context menu. Or, select the file or group and press F2.
The Rename Resource dialog box appears.

2. Enter new name for the file or group and click OK or press Enter.

The selected file or group appears with the changes you made in the name.

2.3.5 Moving File

To move a file to a different group or project:

1. Right-click the file you want to move in the CodeWarrior Projects view and select
Move from the context menu. The Move Resources dialog box appears.
2. Select the desired destination and click OK.

The file is moved to the selected location.

2.3.6 Removing File

To remove a file from a project:

1. Right-click the file in the CodeWarrior Projects view and select Delete from the
context menu. The Delete Resources dialog box appears to confirm the deletion.
2. Click Yes.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

38 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

This deletes the selected file from the project directory.

2.3.7 Restoring Deleted File

To restore a deleted file:

1.

2.

3.

In the CodeWarrior Projects view, right-click the project to which the deleted file
belongs.

Select Restore from Local History from the context menu. The Restore from
Local History dialog box appears. The dialog box lists the deleted files available in
the local history.

Check the required file checkbox and click Restore.

This restores the file to the original directory structure.

2.3.8 Using Editor

1.

2.
3.

Double-click a file in the CodeWarrior Projects view to open the file in the editor
area of the Workbench window.

With two or more files open in the editor area, select one of the editor tabs.

Holding down the left mouse button, drag the editor tab over the left, right, top, or
bottom border of the editor area. Notice that the mouse pointer changes to a drop
cursor that indicates where the editor tab will be moved when you release the mouse
button. By dragging the editor tabs, you can tile the source files in the editor area in
order to view source files side by side.

The following image shows the tiled source files in the editor area.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 39

nnaiysis of Groups and Files in a Project

4.
5.

main.asm ¢4 =5

This stationery serwves as the framework for a user application.
or a more comprehensive program that demonstrates the more

demonstration applications, located in the examples

- -
- -
;® adwvanced functionality of this processor, please see the *
- -
* subdirectory of the "Freescale CodeWarrior for HCOE8" program =
- -

directory.

rr

; Include derivatiwve-specific definitions

w
< >
mainl.asm &3
L ggg -~
;* This stationery serves as the framework for a user gpplication. *
* For a more comprehensive program that demonstrates the more *
* advanced functiconality of this processor, please see the =
;® demonstration applications, located in the examples *
* subdirectory of the "Freescale CodeWarrior for HCOE" program =
* directory. ¥
,,
; Include derivative-specific definitions 3
< >

Figure 2-4. Editor Area Showing Tiled Source Files
Drag the borders of the editor area or each editor, to resize as desired.
Make desired changes in the source file. To save the file perform any of the
following:
Select File > Save from the IDE menu bar.
Right-click the file and select Save from the context menu.
Press CTRL+S.
Click the Save icon on the toolbar.

The file is saved with the changes you made using the editor.

2.3.9 Generating Listing Files

It was mentioned previously that the assembler output listing files are not generated
without making configuration changes for the build target. To generate listing files, set up
assembler options:

1.

2.

3.
4.

In the CodeWarrior Projects view, right-click the assembler project for which you
want to generate output listing files.

Select Properties from the context menu that appears. The Properties for <project
name> dialog box appears.

Select C/C++ Build > Settings. The Tool Settings page appears in the right panel.
Select HCS08 Assembler > Output in the Tool Settings page.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

40

Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

Obiject File Format {-F) ELFIDWARF 2.0 Object File Format §-F2) w
[]shiow label statistics (-LI

Generate listing file { &g, S{TEXTPATH) 0. Isk 3 (-L)

Address size in the listing file {inkeger) (-Lasms)

[Joo not print macro call in listing file {-Lc)

[[]Do nat print macra definition in listing File {-Ld)

[J oo not print macro expansion in listing file (-Le)

[[]Do nat print included Files in listing File (-Li)

Figure 2-5. HCS08 Assembler > Output Page

5. Specifies the name, sn, and path, stextears, of the assembly listing file in the
Generate listing file (e.g. % (TEXTPATH)/%n.lst) (-L) text box. For example,
enter D:\Workspace\Project 1/lis.lst n the text bOX, if D:\Workspace\Project 1 and
1is.1st are the path and name of the listing file.

6. Click Apply to save the modified settings.

Click OK to close the Properties dialog box.

8. Right-click the project in the CodeWarrior Projects view and select Build Project
from the context menu.

~

The listing file appears in the CodeWarrior Projects view under the specified directory.

The following figure displays the assembly listing file in the CodeWarrior Projects
view.

1 Codewwarrior Projecks 23 =B
:.: %2 = <}==f; &2 | File Mame =
File Mame Build

= & Projsct_| ¢ FLASH

+ 91;',» Binaries
4 = FLASH
= lis.Ist
+ [~ Project_Headers
+ = Project_Settings
= = Sources
* main.asm v

Figure 2-6. CodeWarrior Projects View - Assembly Listing File

2.4 Writing your Assembly Source Files

Once your project is configured, you can start writing your application's assembly source
code and the Linker's PRM file.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 41

A\ 4
N
Anaiyzing Project Files
NOTE

You can write an assembly application using one or several
assembly units. Each assembly unit performs one particular
task. An assembly unit is comprised of an assembly source file
and, perhaps, some additional include files. Variables are
exported from or imported to the different assembly units so
that a variable defined in an assembly unit can be used in
another assembly unit. You create the application by linking all
of the assembly units.

The usual procedure for writing an assembly source-code file is to use the editor that is
integrated into the CodeWarrior IDE.

To create a new assembly source file:

1. Select File > New > Source File from the IDE menu bar. The New Source File
dialog box appears.

= Mew Source File

Source File

Create a new source file, C

1= |

Source Folder: | Project_1)Sources
Source file; NEw. asm

Template: Default C source template w

"
@_} I Finish] [Cancel]

Figure 2-7. New Source File Dialog Box
2. Enter the folder in which you want to add the new file in the Source Folder text box
or click Browse to select the desired folder, for example project_1/sources.

3. Enter the name of the new file with extension *.asm in the Source File text box.
4. Click Finish.

A newly created file opens in the editor area. Write your assembly source code in the file.

2.5 Analyzing Project Files

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

42 Freescale Semiconductor, Inc.

g |

. ___4
Chapter 2 Working with Assembler

We will analyze the default nain.asn file that was generated when the project was created
with the New Bareboard Project wizard. The following listing shows the assembler
source code for the Fibonacci program.

Listing: main.asm file

;***

;* This stationery serves as the framework for a user application. *

;* For a more comprehensive program that demonstrates the more *
;* advanced functionality of this processor, please see the *
;* demonstration applications, located in the examples *
;* subdirectory of the "Freescale CodeWarrior for HCO08" program *
;* directory. *

;***

; Include derivative-specific definitions

INCLUDE 'derivative.inc'

; export symbols
XDEF _Startup, main

; we export both ' Startup' and 'main' as symbols. Either
can

; be referenced in the linker .prm file or from C/C++ later
on

XREF _ SEG_END_SSTACK ; symbol defined by the linker for
the end of the stack

; variable/data section
MY ZEROPAGE: SECTION SHORT ; Insert here your data definition
; code section
MyCode : SECTION
main:
_Startup:
LDHX # SEG_END_SSTACK ; initialize the stack pointer
TXS
CLI; enable interrupts
mainLoop:
; Insert your code here
NOP
feed watchdog
BRA mainLoop

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 43

Anaiyzing Project Files

Since the RSO8 memory map is different from the HCO8 memory map (and so is the
instruction set), The following listing shows a similar example for RSOS.

NOTE
In order to assemble files for the RSO8 derivative, pass the -
crsos option to the assembler. To pass the -crsos option to the
assembler, click the Code Generation tab in the HC0S8
Assembler Option Settings dialog box. Check the Derivative
Family checkbox. From the option buttons that are displayed,
select RSO8 Derivative Family.

Listing: Contents of Source File for RS08 Derivative

;***

;* This stationery serves as the framework for a user application. *

;* For a more comprehensive program that demonstrates the more *
;* advanced functionality of this processor, please see the *
;* demonstration applications, located in the examples *
;* subdirectory of the "Freescale CodeWarrior for HC08" program *
;* directory. *

;***

; export symbols
XDEF _Startup, main

; we export both ' Startup' and 'main' as symbols. Either
can

; be referenced in the linker .prm file or from C/C++ later
on

; Include derivative-specific definitions
INCLUDE 'derivative.inc'
;SSIF CLI ; enable interrupts

;$$// we should include here MCUInit.inc. Unfortunately, the one that
Unis generates does not assemble -> fix this when the fixed it.

;$$//; Include device initialization code
i88// INCLUDE 'MCUInit.inc'

; XREF MCU init

;i SSENDIF

; variable/data section

TINY RAM VARS: SECTION RS08_ SHORT ; Insert here your data
definition

Counter: DS.B 1

FiboRes: DS.B 1

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

44 Freescale Semiconductor, Inc.

h o
g |

. ___4
Chapter 2 Working with Assembler

tmpCounter: DS.B 1
tmp: DS.B 1
; code section
MyCode : SECTION
main:

_Startup:

;$SIF CLI
interrupts

; enable

; Call generated Device Initialization function

; JSR MCU init
; SSENDIF
mainLoop:
CLRA ; A contains counter
cntLoop: INCA
CBEQA #14,mainLoop ; larger values cause overflow.
MOV #HIGH 6_13 (SRS), PAGESEL
STA MAP_ADDR_6 (SRS) ; feed the watchdog
STA Counter ; update global.
BSR CalcFibo
STA FiboRes ; store result
LDA Counter
BRA cntLoop ; next round.
CalcFibo: ; Function to calculate fibonacci numbers. Argument is in A.
DBNZA fiboDo ; fiboDo
INCA
RTS
fiboDo:
STA tmpCounter ; the counter
CLRX ; second last = 0
LDA #501 ; last =1
FiboLoop: STA tmp ; store last
ADDX
LDX tmp

DBNZ tmpCounter, FiboLoop

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

45

rnssembling Source Files

FiboDone:

RTS ; result in A
When writing your assembly source code, pay special attention to the following:

* Make sure that symbols outside the current source file (in another source file or in
the linker configuration file) that are referenced from the current source file are
externally visible. Notice that we have inserted the assembly directive xper_startup,
main Where appropriate in the example.

* In order to make debugging from the application easier, we strongly recommend that
you define separate sections for code, constant data (defined with oc) and variables
(defined with ps). This will mean that the symbols located in the variable or constant
data sections can be displayed in the data window component.

* Make sure to initialize the stack pointer when using the ssr or gsr instructions in your
application. The stack can be initialized in the assembly source code and allocated to
RAM memory in the Linker parameter file, if a «.prm file is used.

NOTE
The default assembly project created using the New
Bareboard Project wizard initializes the stack pointer
automatically with a symbol defined by the Linker for the
end of the stack _sec_enp_sstack. For the RSO8 derivative,
initializing the stack does not apply.

2.6 Assembling Source Files

Once an assembly source file is available, you can assemble it. Either use the
CodeWarrior IDE to assemble the *.asm files or use the standalone assembler of the build
tools in the <M CU>\prog folder in the CodeWarrior installation.

2.6.1 Assembling and Linking with CodeWarrior IDE

The CodeWarrior IDE simplifies the assembly of your assembly source code. To
assemble and link all the files in the project, select the project in the CodeWarrior
Projects view and select Project > Build Project from the IDE menu bar. The files
generated after assembling and linking the project are placed into the <CPU Derivative-
subfolder in the project directory. The files include:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

46 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

® < assembly source file>.dbg

This file contains symbolic debugging information.

® <project names.abs

This is the final executable file.

® <project names>.map

This Linker map file lists the names, load addresses, and lengths of all segments in
your program. In addition, it lists the names and load addresses of any groups in the
program, the start address, and messages about any errors the Linker encounters.

Also, when you build a project, the project's source code files assembles into object
(.obq) files.

The object files are generated and placed into the <CPU Derivatives\sources subfolder in
the project directory. The path of the object file created on assembling the main.asm file is:

<project directory>\<CPU Derivatives\sources\main.ob]

The Wizard does not generate default assembler-output listing files. If you want such
listing files generated, follow the steps in topic Generating Listing Files.

You can add the «.1st files to the project window for easier viewing. This way you do not
have to continually hunt for them with your editor.

2.6.2 Assembling with Assembler

It is also possible to use the HC(S)08/RS08 Assembler as a standalone assembler. If you
prefer not to use the assembler but you want to use the Linker, you can skip this section
and proceed to Linking Application.

This tutorial does not create another project from scratch with the Build Tools, but
instead uses some files of a project already created by the New Bareboard Project wizard.
The CodeWarrior IDE can create, configure, and manage a project much easier and
quicker than using the Build Tools. However, the Build Tools could also create and
configure another project from scratch.

A Build Tool, such as the Assembler makes use of a project directory file for configuring
and locating its input and generated files. The folder that is designated for this purpose is
referred to by a Build Tool as the current directory.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 47

g |

nssembling Source Files

Start the Assembler by double-clicking the ancos.exe file in the <M CU>\prog folder in the
CodeWarrior installation directory. The Assembler opens (refer to the figure listed
below). Read the tip displayed in the Tip of the Day dialog box, if you want to, and then
click Close to close the dialog box.

{4 HCO8 Assembler Default Configuration g@]g|
File Assembler View Help
DESE 28| AR =
| ~
-
< ¥
Ready 16:45:5

Figure 2-8. HC08 Assembler Default Configuration Dialog Box

2.6.2.1 Configuring Assembler

A Build Tool, such as the Assembler, requires information from the configuration files.
There are two types of configuration data:

* Global

This data is common to all Build Tools and projects. There may be common data for
each Build Tool, such as listing the most recent projects, etc. All tools may store
some global data into the mcutools. ini file. The tool first searches for this file in the
directory of the tool itself (path of the executable). If there is N0 mcutoois.ini file in
this directory, the tool looks for an mcutoo1s.ini file located in the MS WINDOWS
installation directory (for example, c:\winpows), as the following listing shows.

Listing: Typical locations for a global configuration file

\<CWInstallDir>\MCU\prog\mcutools.ini - #1 priority
C:\WINDOWS\mcutools.ini - used if there is no mcutools.ini file above

If a tool is started in the default location <cwinstalipirs\cw Mcu vio.x\ucU\prog directory,
the initialization file in the same directory as the tool is used:

<CWInstallDir>\MCU\prog\mcutools.ini

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

g |

. ___4
Chapter 2 Working with Assembler

But if the tool is started outside the CodeWarrior installation directory, the
initialization file in the Windows directory is used. For example, c:\winpows

\mcutools.ini.

For information about entries for the global configuration file, refer to the section
Global Configuration File Entries in the Appendices.

Local

This file could be used by any Build Tool for a particular project. For information
about entries for the local configuration file, refer to the section Local Configuration
File Entries in the Appendices.

After opening the Assembler, you would load the configuration file for your project if it
already had one. However, you will create a new configuration file for the project in this
tutorial and save it so that when the project is reopened, its previously saved
configuration state is used.

Now let's save this configuration in a newly created folder that will become the project
directory.

1.
2.

S.

Select File > New / Default Configuration to open a new default configuration.
Select File > Save Configuration As to save this configuration.

The Saving Configuration as dialog box appears.

. Navigate to the desired location and click the Create New Folder icon on the dialog

box toolbar.
Enter a name for the project directory.

Saving Configuration as...

Savein: |_;' Projects j = l:j(=0
Filz name: |projec1 ini
Save as bype: |Pn:uject files (*ini:* pit) j Cancel

Figure 2-9. Loading Configuration Dialog Box
Click Open.

In this case, moge1T becomes the project directory in the projects folder.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 49

\
Y

y
A

nssembling Source Files

6. Click Save.

The project.ini file is created in the mode1T folder and becomes the local configuration file
for this project.

The current directory for the Microcontroller Assembler is changed to your project
directory.

The following image shows the assembler window displaying the current directory.

5! HCO8 Assembler D:\Projects\Model T\project.ini [= |(B)[X]

File Assembler View Help

Dl 78| Rl K= E

Changed current directory to D:\Projects'Model T

21| S
Ready 17:00:55

Figure 2-10. Assembler Displaying Current Directory

If you were to examine the project directory with the Windows Explorer at this point, it
would only contain the project.ini configuration file that the Assembler just created.

The following image displays the project.ini configuration file that the Assembler just
created.

& Model T
File Edit View Favorites Tools Help #’
" — »
e Back ~ (g l'ﬂ; r ﬁ< P) search H_" Folders
Address |3 D:\Projects\Model T v| &2
Folders X Mame
3 Profiles A | [Hproject.ini

I5) Program Files
=) Projects

] Model T
I~ nerwe en !
¢ | @ e >
1 objects (Disk free space: 6,32 GB) | 115 bytes -j My Computer

Figure 2-11. Project directory in Windows Explorer

If you further examined the contents of the project.ini configuration file, you would see
that it contains Assembler options in the (ancos_assembler] portion of the file. The
project.ini file for this project only has an (ancos_assemvier] section, as the following
listing displays.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

50 Freescale Semiconductor, Inc.

g |

Listing: Contents of project.ini file

[AHC08 Assembler]
StatusbarEnabled=1

ToolbarEnabled=1

WindowPos=0,1,-1,-1,-1,-1,680,151,1148,491

EditorType=4

Chapter 2 Working with Assembler

The ancos_assembier Options are described in detail in [XXX_Assembler] Section in the

Appendices.

Next, you have to set the object-file format that you will use (HIWARE or ELF/

DWAREF).

1. Select Assembler > Options.

The HCO08 Assembler Option Settings dialog box (refer to the figure listed below)

appears.

2. Click the Output tab. Check the Generate a listing file checkbox.

3. Check the Object File Format checkbox. Select ELF/DWAREF 2.0 Object File
Format from the drop-down list box displayed in the Output page for the Object
File Format checkbox.

4. Check the Do not print included files in list file checkbox if you want the listing

file to be shorter.

HCO8 Assembler Option Settings

Code Generation] Messages]

Output Input] Language]

Object File Format

Generate a listing file

[Configure lizting file

[|Configure the address size in the listing file
100 nat prink macro call in lizting file

1D nat print macra definition in listing file
100 not prink macro expanzion in ligting file
Do nat print included files in listing file
[C15how label statistics

[]0bject file name zpecification (enter [<filg:]]

Various
Host

-FlhlAZolA21Z20[2]: Object File Format

ELF/DWARF 2.0 Object File Format -

-F2 -L="{TEXTPATH %n lst -Li

o |

Cancel |

Help |

Figure 2-12. HC08 Assembler Option Settings Dialog Box

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

51

nssembling Source Files

5. Click OK to close the HC08 Assembler Option Settings dialog box.
Save the changes to the configuration by:

* selecting File > Save Configuration (Ctrl + S) or
* pressing the Save button on the toolbar.

The assembler is now set with the object-file format that you have selected.

NOTE
For the RS08 derivative the HIWARE Object File Format is not
supported.

The following listing shows the project. ini file's contents, after the changes to the
configuration are saved.

Listing: project.ini file with additional assembly options

[AHC08 Assembler]
StatusbarEnabled=1

ToolbarEnabled=1
WindowPos=0,1,-1,-1,-1,-1,680,151,1148,491
EditorType=4

Options=-F2 -L=% (TEXTPATH) \%n.lst -Li

2.6.2.2 Input Files

Now that the project's configuration is set, you can assemble an assembly-code file.
However, the project does not contain any source-code files at this point. You could
create assembly «.asm and include «.inc files from scratch for this project. However, for
simplicity's sake, you can copy and paste the main.asm and the gerivative.inc files from the
previous CodeWarrior project.

For this project, you should have a project directory named voge1 . Within this folder,
you should have another folder named sources, which contains the two files described
above. Using a text editor of your choice, modify the main.asm file so that it appears as the
following listing shows:

Listing: main.asm File

ekkhkhkhkkhkhkhkkhkhkkhhkhkhhkhhkhkkhhhkhhdhhhkhhdhhhdhhdhhhdhhkdhkhhdhhkhhdhhdhdhhdhdhkhhdhhkdkdhhdx*x

* This stationery serves as the framework for a user application. *
;* For a more comprehensive program that demonstrates the more *

;* advanced functionality of this processor, please see the *

;¥ demonstration applications, located in the examples *

;¥ subdirectory of the "CodeWarrior for Microcontrollers V6.1" *

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

52 Freescale Semiconductor, Inc.

\
Y

4
A

;* program directory. *

Chapter 2 Working with Assembler

;***

; export symbols
XDEF _Startup, main
; we use export ' Startup' as symbol. This allows us to
; reference ' Startup' either in the linker .prm file
; or from C/C++ later on
XREF _ SEG END SSTACK ; symbol defined by the linker
; for the end of the stack
; Include derivative-specific definitions
INCLUDE 'derivative.inc'
; variable/data section
MY ZEROPAGE: SECTION SHORT ; Insert here your data definition
Counter: DS.B 1
FiboRes: DS.B 1
; code section
MyCode: SECTION
main:
_Startup:
LDHX #__SEG_END_SSTACK ; initialize the stack pointer
TXS
CLI ; enable interrupts
mainLoop:
CLRA ; A contains counter
cntLoop: INCA
CBEQA #14,mainLoop ; larger values cause overflow.
STA Counter ; update global.
BSR CalcFibo
STA FiboRes ; store result
LDA Counter
BRA cntLoop ; next round.
; Function to calculate fibonacci numbers. Argument is in A.
CalcFibo:
DBNZA fiboDo ; fiboDo
INCA
RTS
fiboDo:
PSHA ; the counter
CLRX ; second last = 0
LDA #$01 ; last =1
FiboLoop: PSHA
ADD 1,SP
PULX
DBNZ 1,SP, FiboLoop
FiboDone: PULH ; release counter
RTS ; result in A

Now there are three files in the project:

* the project.ini configuration file and
e two files in the sources folder:
® main.asm

® derivative.inc

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

53

h o
g |

nssembling Source Files

H=1E
’ S - I
File Edit View Favorites Tools Help '
m_) — »
> |) =,
e Back _/J ¥ [ﬁ‘ ﬂ‘ 7 Search IL Folders
Address |[C3) D:\Projects\Model T\Sources V| Go
Faolders X Mame Size | Type
E-C3) Projects ~ lderivaﬁve.inc 1KB indude file
=) Model T = main.asm IKE Assembly Source
O sources
< | > < | >
2 objects (Disk free space: 7.98 Gf 2.37KB :J My Computer

Figure 2-13. Project Files

2.6.2.3 Assembling Assembly Source-code Files

Let's assemble the wain.asn file.

1. Select File > Assemble from the menu bar.
2. The Select File to Assemble dialog box appears. Browse to the sources folder in the

project directory and select the main.asm file.

The following image shows main.asn file.

Select File to Assemble

Look in: |L'f} Sources = £ ER-

: [main.asm

File name: |mainasm Open
Files of type: |assembler source files {~.asm) - Cancel

Figure 2-14. Select File to Assemble Dialog Box
3. Click Open.

The main.asm file starts assembling.

The following image shows the result of assembling of main.asn file.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

54 Freescale Semiconductor, Inc.

h o
g |

. ___4
Chapter 2 Working with Assembler

4 HCO8 Assembler D:\Projects\Model T\project.ini M=E3

File Assembler view Help

= = Rl D\ Frojects'\Mode! T\Sources'main asm' ﬂ @ K = ﬁ
"D:\Projects\Model Th\Scurces‘main.asm”

Command Line: '-F2 -L=%(TEXTPATH)\%n.lst -Li "D:“Projects\Model ThSources‘\msin.zsm™'

Top: D:WProjects\Model Th\Sources‘\main.asm

Could not open the file 'deriwvative.inc'

9: File not found

HCO02 Rsgsembler: *** 1 error{s), 0 warning(s), 0 information message(3) **#*

LEbVER meal

¥%% pcommand line: '-F2 -L=%(TEXTEATH)“%n.lst -Li "D:“Projects\Mcdel T\Scurces‘main.asm""' #*=*
HCOE LAssembler: #*** Error cccurred while processing! ##*#

L

Processing failed! 14:28:39

| W

Figure 2-15. Results of Assembling main.asm File

The project window provides information about the assembly process or generates error
messages if the assembly was unsuccessful. In this case, the A2309 File not found error
message 1s generated. As the following image displays, if you right-click on the text

containing the error message, a context menu appears.

NOTE
If you get any other types of errors, make sure the main.asm file
1s modified as shown in Listing: main.asm File.

4! HCO8 Assembler D:\Projects\Model T\project.ini =3

File Assembler View Help

R = R YAl D\ Projects'\Model T\Sources‘\main asm' || & & ==
"D:\Projects‘\Model T\Sources'\main.zsm"

Command Line: '-F2 -L=%(TEXTPATH)\%n.lst -Li "D:“Projects\Model T\Scurces\main.asm""'

Top: D:\Projects\Meodel Th\Scurces\main.asm

Could not cpen the file 'deriwatiwve.inc'

TvSrmreea'main.zam™. Jins 11, £l 0. wna 815
Main Help
Help on "File not found”

'::\f_\:f_\ R2309: File not £ Open file "D:\Projects\Model T\Sourcesmain, asm™
HCOE Rssembler: #*% 1 23 o0 oo in Do \Projects\Model T\Sources\main. zem”,..." B
#%% command line: '-F2 - Sources\main.zsm"" **#*
HCOZ Assembler: *** Error cccurred while processing! **#
[T
Ready 14:35:27

>

Figure 2-16. Context Menu

Select Help on "file not found'' and help for the a2309 error message appears, as the

following image displays.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

55

nssembling Source Files

A2309: File not
found

[ERROR]

Description

The assembler cannot find the file,
which name is specified in the include
directive.

Tips

If the file exist, check if the
directory where it is located is
specified in the GENPATH
environment variable.

First check if your project directary
is correct. A file "default.env"
should be located there, where the
environment variables are stored.

The macro assembler looks for the
included files in the working
directory and then in the directory
enumerated in the ‘¢ GENPATH
environment variable.

If the file do not exist, create it or
remove the include directive.

Figure 2-17. A2309: File not found

You know that the file exists because it is included in the sources folder that you imported
into the project directory. The help message for the az2309 error states that the Assembler is
looking for this "missing" include file first in the current directory and then in the
directory specified by the ceneaTn environment variable. This suggests that the cenearn
environment variable should specify the location of the gerivative.inc include file.

NOTE

If you read the main.asn file, you could have anticipated this on
account of this statement on line 20: tNcLupE 'derivative.inc'.

To fix this error:

1. Select File > Configuration.

2. The Configuration dialog box appears (refer to the figure listed below). Click the
Environment tab and then select General Path.

3. Press the " ..." button and navigate in the Browse for Folder dialog box for the
folder that contains the gerivative.inc file - the sources folder in the project directory.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

56

Freescale Semiconductor, Inc.

4
Chapter 2 Working with Assembler

Pl Urng hocnmblar N Deainctel badal Thoradaet ind I__”E”§|
| Configuration [x| D
Editar Settings I Save Corfiguration Environment |
Browse for Folder
Cbject Path Select a directory:
Teat Path
Absolute Path .
Hsader File Path -3 Model A ~
Various Environment Variables H-{C3) Model T
-~{3) Mew Folder
{3 Profiles
G-I Program Files =
I _| =3 Projects 4
&dd | Ehangel Delete | U | Do | E{h Model T
-{£3) RECYCLER
-3 Software
H-CT) Swat
P Suetarn Wnhira Trfarmation bl
< i | =
L OK J l_ Cancel]
QK | Cancel | Help | B2
1447:22 4

Figure 2-18. Browsing for Sources Folder
4. Click OK to close the Browse for Folder dialog box.
5. The Configuration dialog box is active again (refer to the figure listed below). Click
the Add button.

The path to the derivative.inc file " D:\Projects\Model T\Sources" appears in the area
below the Add button.

Configuration |5|
Editor Settings I Save Corfiguration Environment |

Object Path

Text Path

Absolute Path

Header File Path

Various Environment Variables

ID:"-.Projects"-.ModeI TSources |

Add |Ehange| Deletel Up | annl

D:"Projects"Model T Sources

QK I Cancel | Help |

Figure 2-19. Adding GENPATH

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 57

A
4

4
A

nssembling Source Files

6. Click OK.

An asterisk appears in the title bar of the Assembler window, so
the configuration.

save the change to

7. Click the Save button in the toolbar or select File > Save Configuration.

The asterisk disappears.

The new path is updated in the gerivative.inc file.

Tip

You can clear the messages in the Assembler window at any

time by selecting View > Log > Clear Log.

Now that you have supplied the path to the dgerivative.inc file, assemble the main.asm file

again.

Select File > Assemble and again navigate to the main.asn file and click Open. However,
the a2309 error message reappears but this time for a different include file -

mc9s08acl28.inc.

NOTE
In this case, the derivative.inc file has this statement: rncrupe
'mcososac12s.inc'. Therefore, a prior reading of the assembly-
code and include files suggests these include files might require
ceneats configurations. If possible, set any needed ceneaTs in
advance of assembling the source-code files.

{4E HCOB Assembler D:\Projects\Model TASourcesiproject.ini

File Assembler Wiew Help

D @ n ? k? "'D:\Frojectz\Model TASourcesimain. azm' ﬂ @

Changed current directory to D:yProjects'\Model TYSources
"DiyProjects\Model Th3ources\main.asm™

Command Line: '-F2 -L=%(TEXTPATH)%n.lst -Li "D:“Projects\Model ThS5ources‘main.asn'™'

Top: D:4yProjectsiModel ThSources‘\main.asm

"DivProjectsiModel ThSourceshderivatiwve.ine™
Could not open the file 'MC9505GTe0. inc'

Fx in "D:A\ProjectsiModel Th3ourceshderiwatiwve.inc™, line 5, col 0O, pos 180
INCLUDE 'MCO508GTE0.ine!
-~
ERROR A2309: File not found
HCOZ Aszsewmbler: *** 1 error(z), 0 warning{s), 0 information message(s] *%F

ud pommand line: '-F2 -L=%(TEXTPATH)%\%n.lst -Li "D:“ProjectsiModel Th\Sources\main.asm"™' #+

HCOS Azssewmbhler: *%* Error occurred while processing! %%

Processing Failed!

11:46:46

Figure 2-20. Assemble Attempt #2

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

58

Freescale Semiconductor, Inc.

g |

4
Chapter 2 Working with Assembler
Fix this by repeating the cenears routine for the other include file. The mcososacizs. inc file
is located at this path:

<CWilnstallDir> \MCU\1lib\hcO8c\device\asm include
CWinstallDir is the directory in which the CodeWarrior software is installed.
The asm_inciude folder is the typical place for missing include files.

After the ceneatn 1s set up for the second include file and saved as before, you can try to
assemble the main.asm file for the third time.

The Macro Assembler indicates successful assembling and indicated that the Code Size
was 39 bytes. The message »++ o error(s), indicates that the main.asn file assembled
without errors. Do not forget to save the configuration one additional time.

The Assembler also generated a main.dbg file (for use with the Simulator/Debugger), a
main.o Object file (for further processing with the Linker), and a main.1st output listing file
in the project directory. The binary object-code file has the same name as the input
module, but with the «.o extension - main.o. The debug file has the same name as the input
module, but with the «.4bg extension - main.dabg and the assembly output listing file has the
«.1st extension. The following image displays the project directory after the successful
assembly of the project.

File Edit Wew Favorites Tools Help ﬁ‘
" —) »
Q Back ~ =2 ? ﬂ ﬁ‘ 7~ Search [1- Falders >
Address || D:\Projects\Model T ~ Go
Folders X Mame Size | Type
[Program Files || | [CDSources File Faolder
=) Projects r%a] ERR.TXT OKB TextDocument
23 Model T main.dbg 3KE CodeWarrior Debug Preferences
{3 Sources lmain.lst S5KE list file
{3 RECYCLER main.o 3KE OFie
[T Software 2 _'}project.ini 1KB Configuration Settings
< T 3 3 >
& objects (Disk free space: 6.74 GEB) 3.33 KB J My Computer

Figure 2-21. Project Directory After Successful Assembly

The err.xT file is present in the project directory because of the earlier failed attempts at
assembling. The srr.Txt file is empty after a successful assembly. You can delete this file.
The following listing shows the project. ini file.

Listing: project.ini file after GENPATH environment variable is created

[AHCO08_Assembler]
StatusbarEnabled=1

ToolbarEnabled=1

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 59

cinring Application

WindowPos=0,1,-32000,-32000,-1,-1,290,513,903,833
EditorType=4

Options=-F2 -L=%(TEXTPATH)\%n.lst -Li
CurrentCommandLine=""D:\Projects\Model T\Sources\main.asm""
RecentCommandLineO=""D:\Projects\Model T\Sources\main.asm""
RecentCommandLinel=D: \Workspace\test\Sources\main.asm
[Environment Variables]

GENPATH=C: \Freescale\CW MCU
v10.3\MCU\1lib\hcO8c\device\asm include;D:\Projects\Model T\Sources

OBJPATH=

TEXTPATH=

ABSPATH=

LIBPATH=

The haphazard running of this project was intentionally designed to fail to illustrate what
occurs if the path of any inc1uge file is not properly configured. Be aware that inciuge files
may be included by either .asm Or =.inc files. In addition, remember that the 1i» folder in

the CodeWarrior installation contains several derivative-specific inciude and prn files
available for inclusion into your projects.

2.7 Linking Application

Once the object files are available you can link your application. The linker organizes the
code and data sections into ROM and RAM memory areas according to the project's
linker parameter (PRM) file.

2.7.1 Linking with CodeWarrior IDE

The Linker's input files are object-code files from the assembler and compiler, the library
files, and the Linker PRM file.

2.7.1.1 PRM File

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

60 Freescale Semiconductor, Inc.

g |

. ___4
Chapter 2 Working with Assembler

If you are using the CodeWarrior IDE to manage your project, a pre-configured PRM file
for a particular derivative is already set up, as the following listing displays.

Listing: Linker PRM file for mc9s08gt60 derivative - Project.prm

/* This is a linker parameter file for the mc9s08gt60 */
NAMES END /* CodeWarrior will pass all the needed files to the linker
by command line. But here you may add your own files too. */

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in
PLACEMENT below. */

Z_RAM = READ WRITE 0x0080 TO OxOOFF;
RAM = READ WRITE 0x0100 TO 0x107F;
ROM = READ ONLY 0x182C TO OXFFAF;
ROM1 = READ ONLY 0x1080 TO Ox17FF;
ROM2 = READ ONLY O0xXFFCO TO OXFFCB;
/* INTVECTS = READ ONLY 0xFFCC TO OxFFFF; Reserved

for Interrupt Vectors */
END

PLACEMENT /* Here all predefined and user segments are placed into the
SEGMENTS defined above. */

DEFAULT_ RAM, /* non-zero page variables */
INTO RAM;

_PRESTART, /* startup code */

STARTUP, /* startup data structures */

ROM_VAR, /* constant variables */

STRINGS, /* string literals */

VIRTUAL_TABLE_ SEGMENT, /* C++ virtual table segment */

DEFAULT_ROM,

COPY /* copy down information: how
to initialize variables */

INTO ROM; /* ,ROM1,ROM2: To use
"ROM1,ROM2" as well, pass the option -OnB=b to the compiler */

_DATA ZEROPAGE, /* zero page variables */
MY ZEROPAGE INTO Z_RAM;

END

STACKSIZE 0x50

VECTOR 0 _Startup /* Reset vector: this is the default entry point for
an application. */

The following listing is an example Linker PRM file for the RS08 derivative.
Listing: Linker PRM file for RS08 derivative - Project.prm

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 61

cinring Application

NAMES END /* CodeWarrior will pass all the needed files to the linker
by command line. But here you may add your own files too. */

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in
PLACEMENT below. */

TINY RAM = READ WRITE 0x0005 TO 0x000D;
RAM = READ WRITE 0x0020 TO 0x004F;
RESERVED_RAM = NO_INIT 0x0000 TO 0x0004;
ROM = READ ONLY 0x3C00 TO Ox3FF7;

END

PLACEMENT /* Here all predefined and user segments are placed into the
SEGMENTS defined above. */

RESERVED INTO RESERVED_ RAM;
TINY RAM VARS INTO TINY RAM;
DIRECT RAM VARS INTO RAM, TINY RAM;
DEFAULT RAM INTO RAM, TINY RAM;
DEFAULT_ ROM INTO ROM;

END
STACKSIZE 0x00 /* no stack for RS08 */

VECTOR 0 _Startup /* Reset vector: this is the default entry point for

an application. */

The Linker PRM file allocates memory for the stack and the sections named in the
assembly source code files. If the sections in the source code are not specifically
reférern:eclin.ﬂne PLACEMENT section, then these sections are included in DEFAULT ROM OI

DEFAULT_ RAM.

The stacks1ze entry is used to set the stack size. The size of the stack for this project is 80
bytes. Some entries in the Linker PRM file may be commented-out by the IDE, as are the
three last items in the project.prm file in the listing, Linker PRM file for mc9s08gt60
derivative - Project.prm.

2.7.1.2 Linking Object-code Files

You can build this relocatable assembly project by selecting Project > Build Project
from the IDE menu bar. When the project is built, the Linker generates a «.abs and a *.map
file in the rrasu subfolder in the project directory, as the following image displays.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

62 Freescale Semiconductor, Inc.

g |

Chapter 2 Working with Assembler

% D:workspaceProject 1VFLASH EJE|E|
File Edit Wiew Faworites Tools Help i
Q Back - > ? P) search “. Folders E -

Address |[2) Dn\warkspace)Project _11FLASH v Go
Folders x Mame Size Type
= | workspace | [CProject_settings File Folder

2 .metadata) 50urces File Falder
B) Project_1 = epour OKE File
) .settings imain.dba 137 KB Codewarrior Debug...
=213 makefile 3KE File
= [C3) Project_Settings |2 makefile. lacal LKE LOCAL File
IC5) Linker _Files] objects.mk 1KE MEKFile
) sources Project_1.abs 3KB ABS File
| Project_Headers Prnject_l .abs.args 1KE ARGS File
= IC3) Project_Settings [Project_1.abs.s19 LKE 519File
[Debugger Prnject_l .args 1KE ARGS File
[C3) Linker_Files F‘roject_l .map 6 KE Codewarrior Link Map
() startup_tCode + saurces.mk ZKE MK File
£ > < 5

Figure 2-22. Contents of <CPU Derivative> Subfolder After Building Project

The project_1.abs and project_1.map files in the figure above are the Linker output files
resulting from the object-code and PRM files.

To debug the project:
1. From the main menu bar of the IDE, select Run > Debug Configurations .

The Debug Configurations dialog box appears. The left side of this dialog box has a
list of debug configurations that apply to the current application.

Expand the CodeWarrior Download configuration.

From the expanded list, select the debug configuration that you want to modify.
Click the Debugger tab. The Debugger page appears in the area beneath the tabs.
Change the settings on this page as per your requirements. For example, select the
required target processor and simulator/emulator.

Click the Apply button to save the new settings.

Click the Debug button button to start the debugging session.

il

6.
7.

The perspective switches to the Debug perspective displaying the debugging process, as
the following image displays.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 63

cinring Application

el Debug - Project_1/Sources/main.asm - CodeWarrior Development Studio
File Edit Search Project Run RTCS MK MOX Tools PEMicro Window Help

i [9- LA R AR A AR R AR 5 | %5 Debug | @ cjcr+
%5 Debug 57 = O || 69= variables 2 4 Registers | ©@ Breakpaints | [0 Memory | 24 Modules =0
7 B[- & 0h~
2 e & B i+ 7 Mame Yalue Location

m- I

= [Praject_1_FLASH_PnE Full Chip Simulatar [Cadewarrior Download]
= HIZS08, Praoject_1.abs (Suspendad)
=g Thread [ID: 0x0] (Suspended: Signal ‘Halt' received. Description: User halk
= 1 _starkup() main, asm: 31 Ox152c hs *
b DriworkspaceProject_1FLASHIProject_1.abs (1002312 12:39 PM)

< >
[8] main.asm £2 = O ||z Disassembly 2 =0
25 HyCode: SECTION »~ Enter location here v| &) |§{>|E| i =
Z9main: P
Startup: 31 LDHX # SEG END SSTACK ; initialize th#
: » :
LDHZ # SEG END SSTACE ; initiali 18ze SEOLSD LIOE (HTETLEC
TS - - - 32 TS
33 CLI ; enable interrupts 182t: 94 TIS
e 33 CLI ; enable interrupts
35 mainLoop : 1530: 94 CLT
36 ; Insert vour code here mainl.oop:
37 HOP 37 jule) 3
15 1831: S0 NOP
ag feed watchdog 13 STh SRS ; feed the watchdog
a0 BEL - mainLoop 1532: CT1800 3TL Ox1500
a1 w 1835: 20F4 BRA *-4 mainLoop (0x1831) v
< > s >
£ Commander E5 = = B |[[ZL prablems | B cansale 2 = UE'E'E' a0 = i S =
HCS08, Project_1.ab:
* Project Creation * Build/Debug b B L S
£y Impork project (Al
9 Import example project =)
E2g Import MCU executable file
9 Mew MCU project
9 Mew MQR-Lite project
£ >
ik Witable Srnart Insert 3101

Figure 2-23. Debug Perspective

In the Debug perspective, you can control your program's execution by setting
breakpoints, suspending launched programs, stepping through your code, and examining
the values of variables.

The Debug perspective displays information about:

* The stack frame of the suspended threads of each target that you are debugging
 Each thread in your program represented as a node in the tree
* The process of each program that you are running

The Debug perspective also drives the Source view. As you step through your program,
the Source view highlights the location of the execution pointer.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

64 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

2.7.2 Linking with Linker

If you are using the Linker (SmartLinker) build tool utility for a relocatable assembly
project, you will use a PRM file for the Linker to allocate ROM and RAM memory areas.

1.

2.
3.

Using a text editor, create the project's linker parameter file. You can modify a ».prm
file from another project and rename it as <project_names.prm.

Store the PRM file in a convenient location, such as the project directory.

In the <project_names.prnfile, change the name of the executable (».ans) file to
whatever you choose, for example, <project_names.abs. In addition, you can also
modify the start and end addresses for the ROM and RAM memory areas. The
module's mode1 T.prm file (a PRM file for mcososcreo from another CodeWarrior project
was adapted), as the following listing shows.

Listing: Layout of a PRM file for the Linker - Model T.prm

/* This is a linker parameter file for the mc9s08gté60 */
LINK Model T.abs /* Absolute executable file */

NAMES main.o /* Input object-code files are listed here. */
END

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in
PLACEMENT below. */

Z_RAM = READ WRITE 0x0080 TO O0xOOFF;
RAM = READ WRITE 0x0100 TO 0x107F;
ROM = READ ONLY 0x182C TO OxXFFAF;
ROM1 = READ ONLY 0x1080 TO Ox17FF;
ROM2 = READ ONLY 0xXFFCO TO OxXFFCB;
/* INTVECTS = READ ONLY 0xFFCC TO OxFFFF; Reserved

for Interrupt Vectors */
END

PLACEMENT /* Here all predefined and user segments are placed into the
SEGMENTS defined above. */

DEFAULT_RAM, /* non-zero page variables */
INTO RAM;

_PRESTART, /* startup code */

STARTUP, /* startup data structures */

ROM VAR, /* constant variables */

STRINGS, /* string literals */

VIRTUAL TABLE SEGMENT, /* C++ virtual table segment */

DEFAULT_ROM,

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 65

cinring Application

b

COPY /* copy down information: how
to initialize variables */

INTO ROM; /* ,ROM1,ROM2: To use
"ROM1,ROM2" as well, pass the option -OnB=b to the compiler */

_DATA ZEROPAGE, /* zero page variables */
MY ZEROPAGE INTO Z_RAM;

END

STACKSIZE 0x50

VECTOR 0 _Startup /* Reset vector: this is the default entry point for
an application. */

NOTE
If you are adapting a PRM file from a CodeWarrior project,
all you really need to add is the vnx portion and the object-
code filenames to be linked in the names portion.

The default size for the stack using the New Bareboard Project wizard for mcesoscreo
1s 80 bytes - (stacks1ze oxs0). This Linker statement and _ sec_enp_sstack in the
assembly-code snippet below determine the size and placement of the stack in RAM:

MyCode: SECTION ; code section
main:

_Startup:

LDHX #_ SEG END SSTACK ; initialize stack pointer

TXS

The statements in the linker parameter file are described in the Linker portion of the
Build Tool Utilities manual.

Start the SmartLinker tool by double-clicking 1inker.exe located in the <mcus\prog
folder in the CodeWarrior installation directory.

Click Close to close the Tip of the Day dialog box.

Load the project's configuration file.

Use the same <project.inis file that the Assembler used for its configuration - the
project.ini file in the project directory.

Select File > Load Configuration and navigate to and select the project's
configuration file.

The following image displays the Loading configuration dialog box.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

66

Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

SmartLinker D:\Projects\Model A\project.ini

; Loading configuration

Look in: IE} Model A

) Sources

3prnject.ini

File name: Im Open I

Files of type: |Project files (*ini;”pit) | Cancel | o
& 4 B

Ready 13:50:43 2

Figure 2-24. Microcontroller Linker
8. Click Open to load the configuration file.

The project directory is now the current directory for the Linker.

9. Select File > Save Configuration to save the configuration.
10. Select File > Link. The Select File to Link dialog box appears (refer to the image
listed below).
11. Browse to locate and select the PRM file for your project.

SmartLinker D:\Projects\Model A\project.ini

| Select File to Link

Look in: IE} Model A

) Sources

'Mndel A.prm

Filz name: || Open I

Files of type: IIink parameter files {”.pm) ;I Cancel | 2
& 4 B

Ready 13:50:39 2

Figure 2-25. Select File to Link Dialog Box
12. Click Open.

The Smart Linker links the object-code files in the naves section to produce the executable
«.abs file, as specified in the vink portion of the Linker PRM file.

The following image displays the smart linker window after linking.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 67

A
4

4
A

cinring Application

SmartLinker D:\Projects\Model A\project.ini

File Smartlinker View Help

- = W VAl D \Proiects'\Wodel A\odel Apm'JNES ¥ ->RE-SR I 20 =Y -

"D:\Projecta‘\Model A\Model A.prm"

Command Line: '"D:\Projects\Model A\Model A.prm™'
Reading Parameters

Linking rojectsiModel Ah\Model R.prm

Read Binary Input Files

Reading file 'D:\Projects\Model A\main.o'

scross Sections
or Startup Data

Moving Objects
Reserving Memory £
Allocating Objects
Preparing Startup Data

Generating Code

Generating Symbol table
Generating DWARF data version 2.0

Code Size: 13
Generating MAF file 'D:\Projects‘\Model A\Model A.map’
Smartlinker: **=* 0 error(s), 0 warning(s), 0 information message(3) ***

Smartlinker: #** Processing ok *#*#*

Processing ok 13:56:31

Figure 2-26. SmartLinker Window After Linking

The messages in the linker's project window indicate that:

The current directory for the Linker is the project directory, p:\projects\Model a.

The moge1 a.prm file 1s used to name the executable file, which object files are linked,
and how the RAM and ROM memory areas are allocated for the relocatable sections.
The Reset and application entry points are also specified in this file.

There is one object file, main.o.

The output format is DWARF 2.0.

The Code Size i1s 13 bytes.

A Linker Map file, moge1_a.map 1S generated.

* No errors or warnings occurr and no information messages are issued.

The texTeats environmental variable was not used for this project. Therefore, the Linker
generates its .map Linker Map file in the same folder that contains the PRM file for the
project. Because the asseats environment variable was not used, the .aps executable file
1s generated in the same folder as the Linker PRM file. The following image shows the
contents of the project directory after the relocatable assembly project is linked.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

68 Freescale Semiconductor, Inc.

g |

. ___4
Chapter 2 Working with Assembler

™ Model A FEX
File Edit View Favorites Tools Help :,"
2 = .
e Back ~ () lj‘ H ﬁ‘ Pl) Search I{_" Falders > LI x E) -
Address |3 D:\Projects\Model A v| £
Folders ® Mame Size Type Date Mt
{3 Profiles || Chsources File Folder 4f7/200¢
[C2) Program Files [Z) ERR.TYT 0KE Text Document 43 200"
E-C3) Projects main.dbg 136 KB DBG File 48/ 200¢
-3 Model A B i st 215K8 list file 4f3/200
) Sources main.o 3IKE OFle 432008
I Model T !Model A.prm 2KB SmartLinker parameter file 43/ 200¢
[RECYCLER Madel_A.abs 2KE AES File af3/200¢
) software Model_A.map 6 KE MAP File 43 200"
) swati _'_;‘rproject.ini 1KE Configuration Settings 48/ 200¢
[T System Volume Information %
< > S >
2 pbjects (Disk free space: 5,20 GB) 361KE :J My Computer

Figure 2-27. Project Directory After Linking

2.8 Directly Generating ABS File

You can use the Assembler build tool or CodeWarrior IDE to generate an azs file directly
from your assembly-source file. The Assembler may also be configured to generate an S-
Record File at the same time.

When you use the Assembler or IDE to directly generate an ass file, there is no Linker
involved. This means that the application must be implemented in a single assembly unit
and must contain only absolute sections.

2.8.1 Creating Absolute Assembly Project

To directly generate an ABS file, you need to create an absolute assembly project:

1. Start the CodeWarrior for Microcontrollers V10.x IDE.
2. Select File > New > Bareboard Project from the IDE menu bar.

The New Bareboard Project wizard launches - the Create an MCU Bareboard
Project page appears.

3. Specify a name for the new project. For example, enter the project name as
AbsoluteAssembly.

4. Click Next.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 69

A
4

4
A

uirectly Generating ABS File

hd

10.

11.

12.
13.

The Devices page appears.

Expand the tree control and select the derivative or board you would like to use.
Click Next.

The Connections page appears.

Select the appropriate connection(s).
Click Next.

The Languages page appears.

Clear the C checkbox, which is checked by default, to enable the Absolute
Assembly checkbox.
Check the Absolute Assembly checkbox.

= New Bareboard Project

Languages

Language:

Absolute Assembly

@j l < Back “ Mext = H Einish H Cancel

Figure 2-28. Language Page
Click Next.

The Rapid Application Development page appears.

Select the appropriate option.
Click Finish.

The absolute assembly project is created and displayed in the CodeWarrior Projects
view.

2.8.2 Adapting Absolute Assembly File Created by Wizard

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

70

Freescale Semiconductor, Inc.

g |

. ___4
Chapter 2 Working with Assembler

Modify the absolute assembly file main.asm as the following listing displays.

The orc directives must specify the absolute memory areas for ROM and RAM. The
following listing shows an adaptation of the main.asn file produced previously by the
Wizard. This file may be used by the Assembler build tool or IDE to directly generate an
ABS file.

Listing: Example Source File - main.asm

;**

;* This stationery serves as the framework for a user *
;* application. For a more comprehensive program that *
;* demonstrates the more advanced functionality of this *
;* processor, please see the demonstration applications *
;* located in the examples subdirectory of CodeWarrior for *
;* Microcontrollers V10.x program directory. *

;**

; application entry point
ABSENTRY _ Startup
; export symbols
XDEF _Startup, main
; we use ' Startup' as an export symbol. This allows
; us to reference ' Startup' either in the linker
; *.prm file or from C/C++ later on.
; Include derivative-specific definitions
INCLUDE 'derivative.inc'
; variable/data section
ORG $0040
Counter: DS.B 1
FiboRes: DS.B 1
; initial value for SP
initStack: EQU $S023E
; code section
ORG $8000
main:
_Startup:
LDHX #initStack ; initialize the stack pointer

TXS

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 71

r
4\ |

uirectly Generating ABS File

CLI ; enable interrupts
mainLoop:
CLRA ; A contains a counter.
cntLoop: INCA
CBEQA #14,mainLoop ; Larger values cause overflow.
feed watchdog i
STA Counter ; update global
BSR CalcFibo
STA FiboRes ; store result
LDA Counter
BRA cntLoop ; next round
CalcFibo: ; Function to compute Fibonacci numbers. Argument is in A.
DBNZA fiboDo ; fiboDo
INCA
RTS
fiboDo:
PSHA ; the counter
CLRX ; second last = 0
LDA #s501 ; last =1
FiboLoop: PSHA ; push last
TXA
ADD 1,SP
PULX
DBNZ 1,SP,FiboLoop
FiboDone: PULH ; release counter

RTS ; Result in A
;**
;* spurious - Spurious Interrupt Service Routine. *

i* (unwanted interrupt) *

;**

spurious:
NOP

RTI

7

’

1

Put here so the security
value does not change

all the time.

;**

i* Interrupt Vectors

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

*

Rev. 10.6, 02/2014

72

Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

I-**

ORG SFFFA
DC.W spurious ;
DC.W spurious ; SWI

DC.W _Startup ; Reset

The following listing is a similar example for RS08.

Listing: Example Source File abstest_rs08.asm

ABSENTRY entry; Specifies the application Entry point
XDEF entry ; Make the symbol entry visible (needed for debugging)

ORG $20 ; Define an absolute constant section
varl: DC.B 5 ; Assign 5 to the symbol varl

ORG $40 ; Define an absolute data section
data: DS.B 1 ; Define one byte variable in RAM at $80

ORG $3C00 ; Define an absolute code section
entry:

LDA varl
main:

INCA

STA data

BRA main

When writing your assembly source file for direct absolute file generation, pay special
attention to the following points:

* The Reset vector is usually initialized in the assembly source file with the application
entry point. An absolute section containing the application's entry point address is
created at the reset vector address. To set the entry point of the application at address
srrra ON the _scarcup label the following code is needed.

Listing: Setting the Reset vector address

ORG SFFFA
DC.W spurious ;

DC.W spurious ; SWI
DC.W _Startup ; Reset
The assentry directive is used to write the address of the application entry point in the

generated absolute file. To set the entry point of the application on the _startup label in
the absolute file, the following code is needed.

Listing: Using ABSENTRY to enter the entry-point address

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 73

uirectly Generating ABS File

ABSENTRY _Startup

CAUTION
We strongly recommend that you use separate sections for
code, (variable) data, and constants. All sections used in the
assembler application must be absolute and defined using the
org directive. The addresses for constant or code sections have
to be located in the ROM memory area, while the data sections
have to be located in a RAM area (according to the hardware
that you intend to use). The programmer is responsible for
making sure that no section overlaps occur.

2.8.3 Generating Absolute Assembly Using CodeWarrior IDE

To produce the executable «.abs file using the CodeWarrior IDE:

1. Select the absolute assembly project, absoluteassembly, In the CodeWarrior Projects
view.
2. Select Project > Build Project.

The CodeWarrior IDE produces the same «.abs output files that the Assembler and Linker
generated for relocatable assembly.

The «.sx file generated in the acsos folder of the project directory is a standard S-Record
File. You can burn this file directly into a ROM memory.

2.8.4 Generating Absolute Assembly Using Assembler Build
Tool

Use the same project, mode1 T, that was used for the relocatable assembly project. Modify
the main.asm in the mMode1 T\sources folder as per the Listing: Example Source File -
main.asm.

1. Start the Assembler by opening the ancos.exe file in the prog folder in the
<CWInstallDir>\MCU folder.

The Assembler window opens. Close the Tip of the Day dialog box.

2. Select File > Load Configuration. Browse for the project directory and set it as the
current directory for the Assembler .

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

74 Freescale Semiconductor, Inc.

g |

. ___4
Chapter 2 Working with Assembler

W

Select Assembler > Options. The Option Settings dialog box appears.

4. In the Output dialog box, check the Object File Format checkbox. A list box is
displayed in the dialog box below the list of checkboxes.

Select the ELF/DWAREF 2.0 Absolute File option from the list box. Click OK.
6. Select File > Assemble.

b

The Select File to Assemble dialog box appears, as the following image displays.

Select File to Assemble

Lok in: |_} Sources = ¥ Ed-
main.asm

File name: | Open
Files of type: |assembler source files {~.asm) - Cancel

Figure 2-29. Select File to Assemble Dialog Box
7. Browse and select the absolute-assembly source-code file main.asm.
8. Click Open.

The Assembler now assembles the source code.

Make sure that the ceneats configurations are set for the two include files needed for the
main.asm f1le in this project in case they have not yet been previously set. Messages about
the assembly process appears in the assembler main window.

The messages indicate that:

* An assembly source code (main.asm) file, plus gerivative.inc and mcososaci2s.inc files
are read as input.

e A debugging main.dbg) file is generated in the project directory.

* An S-Record File is created, main.sx. This file can be used to program ROM memory.

* An absolute executable file is generated, main. abs.

e The Code Size is 51 bytes.

* An assembly outlet listing file (main.1st) was written to the project directory.

2.9 Assembler Build Properties Panels

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 75

nssembler Build Properties Panels

The following sections describe how to configure the HCS08 Assembler Build Properties
Panels and RS08 Assembler Build Properties Panels. These panels are part of the
project's build properties settings, which are managed in the Properties dialog box. To
access these panels, proceed as follows:

1. Select the project for which you want to set the build properties, in the CodeWarrior
Projects view.
2. Select Project > Properties.

The Properties for <project> dialog box appears.

3. Expand the C/C++ Build tree node and select Settings.

The various settings for the build tools appears in the right panel.

If not, click the Tool Settings tab. If you have selected an HCS08 project, the HCS08
tool settings page appears.

If you have selected an RS08 project, the RS08 tool settings page appears.

The options are grouped by tool, such as General options, Linker options, Assembler
options, and Assembler options. Depending on the build properties you wish to
configure, select the appropriate option in the Tool Settings tab page.

2.9.1 HCSO08 Assembler Build Properties Panels

The following listed are the build properties panels for the HC(S)08 Assembler.

NOTE
For information about other build properties panels, refer to the
Microcontrollers V10.x Targeting Manual.

Table 2-1. Build Properties Panel for HC(S)08 Assembler
Build Tool Build Properties Panels
HCSO08 Assembler HCSO08 Assembler > Output
HCS08 Assembler > Output > Configure listing file
HCS08 Assembler > Input
HCS08 Assembler > Language

HCS08 Assembler > Language > Compatibility modes
HCSO08 Assembler > Host

HCSO08 Assembler > Code Generation

HCS08 Assembler > Messages

HCS08 Assembler > Messages > Disable user messages

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

76 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler
Table 2-1. Build Properties Panel for HC(S)08 Assembler

Build Tool Build Properties Panels
HCS08 Assembler > General

2.9.1.1 HCSO08 Assembler

Use this panel to specify the command, options, and expert settings for the build tool
assembler. The following image shows the Assembler settings.

Carnrmand: "${HC08Tools}H ahc0s”

All options: | s -I"Di\workspace MCLWProject_1/Project_Headers”
-Asmbbg -YiewHidden -WmsgFob ¥ ¥l 3k %ed
Samin" -Cs0a

Expert settings:

l‘i:n':'e“"prg‘:t“;'m, $HCOMMANDY $4FLAGSE -Obind4OUTPUT _PREFTXM{OUTPUT -

Figure 2-30. Tool Settings - Assembler

The following table lists and describes the assembler options for HCSOS.
Table 2-2. Tool Settings - Assembler Options

Option Description

Command Shows the location of the assembler executable file. You can
specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the UL.

All options Shows the actual command line the assembler will be called
with.
Expert Settings Shows the expert settings command line parameters; default

is ${COMMAND} ${FLAGS}- Objn${OUTPUT PREFIX}S$

Command line pattern {OUTPUT} §{INPUTS}.

2.9.1.2 HCS08 Assembler > Output

Use this panel to control how the assembler generates the output file, as well as error and
warning messages. You can specify whether to allocate constant objects in ROM,
generate debugging information, and strip file path information.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 77

nssembler Build Properties Panels

The following image shows the Output panel.

Ohiject File Format (-F)

[Show label skatistics (-LI3

Generate lisking file | &.0. Y(TEXTPATH) %en Ist 3 (-L)
Address size in the listing file (integer) (-Lasms)

[]Do nat print macro call in lisking File {-Le)

] oo not print macro definition in lisking file {-Ld)

[] Do nat print macro expansion in listing File (-Le)

] Do not print induded files in listing File {-Liy

ELF/DWARF 2.0 Object File Format (-F2) w

Figure 2-31. Tool Settings - HCS08 Assembler > Output

The following table lists and describes the output options for HCS08 Assembler.

Table 2-3. Tool Settings - HCS08 Assembler > Output Options

Option

Description

Object File Format (-F)

Defines the format for the output file generated by the
Assembler.

Show label statistics (-L1)

Enables the assembler to append statistical information about
the compilation session to the specified file. The information
includes assembler options, code size (in bytes), stack usage
(in bytes) and compilation time (in seconds) for each
procedure of the compiled file. The assembler appends the
information to the specified filename (or the file make.txt, if no
argument given). Set the TEXTPATH: Text File Path
environment variable to store the file into the path specified by
the environment variable. Otherwise the assembler stores the
file in the current directory.

Generate listing file (for example, %(TEXTPATH)/%n.Ist) (-L)

Specifies the name, %n, of the assembly listing file. The file is
placed in the directory specified by % TEXTPATH. If this
option is left blank, no listing file is output.

Address size in the listing file (integer) (-Lasms)

Specifies the size of the addresses displayed in the listing.
Options are:

* 1 to display addresses as xx

¢ 2 to display addresses as xxxx

e 3to display addresses as xxxxxx

* 4 to display addresses asf xxxxxxxx

Do not print macro call in listing file (-Lc)

Specifies whether macro calls encountered in the source
code are expanded and appear in the listing file.

Do not print macro definition in listing file (-1.d)

Instructs the Assembler to generate a listing file but not
including any macro definitions. The listing file contains macro
invocation and expansion lines as well as expanded include
files.

Do not print macro expansion in listing file (-Le)

Switches on the generation of the listing file, but macro
expansions are not present in the listing file. The listing file
contains macro definition and invocation lines as well as
expanded include files.

Do not print included files in listing file (-11)

Switches on the generation of the listing file, but include files
are not expanded in the listing file. The listing file contains
macro definition, invocation, and expansion lines.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

78

Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

2.9.1.3 HCSO08 Assembler > Output > Configure listing file

Use this panel to specify the general assembler behavior.

The following image shows the Configure listing file panel.

[bisable all {-Lasmc)

[]Do not write the source line (-Lasmc=s)

[Do not write the relative line (-Lasmc=r)

[] Do not write the macro mark {-Lasme=m)

[Do not write the address {-Lasmc=[)

[] Do not write the location kind (-Lasmc=k)

] Do not write the include mark, column (-Lasme=i)
[] Do nat write the object code {-Lasme=c)

] Do not write the absolute line {-Lasmc=a)

Figure 2-32. Tool Settings - HCS08 Assembler > Output > Configure listing file

The following table lists and describes the configure listing file options for HCS0S.
Table 2-4. Tool Settings - Assembler > Output > Configure listing file Options

Option Description
Disable all (-Lasmc) Print all the columns in the listing file.
Do not write the source line (-Lasmc=s) Do not print source column in the listing file.
Do not write the relative line (-Lasmc=r) Do not print relative column (Rel.) in the listing file.
Do not write the macro line (- Lasmc=m) Do not print macro mark column in the listing file.
Do not write the address (-Lasmc=1) Do not print address column (Loc) in the listing file.
Do not write the location kind (-Lasmc=k) Do not print the location type column in the listing file.
Do not write the include mark column (-Lasmc=1i) Do not print the include mark column in the listing file.
Do not write the object code (-Lasmc=c) Do not print the object code in the listing file.
Do not write the absolute line (-Lasmc=a) Do not print the absolute column (Abs.) in the listing file.

2.9.1.4 HCS08 Assembler > Input

Use this panel to specify file search paths and any additional include files the HCS08
Assembler should use. You can specify multiple search paths and the order in which you
want to perform the search.

The following image shows the Input panel.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 79

r
A

4 |

nssembler Build Properties Panels

Include file search paths {-I) & w5 2

[]case insensitivity on label name (-Ci)

Define label { use spaces to separate labels) {-00) |

[5upport for structured bypes {-Struct)

Figure 2-33. Tool Settings - HCS08 Assembler > Input

The following table lists and describes the input options for HCS08 Assembler.
Table 2-5. Tool Settings - HCS08 Assembler > Input Options

Option Description
Include file search paths (-I) Lists the included file search paths.
Case insensitivity on label name (-Ci) Check to make the label names case insensitive.
Define label (use spaces to separate labels) (-D) Define labels that have to be included in the RS08 assembler
input.
Support for structured types (-Struct) Check to include the support for structured types.

2.9.1.5 HCS08 Assembler > Language

Use this panel to specify code- and symbol-generation options for the HCS08 assembler.

The following image shows the Language panel.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

80 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

angle brackets For macro arguments grouping {-CMacAngBrack) | Defaulk w
Square braces for macro arguments grouping (-CMacBrackets) | Default (-CMacEracketsOn) w

Maxiniunn MacroMest nesting (-Macrofest)

Figure 2-34. Tool Settings - HCS08 Assembler > Language

The following table lists and describes the language options for HCS08 Assembler.
Table 2-6. Tool Settings - HCS08 Assembler > Language Options

Option Description
Angle brackets for macro arguments grouping (- Controls whether the < > syntax for macro invocation
CMacAngBrack) argument grouping is available. When it is disabled, the

Assembler does not recognize the special meaning for < in
the macro invocation context. There are cases where the
angle brackets are ambiguous. In new code, use the [? ?]
syntax instead. Options are:

e Allow

¢ Disallow
Square braces for macro arguments grouping (- Controls the availability of the [? ?] syntax for macro
CMacBrackets) invocation argument grouping. When it is disabled, the

Assembler does not recognize the special meaning for [? in
the macro invocation context. Options are:

® -CMacBracketsON

® -CMacBracketsOFF

Maximum MacroNest nesting (-MacroNest) Controls how deep macros calls can be nested. Its main
purpose is to avoid endless recursive macro invocations.

2.9.1.6 HCSO08 Assembler > Language > Compatibility modes

The following image shows the Compatibility modes panel.

[select all (-Compat)

[Svmbal prefixes (-Compat=s)

[J1gnore FF character at line start Symbol prefixes {-Compat=F)
[J Alternate comment rules {-Compat=c}

[]support FOR directive {(-Compat=h)

[Add some additional directives {-Compat=a)

[Joperatar 1= means equal (-Compat==

[Jsupport § character in symbols (-Compat=}

[]support additional ! symbals {-Compak=1}

Figure 2-35. Tool Settings - HCS08 Assembler > Language > Compatibility modes

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 81

g |

nssembler Build Properties Panels

The following table lists and describes the compatibility mode options for HCSOS

Assembler.

Table 2-7. Tool Settings - HCS08 Assembler > Language > Compatibility mode Options

Option

Description

Select all (-Compat)

Check to enable all compatibility mode options.

Symbol prefixes (-Compat=s)

With this suboption, the Assembler accepts "pgz:" and "byte:"
prefixed for symbols in XDEFs and XREFs. They correspond
to XREF.B or XDEF.B with the same symbols without the
prefix.

Ignore FF character at line start Symbol prefixes (-
Compat=f)

With this suboption, an otherwise improper character
recognized from feed character is ignored.

Alternate comment rules (- Compat=c)

With this suboption, comments implicitly start when a space is
present after the argument list. A special character is not
necessary. Be careful with spaces when this option is given
because part of the intended arguments may be taken as a
comment. However, to avoid accidental comments, the
Assembler does issue a warning if such a comment does not
start witha """ ora";".

Support FOR directive (- Compat=Db)

With this suboption, the Assembler supports a FOR - Repeat
assembly block assembly directive to generate repeated
patterns more easily without having to use recursive macros.

Add some additional directives (-Compat=a)

With this suboption, some additional directives are added for
enhanced compatibility. The Assembler actually supports a
SECT directive as an alias of the usual SECTION - Declare
Relocatable Section assembly directive. The SECT directive
takes the section name as its first argument.

Operator != means equal (- Compat==)

The Assembler takes the default value of the |= operator as
not equal, as it is in the C language. For compatibility, this
behavior can be changed to equal with this option. Because
of the risks involved with this option for existing code, a
message is issued for every |= which is treated as equal.

Support $ character in symbols (- Compat=)

With this suboption, the Assembler supports to start identifiers
with a $ sign.

Support additional ! symbols (-Compat=1!)

The following additional operators are defined when this
option is used:
e A exponentiation
Im: modulo
1@: signed greater or equal
Ig: signed greater
1%: signed less or equal
It: signed less than
I$: unsigned greater or equal
IS: unsigned greater
1&: unsigned less or equal
Il: unsigned less
In: one complement
Iw: low operator
Ih: high operator

Note: The default values for the following ! operators are
defined:
e l.: binary AND

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

82

Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler
Table 2-7. Tool Settings - HCS08 Assembler > Language > Compatibility mode Options

Option Description

¢ Ix: exclusive OR
e l+: binary OR

2.9.1.7 HCSO08 Assembler > Host

Use this panel to specify the host settings of the HCSO08S.
The following image shows the Host settings.

Set environment wariable {-Enw)

Borrow license feature {-LicBorrow

[Jwwait until a license is available from Floating license server {-LicWait)

Application Standard Cocurrence Default {-ViewHidden) w

Figure 2-36. Tool Settings - HCS08 Assembler > Host

The following table lists and describes the memory model options for HCS0S.
Table 2-8. Tool Settings - HCS08 Assembler > Host Options

Option Description

Set environment variable (-Env) This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

Borrow license feature (-LicBorrow) This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait until a license is available from floating license server (- |By default, if a license is not available from the floating license
LicWait) server, then the application will immediately return. With -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence This option allows you to select the standard appearance for
the application window. By default the option -ViewHidden is
selected. For more Information, refer to the section -View:
Application standard occurrence.

2.9.1.8 HCS08 Assembler > Code Generation

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 83

nssembler Build Properties Panels

Use this panel to specify the code generation assembler behavior.

The following image shows the Code Generation panel.

[] Assaciate debug information bo assembly source File (-AsmDbg)

Figure 2-37. Tool Settings - HCS08 Assembler > Code Generation

The following table lists and describes the code generation assembler options for HCS0S.

Table 2-9. Tool Settings - Assembler > Code Generation Options

Option Description
Associate debug information to assembly source file (- Passes the assembly source file name information to DWARF
AsmDbg) sections. When the output . abs file is debugged, the actual

assembly source file is displayed instead of intermediary
<filenames>.dbg file.

2.9.1.9 HCSO08 Assembler > Messages

Use this panel to specify whether to generate symbolic information for debugging the
build target. The following image shows the Messages panel.

] Don't print INFORMATION messages (w1}
[]Don't print INFORMATION or WARMING messages (-W2)

Create err.log Errar file Default {-WErrFileon) W
[cut file names in Microsoft Format to 8.3 {-WmsgSxd)
Set message file Format for batch mode Defaulk {-wmsgFbm) w

Message Format for batch mode {e.g. %" 9ef3%e3e %0 %k %ed: %m
T (-\WmsgFob)

Message Format For no file information (g.g. 96K %6d: %em
1 (-WmsgFonf)

Message Format for no position information (e.g, %" e %k %6d: %m
T (-\WmsgFonp)

Create Error Lisking File Default {-wWoutFileon) hd

b A B O.'"ol'ﬂll,n

Maximum number of error messages {-wmsghle)
Maximurm number of information messages {-wmsghli)
Maximum number of warning messages (-YWwmsghls)
Set messages ko Disable

Set messages bo Error

St messages ko Infarmatian

Sek messages ko Warning

Figure 2-38. Tool Settings - HCS08 Assembler > Messages

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

84 Freescale Semiconductor, Inc.

g |

Chapter 2 Working with Assembler

The following table lists and describes the message options.

Table 2-10. Tool Settings - HCS08 Assembler > Messages Options

Option

Description

Don't print INFORMATION messages (- W1)

Inhibits information message reporting. Only warning and
error messages are generated.

Don't print INFORMATION or WARNING messages (-W2)

Suppresses all messages of type INFORMATION and
WARNING. Only ERROR messages are generated.

Create err.log Error file

Using this option, the assembler uses a return code to report
errors back to the tools. When errors occur, 16-bit window
environments use err.log files, containing a list of error
numbers, to report the errors. If no errors occur, the 16-bit
window environments delete the err.log file.

Cut file names in Microsoft format to 8.3 (-Wmsg8x3)

Some editors (early versions of WinEdit) expect the filename
in Microsoft message format (8.3 format). That means the
filename can have up to eight characters and no more than a
three-character extension. Longer filenames are possible
when you use Win95 or WinNT. This option truncates the
filename to the 8.3 format.

Set message file format for batch mode

Use this option to start the assembler with additional
arguments (for example, files and assembler options). If you
start the assembler with arguments (for example, from the
Make Tool or with the “%f' argument from the CodeWright
IDE), the assembler compiles the files in a batch mode. No
assembler window is visible and the assembler terminates
after job completion.

Message Format for batch mode (e.g. %"%f%e%"(%l): %K
%d: %m) (-WmsgFob)

Specify additional command line options; type in custom flags
that are not otherwise available in the Ul. Default value is % £
%e:%1:%k:%d %m\n

Message Format for no file information (e.g. %K %d: %m) (-
WmsgFonf)

If there is no file information available for a message, then
<string> defines the message format string to use.

%K %d: %m) (-WmsgFonp)

Message Format for no position information (e.g. %"%f%e%":

If there is no position information available for a message,
then <string> defines the message format string to use.

Create Error Listing File

This option controls whether the assembler creates an error
listing file. The error listing file contains a list of all messages
and errors that occur during processing.

Maximum number of error messages (-WmsgNe)

Specify the number of errors allowed until the application
stops processing.

Maximum number of information messages (-WmsgN1i)

Specify the maximum number of information messages
allowed.

Maximum number of warning messages (-WmsgNw)

Specify the maximum number of warnings allowed.

Set messages to Disable

Enter the messages that you want to disable.

Set messages to Error

Enter the messages that you want to set as error.

Set messages to Information

Enter the messages that you want to set as information.

Set messages to Warning

Enter the messages that you want to set as warning.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

85

nssembler Build Properties Panels

2.9.1.10 HCSO08 Assembler > Messages > Disable user messages

Use this panel to specify the options for disabling the user messages for the HC(S)08
assembler. The following image shows the Disable user messages panel.

[Jpisable all messages

[Display type of messages {-Wmsghu=t)

[Joisplay informal messages{-wmsghiu=e)

[]Disable messages about processing statistics {-wWmsghu=d)
[Jpisable messages about generated files {-wWmsghu=c)

[]Disable messages about reading Files (-wmsghiu=h)

[JDisable messages about include files (-Wmsghu=a)

Figure 2-39. Tool Settings - HCS08 Assembler > Messages > Disable user messages

NOTE
For information about the options available in the Disable user
messages panel of HC(S)08 assembler, refer to the section -
WmsgNu: Disable user messages.

2.9.1.11 HCS08 Assembler > General

Use this panel to specify the general assembler behavior.

The following image shows the General panel.

[CImmU support (-pra0s
[CImMcUasm compatibility {-MCUasm)

Other flags

Figure 2-40. Tool Settings - HCS08 Assembler > General

The following table lists and describes the general assembler options for HCS0S.

Table 2-11. Tool Settings - Assembler > General Options

Option Description

MMU Support (-MMU) Check to inform the assembler that CALL and RTC
instructions are available, enabling code banking, and that the
current architecture has extended data access capabilities,
enabling support for _ 1inear data types. This option can
be used only when -Cs08 is enabled.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

86 Freescale Semiconductor, Inc.

g |

Chapter 2 Working with Assembler

Table 2-11. Tool Settings - Assembler > General Options (continued)

Option

Description

MCUasm compatibility (-MCUasm)

Check to activate the compatibility mode with the MCUasm
Assembler.

Other flags

Specify additional command line options for the assembler;
type in custom flags that are not otherwise available in the Ul.

2.9.2 RS08 Assembler Build Properties Panels

The following table lists the build properties panels for the RSO8 Assembler.

NOTE

For information about other build properties panels, refer to the
Microcontrollers V10.x Targeting Manual.

Table 2-12. Build Properties for RS08 Assembler

Build Tool

Build Properties Panels

RS08 Assembler

RS08 Assembler > Output
RS08 Assembler > Output > Configure Listing File

RS08 Assembler > Input

RS08 Assembler > Language
RS08 Assembler > Language > Compatibility modes

RS08 Assembler > Host

RS08 Assembler > Code Generation

RS08 Assembler > Messages

RS08 Assembler > Messages > Disable user messages

RS08 Assembler > General

2.9.2.1 RSO08 Assembler

Use this panel to specify the command, options, and expert settings for the build tool

assembler.

The following image shows the Assembler settings.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

87

nssembler Build Properties Panels

Command:

Al options:

Expert setkings:

Cammand [y e oMMANDY $4FLAGS) -Obing{OUTPUT_PREFIXMHOUTRUTY -

line pattern:

"${HC03Tools}H aheOs"

-Ms -I"DeYWWorkspace_mcouiProject_2/Project_Headers" -F2
-AsmDbag -YiewHidden -WmsgFob"sF e %l Sk Sed

Figure 2-41. Tool Settings - RS08 Assembler

The following table lists and describes the assembler options for RS0S.

Table 2-13. Tool Settings - RS08 Assembler Options

Option

Description

Command

Shows the location of the assembler executable file. Default
value is: " ${HC08Tools}/ahc08.exe". You can specify
additional command line options for the assembler; type in
custom flags that are not otherwise available in the Ul.

All options

Shows the actual command line the assembler will be called
with.

Expert Settings

Command line pattern

Shows the expert settings command line parameters; default
is ${CcoMMAND} ${COMMAND} ${FLAGS}-0Objn$
{oUTPUT PREFIX}${OUTPUT} ${INPUTS}.

2.9.2.2 RS08 Assembler > Output

Use this panel to control how the assembler generates the output file, as well as error and
warning messages. You can specify whether to allocate constant objects in ROM,
generate debugging information, and strip file path information.

The following image shows the Output panel.

ibject File Format {-F)

[]show label skatistics (-LI)

Generate listing file { e.g, %(TEXTPATH % Ist) {-L)
Address size in the listing file {integer) (-Lasms)

[Do nat print macro call in listing File {-Lc)

[] Do not print macro definition in listing file (-Ld)

] Do not prink macro expansion in listing file {-Le)

[] Do nat print included Files in listing File (-Li)

ELF/DWARF 2.0 Object File Format (-F2) v

Figure 2-42. Tool Settings - RS08 Assembler > Output

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

88

Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

The following table lists and describes the output options for RSO8 Assembler.

Table 2-14. Tool Settings - RS08 Assembler > Output Options

Option

Description

Object File Format (-F)

Defines the format for the output file generated by the
Assembler.

Show label statistics (-L1)

Using the -L1 option, the assembler appends statistical
information about the compilation session to the specified file.
The information includes assembler options, code size (in
bytes), stack usage (in bytes) and compilation time (in
seconds) for each procedure of the compiled file. The
assembler appends the information to the specified filename
(or the file make.txt, if no argument given). Set the
TEXTPATH: Text File Path environment variable to store the
file into the path specified by the environment variable.
Otherwise the assembler stores the file in the current
directory.

Generate listing file (e.g. %(TEXTPATH)/%n.Ist) (-L)

The -Lasm option causes the assembler to generate an
assembler listing file directly. The assembler also prints all
assembler-generated instructions to this file. The option
specifies the name of the file. If no name is specified, the
assembler takes a default of %n.Ist. If the resulting filename
contains no path information the assembler uses the
TEXTPATH: Text File Path environment variable. The syntax
does not always conform with the inline assembler or the
assembler syntax. Therefore, use this option only to review
the generated code. It cannot currently be used to generate a
file for assembly.

Address size in the listing file (-Lasms)

Specifies the size of the addresses displayed in the listing.
Options are:

* 1 to display addresses as xx

e 2 to display addresses as xxxx

¢ 3to display addresses as XxXxxxx

¢ 4 to display addresses asf Xxxxxxxx

Do not print macro call in listing file (-Lc)

Specifies whether macro calls encountered in the source
code are expanded and appear in the listing file.

Do not print macro definition in listing file (-Ld)

Instructs the Assembler to generate a listing file but not
including any macro definitions. The listing file contains macro
invocation and expansion lines as well as expanded include
files.

Do not print macro expansion in listing file (-Le)

Switches on the generation of the listing file, but macro
expansions are not present in the listing file. The listing file
contains macro definition and invocation lines as well as
expanded include files.

Do not print included files in listing file (-L1)

Switches on the generation of the listing file, but include files
are not expanded in the listing file. The listing file contains
macro definition, invocation, and expansion lines.

2.9.2.3 RS08 Assembler > Output > Configure Listing File

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

89

nssembler Build Properties Panels

Use this panel to configure the listing file options of RS0O8 assembler. The following
image shows the Configure Listing File panel.

[Disable all {-Lasmc)

[Do not write the source line (-Lasmc=s)

[] Do not write the relative line (-Lasme=t)

] Do not write the macro mark (-Lasme=m}

[]Do not write the address (-Lasmc=[

] Do not write the location kind (-Lasme=k)

[] Do not write the include mark column (-Lasme=i)
] Do not write the object code {-Lasmc=c)

[] Do nat write the absolute line {-Lasmc=a)

Figure 2-43. Tool Settings - RS08 Assembler > Output > Configure listing file

The following table lists and describes the Configure Listing File options for RS08
Assembler.

Table 2-15. Tool Settings - RS08 Assembler > Configure listing file Options

Option Description
Disable all (-Lasmc) Print all the columns in the listing file.
Do not write the source line (-Lasmc=s) Do not print source column in the listing file.
Do not write the relative line (-Lasmc=r) Do not print relative column (Rel.) in the listing file.
Do not write the macro mark (-Lasmc=m) Do not print macro mark column in the listing file.
Do not write the address (-Lasmc=1) Do not print address column (Loc) in the listing file.
Do not write the location kind (-Lasmc=k) Do not print the location type column in the listing file.
Do not write the include mark column (-Lasmc=1) Do not print the include mark column in the listing file.
Do not write the object code (-Lasmc=c) Do not print the object code in the listing file.
Do not write the absolute line (-Lasmc=a) Do not print the absolute column (Abs.) in the listing file.

2.9.2.4 RS08 Assembler > Input

Use this panel to specify file search paths and any additional include files the RS08
Assembler should use. You can specify multiple search paths and the order in which you
want to perform the search.

The following image shows the Input panel.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

90 Freescale Semiconductor, Inc.

g |

Chapter 2 Working with Assembler

Include file search paths (-1 @ |D @

[[]case insensitivity on label name {-Ci)

Define label { use spaces to separate labels) (-0 |

[Jsupport for structured types {-Struct)

Figure 2-44. Tool Settings - RS08 Assembler > Input

The following table lists and describes the input options of RS08 assembler.

Table 2-16. Tool Settings - Assembler > Input options

Button Description
Include file search paths (-1) Lists the included file search paths.
Case insensitivity on label name (-Ci) Check to make the label names case insensitive.
Define label (use spaces to separate labels) (-D) Define labels that have to be included in the RS08 assembler
input.
Support for structured types (-Struct) Check to include the support for structured types.

The following table lists and describes the toolbar buttons that help work with the file
search paths.
Table 2-17. Search Paths Toolbar Buttons

Button Description

Add - Click to open the Add directory path dialog box and
specify the file search path.

£

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 91

nssembler Build Properties Panels

Table 2-17. Search Paths Toolbar Buttons (continued)

Button Description
& Delete - Click to delete the selected file search path.
2 Edit - Click to open the Edit directory path dialog box and

update the selected object file search path.

Move up - Click to move the selected file search path one
position higher in the list.

I Move down - Click to move the selected file search path one
’ position lower in the list.

2.9.2.5 RS08 Assembler > Language

Use this panel to specify code- and symbol-generation options for the RSO8 assembler.

The following image shows the Language panel.

Angle brackets Far macro argquments grouping (-CMacAingBrack) | Default w
Square braces for macro arguments grouping (-CMacBrackets) Default (-CMacBracketsCm) w

Maximumn Macrobest nesting (-MacroMest)

Figure 2-45. Tool Settings - RS08 Assembler > Language

The following table lists and describes the language options for RSO8 Assembler.
Table 2-18. Tool Settings - RS08 Assembler > Language Options

Option Description
Angle brackets for macro arguments grouping (- Controls whether the < > syntax for macro invocation
CMacAngBrack) argument grouping is available. When it is disabled, the

Assembler does not recognize the special meaning for < in
the macro invocation context. There are cases where the
angle brackets are ambiguous. In new code, use the [? ?]
syntax instead. Options are:

e Allow

¢ Disallow
Square braces for macro arguments grouping (- Controls the availability of the [? ?] syntax for macro
CMacBrackets) invocation argument grouping. When it is disabled, the

Assembler does not recognize the special meaning for [?] in
the macro invocation context. Options are:

® -CMacBracketsON

® -CMacBracketsOFF

Maximum MacroNest nesting (-MacroNest) Controls how deep macros calls can be nested. Its main
purpose is to avoid endless recursive macro invocations.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

92 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

2.9.2.6 RS08 Assembler > Language > Compatibility modes

Use this panel to specify the compatibility modes options of the RSO8 assembler.

The following image shows the Compatibility modes panel.

[select all -Compat)
[]5ymbal prefixes (-Compat=s)

[J1gnore FF character at line start Symbol prefizes (-Compat=F}

[]alternate camment rules {-Compat=c)

[5upport FOR directive (-Compat=h]

[]Add some additional directives {-Compat=a)
[Joperator '= means equal {-Compat==
[]support § character in symbols (-Compat=)
[5upport additional ! symbols {-Compat=1}

Figure 2-46. Tool Settings - RS08 Assembler > Compatibility modes

The following table lists and describes the compatibility mode options for RS08

Assembler.

Table 2-19. Tool Settings - RS08 Assembler > Compatibility modes Options

Option

Description

Select all (-Compat)

Check to enable all compatibility mode options.

Symbol prefixes (-Compat=s)

With this suboption, the Assembler accepts "pgz:" and "byte:"
prefixed for symbols in XDEFs and XREFs. They correspond
to XREF . B or XDEF . B with the same symbols without the
prefix.

Ignore FF character at line start Symbol prefixes (-
Compat=f)

With this suboption, an otherwise improper character
recognized from feed character is ignored.

Alternate comment rules (-Compat=c)

With this suboption, comments implicitly start when a space is
present after the argument list. A special character is not
necessary. Be careful with spaces when this option is given
because part of the intended arguments may be taken as a
comment. However, to avoid accidental comments, the
Assembler does issue a warning if such a comment does not
start witha """ ora ";".

Support FOR directive (-Compat=Db)

With this suboption, the Assembler supports a FOR - Repeat
assembly block assembly directive to generate repeated
patterns more easily without having to use recursive macros.

Add some additional directives (-Compat=a)

With this suboption, some additional directives are added for
enhanced compatibility. The Assembler actually supports a
SECT directive as an alias of the usual SECTION - Declare
Relocatable Section assembly directive. The SECT directive
takes the section name as its first argument.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

93

nssembler Build Properties Panels

Table 2-19. Tool Settings - RS08 Assembler > Compatibility modes Options (continued)

Option Description

Operator != means equal (-Compat== The Assembler takes the default value of the |= operator as
not equal, as it is in the C language. For compatibility, this
behavior can be changed to equal with this option. Because
of the risks involved with this option for existing code, a
message is issued for every |= which is treated as equal.

Support $ character in symbols (- Compat=) With this suboption, the Assembler supports to start identifiers
with a $ sign.
Support additional ! symbols (-Compat="1) The following additional operators are defined when this

option is used:
¢ A exponentiation
Im: modulo
1@: signed greater or equal
lg: signed greater
1%: signed less or equal
It: signed less than
I$: unsigned greater or equal
IS: unsigned greater
1&: unsigned less or equal
Il: unsigned less
In: one complement
Iw: low operator
Ih: high operator

NOTE: The default values for the following ! operators are
defined:
e l.: binary AND
* Ix: exclusive OR
¢ l+: binary OR

2.9.2.7 RSO08 Assembler > Host

Use this panel to specify the host settings of the RSO8 assembler.

The following image shows the Host settings.

Set environment variable (-Env)
Borrow license Feature (-LicBarrow)
[]wvait until a license is available From Floating license server (-LicWwait)

Application Standard Occurrence Default {-viewHidden) w

Figure 2-47. Tool Settings - Host

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

94 Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

The following table lists and describes the memory model options for RS0S.
Table 2-20. Tool Settings - RS08 Assembler > Host Options

Option

Description

Set environment variable (-Env)

This option sets an environment variable. Use this
environment variable in the maker, or use to overwrite system
environment variables.

Borrow license feature (-LicBorrow)

This option allows you to borrow a license feature until a
given date or time. Borrowing allows you to use a floating
license even if disconnected from the floating license server.

Wait until a license is available from floating license server (-
LicWait)

By default, if a license is not available from the floating license
server, then the application will immediately return. With, -
LicWait set, the application will wait (blocking) until a license
is available from the floating license server.

Application Standard Occurrence

This option allows you to select the standard appearance for
the application window. By default the option -ViewHidden is
selected. For more Information, refer to the section -View:
Application standard occurrence.

2.9.2.8 RS08 Assembler > Code Generation

Use this panel to specify the code generation options of the RSO8 assembler.

The following image shows the Code Generation panel.

Associate debug information to assembly source File (-AsmDbag)

Figure 2-48. Tool Settings - RS08 Assembler > Code Generation

The following table lists and describes the Code Generation options for RSO8 Assembler.

Table 2-21. Tool Settings - RS08 Assembler > Code Generation Options

Option

Description

Associate debug information to assembly source file (-
Asmdbg)

Passes the assembly source file name information to DWARF
sections. When the output .abs file is debugged, the actual
assembly source file is displayed instead of intermediary
<filename>.dbg file.

2.9.2.9 RS08 Assembler > Messages

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

95

nssembler Build Properties Panels

Use this panel to specify whether to generate

symbolic information for debugging the

build target. The following image shows the Messages panel.

[]Don't print INFORMATION messages (-1}
] Don't print INFORMATION or WAaRNING messages (W2

Create err.log Error file
[]cut file names in Microsoft Format to 8.3 {-Wmsgsx3)

Set messaqge file Farmat For batch mode

Message Format For batch mode (2.0, %6 "%Foee%a" (%)) %k %ed: %bm

I {-\WmsgFob)

Message Format For no file information {e.g. %k %d; %m
1 (-WmsgFanf)

Message Format For no position information (g.q, %" %Fess" 96K %ad: %em

¥ {-WmsgFonp)

Creake Error Lisking File

Maxiriun number of errar messages [-Wmsghle)
Maxiniuni number of infarmation messages (-wWisghli)
Maxiniuni number of warning messages [-Wmsghiw)
Set messages ko Disable

Sek messages ko Error

Set messages to Information

Sek messages ko Warning

Default {-WErFileon) v
Defaulk {-wrsgFbm) w
aF¥oe: Yol %k %Wad %m'l,n

Default {-wWoutFileon) v

Figure 2-49. Tool Settings - RS08 Assembler > Messages

The following table lists and describes the message options.

Table 2-22. Tool Settings - RS08

Assembler > Messages Options

Option

Description

Don't print INFORMATION messages (-W1)

Inhibits information message reporting. Only warning and
error messages are generated.

Don't print INFORMATION or WARNING messages (-W2)

Suppresses all messages of type INFORMATION and
WARNING. Only ERROR messages are generated.

Create err.log Error file

Using this option, the assembler uses a return code to report
errors back to the tools. When errors occur, 16-bit window
environments use err.log files, containing a list of error
numbers, to report the errors. If no errors occur, the 16-bit
window environments delete the err.log file.

Cut file names in Microsoft format to 8.3 (-Wmsg8x3)

Some editors (early versions of WinEdit) expect the filename
in Microsoft message format (8.3 format). That means the
filename can have up to eight characters and no more than a
three-character extension. Longer filenames are possible
when you use Win95 or WinNT. This option truncates the
filename to the 8.3 format.

Set message file format for batch mode

Use this option to start the assembler with additional
arguments (for example, files and assembler options). If you
start the assembler with arguments (for example, from the
Make Tool or with the “%f' argument from the CodeWright

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6,

02/2014

96

Freescale Semiconductor, Inc.

Chapter 2 Working with Assembler

Table 2-22. Tool Settings - RS08 Assembler > Messages Options (continued)

Option

Description

IDE), the assembler compiles the files in a batch mode. No
assembler window is visible and the assembler terminates
after job completion.

Message Format for batch mode (e.g. %"%f{%e%"(%l): %K
%d: %m) (-WmsgFob)

Specify additional command line options; type in custom flags
that are not otherwise available in the Ul. Default value is $£
%e:%1:%k:%d %m\n

Message Format for no file information (e.g. %K %d: %m) (-
WmsgFonf)

If there is no file information available for a message, then
<string> defines the message format string to use.

Message Format for no position information (e.g. %"%f%e%":
%K %d: %m) (-WmsgFonp)

If there is no position information available for a message,
then <string> defines the message format string to use.

Create Error Listing File

This option controls whether the assembler creates an error
listing file. The error listing file contains a list of all messages
and errors that occur during processing.

Maximum number of error messages (-WmsgNe)

Specify the number of errors allowed until the application
stops processing.

Maximum number of information messages (-WmsgNi)

Specify the maximum number of information messages
allowed.

Maximum number of warning messages (-WmsgNw)

Specify the maximum number of warnings allowed.

Set messages to Disable

Enter the messages that you want to disable.

Set messages to Error

Enter the messages that you want to set as error.

Set messages to Information

Enter the messages that you want to set as information.

Set messages to Warning

Enter the messages that you want to set as warning.

2.9.2.10 RS08 Assembler > Messages > Disable user messages

Use this panel to specify the options for disabling the user messages for the RS08
assembler. The following image shows the Disable user messages panel.

[pisable all messages

[Display bype of messages {(-Wmsghu=t)
[pisplay informal messages(-Wmsghu=e)

[] Disable messages about processing statistics (-Wmsghu=d)

[pisable messages about generated files {(~WmsgMu=c)

[] Disable messages about reading files (-Wmsghu=h)

[pisable messages about inchude files (-Wwmsghu=a)

Figure 2-50. Tool Settings - RS08 Assembler > Messages > Disable user messages

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

97

nssembler Build Properties Panels

NOTE
For information about the options available in the Disable user
messages panel of RS08 assembler, refer to the -WmsgNu:
Disable user messages.

2.9.2.11 RSO08 Assembler > General

Use this panel to specify the general assembler behavior.

The following image shows the General panel.

[CImmu support (-pra0y
[CImMcUasm compatibility {-MCUasm)

Other flags

Figure 2-51. Tool Settings - RS08 Assembler > General

The following table lists and describes the general assembler options for RS08.

Table 2-23. Tool Settings - Assembler > General Options

Option Description

MMU Support (-MMU) Check to inform the assembler that CALL and RTC
instructions are available, enabling code banking, and that the
current architecture has extended data access capabilities,
enabling support for __ 1inear data types. This option can
be used only when -Cs08 is enabled.

MCUasm compatibility (-MCUasm) Check to activate the compatibility mode with the MCUasm
Assembler.
Other Flags Specify additional command line options for the assembler;

type in custom flags that are not otherwise available in the Ul.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

98 Freescale Semiconductor, Inc.

g |

Chapter 3
Assembler Graphical User Interface

The Macro Assembler runs under Windows® 2000, Windows XP, Windows Vista™, and
compatible operating systems.

This chapter covers the following topics:

 Starting Assembler

* Assembler Main Window
 Editor Setting Dialog Box

e Save Configuration Dialog Box
* Option Settings Dialog Box

* Message Settings Dialog Box

* About Dialog Box
 Specifying Input File

* Message/Error Feedback

3.1 Starting Assembler

When you start the Assembler, the Assembler displays a standard Tip of the Day dialog
box containing news and tips about the Assembler.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 99

g |

nAssembler Main Window

Tip of the Day g|

@ Did you know...

It you have comments about thiz product or suggestions
for future versions, pleage get in touch with our support
tearn.

% Bl Tims o Sioilin NewTip | [Dose |

Figure 3-1. Tip of the Day dialog box

To use the Tip of the Day dialog box:

* Click Next Tip to see the next piece of information about the Assembler.

* Click Close to close the Tip of the Day dialog box.

* If you do not want the Assembler to automatically open the standard Tip of the Day
dialog box when the Assembler is started, clear the Show Tips on StartUp
checkbox.

* If you want the Assembler to automatically open the standard Tip of the Day dialog
box at Assembler start up, select Help > Tip of the Day . The Assembler displays
the Tip of the Day dialog box. Check the Show Tips on StartUp checkbox.

3.2 Assembler Main Window

This window is only visible on the screen when you do not specify any filename when
you start the Assembler.

The Assembler window consists of a window title, a menu bar, a toolbar, a content area,
and a status bar.

3.2.1 Window Title

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

100 Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

The window title displays the Assembler name and the project name. If a project is not
loaded, the Assembler displays Default Configuration in the window title. An asterisk («)
after the configuration name indicates that some settings have changed. The Assembler
adds an asterisk () whenever an option, the editor configuration, or the window
appearance changes.

3.2.2 Content Area

The Assembler displays logging information about the assembly session in the content
area. This logging information consists of:

* the name of the file being assembled,

* the whole name (including full path specifications) of the files processed (main
assembly file and all included files),

* the list of any error, warning, and information messages generated, and

* the size of the code (in bytes) generated during the assembly session.

When a file is dropped into the assembly window content area, the Assembler either
loads the corresponding file as a configuration file or the Assembler assembles the file.
The Assembler loads the file as a configuration if the file has the ».ini extension. If the
file does not end with the =.ini extension, the Assembler assembles the file using the
current option settings.

All text in the assembler window content area can have context information consisting of
two items:

* a filename including a position inside of a file and
* a message number.

File context information is available for all output lines where a filename is displayed.
There are two ways to open the file specified in the file-context information in the editor
specified in the editor configuration:

* If a file context is available for a line, double-click on a line containing file-context
information.

* Click with the right mouse on the line and select Open . This entry is only available
if a file context is available.

If the Assembler cannot open a file even though a context menu entry is present, then the
editor configuration information is incorrect (refer to the Editor Setting Dialog Box
section below).

The message number is available for any message output. There are three ways to open
the corresponding entry in the help file:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 101

nAssembler Main Window

* Select one line of the message and press the F1 key. If the selected line does not have
a message number, the main help is displayed.

* Press Shift-F1 and then click on the message text. If the point clicked does not have
a message number, the main help is displayed.

* Click the right mouse button on the message text and select Help on . This entry is
only available if a message number is available.

3.2.3 Toolbar

The three buttons on the left hand side of the toolbar correspond to the menu items of the
File menu. You can use the New, Load, and Save buttons to reset, load and save
configuration files for the Macro Assembler.

The Help button and the Context Help button allow you to open the Help file or the
Context Help.

When pressing the buttons above, the mouse cursor changes to a question mark beside an
arrow. The Assembler opens Help for the next item on which you click. You can get
specific Help on menus, toolbar buttons, or on the window area by using this Context
Help.

The editable combo box contains a list of the last commands which were executed. After
a command line has been selected or entered in this combo box, click the Assemble
button to execute this command. The Stop button becomes enabled whenever some file is
assembled. When the Stop button is pressed, the assembler stops the assembly process.

Pressing the Options Dialog Box button opens the Option Settings dialog box.
Pressing the Message Dialog Box button opens the Message Settings dialog box.

Pressing the Clear button clears the assembler window's content area.

3.2.4 Status Bar

When pointing to a button in the toolbar or a menu entry, the message area displays the
function of the button or menu entry to which you are pointing.

Processing ok 15:58:13

Figure 3-2. Status Bar

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

102 Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

3.2.5 Assembler Menu Bar

The following table lists the menus available in the menu bar:

Table 3-1. Menu bar options

Menu Description
File Menu Contains entries to manage Assembler configuration files
Assembler Menu Contains entries to set Assembler options
View Menu Contains entries to customize the Assembler window output
Help A standard Windows Help menu

3.2.6 File Menu

With the File menu, Assembler configuration files can be saved or loaded. An Assembler
configuration file contains the following information:

the assembler option settings specified in the assembler dialog boxes,

the list of the last command line which was executed and the current command line,
the window position, size, and font,

the editor currently associated with the Assembler. This editor may be specifically
associated with the Assembler or globally defined for all Tools (see the Editor
Setting Dialog Box),

the Tips of the Day settings, including its startup configuration, and what is the
current entry, and

Configuration files are text files which have the standard » .ini extension. You can
define as many configuration files as required for the project and can switch among
the different configuration files using the File > Load Configuration, File > Save

Configuration menu entries, or the corresponding toolbar buttons.
Table 3-2. File Menu
Options

Menu Entry Description

Assemble A standard Open File dialog box is opened,
displaying the list of all the * . asm files in the project
directory. The input file can be selected using the
features from the standard Open File dialog box.
The selected file is assembled when the Open File
dialog box is closed by clicking OK.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 103

A
4

4
A

nAssembler Main Window

Table 3-2. File Menu Options
(continued)

Menu Entry Description

New/Default Configuration Resets the Assembler option settings to their default
values. The default Assembler options which are
activated are specified in the Assembler Options
chapter.

Load Configuration A standard Open File dialog box is opened,
displaying the list of all the * . ini files in the project
directory. The configuration file can be selected
using the features from the standard Open File
dialog box. The configuration data stored in the
selected file is loaded and used in further assembly
sessions.

Save Configuration Saves the current settings in the configuration file
specified on the title bar.

Save Configuration As... A standard Save As dialog box is opened, displaying
the list of all the * . ini files in the project directory.
The name or location of the configuration file can be
specified using the features from the standard Save
As dialog box. The current settings are saved in the
specified configuration file when the Save As dialog
box is closed by clicking OK.

Configuration... Opens the Configuration dialog box to specify the
editor used for error feedback and which parts to
save with a configuration. See Editor Setting Dialog
Box and Save Configuration Dialog Box.

1. project.ini 2. Recent project list. This list can be used to reopen a
recently opened project.

Exit Closes the Assembler.

3.2.7 Assembler Menu

The Assembler menu allows you to customize the Assembler. You can graphically set or
reset the Assembler options or to stop the assembling process. The following table lists
the assembler menu options.

Table 3-3. Assembler Menu Options

Menu entry Description

Options Defines the options which must be activated when
assembling an input file (see Option Settings Dialog Box).

Messages Maps messages to a different message class (see Message
Settings Dialog Box).

Stop assembling Stops the assembling of the current source file.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

104 Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

3.2.8 View Menu

The View menu lets you customize the Assembler window. You can specify if the status
bar or the toolbar must be displayed or be hidden. You can also define the font used in
the window or clear the window. The following table lists the View menu options.

Table 3-4. View Menu Options

Menu Entry Description

Toolbar Switches display from the toolbar in the Assembler window.

Status Bar Switches display from the status bar in the Assembler
window.

Log... Customizes the output in the Assembler window content area.
The following two entries in this table are available when you
select Log:

Change Font Opens a standard font dialog box. The options selected in the
font dialog box are applied to the Assembler window content
area.

Clear Log Clears the Assembler window content area.

3.3 Editor Setting Dialog Box

The Editor Setting dialog box has a main selection entry. Depending on the main type of
editor selected, the content below changes.

These are the main entries for the Editor configuration:

 Global Editor (shared by all tools and projects)
* Local Editor (shared by all tools)

e Editor Started with Command Line

e Editor Started with DDE

e CodeWarrior with COM

3.3.1 Global Editor (shared by all tools and projects)

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 105

g |

cunur Setting Dialog Box

This entry (refer to the image listed below) is shared by all tools for all projects. This
setting is stored in the (raitor] section of the mcutools.ini global initialization file. Some
Modifiers can be specified in the editor command line.

Configuration gl
Editor Settings] Save Configuration I Environmert]
+ Global Editor (Shared by all Tools and all Projects)
" Local Editor (Shared by all Tools)
{~ Editor stated with Command Line
(" Edttor Communication with DDE

™ CodeWamior {with COM)

Editor Name |IJ“'E'EC|“'32

Editor Executable |C:"-.Proglam Files"|DM Computer & J

Editar Arguments |=_.'=f=_.'=j=_.':c|

Use %f for the filename, %l forthe line and %c forthe
calumn.

QK | Cancel | Help |

Figure 3-3. Global Editor Configuration Dialog Box

3.3.2 Local Editor (shared by all tools)

This entry is shared by all tools for the current project. This setting is stored in the
(eaitor] section of the local initialization file, usually project.ini in the current directory.
Some Modifiers can be specified in the editor command line.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

106

Freescale Semiconductor, Inc.

g |

4
Chapter 3 Assembler Graphical User Interface

Configuration P§|

Editor Seftings] Save Corfiguration | Environmert |

" Global Editor (Shared by all Tools and all Projects)

{* 1 pcal Editor (Shared by all Toolsk

(" Editor started with Command Line
(" Editor Communication with DDE

" CodeWamior fwith COM)

Editor Name |EdﬂP|US 2

Editar Executable |C:"-.Prog|am Files"EditPlus 2'editpl

Editar Arguments |f.;ff.;jf.;c

Usze %f for the filename, % for the line and %c forthe
column.

QK I Cancel | Help |

Figure 3-4. Local Editor Configuration Dialog Box

3.3.3 Editor Started with Command Line

When this editor type is selected, a separate editor is associated with the Assembler for
error feedback. The editor configured in the shell is not used for error feedback.

Enter the command which should be used to start the editor (refer to the figure listed
below).

The format from the editor command depends on the syntax which should be used to start
the editor. Modifiers can be specified in the editor command line to refer to a filename
and line and column position numbers. (for more information, refer to the Modifiers
section)

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 107

A\ 4
N
cunur Setting Dialog Box

Configuration El
Editor Seftings] Save Corfiguration | Environmert |

" Global Editor (Shared by all Tools and all Projects)
" Local Editor (Shared by all Tools)
{+ Editor started with Command Line:

(" Editor Communication with DDE

" CodeWamior fwith COM)

Command Line

C:“Program Files*IDM Computer Solutions™Ukra Edit

Usze %f for the filename, % for the line and %c forthe
column.

QK I Cancel | Help |

Figure 3-5. Command Line Editor Configuration

3.3.3.1 Example of Configuring a Command Line Editor

The code listed here portrays the syntax used for configuring an external editors. The
following listing can be used for the UltraEdit-32 editor.

Listing: UltraEdit-32 configuration

C:\UltraEdit32\uedit32.exe %f /#:%1

3.3.4 Editor Started with DDE

Enter the service, topic and client name to be used for a Dynamic Data Exchange (DDE)
connection to the editor (refer to the figure listed below). All entries can have modifiers
for the filename and line number, as explained in the Modifiers section.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

108 Freescale Semiconductor, Inc.

g |

4
Chapter 3 Assembler Graphical User Interface

Configuration §|

Editor Seftings] Save Corfiguration | Environmert |

" Global Editor (Shared by all Tools and all Projects)
" Local Editor (Shared by all Tools)

(" Editor started with Command Line

* Fditor Communication with DDE:

" CodeWamior {with COM)

msdev

Service MNams

Topic Name systsm

Client Command |[open::=.-;f]:

Usze %f for the filename, % for the line and %c forthe
column.

QK I Cancel | Help |

Figure 3-6. DDE Editor Configuration

For the Microsoft Developer Studio, use the settings in the following listing:

Listing: Microsoft Developer Studio configuration settings

Service Name: msdev
Topic Name: system

Client Command: [open (%f)]

3.3.5 CodeWarrior with COM

If the CodeWarrior with COM is enabled (refer to the figure listed below), the
CodeWarrior IDE (registered as a COM server by the installation script) is used as the
editor.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

109

g |

cunur Setting Dialog Box

Configuration El
Editor Seftings] Save Corfiguration | Environmert |

" Global Editor (Shared by all Tools and all Projects)
" Local Editor (Shared by all Tools)

(" Editor started with Command Line

(" Editor Communication with DDE

& o

QK I Cancel | Help |
Figure 3-7. COM Editor Configuration

3.3.6 Modifiers

The configurations may contain some modifiers to tell the editor which file to open and at
which line and column.

* The =+ modifier refers to the name of the file (including path and extension) where
the error has been detected.

* The =1 modifier refers to the line number where the message has been detected.

* The :c modifier refers to the column number where the message has been detected.

CAUTION
The <1 modifier can only be used with an editor which can
be started with a line number as a parameter. This is not the
case for WinEdit version 3.1 or lower or for the Notepad.
When you work with such an editor, you can start it with
the filename as a parameter and then select the menu entry
Go to to jump on the line where the message has been
detected. In that case the editor command looks like: c:

\WINAPPS\WINEDIT\Winedit .exe %f

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

110 Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

NOTE

Check your editor manual to define the command line
which should be used to start the editor.

3.4 Save Configuration Dialog Box

The Save Configuration tab of the Configuration dialog box contains all options for the
save operation. The following image displays the Save Configuration tab of the
Configuration dialog box.

Configuration El
Editor Settings Save Configuration]Environmerrt]

ftems to Save
Save

[¥ Editor Corfiguration Save As

¥ Appearance (Posttion, Size, Fort)

¥ Environmert Variables

[¥ Save on Exit

All marked items are saved. Any unchanged tems
remain valid.

QK | Cancel | Help |

Figure 3-8. Save Configuration Dialog Box

In the Save Configuration tab, you can select which items to save into a project file
when the configuration is saved.

This dialog box has the following configurations:

* Options : This item is related to the option and message settings. If this check box is
set, the current option and message settings are stored in the project file when the
configuration is saved. By disabling this check box, changes done to the option and
message settings are not saved, and the previous settings remain valid.

» Editor Configuration : This item is related to the editor settings. If you set this
check box, the current editor settings are stored in the project file when the

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 111

oave Configuration Dialog Box

configuration is saved. If you disable this check box, the previous settings remain
valid.

* Appearance : This item is related to many parts like the window position (only
loaded at startup time) and the command line content and history. If you set this
check box, these settings are stored in the project file when the current configuration
is saved. If you disable this check box, the previous settings remain valid.

* Environment Variables : With this set, the environment variable changes done in
the Environment property panel are also saved.

NOTE
By disabling selective options only some parts of a
configuration file can be written. For example, when the
best Assembler options are found, the save option mark can
be removed. Then future save commands will not modify
the options any longer.

* Save on Exit: If this option is set, the Assembler writes the configuration on exit.
The Assembler does not prompt you to confirm this operation. If this option is not
set, the assembler does not write the configuration at exit, even if options or other
parts of the configuration have changed. No confirmation will appear in any case
when closing the assembler.

Almost all settings are stored in the project configuration file. The only exceptions
are:

 The recently used configuration list.
» All settings in the Save Configuration dialog box.

NOTE
The configurations of the Assembler can, and in fact
are intended to, coexist in the same file as the project
configuration of other tools and the IDF. When an
editor is configured by the shell, the assembler can read
this content out of the project file, if present. The
default project configuration filename is project.ini.
The assembler automatically opens an existing
project.ini 1N the current directory at startup. Also
when using the -Prod: Specify project file at startup
assembler option at startup or loading the configuration
manually, a different name other than project.ini can
be chosen.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

112 Freescale Semiconductor, Inc.

g |

Chapter 3 Assembler Graphical User Interface

3.4.1 Environment Configuration Dialog Box

The Environment tab of the Configuration dialog box is used to configure the
environment. The following image displays the Environment tab.

The content of the dialog box is read from the actual project file out of the [environment
Variables] SE€Ction.

Configuration El

E ditar Settings] 5 ave Configuration Ernvironment l

‘General Fath
Dbject Path
Text Path
Abzaolute Path

Header File Path

Warious Environment VW ariables

(] | Cancel | Help

Figure 3-9. Environment Configuration Dialog Box

The following table lists the available variables:

Table 3-5. Path Environment Variables

Path Environment variable
General GENPATH
Object OBJPATH
Text TEXTPATH
Absolute ABSPATH
Header File LIBPATH

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

113

A\ 4
N
upuon Settings Dialog Box

Various Environment Variables: other variables not covered in the above table.
The following buttons are available for the Configuration dialog box:

* Add : Adds a new line or entry

* Change : Changes a line or entry

* Delete : Deletes a line or entry

* Up : Moves a line or entry up

* Down : Moves a line or entry down

Note that the variables are written to the project file only if you press the Save button (or
using File -> Save Configuration or CTRL-S). In addition, it can be specified in the
Save Configuration dialog box if the environment is written to the project file or not.

3.5 Option Settings Dialog Box

Use this dialog box to set or reset assembler options. The following image displays the
HCSO08 Assembler Option Settings dialog box.

HCO8 Assembler Option Settings

Code Generation I Messages] Various I
Output] Input] Language] Host I

[]0bject File Farmat

Generate a lizting file

[|Canfigure lizting file

[Configure the addreszs size in the lizting file

1D nat print macra call in listing file

100 not prink macro definition in ligting file
print macro expansion in isting file

Do not print included files in listing file
[1Show label statistics
[C10bject file name specification [enter [<file:])

-Li: Do not print included files in listing file

L= 3TEXTPATH]\%n Jet -Li

QK | Cancel | Help |

Figure 3-10. Option Settings dialog box

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

114 Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

The options available are arranged into different groups, and a sheet is available for each
of these groups. The content of the list box depends on the selected sheet:

Table 3-6. Option Settings Options

Group Description

Output Lists options related to the output files generation (which kind
of file should be generated).

Input Lists options related to the input files.

Language Lists options related to the programming language (ANSI-C,
C++, etc.)

Host Lists options related to the host.

Code Generation Lists options related to code generation (memory models,
etc.)

Messages Lists options controlling the generation of error messages.

Various Lists various additional options, such as options used for
compatibility.

An assembler option is set when the check box in front of it is checked. To obtain more
detailed information about a specific option, select it and press the Flkey or the Help
button. To select an option, click once on the option text. The option text is then
displayed inverted.

When the dialog box is opened and no option is selected, pressing the Flkey or the Help
button shows the help about this dialog box.

The available options are listed in the Assembler Options chapter.

3.6 Message Settings Dialog Box

You can use the Message Settings (refer to the figure listed below) dialog box to map
messages to a different message class.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 115

g |

wmessage Settings Dialog Box

HCO8 Assembler Message Settings PXI

Disabled llnfon'nation] ".".u'amingl Eror] Fatal]

41252 Exported Label <Mame> is using ELF extension Move to;

Reset All

QK | Cancel | Help |

Figure 3-11. Message Settings Dialog Box

4

Some buttons in the dialog box may be disabled. For example, if an option cannot be
moved to an information message, the Move to: Information button is disabled. The
following table lists the options available in the Message Settings dialog box:

Table 3-7. Message Settings Options

Button Description
Move to: Disabled Disables selected messages. The disabled messages will no
longer be displayed.
Move to: Information Changes selected messages to information messages.
Move to: Warning Changes selected messages to warning messages.
Move to: Error Changes selected messages to error messages.
Move to: Default Changes selected messages to their default message types.
Reset All Resets all messages to their default message types.
OK Exits this dialog box and saves any changes.
Cancel Exits this dialog box without accepting any changes.
Help Displays online help about this dialog box.

The following table lists and describes the tabs available in the dialog box for each
message group:

Table 3-8. Message Group

Message Group Description
Disabled Lists all disabled messages. That means that messages
displayed in the tab page will not be displayed by the
Assembler.
Information Lists all information messages. Information messages informs
about action taken by the Assembler.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

116 Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

Table 3-8. Message Group (continued)

Message Group Description

Warning Lists all warning messages. When such a message is
generated, translation of the input file continues and an object
file will be generated.

Error Lists all error messages. When such a message is generated,
translation of the input file continues, but no object file will be
generated.

Fatal Lists all fatal error messages. When such a message is

generated, translation of the input file stops immediately.
Fatal messages cannot be changed. They are only listed to
call context help.

Each message has its own character (A’ for Assembler message) followed by a 4- or 5-
digit number. This number allows an easy search for the message on-line help.

3.6.1 Changing the Class Associated with a Message

You can configure your own mapping of messages to the different classes. To do this, use
one of the buttons located on the right hand of the dialog box. Each button refers to a
message class. To change the class associated with a message, you have to select the
message in the dialog box and then click the button associated with the class where you
want to move the message.

3.6.1.1 Example

To define the a2336: value too big Warning as an error message:

* Click the Warning tab to display the list of all warning messages.

* Click on the a2336: value too big String in the to select the message.

* Click Error to define this message as an error message. The <Microcontroller>
dialog box appears, as the following image displays.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 117

\
Y

4
A

|
Aoouut Dialog Box

F=

Disabledl Information ¥Waming lError] Fatal]

Move to;

A1057: Cutting constant because of averflow A
= — Disabled

A1055: =4

J

Irformation

Al1418:
A1419: (0
AZIOF Error
Default
< > Reset All
QK | Cancel | Help |

Figure 3-12. Microcontroller Dialog Box
* Click Yes to close the dialog box

NOTE

Messages cannot be moved from or to the fatal error class.

NOTE
The Move to buttons are enabled when all selected
messages can be moved. When one message is marked,
which cannot be moved to a specific group, the
corresponding Move to button is disabled (grayed).

If you want to validate the modification you have performed in the error message
mapping, close the Message Settings dialog box with the OK button. If you close it
using the Cancel button, the previous message mapping remains valid.

3.7 About Dialog Box

The About dialog box can be opened with the menu Help > About. The About dialog
box contains much information including the current directory and the versions of
subparts of the Assembler. The main Assembler version is displayed separately on top of
the dialog box.

With the Extended Information button it is possible to get license information about all
software components in the same directory of the executable.

Click OK to close this dialog box.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

118 Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

NOTE
During assembling, the subversions of the subparts cannot be
requested. They are only displayed if the Assembler is not
processing files.

3.8 Specifying Input File

There are different ways to specify the input file which must be assembled. During
assembling of a source file, the options are set according to the configuration performed
by the user in the different dialog boxes and according to the options specified on the
command line.

Before starting to assemble a file, make sure you have associated a working directory
with your assembler.

3.8.1 Use Command Line in Toolbar to Assemble

You can use the command line to assemble a new file or to reassemble a previously
created file.

3.8.2 Assembling a New File

A new filename and additional assembler options can be entered in the command line.
The specified file is assembled when you click the Assemble button in the toolbar or
when you press the enter key.

3.8.3 Assembling a File which has Already been Assembled

The commands executed previously can be displayed using the arrow on the right side of
the command line. A command is selected by clicking on it. It appears in the command
line. The specified file will be processed when the button Assemble in the toolbar is
selected.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 119

wmiessage/Error Feedback

3.8.4 Use File > Assemble Entry

When the menu entry File > Assemble is selected, a standard file Open File dialog box
is opened, displaying the list of all the «.asm files in the project directory. You can browse
to get the name of the file that you want to assemble. Select the desired file and click
Open in the Open Filedialog box to assemble the selected file.

3.8.5 Use Drag and Drop

A filename can be dragged from an external software (for example the File Manager/
Explorer) and dropped into the assembler window. The dropped file will be assembled
when the mouse button is released in the assembler window. If a file being dragged has
the =.ini extension, it is considered to be a configuration and it is immediately loaded and
not assembled. To assemble a source file with the «.ini extension, use one of the other
methods.

3.9 Message/Error Feedback

After assembly, there are several ways to check where different errors or warnings have
been detected. The default format of the error message is as shown in the following
listing.

Listing: Typical error feedback message

Default configuration of an error message
>> <FileName>, line <line number>, col <column numbers,

pos <absolute position in files>
<Portion of code generating the problems

<message class><message number>: <Message strings

A typical error message is like the one in the following listing.

Listing: Error message example

>> in "C:\Freescale\demo\fiboerr.asm", line 18, col 0, pos 722
DC label

A

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

120 Freescale Semiconductor, Inc.

Chapter 3 Assembler Graphical User Interface

ERROR A1104: Undeclared user defined symbol: label

For different message formats, see the following Assembler options:

* -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
* -WmsgFob: Message format for batch mode

* -WmsgFoi: Message format for interactive mode

* -WmsgFonf: Message format for no file information

* -WmsgFonp: Message format for no position information.

3.9.1 Use Information from Assembler Window

Once a file has been assembled, the Assembler window content area displays the list of
all the errors or warnings detected.

The user can use his usual editor to open the source file and correct the errors.

3.9.2 Use User-defined Editor

The editor for Error Feedback can be configured using the Configuration dialog box.
Error feedback is performed differently, depending on whether or not the editor can be
started with a line number.

3.9.3 Line Number can be Specified on the Command Line

Editors like UltraEdit-32 or WinEdit (v95 or higher) can be started with a line number in
the command line. When these editors have been correctly configured, they can be started
automatically by double clicking on an error message. The configured editor will be
started, the file where the error occurs is automatically opened and the cursor is placed on
the line where the error was detected.

3.9.4 Line Number cannot be Specified on the Command Line

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 121

wmiessage/Error Feedback

Editors like WinEditv31 or lower, Notepad, or Wordpad cannot be started with a line
number in the command line. When these editors have been correctly configured, they
can be started automatically by double-clicking on an error message. The configured
editor will be started, and the file is automatically opened where the error occurs. To
scroll to the position where the error was detected, you have to:

1. Switch to the assembler again.

2. Click the line on which the message was generated. This line is highlighted on the
screen.

Copy the line in the clipboard by pressing Ctrl + C.

Switch to the editor again.

Select Search > Find ; the standard Find dialog box appears.

Paste the contents of the clipboard in the Edit box by pressing Ctrl + V.

Click Forward.

Nownsw

The cursor jump to the position where the error was detected.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

122 Freescale Semiconductor, Inc.

Chapter 4
Environment

This part describes the environment variables used by the Assembler. Some environment
variables are also used by other tools (e.g., Linker or Compiler), so consult also the
respective documentation.

There are three ways to specify an environment:

e The current project file with the Environment Variables section. This file may be
specified on Tool startup using the -Prod: Specify project file at startup assembler
option. This is the recommended method and is also supported by the IDE.

* An optional gefault.env file in the current directory. This file is supported for
compatibility reasons with earlier versions. The name of this file may be specified
using the ENVIRONMENT: Environment file specification environment variable.
Using the default.env file is not recommended.

 Setting environment variables on system level (DOS level). This is also not
recommended.

Various parameters of the Assembler may be set in an environment using the
environment variables. The syntax is always the same as the following listing shows:

Listing: Syntax for setting environment variables

Parameter: KeyName=ParamDef

The following listing shows a typical example of setting an environment variable.
Listing: Setting the GENPATH environment variable

GENPATH=C: \INSTALL\LIB;D: \PROJECTS\TESTS; /usr/local/lib;
/home/me/my project

These parameters may be defined in several ways:

» Using system environment variables supported by your operating system.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 123

vurrent directory

* Putting the definitions in a file called dgefauit.env (.higefauits for UNIX) in the default
directory.

* Putting the definitions in a file given by the value of the exvironmenT System
environment variable.

NOTE
The default directory mentioned above can be set via the
DEFAULTDIR SyStem environment variable.

When looking for an environment variable, all programs first search the system
environment, then the default.env (.higeraults for UNIX) file and finally the global
environment file given by exvironment. If no definition can be found, a default value is
assumed.

NOTE
The environment may also be changed using the -Env: Set
environment variable assembler option.

4.1 Current directory

The most important environment for all tools is the current directory. The current
directory is the base search directory where the tool starts to search for files (e.g., for the
default .env or ‘hidefaults)

Normally, the current directory of a launched tool is determined by the operating system
or by the program that launches another one (e.g., IDE, Make Utility, etc.).

For the UNIX operating system, the current directory for an executable is also the current
directory from where the binary file has been started.

For MS Windows-based operating systems, the current directory definition is quite
complex:

* If the tool is launched using the File Manager/ Explorer, the current directory is the
location of the launched executable tool.

* If the tool is launched using an Icon on the Desktop, the current directory is the one
specified and associated with the Icon in its properties.

* If the tool is launched by dragging a file on the icon of the executable tool on the
desktop, the directory on the desktop is the current directory.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

124 Freescale Semiconductor, Inc.

Chapter 4 Environment

* If the tool is launched by another launching tool with its own current directory
specification (e.g., an editor as IDE, a Make utility, etc.), the current directory is the
one specified by the launching tool.

* When a local project file is loaded, the current directory is set to the directory which
contains the local project file. Changing the current project file also changes the
current directory if the other project file is in a different directory. Note that
browsing for an assembly source file does not change the current directory.

To overwrite this behavior, the DEFAULTDIR: Default current directory system
environment variable may be used.

The current directory is displayed among other information with the -V: Prints the
Assembler version assembler option and in the About box.

4.2 Environment macros

It is possible to use macros in your environment settings, as the following listing displays.

Listing: Using a macro for setting environment variables

MyVAR=C: \test
TEXTPATH=3 (MyVAR) \txt

OBJPATH=${MyVAR} \obj

In the above listed example, texrearn 1s expanded to ~ c:\test\txt', and osseats 1S expanded
tO\\C:\test\objx

From the example above, you can see that you either can use $ () or $ {}. However, the
variable referenced has to be defined somewhere.

In addition, the following special variables in Listing: Usual locations for the
mcutools.ini files are allowed. Note that they are case-sensitive and always surrounded by
{}. Also the variable content contains a directory separator ~ \' as well.

{Ccompiler}

This is the path of the directory one level higher than the directory for executable tool.
That 1s, if the executable 1S c:\Freescale\prog\linker.exe, then the variable iS c:\rreescale\.
Note that {compiler} 1S also used for the Assembler.

{Project}

Path of the directory containing the current project file. For example, if the current
project file is c:\demo\project .ini, the variable contains c:\demo\.

{system}

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 125

wivwal initialization file - mctools.ini (PC only)

This is the path where Windows OS is installed, e.g., c:\wmnT\.

4.3 Global initialization file - mctools.ini (PC only)

All tools may store some global data into the mcutoo1s.ini file.The tool first searches for
this file in the directory of the tool itself (path of the executable tool). If there is no
mcutools.ini file in this directory, the tool looks for an mcutoois.ini file located in the MS
Windows installation directory (e.g., c:\winpows).

The following listing shows two typical locations used for the mcutools. ini files.

Listing: Usual locations for the mcutools.ini files

C: \WINDOWS\mcutools.ini

D:\INSTALL\prog\mcutools.ini

If a tool 1s started in the p:\1nsTarLr\prog\ directory, the initialization file located in the
same directory as the tool is used (p:\1NsTaLL\prog\mcutools. ini).

But if the tool is started outside of the p:\1nsTari\prog directory, the initialization file in
the Windows directory is used (c:\wINpows\mcutools.ini).

4.4 Local configuration file (usually project.ini)

The Assembler does not change the defauit.env file in any way. The Assembler only reads
the contents. All the configuration properties are stored in the configuration file. The
same configuration file can and is intended to be used by different applications.

The processor name is encoded into the section name, so that the Assembler for different
processors can use the same file without any overlapping. Different versions of the same
Assembler are using the same entries. This usually only leads to a potential problem
when options only available in one version are stored in the configuration file. In such
situations, two files must be maintained for the different Assembler versions. If no
incompatible options are enabled when the file is last saved, the same file can be used for
both Assembler versions.

The current directory is always the directory that holds the configuration file. If a
configuration file in a different directory is loaded, then the current directory also
changes. When the current directory changes, the whole gefauit.env file is also reloaded.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

126 Freescale Semiconductor, Inc.

Chapter 4 Environment

When a configuration file is loaded or stored, the options located in the ASMOPTIONS:
Default assembler options environment variable are reloaded and added to the project's
options.

This behavior has to be noticed when in different directories different gefauit.env files
exist which contain incompatible options in their asmorrrons environment variables. When
a project is loaded using the first gefauit.env file, its asmoprrons options are added to the
configuration file. If this configuration is then stored in a different directory, where a
default.env file exists with these incompatible options, the Assembler adds the options
and remarks the inconsistency. Then a message box appears to inform the user that those
options from the defauit.env file were not added. In such a situation, the user can either
remove the options from the configuration file with the advanced option dialog box or he
can remove the option from the defauit.env file with the shell or a text editor depending
upon which options should be used in the future.

At startup, the configuration stored in the project.ini file located in the current Paths
Local Configuration File Entries documents the sections and entries you can put in a
project.ini file.

Most environment variables contain path lists telling where to look for files. A path list is
a list of directory names separated by semicolons following the syntax, as listed in the
following listing:

Listing: Syntax used for setting path lists of environment variables
PathList=DirSpec{";"DirSpec}
DirSpec=["*"]DirectoryName

The following listing shows a typical example of setting an environment variable.

Listing: Setting the paths for the GENPATH environment variable

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS; /usr/local/Freescale/lib;/

home/me/my project

If a directory name is preceded by an asterisk (+), the programs recursively search that
whole directory tree for a file, not just the given directory itself. The directories are
searched in the order they appear in the path list. The following listing shows the use of
an asterisk () for recursively searching the entire C drive for a configuration file with a
\INSTALL\LIB path.

Listing: Recursive search for a continuation line

LIBPATH=+*C:\INSTALL\LIB

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 127

rime continuation

NOTE
Some DOS/UNIX environment variables (like GENPATH, LIBPATH,
etc.) are used. For further details refer to the section
Environment variables details.

We strongly recommend working with the Shell and setting the environment by means of
a default.env file in your project directory. (This project dir can be set in the Shell's
'configure’ dialog box). Doing it this way, you can have different projects in different
directories, each with its own environment.

NOTE
When starting the Assembler from an external editor, do not set
the peraurToDIR SYstem environment variable. If you do so and
this variable does not contain the project directory given in the
editor's project configuration, files might not be put where you
expect them to be put!

A synonym also exists for some environment variables. Those synonyms may be used for
older releases of the Assembler, but they are deprecated and thus they will be removed in
the future.

4.5 Line continuation

It is possible to specify an environment variable in an environment file (defauit.env
Or .hidefaults) over multiple lines using the line continuation character "\'. The following
listing shows using multiple lines for an environment variable.

Listing: Using multiple lines for an environment variable

ASMOPTIONS=\
-W2\

-WmsgNe=10
The above listing is the same as the alternate source code in the following listing.

Listing: Alternate form of using multiple lines

ASMOPTIONS=-W2 -WmsgNe=10

But this feature may be dangerous when used together with paths, as following listing
shows:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

128 Freescale Semiconductor, Inc.

Chapter 4 Environment
Listing: A path is included by the line continuation character

GENPATH=. \
TEXTFILE=. \txt

will result in

GENPATH=.TEXTFILE=.\txt

To avoid such problems, we recommend that you use a semicolon (;) at the end of a path
if there is a backslash (1) at the end, as the following listing shows:

Listing: Recommended style whenever a backslash is present

GENPATH=. \;
TEXTFILE=.\txt

4.6 Environment variables details

The remainder of this section is devoted to describing each of the environment variables
available for the Assembler. The environment variables are listed in alphabetical order
and each is divided into several sections. The following table lists and describes the
environmental variables.

Table 4-1. Topics used for describing environment variables

Topic Description
Tools Lists tools which are using this variable.
Synonym (where one exists) A synonym exists for some environment variables. These

synonyms may be used for older releases of the Assembler
but they are deprecated and they will be removed in the
future. A synonym has lower precedence than the
environment variable.

Syntax Specifies the syntax of the option in an EBNF format.

Arguments Describes and lists optional and required arguments for the
variable.

Default (if one exists) Shows the default setting for the variable if one exists.

Description Provides a detailed description of the option and its usage.

Example Gives an example of usage and effects of the variable where

possible. An example shows an entry in the default.env
for the PC or in the .hidefaults for UNIX.

See also (if needed) Names related sections.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 129

cnvironment variables details

4.6.1 ABSPATH: Absolute file path

Tools
Compiler, Assembler, Linker, Decoder, or Debugger

Syntax

ABSPATH={<path>}

Arguments
<path>: Paths separated by semicolons, without spaces
Description

This environment variable is only relevant when absolute files are directly generated by
the Macro Assembler instead of relocatable object files. When this environment variable
1s defined, the Assembler will store the absolute files it produces in the first directory
specified there. If asseatn 1S not set, the generated absolute files will be stored in the
directory where the source file was found.

Example

ABSPATH=\sources\bin;..\..\headers;\usr\local\bin

4.6.2 ASMOPTIONS: Default assembler options

Tools
Assembler

Syntax

ASMOPTIONS={<option>}

Arguments
<option>: Assembler command-line option

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

130 Freescale Semiconductor, Inc.

Chapter 4 Environment

If this environment variable is set, the Assembler appends its contents to its command
line each time a file is assembled. It can be used to globally specify certain options that
should always be set, so you do not have to specify them each time a file is assembled.

Options enumerated there must be valid assembler options and are separated by space
characters.

Example

ASMOPTIONS=-W2 -L

See also

Assembler Options chapter

4.6.3 COPYRIGHT: Copyright entry in object file

Tools
Compiler, Assembler, Linker, or Librarian

Syntax

COPYRIGHT=<copyright>

Arguments
<copyright>: copyright entry
Description

Each object file contains an entry for a copyright string. This information may be
retrieved from the object files using the Decoder.

Example

COPYRIGHT=Copyright

See also
 USERNAME: User Name in object file
* INCLUDETIME: Creation time in the object file

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 131

cnvironment variables details

4.6.4 DEFAULTDIR: Default current directory

Tools
Compiler, Assembler, Linker, Decoder, Debugger, Librarian, or Maker

Syntax

DEFAULTDIR=<directorys>

Arguments
<directorys: Directory to be the default current directory
Description

The default directory for all tools may be specified with this environment variable. Each
of the tools indicated above will take the directory specified as its current directory
instead of the one defined by the operating system or launching tool (e.g., editor).

NOTE
This is an environment variable on the system level (global
environment variable). It cannot be specified in a default
environment file (default.env OI .hidefaults).

Example

DEFAULTDIR=C:\INSTALL\PROJECT

See also
Current directory

"All tools may store some global data into the mcutools.ini file.The tool first searches for
this file in the directory of the tool itself (path of the executable tool). If there is no
mcutools.ini file in this directory, the tool looks for an mcutools.ini file located in the MS
Windows installation directory (e.g., c:\wrnpows)."

4.6.5 ENVIRONMENT: Environment file specification

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

132 Freescale Semiconductor, Inc.

Chapter 4 Environment

Tools
Compiler, Assembler, Linker, Decoder, Debugger, Librarian, or Maker

Synonym
HIENVIRONMENT
Syntax
ENVIRONMENT=<file>

Arguments
<tfile>: filename with path specification, without spaces
Description

This variable has to be specified on the system level. Normally the Assembler looks in
the current directory for an environment file named gefauit.env (.hidefauits on UNIX).
Using environment (€.g., Set in the autoexec.bat (DOS) or .cshre (UNIX)), a different
filename may be specified.

NOTE
This is an environment variable on the system level (global
environment variable). It cannot be specified in a default
environment file (default.env OF .hidefaults).

Example

ENVIRONMENT=\Freescale\prog\global.env

4.6.6 ERRORFILE: Filename specification error

Tools
Compiler, Assembler, or Linker

Syntax

ERRORFILE=<filename>
Arguments

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 133

cnvironment variables details

<filenames>: Filename with possible format specifiers

Default

EDOUT

Description

The errorrire environment variable specifies the name for the error file (used by the
Compiler or Assembler).

Possible format specifiers are:

* 'sn': Substitute with the filename, without the path.
* 'sp': Substitute with the path of the source file.
* 'wr: Substitute with the full filename, i.e., with the path and name (the same as 'spsn').

In case of an improper error filename, a notification box is shown.
Examples
The following listing lists all errors into the myerrors.err file in the current directory.

Listing: Naming an error file

ERRORFILE=MyErrors.err

The following listing lists all errors into the errors file in the \tmp directory.

Listing: Naming an error file in a specific directory

ERRORFILE=\tmp\errors

The following listing lists all errors into a file with the same name as the source file, but
with extension =.err, into the same directory as the source file, e.g., if we compile a file
\sources\test.c, dll €ITOI hSt flle \sources\test.err WIH be generated.

Listing: Naming an error file as source filename

ERRORFILE=%f.err

For a test.c source file, a \dir1\test.err error list file will be generated, as the following
listed shows:

Listing: Naming an error file as source filename in a specific directory

ERRORFILE=\dirl\%n.err

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

134 Freescale Semiconductor, Inc.

Chapter 4 Environment

For a \airi\dir2\test.c source file, a \airi\dirz\errors.txt error list file will be generated,
as the following listed shows:

Listing: Naming an error file as a source filename with full path

ERRORFILE=%p\errors.txt

If the =rrorrFILE €nvironment variable is not set, errors are written to the default error file.
The default error filename depends on the way the Assembler is started.

If a filename is provided on the assembler command line, the errors are written to the
epour file in the project directory.

If no filename is provided on the assembler command line, the errors are written to the
err.txt file in the project directory.

The following listed shows another example for the usage of this variable to support
correct error feedback with the WinEdit Editor which looks for an error file called epour:

Listing: Configuring error feedback with WinEdit

Installation directory: E:\INSTALL\prog
Project sources: D:\SRC

Common Sources for projects: E:\CLIB
Entry in default.env (D:\SRC\default.env):
ERRORFILE=E: \INSTALL\prog\EDOUT
Entry in WinEdit.ini (in Windows directory) :
OUTPUT=E: \ INSTALL\prog\EDOUT

NOTE

You must set this variable if the WinEdit Editor is used,
otherwise the editor cannot find the =pour file.

4.6.7 GENPATH: Search path for input file

Tools
Compiler, Assembler, Linker, Decoder, or Debugger

Synonym

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 135

cnvironment variables details

HIPATH

Syntax

GENPATH={<path>}

Arguments
<path>: Paths separated by semicolons, without spaces.
Description

The Macro Assembler will look for the sources and included files first in the project
directory, then in the directories listed in the ceneatn environment variable.

NOTE
If a directory specification in this environment variables starts
with an asterisk («), the whole directory tree is searched
recursive depth first, i.e., all subdirectories and their
subdirectories and so on are searched. Within one level in the
tree, the search order of the subdirectories is indeterminate.

Example

GENPATH=\sources\include;..\..\headers;\usr\local\lib

4.6.8 INCLUDETIME: Creation time in the object file

Tools
Compiler, Assembler, Linker, or Librarian

Syntax

INCLUDETIME= (ON | OFF)

Arguments

on: Include time information into the object file.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

136 Freescale Semiconductor, Inc.

Chapter 4 Environment

orr: Do not include time information into the object file.

Default

ON

Description

Normally each object file created contains a time stamp indicating the creation time and
data as strings. So whenever a new file is created by one of the tools, the new file gets a
new time stamp entry.

This behavior may be undesired if for SQA reasons a binary file compare has to be
performed. Even if the information in two object files is the same, the files do not match
exactly because the time stamps are not the same. To avoid such problems this variable
may be set to orr. In this case the time stamp strings in the object file for date and time
are " none" 1n the object file.

The time stamp may be retrieved from the object files using the Decoder.

Example

INCLUDETIME=OFF

See also
* COPYRIGHT: Copyright entry in object file
 USERNAME: User Name in object file

4.6.9 OBJPATH: Object file path

Tools
Compiler, Assembler, Linker, or Decoder

Syntax

OBJPATH={<path>}

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 137

cnvironment variables details

Arguments
<path>: Paths separated by semicolons, without spaces
Description

This environment variable is only relevant when object files are generated by the Macro
Assembler. When this environment variable is defined, the Assembler will store the
object files it produces in the first directory specified in pach. If osgearu is not set, the
generated object files will be stored in the directory the source file was found.

Example

OBJPATH=\sources\bin;..\..\headers;\usr\local\bin

4.6.10 SRECORD: S-Record type

Tools
Assembler, Linker, or Burner

Syntax

SRECORD=<RecordType>

Arguments

<recordType>: Forces the type for the S-Record File which must be generated. This
parameter may take the value “s1, *s2', or “s3'.

Description

This environment variable is only relevant when absolute files are directly generated by
the Macro Assembler instead of object files. When this environment variable is defined,
the Assembler will generate an S-Record File containing records from the specified type
(s1 records when s1 is specified, sz records when sz is specified, and s3 records when ss is
specified).

NOTE
If the srecorp environment variable is set, it is the user's
responsibility to specify the appropriate type of S-Record File.
If you specify s1 while your code is loaded above oxrrrr, the S-

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

138 Freescale Semiconductor, Inc.

Chapter 4 Environment

Record File generated will not be correct because the addresses
will all be truncated to 2-byte values.

When this variable is not set, the type of S-Record File generated will depend on the size
of the address, which must be loaded there. If the address can be coded on 2 bytes, an s1
record is generated. If the address is coded on 3 bytes, an sz record is generated.
Otherwise, an s3 record is generated.

Example

SRECORD=S2

4.6.11 TEXTPATH: Text file path

Tools
Compiler, Assembler, Linker, or Decoder

Syntax

TEXTPATH={<path>}

Arguments
<path>: Paths separated by semicolons, without spaces.
Description

When this environment variable is defined, the Assembler will store the listing files it
produces in the first directory specified in patnh. If TexTeats 1S not set, the generated listing
files will be stored in the directory the source file was found.

Example

TEXTPATH=\sources\txt;..\..\headers;\usr\local\txt

4.6.12 TMP: Temporary directory

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 139

cnvironment variables details

Tools
Compiler, Assembler, Linker, Debugger, or Librarian

Syntax

TMP=<directorys>

Arguments
<directory>: Directory to be used for temporary files
Description

If a temporary file has to be created, normally the ANSI function tmpnam () 1s used. This
library function stores the temporary files created in the directory specified by this
environment variable. If the variable is empty or does not exist, the current directory is
used. Check this variable if you get an error message Cannot create temporary file.

NOTE

TMp 1S @n environment variable on the system level (global
environment variable). It CANNOT be specified in a default
environment file (default .env Or .nidefaults).

Example
TMP=C: \TEMP

See also

Current directory section

4.6.13 USERNAME: User Name in object file

Tools
Compiler, Assembler, Linker, or Librarian

Syntax

USERNAME=<user>

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

140 Freescale Semiconductor, Inc.

g |

Chapter 4 Environment
Arguments
<user>: Name of user

Description

Each object file contains an entry identifying the user who created the object file. This
information may be retrieved from the object files using the decoder.

Example

USERNAME=PowerUser

See also
* COPYRIGHT: Copyright entry in object file
* INCLUDETIME: Creation time in the object file

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 141

}{ |

cnvironment variables details

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

142 Freescale Semiconductor, Inc.

g |

Chapter 5
Files

This chapter covers these topics:

e Input files
* QOutput files
* File processing

5.1 Input files

Input files to the Assembler:

e Source files
¢ Include files

5.1.1 Source files

The Macro Assembler takes any file as input. It does not require the filename to have a
special extension. However, we suggest that all your source filenames have the «.asn
extension and all included files have the «.inc.extension. Source files will be searched
first in the project directory and then in the directories enumerated in GENPATH: Search
path for input file.

5.1.2 Include files

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 143

vuput files

The search for include files is governed by the cexears environment variable. Include files
are searched for first in the project directory, then in the directories given in the ceneaTn
environment variable. The project directory is set via the Shell, the Program Manager, or
the DEFAULTDIR: Default current directory environment variable.

5.2 Output files

Output files from the Assembler:

* Object files
 Absolute files

* S-Record Files

e Listing files

* Debug listing files
* Error listing file

5.2.1 Object files

After a successful assembling session, the Macro Assembler generates an object file
containing the target code as well as some debugging information. This file is written to
the directory given in the OBJPATH: Object file path environment variable. If that
variable contains more than one path, the object file is written in the first directory given;
if this variable is not set at all, the object file is written in the directory the source file was
found. Object files always get the «.o extension.

5.2.2 Absolute files

When an application is encoded in a single module and all the sections are absolute
sections, the user can decide to generate directly an absolute file instead of an object file.
This file is written to the directory given in the ABSPATH: Absolute file path
environment variable. If that variable contains more than one path, the absolute file is
written in the first directory given; if this variable is not set at all, the absolute file is
written in the directory the source file was found. Absolute files always get the *.abs
extension.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

144 Freescale Semiconductor, Inc.

Chapter 5 Files

5.2.3 S-Record Files

When an application is encoded in a single module and all the sections are absolute
sections, the user can decide to generate directly an ELF absolute file instead of an object
file. In that case an S-Record File is generated at the same time. This file can be burnt
into an EPROM. It contains information stored in all the READ ONLY sections in the
application. The extension for the generated S-Record File depends on the setting from
the SRECORD: S-Record type environment variable.

* If srecorp = s1, the S-Record File gets the «.s1 extension.
* If srecorp = s2, the S-Record File gets the ».s2 extension.
e If srecorp = s3, the S-Record File gets the «.s3 extension.
* If srecorp 1S not set, the S-Record File gets the «.sx extension.

This file is written to the directory given in the asseaTn environment variable. If that
variable contains more than one path, the S-Record File is written in the first directory
given,; if this variable is not set at all, the S-Record File is written in the directory the
source file was found.

5.2.4 Listing files

After successful assembling session, the Macro Assembler generates a listing file
containing each assembly instruction with their associated hexadecimal code. This file is
always generated when the -L: Generate a listing file assembler option is activated (even
when the Macro Assembler generates directly an absolute file). This file is written to the
directory given in the TEXTPATH: Text file path.environment variable. If that variable
contains more than one path, the listing file is written in the first directory given; if this
variable is not set at all, the listing file is written in the directory the source file was
found. Listing files always get the ».1st extension. The format of the listing file is
described in the Assembler Listing File chapter.

5.2.5 Debug listing files

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 145

vuput files

After successful assembling session, the Macro Assembler generates a debug listing file,
which will be used to debug the application. This file is always generated, even when the
Macro Assembler directly generates an absolute file. The debug listing file 1s a duplicate
from the source, where all the macros are expanded and the include files merged. This
file is written to the directory given in the OBJPATH: Object file path environment
variable. If that variable contains more than one path, the debug listing file is written in
the first directory given; if this variable is not set at all, the debug listing file is written in
the directory the source file was found. Debug listing files always get the «.abg extension.

5.2.6 Error listing file

If the Macro Assembler detects any errors, it does not create an object file but does create
an error listing file. This file is generated in the directory the source file was found (see
ERRORFILE: Filename specification error.

If the Assembler's window is open, it displays the full path of all include files read. After
successful assembling, the number of code bytes generated is displayed, too. In case of an
error, the position and filename where the error occurs is displayed in the assembler
window.

If the Assembler is started from the IDE (with ' +£' given on the command line) or
CodeWright (with ' spse' given on the command line), this error file is not produced.
Instead, it writes the error messages in a special Microsoft default format in a file called
epout. Use WinEdit's Next Error or CodeWright's Find Next Error command to see both
error positions and the error messages.

5.2.6.1 Interactive mode (Assembler window open)

If =rrorrrLE 1S set, the Assembler creates a message file named as specified in this
environment variable.

If =rrorr1LE 1S DOt set, a default file named err.ctxt 1S generated in the current directory.

5.2.6.2 Batch mode (Assembler window not open)

If =rrorF1LE 1S Set, the Assembler creates a message file named as specified in this
environment variable.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

146 Freescale Semiconductor, Inc.

g |

Chapter 5 Files

If =rrorrIrE 18 NOt set, a default file named =pour is generated in the current directory.

5.3 File processing

The following image shows the priority levels for the various files used by the
Assembler.

asm 1. current dir ine 1. current dir
2. GENPATH 2. GENPATH
iy,
Assembler
ERRORFILE

o | 1. oBIPATH st | 1. TEXTPATH | ERR.TXT

dbg | 2. Source file 2. Source file or
path path EDOUT

abs | 1. ABSPATH
2. Source file
path

Figure 5-1. Files used with the Assembler

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 147

PR 4

rue processing

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

148 Freescale Semiconductor, Inc.

Chapter 6
Assembler Options

This chapter describes the assembler options for HCS08 and RSO08 architectures.

6.1 Assembler Options

This chapter describes the assembler options for HCS08 and RS08 architectures.

6.2 Assembler Option details

The remainder of this section is devoted to describing each of the assembler options
available for the Assembler. The options are listed in alphabetical order and each is
divided into several sections. The following table lists and describes the topics listed in
the assembler options.

Table 6-1. Assembler option details

Topic Description

Group Output, Input, Language, Host, Code Generation, Messages,
or Various.

Scope Application, Assembly Unit, Function, or None.

Syntax Specifies the syntax of the option in an EBNF format.

Arguments Describes and lists optional and required arguments for the
option.

Default Shows the default setting for the option.

Description Provides a detailed description of the option and how to use
it.

Example Gives an example of usage, and effects of the option where
possible. Assembler settings, source code and/or Linker PRM
files are displayed where applicable. The examples shows an

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 149

g |

nssembler Option details

Table 6-1. Assembler option details (continued)

Topic Description
entry in the default.env for the PC orin the .hidefaults
for UNIX.
See also (if needed) Names related options.

6.2.1 Using Special Modifiers

With some options it is possible to use special modifiers. However, some modifiers may
not make sense for all options. This section describes those modifiers.

The following table lists and dsecribes the supported modifiers.

Table 6-2. Special modifiers for assembler options

Modifier Description

Path including file separator

op
3

Filename in strict 8.3 format

e
=1

Filename without its extension

o°
5

Extension in strict 8.3 format

o\©
=

Extension

o\°
(0]

Path + filename without its extension

o\°
h

o°

A double quote (") if the filename, the path or the extension
contains a space

o°

A single quote () if the filename, the path, or the extension
contains a space

o°

(ENV) Replaces it with the contents of an environment variable

Generates a single " %'

o\°
o?°

6.2.1.1 Examples using special modifiers

The assumed path and filename (filename base for the modifiers) used for the examples
are displayed in the following listing.

Listing: Example filename and path used for the following examples

C:\Freescale\my demo\TheWholeThing.myExt

Using the sp modifier as the following listing displays the path with a file separator but
without the filename.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

150 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

Listing: %p gives the path only with the final file separator

C:\Freescale\my demo\

Using the sx modifier only displays the filename in 8.3 format but without the file
extension, as the following listing displays.

Listing: %N results in the filename in 8.3 format (only the first 8 characters)

TheWhole

The sn modifier returns the entire filename but with no file extension, as the following
listing displays.

Listing: %n returns just the filename without the file extension

TheWholeThing

Using =& as a modifier returns the first three characters in the file extension, as the
following listing displays.

Listing: %E gives the file extension in 8.3 format (only the first 3 characters)
myE

If you want the entire file extension, use the se modifier, as the following listing displays.
Listing: %e is used for returning the whole extension

myExt

The st modifier returns the path and the filename without the file extension, as the
following listing displays.

Listing: %f gives the path plus the filename (no file extension)

C:\Freescale\my demo\TheWholeThing

The path in Listing: Example filename and path used for the following examples contains
a space, therefore using s or s is recommended, as the following listings displays.

Listing: Use %' %f%"'' in case there is a space in its path, filename, or extension
"C:\Freescale\my demo\TheWholeThing"

Listing: Use %' %f%' where there is a space in its path, filename, or extension
C:\Freescale\my demo\TheWholeThing'

Using s (envvariable) an environment variable may be used. A file separator following =
(envvariable) 18 ignored if the environment variable is empty or does not exist. If rexrearn
1s set as in following listing, then s (TexTeaTh) \myfile.txt 1S expressed as in next listing.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 151

A
4

4
A

it of Assembler Option

Listing: Example for setting TEXTPATH

TEXTPATH=C: \Freescale\txt
Listing: $(TEXTPATH)\myfile.txt where TEXTPATH is defined

C:\Freescale\txt\myfile.txt

However, if texreata does not exist or is empty, then s (TexTeaTh) \mytile.txt 1S expressed as
in the following listing.

Listing: $(TEXTPATH\myfile.txt where TEXTPATH does not exist

myfile.txt

It is also possible to display the percent sign by using . %e%% allows the expression of a
percent sign after the extension dS in the following IIStll'lg

Listing: % % allows a percent sign to be expressed

myExt%

6.3 List of Assembler Option

The following listed are the command line option you can use with the Assembler.

NOTE
Not all tools options have been defined for this release. All
descriptions will be available in an upcoming release.

Table 6-3. Assembler Options

Assembler option

-ArgFile: Specify a file from which additional command line options will be read

-AsmDbg: Emit assembly source file information in debug sections

-Ci: Switch case sensitivity on label names OFF

-CMacAngBrack: Angle brackets for grouping Macro Arguments

-CMacBrackets: Square brackets for macro arguments grouping

-Compat: Compatibility modes

-CS08/-C08/-CRS08: Derivative family

-D: Define Label

-DefLabel: Improves support for data allocation directives

-Env: Set environment variable

-F (-Fh, -F20, -FA20, -F2, -FA2): Output file format

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

152 Freescale Semiconductor, Inc.

b -

Table 6-3. Assembler Options (continued)

Chapter 6 Assembler Options

Assembler option

-H: Short Help

-I: Include file path

-L: Generate a listing file

-Lasmc: Configure listing file

-Lasms: Configure the address size in the listing file

-Lc: No Macro call in listing file

-Ld: No macro definition in listing file

-Le: No Macro expansion in listing file

-Li: No included file in listing file

-Lic: License information

-LicA: License information about every feature in directory

-LicBorrow: Borrow license feature

-LicWait: Wait until floating license is available from floating License Server

-LI: Show label statistics

-Lrefs: Emit Cross References list of symbols

-M (-Ms, -Mt): Memory model

-MacroNest: Configure maximum macro nesting

-MCUasm: Switch compatibility with MCUasm ON

-MMU: Enable Memory Management Unit (MMU) Support

-N: Display notify box

-NoBeep: No beep in case of an error

-NoDebuglnfo: No debug information for ELF/DWARF files

-NoEnv: Do not use environment

-ObjN: Object filename specification

-Prod: Specify project file at startup

-Struct: Support for structured types

-V: Prints the Assembler version

-View: Application standard occurrence

-W1: No information messages

-W2: No information and warning messages

-WErrFile: Create "err.log" error file

-Wmsg8x3: Cut filenames in Microsoft format to 8.3

-WmsgCE: RGB color for error messages

-WmsgCF: RGB color for fatal messages

-WmsgCl: RGB color for information messages

-WmsgCU: RGB color for user messages

-WmsgCW: RGB color for warning messages

-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode

-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

153

A\ 4
N
it of Assembler Option

Table 6-3. Assembler Options (continued)

Assembler option

-WmsgFob: Message format for batch mode

-WmsgFoi: Message format for interactive mode

-WmsgFonf: Message format for no file information

-WmsgFonp: Message format for no position information

-WmsgNe: Number of error messages

-WmsgNi: Number of Information messages

-WmsgNu: Disable user messages

-WmsgNw: Number of Warning messages

-WmsgSd: Setting a message to disable

-WmsgSe: Setting a message to Error

-WmsgSi: Setting a message to Information

-WmsgSw: Setting a Message to Warning

-WOutFile: Create error listing file
-WStdout: Write to standard output

6.3.1 -ArgFile: Specify a file from which additional command line
options will be read

Group
HOST
Scope
Function

Syntax

-ArgFile<filenames

Arguments

<filename>: Specify filename that has options to be passed to command line
Description

The options present in file are appended to existing command line options.
Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

154 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

option.txt
-M

Linker.exe -ArgFileoption.txt test.prm

This is equivalent to linker.exe -M test.prm and linker generates output file test.map

6.3.2 -AsmDbg: Emit assembly source file information in debug
sections

Group

CODE GENERATION
Scope

Function

Syntax

-AsmDbg

Arguments
None
Description

This option when enabled, passes the assembly source file name information to DWARF
sections. When the output .abs file is debugged, the actual assembly source file is
displayed instead of intermediary <filename>.dbg file.

6.3.3 -Ci: Switch case sensitivity on label names OFF

Group

Input

Scope
Assembly Unit

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 155

it of Assembler Option

Syntax

-Ci

Arguments
None
Default
None
Description

This option turns off case sensitivity on label names. When this option is activated, the
Assembler ignores case sensitivity for label names. If the Assembler generates object
files but not absolute files directly (-ra2 assembler option), the case of exported or
imported labels must still match. Or, the -ci assembler option should be specified in the
linker as well.

Example

When case sensitivity on label names is switched off, the Assembler will not generate an
error message for the assembly source code in the following listing.

Listing: Example assembly source code

ORG $200
entry: NOP

BRA Entry

The instruction era entry branches on the encry label. The default setting for case
sensitivity is on, which means that the Assembler interprets the labels entry and encry as
two distinct labels.

See also

-F (-Fh, -F2o0, -FA2o0, -F2, -FA2): Output file format assembler option

6.3.4 -CMacAngBrack: Angle brackets for grouping Macro
Arguments

Group

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

156 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options
Language
Scope
Application
Syntax

-CMacAngBrack (ON|OFF)

Arguments

ON or
OFF

Default
None
Description

This option controls whether the < - syntax for macro invocation argument grouping is
available. When it is disabled, the Assembler does not recognize the special meaning for
< in the macro invocation context. There are cases where the angle brackets are
ambiguous. In new code, use the (> »1 syntax instead.

See also
Macro argument grouping

-CMacBrackets: Square brackets for macro arguments grouping option

6.3.5 -CMacBrackets: Square brackets for macro arguments
grouping

Group
Language
Scope
Application
Syntax

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 157

A 4
4\ |

it of Assembler Option

-CMacBrackets (ON|OFF)

Arguments

ON or
OFF

Default

ON

Description

This option controls the availability of the (> »1 syntax for macro invocation argument
grouping. When it is disabled, the Assembler does not recognize the special meaning for
r» in the macro invocation context.

See also
Macro argument grouping

-CMacAngBrack: Angle brackets for grouping Macro Arguments option

6.3.6 -Compat: Compatibility modes

Group
Language
Scope
Application
Syntax

-Compat [={!|=|c|s|£|$|a|b}

Arguments
See below.

Default

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

158 Freescale Semiconductor, Inc.

None

Chapter 6 Assembler Options

Description

This option controls some compatibility enhancements of the Assembler. The goal is not

to provide

100% compatibility with any other Assembler but to make it possible to reuse

as much as possible. The various suboptions control different parts of the assembly:

e -: Operator :- means equal

The Assembler takes the default value of the - operator as not equal, as it is in the C
language. For compatibility, this behavior can be changed to equal with this option.
Because the danger of this option for existing code, a message is issued for every :-

which

1s treated as equal.

* 1: Support additional : operators

The following additional operators are defined when this option is used:

e |~

® Im:

®* @

® 13

® It
® gl
® Isl
: unsigned less or equal
® 11
: one complement
: low operator

: high operator

® g

® In
w

® 'h

lg.
: signed less or equal

: exponentiation

modulo
signed greater or equal
signed greater

signed less than
unsigned greater or equal

unsigned greater

unsigned less

The default values for the following : operators are defined:

r.: binary AND
1x: exclusive OR

1+: binary OR

c: Alternate comment rules

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 159

it of Assembler Option

With this suboption, comments implicitly start when a space is present after the
argument list. A special character is not necessary. Be careful with spaces when this
option is given because part of the intended arguments may be taken as a comment.
However, to avoid accidental comments, the Assembler does issue a warning if such
a comment does not start with a "= or a ;.

Examples

The following listing demonstrates that when -compat-c, comments can start with a ».

Listing: Comments starting with an asterisk (*)

NOP * Anything following an asterisk is a comment.

When the -compat=c assembler option is used, the first oc.s directive in the following
listing, has »+ 1 , 1» as a comment. A warning is issued because the comment does not
start with a »;» or a »»». With -compat=c, this code generates a warning and three bytes with
constant values 1, 2, and 1. Without it, this code generates four 8-bit constants of 2, 1, 2,
and 1.

Listing: Implicit comment start after a space

DC.B 1 +1 , 1
DC.B 1+1,1

* s: Symbol prefixes

With this suboption, some compatibility prefixes for symbols are supported. With
this option, the Assembler accepts "pgz:" and "pyte: " prefixed for symbols in xpers
and xrers. They correspond to xrer.s Or xper.s With the same symbols without the
prefix.

* £: Ignore rr character at line start

With this suboption, an otherwise improper character recognized from feed character
is ignored.

* s: Support the $ character in symbols
With this suboption, the Assembler supports to start identifiers with a s sign.
* a: Add some additional directives

With this suboption, some additional directives are added for enhanced compatibility.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

160 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

The Assembler actually supports a secr directive as an alias of the usual SECTION -
Declare Relocatable Section assembly directive. The secr directive takes the section
name as its first argument.

* p: support the ror directive

With this suboption, the Assembler supports a FOR - Repeat assembly block
assembly directive to generate repeated patterns more easily without having to use
recursive macros.

6.3.7 -CS08/-C08/-CRSO08: Derivative family

Group

Code Generation
Scope
Application
Syntax

-C08|-CsS08|-CRS08

Arguments
None

Default

-C08

Description

The Assembler supports three different HCO8-derived cores. The HCOS itself (-cos), the
enhanced HCSO08 (-CS08), and the RSO8 (-crsos).

The HCSO08 family supports additional addressing modes for the ceux, Loux, and stux
instructions and also a new BGND instruction. All these enhancements are allowed when
the -csos option is specified. All instructions and addressing modes available for the
HCO8 are also available for the HCSOS so that this core remains binary compatible with
its predecessor.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 161

A\ 4
N
it of Assembler Option

The RS08 family does not support all instructions and addressing modes of the HCOS.
Also, the encoding of the supported instructions is not binary compatible.

Table 6-4. Table of new instructions or addressing modes for the HCS08

Instruction Addr. mode Description

LDHX EXT IX IX1 IX2 SP1 load from a 16-bit absolute address load
HX via 0,X load HX via 1,X...255,X load
HX via old HX+ any offset load HX from
stack

STHX EXT SP1 store HX to a 16-bit absolute address
store HX to stack

CPHX EXT SP1 compare HX with a 16-bit address
compare HX with the stack

BGND enter the Background Debug Mode

6.3.8 -D: Define Label

Group

Input

Scope
Assembly Unit
Syntax

-D<LabelName> [=<Value>]

Arguments

<Labelname>: Name of label.

<value>: Value for label. o if not present.
Default

o for vaiue.

Description

This option behaves as if a rave1: rou value is at the start of the main source file. When no
explicit value is given, 0 is used as the default.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

162 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

This option can be used to build different versions with one common source file.
Example
Conditional inclusion of a copyright notice. See the following listings.

Listing: Source code that conditionally includes a copyright notice

YearAsString: MACRO
DC.B $30+(\1 /1000)%10

DC.B $30+(\1 / 100)%10

DC.B $30+(\1 / 10)%10

DC.B $30+(\1 / 1)%10
ENDM

ifdef ADD COPYRIGHT

ORG $1000

DC.B "Copyright by "

DC.B "John Doe"

ifdef YEAR

DC.B " 1999-"

YearAsString YEAR

endif

DC.B 0

endif

When assembled with the option -dapp_copvricuT -dvEar-=200s, the code in the following
listing is generated:

Listing: Generated list file

1 1 YearAsString: MACRO

2 2 DC.B $30+(\1 /1000)%10
3 3 DC.B $30+(\1 / 100)%10
4 4 DC.B $30+(\1 / 10)%10
5 5 DC.B $30+(\1 / 1)%10
6 6 ENDM

7 7

8 8 0000 0001 ifdef ADD COPYRIGHT

9 9 ORG $1000

10 10 a001000 436F 7079 DC.B "Copyright by "

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 163

A\ 4
N
it of Assembler Option
001004 7269 6768
001008 7420 6279
00100C 20
11 11 a00100D 4A6F 686E DC.B "John Doe"
001011 2044 6F65
12 12 0000 0001 ifdef YEAR

13 13 a001015 2031 3939 DC.B " 1999-"

001019 392D

14 14 YearAsString YEAR

15 2m a00101B 32 + DC.B $30+ (YEAR /1000) %10
16 3m a00101C 30 + DC.B $30+ (YEAR / 100) %10
17 4m a00101D 30 + DC.B $30+(YEAR / 10)%10
18 5m a001l01lE 31 + DC.B $30+ (YEAR / 1)%10
19 15 endif

20 16 a00101F 00 DC.B 0

21 17 endif

6.3.9 -DefLabel: Improves support for data allocation directives

Group

Input

Scope
Assembly Unit
Syntax

-DefLabel

Arguments
None
Default
None

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

164 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

Improves support for data allocation directives. On passing this option, the data directives
(not associated to any label) get associated with previous defined labels (if exists). This
inhibits the emission of temporary variables (varx) by assembler.

Example
The following listing shows the example for the -pefrabe1.

Listing: Example -DefLabel

MySection: SECTION

TTab TIT 45: ; Modo 5

DC.B $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FA, $90, $20,$00, $01, $4F, $FF
, $FB, SFF, SFF, SFF, SFF, SFC

DC.B $SC1l, SFF, SFF, SFF, SFF, SFF, SFF, $SF7, 564,588,500, $14, $SBF, SFF
, $F5, SFF, SEF, $SB8, $3F, SFE

DC.B 5

DC.W 3
mainLoop:

RTS

With
-DeflLabel option
OFF:
Output:
9-VAR00001 0 14 LOCAL FUNC 9 (MySection)
10-VAR0O0002 14 14 LOCAL FUNC 9 (MySection)
11-VAR0O0003 28 1 LOCAL FUNC 9 (MySection)
12-VAR00004 29 3 LOCAL FUNC 9 (MySection)
With
-DeflLabel option
ON':
Output:
9-TTab TIT 45 0 29 LOCAL FUNC 9 (MySection)
10-VAROO0OOO1 29 3 LOCAL FUNC 9 (MySection)

The input file when assembled with option -pefrabe1, allocates the oc.z directives to
symbol rrab_trT 45 and pc.w to dummy variable varoooos.

6.3.10 -Env: Set environment variable

Group

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 165

g |

it of Assembler Option

Host

Scope
Assembly Unit
Syntax

-Env<EnvironmentVariables>=<VariableSetting>

Arguments

<Environmentvariables: Environment variable to be set
<Variablesetting>: Setting of the environment variable
Default

None

Description

This option sets an environment variable.

Example

ASMOPTIONS=-EnvOBJPATH=\sources\obj

This is the same as:

OBJPATH=\sources\obj

il'l the default.env flle
See also

Environment variables details

6.3.11 -F (-Fh, -F20, -FA20, -F2, -FA2): Output file format

Group
Output

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

166 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options
Scope
Application
Syntax

-F(h|20|A20]|2|A2)

Arguments

n: HIWARE object-file format; this is the default

20: Compatible ELF/DWAREF 2.0 object-file format
azo: Compatible ELF/DWARF 2.0 absolute-file format
2: ELF/DWAREF 2.0 object-file format

a2: ELF/DWAREF 2.0 absolute-file format

Default

-F2

Description
Defines the format for the output file generated by the Assembler:

* With the -rnoption set, the Assembler uses a proprietary (HIWARE) object-file
format.

* With the -r2 option set, the Assembler produces an ELF/DWARF object file. This
object-file format may also be supported by other Compiler or Assembler vendors.

e With the -ra2 option set, the Assembler produces an ELF/DW ARF absolute file. This
file format may also be supported by other Compiler or Assembler vendors.

Note that the ELF/DWAREF 2.0 file format has been updated in the current version of the
Assembler. If you are using HI-WAVE version 5.2 (or an earlier version), -r2o Or -razo
must be used to generate the ELF/DWAREF 2.0 object files which can be loaded in the
debugger.

Example

ASMOPTIONS=-F2

NOTE
For the RS08 the HIWARE object file format is not available.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 167

3
4

4
A

it of Assembler Option

6.3.12 -H: Short Help

Group
Various
Scope
None

Syntax

Arguments
None
Default
None
Description

The -u option causes the Assembler to display a short list (i.e., help list) of available
options within the assembler window. Options are grouped into Output, Input, Language,
Host, Code Generation, Messages, and Various.

No other option or source files should be specified when the -u option is invoked.
Example

The following listing is a portion of the list produced by the -= option:

Listing: Example Help listing

l\'/IﬁE'SSAGE :

-N Show notification box in case of errors
-NoBeep No beep in case of an error

-Wl Do not print INFORMATION messages

-W2 Do not print INFORMATION or WARNING messages

-WErrFile Create "err.log" Error File

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

168 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

6.3.13 -l: Include file path

Group
Input
Scope
None

Syntax

-I<path>

Arguments

<paths: File path to be used for includes

Default

None

Description

With the -1 option it is possible to specify a file path used for include files.

Example

-Id:\mySources\include

6.3.14 -L: Generate a listing file

Group
Output

Scope
Assembly unit
Syntax

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 169

it of Assembler Option

-L[=<dest>]

Arguments

<dest>: the name of the listing file to be generated.

It may contain special modifiers (see Using Special Modifiers).
Default

No generated listing file

Description

Switches on the generation of the listing file. If cest 1s not specified, the listing file will
have the same name as the source file, but with extension =.1st. The listing file contains
macro definition, invocation, and expansion lines as well as expanded include files.

Example

ASMOPTIONS=-L

In the following example of assembly code, the cpchar macro accepts two parameters. The
macro copies the value of the first parameter to the second one.

When the - option is specified, the portion of assembly source code in the following
listing, together with the code from an include file (Listing: Example source code from
an include file) generates the output listing in Listing: Assembly output listing.

Listing: Example assembly source code

XDEF Start
MyData: SECTION

charl: DS.B 1
char2: DS.B 1
INCLUDE "macro.inc"
CodeSec: SECTION
Start:
cpChar charl, char2

NOP

Listing: Example source code from an include file
cpChar: MACRO

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

170 Freescale Semiconductor, Inc.

4
A

LDA \1

STA \2

ENDM

Listing: Assembly output listing

10

11

12

13

14

15

2m

3m

9

Loc Obj. code Source line

MyData:
000000 charl:

000001 char2:

cpChar:

CodeSec:

Start:

000000 C6b xxxxX +

000003 C7 xxxxX +

000006 9D

XDEF Start
SECTION

DS.B 1

DS.B 1

INCLUDE "macro.inc"
MACRO

LDA \1

STA \2

ENDM

SECTION

cpChar charl, char2
LDA charl
STA char2

NOP

Chapter 6 Assembler Options

The Assembler stores the content of included files in the listing file. The Assembler also
stores macro definitions, invocations, and expansions in the listing file.

For a detailed description of the listing file, see the Assembler Listing File chapter.

See also

Assembler options:

* -Lasmc: Configure listing file
* -Lasms: Configure the address size in the listing file

e -Lc: No Macro call in listing file

* -Ld: No macro definition in listing file
» -Le: No Macro expansion in listing file
* -Li: No included file in listing file

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

171

it of Assembler Option

6.3.15 -Lasmc: Configure listing file

Group

Output

Scope
Assembly unit
Syntax

-Lasme={s|r|m|1l|k|i|c|a}

Arguments

s - Do not write the source column

r - Do not write the relative column (Rel.)
m - Do not write the macro mark

1 - Do not write the address (Loc)

x - Do not write the location type

i - Do not write the include mark column
< - Do not write the object code

a - Do not write the absolute column (Abs.)
Default

Write all columns.

Description

The default-configured listing file shows a lot of information. With this option, the output
can be reduced to columns which are of interest. This option configures which columns
are printed in a listing file. To configure which lines to print, see the following assembler
options: -L.c: No Macro call in listing file, -L.d: No macro definition in listing file, -Le:
No Macro expansion in listing file, and -Li: No included file in listing file.

Example

For the following assembly source code, the Assembler generates the default-configured
output listing, as shown in the following listing:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

172 Freescale Semiconductor, Inc.

A
4

4
A

4
Chapter 6 Assembler Options

DC.B "Hello World"

DC.B 0

Listing: Example assembler output listing

. Rel. Loc Obj. code Source line

1 1 000000 4865 6C6C DC.B "Hello World"

000004 6F20 576F

000008 726C 64

2 2 00000B 00 DC.B 0

In order to get this output without the source file line numbers and other irrelevant parts
for this simple oc.s example, the following option is added:

-Lasmc=ramki. This generates the output listing as shown in the following listing:

Listing: Example output listing

Obj. code Source line

000000 4865 6C6C DC.B "Hello World"

000004 6F20 576F

000008 726C 64

00000B 00 DC.B 0

For a detailed description of the listing file, see the Assembler Listing File chapter.

See also

Assembler options:

-L: Generate a listing file

-Lc: No Macro call in listing file

-Ld: No macro definition in listing file

-Le: No Macro expansion in listing file

-Li: No included file in listing file

-Lasms: Configure the address size in the listing file

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 173

A 4
4\ |

it of Assembler Option

6.3.16 -Lasms: Configure the address size in the listing file

Group
Output

Scope
Assembly unit
Syntax

-Lasms{1]2|3]4}

Arguments

1 - The address size is xx

2 - The address size is XxxXxx

3 - The address size 1S XXXXXX

4 - The address size 1S XXXXXXXX

Default

-Lasms3

Description

The default-configured listing file shows a lot of information. With this option, the size of
the address column can be reduced to the size of interest. To configure which columns

are printed, see the -Lasmc: Configure listing file option. To configure which lines to
print, see the -Lc: No Macro call in listing file, -Ld: No macro definition in listing file, -
Le: No Macro expansion in listing file, and -Li: No included file in listing file assembler
options.

Example

For the following instruction:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

174 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

NOP

the Assembler generates this default-configured output listing as listed below:

Listing: Example assembler output listing

Abs. Rel. Loc Obj. code Source line

1 1 000000 XX NOP

In order to change the size of the address column the following option is added:
-rasms1. This changes the address size to two digits.

Listing: Example assembler output listing configured with -Lasms1

See also
Assembler Listing File chapter
A ssembler options :

* -Lasmc: Configure listing file

* -L: Generate a listing file

* -Lc: No Macro call in listing file

* -L.d: No macro definition in listing file
 -Le: No Macro expansion in listing file
* -Li: No included file in listing file

6.3.17 -Lc: No Macro call in listing file

Group

Output

Scope
Assembly unit
Syntax

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 175

it of Assembler Option

-Lc

Arguments
none
Default
none
Description

Switches on the generation of the listing file, but macro invocations are not present in the
listing file. The listing file contains macro definition and expansion lines as well as
expanded include files.

Example

ASMOPTIONS=-Lc

In the following example of assembly code, the cpchar macro accept two parameters. The
macro copies the value of the first parameter to the second one.

When the -Lc option is specified, the following portion of assembly source code in the
following listing, along with additional source code (Listing: Example source code from
the macro.inc file) from the macro. inc include file generates the output in the assembly
listing file (Listing: Output assembly listing).

Listing: Example assembly source code

XDEF Start
MyData: SECTION

charl: DS.B 1
char2: DS.B 1
INCLUDE "macro.inc"
CodeSec: SECTION
Start:
cpChar charl, char2

NOP
Listing: Example source code from the macro.inc file

cpChar: MACRO
DA \1

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

176 Freescale Semiconductor, Inc.

4
A

4
Chapter 6 Assembler Options

STA \2

ENDM

Listing: Output assembly listing

Abs. Rel. Loc Obj. code Source line

1 1 XDEF Start
2 2 MyData: SECTION

3 3 000000 charl: DS.B 1

4 4 000001 char2: DS.B 1

5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO

7 21 LDA \1

8 3i STA \2

9 41 ENDM
10 6 CodeSec: SECTION
11 7 Start:
13 2m 000000 C6 xXxxx + LDA charl
14 3m 000003 C7 xxXxXX + STA char2
15 9 000006 9D NOP

The Assembler stores the content of included files in the listing file. The Assembler also
stores macro definitions, invocations, and expansions in the listing file.

The listing file does not contain the line of source code that invoked the macro.
For a detailed description of the listing file, see the Assembler Listing File chapter.
See also

Assembler options:

* -L: Generate a listing file

* -L.d: No macro definition in listing file
* -Le: No Macro expansion in listing file
* -Li: No included file in listing file

6.3.18 -Ld: No macro definition in listing file

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 177

it of Assembler Option

Group
Output

Scope
Assembly unit

Syntax

-Ld

Arguments
None
Default
None
Description

Instructs the Assembler to generate a listing file but not including any macro definitions.
The listing file contains macro invocation and expansion lines as well as expanded
include files.

Example

ASMOPTIONS=-Ld

In the following example of assembly code, the cpchar macro accepts two parameters. The
macro copies the value of the first parameter to the second one.

When the -ra option is specified, the assembly source code in the following listing along
with additional source code (Listing: Example source code from an include file) from the
macro.inc file generates an assembler output listing (Listing: Example assembler output
listing) file:

Listing: Example assembly source code

XDEF Start
MyData: SECTION

charl: DS.B 1
char2: DS.B 1
INCLUDE "macro.inc"

CodeSec: SECTION

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

178 Freescale Semiconductor, Inc.

g |

Start:

cpChar charl, char2

NOP

Listing: Example source code from an include file

cpChar:

MACRO

ENDM

DA \1

STA \2

Listing: Example assembler output listing

10

11

12

13

14

15

2m

3m

9

000000

000001

000000 C6b xxxxX

000003 C7 xxXxXX

000006 9D

MyData:
charl:

char2:

cpChar:

CodeSec:

Start:

XDEF Start

SECTION

DS.B 1

DS.B 1

INCLUDE "macro.inc"
MACRO

SECTION

cpChar charl, char2
LDA charl
STA char2

NOP

Chapter 6 Assembler Options

The Assembler stores that content of included files in the listing file. The Assembler also
stores macro invocation and expansion in the listing file.

The listing file does not contain the source code from the macro definition.

For a detailed description of the listing file, see the Assembler Listing File chapter.

See also

Assembler options:

 -L: Generate a listing file
* -Lc: No Macro call in listing file

 -Le: No Macro expansion in listing file
 -Li: No included file in listing file

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

179

it of Assembler Option

6.3.19 -Le: No Macro expansion in listing file

Group
Output

Scope
Assembly unit

Syntax

-Le

Arguments
None
Default
None
Description

Switches on the generation of the listing file, but macro expansions are not present in the
listing file. The listing file contains macro definition and invocation lines as well as
expanded include files.

Example

ASMOPTIONS=-Le

In the following example of assembly code, the cpchar macro accepts two parameters. The
macro copies the value of the first parameter to the second one.

When the -re option is specified, the assembly code in the following listing along with
additional source code (Listing: Example source code from an included file) from the
macro. inc file generates an assembly output listing file (Listing: Example assembler output
listing):

Listing: Example assembly source code

XDEF Start
MyData: SECTION

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

180 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options
charl: DS.B 1
char2: DS.B 1
INCLUDE "macro.inc"
CodeSec: SECTION
Start:
cpChar charl, char2

NOP

Listing: Example source code from an included file

cpChar: MACRO
LDA \1

STA \2

ENDM

Listing: Example assembler output listing

Abs. Rel Loc Obj. code Source line

1 1 XDEF Start

2 2 MyData: SECTION

3 3 000000 charl: DS.B 1

4 4 000001 char2: DS.B 1

5 5 INCLUDE "macro.inc"
6 1i cpChar: MACRO

7 21 DA \1

8 3i STA \2

9 41 ENDM
10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar charl, char2
15 9 000006 9D NOP

The Assembler stores the content of included files in the listing file. The Assembler also
stores the macro definition and invocation in the listing file.

The Assembler does not store the macro expansion lines in the listing file.
For a detailed description of the listing file, see the Assembler Listing File chapter.

See also

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 181

it of Assembler Option

-L: Generate a listing file
-Lc: No Macro call in listing file
-Ld: No macro definition in listing file

-Li: No included file in listing file

6.3.20 -Li: No included file in listing file

Group
Output

Scope
Assembly unit
Syntax

-Li

Arguments
None
Default
None
Description

Switches on the generation of the listing file, but include files are not expanded in the
listing file. The listing file contains macro definition, invocation, and expansion lines.

Example

ASMOPTIONS=-Li

In the following example of assembly code, the cpchar macro accepts two parameters. The
macro copies the value of the first parameter to the second one.

When -vi option is specified, the assembly source code in the following listing along with
additional source code (Listing: Example source code in an include file) from the
macro. inc file generates the following output in the assembly listing file:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

182 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

Listing: Example assembly source code

XDEF Start
MyData: SECTION

charl: DS.B 1
char2: DS.B 1
INCLUDE "macro.inc"
CodeSec: SECTION
Start:
cpChar charl, char2
NOP
Listing: Example source code in an include file
cpChar: MACRO
LDA \1
STA \2
ENDM

Listing: Example assembler output listing

Abs. Rel Loc Obj. code Source line

1 1 XDEF Start

2 2 MyData: SECTION

3 3 000000 charl: DS.B 1

4 4 000001 char2: DS.B 1

5 5 INCLUDE "macro.inc"
10 6 CodeSec: SECTION
11 7 Start:
12 8 cpChar charl, char2
13 2m 000000 C6 xxxx + LDA charl
14 3m 000003 C7 XXXX + STA char2
15 9 000006 9D NOP

The Assembler stores the macro definition, invocation, and expansion in the listing file.
The Assembler does not store the content of included files in the listing file.
For a detailed description of the listing file, see the Assembler Listing File chapter.

See also

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 183

A\ 4
N
it of Assembler Option

Assembler options:

* -L: Generate a listing file

* -Lc: No Macro call in listing file
 -L.d: No macro definition in listing file
 -Le: No Macro expansion in listing file

6.3.21 -Lic: License information

Group
Various
Scope
None

Syntax

-Lic

Arguments
None
Default
None
Description

The -vic option prints the current license information (e.g., if it is a demo version or a
full version). This information is also displayed in the About box.

Example

ASMOPTIONS=-Lic

See also
Assembler options:

* -LicA: License information about every feature in directory

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

184 Freescale Semiconductor, Inc.

A\ 4
A
Chapter 6 Assembler Options

e -LicBorrow: Borrow license feature
e -LicWait: Wait until floating license is available from floating License Server

6.3.22 -LicA: License information about every feature in
directory

Group
Various
Scope
None

Syntax

-LicA

Arguments
None
Default
None
Description

The -vica option prints the license information of every tool or DLL in the directory
where the executable is (e.g., if tool or feature is a demo version or a full version).
Because the option has to analyze every single file in the directory, this may take a long
time.

Example

ASMOPTIONS=-LicA

See also
Assembler options :

e -Lic: License information

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 185

A
4

4
A

it of Assembler Option

e -LicBorrow: Borrow license feature
e -LicWait: Wait until floating license is available from floating License Server

6.3.23 -LicBorrow: Borrow license feature

Group
Host
Scope
None

Syntax

-LicBorrow<features>|[;<version>] :<Date>

Arguments
<features: the feature name to be borrowed (e.g., u1100100).
<versions: optional version of the feature to be borrowed (e.g., 3.000).

<dates: date with optional time until when the feature shall be borrowed (e.g., 1s-
Mar-2005:18:35).

Default
None
Defines
None
Pragmas
None
Description

This option lets you borrow a license feature until a given date/time. Borrowing allows
you to use a floating license even if disconnected from the floating license server.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

186 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

You need to specify the feature name and the date until you want to borrow the feature. If
the feature you want to borrow is a feature belonging to the tool where you use this
option, then you do not need to specify the version of the feature (because the tool is
aware of the version). However, if you want to borrow any feature, you need to specify
the feature's version number.

You can check the status of currently borrowed features in the tool's About box.

NOTE
You only can borrow features if you have a floating license and
if your floating license is enabled for borrowing. See the
provided FLEXIm documentation about details on borrowing.

Example

-LicBorrowHI100100;3.000:12-Mar-2005:18:25

See also
Assembler options:

* -Lic: License information
* -LicA: License information about every feature in directory
» -LicWait: Wait until floating license is available from floating License Server

6.3.24 -LicWait: Wait until floating license is available from
floating License Server

Group
Host
Scope
None

Syntax

-LicWait

Arguments
None

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 187

A\ 4
4\ |
it of Assembler Option
Default
None
Description

If a license 1s not available from the floating license server, then the default condition is
that the application will immediately return. With the -ricwaic assembler option set, the
application will wait (blocking) until a license is available from the floating license
server.

Example

ASMOPTIONS=-LicWait

See also
Assembler options:

e -Lic: License information
* -LicA: License information about every feature in directory
e -LicBorrow: Borrow license feature

6.3.25 -LI: Show label statistics

Group
Output
Syntax

-L1

Arguments
None
Description

It displays label statistics in the list file.The option gives the gain in terms of code size for
a label if moved to SHORT or TINY section.

Example:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

188 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

Test.asm:

TINY RAM VARS: SECTION RS08 SHORT;Insert your data
definition here

tmp: DS.B 1..

FiboLoop: STA tmp ; store last
RTS

Test.lst:

Freescale Assembler

Ind. Name tiny short

1 tmp 1 1

6.3.26 -M (-Ms, -Mt): Memory model

Group

Code Generation
Scope
Application
Syntax

-M(s|b|t)

Arguments
s: small memory model
¢: tiny memory model

Default

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 189

it of Assembler Option

The Assembler for the MC68HC(S)08 supports two different memory models. The
default is the small memory model, which corresponds to the normal setup, i.e., a 64kB
code-address space. The tiny memory model corresponds to the situation where the
default RAM is in the zero page.

NOTE
For the Assembler, the memory model does not matter at all.
The memory model is used by the compiler to specify the
default allocation of variable and functions. The Assembler has
this option only to generate "compatible" object files for the
memory model consistency check of the linker.

NOTE
In the tiny memory model, the default for the compiler is to use
zero-page addressing. The default for the Assembler is to still
use extended-addressing modes. See the Using the direct
addressing mode to access symbols section to see how to
generate zero-page accesses.

Example

ASMOPTIONS=-Mt

6.3.27 -MacroNest: Configure maximum macro nesting

Group
Language
Scope
Assembly Unit
Syntax

-MacroNest<Value>

Arguments
<value>: max. allowed nesting level

Default

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

190 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

3000

Description

This option controls how deep macros calls can be nested. Its main purpose is to avoid
endless recursive macro invocations.

Example

See the description of message A1004 for an example.

6.3.28 Message A1004 (available in the Online Help)

6.3.29 -MCUasm: Switch compatibility with MCUasm ON

Group
Various

Scope
Assembly Unit
Syntax

-MCUasm

Arguments
None
Default
None
Description

This switches on compatibility mode with the MCUasm Assembler. Additional features
supported, when this option is activated are enumerated in the MCUasm Compatibility
chapter in the Appendices.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 191

A 4
4\ |

it of Assembler Option

ASMOPTIONS=-MCUasm

6.3.30 -MMU: Enable Memory Management Unit (MMU) Support

Group

CODE GENERATION
Scope

Assembly Unit

Syntax

-MMU

Arguments
None
Default
None

Defines

MMU

Pragmas
None
Description

This option enables code banking and CALL and RTC instructions are available. It can
be used only when -csos is enabled.

6.3.31 -N: Display notify box

Group

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

192 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

Messages
Scope
Assembly Unit
Syntax

Arguments
None
Default
None
Description

Makes the Assembler display an alert box if there was an error during assembling. This is
useful when running a makefile (please see the manual about Build Tools) because the
Assembler waits for the user to acknowledge the message, thus suspending makefile
processing. (The '~ stands for "Notify".)

This feature i1s useful for halting and aborting a build using the Make Utility.

Example

ASMOPTIONS=-N

If an error occurs during assembling, an alert dialog box will be opened.

6.3.32 -NoBeep: No beep in case of an error

Group
Messages
Scope
Assembly Unit
Syntax

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 193

A 4
4\ |

it of Assembler Option

-NoBeep

Arguments
None
Default
None
Description

Normally there is a “beep' notification at the end of processing if there was an error. To
have a silent error behavior, this “beep' may be switched off using this option.

Example

ASMOPTIONS=-NoBeep

6.3.33 -NoDebuginfo: No debug information for ELF/DWARF files

Group
Language
Scope
Assembly Unit
Syntax

-NoDebugInfo

Arguments
None
Default
None

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

194 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

By default, the Assembler produces debugging info for the produced ELF/DW AREF files.
This can be switched off with this option.

Example

ASMOPTIONS=-NoDebugInfo

6.3.34 -NoEnv: Do not use environment

Group

Startup (This option cannot be specified interactively.)
Scope

Assembly Unit

Syntax

-NoEnv

Arguments
None
Default
None
Description

This option can only be specified at the command line while starting the application. It
cannot be specified in any other circumstances, including the dgefauit.env file, the
command line or whatever.

When this option is given, the application does not use any environment (default.env,
project.ini OT tipS flle)

Example

XX
.exe -NoEnv

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 195

it of Assembler Option

(Use the actual executable name instead of xx)
See also

Environment chapter

6.3.35 -ObjN: Object filename specification

Group

Output

Scope
Assembly Unit
Syntax

-ObjN<FileName>

Arguments

<FileName>: Name of the binary output file generated.
Default

-objNsn.o When generating a relocatable file or
-objNsn.abs When generating an absolute file.
Description

Normally, the object file has the same name than the processed source file, but with the .o
extension when relocatable code is generated or the .abs extension when absolute code is
generated. This option allows a flexible way to define the output filename. The modifier
sn can also be used. It is replaced with the source filename. If <ziies> in this option
contains a path (absolute or relative), the osseats environment variable is ignored.

Example
For asvoprions=-objNa.out, the resulting object file will be a.out. If the ossrara environment

variable is set to \src\obj, the object file will be \src\obj\a.out.

For
fibo.c -ObjN%$n.obj, the resulting object file will be

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

196 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options
fibo.obj.

For myfile.c -objn..\objects\ %n.obj, the object file will be named relative to the current
directory to ...\objects\ myfile.obj. Note that the environment variable orsearn is ignored,
because <tile> contains a path.

See also

OBJPATH: Object file path environment variable

6.3.36 -Prod: Specify project file at startup

Group

None (This option cannot be specified interactively.)
Scope

None

Syntax

-Prod=<file>

Arguments

<files: name of a project or project directory
Default

None

Description

This option can only be specified at the command line while starting the application. It
cannot be specified in any other circumstances, including the dgefauit.env file, the
command line or whatever.

When this option is given, the application opens the file as configuration file. When the
filename does only contain a directory, the default name project.ini is appended. When
the loading fails, a message box appears.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 197

A 4
4\ |

it of Assembler Option

assembler.exe -Prod=project.ini

(Use the Assembler's executable name instead of assembier.)
See also

Environment chapter

6.3.37 -Struct: Support for structured types

Group

Input

Scope
Assembly Unit
Syntax

-Struct

Arguments
None
Default
None
Description

When this option is activated, the Macro Assembler also support the definition and usage
of structured types. This is interesting for application containing both ANSI-C and
Assembly modules.

Example

ASMOPTIONS=-Struct

See also

Mixed C and Assembler Applications chapter

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

198 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

6.3.38 -V: Prints the Assembler version

Group
Various
Scope
None

Syntax

Arguments
None
Default
None
Description

Prints the Assembler version and the current directory.
NOTE

Use this option to determine the current directory of the
Assembler.

Example
-V produces the following listing:

Listing: Example of a version listing

Command Line '-v'
Assembler V-5.0.8, Jul 7 2005

Directory: C:\Freescale\demo

Common Module V-5.0.7, Date Jul 7 2005

User Interface Module, V-5.0.17, Date Jul 7 2005
Assembler Kernel, V-5.0.13, Date Jul 7 2005

Assembler Target, V-5.0.8, Date Jul 7 2005

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 199

it of Assembler Option

6.3.39 -View: Application standard occurrence

Group

Host

Scope
Assembly Unit
Syntax

-View<kind>

Arguments
<kind> 1s one of the following:

* 'window': Application window has the default window size.

* «uin: Application window is minimized.

* max: Application window is maximized.

* 'midden: Application window is not visible (only if there are arguments).

Default

Application is started with arguments: Minimized.
Application is started without arguments: window.
Description

Normally, the application is started with a normal window if no arguments are given. If
the application is started with arguments (e.g., from the Maker to assemble, compile, or
link a file), then the application is running minimized to allow for batch processing.
However, the application's window behavior may be specified with the View option.

Using -viewwindow, the application is visible with its normal window. Using -viewnin the
application is visible iconified (in the task bar). Using -viewmax, the application is visible
maximized (filling the whole screen). Using -viewnidden, the application processes
arguments (e.g., files to be compiled or linked) completely invisible in the background
(no window or icon visible in the task bar). However, for example, if you are using the -
N: Display notify box assembler option, a dialog box is still possible.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

200 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

C:\Freescale\prog\linker.exe -ViewHidden fibo.prm

6.3.40 -W1: No information messages

Group
Messages
Scope
Assembly Unit
Syntax

-W1l

Arguments
None
Default
None
Description

Inhibits the Assembler's printing INFORMATION messages. Only WARNING and
ERROR messages are written to the error listing file and to the assembler window.

Example

ASMOPTIONS=-W1

6.3.41 -W2: No information and warning messages

Group
Messages

Scope

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 201

A\ 4
N
it of Assembler Option

Assembly Unit
Syntax

-W2

Arguments
None
Default
None
Description

Suppresses all messages of INFORMATION or WARNING types. Only ERROR
messages are written to the error listing file and to the assembler window.

Example

ASMOPTIONS=-W2

6.3.42 -WErrFile: Create "err.log" error file

Group
Messages
Scope
Assembly Unit
Syntax

-WErrFile (On|Off)

Arguments

None

Default

an err.log file 18 created or deleted.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

202 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

Description

The error feedback from the Assembler to called tools is now done with a return code. In
16-bit Windows environments this was not possible. So in case of an error, an "err.log"
file with the numbers of written errors was used to signal any errors. To indicate no
errors, the "err.log"file would be deleted. Using UNIX or WIN32, a return code is now
available. Therefore, this file is no longer needed when only UNIX or WIN32
applications are involved. To use a 16-bit Maker with this tool, an error file must be
created in order to signal any error.

Example

® _WErrFileOn
err.log 18 created or deleted when the application is finished.
® _WErrFileOff

existing err.1og 1s not modified.

See also
-WStdout: Write to standard output

-WOutFile: Create error listing file

6.3.43 -Wmsg8x3: Cut filenames in Microsoft format to 8.3

Group
Messages
Scope
Assembly Unit
Syntax

-Wmsg8x3

Default
None

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 203

3
4

4
A

it of Assembler Option

Some editors (e.g., early versions of WinEdit) are expecting the filename in the Microsoft
message format in a strict 8.3 format. That means the filename can have at most 8
characters with not more than a 3-character extension. Using a newer Windows OS,
longer file names are possible. With this option the filename in the Microsoft message is
truncated to the 8.3 format.

Example

x:\mysourcefile.c(3): INFORMATION C2901: Unrolling loop

With the -Wmsg8x3 option set, the above message will be

x:\mysource.c(3): INFORMATION C2901: Unrolling loop

See also
* -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode
* -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
* -WmsgFoi: Message format for interactive mode
* -WmsgFob: Message format for batch mode Option
* - -WmsgFonp: Message format for no position information

6.3.44 -WmsgCE: RGB color for error messages

Group

Messages

Scope
Compilation Unit

Syntax

-WmsgCE<

RGB>

Arguments

<rGB>: 24-bit RGB (red green blue) value.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

204 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

Default

-WmsgCE16711680 (
rFF

g00

b00, red)

Description

It is possible to change the error message color with this option. The value to be specified
has to be an RGB (Red-Green-Blue) value and has to be specified in decimal.

Example

-wmsgce255 changes the error messages to blue.

6.3.45 -WmsgCF: RGB color for fatal messages

Group

Messages

Scope
Compilation Unit
Syntax

-WmsgCF<

RGB>

Arguments
<rGB>: 24-bit RGB (red green blue) value.
Default

-WmsgCF8388608 (
r80

g00

b00, dark red)

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 205

it of Assembler Option

It is possible to change the fatal message color with this option. The value to be specified
has to be an RGB (Red-Green-Blue) value and has to be specified in decimal.

Example

-wmsgcr25s changes the fatal messages to blue.

6.3.46 -WmsgCl: RGB color for information messages

Group

Messages

Scope
Compilation Unit
Syntax

-WmsgCI<

RGB>

Arguments
<rGB>: 24-bit RGB (red green blue) value.
Default

-WmsgCI32768 (
r00

g8o0

b00, green)

Description

It is possible to change the information message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in decimal.

Example

-wmsgc1255 changes the information messages to blue.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

206 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options
6.3.47 -WmsgCU: RGB color for user messages

Group

Messages

Scope
Compilation Unit
Syntax

-WmsgCU<

RGB>

Arguments
<rce>: 24-bit RGB (red green blue) value.
Default

-WmsgCUO (
ro0
g00
b00, black)

Description

It is possible to change the user message color with this option. The value to be specified
has to be an RGB (Red-Green-Blue) value and has to be specified in decimal.

Example

-wmsgcuzss changes the user messages to blue.

6.3.48 -WmsgCW: RGB color for warning messages

Group
Messages
Scope

Compilation Unit

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 207

it of Assembler Option

Syntax

-WmsgCW<

RGB>

Arguments
<rGB>: 24-bit RGB (red green blue) value.
Default

-WmsgCW255 (
r00

g00

bFF, blue)

Description

It is possible to change the warning message color with this option. The value to be
specified has to be an RGB (Red-Green-Blue) value and has to be specified in decimal.

Example

-wmsgcwo changes the warning messages to black.

6.3.49 -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file
format for batch mode

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgFb [v|m]

Arguments

v: Verbose format.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

208 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

m: Microsoft format.

Default

-WmsgFbm

Description

The Assembler can be started with additional arguments (e.g., files to be assembled
together with assembler options). If the Assembler has been started with arguments (e.g.,
from the Make tool), the Assembler works in the batch mode. That is, no assembler
window is visible and the Assembler terminates after job completion.

If the Assembler is in batch mode, the Assembler messages are written to a file and are
not visible on the screen. This file only contains assembler messages (see examples
below).

The Assembler uses a Microsoft message format as the default to write the assembler
messages (errors, warnings, or information messages) if the Assembler is in the batch
mode.

With this option, the default format may be changed from the Microsoft format (with
only line information) to a more verbose error format with line, column, and source
information.

Example

Assume that the assembly source code in the following listing is to be assembled in the
batch mode.

Listing: Example assembly source code

varl: equ 5
var2: equ 5

if (varl=var2)
NOP
endif
endif

The Assembler generates the error output, as shown in the following listing, in the
assembler window if it is running in batch mode:

Listing: Example error listing in the Microsoft (default) format for batch mode

X:\TW2.ASM(12) :ERROR: Conditional else not allowed here.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 209

A\ 4
N
it of Assembler Option

If the format is set to verbose, more information is stored in the file:

Listing: Example error listing in the verbose format for batch mode

ASMOPTIONS=-WmsgFbv
>> in "C:\tw2.asm", line 6, col 0, pos 81

endif

ERROR Al1001: Conditional else not allowed here

See also

ERRORFILE: Filename specification error

-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
-WmsgFob: Message format for batch mode

-WmsgFoi: Message format for interactive mode

-WmsgFonf: Message format for no file information

-WmsgFonp: Message format for no position information

6.3.50 -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format
for interactive mode

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgFi [v|m]

Arguments
v: Verbose format.
m: Microsoft format.

Default

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

210 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

-WmsgFiv

Description

If the Assembler is started without additional arguments (e.g., files to be assembled
together with Assembler options), the Assembler is in the interactive mode (that is, a
window is visible).

While in interactive mode, the Assembler uses the default verbose error file format to
write the assembler messages (errors, warnings, information messages).

Using this option, the default format may be changed from verbose (with source, line and
column information) to the Microsoft format (which displays only line information).

NOTE
Using the Microsoft format may speed up the assembly process
because the Assembler has to write less information to the
screen.

Example

If the Assembler is running in interactive mode, the default error output is shown in the
assembler window as in the following listing.

Listing: Example error listing in the default mode for interactive mode

>> in "X:\TWE.ASM", line 12, col 0, pos 215
endif

endif

ERROR A1001: Conditional else not allowed here

Setting the format to Microsoft, less information is displayed:

Listing: Example error listing in Microsoft format for interactive mode

ASMOPTIONS=-WmsgFim
X:\TWE.ASM(12) : ERROR: conditional else not allowed here

See also

ERRORFILE: Filename specification error environment variable

Assembler options:
e -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode
* -WmsgFob: Message format for batch mode

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 211

A
4

4
A

it of Assembler Option

* -WmsgFoi: Message format for interactive mode
* -WmsgFonf: Message format for no file information
* -WmsgFonp: Message format for no position information

6.3.51 -WmsgFob: Message format for batch mode

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgFob<string>

Arguments
<string>: format string (see below).

Default

-WmsgFob"%f%e (%1) : %K %d: %sm\n"

Description

With this option it is possible to modify the default message format in the batch mode.
The formats in in the following listing are supported (assumed that the source file is x:

\Freescale\sourcefile.asmx).

Listing: Supported formats for messages in the batch node

Format Description Example

%s Source Extract

$p Path x:\Freescale\

st Path and name x:\Freescale\sourcefile
$n Filename sourcefile

$e Extension .asmx

SN File (8 chars) sourcefi

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

212 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

$E Extension (3 chars) .asm
%1 Line 3

sC Column 47

%0 Pos 1234
3K Uppercase kind ERROR
sk Lowercase kind error
sd Number Al051
$m Message text
5% Percent %

\n New line

Example

ASMOPTIONS=-WmsgFob"%f%e (%1) : %k %d: %m\n"

produces a message, displayed in in the following listing, using the format in in the above
listing. The options are set for producing the path of a file with its filename, extension,
and line.

Listing: Error message

x:\Freescale\sourcefile.asmx (3): error A1051: Right parenthesis
expected

See also
Assembler options:

* -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode

e -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
* -WmsgFoi: Message format for interactive mode

* -WmsgFonf: Message format for no file information

* -WmsgFonp: Message format for no position information

6.3.52 -WmsgFoi: Message format for interactive mode

Group
Messages

Scope

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 213

A\ 4
N
it of Assembler Option

Assembly Unit
Syntax

-WmsgFoi<strings>

Arguments
<string>: format string (see below)

Default

-WmsgFoi"\n>> in \"%f%e\", line %1, col %c, pos
%o\n%s\n%K %d: sm\n"

Description

With this option it is possible modify the default message format in interactive mode. The
following formats are supported (supposed that the source file is x:\Freescale

\sourcefile.asmx)I

Listing: Supported message formats - interactive mode

Format Description Example

Source Extract

o\°
0]

$p Path x:\Freescale\
st Path and name x:\Freescale\sourcefile
$n Filename sourcefile

$e Extension .asmx

SN File (8 chars) sourcefi

SE Extension (3 chars) .asm

%1 Line 3

sC Column 47

%0 Pos 1234

%K Uppercase kind ERROR

sk Lowercase kind error

sd Number Al1051

Fm Message text

5% Percent %

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

214 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

\n New line

Example

ASMOPTIONS=-WmsgFoi"%f%e (%1): %k %d: $m\n"

produces a message in following listed format:

Listing: Error message resulting from the statement above

x:\Freescale\sourcefile.asmx (3): error A1051: Right parenthesis
expected

See also
ERRORFILE: Filename specification error environment variable
Assembler options:

* -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode

* -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
e -WmsgFob: Message format for batch mode

* -WmsgFonf: Message format for no file information

* -WmsgFonp: Message format for no position information

6.3.53 -WmsgFonf: Message format for no file information

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgFonf<string>

Arguments
<string>: format string (see below)

Default

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 215

A 4
4\ |

it of Assembler Option

-WmsgFonf"%K %d: %m\n"

Description

Sometimes there is no file information available for a message (e.g., if a message not
related to a specific file). Then this message format string is used. The following formats
are supported:

Format Description Example
$K Uppercase kind ERROR
sk Lowercase kind error
%d Number L10324
sm Message text
%% Percent %
\n New line

Example

ASMOPTIONS=-WmsgFonf"%k %d: %m\n"

produces a message in following format:

information L10324: Linking successful

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

216 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

See also
ERRORFILE: Filename specification error environment variable
Assembler options:

* -WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode

* -WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
e -WmsgFob: Message format for batch mode

* -WmsgFoi: Message format for interactive mode

* -WmsgFonp: Message format for no position information

6.3.54 -WmsgFonp: Message format for no position information

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgFonp<string>

Arguments
<string>: format string (see below)

Default

-WmsgFonp"%$f%e: %K %d: %m\n"

Description

Sometimes there is no position information available for a message (e.g., if a message not
related to a certain position). Then this message format string is used. The following
formats are supported (supposed that the source file is x:\Freescale\sourcefile.asmx)

Listing: Supported message formats for when there is no position information

Format Description Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 217

g |

it of Assembler Option

$p Path x:\Freescale\
st Path and name x:\Freescale\sourcefile
n Filename sourcefile

%e Extension .asmx

SN File (8 chars) sourcefi

$E Extension (3 chars) .asm

$K Uppercase kind ERROR

sk Lowercase kind error

d Number 110324

Fm Message text

5% Percent %

\n New line

Example

ASMOPTIONS=-WmsgFonf"%k %d: %$m\n"

produces a message in following format:

information L10324: Linking successful

See also

ERRORFILE: Filename specification error environment variable

Assembler options:

-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode
-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
-WmsgFob: Message format for batch mode

-WmsgFoi: Message format for interactive mode

-WmsgFonf: Message format for no file information

6.3.55 -WmsgNe: Number of error messages

Group

Messages

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

218

Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

Scope
Assembly Unit
Syntax

-WmsgNe<number>

Arguments
<number>: Maximum number of error messages.

Default

50

Description

With this option the amount of error messages can be reported until the Assembler stops
assembling. Note that subsequent error messages which depends on a previous one may
be confusing.

Example

ASMOPTIONS=-WmsgNe2

The Assembler stops assembling after two error messages.
See also
Assembler options:

* -WmsgNi: Number of Information messages
* -WmsgNw: Number of Warning messages

6.3.56 -WmsgNi: Number of Information messages

Group
Messages
Scope

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 219

A\ 4
N
it of Assembler Option

Assembly Unit
Syntax

-WmsgNi<numbers>

Arguments
<number>: Maximum number of information messages.

Default

50

Description
With this option the maximum number of information messages can be set.

Example

ASMOPTIONS=-WmsgNil0

Only ten information messages are logged.
See also
Assembler options:

* -WmsgNe: Number of error messages
* -WmsgNw: Number of Warning messages

6.3.57 -WmsgNu: Disable user messages

Group
Messages
Scope
None

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

220 Freescale Semiconductor, Inc.

Chapter 6 Assembler Options

-WmsgNu [={a|b|c|d}]

Arguments

a: Disable messages about include files

p: Disable messages about reading files

: Disable messages about generated files

a: Disable messages about processing statistics

0

: Disable informal messages
Default

None

Description

The application produces some messages which are not in the normal message categories
(WARNING, INFORMATION, ERROR, or FATAL). With this option such messages
can be disabled. The purpose for this option is to reduce the amount of messages and to
simplify the error parsing of other tools:

* a: The application provides information about all included files. With this suboption
this option can be disabled.

* »: With this suboption messages about reading files e.g., the files used as input can be
disabled.

* <: Disables messages informing about generated files.

* a: At the end of the assembly, the application may provide information about
statistics, e.g., code size, RAM/ROM usage, and so on. With this suboption this
option can be disabled.

* <: With this option, informal messages (e.g., memory model, floating point format,
etc.) can be disabled.

NOTE
Depending on the application, not all suboptions may make
sense. In this case they are just ignored for compatibility.

Example

-WmsgNu=c

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 221

A 4
4\ |

it of Assembler Option

6.3.58 -WmsgNw: Number of Warning messages

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgNw<number>

Arguments
<number>: Maximum number of warning messages.

Default

50

Description
With this option the maximum number of warning messages can be set.

Example

ASMOPTIONS=-WmsgNwl5

Only 15 warning messages are logged.
See also
Assembler options:

* -WmsgNe: Number of error messages
* -WmsgNi: Number of Information messages

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

222 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

6.3.59 -WmsgSd: Setting a message to disable

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgSd<number>

Arguments

<number>: Message number to be disabled, e.g., 1501

Default

None

Description

With this option a message can be disabled so it does not appear in the error output.
Example

-WmsgSd1801

See also

Assembler options:

* -WmsgSe: Setting a message to Error
* -WmsgSi: Setting a message to Information
* -WmsgSw: Setting a Message to Warning

6.3.60 -WmsgSe: Setting a message to Error

Group
Messages

Scope

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 223

A\ 4
N
it of Assembler Option

Assembly Unit
Syntax

-WmsgSe<number>

Arguments

<number>: Message number to be an error, €.g., 1853
Default

None

Description

Allows changing a message to an error message.

Example

-WmsgSel853

See also
* -WmsgSd: Setting a message to disable
e -WmsgSi: Setting a message to Information
* -WmsgSw: Setting a Message to Warning

6.3.61 -WmsgSi: Setting a message to Information

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgSi<numbers>

Arguments

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

224 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

<number>: Message number to be an information, e.g., 1853
Default

None

Description

With this option a message can be set to an information message.

Example

-WmsgSi1853

See also
Assembler options:

* -WmsgSd: Setting a message to disable
* -WmsgSe: Setting a message to Error
* -WmsgSw: Setting a Message to Warning

6.3.62 -WmsgSw: Setting a Message to Warning

Group
Messages
Scope
Assembly Unit
Syntax

-WmsgSw<number>

Arguments

<number>: Error number to be a warning, e.g., 2901
Default

None

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 225

it of Assembler Option

With this option a message can be set to a warning message.

Example

-WmsgSw2901

See also
Assembler options:

* -WmsgSd: Setting a message to disable
* -WmsgSe: Setting a message to Error
* -WmsgSi: Setting a message to Information

6.3.63 -WOutFile: Create error listing file

Group
Messages
Scope
Assembly Unit
Syntax
~WOutFile (On|Off)
Arguments
None

Default

Error listing file is created.
Description

This option controls if a error listing file should be created at all. The error listing file
contains a list of all messages and errors which are created during a assembly process.
Since the text error feedback can now also be handled with pipes to the calling
application, it is possible to obtain this feedback without an explicit file. The name of the
listing file is controlled by the environment variable ERRORFILE: Filename
specification error.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

226 Freescale Semiconductor, Inc.

g |

4
Chapter 6 Assembler Options

-WOutFileOn

The error file is created as specified with errorriLE.

-WErrFileOff

No error file is created.
See also
Assembler options:

» -WETrrFile: Create "err.log" error file
e -WStdout: Write to standard output

6.3.64 -WStdout: Write to standard output

Group
Messages
Scope
Assembly Unit
Syntax

-WStdout (On|Off)

Arguments

None

Default

output is written to stdout
Description

With Windows applications, the usual standard streams are available. But text written
into them does not appear anywhere unless explicitly requested by the calling application.
With this option is can be controlled if the text to error file should also be written into
stdout.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 227

h o
g |

it of Assembler Option

Example

-WStdoutOn

All messages are written to stdout.

-WErrFileOff

Nothing is written to stdout.
See also
Assembler options:

» -WETrrFile: Create "err.log" error file
* -WOQOutFile: Create error listing file

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

228

Freescale Semiconductor, Inc.

Chapter 7
Sections

Sections are portions of code or data that cannot be split into smaller elements. Each
section has a name, a type, and some attributes.

Each assembly source file contains at least one section. The number of sections in an
assembly source file is only limited by the amount of memory available on the system at
assembly time. If several sections with the same name are detected inside of a single
source file, the code is concatenated into one large section.

Sections from different modules, but with the same name, will be combined into a single
section at linking time.

Sections are defined through Section attributes and Section types. The last part of the
chapter deals with the merits of using relocatable sections. (See Relocatable vs. absolute
sections)

7.1 Section attributes

An attribute is associated with each section according to its content. A section may be:

* a data section,
* a constant data section, or
* a code section.

7.1.1 Code sections

A section containing at least one instruction is considered to be a code section. Code
sections are always allocated in the target processor's rom area.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 229

secuon types

Code sections should not contain any variable definitions (variables defined using the ps
directive). You do not have any write access on variables defined in a code section. In
addition, variables in code sections cannot be displayed in the debugger as data.

7.1.2 Constant sections

A section containing only constant data definition (variables defined using the oc or pcs
directives) is considered to be a constant section. Constant sections should be allocated in
the target processor's rou area, otherwise they cannot be initialized at application loading
time.

7.1.3 Data sections

A section containing only variables (variables defined using the DS directive) is
considered to be a data section. Data sections are always allocated in the target
processor's RAM area.

NOTE
A section containing variables (ps) and constants (pc) or code is
not a data section. The default for such a section with mixed
DC and code content is to put that content into ROM.

We strongly recommend that you use separate sections for the definition of variables and
constant variables. This will prevent problems in the initialization of constant variables.

7.2 Section types

First of all, you should decide whether to use relocatable or absolute code in your
application. The Assembler allows the mixing of absolute and relocatable sections in a
single application and also in a single source file. The main difference between absolute
and relocatable sections is the way symbol addresses are determined.

This section covers these two types of sections:

e Absolute sections
e Relocatable sections

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

230 Freescale Semiconductor, Inc.

Chapter 7 Sections

7.2.1 Absolute sections

The starting address of an absolute section is known at assembly time. An absolute
section is defined through the ORG - Set Location Counter assembler directive. The
operand specified in the ORG directive determines the start address of the absolute
section. The following listing shows an example of constructing absolute sections using
the orc assembler directive.

Listing: Example source code using ORG for absolute sections

XDEF entry
ORG $8000 ; Absolute constant data section.

cstl: DC.B 826

cst2: DC.B $BC

ORG $080 ; Absolute data section.
var: DS.B 1

ORG $8010 ; Absolute code section.

entry:
LDA cstl ; Loads value in cstl
ADD cst2 ; Adds value in cst2
STA var ; Stores result into var

BRA entry

In the previous example, two bytes of storage are allocated starting at address saoo. The
constantvariable - st1 - will be allocated one byte at address $sooo0 and another constant -
cst2 - will be allocated one byte at address ssoo1. All subsequent instructions or data
allocation directives will be located in this absolute section until another section is
specified using the orc or secrron directives.

When using absolute sections, it is the user's responsibility to ensure that there is no
overlap between the different absolute sections defined in the application. In the previous
example, the programmer should ensure that the size of the section starting at address
ssooo 1S not bigger than s10 bytes, otherwise the section starting at ssooo and the section
starting at sso10 will overlap.

Even applications containing only absolute sections must be linked. In that case, there
should not be any overlap between the address ranges from the absolute sections defined
in the assembly file and the address ranges defined in the linker parameter (PRM) file.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 231

secuon types

The PRM file used to link the example above, can be defined as the following listing
displays.

Listing: Example PRM file for linking source code using ORG for absolute sections

LINK test.abs /* Name of the executable file generated. */
NAMES test.o /* Name of the object file in the application */

END

SECTIONS

/* READ ONLY memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file. */
MY ROM = READ ONLY 0x8000 TO OxFDFF;

/* READ WRITE memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly

source file. */

MY RAM = READ WRITE 0x0100 TO O0x023F;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY RAM. */

DEFAULT RAM, SSTACK INTO MY RAM;

/* Relocatable code and constant sections are allocated in MY ROM. */
DEFAULT_ ROM INTO MY ROM;

END

STACKSTOP $014F /* Initializes the stack pointer */

INIT entry /* entry is the entry point to the application. */

VECTOR ADDRESS OXFFFE entry /* Initialization for Reset vector.*/

The linker PRM file contains at least:

* The name of the absolute file (nzxx command).

» The name of the object file which should be linked (vaves command).

 The specification of a memory area where the sections containing variables must be
allocated. At least the predefined peravrr ram (or its ELF alias ~.data') section must be
placed there. For applications containing only absolute sections, nothing will be
allocated (secrrons and pracement commands).

» The specification of a memory area where the sections containing code or constants
must be allocated. At least the predefined section peraurt rom (or its ELF alias ~.aata')
must be placed there. For applications containing only absolute sections, nothing will
be allocated (secrrons and pracement commands).

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

232 Freescale Semiconductor, Inc.

Chapter 7 Sections

 The specification of the application entry point (zxnrr command)
e The definition of the reset vector (vecror appress command)

7.2.2 Relocatable sections

The starting address of a relocatable section is evaluated at linking time according to the
information stored in the linker parameter file. A relocatable section is defined through
the SECTION - Declare Relocatable Section assembler directive. The following listing
shows an example using the secrron directive.

Listing: Example source code using SECTION for relocatable sections

XDEF entry

constSec: SECTION ; Relocatable constant data section.
cstl: DC.B S$A6
cst2: DC.B S$BC
dataSec: SECTION ; Relocatable data section.
var: DS.B 1
codeSec: SECTION ; Relocatable code section.
entry:
LDA cstl ; Load value into cstl
ADD cst2 ; Add value in cst2
STA var ; Store into var

BRA entry

In the previous example, two bytes of storage are allocated in the constsec section. The
constant cst1 is allocated at the start of the section at address sao0 and another constant
cst2 18 allocated at an offset of 1 byte from the beginning of the section. All subsequent
instructions or data allocation directives will be located in the relocatable constSec
section until another section is specified using the orc or secrion directives.

When using relocatable sections, the user does not need to care about overlapping
sections. The linker will assign a start address to each section according to the input from
the linker parameter file.

The user can decide to define only one memory area for the code and constant sections
and another one for the variable sections or to split the sections over several memory
areas.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 233

secuon types

7.2.2.1 Example: Defining one RAM and one ROM area.

When all constant and code sections as well as data sections can be allocated
consecutively, the PRM file used to assemble the example above can be defined as the
following listing displays.

Listing: PRM file for defining one RAM area and one ROM area

LINK test.abs/* Name of the executable file generated. */
NAMES test.o /* Name of the object file in the application */
END
SECTIONS
/* READ ONLY memory area. */

MY ROM = READ ONLY 0x8000 TO OxFDFF;

/* READ WRITE memory area. */
MY RAM = READ WRITE 0x0100 TO 0x023F;

END

PLACEMENT

/* Relocatable variable sections are allocated in MY RAM. */
DEFAULT_RAM, dataSec , SSTACK INTO MY RAM;

/* Relocatable code and constant sections are allocated in MY ROM. */

DEFAULT_ROM, constSec INTO MY ROM;
END
INIT entry /* entry is the entry point to the application. */

VECTOR ADDRESS OXFFFE entry /* Initialization for Reset vector.*/

The linker PRM file contains at least:

The name of the absolute file (rzvx command).

The name of the object files which should be linked (xaves command).

The specification of a memory area where the sections containing variables must be
allocated. At least the predefined peravrT ram section (or its ELF alias .4aata) must be
placed there (secrrons and pracement commands).

The specification of a memory area where the sections containing code or constants
must be allocated. At least, the predefined peraurt rom section (or its ELF alias . text)
must be placed there (secrrons and pracement commands).

Constants sections should be defined in the ROM memory area in the pracevenT
section (otherwise, they are allocated in RAM).

The specification of the application entry point (zvrr command).

The definition of the reset vector (vector appress command).

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

234 Freescale Semiconductor, Inc.

g |

4
Chapter 7 Sections

According to the PRM file listed above:

* the datasec section will be allocated starting at oxooso.
* the cogesec section will be allocated starting at oxosoo.
* the constsec section will be allocated next to the codesec section.

7.2.2.2 Example: Defining multiple RAM and ROM areas

When all constant and code sections as well as data sections cannot be allocated
consecutively, the PRM file used to link the example above can be defined as the
following listing displays:

Listing: PRM file for defining multiple RAM and ROM areas

LINK test.abs /* Name of the executable file generated. */
NAMES

test.o /* Name of the object file in the application. */
END
SECTIONS

/* Two READ_ONLY memory areas */
ROM_AREA 1= READ ONLY 0x8000 TO 0x800F;
ROM_AREA 2= READ ONLY 0x8010 TO OxFDFF;
/* Three READ WRITE memory areas */
RAM AREA 1= READ WRITE 0x0040 TO Ox00FF; /* zero-page memory area */
RAM AREA 2= READ WRITE 0x0100 TO OxO01FF;
MY_STK = READ_WRITE 0x0200 TO 0x023F; /* Stack memory area */
END
PLACEMENT

/* Relocatable variable sections are allocated in MY RAM. */

dataSec INTO RAM AREA 2;
DEFAULT RAM INTO RAM AREA 1;
SSTACK INTO MY STK; /* Stack allocated in MY STK */

/* Relocatable code and constant sections are allocated in MY ROM. */
constSec INTO ROM_AREA 2;
codeSec, DEFAULT ROM INTO ROM AREA 1;

END

INIT entry /* Application's entry point. */

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 235

rieiocatable vs. absolute sections

VECTOR 0 entry /* Initialization of the reset vector. */

The linker PRM file contains at least:

* The name of the absolute file (nzxx command).

* The name of the object files which should be linked (vaves command).

 The specification of memory areas where the sections containing variables must be
allocated. At least, the predefined peraurT ram section (or its ELF alias ~.data') must
be placed there (SECTIONS and PLACEMENT commands).

 The specification of memory areas where the sections containing code or constants
must be allocated. At least the predefined peraurt rom section (or its ELF alias ~.cext')
must be placed there (secrrons and pracement commands).

 Constants sections should be defined in the ROM memory area in the rracevent
section (otherwise, they are allocated in RAM).

 The specification of the application entry point (zxrr command)

* The definition of the reset vector (vecror command)

According to the PRM file listed above:

* the datasec section is allocated starting at oxo1o0.

* the constSec section is allocated starting at oxsooo.

* the codesec section is allocated starting at oxso1o.

» 64 bytes of RAM are allocated in the stack starting at oxozoo.

7.3 Relocatable vs. absolute sections

Generally, we recommend developing applications using relocatable sections.
Relocatable sections offer several advantages.

7.3.1 Modularity

An application is more modular when programming can be divided into smaller units
called sections. The sections themselves can be distributed among different source files.

7.3.2 Multiple developers

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

236 Freescale Semiconductor, Inc.

Chapter 7 Sections

When an application is split over different files, multiple developers can be involved in
the development of the application. To avoid major problems when merging the different
files, attention must be paid to the following items:

* An include file must be available for each assembly source file, containing xrzr
directives for each exported variable, constant and function. In addition, the interface
to the function should be described there (parameter passing rules as well as the
function return value).

* When accessing variables, constants, or functions from another module, the
corresponding include file must be included.

* Variables or constants defined by another developer must always be referenced by
their names.

» Before invoking a function implemented in another file, the developer should respect
the function interface, i.e., the parameters are passed as expected and the return value
is retrieved correctly.

7.3.3 Early development

The application can be developed before the application memory map is known. Often
the application's definitive memory map can only be determined once the size required
for code and data can be evaluated. The size required for code or data can only be
quantified once the major part of the application is implemented. When absolute sections
are used, defining the definitive memory map is an iterative process of mapping and
remapping the code. The assembly files must be edited, assembled, and linked several
times. When relocatable sections are used, this can be achieved by editing the PRM file
and linking the application.

7.3.4 Enhanced portability

As the memory map is not the same for each derivative (MCU), using relocatable
sections allow easy porting of the code for another MCU. When porting relocatable code
to another target you only need to link the application again with the appropriate memory
map.

7.3.5 Tracking overlaps

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 237

A\ 4

N
rnieiocatable vs. absolute sections
When using absolute sections, the programmer must ensure that there is no overlap
between the sections. When using relocatable sections, the programmer does not need to
be concerned about any section overlapping another. The labels' offsets are all evaluated
relatively to the beginning of the section. Absolute addresses are determined and assigned
by the linker.

7.3.6 Reusability

When using relocatable sections, code implemented to handle a specific I/O device (serial
communication device), can be reused in another application without any modification.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

238 Freescale Semiconductor, Inc.

Chapter 8
Assembler Syntax

An assembler source program is a sequence of source statements. Each source statement
is coded on one line of text and can be either a:

e Comment line or a
e Source line.

8.1 Comment line

A comment can occupy an entire line to explain the purpose and usage of a block of
statements or to describe an algorithm. A comment line contains a semicolon followed by
a text, as listed the following listing. Comments are included in the assembly listing, but
are not significant to the Assembler.

An empty line is also considered to be a comment line.

Listing: Examples of comments

; This is a comment line followed by an empty line and non comments
. (non comments)

8.2 Source line

Each source statement includes one or more of the following four fields:

e a Label field,

* an Operation field,

* one or several operands, or
e a comment.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 239

swuurce line

Characters on the source line may be either upper or lower case. Directives and
instructions are case-insensitive, whereas symbols are case-sensitive unless the assembler
option for case insensitivity on label names (-Ci: Switch case sensitivity on label names
OFF) is activated.

8.2.1 Label field

The label field is the first field in a source line. A label is a symbol followed by a colon.
Labels can include letters (A-Z or a-z), underscores, periods and numbers. The first
character must not be a number.

NOTE
For compatibility with other Assembler vendors, an identifier
starting on column 1 is considered to be a label, even when it is
not terminated by a colon. When the -MCUasm: Switch
compatibility with MCUasm ON assembler option is activated,
you MUST terminate labels with a colon. The Assembler
produces an error message when a label is not followed by a
colon.

Labels are required on assembler directives that define the value of a symbol (ser or qu).
For these directives, labels are assigned the value corresponding to the expression in the
operand field.

Labels specified in front of another directive, instruction or comment are assigned the
value of the location counter in the current section.

NOTE
When the Macro Assembler expands a macro it generates
internal symbols starting with an underscore -_'. Therefore, to
avoid potential conflicts, user defined symbols should not begin
with an underscore

NOTE
For the Macro Assembler, a .z or .w at the end of a label has a
specific meaning. Therefore, to avoid potential conflicts, user-
defined symbols should not end with .z or .w.

8.2.2 Operation field

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

240 Freescale Semiconductor, Inc.

g |

4
Chapter 8 Assembler Syntax
The operation field follows the label field and is separated from it by a white space. The
operation field must not begin in the first column. An entry in the operation field is one of
the following:

e an instruction's mnemonic - an abbreviated, case-insensitive name for a member in
the Instruction set

* a Directive name, or

* a Macro name.

8.2.2.1 Instruction set

Executable instructions for the M68HCO8 processor are defined in the CPUOS Reference
Manual.

8.2.2.1.1 HCOS8 instruction set

The following table presents an overview of the instructions available for the HCOS:

Table 8-1. HCO08 instruction set

Instruction Addressing modes Descriptions
ADC #<expression> <expression> Add with Carry
<expression>,X ,X <expression>,SP
ADD #<expression> <expression> Add without carry
<expression>,X ,X <expression>,SP
AIS #<expression> Add Immediate value (signed) to Stack
Pointer
AIX #<expression> Add Immediate value (signed) to Index
register H:X
AND #<expression> <expression> Logical AND
<expression>,X ,X <expression>,SP
ASL <expression> <expression>,X ,X Arithmetic Shift Left
<expression>,SP
ASLA Arithmetic Shift Left Accumulator
ASLX Arithmetic Shift Left register X
ASR <expression> <expression>,X ,X Arithmetic Shift Right
<expression>,SP
ASRA Arithmetic Shift Right Accumulator
ASRX Arithmetic Shift Right register X
BCC <label> Branch if Carry bit Clear
BCLR BitNumber, <expression> Clear one Bit in memory
BCS <label> Branch if Carry bit Set

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

241

r
4\ |

duurce line
Table 8-1. HCO08 instruction set (continued)
Instruction Addressing modes Descriptions
BEQ <label> Branch if Equal
BGE <label> Branch if Greater Than or Equal to
BGND Enter Background Debug Mode. Only
available for HCS08 (-CS08 option)
BGT <label> Branch if Greater Than
BHCC <label> Branch if Half Carry bit Clear
BHCS <label> Branch if Half Carry bit Set
BHI <label> Branch if Higher
BHS <label> Branch if Higher or Same
BIH <label> Branch if /IRQ Pin High
BIL <label> Branch if /IRQ Pin Low
BIT #<expression> <expression> Bit Test
<expression>,X ,X <expression>,SP
BLE <label> Branch if Less Than or Equal To
BLO <label> Branch if Lower (same as BCS)
BLS <label> Branch if Lower or Same
BLT <label> Branch if Less Than
BMC <label> Branch if interrupt Mask Clear
BMI <label> Branch if Minus
BMS <label> Branch If interrupt Mask Set
BNE <label> Branch if Not Equal
BPL <label> Branch if Plus
BRA <label> Branch Always
BRCLR BitNumber, <expression>, <label> Branch if Bit is Clear
BRN <label> Branch Never
BRSET BitNumber, <expression>, <label> Branch if Bit Set
BSET BitNumber,<expression> Set Bit in memory
BSR <label> Branch to Subroutine
CBEQ <expression>,<label> <expression>,X Compare and Branch if Equal
+,<label> X+,<label>
<expression>,SP,<label>
CBEQA #<expression>,<label>
CBEQX #<expression>,<label>
CLC Clear Carry bit
CLI Clear Interrupt mask bit
CLR <expression> <expression>,X ,X Clear memory
<expression>,SP
CLRA Clear Accumulator A
CLRH Clear index Register H
CLRX Clear index Register X

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

242 Freescale Semiconductor, Inc.

g |

Chapter 8 Assembler Syntax

Table 8-1. HCO08 instruction set (continued)

Instruction

Addressing modes

Descriptions

CMP #<expression> <expression> Compare accumulator with memory
<expression>,X ,X <expression>,SP
COM <expression> <expression>,X ,X One's complement on memory location
<expression>,SP
COMA One's complement on accumulator A
COMX One's complement on register X
CPHX #<expression> <expression> Compare index register H:X with
<expression>,SP memory Stack pointer and Extended
addressing modes only available for
HCS08 (-CS08 option)
CPX #<expression> <expression> Compare index register X with memory
<expression>,X ,X <expression>,SP
DAA Decimal Adjust Accumulator
DBNZ <expression>,<label> Decrement counter and Branch if Not
<expression>,X,<label> X,<label> Zero
<expression>,SP,<label>
DBNZA <label>
DBNzZX <label>
DEC <expression> <expression>,X ,X Decrement memory location
<expression>,SP
DECA Decrement Accumulator
DECX Decrement Index register
DIV Divide
EOR #<expression> <expression> Exclusive OR Memory with accumulator
<expression>,X ,X <expression>,SP
INC <expression> ,X <expression>,X Increment memory location
<expression>,SP
INCA Increment Accumulator
INCX Increment register X
JMP <expression> <expression>,X ,X Jump to label
JSR <expression> <expression>,X ,X Jump to Subroutine
LDA #<expression> <expression> Load Accumulator
<expression>,X ,X <expression>,SP
LDHX #<expression> <expression> Load Index register H:X from memory
<expression>,X ,X <expression>,SP Indexed, Stack pointer and extended
addressing modes are only available for
HCS08 (-CS08 option).
LDX #<expression> <expression> Load index Register X from memory
<expression>,X ,X <expression>,SP
LSL <expression> <expression>,X ,X Logical Shift Left in memory
<expression>,SP
LSLA Logical Shift Left Accumulator
LSLX Logical Shift Left register X
LSR <expression> <expression>,X ,X Logical Shift Right in memory

<expression>,SP

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

243

r
4\ |

duurce line
Table 8-1. HCO08 instruction set (continued)
Instruction Addressing modes Descriptions

LSRA Logical Shift Right Accumulator

LSRX Logical Shift Right register X

MOV <expression>,<expression> Memory-to-memory byte Move
<expression>, X+
#<expression>,<expression> X
+,<expression>

MUL Unsigned multiply

NEG <expression> <expression>,X ,X Two's complement in memory
<expression>,SP

NEGA Two's complement on Accumulator

NEGX Two's complement on register X

NOP No operation

NSA Nibble Swap Accumulator

ORA #<expression> <expression> Inclusive OR between Accumulator and
<expression>,X ,X <expression>,SP memory

PSHA Push Accumulator onto stack

PSHH Push index register H onto stack

PSHX Push index register X onto stack

PULA Pull Accumulator from stack

PULH Pull index register H from stack

PULX Pull index register X from stack

ROL <expression> <expression>,X ,X Rotate memory Left
<expression>,SP

ROLA Rotate Accumulator Left

ROLX Rotate register X Left

ROR <expression> <expression>,X ,X Rotate memory Right
<expression>,SP

RORA Rotate Accumulator Right

RORX Rotate register X Right

RSP Reset Stack Pointer

RTI Return from Interrupt

RTS Return from Subroutine

SBC #<expression> <expression> Subtract with Carry
<expression>,X ,X <expression>,SP

SEC Set Carry bit

SEI Set Interrupt mask bit

STA <expression> <expression>,X ,X Store Accumulator in Memory
<expression>,SP

STHX <expression> <expression>,SP Store Index register H:X Stack pointer

and extended addressing modes are
only available for HCS08 (-CS08 option)
STOP Enable IRQ pin and Stop oscillator

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

244

Freescale Semiconductor, Inc.

g |

Chapter 8 Assembler Syntax

Table 8-1. HCO08 instruction set (continued)

Instruction

Addressing modes

Descriptions

STX <expression> <expression>,X ,X Store index register X in memory
<expression>,SP

SuUB #<expression> <expression> Subtract
<expression>,X ,X <expression>,SP

SWI Software Interrupt

TAP Transfer Accumulator to CCR

TAX Transfer Accumulator to index Register

X

TPA Transfer CCR to Accumulator

TST <expression> <expression>,X ,X Test memory for negative or zero
<expression>,SP

TSTA Test Accumulator for negative or zero

TSTX Test register X for negative or zero

TSX Transfer SP to index register H:X

TXA Transfer index register X to Accumulator

TXS Transfer index register X to SP

WAIT Enable interrupts; stop processor

8.2.2.1.2 Special HCSO08 instructions

The following table lists the instructions which HCSO08 core provides in addition to the

HCOS core instructions:

Table 8-2. Special HC(S)08 instructions

Instruction Addressing modes Descriptions
BGND Enter Background Debug Mode. Only
available with the -CS08/-C08/-CRS08:
Derivative family assembler options.
CPHX #<expression> <expression> Compare index register H:X with
<expression>,SP memory Stack pointer and extended
addressing modes are only available
with the -CS08, -C08, or -CRS08
assembler options.
LDHX #<expression> <expression> Load index register H:X from memory
<expression>,X ,X <expression>,SP Indexed, stack pointer, and extended
addressing modes are only available
with the -CS08 option
STHX <expression> <expression>,SP Store index register H:X Stack pointer

and extended addressing modes are
only available with the -cso8goption.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

245

\
Y

y
A

swuurce line

8.2.2.1.3 RSO08 instruction set

The following table presents an overview of the instructions available for the RS0S.

Table 8-3. RSO08 instructions set

Instruction Addressing Modes Description

ADC #<expression> <expression> ,X D[X] X |Add with Carry

ADCX Alias for ADC X

ADD #<expression> <expression> ,X D[X] X |Add without Carry

ADDX Alias for ADD X

AND #<expression> <expression> ,X D[X] X |Logical AND

ANDX Alias for AND X

ASLA Arithmetic Shift Left Accumulator (alias

for LSLA)

BCC <label> Branch if Carry Bit Clear

BCLR BitNumber, <expression> Clear one Bit in Memory
BitNumber,D[X] BitNumber,X

BCS <label> Branch if Carry Bit Set

BEQ <label> Branch if Equal

BGND Background

BHS <label> Branch if Higher or Same

BLO <label> Branch if Lower

BNE <label> Branch if Not Equal

BRN <label> Branch Never (Alias for BRA *+$2)

BRCLR BitNumber, <expression>, <label> Branch if Bit is Clear
BitNumber,D[X],<label>
BitNumber, X,<label>

BRSET BitNumber, <expression>, <label> Branch if Bit Set
BitNumber,D[X],<label>
BitNumber,X,<label>

BSET BitNumber,<expression> Set Bit in Memory
BitNumber,D[X] BitNumber,X

BSR <label> Branch to Subroutine

CBEQ <expression>,<label> Compare and Branch if Equal
#<expression>,<label> ,X,<label>
D[X],<label> X,<label>

CBEQA <label>

CBEQX <label>

CLC Clear Carry Bit

CLR <expression> ,X D[X] X Clear Memory

CLRX Clear Index Register X

CMP #<expression> <expression> ,X D[X] X |Compare Accumulator with Memory

COMA Complement (One's Complement)

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

246

Freescale Semiconductor, Inc.

g |

Chapter 8 Assembler Syntax

Table 8-3. RSO08 instructions set (continued)

Instruction

Addressing Modes

Description

DBNZ <expression>,<label> ,X,<label> Decrement Counter and Branch if Not
D[X],<label> X,<label> Zero
DBNZA <label>
DBNZX <label>
DEC <expression> ,X D[X] X Decrement Memory Location
DEC <$13 Force tiny addressing (will use $03)
DECA Decrement Accumulator
DECX Decrement Index Register
EOR #<expression> <expression> D[X] ,X X |Exclusive OR Memory with Accumulator
EORX Exclusive OR (index register and
accumulator)
INC <expression> ,X D[X] X Increment Memory Location
INC >$01 Force direct addressing
INCA Increment Accumulator
INCX Increment Register X
JMP <label> Jump to Label
JSR <label> Jump to Subroutine
LDA #<expression> <expression> ,X D[X] X |Load Accumulator indexed
LDA <$0FF Force short addressing (will use $1F)
LDX #<expression> <expression> ,X D[X] X |Load Index Register X from Memory
LDX $OFF Load Direct
LSLA Logical Shift Left Accumulator
LSRA Logical Shift Right Accumulator
MOV <expression>,<expression> Memory to Memory Byte Move
#<expression>,<expression>
D[X],<expression> <expression>,D[X]
#<expression>,D[X]
NOP No Operation
ORA #<expression> <expression> ,X D[X] X |Inclusive OR between Accumulator and
Memory
ORAX Inclusive OR between Accumulator and
Index Register
ROLA Rotate Accumulator Left
RORA Rotate Accumulator Right
RTS Return from Subroutine
SBC #<expression> <expression> ,X D[X] X |Subtract with Carry
SBCX Subtract with Carry (Index Register
content from Accumulator)
SEC Set Carry Bit
SHA Swap Shadow PC High with A
SLA Swap Shadow PC Low with A
STA <expression> ,X D[X] X Store Accumulator in Memory

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

247

3
4

4
A

swuurce line

Table 8-3. RSO08 instructions set (continued)

Instruction Addressing Modes Description

STOP Stop Processing

STX <expression> Store Index Register X in Memory

SuB #<expression> <expression> ,X D[X] Subtract

SUBX

TAX Transfer Accumulator to Index Register
X

TST #<expression> <expression> ,X D[X] Test for zero (alias for MOV
<expression>,<expression>)

TSTA Test Accumulator (alias for ORA #0)

TSTX Test Index Register X (alias for MOV
X, X)

TXA Transfer Index Register X to
Accumulator

WAIT Enable Interrupts; Stop Processor

NOTE
For RS08 both D[X] and ,X notations refer to the memory
location $000E. The ,X notation is supported for compatibility
reasons with HC(S)08. Wherever ,X is supported, D[X] is also
supported. In situations where the use of ,X would lead to
double commas (e.g. BCLR 0,,X) the use of ,X is not allowed.

8.2.2.2 Directive

Assembler directives are described in the Assembler Directives chapter of this manual.

8.2.2.3 Macro

A user-defined macro can be invoked in the assembler source program. This results in the
expansion of the code defined in the macro. Defining and using macros are described in
the Macros chapter in this manual.

8.2.3 Operand field: Addressing modes (HC(S)08)

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

248 Freescale Semiconductor, Inc.

g |

4
Chapter 8 Assembler Syntax

The operand fields, when present, follow the operation field and are separated from it by
a white space. When two or more operand subfields appear within a statement, a comma
must separate them.

The following table lists the addressing mode notations allowed in the operand field:

Table 8-4. HC(S)08 addressing mode notation

Addressing Mode Notation Example
Inherent No operands RSP
Immediate #<expression> ADC #$01
Direct <expression> ADC byte
Extended <expression> ADC word
Indexed, no offset X ADC X
Indexed, 8-bit offset <expression>,X ADC Offset, X
Indexed, 16-bit offset <expression>,X ADC Offset,X
Relative <label> BRA Label
Stack Pointer, 8-bit offset <expression>,SP ADC Offset,SP
Stack Pointer, 16-bit offset <expression>,SP ADC Offset,SP
Memory-to-memory immediate-to-direct |#<expression>,<expression> MOV #3$05,MyDataByte
Memory-to-memory direct-to-direct <expression>,<expression> MOV DatlLoc1,DatLoc2
Memory-to-memory indexed-to-direct X+,<expression> MOV X+,<expression>
with post- increment
Memory-to-memory direct-to-indexed <expression>,X+ MOV <expression>,X+
with post- increment
Indexed with post-increment X+ CBEQ X+, Data
Indexed, 8-bit offset, with post-increment | #<expression>,X+ CBEQ #offset,X+,Data

8.2.3.1 Inherent

Instructions using this addressing mode do not have any associated instruction fetch.
Some of them are acting on data in the CPU registers. The following listing shows the
inherent addressing-mode instructions.

Listing: Inherent addressing-mode instructions

CLRA
DAA

8.2.3.2 Immediate

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 249

swuurce line

The opcode contains the value to use with the instruction rather than the address of this
value.

The effective address of the instruction is specified using the # character, as listed in the
following listing:

Listing: Immediate addressing mode

XDEF Entry
initStack: EQU $0400

MyData: SECTION
data: DS.B 1
MyCode : SECTION
Entry:

LDHX #initStack ; init Stack Pointer
TXS ; with value $400-1 = SO3FF

main: LDA #100 ; load register A with (decimal) 100
BRA main

In this example, the hexadecimal value so400 is loaded in value in the register HX and the
decimal value 100 is loaded into register A.

8.2.3.3 Direct

The direct addressing mode is used to address operands in the direct page of the memory
(location $0000 to $O0FF).

For most of the direct instructions, only two bytes are required: the first byte is the
opcode and the second byte is the operand address located in page zero. See the following
listing for an example of the direct addressing mode.

Listing: Direct addressing mode

XDEF Entry
initStack: EQU $0400

MyData: SECTION SHORT
data: DS.B 1
MyCode: SECTION
Entry:

LDHX #initStack ; init Stack Pointer

TXS ; with value $400 - 1 = SO3FF

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

250 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

main: LDA #3$55
STA data
BRA main
In this example, the value sss is stored in the variable data, which is located on the direct

page. The mypata section must be defined in the direct page in the linker parameter file.
The opcode generated for the sta data instruction is two bytes long.

8.2.3.4 Extended

The extended addressing mode is used to access memory location located above the
direct page in a 64-kilobyte memory map.

For the extended instructions, three bytes are required: the first byte is the opcode and the
second and the third bytes are the most and least significant bytes of the operand address.
See the following listing for an example of the extended addressing mode.

Listing: Extended addressing mode

XDEF Entry
initStack: EQU $0400

ORG SBOO
data: DS.B 1
MyCode : SECTION
Entry:
LDHX #initStack ; init Stack Pointer
TXS ; with value $400-1 = SO3FF
main: LDA #$55

STA data
BRA main
In this example, the value sss is stored in the variable data. This variable is located at

address sosoo in the memory map. The opcode of the stadata instruction is then three bytes
long.

8.2.3.5 Indexed, no offset

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 251

swuurce line

This addressing mode is used to access data with variable addresses through the HX
index register of the HCO8 controller. The X index register contains the least significant
byte of the operand while the H index register contains the most significant byte.

Indexed, no offset instructions are one byte long. See the following listing for an example
of using the indexed (no offset) addressing mode.

Listing: Indexed (no offset) addressing mode
Entry:

LDHX #SOFFE

LDA X

JMP X

The value stored in memory location sorre 1s loaded into accumulator A. The sve
instruction causes the program to jump to the address pointed to by the HX register.

8.2.3.6 Indexed, 8-bit offset

This addressing mode is useful when selecting the k-th element in an n-element table.
The size of the table is limited to 256 bytes.

Indexed, 8-bit offset instructions are two byte long. The first byte is the opcode and the
second byte contains the index register offset byte. See the following listing for an
example of using the indexed (8-bit offset) addressing mode.

Listing: Index (8-bit offset) addressing mode

XDEF Entry
initStack: EQU $0400

MyData: SECTION SHORT
data: DS.B 8
MyCode : SECTION
Entry:

LDHX #initStack ; init Stack Pointer
TXS ; with value $400-1 = S$SO3FF

main:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

252 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

LDHX #data

LDA 5 ,X

JMP SFF,X

The value contained in the memory at the location calculated using the address of data
(pointed to by the HX register) + 5 is loaded in accumulator A. The sve instruction causes
the program to jump to the address pointed to by the HX register + srr.

8.2.3.7 Indexed, 16-bit offset

This addressing mode is useful when selecting the k-th element in an n-element table.
The size of the table is limited to srrrr bytes.

Indexed,16-bit offset instructions are three byte long. The first byte contains the opcode
and the second and the third the high and low index register offset bytes. See the
following listing for an example of using the indexed (16-bit offset) addressing mode.

Listing: Indexed (16-bit offset) addressing mode

XDEF Entry
initStack: EQU $0400

MyData: SECTION
data: DS.B 8
MyCode : SECTION
Entry:

LDHX #initStack ; init Stack Pointer

TXS ; with value $400-1 = SO3FF
main:

LDHX #table

STA $500 ,X

J

MP $1000,X

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 253

swuurce line

The value contained in the memory at the location calculated using the address of data
(pointed to by register HX) + $500 is loaded in accumulator A. The JMP instruction
causes the program to jump to the address pointed to by the HX register + $1000.

8.2.3.8 Relative

This addressing mode is used by all branch instructions to determine the destination
address. The signed byte following the opcode is added to the contents of the program
counter.

As the offset is coded on a signed byte, the branching range is -127 to +128. The
destination address of the branch instruction must be in this range. See the following
listing for an example of using the relative addressing mode.

Listing: Relative addressing mode

main:
NOP

NOP

BRA main

8.2.3.9 Stack Pointer, 8-bit offset

Stack Pointer, 8-bit offset instructions behave the same way than Indexed 8-bit offset
instructions, except that the offset is added to the Stack Pointer SP in place of the HX
Index register.

This addressing mode allow easy access of the data on the stack. If the interrupts are
disabled, the Stack pointer can also be used as a second Index register. See the following
listing for an example of using the Stack Pointer *8-bit offset) addressing mode.

Listing: Stack Pointer (8-bit offset) addressing mode

entry:
LDHX #$0500 ; 1init Stack Pointer to 04FF
TXS
LDA #3540
STA $50, SP ; Location $54F = $40

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

254 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

In this example, stack pointer, 8-bit offset mode is used to store the value $40 in memory
location gsar.

8.2.3.10 Stack Pointer, 16-bit offset

Stack Pointer, 16-bit offset instructions behave the same way than Indexed, 16-bit offset
instructions, except that the offset is added to the Stack Pointer (SP) in place of the HX
Index register.

This addressing mode allow easy access of the data on the stack. If the interrupts are
disabled, the Stack pointer can also be used as a second Index register. See the following
listing for an example of using the Stack Pointer (16-bit offset) addressing mode.

Listing: Stack Pointer (16-bit offset) addressing mode

entry:
LDHX #$0100 ; init Stack Pointer to O0OFF

TXS

LDA $0500, SP ; Content of memory location S$5FF is loaded in A

In this example, stack pointer, 16-bit offset mode is used to store the value in memory
location $5FF in accumulator A.

8.2.3.11 Memory-to-memory immediate-to-direct

This addressing mode is generally used to initialize variables and registers in page zero.
The register A is not affected. See the following listing for an example for using the
memory-to- memory immediate-to-direct addressing mode.

Listing: Memory-to-memory immediate-to-direct addressing mode

MyData: EQU $50
entry:

MOV #$20, MyData

The mov #$20,mypata instruction stores the value s20 in memory location $so*mypata:.

8.2.3.12 Memory-to-memory direct-to-direct

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 255

swuurce line

This addressing mode is generally used to transfer variables and registers in page zero.
The A register is not affected. See the following listing for an example of using the
memory-to- memory direct-to-direct addressing mode.

Listing: Memory-to-memory direct-to-direct addressing mode

MyDatal: EQU $50
MyDataz2: EQU $51

entry:

MOV #$10, MyDatal

MOV MyDatal, MyData2
The mov #310,mypata1 instruction stores the value $10 in memory location $s0*mypata1' using
the memory-to-memory Immediate-to-Direct addressing mode. The mov mypatai,mypataz

instruction moves the content of mypatai into mypata2 using memory to memory Direct-to-
Direct addressing mode. The content of mypataz (memory location gs1) is then s1o.

8.2.3.13 Memory-to-memory indexed-to-direct with post- increment

This addressing mode is generally used to transfer tables addressed by the index register
to a register in page zero.

The operand addressed by the HX index register is stored in the direct page location
addressed by the byte following the opcode. The HX index register is automatically
incremented. The A register is not affected. See the following listing for an example of
using the memory-to-memory indexed to direct with post-increment addressing mode.

Listing: Memory-to-memory indexed-to-direct with post increment addressing
mode

XDEF Entry
ConstSCT: SECTION

Const: pc.s 1,11,21,31,192,12,0
DataSCT: SECTION SHORT
MyReg: DS.B 1
CodeSCT: SECTION
Entry: LDHX #SO00FF
TXS
main:
LDHX #Const
LOOP: MOV X+, MyReg

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

256 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

BEQ main

BRA LOOP

In this example, the table const contains seven bytes defined in a constant section in
ROM. The last value of this table is zero.

The HX register is initialized with the address of const. All the values of this table are
stored one after another in page-zero memory location myreg using the mov x+, mMyreg
instruction. When the value o is encountered, the HX register is reset with the address of
the first element of the #const table.

8.2.3.14 Memory-to-memory direct-to-indexed with post- increment

This addressing mode is generally used to fill tables addressed by the index register from
registers in page zero.

The operand in the direct page location addressed by the byte following the opcode is
stored in the memory location pointed to by the HX index register. The HX index register
is automatically incremented. The A register is not affected. See the following listing for
an example of using the memory-to-memory direct-to-indexed with post-increment
addressing mode.

Listing: Memory-to-memory direct-to-indirect with post-increment addressing
mode

XDEF entry

MyData: SECTION SHORT
MyRegl: DS.B 1
MyReg2: DS.B 1
MyCode : SECTION
entry:

LDA #3502

STA MyRegl
INCA

STA MyReg2
LDHX #$1000
MOV MyRegl, X+
MOV MyReg2, X+

main: BRA main

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 257

swuurce line

The page-zero memory locations myreg1 and myreg2 are first respectively initialized with
so2 and so03. The contents of those data are then written in memory location 1000 and
s1001. The HX register points to memory location s1o02.

8.2.3.15 Indexed with post-increment

The operand is addressed then the HX register is incremented.

This addressing mode is useful for searches in tables. It is only used with the czro
instruction. See the following listing for an example of an example of using the indexed
with post-increment addressing mode.

Listing: Example of the indexed with post-increment addressing mode

XDEF Entry
ORG SF000

data: DC.B 1,11,21,31,3C0,12
CodeSCT: SECTION
Entry: LDHX #SO00FF
TXS
main:
LDA #sCO
LDHX #data
LOOP: CBEQ X+,IS_EQUAL
BRA LOOP
IS EQUAL: ...

Using this addressing mode, it is possible to scan the memory to find a location
containing a specific value.

The value located at the memory location pointed to by HX is compared to the value in
the A register. If the two values match, the program branches to 1s_rguar. HX points to the
memory location next to the one containing the searched value.

In this example, the value sco is searched starting at memory location grooo. This value is
found at the memory location sroo4, the program branches to 1s_rouar, and the HX register
contains $roos.

8.2.3.16 Indexed, 8-bit offset, with post-increment

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

258 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

The address of the operand is the sum of the 8-bit offset added to the value in register
HX.

The operand is addressed, then the HX register is incremented.

This addressing mode is useful for searches in tables. It is only used with the czro
instruction. See the following listing for an example of the indexed (8-bit offset) with
post-increment addressing mode.

Listing: Indexed (8-bit offset) with post-increment addressing mode

XDEF Entry
ORG SF000

data: DCB.B $40,3$00
DC.B 1,11,21,31,$C0,12 ; $CO is located at $F000+$40+4

CodeSCT: SECTION

Entry: LDHX #SO0FF
TXS

main:
LDA #sC0

LDHX #data

LOOP: CBEQ $30,X+,IS_EQUAL
BRA LOOP

IS EQUAL: ...

Using this addressing mode, it is possible to scan the memory to find a location
containing a specific value starting at a specified location to which is added an offset.

The value located at memory location pointed to by HX + $30 is compared to the value in
the A register. If the two values match, program branch to IS_EQUAL. HX points to
memory location next to the one containing the searched value.

In this example, the value sco is searched starting at memory location srooo+s30=sro30. This
value is found at memory location sross, the program branches to 1s_equar. The HX
register contains the memory location of the searched value minus the offset, incremented
by one: sroas-s30+1=3F015.

8.2.4 Operand Field: Addressing Modes (RS08)

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 259

g |

suurce line
The following addressing mode notations are allowed in the operand field for the RSO8:

Table 8-5. Operand Field RS08 Addressing Modes

Addressing Mode Notation Example
Inherent No operands RTS
Tiny <expression> ADD fourbits
Short <expression> CLR fivebits
Direct <expression> ADC byte
Extended <expression> JSR word
Relative <label> BRA Label
Immediate #<expression> ADC #$01
Indexed D[X] or ,X ADC D[X] or ADC ,X

8.2.4.1 Inherent (RS08)

Instructions using this addressing mode have no associated instruction fetch. Some of
them are acting on data in the CPU registers.

Example:

CLRA
INCA

NOP

8.2.4.2 Tiny

The tiny addressing mode is used to access only the first 16 bytes of the memory map
(addresses from soooo to sooor). The instructions using this addressing mode are encoded
using one byte only. This addressing mode is available for 1nc, pec, app and sus
instructions.

Example:
XDEF Entry
MyData: SECTION RS08 TINY
data: DS.B 1
MyCode: SECTION

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

260 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

Entry:

main:
ADD data

BRA main

In this example, the value of the variable data is added to the accumulator. The data is
located in the tiny memory area, so the encoding of the aoo instruction will be one byte
long. Note that the tiny section has to be placed into the tiny memory area at link time.

8.2.4.3 Short

The RSO08 short addressing mode is used to access only the first 32 bytes of the memory
map (addresses from soooo to soo1r). The instructions using this addressing mode are
encoded using one byte only. This addressing mode is available for cir, woa and sta
instructions.

Example:
XDEF Entry
MyData: SECTION RS08_ SHORT
data: DS.B 1
MyCode : SECTION
Entry:
main:
LDA data

BRA main

In this example, the value of the variable data is loaded into the accumulator. The data is
located in the short memory area, so the encoding of the roa instruction will be one byte
long. Note that the short section has to be placed into the tiny memory area at linktime.

8.2.4.4 Direct

The direct addressing mode is used to address operands in the direct page of the memory
(location so0000 to sooFF).

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 261

swuurce line

Example:
XDEF Entry

MyData: SECTION
data: DS.B 1
MyCode: SECTION
Entry:
main: LDA #S$55
STA data

BRA main

In this example, the value sss is stored in the variable data. The opcode generated for the
instruction sta data 1S two bytes long.

8.2.4.5 Extended

The extended addressing mode is used only for ssr and swe instructions. The 14-bit
address is located in the lowest 14 bits of the encoding after the two-bit opcode.

Example:
XDEF Entry
XREF target
data: DS.B 1
MyCode : SECTION
Entry:
main: LDA #S$55

JMP target

In this example a jump is executed at an address defined by the external symbol target.

8.2.4.6 Relative

This addressing mode is used by all branch instructions to determine the destination
address. The signed byte following the opcode is added to the contents of the program
counter.

As the offset is coded on a signed byte, the branching range is -127 to +128. The
destination address of the branch instruction must be in this range.

Example:

main:
NOP
NOP
BRA main

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

262 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

8.2.4.7 Immediate

The opcode contains the value to use with the instruction rather than the address of this
value. The effective address of the instruction is specified using the # character as in the
example below.

Example:
XDEF Entry

MyData: SECTION
data: DS.B 1
MyCode : SECTION
Entry:
main:
LDA #100

BRA main

In this example, the decimal value 100 is loaded in register A.

8.2.4.8 Indexed

When using the indexed addressing mode, an index register is used as reference to access
the instruction's operand. For the RS08, the index registers are located at sooor (register
X) and sooor (register D[X]). The D[X] register is called the index data register, and can
be designated by either one of the D[X] or, x notations. As a restriction, when the use of,
x would lead to double commas in the assembly source, the use of, x is not allowed.

Example:
XDEF Entry
MyData: SECTION
data: DS.B 1
MyCode: SECTION
Entry:

main:
CLR D[X] ; equivalent to CLR ,X

CLR X

In this example the contents of both X and D[X] registers are replaced by zeros.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 263

symools

8.2.5 Comment Field

The last field in a source statement is an optional comment field. A semicolon (;) is the
first character in the comment field.

Example:

NOP
; Comment following an instruction

8.3 Symbols

The following types of symbols are the topics of this section:

e User-defined symbols
» External symbols

e Undefined symbols

* Reserved symbols

8.3.1 User-defined symbols

Symbols identify memory locations in program or data sections in an assembly module.
A symbol has two attributes:

* The section, in which the memory location is defined
 The offset from the beginning of that section.

Symbols can be defined with an absolute or relocatable value, depending on the section
in which the labeled memory location is found. If the memory location is located within a
relocatable section (defined with the SECTION - Declare Relocatable Section assembler
directive), the label has a relocatable value relative to the section start address.

Symbols can be defined relocatable in the label field of an instruction or data definition
source line.

The following listing shows an example of a user-defined relocatable SECTION.
Listing: Example of a user-defined relocatable SECTION

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

264 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

Sec: SECTION
labell: DC.B 2 ; labell is assigned offset 0 within Sec.

label2: DC.B 5 ; label2 is assigned offset 2 within Sec.
label3: DC.B 1 ; label3 is assigned offset 7 within Sec.
It is also possible to define a label with either an absolute or a previously defined

relocatable value, using the SET - Set Symbol Value or EQU - Equate symbol value
assembler directives.

Symbols with absolute values must be defined with constant expressions.

Listing: Example of a user-defined absolute and relocatable SECTION

Sec: SECTION
labell: DC.B 2 ; labell is assigned offset 0 within Sec.

label2: EQU 5 ; label2 is assigned value 5.

label3: EQU labell ; label3 is assigned the address of labell.

8.3.2 External symbols

A symbol may be made external using the XDEF - External Symbol Definition assembler
directive. In another source file, an XREF - External Symbol Reference assembler
directive must reference it. Since its address is unknown in the referencing file, it is
considered to be relocatable. See the following listing for an example of using xoer and

XREF.

Listing: Examples of external symbols

XREF extLabel ; symbol defined in an other module.
; extLabel is imported in the current module

XDEF label ; symbol is made external for other modules
; label is exported from the current module
constSec: SECTION

label: DC.W 1, extLabel

8.3.3 Undefined symbols

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 265

vonstants

If a label is neither defined in the source file nor declared external using xrer, the
Assembler considers it to be undefined and generates an error message. The following
listing shows an example of an undeclared label.

Listing: Example of an undeclared label

codeSec: SECTION
entry:

NOP

BNE entry

NOP

JMP end

JMP label ; <- Undeclared user-defined symbol: label
end:RTS

END

8.3.4 Reserved symbols

Reserved symbols cannot be used for user-defined symbols.
Register names are reserved identifiers.
For the HCO8 processor the reserved identifiers are listed in the following listing:

Listing: Reserved identifiers for an HC(S)08 derivative

A, CCR, H, X, SP

The keywords row and u1cr are also reserved identifiers. They are used to refer to the low
byte and the high byte of a memory location.

8.4 Constants

The Assembler supports integer and ASCII string constants.

8.4.1 Integer constants

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

266 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

The Assembler supports four representations of integer constants:
* A decimal constant is defined by a sequence of decimal digits (0-9).
Example: 5, 512, 1024

* A hexadecimal constant is defined by a dollar character (s) followed by a sequence
of hexadecimal digits (0-9, a-f, A-F).

Example: ss, s200, $400

* An octal constant is defined by the commercial at character (@) followed by a
sequence of octal digits (0-7).

Example: es, @1000, @2000

* A binary constant is defined by a percent character followed by a sequence of binary
digits (0-1)

Example :
%101, %1000000000, %10000000000

The default base for integer constant is initially decimal, but it can be changed using the
BASE - Set number base assembler directive. When the default base i1s not decimal,
decimal values cannot be represented, because they do not have a prefix character.

8.4.2 String constants

A string constant is a series of printable characters enclosed in single (*) or double quote
("y. Double quotes are only allowed within strings delimited by single quotes. Single
quotes are only allowed within strings delimited by double quotes. See the following
listing for a variety of string constants.

Listing: String constants

’ABCD', "ABCD", lAll lllBlll IIAIBIII TAVB!

8.4.3 Floating-Point constants

The Macro Assembler does not support floating-point constants.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 267

A 4
4\ |

uperators

8.5 Operators

Operators recognized by the Assembler in expressions are:

* Addition and subtraction operators (binary)
e Multiplication, division and modulo operators (binary)
* Sign operators (unary)

* Shift operators (binary)

» Bitwise operators (binary)

* Bitwise operators (unary)

* Logical operators (unary)

» Relational operators (binary)

* HIGH operator

* HIGH_6_13 Operator

* LOW operator

* MAP_ADDR_6 Operator

* PAGE operator

» Force operator (unary)

 Operator precedence

8.5.1 Addition and subtraction operators (binary)

The addition and subtraction operators are + and -, respectively.

Syntax

Addition:
<operand> + <operand>

Subtraction:
<operand> - <operand>

Description

The + operator adds two operands, whereas the - operator subtracts them. The operands
can be any expression evaluating to an absolute or relocatable expression.

Addition between two relocatable operands is not allowed.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

268 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

See the following listing for an example of addition and subtraction operators.

Listing: Addition and subtraction operators

$SA3216 + $42 ; Addition of two absolute operands (= $A3258)
labelB - $10 ; Subtraction with value of ~labelB'

8.5.2 Multiplication, division and modulo operators (binary)

The multiplication, division, and modulo operators are «, /, and s, respectively.

Syntax

Multiplication:
<operand> * <operands>

Division:
<operand> / <operands

Modulo:
<operand> % <operands>

Description

The » operator multiplies two operands, the ; operator performs an integer division of the
two operands and returns the quotient of the operation. The s operator performs an
integer division of the two operands and returns the remainder of the operation

The operands can be any expression evaluating to an absolute expression. The second
operand in a division or modulo operation cannot be zero.

Example

See the following listing for an example of the multiplication, division, and modulo
operators.

Listing: Multiplication, division, and modulo operators

23 * 4 ; multiplication (= 92)
23 / 4 ; division (= 5)
23 % 4 ; remainder (= 3)

8.5.3 Sign operators (unary)

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 269

uperators

The (unary) sign operators are + and -.

Syntax

Plus:
+<operand>

Minus:
-<operands>

Description

The + operator does not change the operand, whereas the - operator changes the operand
to its two's complement. These operators are valid for absolute expression operands.

Example
See the following listing for an example of the unary sign operators.

Listing: Unary sign operators

+$32 ;o (
-$32 i

$32)
$CE = -$32)

8.5.4 Shift operators (binary)

The binary shift operators are << and .

Syntax

Shift left:
<operand> << <counts>

Shift right:
<operand> >> <counts>

Description

The << operator shifts its left operand left by the number of bits specified in the right
operand.

The - operator shifts its left operand right by the number of bits specified in the right
operand.

The operands can be any expression evaluating to an absolute expression.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

270 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

Example
See the following listing for an example of the binary shift operators.

Listing: Binary shift operators

$25 << 2 ; shift left (= $94)
SA5 >> 3 ; shift right(= $14)

8.5.5 Bitwise operators (binary)

The binary bitwise operators are s, |, and *.

Syntax

Bitwise AND:

Bitwise OR:
<operand> | <operands>

Bitwise XOR:
<operand> * <operand>

Description

The & operator performs an AND between the two operands on the bit level.
The | operator performs an OR between the two operands on the bit level.
The ~ operator performs an XOR between the two operands on the bit level.
The operands can be any expression evaluating to an absolute expression.
Example

See the following listing for an example of the binary bitwise operators

Listing: Binary bitwise operators

SE & 3 = $2 (%1110 & %0011 = %0010)
$E | 3 = $F (%1110 | %0011 = %1111)
SE © 3 = $D (%1110 * %0011 = %1101)

8.5.6 Bitwise operators (unary)

The unary bitwise operator is ~.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 271

uperators
Syntax

One's complement:
~<operands>

Description

The ~ operator evaluates the one's complement of the operand.

The operand can be any expression evaluating to an absolute expression.
Example

See the following listing for an example of the unary bitwise operator.
Listing: Unary bitwise operator

~$C ; = SFFFFFFF3 (~%00000000 00000000 00000000 00001100
=%11111111 11111111 11111111 11110011)

8.5.7 Logical operators (unary)

The unary logical operator is .

Syntax
Logical NOT: !<operands>

Description

The : operator returns 1 (true) if the operand is o, otherwise it returns o (false).
The operand can be any expression evaluating to an absolute expression.
Example

See the following listing for an example of the unary logical operator.
Listing: Unary logical operator

1 (8<5) ; = $1 (TRUE)

8.5.8 Relational operators (binary)

The binary relational operators are =, ==, =, <>, <, <=, >, and >=.

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

272 Freescale Semiconductor, Inc.

A\ 4
A
Chapter 8 Assembler Syntax

Equal:
<operand> = <operand>
<operand> == <operand>
Not equal:
<operand> != <operand>
<operand> <> <operand>
Less than: <operand> < <operand>

Less than or equal:
<operand> <= <operand>

Greater than:
<operand> > <operand>

Greater than or equal:
<operand> >= <operand>

Description

These operators compare two operands and return 1 if the condition is true or o if the
condition is false.

The operands can be any expression evaluating to an absolute expression.
Example
See the following listing for an example of the binary relational operators

Listing: Binary relational operators

3 >= 4 ; = 0 (FALSE)
label = 4 ; =1 (TRUE) if label is 4, 0 or (FALSE) otherwise.
9 < $B ; = 1 (TRUE)

8.5.9 HIGH operator

The HIGH operator is u1cs.
Syntax

High Byte: HIGH (<operands>)

Description
This operator returns the high byte of the address of a memory location.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 273

uperators
Assume data1 1s a word located at address s10s50 in the memory.
LDA #HIGH (datal)

This instruction will load the immediate value of the high byte of the address of dgata1
(s10) in register A.

LDA HIGH (datal)

This instruction will load the direct value at memory location of the higher byte of the
address of data1 (i.e., the value in memory location s10) in register A.

8.5.10 HIGH_6_13 Operator

Syntax
High Byte: HIGH 6 13 (<operands)
Description
This operator returns the high byte of a 14-bit address of a memory location.
Example

Assume data1 is a word located at address s1010 in the memory.
LDA #HIGH 6_13(datal)

This instruction will load the value $40 in the accumulator.

8.5.11 LOW operator

The LOW operator is row.
Syntax

LOW Byte: LOW (<operands>)

Description
This operator returns the low byte of the address of a memory location.
Example

Assume data1 is a word located at address s10s0 in the memory.

LDA #LOW (datal)

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

274 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

This instruction will load the immediate value of the lower byte of the address of data1
(ss0) In register A.

LDA LOW(datal)

This instruction will load the direct value at memory location of the lower byte of the
address of data1 (i.e., the value in memory location sso) in register A.

8.5.12 MAP_ADDR_6 Operator

Syntax
MAP_ADDR_6 (<operands>)

Description

This operator returns the lower 6 bits for a memory location. It should be used to
determine the offset in the paging window for a certain memory address.Note that the
operator automatically adds the offset of the base of the paging window ($CO0).

Example

MOV #HIGH 6_13 (data), $O00LlF

STA MAP_ADDR_6 (data)

In this example, the RSO8 PAGE register (mapped at $001F) is loaded with the memory
page corresponding to data and then the value contained in the accumulator is stored at
the address pointed by data.

8.5.13 PAGE operator

The PAGE operator is eacs.
Syntax

PAGE Byte: PAGE (<operands>)

Description
This operator returns the page byte of the address of a memory location.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 275

uperators

Assume data1 1s a word located at address 28050 in the memory.

LDA #PAGE (datal)

This instruction will load the immediate value of the page byte of the address of data1

($2).

LDA PAGE (datal)

This instruction will load the direct value at memory location of the page byte of the
address of data1 (i.e., the value in memory location s2).

NOTE
The PAGE keyword does not refer to the RSO8 PAGE register
but to the PAGE operator described above.

8.5.14 Force operator (unary)

Syntax
8-bit address:
<<operand> or
<operand>.B
16-bit address:

><operand> or
<operand>.W

Description

The < or .5 operators force direct addressing mode, whereas the > or .w operators force
extended addressing mode.

Use the < operator to force 8-bit indexed or 8-bit direct addressing mode for an
instruction.

Use the > operator to force 16-bit indexed or 16-bit extended addressing mode for an
instruction.

The operand can be any expression evaluating to an absolute or relocatable expression.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

276 Freescale Semiconductor, Inc.

g |

Chapter 8 Assembler Syntax

<label

label.B

>label

label . W

; label is an 8-bit address.

; label is an 8-bit address.

; label is an 16-bit address.

; label is an 16-bit address.

For the RSO8 the < operand forces the operand to short or tiny addressing mode
(depending on the instruction in which it is used). The same result can be obtained by
adding .s or .t to the referred symbol. The - operator forces an address to 8 bits, even if it
fits in 4 or 5 bits (so short or tiny addressing modes can be used).

8.5.15 Operator precedence

The following table lists the operator precedence rules for ANSI - C operators.

Table 8-6. Operator precedence priorities

Operator

Description

Associativity

Parenthesis

Right to Left

One's complement Unary Plus Unary
minus

Left to Right

* % Integer multiplication Integer division Left to Right
Integer modulo

+ - Integer addition Integer subtraction Left to Right

<< >> Shift Left Shift Right Left to Right

<<=>>= Less than Less or equal to Greater than |Left to Right
Greater or equal to

= === <> Equal to Not Equal to Left to Right

& Bitwise AND Left to Right

A Bitwise Exclusive OR Left to Right

| Bitwise OR Left to Right

8.6 Expression

An expression is composed of one or more symbols or constants, which are combined
with unary or binary operators. Valid symbols in expressions are:

e User defined symbols

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

277

cxpression

» External symbols

» The special symbol * *' represents the value of the location counter at the beginning
of the instruction or directive, even when several arguments are specified. In the
following example, the asterisk represents the location counter at the beginning of
the oc directive:

pc.w 1, 2, *-2

Once a valid expression has been fully evaluated by the Assembler, it is reduced as one
of the following type of expressions:

» Absolute expression : The expression has been reduced to an absolute value, which is
independent of the start address of any relocatable section. Thus it is a constant.

e Simple relocatable expression : The expression evaluates to an absolute offset from
the start of a single relocatable section.

* Complex relocatable expression: The expression neither evaluates to an absolute
expression nor to a simple relocatable expression. The Assembler does not support
such expressions.

All valid user defined symbols representing memory locations are simple relocatable
expressions. This includes labels specified in xrer directives, which are assumed to be
relocatable symbols.

8.6.1 Absolute expression

An absolute expression is an expression involving constants or known absolute labels or
expressions. An expression containing an operation between an absolute expression and a
constant value is also an absolute expression.

See the following listing for an example of an absolute expression.

Listing: Absolute expression

Base: SET $100
Label: EQU Base * $5 + 3

Expressions involving the difference between two relocatable symbols defined in the
same file and in the same section evaluate to an absolute expression. An expression as
label2-label1 can be translated as:

Listing: Interpretation of label2-labell: difference between two relocatable symbols

(<coffset label2> + <start section address >) -
(<offset labell> + <start section address >)

This can be simplified to the following listing:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

278 Freescale Semiconductor, Inc.

Chapter 8 Assembler Syntax

Listing: Simplified result for the difference between two relocatable symbols

<offset label2> + <start section address > -
<offset labell> - <start section address>

= <offset label2> - <offset labell>

8.6.1.1 Example

In the example in the following listing, the expression tabend-tabeegin €valuates to an
absolute expression and is assigned the value of the difference between the offset of
tabEnd and tabBegin in the section patasec.

Listing: Absolute expression relating the difference between two relocatable
symbols

DataSec: SECTION
tabBegin: DS.B 5

tabEnd: DS.B 1
ConstSec: SECTION
label: EQU tabEnd-tabBegin ; Absolute expression
CodeSec: SECTION

entry: NOP

8.6.2 Simple relocatable expression

A simple relocatable expression results from an operation such as one of the following:

» <relocatable expression> + <absolute expression>

* <relocatable expression> - <absolute expression>

< absolute expression> + < relocatable expression>
Listing: Example of relocatable expression

XREF XtrnLabel
DataSec: SECTION

tabBegin: DS.B 5
tabEnd: DS.B 1
CodeSec: SECTION
entry:

LDA tabBegin+2 ; Simple relocatable expression

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

279

g |

cxpression

BRA *-3

; Simple relocatable expression

LDA XtrnLabel+6 ; Simple relocatable expression

8.6.3 Unary operation result

The following table describes the type of an expression according to the operator in an

unary operation:

Table 8-7. Expression type resulting from operator and operand type

Operator Operand Expression
-~ absolute absolute
-~ relocatable complex
+ absolute absolute
+ relocatable relocatable

8.6.4 Binary operations result

The following table describes the type of an expression according to the left and right
operators in a binary operation:

Table 8-8. Expression type resulting from operator and their operands

Operator Left Operand Right Operand Expression
- absolute absolute absolute
- relocatable absolute relocatable
- absolute relocatable complex
- relocatable relocatable absolute
+ absolute absolute absolute
+ relocatable absolute relocatable
+ absolute relocatable relocatable
+ relocatable relocatable complex
%, <<, >>, 1, &N absolute absolute absolute
%, <<, >>, |, & A relocatable absolute complex
A, %, <<, >>, |, & A absolute relocatable complex
%, <<, >>, |, & A relocatable relocatable complex

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

280 Freescale Semiconductor, Inc.

g |

4
Chapter 8 Assembler Syntax

8.7 Translation limits

The following limitations apply to the Macro Assembler:

* Floating-point constants are not supported.

* Complex relocatable expressions are not supported.

* Lists of operands or symbols must be separated with a comma.
* Include may be nested up to so.

e The maximum line length is 1023.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 281

}{ |

iranslation limits

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

282 Freescale Semiconductor, Inc.

Chapter 9
Assembler Directives

There are different classes of assembler directives. The following tables give you an
overview over the different directives and their classes:

9.1 Directive Overview
This section provides an overview of assembler directives.

9.1.1 Section-Definition directives

The following table lists the directives to define new sections.

Table 9-1. Directives for defining sections

Directive Description
ORG - Set Location Counter Define an absolute section
SECTION - Declare Relocatable Section Define a relocatable section
OFFSET - Create absolute symbols Define an offset section

9.1.2 Constant-Definition directives

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 283

y
A]
uirective Overview

The following table lists the directives to define assembly constants.

Table 9-2. Directives for defining constants

Directive Description
EQU - Equate symbol value Assign a name to an expression (cannot be redefined)
SET - Set Symbol Value Assign a name to an expression (can be redefined)

9.1.3 Data-Allocation directives

The following table lists the directives to allocate variables.

Table 9-3. Directives for allocating variables

Directive Description
DC - Define Constant Define a constant variable
DCB - Define Constant Block Define a constant block
DS - Define Space Define storage for a variable
RAD50 - RAD50-encoded string constants RAD50 encoded string constants

9.1.4 Symbol-Linkage directives

The following table lists the symbol-linkage directives to export or import global
symbols.

Table 9-4. Symbol linkage directives

Directive Description
ABSENTRY - Application entry point Specify the application entry point when an absolute file is
generated
XDEF - External Symbol Definition Make a symbol public (visible from outside)
XREF - External Symbol Reference Import reference to an external symbol.
XREFB - External Reference for Symbols located on the Import reference to an external symbol located on the direct
Direct Page page.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

284 Freescale Semiconductor, Inc.

g |

4
Chapter 9 Assembler Directives

9.1.5 Assembly-Control directives

The following table lists the assembly-control general purpose directives to control the
assembly process.

Table 9-5. Assembly control directives

Directive Description
ALIGN - Align Location Counter Define Alignment Constraint
BASE - Set number base Specify default base for constant definition
END - End assembly End of assembly unit
ENDFOR - End of FOR block End of FOR block
EVEN - Force word alignment Define 2-byte alignment constraint
FAIL - Generate Error message Generate user defined error or warning messages
FOR - Repeat assembly block Repeat assembly blocks
INCLUDE - Include text from another file Include text from another file.
LONGEVEN - Forcing Long-Word alignment Define 4 Byte alignment constraint

9.1.6 Listing-File Control directives

The following table lists the listing-file control directives to control the generation of the
assembler listing file.

Table 9-6. Listing-file control directives

Directive Description

CLIST - List conditional assembly Specify if all instructions in a conditional assembly block must
be inserted in the listing file or not.

LIST - Enable Listing Specify that all subsequent instructions must be inserted in
the listing file.

LLEN - Set Line Length Define line length in assembly listing file.

MLIST - List macro expansions Specify if the macro expansions must be inserted in the listing
file.

NOLIST - Disable Listing Specify that all subsequent instruction must not be inserted in
the listing file.

NOPAGE - Disable Paging Disable paging in the assembly listing file.

PAGE - Insert Page break Insert page break.

PLEN - Set Page Length Define page length in the assembler listing file.

SPC - Insert Blank Lines Insert an empty line in the assembly listing file.

TABS - Set Tab Length Define number of character to insert in the assembler listing
file for a TAB character.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 285

A
4

4
A

uirective Overview

Table 9-6. Listing-file control directives (continued)

Directive

Description

TITLE - Provide Listing Title

Define the user defined title for the assembler listing file.

9.1.7 Macro Control directives

The following table lists the macro control directives, used for the definition and

expansion of macros.

Table 9-7. Macro control directives

Directive

Description

ENDM - End macro definition

End of user defined macro.

MACRO - Begin macro definition

Start of user defined macro.

MEXIT - Terminate Macro Expansion

Exit from macro expansion.

9.1.8 Conditional Assembly directives

The following table lists the conditional assembly directives, used for conditional

assembling.

Table 9-8. Conditional assembly directives

Directive

Description

ELSE - Conditional assembly

alternate block

ENDIF - End conditional assembly

End of conditional block

IF - Conditional assembly

Start of conditional block. A boolean expression follows this
directive.

IFcc - Conditional assembly

Test if two string expressions are equal.

IFDEF Test if a symbol is defined.

IFEQ Test if an expression is null.

IFGE Test if an expression is greater than or equal to 0.
IFGT Test if an expression is greater than 0.

IFLE Test if an expression is less than or equal to 0.
IFLT Test if an expression is less than 0.

IFNC Test if two string expressions are different.
IFNDEF Test if a symbol is undefined

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

286

Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

Table 9-8. Conditional assembly directives (continued)

Directive Description

IFNE Test if an expression is not null.

9.2 Detailed descriptions of all assembler directives

The remainder of the chapter covers the detailed description of all available assembler
directives.

9.2.1 ABSENTRY - Application entry point

Syntax

ABSENTRY <labels>

Synonym
None
Description

This directive 1s used to specify the application Entry Point when the Assembler directly
generates an absolute file. The -ra2 assembly option - ELF/DWARF 2.0 Absolute File -
must be enabled.

Using this directive, the entry point of the assembly application is written in the header of
the generated absolute file. When this file is loaded in the debugger, the line where the
entry point label is defined is highlighted in the source window.

This directive 1s ignored when the Assembler generates an object file.

NOTE
This instruction only affects the loading on an application by a
debugger. It tells the debugger which initial PC should be used.
In order to start the application on a target, initialize the Reset
vector.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 287

uvewailed descriptions of all assembler directives
If the example in the following listing is assembled using the -ra2 assembler option, an
ELF/DWAREF 2.0 Absolute file is generated.

Listing: Using ABSENTRY to specify an application entry point

ABSENTRY entry
ORG sfffe

Reset: DC.W entry
ORG $70
entry: NOP
NOP
main: RSP
NOP

BRA main

According to the assentrY directive, the entry point will be set to the address of entry in
the header of the absolute file.

9.2.2 ALIGN - Align Location Counter

Syntax

ALIGN <n>

Synonym
None
Description

This directive forces the next instruction to a boundary that is a multiple of <n>, relative
to the start of the section. The value of <n> must be a positive number between 1 and
32767. The av1en directive can force alignment to any size. The filling bytes inserted for
alignment purpose are initialized with ~\o'.

ar1en can be used in code or data sections.
Example

The example shown in the following listing, aligns the uex label to a location, which is a
multiple of 16 (in this case, location ooo10 (Hex))

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

288 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

Listing: Aligning the HEX Label to a Location

Assembler
Abs. Rel. Loc Obj. code Source line
1 1
2 2 000000 6869 6768 DC.B "high"
3 3 000004 0000 0O0O0O ALIGN 16
000008 0000 0000
00000C 0000 0O0OO
4 4
5 5
6 6 000010 7F HEX: DC.B 127 ; HEX is allocated
7 7 ; on an address,
8 8 ; which is a
9 9 ; multiple of 16.

9.2.3 BASE - Set number base

Syntax

BASE <n>

Synonym
None
Description

The directive sets the default number base for constants to <n-. The operand <n- may be
prefixed to indicate its number base; otherwise, the operand is considered to be in the
current default base. Valid values of <n- are 2, 8, 10, 16. Unless a default base is specified
using the sase directive, the default number base is decimal.

Example
See the following listing, for examples of setting the number base.

Listing: Setting the number base

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 289

uvewailed descriptions of all assembler directives

4 4 base 10 ; default base: decimal
5 5 000000 64 dc.b 100

6 6 base 16 ; default base: hex

7 7 000001 O0A dc.b Oa

8 8 base 2 ; default base: binary
9 9 000002 04 dc.b 100

10 10 000003 04 dc.b 5100
11 11 base @12 ; default base: decimal
12 12 000004 64 dc.b 100
13 13 base Sa ; default base: decimal
14 14 000005 64 dc.b 100
15 15
16 16 base 8 ; default base: octal
17 17 000006 40 dc.b 100

Be careful. Even if the base value is set to 16, hexadecimal constants terminated by a o
must be prefixed by the s character, otherwise they are supposed to be decimal constants
in old style format. For example, constant 4sp is interpreted as decimal constant 45, not as
hexadecimal constant asb.

9.2.4 CLIST - List conditional assembly

Syntax

CLIST [ON|OFF]

Synonym
None
Description

The crist directive controls the listing of subsequent conditional assembly blocks. It
precedes the first directive of the conditional assembly block to which it applies, and
remains effective until the next crzst directive is read.

When the on keyword is specified in a cu1st directive, the listing file includes all
directives and instructions in the conditional assembly block, even those which do not
generate code (which are skipped).

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

290 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

When the orr keyword is entered, only the directives and instructions that generate code
are listed.

A soon as the -L: Generate a listing file assembler option is activated, the Assembler
defaults to cr1sT ow.

Example
The following listing is an example where the crist orr option is used.

Listing: Listing file with CLIST OFF

CLIST OFF
Try: EQU 0

IFEQ Try
LDA #103
ELSE
LDA #0
ENDIF

The following listing is the corresponding listing file.

Listing: Example assembler listing where CLIST ON is used

Abs. Rel Loc Obj. code Source line
2 2 0000 0000 Try: EQU 0
3 3 0000 0000 IFEQ Try
4 4 000000 A667 LDA #103
5 5 ELSE
7 7 ENDIF

The following listing is a listing file using CLIST ON.
Listing: CLIST ON is selected

CLIST ON
Try: EQU 0
IFEQ Try
LDA #103
ELSE
LDA #0
ENDIF

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 291

uvewailed descriptions of all assembler directives

The following listing is the corresponding listing file.

Listing: Example assembler listing where CLIST ON is used

Abs. Rel. Loc Obj. code Source line
2 2 0000 0000 Try: EQU 0
3 3 0000 0000 IFEQ Try
4 4 000000 A667 LDA #103
5 5 ELSE
6 6 LDA #0
7 7 ENDIF
8 8

9.2.5 DC - Define Constant

Syntax

[<label>:] DC [.<size>] <expression> [,
<expressions>] ...

where <size> = B (default), w, OF L.

Synonym
DCW (= 2 byte DCs), DCL (= 4 byte DCs),
FCB (= DC.B), FDB (= 2 byte DCs),
FQB (= 4 byte DCs)

Description

The oc directive defines constants in memory. It can have one or more <expressions
operands, which are separated by commas. The <expression> can contain an actual value
(binary, octal, decimal, hexadecimal, or ASCII). Alternatively, the <expression- can be a
symbol or expression that can be evaluated by the Assembler as an absolute or simple
relocatable expression. One memory block is allocated and initialized for each
expression.

The following rules apply to size specifications for oc directives:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

292 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

* nc.s: One byte is allocated for numeric expressions. One byte is allocated per ASCII

character for strings.
Listing: Example for DC.B

000000 4142 4344 Label: DC.B "ABCDE"
000004 45

000005 OAOA 010A DC.B %1010, @12, 1,S%A
pc.w: Two bytes are allocated for numeric expressions. ASCII strings are right

aligned on a two-byte boundary.
Listing: Example for DC.W

000000 0041 4243 Label: DC.W "ABCDE"
000004 4445

000006 000A 000A DC.W %1010, @12, 1, SA
00000A 0001 000A

00000E xxxx DC.W Label

pc.r: Four bytes are allocated for numeric expressions. ASCII strings are right
aligned on a four byte boundary.

Listing: Example for DC.L

000000 0000 0041 Label: DC.L "ABCDE"
000004 4243 4445

000008 0000 000A DC.L %1010, @12, 1, S$SA
00000C 0000 000A
000010 0000 0001
000014 0000 000A

000018 XXXX XXXX DC.L Label

If the value in an operand expression exceeds the size of the operand, the assembler
truncates the value and generates a warning message.

See also

Assembler directives:

DCB - Define Constant Block

DS - Define Space

ORG - Set Location Counter

SECTION - Declare Relocatable Section

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 293

uvewailed descriptions of all assembler directives

9.2.6 DCB - Define Constant Block

Syntax

[<label>:] DCB [.<size>] <count>, <value>

where

<gize> =

B (default),
W, or

L.

Description

The oce directive causes the Assembler to allocate a memory block initialized with the
specified <vailues. The length of the block is <sizes> * <counts.

<count> may not contain undefined, forward, or external references. It may range from 1 to
4096.

The value of each storage unit allocated is the sign-extended expression <vaiues, which
may contain forward references. The <count> cannot be relocatable. This directive does
not perform any alignment.

The following rules apply to size specifications for oce directives:

* oce.e: One byte is allocated for numeric expressions.

* pce.w: Two bytes are allocated for numeric expressions.

* pce.r: Four bytes are allocated for numeric expressions.
Listing: Examples of DCB directives

000000 FFFF FF Label: DCB.B 3, SFF
000003 FFFE FFFE DCB.W 3, SFFFE

000007 FFFE
000009 0000 FFFE DCB.L 3, SFFFE
00000D 0000 FFFE

000011 0000 FFFE
See also
Assembler directives :

¢ DC - Define Constant

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

294 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

* DS - Define Space
* ORG - Set Location Counter
e SECTION - Declare Relocatable Section

9.2.7 DS - Define Space

Syntax

[<label>:] DS[.<size>] <count>

where <size> =8 (default), w, or .

Synonym

RMB (= DS.B)
RMD (2 bytes)

RMQ (4 bytes)

Description

The ps directive is used to reserve memory for variables, as listed in the following listing.

The content of the memory reserved is not initialized. The length of the block is <size>

*<counts>.

<count> may not contain undefined, forward, or external references. It may range from 1 to

4096.

Listing: Examples of DS directives

Counter: DS.B 2 ; 2 continuous bytes in memory
DS.B 2 ; 2 continuous bytes in memory

; can only be accessed through the label Counter

DS.W 5 ; 5 continuous words in memory

The label counter references the lowest address of the defined storage area.

NOTE
Storage allocated with a ps directive may end up in constant
data section or even in a code section, if the same section
contains constants or code as well. The Assembler allocates
only a complete section at once.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

295

N
uvewailed descriptions of all assembler directives

Example

In the following listing, a variable, a constant, and code were put in the same section.
Because code has to be in ROM, then all three elements must be put into ROM.

Listing: Poor memory allocation

; How it should NOT be done ...

Counter: DS 1 ; l-byte used
InitialCounter: DC.B s$f5 ; constant $f5

main: NOP ; NOP instruction

In order to allocate them separately, put them in different sections, as listed in the
following listing:

Listing: Proper memory allocation

DataSect: SECTION ; separate section for variables
Counter: DS 1 ; l-byte used

ConstSect: SECTION ; separate section for constants
InitialCounter: DC.B $f5 ; constant S$f5

CodeSect: SECTION ; section for code

main: NOP ; NOP instruction

An orc directive also starts a new section.

See also
e DC - Define Constant
* ORG - Set Location Counter
e SECTION - Declare Relocatable Section

9.2.8 ELSE - Conditional assembly

Syntax

IF <conditions

[<assembly language statementss>]
[ELSE]

[<assembly language statementss]
ENDIF

Synonym
ELSEC

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

296 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

Description

If <conaitions is true, the statements between 1r and the corresponding erse directive are
assembled (generate code).

If <conditions 1s false, the statements between ruse and the corresponding Exp1r directive
are assembled. Nesting of conditional blocks is allowed. The maximum level of nesting is
limited by the available memory at assembly time.

Example
The following listing is an example of the use of conditional assembly directives:

Listing: Various conditional assembly directives

Try: EQU 1
IF Try != 0
LDA #103
ELSE
LDA #0
ENDIF

The value of Try determines the instruction to be assembled in the program. As shown,
the 14a #103 Instruction is assembled. Changing the operand of the =ou directive to o causes
the 14a #o instruction to be assembled instead.

Listing: Output listing

Abs Rel Loc Obj. code Source line
1 1 0000 0001 Try: EQU 1
2 2 0000 0001 IF Try != 0
3 3 000000 A667 LDA #103
4 4 ELSE
6 6 ENDIF

9.2.9 END - End assembly

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 297

uvewailed descriptions of all assembler directives

END

Synonym
None
Description

The =xo directive indicates the end of the source code. Subsequent source statements in
this file are ignored. The exp directive in included files skips only subsequent source
statements in this include file. The assembly continues in the including file in a regular
way.

Example

The =xo statement in the following listing causes any source code after the END statement
to be ignored, as in the next listing.

Listing: Source File

Label: DC.W $1234
DC.W $5678

END
DC.W $90AB ; no code generated

DC.W SCDEF ; no code generated

Listing: Generated listing file

Abs. Rel Loc Obj. code Source line
1 1 000000 1234 Label: DC.W $1234
2 2 000002 5678 DC.W $5678

9.2.10 ENDFOR - End of FOR block

Syntax

ENDFOR

Synonym
None

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

298 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

Description

The expror directive indicates the end of a ror block.
NOTE

The ror directive is only available when the -compat-b assembler
option is used. Otherwise, the ror directive is not supported.

Example

See Listing: Using the FOR directive in a loop in the ror section.
See also

Assembler directives:

* FOR - Repeat assembly block
* -Compat: Compatibility modes

9.2.11 ENDIF - End conditional assembly

Syntax

ENDIF

Synonym

ENDC

Description

The ewprr directive indicates the end of a conditional block. Nesting of conditional blocks
is allowed. The maximum level of nesting is limited by the available memory at assembly
time.

Example
See Listing: IF and ENDIF in the 1r section.
See also

IF - Conditional assembly assembler directive

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 299

3
4

4
A

uvewailed descriptions of all assembler directives

9.2.12 ENDM - End macro definition

Syntax

ENDM

Synonym

None

Description

The evom directive terminates the macro definition.

Example

The ENDM statement in the following listing terminates the cpChar macro.

Listing: Using ENDM to terminate a macro definition

cpChar: MACRO

LDA \1
STA \2
ENDM

CodeSec: SECTION

Start:
cpChar charl, char2
LDA charl

STA char?2

9.2.13 EQU - Equate symbol value

Syntax

<label>: EQU <expressions>

Synonym

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

300 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

None
Description

The equ directive assigns the value of the <expressions in the operand field to <iave1>. The
<label> and <expression> fields are both required, and the <1abe1- cannot be defined
anywhere else in the program. The <expression> cannot include a symbol that is undefined
or not yet defined.

The =ou directive does not allow forward references.
Example
See the following listing for examples of using the =ou directive.

Listing: Using EQU to set variables

0000 0014 MaxElement: EQU 20

0000 0050 MaxSize: EQU MaxElement * 4
Time: DS.B 3
0000 0000 Hour: EQU Time ; first byte addr.

0000 0002 Minute: EQU Time+l ; second byte addr

0000 0004 Second: EQU Time+2 ; third byte addr

9.2.14 EVEN - Force word alignment

Syntax

EVEN

Synonym
None
Description

This directive forces the next instruction to the next even address relative to the start of
the section. even is an abbreviation for avien 2. Some processors require word and long
word operations to begin at even address boundaries. In such cases, the use of the even
directive ensures correct alignment. Omission of this directive can result in an error
message.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 301

‘

4
4\ |

uvewailed descriptions of all assembler directives

See the following listing for instances where the EVEN directive causes padding bytes to

be inserted.

Listing: Using the Force Word Alignment Directive

Abs. Rel Loc Obj. code Source line
1 1 000000 ds.b 4
2 2 ; location count has an even value
3 3 ; no padding byte inserted.
4 4 even
5 5 000004 ds.b 1
6 6 ; location count has an odd wvalue
7 7 ; one padding byte inserted.
8 8 000005 even
9 9 000006 ds.b 3
10 10 ; location count has an odd wvalue
11 11 ; one padding byte inserted.
12 12 000009 even
13 13 0000 000A aaa: equ 10
See also

ALIGN - Align Location Counter assembly directive

9.2.15 FAIL - Generate Error message

Syntax
FAIL <args>|<strings>

Synonym
None

Description

There are three modes of the ra1r directive, depending upon the operand that is specified:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

302

Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

If <arg> is a number in the range [0-299], the Assembler generates an error message,

including the line number and argument of the directive. The Assembler does not

generate an object file.
If <arg> is a number in the range [soo-srrrrrrrr], the Assembler generates a warning

message, including the line number and argument of the directive.

If a string is supplied as an operand, the Assembler generates an error message,

including the line number and the <string>. The Assembler does not generate an
object file.

user-defined errors or warning conditions.

Examples

The rarr directive is primarily intended for use with conditional assembly to detect

The assembly code in the following listing generates the error messages in the next
listing. The value of the operand associated with the "rarn 200 Or “rarn eoodirectives
determines (1) the format of any warning or error message and (2) whether the source

code segment will be assembled.

Listing: Example source code

cpChar:

codSec:

Start:

MACRO
IFC ll\lll’ nn

FAIL 200
MEXIT
ELSE
pa \1
ENDIF
IFC "\2m", nn
FAIL 600
ELSE
STA \2
ENDIF
ENDM

SECTION

cpChar charl

Listing: Error messages resulting from assembling the source code

>> in "C:\Freescale\demo\warnfail.asm",

IFC ||\2n’ nn

line 13, col 19,

pos 226

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

303

A
4

4
A

uvewailed descriptions of all assembler directives

FAIL 600
WARNING A2332: FAIL found
Macro Call : FAIL 600

The following listing is another assembly code example which again incorporates the
ra1n 200 and the ratn 600 directives.

Listing: Example source code

cpChar: MACRO
IFC ||\1u , nn

FAIL 200
MEXIT
ELSE
DA \1
ENDIF
IFC "\2", v
FAIL 600
ELSE
STA \2
ENDIF
ENDM
codeSec: SECTION
Start:
cpChar, char2

The following listing is the error message that was generated as a result of assembling the
source code in the above listing.

Listing: Error messages resulting from assembling the source code

>> in "C:\Freescale\demo\errfail.asm", line 6, col 19, pos 96
IFC ll\lll, nn

FAIL 200
ERROR A2329: FAIL found
Macro Call : FAIL 200

The following listing has additional uses of the rarr directive. In this example, the
FATL string and ra1n eoo directives are used.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

304 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

Listing: Example source code

cpChar: MACRO
IFC ll\lll, nn

FAIL "A character must be specified as first parameter"
MEXIT
ELSE
DA \1
ENDIF
IFC "\2", n"nv
FAIL 600
ELSE
STA \2
ENDIF
ENDM
codeSec: SECTION
Start:
cpChar, char2

The following listing shows the error messages generated from the assembly code as a
result of the rars directive.

Listing: Error messages resulting from assembling the source code

>> in "C:\Freescale\demo\failmes.asm", line 7, col 17, pos 110
IFC ||\1||, nn

FAIL "A character must be specified as first parameter"

A

ERROR A2338: A character must be specified as first parameter

Macro Call : FAIL "A character must be specified as first parameter"

9.2.16 FOR - Repeat assembly block

Syntax

FOR <label>=<num> TO <num>

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 305

uvewailed descriptions of all assembler directives

ENDFOR

Synonym
None
Description

The ror directive is an inline macro because it can generate multiple lines of assembly
code from only one line of input code.

ror takes an absolute expression and assembles the portion of code following it, the
number of times represented by the expression. The ror expression may be either a
constant or a label previously defined using sou or ser.

NOTE
The ror directive is only available when the -Compat=b
assembly option is used. Otherwise, the ror directive is not
supported.

Example
The following listing is an example of using ror to create a S-repetition loop.

Listing: Using the FOR directive in a loop

FOR label=2 TO 6
DC.B label*7

ENDFOR

Listing: Resulting output listing

Abs. Rel Loc Obj. code Source line
1 1 FOR label=2 TO 6
2 2 DC.B 1label*7
3 3 ENDFOR
4 2 000000 OE DC.B 1label*7
5 3 ENDFOR
6 2 000001 15 DC.B 1label*7
7 3 ENDFOR
8 2 000002 1C DC.B 1label*7
9 3 ENDFOR
10 2 000003 23 DC.B 1label*7

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

306 Freescale Semiconductor, Inc.

A
4

4
A

Y
Chapter 9 Assembler Directives
11 3 ENDFOR
12 2 000004 2A DC.B label*7
13 3 ENDFOR
See also

ENDFOR - End of FOR block

-Compat: Compatibility modes assembler option

9.2.17 IF - Conditional assembly

Syntax

IF <condition>

[<assembly language statementss]

[ELSE]

[<assembly language statementss]

ENDIF

Synonym

None

Description

If <conaitions is true, the statements immediately following the 1 directive are assembled.
Assembly continues until the corresponding erse or exn1r directive is reached. Then all the
statements until the corresponding exprr directive are ignored. Nesting of conditional
blocks is allowed. The maximum level of nesting is limited by the available memory at
assembly time.

The expected syntax for <conditions 18:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 307

uvewailed descriptions of all assembler directives

<condition> := <expression> <relation> <expressions

<relation> := =|!=|>=|>|<=|<]|<>

The <expression> must be absolute (It must be known at assembly time).

Example
The following listing is an example of the use of conditional assembly directives

Listing: IF and ENDIF

Try: EQU 0

IF Try != 0
LDA #103
ELSE
LDA #0
ENDIF

The value of Try determines the instruction to be assembled in the program. As shown,
the 14a #o instruction is assembled. Changing the operand of the rou directive to one
causes the 14a #103 instruction to be assembled instead. The following shows the listing
provided by the Assembler for these lines of code:

Listing: Output listing after conditional assembly

1 1 0000 00O0O Try: EQU 0

2 2 0000 0000 IF Try != 0
4 4 ELSE

5 5 000000 A600 LDA #0

6 6 ENDIF

9.2.18 IFcc - Conditional assembly

Syntax

IFcc <condition>

[<assembly language statementss>]

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

308 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

[ELSE]
[<assembly language statementss>]

ENDTF
Synonym
None
Description

These directives can be replaced by the 1r directive 1fcc <conditions 1S true, the statements
immediately following the rtcc directive are assembled. Assembly continues until the
corresponding erse or exo1r directive is reached, after which assembly moves to the
statements following the =norr directive. Nesting of conditional blocks is allowed. The
maximum level of nesting is limited by the available memory at assembly time.

The following table lists the available conditional types:

Table 9-9. Conditional assembly types

Ifcc Condition Meaning
ifeq <expression> if <expression> ==
ifne <expression> if <expression> =0
iflt <expression> if <expression> < 0
ifle <expression> if <expression> <=0
ifgt <expression> if <expression> >0
ifge <expression> if <expression> >=0
ifc <string1>, <string2> if <string1> == <string2>
ifnc <string1>, <string2> if <string1> != <string2>
ifdef <label> if <label> was defined
ifndef <label> if <label> was not defined

Example
The following listing is an example of the use of conditional assembler directives:

Listing: Using the IFNE conditional assembler directive

Try: EQU 0

IFNE Try
LDA #103
ELSE
LDA #0
ENDIF

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 309

uvewailed descriptions of all assembler directives

The value of Try determines the instruction to be assembled in the program. As shown,
the 1aa #o0 instruction is assembled. Changing the directive to 1reo causes the 1aa #103
instruction to be assembled instead.

The following listing shows the listing provided by the Assembler for these lines of code

Listing: Output

1 1 0000 00O0O Try: EQU 0
2 2 0000 00O0O IFNE Try

4 4 ELSE

5 5 000000 A600 LDA #0

6 6 ENDIF

9.2.19 INCLUDE - Include text from another file

Syntax

INCLUDE <file specification>

Synonym
None
Description

This directive causes the included file to be inserted in the source input stream. The <fi1e
specifications 18 NOt case-sensitive and must be enclosed in quotation marks.

The Assembler attempts to open <file specifications relative to the current working
directory. If the file is not found there, then it is searched for relative to each path
specified in the GENPATH: Search path for input file environment variable.

Example

INCLUDE "..\LIBRARY\macros.inc"

9.2.20 LIST - Enable Listing

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

310 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

Syntax

LIST
Synonym
None
Description

Specifies that instructions following this directive must be inserted into the listing and
into the debug file. This is a default option. The listing file is only generated if the -L:
Generate a listing file assembler option is specified on the command line.

The source text following the v1st directive is listed until a NOLIST - Disable Listing or
an END - End assembly assembler directive is reached.

This directive is not written to the listing and debug files.
Example

The assembly source code using the r1st and norzst directives in the following listing
generates the output listed in the next listing.

Listing: Using the LIST and NOLIST assembler directives

aaa: NOP
LIST

bbb: NOP
NOP
NOLIST

Cccc: NOP
NOP
LIST

ddd: NOP NOP

Listing: Output

Abs. Rel Loc Obj. code Source line
1 1 000000 9D aaa: NOP
2 2
4 4 000001 9D bbb: NOP
5 5 000002 9D NOP
6 6

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 311

uvewailed descriptions of all assembler directives

12 12 000005 9D ddd: NOP

13 13 000006 9D NOP

9.2.21 LLEN - Set Line Length

Syntax

LLEN<n>

Synonym
None
Description

Sets the number of characters from the source line that are included on the listing line to
<n>. The values allowed for <n- are in the range (o - 1321. If a value smaller than o is
specified, the line length is set to o. If a value bigger than 132 is specified, the line length
1s set to 132.

Lines of the source file that exceed the specified number of characters are truncated in the
listing file.

Example

The following listing shows the portion of code which generates the listing file in next
listing. Notice that the rrex 24 directive causes the output at the location-counter line 7 to
be truncated.

Listing: Example assembly source code using LLEN

DC.B $55
LLEN 32

DC.W $1234, $4567
LLEN 24
DC.W $1234, $4567

EVEN

Listing: Formatted assembly output listing as a result of using LLEN

Abs. Rel. Loc Obj. code Source line

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

312 Freescale Semiconductor, Inc.

g |

4
Chapter 9 Assembler Directives

1 1 000000 55 DC.B $55

2 2

4 4 000001 1234 4567 DC.W $1234, $4567
5 5

7 7 000005 1234 4567 DC.W $1234, $

8 8 000009 00 EVEN

9.2.22 LONGEVEN - Forcing Long-Word alignment

Syntax

LONGEVEN

Synonym
None
Description

This directive forces the next instruction to the next long-word address relative to the
start of the section. rongeven 1s an abbreviation for avren 4.

Example

See the following listing for an example where ronceven aligns the next instruction to have
its location counter to be a multiple of four (bytes).

Listing: Forcing Long Word Alignment

2 2 000000 01 dcb.b 1,1
; location counter is not a multiple of 4; three filling

; bytes are required.
3 3 000001 0000 0O longeven
4 4 000004 0002 0002 dcb.w 2,2
; location counter is already a multiple of 4; no filling

; bytes are required.

5 5 longeven

6 6 000008 0202 dcb.b 2,2
7 7 ; following is for text section

8 8 s27 SECTION 27

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 313

A 4
4\ |

uvewailed descriptions of all assembler directives

9 9 000000 9D nop
; location counter is not a multiple of 4; three filling
; bytes are required.

10 10 000001 0000 0O longeven

11 11 000004 9D nop

9.2.23 MACRO - Begin macro definition

Syntax

<label>: MACRO

Synonym
None
Description

The <1ave1> of the macro directive is the name by which the macro is called. This name
must not be a processor machine instruction or assembler directive name. For more
information on macros, see the Macros chapter.

Example
See the following listing for a macro definition.

Listing: Example macro definition

XDEF Start
MyData: SECTION

charl: DS.B 1
char2: DS.B 1

cpChar: MACRO

LDA \1
STA \2
ENDM

CodeSec: SECTION
Start:

cpChar charl, char2

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

314 Freescale Semiconductor, Inc.

4
A

Chapter 9 Assembler Directives

LDA charl

STA char2

9.2.24 MEXIT - Terminate Macro Expansion

Syntax
MEXTIT

Synonym
None
Description

mex1t 1S usually used together with conditional assembly within a macro. In that case it
may happen that the macro expansion should terminate prior to termination of the macro
definition. The uex1T directive causes macro expansion to skip any remaining source lines
ahead of the ENDM - End macro definition directive.

Example

The code in the following listing allows the replication of simple instructions or
directives using uacro with vexrr.

Listing: Example assembly code using MEXIT

XDEF entry
storage: EQU SOOFF

save: MACRO ; Start macro definition

LDX #storage

LDA \1

STA 0,x ; Save first argument

LDA \2

STA 2,x ; Save second argument

IFC "\3', ! ; Is there a third argument?
MEXIT ; No, exit from macro

ENDC

LDA \3 ; Save third argument
STA 4,X

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 315

g |

uvewailed descriptions of all assembler directives

ENDM ; End of macro definition
datSec: SECTION
charl: ds.b 1
char2: ds.b 1
codSec: SECTION
entry:

save charl, char2

The following listing shows the macro expansion of the previous macro.

Listing: Macro Expansion

Abs. Rel. Loc Obj. code Source line

1 1 XDEF entry

2 2 0000 OOFF storage: EQU SOOFF

3 3

4 4 save: MACRO ; Start macro definition
5 5 LDX #storage

6 6 LDA \1

7 7 STA 0,x ; Save first arg

8 8 LDA \2

9 9 STA 2,x ; Save second arg
10 10 IFC '"\3', ''; is there a

11 11 MEXIT ; No, exit from macro.
12 12 ENDC

13 13 LDA \3 ; Save third argument
14 14 STA 4,X

15 15 ENDM ; End of macro defin
16 16

17 17 datSec: SECTION

18 18 000000 charl: ds.b 1

19 19 000001 char2: ds.b 1
20 20
21 21
22 22
23 23 codSec: SECTION

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

316 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

24 24 entry:

25 25 save charl, char2

26 5m 000000 AEFF + LDX #storage

27 6m 000002 C6 XXxXX + LDA charl

28 7m 000005 E700 + STA 0,x ; Save first arg
29 8m 000007 C6 XXXX + LDA char2

30 9m O00000A E702 + STA 2,Xx ; Save second

31 10m 0000 0001 + IFC rr,oont! ; Is there a
33 11lm + MEXIT ; no, exit macro.
34 12m + ENDC

35 13m + LDA ; Save third argu
36 14m + STA 4,X

9.2.25 MLIST - List macro expansions

Syntax

MLIST [ON|OFF]

Description

When the on keyword is entered with an wr1st directive, the Assembler includes the macro
expansions in the listing and in the debug file.

When the orr keyword is entered, the macro expansions are omitted from the listing and
from the debug file.

This directive is not written to the listing and debug file, and the default value is ow.
Synonym

None

Example

The assembly code in the following listing, with mu1sT on, generates the assembler output
listing in the next listing.

Listing: Example assembly source code using MLIST

XDEF entry
MLIST ON

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 317

r
A

y |
uvewailed descriptions of all assembler directives
swap: MACRO
LbA \1
LDX \2
STA \2
STX \1
ENDM

codSec: SECTION
entry:
LDA #SFO
LDX #SOF
main:
STA first
STX second
swap first, second
NOP
BRA main
datSec: SECTION
first: DS.B 1

second: DS.B 1

The following listing shows the output of the example assembly source code using
MLIST listed above:

Listing: Assembler Output

1 1 XDEF entry
3 3 swap: MACRO

4 4 LDA \1
5 5 LDX \2
6 6 STA \2
7 7 STX \1
8 8 ENDM

9 9

10 10 codSec: SECTION

11 11 entry:

12 12 000000 A6FO LDA #SFO
13 13 000002 AEOQOF LDX #SOF
14 14 main:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

318 Freescale Semiconductor, Inc.

P

15

16

17

18

19

20

21

22

23

24

25

26

27

15

16

17

4m

5m

6em

7m

18

19

20

21

22

23

000004

000007

oooooAa

00000D

000010

000013

000016

000017

000000

000001

C7 xxxXX

CF xxxXX

C6 xXxXXX

CE xxxx

C7 xXxXXX

CF xxxx

9D

20EB

datSec:

first:

second:

STA

STX

swap

LDA

LDX

STA

STX

NOP

BRA

SECTION

DS.B 1

DS.B 1

first,

main

first

second

second

first

second

second

first

Chapter 9 Assembler Directives

For the same code, with mu1st orr, the listing file is as shown in the following listing:

Listing: Assembler Output

Abs.

10

11

12

13

14

15

16

21

22

Rel.

10

11

12

13

14

15

16

17

18

000000

000002

000004

000007

000016

000017

Obj .

A6F0

AEQF

C7 xxXxXX

CF xxxx

20EB

XDEF

swap :

code Source line

entry

MACRO

LDA \1

LDX \2

STA \2

STX \1

ENDM

codSec:

entry:

main:

SECTION

LDA #SFO

LDX #$OF

STA first
STX second
swap first,
NOP

BRA main

second

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

319

A 4
4\ |

uvewailed descriptions of all assembler directives

23 19 datSec: SECTION
24 20 000000 first: DS.B 1
25 21 000001 second: DS.B 1

The wu1st directive does not appear in the listing file. When a macro is called after a muist
on, it 1s expanded in the listing file. If the muist orFr is encountered before the macro call,
the macro is not expanded in the listing file.

9.2.26 NOLIST - Disable Listing

Syntax
NOLIST
Synonym
NOL,

Description

Suppresses the printing of the following instructions in the assembly listing and debug
file until a LIST - Enable Listing assembler directive is reached.

Example

See the following listing for an example of using v1st and vovzsr.

Listing: Examples of LIST and NOLIST

aaa: NOP
LIST

bbb : NOP
NOP
NOLIST

ccce: NOP
NOP
LIST

ddd: NOP

NOP

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

320 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

The listing above generates the listing file in the following listing:

Listing: Assembler Output

Assembler

Abs. Rel. Loc Obj. code Source line
1 1 000000 9D aaa: NOP
2 2
4 4 000001 9D bbb: NOP
5 5 000002 9D NOP
6 6
12 12 000005 9D ddd: NOP
13 13 000006 9D NOP

See also

LIST - Enable Listing assembler directive

9.2.27 NOPAGE - Disable Paging

Syntax

NOPAGE

Synonym
None
Description

Disables pagination in the listing file. Program lines are listed continuously, without
headings or top or bottom margins.

9.2.28 OFFSET - Create absolute symbols

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 321

uvewailed descriptions of all assembler directives

OFFSET <expression>

Synonym
None
Description

The orrser directive declares an offset section and initializes the location counter to the
value specified in <expressions. The <expression- must be absolute and may not contain
references to external, undefined or forward defined labels.

Example

The following listing shows how the orrser directive can be used to access an element of
a structure.

Listing: Example assembly source code

6 6 OFFSET 0
7 7 000000 ID: DS.B 1
8 8 000001 COUNT : DS.W 1
9 9 000003 VALUE : DS.L 1
10 10 0000 0007 SIZE: EQU *
11 11
12 12 DataSec: SECTION
13 13 000000 Struct: DS.B SIZE
14 14
15 15 CodeSec: SECTION
16 16 entry:
17 17 000003 CE xxxX LDX #Struct
18 18 000006 8600 LDA #0
19 19 000008 6A00 STA ID, X
20 20 00000A 6201 INC COUNT, X
21 21 00000C 42 INCA
22 22 00000D 6A03 STA VALUE, X

When a statement affecting the location counter other than sven, rongeven, arten, O Ds 1S
encountered after the orrser directive, the offset section is ended. The preceding section is
activated again, and the location counter is restored to the next available location in this
section. The following listing shows the example where the location counter is changed.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

322 Freescale Semiconductor, Inc.

Listing: Example where the location counter is changed

10

11

12

13

14

15

16

17

10

11

12

13

14

15

16

17

000000 11

000001 13

000000

000001

000003

0000 0007

000002 22

ConstSec:
cstl:

cst2:

ID:

COUNT :

VALUE :

SIZE:

cst3:

SECTION
DC.B $11

DC.B $13

OFFSET 0
DS.B 1
DS.W 1
DS.L 1

EQU *

DC.B $22

Chapter 9 Assembler Directives

In the example above, the cst3 symbol, defined after the orrser directive, defines a
constant byte value. This symbol is appended to the section constsec, which precedes the
orrser directive.

9.2.29 ORG - Set Location Counter

Syntax

ORG <expression>

Synonym

None

Description

The orc directive sets the location counter to the value specified by <expressions.
Subsequent statements are assigned memory locations starting with the new location
counter value. The <expression> must be absolute and may not contain any forward,
undefined, or external references. The orc directive generates an internal section, which is
absolute (see the Sections chapter).

Example

See the following listing for an example where orc sets the location counter.

Listing: Using ORG to set the location counter

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

323

A 4
4\ |

uvewailed descriptions of all assembler directives

org $2000
bl: nop
b2: rts

Viewing the following listing, you can see that the »1 label is located at address $2000
and label b2 is at address $2001.

Listing: Assembler Output

Abs. Rel Loc Obj. code Source line
1 1 org $2000
2 2 a002000 9D bl: nop
3 3 a002001 81 b2: rts

See also

Assembler directives:

e DC - Define Constant

e DCB - Define Constant Block

* DS - Define Space

e SECTION - Declare Relocatable Section

9.2.30 PAGE - Insert Page break

Syntax
PAGE

Synonym

None

Description

Insert a page break in the assembly listing.
Example

The portion of code in the following listing demonstrates the use of a page break in the
assembler output listing.

Listing: Example assembly source code

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

324 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

code: SECTION
DC.B $00,812

DC.B $00,%$34
PAGE
DC.B $00,%56

DC.B $00,$78

The effect of the PAGE directive can be seen in the following listing.
Listing: Assembler Output

Abs. Rel. Loc Obj. code Source line
1 1 code: SECTION
2 2 000000 0012 DC.B $00,s$12
3 3 000002 0034 DC.B $00,$34
Abs. Rel. Loc Obj. code Source line
5 5 000004 0056 DC.B $00, $56
6 6 000006 0078 DC.B $00,5$78

9.2.31 PLEN - Set Page Length

Syntax

PLEN<n>

Synonym
None
Description

Sets the listings page length to <n> lines. <n> may range from 10 to 10000. If the number of
lines already listed on the current page is greater than or equal to <n>, listing will continue
on the next page with the new page length setting.

The default page length is 65 lines.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 325

uvewailed descriptions of all assembler directives

9.2.32 RAD50 - RAD50-encoded string constants

Syntax

RAD50 <str>[, cnt]
Synonym
None

Description

This directive places strings encoded with the RADS50 encoding into constants. The
RADS0 encoding places 3 string characters out of a reduced character set into 2 bytes. It
therefore saves memory when comparing it with a plain ASCII representation. It also has
some drawbacks, however. Only 40 different character values are supported, and the
strings have to be decoded before they can be used. This decoding does include some
computations including divisions (not just shifts) and is therefore rather expensive.

The encoding takes three bytes and looks them up in a string table. The following listing
shows the RADS50 encoding.

Listing: RADS0 Encoding

unsigned short LookUpPos (char x) {
static const char translate[]=

" ABCDEFGHIJKLMNOPQRSTUVWXYZS$.?20123456789";
const char* pos= strchr(translate, x);
if (pos == NULL) { EncodingError(); return 0; }
return pos-translate;
}
unsigned short Encode(char a, char b, char c) {
return LookUpPos (a)*40*40 + LookUpPos (b) *40

+ LookUpPos (c) ;

}

If the remaining string is shorter than 3 bytes, it is filled with spaces (which correspond to
the RADSO0 character 0).

The optional argument cnc can be used to explicitly state how many 16-bit values should
be written. If the string is shorter than s+cnt, then it is filled with spaces.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

326 Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

See the example C code below about how to decode it.
Example

The string data in the following listing assembles to the following data where 11
characters are contained in eight bytes. The 11 characters in the string are represented by
8 bytes.

Listing: RAD50 Example

XDEF rad50, rad50Len
DataSection SECTION

rad50: RAD50 "Hello World"

rad50Len: EQU (*-rad50)/2

Listing: Assembler output where 11 characters are contained in eight bytes

$32D4 $4D58 $922A $4BA0O

This C code shown in the following listing takes the data and prints "Hello World".
Listing: Example-Program that Prints Hello World

#include "stdio.h"
extern unsigned short rad50/[];

extern int rad50Len; /* address is value. Exported asm label */
#define rad50len ((int) &rad50Len)
void printRadChar (char ch) {
static const char translatel[]l=
" ABCDEFGHIJKLMNOPQRSTUVWXYZS$.?20123456789";
char asciiChar= translate[ch];
(void)putchar (asciiChar) ;
}
void PrintHallo (void) ({
unsigned char values= rad50len;
unsigned char i;
for (i=0; i < values; i++)
unsigned short val= rad50[i];
printRadChar (val / (40 * 40));
printRadChar ((val / 40) % 40);

°

printRadChar (val % 40);

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 327

uvewailed descriptions of all assembler directives

}

9.2.33 SECTION - Declare Relocatable Section

Syntax

<name>: SECTION [SHORT] [<number>]

Synonym
None
Description

This directive declares a relocatable section and initializes the location counter for the
following code. The first secrron directive for a section sets the location counter to zero.
Subsequent secrron directives for that section restore the location counter to the value that
follows the address of the last code in the section.

<name> 18 the name assigned to the section. Two secrzon directives with the same name
specified refer to the same section.

<number> 18 optional and is only specified for compatibility with the MASM Assembler.

A section is a code section when it contains at least one assembly instruction. It is
considered to be a constant section if it contains only pc or oce directives. A section is
considered to be a data section when it contains at least a os directive or if it is empty.

Example

The example in the following listing demonstrates the definition of a section aaa, which is
split into two blocks, with section vbb in between them.

The location counter associated with the label zz is 1, because a wor instruction was
already defined in this section at label xx.

Listing: Example of the SECTION assembler directive

Abs. Rel. Loc Obj. code Source line
1 1 aaa: SECTION 4
2 2 000000 9D XX: NOP
3 3 bbb: SECTION 5

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

328 Freescale Semiconductor, Inc.

7

8

7

8

000000 9D

000001 9D

000002 9D

000001 9D

Yy:

aaa:

ZZ:

Chapter 9 Assembler Directives

NOP
NOP
NOP
SECTION 4

NOP

The optional qualifier suorT specifies that the section is a short section, That means than
the objects defined there can be accessed using the direct addressing mode.

For RS08, there are two additional section qualifiers: RSO8_SHORT and RSO8_TINY.
When a section is declared as RSO8_SHORT (or RSO8_TINY) all the objects defined
there can be accessed using the short (and respectively tiny) addressing modes.

The example in the following listing demonstrates the definition and usage of a szorrT
section, and uses the direct addressing mode to access the symbol data.

Listing: Using the direct addressing mode

See also

000000

000000 oC

000001 A600

000003 B7xx

Assembler directives:

dataSec:
data:

codeSec:

entry:

* ORG - Set Location Counter

e DC - Define Constant

e DCB - Define Constant Block
* DS - Define Space

SECTION SHORT
DS.B 1

SECTION

RSP

LDA #0

STA data

9.2.34 SET - Set Symbol Value

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

329

uvewailed descriptions of all assembler directives

<labels>:

Synonym

None

Description

SET <expression>

Similar to the EQU - Equate symbol value directive, the ser directive assigns the value of
the <expressions in the operand field to the symbol in the <1abe1s field. The <expressions
must resolve as an absolute expression and cannot include a symbol that is undefined or
not yet defined. The <1ave1- is an assembly time constant. ser does not generate any
machine code.

The value is temporary; a subsequent ser directive can redefine it.

Example

See the following listing for examples of the SET directive.

Listing: Using the SET assembler directive

8

9

10

8

9

10

Loc Obj.
0000
000000 02
0000
000001 01
0000
0000
000002 00

code

0001

0001

0000

Source line

count:

count:

DC.B count

SET count-1

DC.B count

IFNE count

SET count-1

ENDIF

DC.B count

The value associated with the label count 1S decremented after each oc.s instruction.

9.2.35 SPC - Insert Blank Lines

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

330

Freescale Semiconductor, Inc.

g |

Chapter 9 Assembler Directives

SPC<count>

Synonym
None
Description

Inserts <count> blank lines in the assembly listing. <count> may range from O to 65. This
has the same effect as writing that number of blank lines in the assembly source. A blank
line is a line containing only a carriage return.

9.2.36 TABS - Set Tab Length

Syntax

TABS <n>

Synonym
None
Description

Sets the tab length to <n> spaces. The default tab length is eight. <n> may range from O to
128.

9.2.37 TITLE - Provide Listing Title

Syntax

TITLE "title"

Synonym
TTL

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 331

uvewailed descriptions of all assembler directives

Print the <tit1e> on the head of every page of the listing file. This directive must be the
first source code line. A title consists of a string of characters enclosed in quotes ().

The title specified will be written on the top of each page in the assembly listing file.

9.2.38 XDEF - External Symbol Definition

Syntax

XDEF [.<size>] <labels>|[,<label>]...

where
<size> = B(direct), W (default),
L or Sor T

Synonym

GLOBAL, PUBLIC

Description

This directive specifies labels defined in the current module that are to be passed to the
linker as labels that can be referenced by other modules linked to the current module.

The number of symbols enumerated in an xoer directive is only limited by the memory
available at assembly time.

The S and T size designators are only available for RS08, and result in marking the
symbol as short or tiny.

Example

See the following listing for the case where the xper assembler directive can specify
symbols that can be used by other modules.

Listing: Using XDEF to create a variable to be used in another file

XDEF Count, main
;; variable Count can be referenced in other modules,

;; same for label main. Note that Linker & Assembler

;; are case-sensitive, i.e., Count != count.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

332 Freescale Semiconductor, Inc.

Chapter 9 Assembler Directives

Count: DS.W 2
code: SECTION

main: DC.B 1

9.2.39 XREF - External Symbol Reference

Syntax

XREF [.<size>] <symbols>[,<symbol>]...

where <size> - B(direct), w (default), or . or s or .

Synonym

EXTERNAL

Description

This directive specifies symbols referenced in the current module but defined in another
module. The list of symbols and corresponding 32-bit values is passed to the linker.

The number of symbols enumerated in an xrer directive is only limited by the memory
available at assembly time.

The S and T size designators are only available for RS08, and result in marking the
symbol as short or tiny.

Example

XREF OtherGlobal ; Reference "OtherGlobal" defined in
; another module. (See the XDEF
; directive example.)

9.2.40 XREFB - External Reference for Symbols located on the
Direct Page

Syntax

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 333

A 4
4\ |

uvewailed descriptions of all assembler directives

XREFB <symbols>[,<symbol>] ...

Synonym
None
Description

This directive specifies symbols referenced in the current module but defined in another
module. Symbols enumerated in a xrers directive, can be accessed using the direct
address mode. The list of symbols and corresponding 8-bit values is passed to the linker.

The number of symbols enumerated in a xrers directive is only limited by the memory
available at assembly time.

Example

XREFB OtherDirect ; Reference "OtherDirect" def in another
; module (See XDEF directive example.)

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

334 Freescale Semiconductor, Inc.

Chapter 10
Macros

A macro is a template for a code sequence. Once a macro is defined, subsequent
reference to the macro name are replaced by its code sequence.

10.1 Macro overview

A macro must be defined before it is called. When a macro is defined, it is given a name.
This name becomes the mnemonic by which the macro is subsequently called.

The Assembler expands the macro definition each time the macro is called. The macro
call causes source statements to be generated, which may include macro arguments. A
macro definition may contain any code or directive except nested macro definitions.
Calling previously defined macros is also allowed. Source statements generated by a
macro call are inserted in the source file at the position where the macro is invoked.

To call a macro, write the macro name in the operation field of a source statement. Place
the arguments in the operand field. The macro may contain conditional assembly
directives that cause the Assembler to produce in-line-coding variations of the macro
definition.

Macros call produces in-line code to perform a predefined function. Each time the macro
is called, code is inserted in the normal flow of the program so that the generated
instructions are executed in line with the rest of the program.

10.2 Defining a macro

The definition of a macro consists of four parts:
e The header statement, a macro directive with a label that names the macro.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 335

vaimng macros

* The body of the macro, a sequential list of assembler statements, some possibly
including argument placeholders.

* The expu directive, terminating the macro definition.

* eventually an instruction mexrT, which stops macro expansion.

See the Assembler Directives chapter for information about the macro, enom, vex1T, and
muist directives.

The body of a macro is a sequence of assembler source statements. Macro parameters are
defined by the appearance of parameter designators within these source statements. Valid
macro definition statements includes the set of processor assembly language instructions,
assembler directives, and calls to previously defined macros. However, macro definitions
may not be nested.

10.3 Calling macros

The form of a macro call is:

[<label>:] <names>[.<sizearg>] [<argument> [,<argument>]...]

Although a macro may be referenced by another macro prior to its definition in the
source module, a macro must be defined before its first call. The name of the called
macro must appear in the operation field of the source statement. Arguments are supplied
in the operand field of the source statement, separated by commas.

The macro call produces in-line code at the location of the call, according to the macro
definition and the arguments specified in the macro call. The source statements of the
expanded macro are then assembled subject to the same conditions and restrictions
affecting any source statement. Nested macros calls are also expanded at this time.

10.4 Macro parameters

As many as 36 different substitutable parameters can be used in the source statements
that constitute the body of a macro. These parameters are replaced by the corresponding
arguments in a subsequent call to that macro.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

336 Freescale Semiconductor, Inc.

Chapter 10 Macros

A parameter designator consists of a backslash character (\), followed by a digit (0 - 9) or
an uppercase letter (A - Z). Parameter designator \O corresponds to a size argument that
follows the macro name, separated by a period (.).

Consider the following macro definition:

MyMacro: MACRO

DC.\O \1, \2

ENDM

When this macro is used in a program, e.g.:

MyMacro.B $10, $56

the Assembler expands it to:

DC.B $10, $56

Arguments in the operand field of the macro call refer to parameter designator \1 through
\o and \a through \z, in that order. The argument list (operand field) of a macro call
cannot be extended onto additional lines.

At the time of a macro call, arguments from the macro call are substituted for parameter
designators in the body of the macro as literal (string) substitutions. The string
corresponding to a given argument is substituted literally wherever that parameter
designator occurs in a source statement as the macro is expanded. Each statement
generated in the execution is assembled in line.

It is possible to specify a null argument in a macro call by a comma with no character
(not even a space) between the comma and the preceding macro name or comma that
follows an argument. When a null argument itself is passed as an argument in a nested
macro call, a null value is passed. All arguments have a default value of null at the time
of a macro call.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 337

wiacro parameters

10.4.1 Macro argument grouping

To pass text including commas as a single macro argument, the Assembler supports a
special syntax. This grouping starts with the [? prefix and ends with the ?] suffix. If the [?
or ?] patterns occur inside of the argument text, they have to be in pairs. Alternatively,
escape brackets, question marks and backward slashes with a backward slash as prefix.

NOTE
This escaping only takes place inside of (> »1 arguments. A
backslash is only removed in this process if it is just before a
bracket (11), a question mark (»), or a second backslash ().

Listing: Example macro definition
MyMacro: MACRO
DC \1
ENDM
MyMacrol: MACRO
\1

ENDM

The following listing shows the macro calls with rather complicated arguments:

Listing: Macro calls

MyMacro [?$10, $567?]

MyMacro [?"\[?"?]

MyMacrol [?MyMacro [?$10, $567?]17?]
MyMacrol [?MyMacro \[?$10, $56\?]°?]

These macro calls expand to the following listing:

Listing: Macro expansion

DC $10, $56
DC n [?n

DC $10, $56
DC $10, $56

The Macro Assembler does also supports for compatibility with previous version's macro
grouping with an angle bracket syntax, as in the following listing:

Listing: Angle bracket syntax

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

338 Freescale Semiconductor, Inc.

Chapter 10 Macros

MyMacro <$10, $56>
However, this old syntax is ambiguous as < and - are also used as compare operators. For
example, the following code does not produce the expected result:

Listing: Potential problem using the angle-bracket syntax

MyMacro <1 > 2, 2 > 3> ; Wrong!

Because of this the old angle brace syntax should be avoided in new code. There is also
and option to disable it explicitly.

See also the -CMacBrackets: Square brackets for macro arguments grouping and the -
CMacAngBrack: Angle brackets for grouping Macro Arguments assembler options.

10.5 Labels inside macros

To avoid the problem of multiple-defined labels resulting from multiple calls to a macro
that has labels in its source statements, the programmer can direct the Assembler to
generate unique labels on each call to a macro.

Assembler-generated labels include a string of the form _nnnnn where nnnnn is a 5-digit
value. The programmer requests an assembler-generated label by specifying \e in a label
field within a macro body. Each successive label definition that specifies a \@ directive
generates a successive value of _nnnnn, thereby creating a unique label on each macro
call. Note that \@ may be preceded or followed by additional characters for clarity and to
prevent ambiguity.

The following listing shows the definition of the ciear macro:

Listing: Clear macro definition

clear: MACRO
LDX #\1
LDA #16
\@LOOP: CLR 0,X

INCX
DECA

BNE \@LOOP

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 339

A\ 4
N
wiacro expansion

ENDM

This macro is called in the application, as listed in the following listing:

Listing: Calling the clear macro

clear temporary
clear data

The two macro calls of ciear are expanded in the following manner, as listed in the
following listing:

Listing: Macro call expansion

clear temporary
LDX #temporary

LDA #16
_00001LOOP: CLR 0,X

INCX

DECA

BNE 00001LOOP

clear data
LDX #data
LDA #16
_00002LOOP: CLR 0,X
INCX
DECA

BNE _00002LOCP

10.6 Macro expansion

When the Assembler reads a statement in a source program calling a previously defined
macro, it processes the call as described in the following paragraphs.

The symbol table is searched for the macro name. If it is not in the symbol table, an
undefined symbol error message is issued.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

340 Freescale Semiconductor, Inc.

Chapter 10 Macros

The rest of the line is scanned for arguments. Any argument in the macro call is saved as
a literal or null value in one of the 35 possible parameter fields. When the number of
arguments in the call is less than the number of parameters used in the macro the
argument, which have not been defined at invocation time are initialize with »» (empty
string).

Starting with the line following the macro directive, each line of the macro body is saved
and 1s associated with the named macro. Each line is retrieved in turn, with parameter
designators replaced by argument strings or assembler-generated label strings.

Once the macro is expanded, the source lines are evaluated and object code is produced.

10.7 Nested macros

Macro expansion is performed at invocation time, which is also the case for nested
macros. If the macro definition contains nested macro call, the nested macro expansion
takes place in line. Recursive macro calls are also supported.

A macro call is limited to the length of one line, i.e., 1024 characters.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 341

PR 4

neswed macros

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

342 Freescale Semiconductor, Inc.

g |

Chapter 11
Assembler Listing File

The assembly listing file is the output file of the Assembler that contains information
about the generated code. The listing file is generated when the -1 assembler option is
activated. When an error is detected during assembling from the file, no listing file is
generated.

The amount of information available depends upon the following assembler options:

* -L: Generate a listing file

e -Lc: No Macro call in listing file

* -Ld: No macro definition in listing file
* -Le: No Macro expansion in listing file
* -Li: No included file in listing file

The information in the listing file also depends on following assembler directives:

e LIST - Enable Listing

e NOLIST - Disable Listing

e CLIST - List conditional assembly
e MLIST - List macro expansions

The format from the listing file is influenced by the following assembler directives:

* PLEN - Set Page Length

* LLEN - Set Line Length

* TABS - Set Tab Length

e SPC - Insert Blank Lines

* PAGE - Insert Page break

* NOPAGE - Disable Paging

e TITLE - Provide Listing Title.

The name of the generated listing file 1S <vase names.1st.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 343

suurce listing

11.1 Page header

The page header consists of three lines:
 The first line contains an optional user string defined in the r1tie directive.

The second line contains the name of the Assembler vendor (rreescale) as well as the
target processor name - HC(S)08.

* The third line contains a copyright notice.
Listing: Example page header output

Demo Application
Freescale HCO8-Assembler

(c) COPYRIGHT Freescale 1991-2005

11.2 Source listing

The printed columns can be configured in various formats with the -Lasmc: Configure
listing file assembler option. The default format of the source listing has the following
five columns:

e Abs.

e Rel.

* [Loc

* Obj. code
e Source line

11.2.1 Abs.

This column contains the absolute line number for each instruction. The absolute line
number is the line number in the debug listing file, which contains all included files and
where any macro calls have been expanded.

Listing: Example output listing - Abs. column

Abs.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

344 Freescale Semiconductor, Inc.

\
4

(

Rel.

10

11

12

13

14

1i

41

Loc Obj. code Source line

; File: test.o

XDEF Start

MyData: SECTION

000000 charl: DS.B 1

000001 char2: DS.B 1

INCLUDE "macro.inc"

cpChar: MACRO

LDA \1

STA \2

ENDM

Chapter 11 Assembiler Listing File

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

345

A
4

4
A

suurce listing

10 CodeSec: SECTION
15

11 Start:
16

12 cpChar charl, char2
17

2m 000000 C6 xxxxX + LDA charl
18

3m 000003 C7 xxxX + STA char2
19

13 000006 9D NOP
20

14 000007 9D NOP

11.2.2 Rel.

This column contains the relative line number for each instruction. The relative line
number is the line number in the source file. For included files, the relative line number is
the line number in the included file. For macro call expansion, the relative line number is
the line number of the instruction in the macro definition. See the listing below.

An i suffix is appended to the relative line number when the line comes from an included
file. An w suffix is appended to the relative line number when the line is generated by a
macro call.

Listing: Example listing file - Rel. column

Abs.
Rel.

Loc Obj. code Source line

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

346 Freescale Semiconductor, Inc.

b -

1i

2i

10

11

000000

8

000001

9

10

11

12

13

14

15

; File: test.o

XDEF Start

MyData: SECTION

charl: DS.B 1

char2: DS.B 1

INCLUDE "macro.inc"

cpChar: MACRO

LDA \1
STA \2
ENDM

CodeSec: SECTION

Start:

Chapter 11 Assembiler Listing File

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

347

suurce listing

16
12

cpChar charl, char2

17

2m
000000 C6 xxXX + LDA charl
18
3m
000003 C7 xxXX + STA char2
19
13
000006 9D NOP
20
14
000007 9D NOP

In the previous example, the line number displayed in the re1. column. represent the line
number of the corresponding instruction in the source file.

11 on absolute line number 10 denotes that the instruction cpchar: macro 18 located in an
included file.

2m ON absolute line number 17 denotes that the instruction woa chari 1S generated by a
macro expansion.

11.2.3 Loc

This column contains the address of the instruction. For absolute sections, the address is
preceded by an = and contains the absolute address of the instruction. For relocatable
sections, this address is the offset of the instruction from the beginning of the relocatable
section. This offset is a hexadecimal number coded on 6 digits.

A value is written in this column in front of each instruction generating code or allocating
storage. This column is empty in front of each instruction that does not generate code (for
example secrion, xper). See the following listing:

Listing: Example Listing File - Loc column

Abs. Rel.
Loc

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

348 Freescale Semiconductor, Inc.

6

7
000000

8
000001

10

11

12

13

14

15

16

17
000000

C6 xXXxXX

18
000003

C7 XXXX

19
000006

9D

20
000007

9D

41

10

11

12

2m

3m

13

14

charl:

char2:

; File: test.o
XDEF Start
MyData: SECTION
DS.B 1
DS.B 1
INCLUDE "macro.inc"
cpChar: MACRO
LDA \1
STA \2
ENDM
CodeSec: SECTION
Start:
cpChar charl, char2
LDA charl
STA char2
NOP
NOP

Chapter 11 Assembler Listing File

In the previous example, the hexadecimal number displayed in the column voc. is the
offset of each instruction in the section cogesec.

There is no location counter specified in front of the instruction rncrLube"macro.inc" because
this instruction does not generate code.

The instruction roa char1 1S located at offset O from the section codesec start address.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

349

A
4

4
A

suurce listing

The instruction sta char2 1S located at offset 3 from the section codesec start address.

11.2.4 Obj. code

This column contains the hexadecimal code of each instruction in hexadecimal format.
This code is not identical to the code stored in the object file. The letter ~ x' is displayed at
the position where the address of an external or relocatable label is expected. Code at any
position when * ' is written will be determined at link time. See the following listing:

Listing: Example listing file - Obj. code column

Abs. Rel. Loc
Obj. code

Source line

1 1 R
2 2 ; File: test.o
3 3 e
4 4
5 5 XDEF Start
6 6 MyData: SECTION
7 7 000000 charl: DS.B 1
8 8 000001 char2: DS.B 1
9 9 INCLUDE "macro.inc"
10 1i cpChar: MACRO
11 21 LDA \1
12 3i STA \2
13 41 ENDM
14 10 CodeSec: SECTION
15 11 Start:
16 12 cpChar charl, char2
17 2m 000000
C6 xXXXX
+ LDA charl
18 3m 000003
C7 xXxXxXxX
+ STA char2

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

350 Freescale Semiconductor, Inc.

g |

L __4
Chapter 11 Assembler Listing File

19 13 000006
9D

NOP

20 14 000007
9D

NOP

11.2.5 Source line

This column contains the source statement. This is a copy of the source line from the
source module. For lines resulting from a macro expansion, the source line is the
expanded line, where parameter substitution has been done. See the following listing:

Listing: Example listing file - Source line column

Abs. Rel. Loc Obj. code
Source line

3 3
4 4
5 5

XDEF Start

6 6
MyData: SECTION

7 7 000000
charl: DS.B 1

8 8 000001
char2: DS.B 1

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 351

(O
P

swuurce listing

9 9
INCLUDE "macro.inc"

10 1i
cpChar: MACRO

11 21
LDA \1

12 3i
STA \2

13 41
ENDM

14 10
CodeSec: SECTION

15 11
Start:
16 12

cpChar charl, char2

17 2m 000000 C6 xxxx +
LDA charl

18 3m 000003 C7 xxxXX +
STA char2

19 13 000006 9D
NOP

20 14 000007 9D
NOP

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

352 Freescale Semiconductor, Inc.

Chapter 12
Mixed C and Assembler Applications

To build mixed C and Assembler applications, you have to know how the C Compiler
uses registers and calls procedures. The following sections will describe this for
compatibility with the compiler. If you are working with another vendor's ANSI-C
compiler, refer to your Compiler Manual to get the information about parameter passing
rules.

When you intend to mix Assembly source file and ANSI-C source files in a single
application, the following issues are important:

* Memory models

» Parameter passing scheme

e Return Value

» Accessing assembly variables in an ANSI-C source file
* Accessing ANSI-C variables in an assembly source file
* Invoking an assembly function in an ANSI-C source file
 Support for structured types

* Structured type: Limitations

12.1 Memory models

The memory models are only important if you mix C and assembly code. In this case all
sources must be compiled or assembled with the same memory model.

The Assembler supports all memory models of the compiler. Depending on your
hardware, use the smallest memory model suitable for your programming needs.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 353

rarameter passing scheme

The following table summarizes the different memory models. It shows when to use a
particular memory model and which assembler switch to use.

Table 12-1. HC08 memory models

Option Memory Model Local Data Global Data Suggested Use

-Ms SMALL SP rel extended The SMALL memory
model is the default. All
pointers and functions
are assumed to have
16-bit addresses if not
explicitly specified. In
the SMALL memory
model, code and data
must be in the 64k
address space.

-Mt TINY SP rel direct In the TINY memory
model, all data
including stack must fit
into the zero page. Data
pointers are assumed
to have 8-bit addresses
if not explicitly specified
with the keyword __far.
The code address
space is still 64k and
function pointers are
still 16 bits in length.

NOTE
The default pointer size for the compiler is also affected by the
memory model chosen.

12.2 Parameter passing scheme

Check the backend chapter in the compiler manual for the details of parameter passing.

12.3 Return Value

Check the backend chapter in the compiler manual for the details of parameter passing.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

354 Freescale Semiconductor, Inc.

Chapter 12 Mixed C and Assembler Applications

12.4 Accessing assembly variables in an ANSI-C source file

A variable or constant defined in an assembly source file is accessible in an ANSI-C
source file.

The variable or constant is defined in the assembly source file using the standard
assembly syntax.

Variables and constants must be exported using the xper directive to make them visible
from other modules, as listed in the following listing:

Listing: Example of data and constant definition

XDEF ASMData, ASMConst
DataSec: SECTION

ASMData: DS.W 1 ; Definition of a variable
ConstSec: SECTION
ASMConst: DC.W $44A6 ; Definition of a constant

We recommend that you generate a header file for each assembler source file. This
header file should contain the interface to the assembly module.

An external declaration for the variable or constant must be inserted in the header file, ,
as listed in the following listing:

Listing: Example of data and constant declarations

/* External declaration of a variable */
extern int ASMData;

/* External declaration of a constant */

extern const int ASMConst;

The variables or constants can then be accessed in the usual way, using their names, , as
listed in the following listing:

Listing: Example of data and constant reference

ASMData = ASMConst + 3;

12.5 Accessing ANSI-C variables in an assembly source file

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 355

invouking an assembly function in an ANSI-C source file

A variable or constant defined in an ANSI-C source file is accessible in an assembly
source file.

The variable or constant is defined in the ANSI-C source file using the standard ANSI-C
syntax, as listed in the following listing:

Listing: Example definition of data and constants

unsigned int CData; /* Definition of a variable */
unsigned const int CConst; /* Definition of a constant */

An external declaration for the variable or constant must be inserted into the assembly
source file, as listed in the following listing:

This can also be done in a separate file, included in the assembly source file.

Listing: Example declaration of data and constants

XREF CDhata; External declaration of a wvariable
XREF CConst; External declaration of a constant

The variables or constants can then be accessed in the usual way, using their names, as
listed in the following listing:

Listing: Example of data and constant reference

LDA CConst

LDA CData

NOTE
The compiler supports also the automatic generation of
assembler include files. See the description of the -ra compiler
option in the compiler manual.

12.6 Invoking an assembly function in an ANSI-C source file

An function implemented in an assembly source file (nixasn.asn in the listing Example of
an assembly file: mixasm.asm) can be invoked in a C source file (Listing: Example C
source code file: mixc.c). During the implementation of the function in the assembly
source file, you should pay attention to the parameter passing scheme of the ANSI-C
compiler you are using in order to retrieve the parameter from the right place.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

356 Freescale Semiconductor, Inc.

Chapter 12 Mixed C and Assembler Applications

Listing: Example of an assembly file: mixasm.asm

XREF CData
XDEF AddVar

XDEF ASMData
DataSec: SECTION
ASMData: DS.B 1
CodeSec: SECTION
AddVar:
ADD CData ; add CData to the parameter in register A
STA ASMData ; result of the addition in ASMData
RTS
We recommend that you generate a header file for each assembly source file, as listed in

the above listing. This header file (mixasn.n in the listing Header file for the assembly
mixasm.asm file: mixasm.h) should contain the interface to the assembly module.

Listing: Header file for the assembly mixasm.asm file: mixasm.h

/* mixasm.h */
#ifndef MIXASM H

#define MIXASM H

void AddvVar (unsigned char value) ;

/* function that adds the parameter value to global CData */
/* and then stores the result in ASMData */

/* variable which receives the result of Addvar */

extern char ASMData;

#endif /* MIXASM H_ */

The function can then be invoked in the usual way, using its name.

12.6.1 Example of a C file

A C source code file (mixc.c) has the main() function which calls the adavar () function.
See the following listing. (Compile it with the -cc compiler option when using the
HIWARE Object File Format.)

Listing: Example C source code file: mixc.c

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 357

A 4
4\ |

invouking an assembly function in an ANSI-C source file

static int Error

const unsigned char CData
#include "mixasm.h"
void main(void)
Addvar (10) ;
if (ASMData != CData + 10) {
Error = 1;
} else {
Error = 0;
}
for(;;); // wait forever

CAUTION
Be careful, as the Assembler will not make any checks on the
number and type of the function parameters.

The application must be correctly linked.

For these c and ».asn files, a possible linker parameter file is shown in the following
listing.

Listing: Example of linker parameter file: mixasm.prm

LINK mixasm.abs
NAMES

mixc.o mixasm.o

END

SECTIONS
MY ROM = READ ONLY 0x4000 TO Ox4FFF;
MY RAM = READ WRITE 0x2400 TO Ox2FFF;

MY STACK = READ WRITE 0x2000 TO O0x23FF;

END

PLACEMENT
DEFAULT_ RAM INTO MY RAM;
DEFAULT_ ROM INTO MY ROM;
SSTACK INTO MY STACK;

END

INIT main

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

358 Freescale Semiconductor, Inc.

Chapter 12 Mixed C and Assembler Applications

NOTE
We recommend that you use the same memory model and
object file format for all the generated object files.

12.7 Support for structured types

When the -Struct: Support for structured types assembler option is activated, the Macro
Assembler also supports the definition and usage of structured types. This allows an
easier way to access ANSI-C structured variable in the Macro Assembler.

In order to provide an efficient support for structured type the macro assembler should
provide notation to:

* Define a structured type. See Structured type definition.

* Define a structured variable. See Variable definition.

* Declare a structured variable. See Variable declaration.

» Access the address of a field inside of a structured variable. See Accessing a field
address

» Access the offset of a field inside of a structured variable. See Accessing a field
offset.

NOTE
Some limitations apply in the usage of the structured types
in the Macro Assembler. See Structured type: Limitations.

12.7.1 Structured type definition

The Macro Assembler is extended with the following new keywords in order to support
ANSI-C type definitions.

® STRUCT

® UNION
The structured type definition for struct can be encoded as in the following listing:

Listing: Definition for STRUCT

typeName: STRUCT
labl: DS.W 1 lab2: DS.W 1

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 359

g |

support for structured types

ENDSTRUCT

where:

* typename 1S the name associated with the defined type. The type name is considered to
be a user-defined keyword. The Macro Assembler will be case-insensitive on
typeName.

* struct specifies that the type is a structured type.

* 1211 and 1ap2 are the fields defined inside of the typenametype. The fields will be
considered as user-defined labels, and the Macro Assembler will be case-sensitive on
label names.

* As with all other directives in the Assembler, the struct and vnzon directives are case-
insensitive.

* The struct and unton directives cannot start on column 1 and must be preceded by a
label.

12.7.2 Types allowed for structured type fields

The field inside of a structured type may be:

* another structured type or
* a base type, which can be mapped on 1, 2, or 4 bytes.

The following table lists the ANSI-C standard types and their converted equivalents in
the assembler notation:

Table 12-2. Converting ANSI-C standard types to assembler notation

ANSI-C type Assembler Notation
char DS - Define Space
short DS.W
int DS.W
long DS.L
enum DS.W
bitfield -- not supported --
float -- not supported --
double -- not supported --
data pointer DS.W
function pointer -- not supported --

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

360 Freescale Semiconductor, Inc.

Chapter 12 Mixed C and Assembler Applications

12.7.3 Variable definition

The Macro Assembler can provide a way to define a variable with a specific type. This is
done using the following syntax (Listing: Assembly code analog of a C struct of type:

myType):

var: typeName

where:

* var is the name of the variable.
* typename 1S the type associated with the variable.
Listing: Assembly code analog of a C struct of type: myType

myType: STRUCT
fieldl: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
field5: DS.W 1
ENDSTRUCT

DataSection: SECTION

structVar: TYPE myType ; var ~structVar' is of type “myType'

12.7.4 Variable declaration

The Macro Assembler can provide a way to associated a type with a symbol which is
defined externally. This is done by extending the xrer syntax:

XREF var: typeName, var2

where:

* var 1s the name of an externally defined symbol.
* typename 1S the type associated with the variable var.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 361

support for structured types

varz 1s the name of another externally defined symbol. This symbol is not associated with
any type. See the following listing for an example.

Listing: Example of extending XREF

myType: STRUCT

fieldl: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
fields: DS.W 1
ENDSTRUCT

XREF extData: myType ; var “extData' is type “myType'

12.7.5 Accessing a structured variable

The Macro Assembler can provide a means to access each structured type field absolute
address and offset.

12.7.5.1 Accessing a field address

To access a structured-type field address (Listing: Example of accessing a field address),
the Assembler uses the colon character ":'".

var:field

where

* var 1s the name of a variable, which was associated with a structured type.
* rie1d 1S the name of a field in the structured type associated with the variable.
Listing: Example of accessing a field address

myType: STRUCT
fieldl: DS.W 1

field2: DS.W 1
field3: DS.B 1
field4: DS.B 3

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

362 Freescale Semiconductor, Inc.

g |

fields:

CodeSec:

entry:

Chapter 12 Mixed C and Assembler Applications

DS.W 1
ENDSTRUCT
XREF myData:myType
XDEF entry

SECTION

LDA myData:field3 ; Loads register A with the content of
; field field3 from variable myData.

The period cannot be used as separator because in assembly
language it is a valid character inside of a symbol name.

12.7.5.2 Accessing a field offset

To access a structured type field offset, the Assembler will use following notation:

<typeName>-><field>

where:

* typename 1S the name of a structured type.
* rie1d 1S the name of a field in the structured type associated with the variable. See the
following listing for an example of using this notation for accessing an offset.

Listing:

myType:
fieldl:

field2:
field3:
field4:

fields:

CodeSec:

Accessing a field offset with the -><field> notation

STRUCT
DS.W 1

DS.W 1
DS.B 1
DS.B 3
DS.W 1
ENDSTRUCT
XREF.B myData
XDEF entry

SECTION

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 363

g |

suuctured type: Limitations
entry:
LDX #myData
LDA myType->field3,X ; Adds the offset of field 'field3'
; (4) to X and loads A with the

; content of the pointed address

12.8 Structured type: Limitations

A field inside of a structured type may be:

* another structured type
* a base type, which can be mapped on 1, 2, or 4 bytes.

The Macro Assembler is not able to process bitfields or pointer types.

The type referenced in a variable definition or declaration must be defined previously. A
variable cannot be associated with a type defined afterwards.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

364 Freescale Semiconductor, Inc.

Chapter 13
Make Applications

This chapters has the following sections:

* Assembly applications
* Memory maps and segmentation

13.1 Assembly applications

This section covers:

 Directly generating an absolute file
* Mixed C and assembly applications

13.1.1 Directly generating an absolute file

When an absolute file is directly generated by the Assembler:

* the application entry point must be specified in the assembly source file using the
directive asenTRY.

* The whole application must be encoded in a single assembly unit.

* The application should only contain absolute sections.

13.1.1.1 Generating object files

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 365

wmemory maps and segmentation

The entry point of the application must be mentioned in the Linker parameter file using
the INIT funcname command. The application is build of the different object files with
the Linker. The Linker is document in a separate document.

Your assembly source files must be separately assembled. Then the list of all the object
files building the application must be enumerated in the application PRM file.

13.1.2 Mixed C and assembly applications

Normally the application starts with the main procedure of a C file. All necessary object
files - assembly or C - are linked with the Linker in the same fashion like pure C
applications. The Linker is documented in a separate document.

13.2 Memory maps and segmentation

Relocatable Code Sections are placed in the peraunT rom OT . text Segment.

Relocatable Data Sections are placed in the peravrT ramM OF .4ata Segment.
NOTE

The .text and .4ata names are only supported when the ELF
object file format is used.

There are no checks at all that variables are in ram. If you mix code and data in a section
you cannot place the section into rou. That is why we suggest that you separate code and
data into different sections.

If you want to place a section in a specific address range, you have to put the section
name in the placement portion of the linker parameter file, as listed in the following
listing:

Listing: Example assembly source code

SECTIONS
ROM1 = READ ONLY 0x0200 TO OxOFFF;
SpecialROM = READ ONLY 0x8000 TO Ox8FFF;
RAM = READ WRITE 0x4000 TO Ox4FFF;
PLACEMENT

DEFAULT ROM INTO ROM1;

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

366 Freescale Semiconductor, Inc.

h

4
Chapter 13 Make Applications

mySection INTO SpecialROM;
DEFAULT_ RAM INTO RAM;

END

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 367

}{ |

wmemory maps and segmentation

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

368 Freescale Semiconductor, Inc.

Chapter 14
How to...

This chapter covers the following topics:

» Working with absolute sections

* Working with relocatable sections

e Initializing the Vector table

* Splitting an application into modules

 Using the direct addressing mode to access symbols

14.1 Working with absolute sections

An absolute section is a section whose start address is known at assembly time.

(SCC modules fiboorg.asm and fiboorg.prm in the demo directory.)

14.1.1 Defining absolute sections in an assembly source file

An absolute section is defined using the orc directive. In that case, the Macro Assembler
generates a pseudo section, whose name is "orc_<index>", Where index is an integer which
1s incremented each time an absolute section is encountered, as listed in the following
listing:

Listing: Defining an absolute section containing data

ORG $800 ; Absolute data section.
var: DS. 1
ORG SA00 ; Absolute constant data section.

cstl: DC.B $A6

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 369

working with absolute sections

cst2: DC.B S$BC

In the previous portion of code, the label cst1 1s located at address snoo, and label cst2 is
located at address saoa.

Listing: Assembler Output

1 1 ORG $800
2 2 a000800 var: DS.B 1

3 3 ORG SA00
4 4 a000A00 A6 cstl: DC.B S$A6
5 5 a000A01 BC cst2: DC.B $BC

Locate program assembly source code in a separate absolute section, as listed in the
following listing:

Listing: Defining an absolute section containing code

XDEF entry
ORG $C00 ; Absolute code section.

entry:
LDA cstl ; Load value in cstl
ADD cst2 ; Add value in cst2
STA var ; Store in var
BRA entry

In the portion of assembly code above, the roa instruction is located at address scoo, and
the app instruction is at address scos. See the following listing:.

Listing: Assembler Output

8 8 ORG $C00 ; Absolute code
9 9 entry:

10 10 a000C00 C6 O0AO0O LDA cstl ; Load value

11 11 a000C03 CB O0AO01 ADD cst2 ; Add value

12 12 a000C06 C7 0800 STA var ; Store in var
13 13 a000C09 20F5 BRA entry

14 14

In order to avoid problems during linking or execution from an application, an assembly
file should at least:

* Initialize the stack pointer if the stack is used.

» The rsp instruction can be used to initialize the stack pointer to srr.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

370 Freescale Semiconductor, Inc.

Chapter 14 How to...

 Publish the application's entry point using xper.
* The programmer should ensure that the addresses specified in the source files are
valid addresses for the MCU being used.

14.1.2 Linking an application containing absolute sections

When the Assembler is generating an object file, applications containing only absolute
sections must be linked. The linker parameter file must contain at least:

* the name of the absolute file

* the name of the object file which should be linked

* the specification of a memory area where the sections containing variables must be
allocated. For applications containing only absolute sections, nothing will be
allocated there.

* the specification of a memory area where the sections containing code or constants
must be allocated. For applications containing only absolute sections, nothing will be
allocated there.

* the specification of the application entry point, and

* the definition of the reset vector.

The minimal linker parameter file will look as shown in the following listing:.

Listing: Minimal linker parameter file

LINK test.abs /* Name of the executable file generated. */
NAMES

test.o /* Name of the object file in the application. */
END
SECTIONS

/* READ ONLY memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file.

*/

MY ROM = READ ONLY 0x4000 TO Ox4FFF;

/* READ WRITE memory area. There should be no overlap between this
memory area and the absolute sections defined in the assembly
source file.

*/

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 371

working with relocatable sections

MY RAM = READ WRITE 0x2000 TO Ox2FFF;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY RAM. */
DEFAULT_ RAM INTO MY RAM;
/* Relocatable code and constant sections are allocated in MY ROM. */
DEFAULT_ROM INTO MY_ROM;
END
INIT entry /* Application entry point. */
VECTOR ADDRESS OxXFFFE entry /* Initialization of the reset vector. */
NOTE
There should be no overlap between the absolute sections

defined in the assembly source file and the memory areas
defined in the PRM file.

NOTE
As the memory areas (segments) specified in the PRM file are
only used to allocate relocatable sections, nothing will be
allocated there when the application contains only absolute
sections. In that case you can even specify invalid address
ranges in the PRM file.

14.2 Working with relocatable sections

A relocatable section is a section which start address is determined at linking time.

14.2.1 Defining relocatable sections in a source file

Define a relocatable section using the secrron directive. See the following listing for an
example of defining relocatable sections.

Listing: Defining relocatable sections containing data

constSec: SECTION ; Relocatable constant data section.
cstl: DC.B $A6
cst2: DC.B $BC

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

372 Freescale Semiconductor, Inc.

Chapter 14 How to...

dataSec: SECTION ; Relocatable data section.

var: DS.B 1

In the previous portion of code, the label cst1 will be located at an offset O from the
section constsec start address, and label cst2 will be located at an offset 1 from the section
constsec Start address. See the following listing:

Listing: Assembler Output

2 2 constSec: SECTION ; Relocatable
3 3 000000 A6 cstl: DC.B SA6

4 4 000001 BC cst2: DC.B $SBC

5 5

6 6 dataSec: SECTION ; Relocatable
7 7 000000 var: DS.B 1

Locate program assembly source code in a separate relocatable section, as listed in the
following listing:

Listing: Defining a relocatable section for code

XDEF entry

codeSec: SECTION ; Relocatable code section.
entry:

LDA cstl ; Load value in cstl

ADD cst2 ; Add value in cst2

STA var ; Store in var

BRA entry

In the previous portion of code, the rpa instruction is located at an offset 0 from the
codesec Section start address, and aop instruction at an offset 3 from the cogesec section start
address.

In order to avoid problems during linking or execution from an application, an assembly
file should at least:

* Initialize the stack pointer if the stack is used
» The rsp instruction can be used to initialize the stack pointer to srr.
 Publish the application's entry point using the xper directive.

14.2.2 Linking an application containing relocatable sections

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 373

working with relocatable sections

Applications containing relocatable sections must be linked. The linker parameter file

must contain at least:

* the name of the absolute file,
* the name of the object file which should be linked,

* the specification of a memory area where the sections containing variables must be

allocated,

* the specification of a memory area where the sections containing code or constants

must be allocated,
* the specification of the application's entry point, and
* the definition of the reset vector.

A minimal linker parameter file will look as shown in the following listing:

Listing: Minimal linker parameter file

/* Name of the executable file generated. */
LINK test.abs

/* Name of the object file in the application. */
NAMES
test.o
END
SECTIONS
/* READ_ONLY memory area. */
MY ROM = READ ONLY 0x2B00 TO Ox2BFF;
/* READ_WRITE memory area. */
MY RAM = READ WRITE 0x2800 TO Ox28FF;
END
PLACEMENT
/* Relocatable variable sections are allocated in MY RAM.

DEFAULT RAM INTO MY RAM;

/* Relocatable code and constant sections are allocated in MY ROM.

DEFAULT ROM, constSec INTO MY ROM;
END
INIT entry /* Application entry point.

VECTOR ADDRESS OxFFFE entry /* Initialization of the reset vector.

NOTE

*/

*/

*/
*/

The programmer should ensure that the memory ranges he
specifies in the secrrons block are valid addresses for the

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

374

Freescale Semiconductor, Inc.

Chapter 14 How to...

controller he is using. In addition, when using the SDI debugger
the addresses specified for code or constant sections must be
located in the target board ROM area. Otherwise, the debugger
will not be able to load the application

14.3 Initializing Vector table

The vector table can be initialized in the assembly source file or in the linker parameter
file. We recommend that you initialize it in the linker parameter file.

* Initializing the Vector table in the linker PRM file (recommended),

* Initializing the Vector Table in a source file using a relocatable section, or

* Initializing the Vector Table in a source file using an absolute section.

The HC(S)08 allows 128 entries in the vector table starting at memory location srroo
extending to memory location srrrr.

The Reset vector is located in grrre, and the SWI interrupt vector is located in srrrc. From
srrra down to srroo are located the troto1 interrupt (srrra), 1rol1] ($FFFA),..., TRQO[125]
(sFFo0).

In the following examples, the Reset vector, the SWI interrupt and the 1ro11] interrupt are
initialized. The IRQIO] interrupt is not used.

The topics covered here:

* Initializing the Vector table in the linker PRM file
* Initializing the Vector Table in a source file using a relocatable section,
* Initializing the Vector Table in a source file using an absolute section

14.3.1 Initializing the Vector table in the linker PRM file

Initializing the vector table from the PRM file allows you to initialize single entries in the
table. The user can decide to initialize all the entries in the vector table or not.

The labels or functions, which should be inserted in the vector table, must be
implemented in the assembly source file (Listing: Initializing the Vector table from a
PRM File). All these labels must be published, otherwise they cannot be addressed in the
linker PRM file.

Listing: Initializing the Vector table from a PRM File

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 375

h o
g |

imualizing Vector table

XDEF IRQ1Func, SWIFunc, ResetFunc
DataSec: SECTION

Data: DS.W 5 ; Each interrupt increments an element
; of the table.
CodeSec: SECTION

; Implementation of the interrupt functions.

IRQ1Func:

LDA #0

BRA int
SWIFunc:

LDA #4

BRA int
ResetFunc:

LDA #8

BRA entry
int:

PSHH

LDHX #Data ; Load address of symbol Data in X

; X <- address of the appropriate element in the tab
Ofset: TSTA

BEQ Ofset3

Ofset2:
AIX #$1
DECA
BNE Ofset2
Ofset3:
INC 0, X ; The table element is incremented
PULH
RTI
entry:

LDHX #SOE00 ; Init Stack Pointer to SE00-S1=SDFF
TXS
CLRX
CLRH

CLI ; Enables interrupts

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

376 Freescale Semiconductor, Inc.

loop: BRA

loop

Chapter 14 How to...

The 1ro1Func, swirunc, and resetrunc functions are published. This
is required, because they are referenced in the linker PRM file.

The HCOS8 processor automatically pushes the PC, X, A, and
CCR registers on the stack when an interrupt occurs. The
interrupt functions do not need to save and restore those
registers. To maintain compatibility with the M6805 Family,
the H register is not stacked. It is the user's responsibility to
save and restore it prior to returning.

All Interrupt functions must be terminated with an rrr

instruction

The vector table is initialized using the linker vecror appress command, as listed in the
following listing:

Listing: Using the VECTOR ADDRESS Linker Command

LINK test.abs
NAMES

test.o

END

SECTIONS
MY ROM = READ ONLY 0x0800 TO OxO08FF;
MY RAM = READ WRITE 0xO0B00O TO OxOCFF;
MY STACK = READ WRITE 0x0DO0O0 TO OxODFF;

END

PLACEMENT
DEFAULT_ RAM
DEFAULT_ ROM
SSTACK

END

INIT ResetFunc

VECTOR ADDRESS

VECTOR ADDRESS

VECTOR ADDRESS

INTO MY RAM;
INTO MY ROM;

INTO MY STACK;

0xFFF8 IRQI1Func
OXFFFC SWIFunc

OxXFFFE ResetFunc

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

377

imualizing Vector table

NOTE
The statement vt resetrunc defines the application entry point.
Usually, this entry point is initialized with the same address as
the reset vector.

NOTE
The statement vector appress oxrrrs TRo1Func specifies that the
address of the 1roi1runc function should be written at address

OxFFF8.

14.3.2 Initializing the Vector Table in a source file using a
relocatable section

Initializing the vector table in the assembly source file requires that all the entries in the

table are initialized. Interrupts, which are not used, must be associated with a standard
handler.

The labels or functions that should be inserted in the vector table must be implemented in
the assembly source file or an external reference must be available for them. The vector
table can be defined in an assembly source file in an additional section containing
constant variables. See the following listing:

Listing: Initializing the Vector Table in source code with a relocatable section

XDEF ResetFunc
XDEF IRQOInt

DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the table.
CodeSec: SECTION

; Implementation of the interrupt functions.

IRQ1Func:
LDA #0
BRA int
SWIFunc:
LDA #4
BRA int
ResetFunc:
LDA #8

BRA entry

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

378 Freescale Semiconductor, Inc.

g |

4
Chapter 14 How to...

DummyFunc:

RTI
int:

PSHH

LDHX #Data ; Load address of symbol Data in X

; X <- address of the appropriate element in the tab
Ofset: TSTA

BEQ Ofset3
Ofset2:
AIX #51
DECA
BNE Ofset2
Ofset3:
INC 0, X ; The table element is incremented
PULH
RTI
entry:
LDHX #$S0E00 ; Init Stack Pointer to $SE00-$1=$DFF
TXS
CLRX
CLRH
CLI ; Enables interrupts
loop: BRA loop
VectorTable: SECTION
; Definition of the vector table.
IRQ1Int: DC.W IRQlFunc
IRQOInt: DC.W DummyFunc
SWIInt: DC.W SWIFunc
ResetInt: DC.W ResetFunc
NOTE
Each constant in the vectorranie section is defined as a word (a

2-byte constant), because the entries in the vector table are 16
bits wide.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 379

3
4

4
A

imualizing Vector table

NOTE
In the previous example, the constant 1ro11nt is initialized with
the address of the label rro1runc. The constant trooint 18
initialized with the address of the label pummy Func because this
interrupt is not in use.

NOTE
All the labels specified as initialization value must be defined,
published (using xoer) or imported (using xrer) before the vector
table section. No forward reference is allowed in the oc
directive.

NOTE
The constant rroo1nt is exported so that the section containing
the vector table is linked with the application.

The section should now be placed at the expected address. This is performed in the linker
parameter file, as listed in the following listing:

Listing: Example linker parameter file

LINK test.abs
NAMES

test.o+
END
ENTRIES
IRQOInt
END
SECTIONS
MY ROM = READ ONLY 0x0800 TO OxO08FF;

MY RAM

READ WRITE 0xO0OB00O TO OxOCFF;
MY STACK = READ WRITE 0x0DO0O0 TO OxODFF;

/* Define the memory range for the vector table */

Vector = READ ONLY OxFFF8 TO OxXFFFF;
END
PLACEMENT

DEFAULT_ RAM INTO MY RAM;

DEFAULT ROM INTO MY ROM;

SSTACK INTO MY STACK;

/* Place the section 'VectorTable' at the appropriated address. */

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

380 Freescale Semiconductor, Inc.

Chapter 14 How to...

VectorTable INTO Vector;
END

INIT ResetFunc

NOTE

The statement vector = rREaD onLY oxFFFs To oxrrrF defines the
memory range for the vector table.

NOTE
The statement vectortable nTO vector Specifies that the vector
table should be loaded in the read only memory area vector.
This means, the constant 1ro11nt Will be allocated at address
oxFFFs, the constant rroornt Will be allocated at address oxrrra,
the constant swiint Will be allocated at address oxrrrc, and the
constant reset 1nt Will be allocated at address oxrrre.

NOTE
The "+ after the object file name switches smart linking off. If
this statement is missing in the PRM file, the vector table will
not be linked with the application, because it is never
referenced. The smart linker only links the referenced objects in
the absolute file.

14.3.3 Initializing the Vector Table in a source file using an
absolute section

Initializing the vector table in the assembly source file requires that all the entries in the

table are initialized. Interrupts, which are not used, must be associated with a standard
handler.

The labels or functions, which should be inserted in the vector table must be implemented
in the assembly source file or an external reference must be available for them. The
vector table can be defined in an assembly source file in an additional section containing
constant variables. See the following listing for an example.

Listing: Initializing the Vector Table using an absolute section

XDEF ResetFunc
DataSec: SECTION

Data: DS.W 5 ; Each interrupt increments an element of the table.

CodeSec: SECTION

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 381

h o
g |

imualizing Vector table

; Implementation of the interrupt functions.

IRQ1Func:
LDA #0
BRA int
SWIFunc:
LDA #4
BRA int
ResetFunc:
LDA #8
BRA entry
DummyFunc:
RTI
int:
PSHH
LDHX #Data ; Load address of symbol Data in X
; X <- address of the appropriate element in the tab
Ofset: TSTA
BEQ Ofset3
Ofset2:
AIX #51
DECA
BNE Ofset2
Ofset3:
INC 0, X ; The table element is incremented
PULH
RTI
entry:
LDHX #S$S0E00 ; Init Stack Pointer to $E00-$1=SDFF
TXS
CLRX
CLRH
CLI ; Enables interrupts
loop: BRA loop

ORG SFFF8

; Definition of the vector table in an absolute section

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

382 Freescale Semiconductor, Inc.

3
4

4
A

Chapter 14 How to...

; starting at address S$FFF8.
IRQ1Int: DC.W IRQlFunc
IRQOInt: DC.W DummyFunc
SWIInt: DC.W SWIFunc
ResetInt: DC.W ResetFunc

The section should now be placed at the expected address. This is performed in the linker
parameter file, as listed in the following listing:

Listing: Example linker parameter file

LINK test.abs
NAMES

test.o+
END

SECTIONS

MY_ ROM = READ ONLY 0x0800 TO OxO08FF;
MY RAM = READ WRITE 0x0B00 TO OxOCFF;

MY STACK = READ WRITE 0x0DO00 TO OxODFF;

END

PLACEMENT
DEFAULT RAM INTO MY RAM;
DEFAULT_ ROM INTO MY ROM;
SSTACK INTO MY STACK;

END

INIT ResetFunc

NOTE
The -+ after the object file name switches smart linking off. If
this statement is missing in the PRM file, the vector table will
not be linked with the application, because it is never
referenced. The smart linker only links the referenced objects in
the absolute file.

14.4 Splitting Application into Modules

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 383

opuiting Application into Modules

Complex application or application involving several programmers can be split into
several simple modules. In order to avoid any problem when merging the different
modules, the following rules must be followed.

For each assembly source file, one include file must be created containing the definition
of the symbols exported from this module. For the symbols referring to code label, a
small description of the interface is required.

14.4.1 Example of an Assembly File (Test1.asm)

See the following listing for an example Test1.asm include file.

Listing: Separating Code into Modules - Testl.asm

XDEF AddSource
XDEF Source

DataSec: SECTION
Source: DS.W 1
CodeSec: SECTION
AddSource:

RSP

ADD Source

STA Source

RTS

14.4.2 Corresponding include file (Test1.inc)

See the following listing for an example Test1.inc include file.

Listing: Separating Code into Modules - Test1.inc

XREF AddSource
; The AddSource function adds the value stored in the wvariable

; Source to the contents of the A register. The result of the

; computation is stored in the Source variable.

; Input Parameter: The A register contains the value that should be

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

384 Freescale Semiconductor, Inc.

Chapter 14 How to...
added to the Source variable.
; Output Parameter: Source contains the result of the addition.
XREF Source

; The Source variable is a 1-byte variable.

14.4.3 Example of Assembly File (Test2.asm)

The following listing shows another assembly code file module for this project.

Listing: Separating Code into Modules-Test2.asm

XDEF entry
INCLUDE "Testl.inc"

CodeSec: SECTION
entry: RSP
LDA #3$7
JSR AddSource
BRA entry
The application's «.prn file should list both object files building the application. When a
section is present in the different object files, the object file sections are concatenated into

a single absolute file section. The different object file sections are concatenated in the
order the object files are specified in the +.prm file.

14.4.3.1 Example of a PRM file (Test2.prm)

Listing: Separating assembly code into modules-Test2.prm

LINK test2.abs /* Name of the executable file generated. */
NAMES

testl.o

test2.0 / *Name of the object files building the application. */

END
SECTIONS
MY ROM = READ ONLY 0x2B00 TO Ox2BFF; /* READ ONLY mem. */
MY RAM = READ WRITE 0x2800 TO 0x28FF; /* READ WRITE mem. */
END

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 385

using Direct Addressing Mode to Access Symbols

PLACEMENT
/* variables are allocated in MY RAM */
DataSec, DEFAULT_ RAM INTO MY_ RAM;

/* code and constants are allocated in MY ROM */
CodeSec, ConstSec, DEFAULT ROM INTO MY_ROM;
END
INIT entry /* Definition of the application entry point. */

VECTOR ADDRESS OXFFFE entry /* Definition of the reset vector. */

NOTE
The codesec section is defined in both object files. In test1.0, the
codesec section contains the symbol adadsource. In test2.o, the
codesec Section contains the entry symbol. According to the
order in which the object files are listed in the namzs block, the
function adasource 1s allocated first and the entry symbol is
allocated next to it.

14.5 Using Direct Addressing Mode to Access Symbols

There are different ways for the Assembler to use the direct addressing mode on a
symbol:

» Using the direct addressing mode to access external symbols,
» Using the direct addressing mode to access exported symbols,
* Defining symbols in the direct page,

 Using the force operator, or

» Using SHORT sections.

14.5.1 Using the direct addressing mode to access external
symbols

External symbols, which should be accessed using the direct addressing mode, must be
declared using the xrer.s directive. Symbols which are imported using xrer are accessed
using the extended addressing mode.

Listing: Using direct addressing to access external symbols

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

386 Freescale Semiconductor, Inc.

Chapter 14 How to...

XREF.B ExternalDirLabel
XREF ExternalExtLabel

LDA ExternalDirLabel ; Direct addressing mode is used.

LDA ExternalExtLabel ; Extended addressing mode is used.

14.5.2 Using the direct addressing mode to access exported
symbols

Symbols, which are exported using the xoer.z directive, will be accessed using the direct
addressing mode. Symbols which are exported using xper are accessed using the extended
addressing mode.

Listing: Using direct addressing to access exported symbols

XDEF.B DirLabel
XDEF ExtLabel

LDA DirLabel ; Direct addressing mode is used.

LDA ExtLabel ; Extended addressing mode is used.

14.5.3 Defining symbols in the direct page

Symbols that are defined in the predefined sscr section are always accessed using the
direct-addressing mode, as listed in the following listing:

Listing: Defining symbols in the direct page

BSCT
DirLabel: DS.B 3
dataSec: SECTION

ExtLabel: DS.B 5

codeSec: SECTION

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 387

using Direct Addressing Mode to Access Symbols

LDA DirLabel ;

LDA ExtLabel ;

Direct addressing mode is used.

Extended addressing mode is used.

14.5.4 Using the force operator

A force operator can be specified in an assembly instruction to force direct or extended
addressing mode (Listing: Using a force operator).

The supported force operators are:

* . or. s to force direct addressing mode
* . or .w to force extended addressing mode.
Listing: Using a force operator

dataSec: SECTION

label: DS.

B

5

codeSec: SECTION

LDA

LDA

LDA

LDA

<label

label.B

>label

label.W

7

I

I

7

Direct addressing mode is used.

Direct addressing mode is used.

Extended addressing mode is used.

Extended addressing mode is used.

14.5.5 Using SHORT sections

Symbols that are defined in a section defined with the suort qualifier are always accessed
using the direct addressing mode, as listed in the following listing:

Listing: Using SHORT sections

shortSec: SECTION SHORT

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

388

Freescale Semiconductor, Inc.

h

4
Chapter 14 How to...

DirLabel: DS.B 3
dataSec: SECTION
ExtLabel: DS.B 5
codeSec: SECTION

LDA DirLabel ; Direct addressing mode is used.

LDA ExtLabel ; Extended addressing mode is used.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 389

}{ |

using Direct Addressing Mode to Access Symbols

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

390 Freescale Semiconductor, Inc.

g |

Chapter 15
Appendices

This document has the following appendices:

 Global Configuration File Entries
* Local Configuration File Entries
* MASM Compatibility

* MCUasm Compatibility

» Assembler Messages

15.1 Appendices

This document has the following appendices:

* Global Configuration File Entries
* Local Configuration File Entries
* MASM Compeatibility

* MCUasm Compatibility

» Assembler Messages

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

391

PR 4

Appendices

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

392 Freescale Semiconductor, Inc.

Chapter 16
Global Configuration File Entries

This appendix documents the sections and entries that can appear in the global
configuration file. This file is named mcutools. ini.

mcutools.ini can contain these sections:

* [Installation] Section

* [Options] Section

e [XXX_Assembler] Section
e [Editor] Section

16.1 [Installation] Section

This topic describes installation section.

16.1.1 Path

Arguments
Last installation path.
Description

Whenever a tool is installed, the installation script stores the installation destination
directory into this variable.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 393

A 4
4\ |

Lvpuons] Section

Path=C:\install

16.1.2 Group

Arguments
Last installation program group.
Description

Whenever a tool is installed, the installation script stores the installation program group
created into this variable.

Example

Group=Assembler

16.2 [Options] Section

This topic describes options section.

16.2.1 DefaultDir

Arguments
Default directory to be used.
Description

Specifies the current directory for all tools on a global level. See also DEFAULTDIR:
Default current directory environment variable.

Example

DefaultDir=C:\install\project

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

394 Freescale Semiconductor, Inc.

Chapter 16 Global Configuration File Entries

16.3 [XXX_Assembler] Section

This section documents the entries that can appear in an (XXX assembler] section of the

mcutools.ini file.

NOTE
XXX is a placeholder for the name of the name of the particular
Assembler you are using. For example, if you are using the

HCO08 Assembler, the name of this section would be
[HCO8_Assembler].

16.3.1 SaveOnEXxit

Arguments
1/0
Description

1 if the configuration should be stored when the Assembler is closed, O if it should not be
stored. The Assembler does not ask to store a configuration in either cases.

16.3.2 SaveAppearance

Arguments
1/0
Description

1 if the visible topics should be stored when writing a project file, O if not. The command
line, its history, the windows position and other topics belong to this entry.

This entry corresponds to the state of the Appearance check box in the Save
Configuration dialog box.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 395

LAAA_Assembler] Section

16.3.3 SaveEditor

Arguments
1/0
Description

If the editor settings should be stored when writing a project file, O if not. The editor
setting contain all information of the Editor Configuration dialog box. This entry
corresponds to the state of the check box Editor Configuration in the Save Configuration
Dialog Box.

16.3.4 SaveOptions

Arguments

1/0

Description

1 if the options should be contained when writing a project file, O if not.

This entry corresponds to the state of the Options check box in the Save Configuration
Dialog Box.

16.3.5 RecentProject0, RecentProjecti

Arguments
Names of the last and prior project files
Description

This list is updated when a project is loaded or saved. Its current content is shown in the
file menu.

Example

SaveOnExit=1

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

396 Freescale Semiconductor, Inc.

g |

4
Chapter 16 Global Configuration File Entries

SaveAppearance=1

SaveEditor=1

SaveOptions=1

RecentProject0=C:\myprj\project.ini

RecentProjectl=C:\otherprj\project.ini

16.4 [Editor] Section

This topic describes editor section.

16.4.1 Editor Name

Arguments
The name of the global editor
Description

Specifies the name of the editor used as global editor. This entry has only a descriptive
effect. Its content is not used to start the editor.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

16.4.2 Editor Exe

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 397

cxample

Arguments
The name of the executable file of the global editor (including path).
Description

Specifies the filename which is started to edit a text file, when the global editor setting is
active.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

16.4.3 Editor_Opts

Arguments
The options to use with the global editor
Description

Specifies options (arguments), which should be used when starting the global editor. If
this entry is not present or empty, st is used. The command line to launch the editor is
built by taking the raitor_rxe content, then appending a space followed by the content of
this entry.

Saved

Only with Editor Configuration set in the File > Configuration Save Configuration
dialog box.

Example

[Editor]

editor name=IDF

editor exe=C:\Freescale\prog\idf.exe

editor opts=%f -g%l,%c

16.5 Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

398 Freescale Semiconductor, Inc.

g |

4
Chapter 16 Global Configuration File Entries

The following listing shows a typical mcutoois. ini file.

Listing: Typical mcutools.ini file layout

[Installation]
Path=c:\Freescale

Group=Assembler

[Editor]

editor name=IDF

editor exe=C:\Freescale\prog\idf.exe
editor opts=%f -g%l,%c

[Optiong]

DefaultDir=c:\mypr]j

[HC08 Assembler]

SaveOnExit=1

SaveAppearance=1

SaveEditor=1

SaveOptions=1
RecentProjectO=c:\myprj\project.ini

RecentProjectl=c:\otherprj\project.ini

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 399

PR 4

cxample

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

400 Freescale Semiconductor, Inc.

Chapter 17
Local Configuration File Entries

This appendix documents the sections and entries that can appear in the local
configuration file. Usually, you name this file project.ini, where project is a placeholder
for the name of your project.

A project . ini file can contains these sections:

e [Editor] Section
e [XXX_Assembler] Section

e Example

17.1 [Editor] Section

This topic describes the editor section.

17.1.1 Editor Name

Arguments
The name of the local editor
Description

Specifies the name of the editor used as local editor. This entry has only a description
effect. Its content is not used to start the editor.

This entry has the same format as for the global editor configuration in the mcutools. ini
file.

Saved

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 401

Lcunor] Section

Only with rditor configuration set in the File > Configuration > Save Configuration
dialog box.

17.1.2 Editor Exe

Arguments
The name of the executable file of the local editor (including path).
Description

Specifies the filename with is started to edit a text file, when the local editor setting is
active. In the editor configuration dialog box, the local editor selection is only active
when this entry is present and not empty.

This entry has the same format as for the global editor configuration in the mcutools. ini
file.

Saved

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

17.1.3 Editor_Opts

Arguments
The options to use with the local editor
Description

Specifies options (arguments), which should be used when starting the local editor. If this
entry is not present or empty, st is used. The command line to launch the editor is build
by taking the Editor_Exe content, then appending a space followed by the content of this
entry.

This entry has the same format as for the global editor configuration in the mcutools. ini
file.

Saved

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

402 Freescale Semiconductor, Inc.

Chapter 17 Local Configuration File Entries

Example

[Editor]

editor name=IDF

editor exe=C:\Freescale\prog\idf.exe

editor opts=%f -g%l,%c

17.2 [XXX_Assembler] Section

This section documents the entries that can appear in an (xxx_assembler] section of a
project.ini file.

NOTE
xxx 18 a placeholder for the name of the name of the particular
Assembler you are using. For example, if you are using the
HCO08 Assembler, the name of this section would be
[HCO8_ Assembler].

17.2.1 RecentCommandLineX, X= integer

Arguments

String with a command line history entry, €.g., fivo.asm
Description

This list of entries contains the content of the command line history.
Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 403

LAAA_Assembler] Section

17.2.2 CurrentCommandLine

Arguments

String with the command line, e.g., fivo.asm -w1
Description

The currently visible command line content.
Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

17.2.3 StatusbarEnabled

Arguments

1/0

Special

This entry is only considered at startup. Later load operations do not use it any more.
Description

Current status bar state.

e 1: Status bar is visible
e (): Status bar is hidden

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

17.2.4 ToolbarEnabled

Arguments

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

404 Freescale Semiconductor, Inc.

Chapter 17 Local Configuration File Entries

1/0
Special

This entry is only considered at startup. Afterwards, any load operations do not use it any
longer.

Description
Current toolbar state:

e 1: Toolbar is visible
e O: Toolbar is hidden

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

17.2.5 WindowPos

Arguments
10 integers, €.g., 0,1,-1,-1,-1,-1,390,107,1103, 643
Special

This entry is only considered at startup. Afterwards, any load operations do not use it any
longer.

Changes of this entry do not show the "« in the title.
Description

This numbers contain the position and the state of the window (maximized, etc.) and
other flags.

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

17.2.6 WindowFont

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 405

LAAA_Assembler] Section

Arguments

size: = 0 -> generic size, < 0 -> font character height, > 0 -> font cell height
weight: 400 = normal, 700 = bold (valid values are 0-1000)

italic: 0 =no, 1 = yes

font name: Max. 32 characters.

Description

Font attributes.

Saved

Only with Appearance set in the File > Configuration > Save Configuration dialog
box.

Example

WindowFont=-16,500, 0, Courier

17.2.7 TipFilePos

Arguments

any integer, e.g., 236

Description

Actual position in tip of the day file. Used that different tips are shown at different calls.
Saved

Always when saving a configuration file.

17.2.8 ShowTipOfDay

Arguments
0/1

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

406 Freescale Semiconductor, Inc.

Chapter 17 Local Configuration File Entries

Should the Tip of the Day dialog box be shown at startup?

e 1: It should be shown
* 0: No, only when opened in the help menu

Saved

Always when saving a configuration file.

17.2.9 Options

Arguments

current option string, €.g.: -w2

Description

The currently active option string. This entry can be very long.
Saved

Only with Options set in the File > Configuration > Save Configuration dialog box.

17.2.10 EditorType

Arguments

0/1/2/3/4

Description

This entry specifies which editor configuration is active:

* (: global editor configuration (in the file mcutools.ini)

* 1: local editor configuration (the one in this file)

e 2: command line editor configuration, entry EditorCommandLine
* 3: DDE editor configuration, entries beginning with EditorDDE

* 4: CodeWarrior with COM. There are no additional entries.

For details, see also Editor Setting Dialog Box.
Saved

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 407

LAAA_Assembler] Section

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

17.2.11 EditorCommandLine

Arguments

Command line, for UltraEdit-32: " c:\Programs Files\IDM Software Solutions

\UltraEdit-32\uedit32.exe %f -g31,3c"

Description

Command line content to open a file. For details, see also Editor Setting Dialog Box.
Saved

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

17.2.12 EditorDDECIlientName

Arguments
client command, e.g., " [open (3£) 1"
Description

Name of the client for DDE editor configuration. For details, see also Editor Setting
Dialog Box.

Saved

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

17.2.13 EditorDDETopicName

Arguments

Topic name, e.g., system

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

408 Freescale Semiconductor, Inc.

Chapter 17 Local Configuration File Entries

Description

Name of the topic for DDE editor configuration. For details, see also Editor Setting
Dialog Box.

Saved

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

17.2.14 EditorDDEServiceName

Arguments
service name, €.g., system
Description

Name of the service for DDE editor configuration. For details, see also Editor Setting
dialog box.

Saved

Only with Editor Configuration set in the File > Configuration > Save Configuration
dialog box.

17.3 Example

The example in the following listing shows a typical layout of the configuration file
(usually project. ini).

Listing: Example of a project.ini file

[Editor]
Editor Name=IDF

Editor Exe=c:\Freescale\prog\idf.exe
Editor Opts=%f -g%l,%c

[HC08 Assembler]

StatusbarEnabled=1

ToolbarEnabled=1

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 409

b -

cxample
WindowPos=0,1,-1,-1,-1,-1,390,107,1103,643
WindowFont=-16,500, 0,Courier
TipFilePos=0

ShowTipOfDay=1

Options=-wl

EditorType=3
RecentCommandLineO=fibo.asm -w2
RecentCommandLinel=fibo.asm
CurrentCommandLine=fibo.asm -w2
EditorDDEClientName= [open (%$f)]
EditorDDETopicName=system
EditorDDEServiceName=msdev

EditorCommandLine=c: \Freescale\prog\idf.exe %f -g%1,%c

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

410 Freescale Semiconductor, Inc.

Chapter 18
MASM Compatibility

The Macro Assembler has been extended to ensure compatibility with the MASM
Assembler.

18.1 Comment Line

A line starting with a (») character is considered to be a comment line by the Assembler.

18.2 Constants (Integers)

For compatibility with the MASM Assembler, the following notations are also supported
for integer constants:

A decimal constant is defined by a sequence of decimal digits (o-9) followed by a 4
or o character.

A hexadecimal constant is defined by a sequence of hexadecimal digits (o-9, a-£, a-F)
followed by a » or = character.

An octal constant is defined by a sequence of octal digits (0-7) followed by an o, o, g,
or ¢ character.

A binary constant is defined by a sequence of binary digits (o-1) followed by av or s
character.

Listing: Example

512d ; decimal representation
512D ; decimal representation
200h ; hexadecimal representation
200H ; hexadecimal representation

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 411

A
4

4
A

|
uperators

10000 ; octal representation

10000 ; octal representation

1000g ; octal representation

1000Q ; octal representation

1000000000b ; binary representation

1000000000B ; binary representation

18.3 Operators

For compatibility with the MASM Assembler, the notations listed in the following table
are also supported for operators:

Table 18-1. Operator notation for MASM compatibility

Operator Notation
Shift left l<
Shift right I>
Arithmetic AND L
Arithmetic OR I+
Arithmetic XOR Ix, IX

18.3.1 Directives

The following table enumerates the directives that are supported by the Macro Assembler
for compatibility with MASM:

Table 18-2. Supported MASM directives

Operator Notation Description

RMB DS Defines storage for a variable. Argument
specifies the byte size.

RMD DS 2* Defines storage for a variable. Argument
specifies the number of 2-byte blocks.

RMQ DS 4* Defines storage for a variable. Argument
specifies the number of 4-byte blocks.

ELSEC ELSE Alternate of conditional block.

ENDC ENDIF End of conditional block.

Table continues on the next page...

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

412 Freescale Semiconductor, Inc.

g |

4
Chapter 18 MASM Compatibility

Table 18-2. Supported MASM directives (continued)

Operator Notation Description

NOL NOLIST Specify that no subsequent instructions
must be inserted in the listing file.

TTL TITLE Define the user-defined title for the
assembler listing file.

GLOBAL XDEF Make a symbol public (visible from
outside)

PUBLIC XDEF Make a symbol public (visible from
outside)

EXTERNAL XREF Import reference to an external symbol.

XREFB XREF.B Import reference to an external symbol
located on the direct page.

SWITCH Allows switching to a previously defined
section.

ASCT Creates a predefined section named id
ASCT.

BSCT Creates a predefined section named id

BSCT. Variables defined in this section
are accessed using the direct
addressing mode.

CSCT Creates a predefined section named id
CSCT.

DSCT Creates a predefined section named id
DSCT.

IDSCT Creates a predefined section named id
IDSCT.

IPSCT Creates a predefined section named id
IPSCT.

PSCT Creates a predefined section named id
PSCT.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 413

PR 4

uperators

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

414 Freescale Semiconductor, Inc.

Chapter 19
MCUasm Compatibility

The Macro Assembler has been extended to ensure compatibility with the MCUasm
Assembler.

MCUasm compatibility mode can be activated, specifying the -mcuasm option.
This chapter covers the following topics:

e Labels
e SET directive
e Obsolete directives

19.1 Labels

When MCUasm compatibility mode is activated, labels must be followed by a colon,
even when they start on column 1.

When MCUasm compatibility mode is activated, following portion of code generate an
error message, because the label 1ave1 is not followed by a colon.

Listing: Example

label DC.B 1

When MCUasm compatibility mode is not activated, the previous portion of code does
not generate any error message.

19.2 SET directive

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 415

vy
N
vwpsolete directives

When MCUasm compatibility mode is activated, relocatable expressions are also allowed
in a SET directive.

When MCUasm compatibility mode is activated, the following portion of code does not
generate any error messages:

Listing: Example

label: SET *

When MCUasm compatibility mode is not activated, the previous portion of code
generates an error message because the ser label can only refer to the absolute
expressions.

19.3 Obsolete directives

The following table enumerates the directives, which are not recognized any longer when
the MCUasm compatibility mode is switched ON.

Table 19-1. Obsolete directives

Operator Notation Description

RMB DS Define storage for a variable

NOL NOLIST Specify that all subsequent instructions
must not be inserted in the listing file.

TTL TITLE Define the user-defined title for the
assembler listing file.

GLOBAL XDEF Make a symbol public (visible from the
outside)

PUBLIC XDEF Make a symbol public (visible from the
outside)

EXTERNAL XREF Import reference to an external symbol.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

416 Freescale Semiconductor, Inc.

Chapter 20
Assembler Messages

This chapter describes the assembler messages.

NOTE
Not all messages have been defined for this release. All
descriptions will be available in an upcoming release.

20.1 Assembler Messages

Following is the list of the assembler messages.

20.1.1 A1: Unknown message occurred

[FATAL]
Description

The application tried to emit a message which was not defined. This is a internal error
which should not occur. Please report any occurrences to your support.

Tips
Try to find out the and avoid the reason for the unknown message.

When you are generating an absolute file, your application should be encoded in a single
source file, and should only contain absolute symbol. So in order to avoid this message,
define all your section as absolute section and remove all XREF directives from your
source file.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 417

nassembler Messages

ORG $1000
Datal: DS.W 1

ORG $800
entry:

NOP

NOP

addDatal: DC.W Datal

20.1.2 A2: Message overflow, skipping <kind> messages

[DISABLE, INFORMATION, WARNING, ERROR]
Description

The application did show the number of messages of the specific kind as controlled with
the options \c -wmsgni, \c-wmsgnw and \c -wmsgne. Further options of this kind are not
displayed.

Tips

Use the options -wmsgni, -wmsgnw and -wmsgne to change the number of messages.

20.1.3 A5O0: Input file '<file>' not found

[FATAL]

Description

The Application was not able to find a file needed for processing.
Tips

Check if the file really exits. Check if you are using a file name containing spaces (in this
case you have to quote it).

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

418 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

20.1.4 AS51: Cannot open statistic log file "<file>'

[DISABLE, INFORMATION, WARNING, ERROR]

Description

It was not possible to open a statistic output file, therefore no statistics are generated.
Note

Not all tools support statistic log files. Even if a tool does not support it, the message still
exists, but 1s never issued in this case.

20.1.5 A52: Error in command line "<cmd>'

[FATAL]
Description

In case there is an error while processing the command line, this message is issued.

20.1.6 A53: Message <Messageld> is not used by this version.
The mapping of this message is ignored.

[DISABLE, INFORMATION, WARNING, ERROR]
Description

The given message id was not recognized as known message. Usually this message is
issued with the options -WmsgS[DIIIWIE]<Num> which should map a specific message
to a different message kind.

Example
-WmsgSD123456789

Tips

There are various reasons why the tool would not recognize a certain message:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 419

nassembler Messages

* make sure you are using the option with the right tool, say you don't disable linker
messages in the compiler preferences

* The message may have existed for an previous version of the tool but was removed
for example because a limitation does no longer exist.

* The message was added in a more recent version and the used old version did not
support it yet.

* The message did never exist. Maybe a typo?

20.1.7 A54: Option <Option> .

[DISABLE, INFORMATION, WARNING, ERROR]
Description

This information is used to inform about special cases for options. One reason this
message is used is for options which a previous version did support but this version does
no longer support. The message itself contains a descriptive text how to handle this
option now.

Tips

Check the manual for all the current option. Check the release notes about the
background of this change.

20.1.8 A56: Option value overriden for option <OptionName>.
Old value "<OldValue>', new value "<NewValue>'.

[DISABLE, INFORMATION, WARNING, ERROR]
Description

This message occurs when same option is specified more than once with same or
different option values.

20.1.9 A64: Line Continuation occurred in <FileName>

[DISABLE, INFORMATION, WARNING, ERROR]

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

420 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

Description

In any environment file, the character '\" at the end of a line is taken as line continuation.
This line and the next one are handles as one line only. Because the path separation
character of MS-DOS is also '\, paths are often incorrectly written ending with '\'. Instead
use a '." after the last '\' to not finish a line with '\' unless you really want a line
continuation.

Example

Current Default.env:

LIBPATH=c:\Codewarrior\1lib\

OBJPATH=c: \Codewarrior\work

Is taken i1dentical as

LIBPATH=c:\Codewarrior\1ibOBJPATH=c: \Codewarrior\work

Tips
To fix it, append a . behind the '\'

LIBPATH=c:\Codewarrior\lib\.

OBJPATH=c: \Codewarrior\work

Note Because this information occurs during the initialization phase of the application,
the message prefix might not occur in the error message. So it might occur as 64: Line

Continuation occurred in <FileNames.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 421

nassembler Messages

20.1.10 AG65: Environment macro expansion message
'<description>' for <variablename>

[DISABLE, INFORMATION, WARNING, ERROR]
Description

During a environment variable macro substitution an problem did occur. Possible causes
are that the named macro did not exist or some length limitation was reached. Also
recursive macros may cause this message.

Example

Current variables:

LIBPATH=${LIBPATH}

Tips

Check the definition of the environment variable.

20.1.11 A66: Search path <Name> does not exist

[DISABLE, INFORMATION, WARNING, ERROR]
Description

The tool did look for a file which was not found. During the failed search for the file, a
non existing path was encountered.

Tips

Check the spelling of your paths. Update the paths when moving a project. Use relative
paths.

20.1.12 A1000: Conditional directive not closed

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

422 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

[ERROR]
Description

One of the conditional blocks is not closed. A conditional block can be opened using one
of the following directives: IF, IFEQ, IFNE, IFLT, IFLE, IFGT, IFGE, IFC, IFNC,
IFDEF, IFNDEF.

Example

IFEQ (defineConst)
constl: DC.B 1

const2: DC.B 2

Tips
Close the conditional block with an ENDIF or ENDC directive.

Example

IFEQ (defineConst)
constl: DC.B 1
const2: DC.B 2

ENDIF

Be careful: A conditional block, which starts inside of a macro, must be closed within the
same macro.

Example

The following portion of code generates an error, because the conditional block "IFEQ"
1s opened within the macro "MyMacro" and is closed outside from the macro.

MyMacro: MACRO
IFEQ (SaveRegs)
DC.B 1
DC.B 1
ENDM
DC.B 1

ENDIF

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 423

nassembler Messages

20.1.13 A1001: Conditional else not allowed here

[ERROR]
Description
A second ELSE directive 1s detected in a conditional block.

Example

IFEQ (defineConst)
ELSE
ELSE

ENDIF

Tips
Remove the superfluous ELSE directive.

Example

IFEQ (defineConst)
ELSE

ENDIF

20.1.14 A1002: CASE, DEFAULT or ENDSW detected outside
from a SWITCH block

[ERROR]
Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

424 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

In Avocet compatibility mode, a CASE, DEFAULT or ENDSW directive was found
without a previous SWITCH directive.

Note
This message does only occur for assemblers supporting the Avocet compatibility mode.

Example

XXX : equ 0
;SWITCH xxx
CASE 1
DC.B 100
CASE 2
DC.B 200
CASE 4
DC.B 400
DEFAULT
FAIL 1

ENDSW

Tips

Remove the semicolon in the example. Make sure that your assembler does support the
Avocet compatibility mode and that this mode 1s switched on.

20.1.15 A1003: CASE or DEFAULT is missing

[ERROR]
Description

In Avocet compatibility mode, after a SWITCH directive, an expression other than a
CASE or DEFAULT entry was found.

Note
This message does only occur for assemblers supporting the Avocet compatibility mode.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 425

nassembler Messages

XXX equ 0
SWITCH xxxX
; CASE 1
DC.B 0
CASE 2
DC.W O
CASE 4
DC.L 0
DEFAULT
FAIL 1

ENDSW

Tips

Remove the semicolon in the example. Make sure that your assembler does support the
Avocet compatibility mode and that this mode is switched on.

20.1.16 A1004: Macro nesting too deep. Possible recursion?
Stop processing. (Set level with -MacroNest)

[DISABLE, INFORMATION, WARNING, ERROR]

Description

The macro expansion level was below the limit configured with the option -MacroNest.
Example

In the following example, "\2" was used instead of the indented "/2". "\2" is taken by the
assembler as second argument, which is not present and therefore it is replaced with the
empty argument. Therefore this example leads to an endless macro recursion.

X _NOPS: MACRO
\@NofNops: EQU \1
IF \@NofNops >= 1
IF \@NofNops == 1
NOP
ELSE

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

426 Freescale Semiconductor, Inc.

g |

4
Chapter 20 Assembler Messages
X _NOPS \@NofNops\2
X _NOPS \@NofNops- (\@NofNops\2)
ENDIF
ENDIF
ENDM

X _NOPS 17

Tips

Use the option -MacroNest to configure the macro expansion level. In the above
example, use "/2" to get the correct macro:

X NOPS: MACRO
\@NofNops: EQU \1
IF \@NofNops >= 1
IF \@NofNops == 1
NOP
ELSE
X_NOPS \@NofNops/2
X _NOPS \@NofNops- (\@NofNops/2)
ENDIF
ENDIF
ENDM

X_NOPS 17

See also

Option -MacroNest

20.1.17 A1051: Zero Division in expression

[DISABLE, INFORMATION, WARNING, ERROR]
Description
A zero division is detected in an expression.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 427

g |

nassembler Messages

label: EQU 0
label2: EQU $5000

DC (label2/label)

Tips
Modify the expression or specify it in a conditional assembly block.

Example

label: EQU O

label2: EQU $5000
IFNE (label)
DC (label2/label)
ELSE
DC 1label2

ENDIF

20.1.18 A1052: Right parenthesis expected

[ERROR]
Description
A right parenthesis is missing in an assembly expression.

Example

variable: DS.W 1
labell: EQU (2*4+6
label3: EQU LOW(variable

label4: EQU HIGH (variable

Tips
Insert the right parenthesis at the correct position.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

428 Freescale Semiconductor, Inc.

variable: DS.W 1
labell: EQU (2*4+6)
label3: EQU LOW (variable)

label4: EQU HIGH (variable)

20.1.19 A1053: Left parenthesis expected

[ERROR]
Description
A left parenthesis is missing in an assembly expression.
Example
variable: ds.w 1

labell: EQU LOW variable)

label2: EQU HIGH variable)
Tips
Insert the left parenthesis at the correct position.
Example

labell: EQU LOW (variable)

label2: EQU HIGH (variable)

Chapter 20 Assembler Messages

20.1.20 A1054: References on non-absolute objects are not
allowed when options -FA1 or -FA2 are enabled

[ERROR]

Description

A reference to a relocatable object has been detected during generation of an absolute file

by the assembler.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

429

A\ 4
N
nassembler Messages

Example

XREF extData
DataSec: SECTION
datal: DS.W 1

ORG $800
entry:

DC.W extData

DC.W datal+2

Tips

When you are generating an absolute file, your application should be encoded in a single
source file, and should only contain any relocatable symbol. So in order to avoid this
message, define all your section as absolute section and remove all XREF directives from
your source file.

Example
ORG $BOO
datal: DS.W 1
ORG $800
entry:

DC.W datal+2

20.1.21 A1055: Error in expression

[ERROR]
Description
An error has been discovered in an expression while parsing it.

Example

CodeSec2: SECTION
Entry2:

LD A, #3$08

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

430 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

label: JRA (Entry2 + 1
Example

CodeSec2: SECTION

Entry2:
LDA #3508
label: JMP (Entry2 + 1
Example

CodeSec2: SECTION

Entry2:
LDAA #508
label: JMP (Entry2 + 1
Example

CodeSec2: SECTION

Entry2:
MOVE #508,D0
label: JMP (Entry2 +
Tips

Correct the expression.

20.1.22 A1056: Error at end of expression

[DISABLE, INFORMATION, WARNING, ERROR]
Description
An error has been detected by the assembler at the end of the read expression.

Example

char: SET 1 this is a comment

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 431

nAssembler Messages
Tips
n.n

Remove the not correct symbol at the end of line or insert a comment start ";".

Example

char: SET 1 ;this is a comment

20.1.23 A1057: Cutting constant because of overflow

[DISABLE, INFORMATION, WARNING, ERROR]
Description

A constant was truncated because of an overflow. Only the lower bits were used to
generate the output.

Example
DC $123456789

Tips

Only use 32 bit constants. Use several DC's to produce larger values.

20.1.24 A1058: lllegal floating point operation

[DISABLE, INFORMATION, WARNING, ERROR]
Description

An illegal floating point operation other than unary minus or unary plus has been
detected.

20.1.25 A1059: != is taken as EQUAL

[DISABLE, INFORMATION, WARNING, ERROR]

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

432 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

Description

The != operator is taken as equal. This behavior is different from the C language or the
usual assembler behavior. The behavior is caused by the Option -Compat. Disable the
message, if you are aware of the different semantic

See also

Option -Compat

20.1.26 A1060: Implicit comment start

[DISABLE, INFORMATION, WARNING, ERROR]
Description

With the alternate comment syntax of the option Option -Compat=C, this message is
issued if the ignored part does not start with a star ("*") or with a semicolon (";").

See also

Option -Compat

20.1.27 A1061: Floating Point format is not supported for this
case

[DISABLE, INFORMATION, WARNING, ERROR]
Description

The floating point value is not supported at this place.

20.1.28 A1062: Floating Point number expected

[DISABLE, INFORMATION, WARNING, ERROR]
Description

The assembler did expect a floating point value, but he found an expression of a different
type.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 433

nassembler Messages

Note

Not all assemblers do support floating point constants. Assemblers not supporting
floating point do not issue this message.

Example

; The example only works with assemblers supporting
floating point with a dc.f directive label

dc.f label

20.1.29 A1101: lllegal label: label is reserved

[ERROR]
Description

A reserved identifier is used as label. Reserved identifiers are the mnemonics associated
with target processor registers and some additional Reserved Symbols.

Example
X: SET 3
Tips

Modify the name of the label to a identifier which is not reserved.

Example

_X: SET 3

See also

Reserved Symbols

20.1.30 A1103: lllegal redefinition of label

[ERROR]

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

434 Freescale Semiconductor, Inc.

g |

4
Chapter 20 Assembler Messages

Description

The label specified in front of a comment or an assembly instruction or directive, is
detected twice in a source file.

Example
DataSecl: SECTION

labell: DS.W 2

label2: DS.L 2

label2: DS.W 3

Tips
Modify the label names, in order to have unique label identification in each assembly file.
Example

DataSecl: SECTION

labell: DS.W 2

label2: DS.L 2

label3: DS.W 3

20.1.31 A1104: Undeclared user defined symbol: <Symbol>

[ERROR]
Description
The label <symbolName> is referenced in the assembly file, but it is never defined.

Example

data: SECTION
count:

DC.W counter
Tips

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 435

nassembler Messages

The label <symbolName> must be either defined in the current assembly file or specified
as an external label.

Example

XREF counter
data: SECTION
count:

DC.W counter

20.1.32 A1105: Closing brace expected

[ERROR]
Description

The error occurs for missing closing brace of syntax {label }.Assembler replaces the label
within {} with its value.

20.1.33 A1106: Undeclared user defined symbol: <Symbol>.
Symbol name is expected as macro argument

[ERROR]
Description

This message occurs in macro for undefined symbols. The symbol is being evaluated in
braces({}).

Example:

clear: MACRO

label{\1} EQU 1
ENDM

; code section

MyCode : SECTION

main:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

436 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

clear tmp

tmp symbol is undefined and the error is thrown.

20.1.34 A1201: Label <Label> referenced in directive ABSENTRY
is not absolute

[ERROR]
Description

The label specified in the directive ABSENTRY is an EQU label or is located in a data
section. The label specified in ABSENTRY must be a valid label defined in a code
section.

Example

ABSENTRY const

const: EQU $1000
ORG const
DC.B 1
DC.B 2
Tips

Specify a label defined in a code section in ABSENTRY or remove the directive
ABSENTRY.

Example

ABSENTRY entry

const: EQU $1000
ORG const

entry: DC.B 1
DC.B 2

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 437

nassembler Messages

20.1.35 A1202: ELF output: <details>

[ERROR]
Description
Error in ELF. <details> specifies the cause of the error. Possible causes are:

e Cannot open <File>

* Currently no file open
* Request is not valid

* Internal

20.1.36 A1203:

[WARNING]
Description

This message occurs if incorrect debug information is generated.

20.1.37 A1251: Cannot open object file: Object file name too long

[ERROR]
Description

The object file is derived from the source file name by changing the extension to ".0". If
the source file name is extremely long, then this may fail.

Tips

Use shorter filenames.

20.1.38 A1252: The exported label <name> is using an ELF
extension

[DISABLE, INFORMATION, WARNING, ERROR]

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

438 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

Description

This message is only issued when using the ELF object file format. It can be ignored
when using the linker, however, foreign linker may not know this extension and therefore
the linking might fail. The exported label \<name> is using an ELF extension for
exported labels, which are defined as imported label plus offset. This situation cannot be
expressed in a standard ELF symbol table, so the assembler is generating a symbol with
type STT_LOPROC. This message is disabled by default, so it does not occur unless it is
explicitly enabled. When setting this message to an error, code containing such cases
cannot be assembled.

Example
XREF ImportedLabel

ExportedLabel: EQU ImportedLabel + 1

XDEF ExportedLabel

Tips

Set this message to an error when you plan to use a foreign linker. Adapt the source code
so that this case does not occur.

20.1.39 A1253: Limitation: code size > <SizeLimit> bytes

[ERROR]
Description

The assembler is running in demo mode and the code size limitation was reached.
Therefore the assembly process is stopped.

Tips

Make sure the license is correctly installed. Check the about box about the current license
state.

20.1.40 A1301: Structured type redefinition: <TypeName>
[ERROR]

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 439

A\ 4
N
nassembler Messages

Description

The same name has been associated with two different structured types. <TypeName> is
the name of the structured type, which is defined twice.

Note

Not all assembler backends do support structured types. Assembler not supporting them
will not issue this message.

Example
myType: STRUCT
fieldl: DS.W 1
field2: DS.W 1
ENDSTRUCT

XREF myData:myType

myType: STRUCT
field3: DS.B 1
field4: DS.B 3
ENDSTRUCT
Tips

Change the name of one of the structured type.

Example

myTypel: STRUCT

fieldl: DS.W 1
field2: DS.W 1
ENDSTRUCT

XREF myData:myTypel

myType2: STRUCT

field3: DS.B 1
field4: DS.B 3
ENDSTRUCT

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

440 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

20.1.41 A1302: Type <TypeName> is previously defined as label
[ERROR]
Description

The identifier used to identify a structured type was previously used as a label.
<TypeName> is the name of the structured type, which is already used as label name.

Note

Not all assembler backends do support structured types. Assembler not supporting them
will not issue this message.

Example

myType:
myType:

field1l:

field2:

Tips

DS.W 3

STRUCT

DS.W 1

DS.W 1

ENDSTRUCT

Change the name of one of the structured type or of the label.

Example

myvar:

myType:
fieldl:

field2:

20.1.42

[ERROR]

DS.W 3

STRUCT
DS.W 1
DS.W 1

ENDSTRUCT

A1303: No type defined

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 441

nassembler Messages

Description

A directive only allowed inside of s structured type definition was found without a
leading STRUCT or UNION.

Note

Not all assembler backends do support structured types. Assembler not supporting them
will not issue this message.

Example
fieldl: DS.W 1
field2: DS.W 1
ENDSTRUCT
Tips

Check the STRUCT directive at the start.

Example

myType: STRUCT

fieldl: DS.W 1
field2: DS.W 1
ENDSTRUCT

20.1.43 A1304: Field <FieldName> is not declared in specified
type

[ERROR]
Description

The field specified is not part of the structured type associated with the variable
addressed. <FieldName> is the name of the field addressed in the variable.

Note

Not all assembler backends do support structured types. Assembler not supporting them
will not issue this message.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

442 Freescale Semiconductor, Inc.

h o
g |

myType: STRUCT
fieldl: DS.W 1
field2: DS.W 1
ENDSTRUCT
XREF myData:myType
XDEF entry
CodeSec: SECTION
entry:
NOP
NOP
LD A, myData:field33
Example
myType: STRUCT
fieldl: DS.W 1
field2: DS.W 1
ENDSTRUCT
XREF myData:myType
XDEF entry
CodeSec: SECTION
entry:
NOP
NOP
LDX myData:field33
Example

myType: STRUCT

fieldl: DS.B 1
field2: DS.B 1
ENDSTRUCT
XREF myData:myType

const: SECTION

DC.W myData:fieldl

Chapter 20 Assembler Messages

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

443

r
A

4 |
nassembler Messages
DC.W myData:field3 ; no field3
Example

myType: STRUCT

fieldl: DS.B 1
field2: DS.B 1
ENDSTRUCT
XREF myData :myType

const: SECTION
LRW R4, [myDataField33]
LD.B R4, (R4,0)
BR *
ALIGN 4

myDataField33: DC.W myData:field33
Tips
Change the name of the field to an existing field or define the field in the structured type.

Example

myType: STRUCT

fieldl: DS.W 1
field2: DS.W 1
ENDSTRUCT

XREF myData:myType
XDEF entry

CodeSec: SECTION

entry:

NOP

NOP

LD A, myData:field2
Example

myType: STRUCT

fieldl: DS.W 1

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

444 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

field2: DS.W 1
ENDSTRUCT
XREF myData:myType
XDEF entry

CodeSec: SECTION

entry:
NOP
NOP
LDX myData:field2
Example

myType: STRUCT

fieldl: DS.B 1
field2: DS.B 1
ENDSTRUCT
XREF myData:myType

CodeSec: SECTION
LRW R4, [myDataField2]
LD.B R4, (R4,0)
BR *
ALIGN 4

myDataField2: DC.W myData:field2

20.1.44 A1305: Type name expected

[ERROR]

Description

The symbol specified after a TYPE directive is not a previous defined structured type.
Note

Not all assembler backends do support structured types. Assembler not supporting them
will not issue this message.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 445

r
4\ |

nassembler Messages

myType: STRUCT

fieldl: DS.W 1
field2: DS.W 1
ENDSTRUCT

DataSec: SECTION
myData: TYPE yType
XDEF entry

CodeSec: SECTION

entry:

NOP

NOP

LD A, myData:field2
Example

myType: STRUCT

fieldl: DS.W 1
field2: DS.W 1
ENDSTRUCT

DataSec: SECTION
myData: TYPE yType
XDEF entry

CodeSec: SECTION

entry:
NOP
NOP
LDX myData:field2
Example

myType: STRUCT

fieldl: DS.B 1
field2: DS.B 1
ENDSTRUCT
data: SECTION
myData: TYPE yType ; no type "yType"

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

446 Freescale Semiconductor, Inc.

g |

Example

myType: STRUCT

fieldl: DS.W 1
field2: DS.W 1
ENDSTRUCT

DataSec: SECTION
myData: TYPE yType

XDEF entry

CodeSec: SECTION

entry:

LRW R4, [myDataField2]

LD.B R4, (R4,0)
BR *

ALIGN 4

myDataField2: DC.W myData:field2

Tips

Change the name of the type for a valid type name.

Example

myType: STRUCT

fieldl: DS.W 1
field2: DS.W 1
ENDSTRUCT

DataSec: SECTION
myData: TYPE myType
XDEF entry

CodeSec: SECTION

entry:
NOP
NOP
LD A, myData:field2
Example

Chapter 20 Assembler Messages

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

447

r
4\ |

nassembler Messages

myType: STRUCT

fieldl: DS.W 1
field2: DS.W 1
ENDSTRUCT

DataSec: SECTION
myData: TYPE myType
XDEF entry

CodeSec: SECTION

entry:
NOP
NOP
LDX myData:field2
Example

myType: STRUCT

fieldl: DS.W 1
field2: DS.W 1
ENDSTRUCT

DataSec: SECTION
myData: TYPE myType
XDEF entry
CodeSec: SECTION
entry:
LRW R4, [myDataField2]
LD.B R4, (R4,0)
BR *
ALIGN 4

myDataField2: DC.W myData:field2

20.1.45 A1401: Value out of range -128..127

[ERROR]

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

448 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

Description

The offset between the current PC and the label specified as PC relative address is not in
the range of a signed byte (smaller than -128 or bigger than 127). An 8 bit signed PC
relative offset is expected in following instructions:

Note

Not all assemblers do have instructions with 8 bit PC relative addressing mode.
Such assemblers will not issue this message at all.

Third operand in following instructions: BRCLR, BRSET

Example

dataSec: SECTION
varl: DS.W 1
var2: DS.W 2
codeSec: SECTION

LDA varl

CMP 9

BNE 1label
dummyBl: DCB.B 200, $A7

label STA var2

Tips

If you have used one of the branch instructions, use the JMP instruction as in the example
below.

Example

dataSec: SECTION
varl: DS.W 1
var2: DS.W 2
codeSec: SECTION
LDA varl
CMP 9
BEQ continue ; do not take branch
JMP label

continue:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 449

nassembler Messages

NOP
NOP
dummyBl: DCB.B 200, $A7

label STA var2

20.1.46 A1402: Value out of range -32768..32767

[ERROR]
Description

The offset between the current PC and the label specified as PC relative address is not in
the range of a signed word (smaller than -32768 or bigger than 32767).

Note

Not all assemblers do have instructions with 16 bit PC relative addressing mode. Such
assemblers will not issue this message at all.

20.1.47 A1405: PAGE with initialized RAM not supported

[ERROR]
Description

The Macro Assembler does not support the use of the HIGH operator with initialized
RAM in the HIWARE format. In the ELF format, it is allowed and this message is not
used.

Note
Not all assemblers do support the PAGE operator.

Example

cstSec: SECTION

pP9Entry DC.B PAGE (entry)
adrEntry: DC.W entry
codeSec: SECTION

entry:

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

450 Freescale Semiconductor, Inc.

4
A

Chapter 20 Assembler Messages

NOP

NOP

Tips

You can load the whole address from the entry label using a DC.L directive. The only
draw back is that you have allocated 4 byte to store the address instead of 3 bytes.

Example

cstSec: SECTION
adrEntry: DC.L entry
codeSec: SECTION
entry:

NOP

NOP

20.1.48 A1406: HIGH with initialized RAM not supported

[ERROR]
Description

The Macro Assembler does not support the use of the HIGH operator with initialized
RAM in the HIWARE format. In the ELF format, it is allowed and this message is not
used.

Note
Not all assemblers do support the HIGH operator.

Example

MyData: SECTION
table: DS.W 1

DC.B high(table)

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 451

nassembler Messages

20.1.49 A1407: LOW with initialized RAM not supported

[ERROR]
Description

The Macro Assembler does not support the use of the LOW operator with initialized
RAM in the HIWARE format. In the ELF format, it is allowed and this message is not
used.

Note
Not all assemblers do support the LOW operator.
Example

MyData: SECTION

table: DS.W 1

DC.B low(table)

20.1.50 A1408: Out of memory, Code size too large

[ERROR]

Description

The assembler runs out of memory because of a very large section.
Note

This assembler version does no longer have the 32k size limitation of previous versions.

20.1.51 A1410: EQU or SET labels are not allowed in a PC
relative addressing mode

[ERROR]

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

452 Freescale Semiconductor, Inc.

g |

mode. This is not legal in a relocatable expression.

Note

Chapter 20 Assembler Messages

An absolute EQU or SET label has been detected in an indexed PC relative addressing

Not all assemblers do have special PC Relative addressing modes. Such assemblers will
not issue this message at all.

Example

label:
dataSec:
data:
codeSecl:

entry:

Tips

Make the section an absolute section.

Example

label:
dataSec:

data:

entry:

EQU S$FF30
SECTION
DS.W 1

SECTION

ILDD 1label, PCR

STD data

EQU S$SFF30
SECTION
DS.W 1

ORG $C000

LDD 1label, PCR

STD data

20.1.52 A1411: PC Relative addressing mode is not supported to
constants

[ERROR]

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

453

nAssembler Mess

ages

An absolute expression has been detected in an indexed PC relative addressing mode.
This is not legal in a relocatable expression. Not all assemblers do have special PC
Relative addressing modes. Such assemblers will not issue this message at all.

Example

dataSec:
data:
codeSecl:

entry:

Tips

Make the section an absolute section.

Example

dataSec:

data:

entry:

SECTION
DS.W 1

SECTION

LDD S$FF35, PCR

STD data

SECTION
DS.W 1

ORG $C000

LDD S$FF35, PCR

STD data

20.1.53 A1412: Relocatable object '<Symbol>' not allowed if
generating absolute file

[ERROR]

Description

No relocatable objects are allowed if the user requests the generation of an absolute file.
This message occurs primarily for objects in the default (relocatable) section.

Example

ABSENTRY main

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

454

Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

main: DC.B 1

DC.B 2

Tips
Place all objects into absolute sections.

Example

ABSENTRY main
ORG $1000
main: DC.B 1

DC.B 2

20.1.54 A1413: Value out of relative range

[DISABLED, INFORMATION, WARNING, ERROR]
Description

Some value did not fit into the operand field of an instruction. This message can be
disabled if the value should be just truncated.

Tips

Check if you can place the code and the referenced object closer together. Try to generate
a smaller displacement. If this is not possible, consider using another instruction or
addressing mode.

20.1.55 A1414: Cannot set fixup

[ERROR]
Description

The assemble cannot set a fixup because the referenced object is just a constant rather
then an object. One case when the assembler must generate a fixup are PCR relative
accesses 1n relocatable code. Then the assembler does need an object which refers to the
accessed address.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 455

nassembler Messages
Tips

Check why the assembler has to set a fixup instead of just using a constant.

20.1.56 A1415: Cutting fixup overflow

[DISABLED, INFORMATION, WARNING, ERROR]
Description
A constant value does not fit into a field and is therefore truncated.
Example

DC.B Label+1

Label: EQU Sff

DC.B Label+1

Tips
Use a larger field, if necessary.
DC.W Label+1l

Label: EQU Sff

DC.W Label+1

20.1.57 A1416: Absolute section starting at <Address> size
<Size> overlaps with absolute section starting at
<Address>

[DISABLED, INFORMATION, WARNING, ERROR]
Description
Two absolute sections are overlapping each other.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

456 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

ORG $1000

DC.B 0,1,2,3

; address $1004
DA: SECTION

DC.B 1

ORG $1001

DC.B 0,1,2,3

; address $1005

Tips
» Use non overlapping areas, whenever possible.
 Use relocatable sections if you want to split up a memory area into several modules.
* Calculate the start address of the second with the end address of the first, if they are
in the same assembly unit.

Example

ORG $1000

DC.B 0,1,2,3

; address $1004
SectEnd: EQU *
DA: SECTION

DC.B 1

ORG SectEnd

DC.B 0,1,2,3

; address $1008

20.1.58 A1417: Value out of possible range: Value<value> not in
range [<LowValue>..<HighValue>]

[DISABLED, INFORMATION, WARNING, ERROR]
Description

A constant value does not fit into a field. This message is used to stop the assembly for
some fixup overflow cases.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 457

nassembler Messages
Tips

Usually this message is used for branch distances, if so, try to use a branch with a larger
range.

20.1.59 A1418: Negative offset is not propagated into the page in
the fixup

[DISABLED, INFORMATION, WARNING, ERROR]
Description
The assembler did ignore a negative page offset.
Example

labelStart:

DC.W labelStart - 1

DC.B page (labelStart - 1);

Tips

Usually negative offsets do intend to access the same page.

20.1.60 A1419: Constant fixup failure <Description>

[DISABLED, INFORMATION, WARNING, ERROR]
Description

The assembler was not able to compute a specific fixup at assemble time. This message is
issued if certain properties of a specific fixup are not met. For example if a fixup does
only handle even addresses, but the address passed in turned out to be odd.

Tips

Check if you did use the right fixup type. Check if the actual instruction is legal with this
fixup type and with the passed in value.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

458 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

20.1.61 A1502: Reserved identifiers are not allowed as
instruction or directive

[ERROR]

Description

The identifier detected in an assembly line instruction part is a Reserved Symbol.
See also

Reserved Symbols

20.1.62 A1503: Error in option -D: "<Description>'

[DISABLED, INFORMATION, WARNING, ERROR]

Description

An option -D was used with illegal content. The format for -D is "-D" name ["="value].
The name must be a legal for a label. The value must be a number. There must be a

n_m

number after an equal ("=").

Example

Not a legal label name:

-D1

After a =, the there must be a value:
-DLabelName=

Unexpected text at the end:

-D"LabelNamel=1 1"

See also

Option -D

20.1.63 A1601: Label must be terminated with a <:>

[ERROR]

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 459

nassembler Messages

Description

This message is issued only when labels must be terminated with a colon. For some
targets, this is not required. Then this message is not issued. This message is only
generated when the MCUasm compatibility is switched on. In this case, all labels must be
terminated with a colon (:) character.

20.1.64 A1602: Invalid character at end of label (<LabelName>):
semicolon or space expected

[ERROR]
Description

The specified label is terminated by an invalid character. The following characters are
allowed in a label:

» All alphabetical characters (‘a'.. 'z', 'A", 'Z").
e All numerical characters (0" .. 9").
e “and "'
<LabelName> is the name of the wrong label detected (including the invalid character).

Example

Datal# DS.B 1

Data2#6 DS.B 1
Tips
Remove the invalid character or replace it by a'_".
Example

Datal DS.B 1

Data2_6 DS.B 1

20.1.65 A1603: Directive, instruction or macro name expected:
<Symbol> detected

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

460 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

[ERROR]
Description

The symbol detected in the operation field is not a valid directive, instruction or macro
name. <SymbolName> is the name of the invalid string detected in the operation field.

Example
label: XXX 3
label2: label
Tips

Replace the specified symbolName by a valid instruction, directive or macro name.

20.1.66 A1604: Invalid character detected at the beginning of the
line: <Character>

[ERROR]
Description

The character detected on column 1 is not valid. For the macro assembler everything
starting on column 1 is supposed to be a label. The following characters are allowed at
the beginning of a label:

 All alphabetical characters (‘a'.. 'z', 'A’, 'Z").
e “'and "'

<Character> is the character detected on column 1

Example
@label: DS.B 1
4label2: DS.B 2
Tips

'

Replace the specified character by a'.'ora'_".

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 461

nassembler Messages

_label: DS.B 1

.label2: DS.B 2

20.1.67 A1605: Invalid label name: <LabelName>

[ERROR]
Description

The character detected at the beginning of a label is not valid. The following characters
are allowed at the beginning of a label:

 All alphabetical characters (‘a'.. 'z', 'A’, 'Z").
e “'and ~_".

<LabelName> is the label name detected.

Example
#label: DS.B 1
Tips
Replace the specified character by a ".'ora ~_'
Example
_label: DS.B 1

20.1.68 A2301: Label is missing

[ERROR]
Description

A label name 1s missing on the front of an assembly directive requiring a label. These
directives are:

* SECTION

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

462 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

« EQU
« SET

Example

SECTION 4
EQU $67

SET $77

Tips
Insert a label in front of the directive.

Example

codeSec: SECTION 4
myConst: EQU $67

mySetV: SET $77

20.1.69 A2302: Macro name is missing

[ERROR]
Description

A label name is missing on the front of a MACRO directive.

Example
MyData: SECTION
Datal: DS.B 1
MACRO
DC.B \1
ENDM
MyCode : SECTION

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 463

vy
g gl
nassembler Messages
Entry:
Tips
Insert a label in front of the MACRO directive.
Example
MyData: SECTION
Datal: DS.B 1
allocChar: MACRO
DC.B \1
ENDM
MyCode : SECTION
Entry:

20.1.70 A2303: ENDM is illegal

[ERROR]

Description

A ENDM directive 1s detected outside of a macro.

Example
MyData: SECTION
Datal: DS.B 1
allocChar: MACRO
DC.B \1
ENDM
MyCode : SECTION
Entry:
ENDM
Tips

Remove the superfluous ENDM directive.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

464 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

Example
MyData: SECTION
Datal: DS.B 1

allocChar: MACRO
DC.B \1
ENDM

MyCode: SECTION

Entry:

20.1.71 A2304: Macro definition within definition

[ERROR]
Description

A macro definition is detected inside of another macro definition. The macro assembler
does not support this.

Example

allocChar: MACRO
allocWord: MACRO
DC.W \1
ENDM
DC.B \1

ENDM

Tips
Define the second macro outside from the first one.

Example

allocChar: MACRO
DC.B \1
ENDM

allocWord: MACRO

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 465

nassembler Messages

DC.W \1

ENDM

20.1.72 A2305: lllegal redefinition of instruction or directive
name

[ERROR]
Description

An assembly directive or a mnemonic has been used as macro name. This is not allowed
to avoid any ambiguity when the symbol name is encountered afterward. The macro
assembler cannot detect if the symbol refers to the macro or the instruction.

Example

DC: MACRO
DC.B \1

ENDM

Tips
Change the name of the macro to an unused identifier.

Example

allocChar: MACRO
DC.B \1

ENDM

20.1.73 A2306: Macro not closed at end of source

[ERROR]
Description

An ENDM directive is missing at the end of a macro. The end of the input file is detected
before the end of the macro.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

466 Freescale Semiconductor, Inc.

g |

4
Chapter 20 Assembler Messages

Example

allocChar: MACRO

DC.B \1
myData: SECTION SHORT
charl: DS.B 1
char2: DS.B 1
myConst: SECTION SHORT
initl: DC.B $33
init2: DC.B $43

Tips
Insert the missing ENDM directive at the end of the macro.

Example

allocChar: MACRO

DC.B \1

ENDM
myData: SECTION SHORT
charl: DS.B 1
char2: DS.B 1
myConst : SECTION SHORT
initl: DC.B $33
init2: DC.B $43

20.1.74 A2307: Macro redefinition

[DISABLE, INFORMATION, WARNING , ERROR]
Description
The input file contains the definition of two macros, which have the same name.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 467

A 4
4\ |

nassembler Messages

alloc: MACRO
DC.B \1
ENDM

alloc: MACRO
DC.W \1

ENDM

Tips
Change the name of one of the macros to generate unique identifiers.
Example
allocChar: MACRO
DC.B \1
ENDM
allocWord: MACRO

DC.W \1

ENDM

20.1.75 A2308: File name expected

[ERROR]
Description
A file name is expected in an INCLUDE directive.

Example

INCLUDE 1234

Tips
Specify a file name after the INCLUDE directive.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

468 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

INCLUDE "1234" ; file is named "1234"

20.1.76 A2309: File not found

[ERROR]
Description

The assembler cannot find the file, which name is specified in the include directive.
Tips
* If the file exist, check if the directory where it is located is specified in the
GENPATH environment variable.
* First check if your project directory is correct. A file "default.env" should be located
there, where the environment variables are stored.
* The macro assembler looks for the included files in the working directory and then in
the directory enumerated in the \c GENPATH environment variable.
 [f the file do not exist, create it or remove the include directive.

20.1.77 A2310: Size specification expected

[ERROR]
Description

An invalid size specification character is detected in a DCB, DC, DS, FCC, FCB, FDB,
FQB, RMB, XDEF or XREF directive. For XDEF and XREF directives, valid size
specification characters are:

 .B: for symbols located in a section where direct addressing mode can be used.
» .W: for symbols located in a section where extended addressing mode must be used.

For DCB, DC, DS, FCC, FCB, FDB, FQB and RMB directives, valid size specification
characters are:

 .B: for Byte variables.
* .W: for Word variables.
 .L: for Long variables.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 469

wr
4\

nassembler Messages

Example

DataSec: SECTION
labell: DS.Q 2
ConstSec: SECTION

label2: DC.I 3, 4, 66

Tips
Change the size specification character to a valid one.

Example

DataSec: SECTION
labell: DS.W 2
ConstSec: SECTION

label2: DC.W 3, 4, 66

20.1.78 A2311: Symbol name expected

[ERROR]
Description

A symbol name is missing after a XDEF, XREF, IFDEF or IFNDEF directive.

Example

XDEF $5645

XREF ; This is a comment
CodeSec: SECTION

IFDEF $5634

ENDIF
Tips
Insert a symbol name at the requested position.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

470 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

XDEF exportedSymbol

XREF importedSymbol; This is a comment
CodeSec: SECTION
exportedSymbol:

IFDEF changeBank

ENDIF

20.1.79 A2312: String expected

[ERROR]
Description
A character string is expected at the end of a FCC, IFC or IFNC directive.

Example

one: MACRO
IFC \1,""
DS.B 1
ELSE
DC.B \1
ENDIF
ENDM

one $42

Tips
Insert a character string at the requested position.

Example

one: MACRO
IFC "\1", "
DS.B 1
ELSE
DC.B \1

ENDIF

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 471

nassembler Messages

ENDM

one $42

20.1.80 A2313: Nesting of include files exceeds 50

[ERROR]
Description

The maximum number of nested include files has been exceeded. The Macro Assembler
supports up to 50 nested include files.

Tips

Reduce the number of nested include file to 50.

20.1.81 A2314: Expression must be absolute

[ERROR]
Description

An absolute expression is expected at the specified position. Assembler directives
expecting an absolute value are: OFFSET, ORG, ALIGN, SET, BASE, DS, LLEN,
PLEN, SPC, TABS, IF, IFEQ, IFNE, IFLE, IFLT, IFGE, IFGT. The first operand in a
DCB directive must be absolute:

Example

DataSec: SECTION
labell: DS.W 1
label2: DS.W 2
label3: EQU 8
codeSec: SECTION
BASE labell

ALIGN label2
Tips

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

472 Freescale Semiconductor, Inc.

A
4

4
A

Chapter 20 Assembler Messages

Specify an absolute expression at the specified position.

Example

DataSec: SECTION
labell: DS.W 1
label2: DS.W 2
label3: EQU 8
codeSec: SECTION
BASE label3

ALIGN 4

20.1.82 A2316: Section name required

[ERROR]
Description

A SWITCH directive is not followed by a symbol name. Absolute expressions or string
are not allowed in a SWITCH directive. The symbol specified in a SWITCH directive
must refer to a previously defined section.

Example

dataSec: SECTION
labell: DS.B 1
codeSec: SECTION

SWITCH $A344

Tips
Specify the name of a previously define section in the SWITCH instruction.

Example

dataSec: SECTION
labell: DS.B 1
codeSec: SECTION

SWITCH dataSec

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 473

nassembler Messages

20.1.83 A2317: lllegal redefinition of section name

[ERROR]
Description

The name associated with a section is previously used as a label in a code or data section
or is specified in a XDEF directive. The macro assembler does not allow to export a
section name, or to use the same name for a section and a label.

Example

dataSec: SECTION

sec_Label: DS.W 3

sec_Label: SECTION

Tips
Change to name of the section to a unique identifier.
Example

datasec: SECTION

dat Label: DS.W 3

sec_Label: SECTION

20.1.84 A2318: Section not declared

[ERROR]
Description

The label specified in a SWITCH directive is not associated with a section.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

474 Freescale Semiconductor, Inc.

g |

4
Chapter 20 Assembler Messages

Example

dataSec: SECTION

labell: DS.B 1

codeSec: SECTION

SWITCH unknownSec

Tips
Specify the name of a previously define section in the SWITCH instruction.
Example

dataSec: SECTION

labell: DS.B 1

codeSec: SECTION

SWITCH dataSec

20.1.85 A2319: No section link to this label

[ERROR]
Description

A label without corresponding section was detected. This error usually occurs because of
other errors before.

Tips

Correct all errors before this one first.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 475

nassembler Messages

20.1.86 A2320: Value too small

[ERROR]

Description

The absolute expression specified in a directive is too small. This message can be
generated in following cases:

* The expression specified in an ALIGN, DCB, or DS directive is smaller than 1.

» The expression specified in a PLEN directive is smaller than 10. A header is
generated on the top of each page from the listing file. This header contains at least 6
lines. So a page length smaller than 10 lines does not make many sense.

» The expression specified in a LLEN, SPC or TABS directive is smaller than O

(negative).
Example
PLEN 5
LLEN -4

dataSec: SECTION

ALIGN O

labell: DS.W 0

Tips
Modify the absolute expression to a value in the range specified above.
Example

PLEN 50

LLEN 40

dataSec: SECTION

ALIGN 8

labell: DS.W 1

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

476 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

20.1.87 A2321: Value too big

[ERROR]

Description

The absolute expression specified in a directive is too big. This message can be generated
in following cases:

» The expression specified in an ALIGN directive is bigger than 32767.
* he expression specified in a PLEN directive is bigger than 10000.

* The expression specified in a LLEN directive is bigger than 132.

» The expression specified in a SPC directive is bigger than 65.

» The expression specified in a TABS directive is bigger than 128.

Example

PLEN 50000
LLEN 200
dataSec: SECTION

ALIGN 40000

Tips
Modify the absolute expression to a value in the range specified above.
Example

PLEN 50

LLEN 40

dataSec: SECTION

ALIGN 8

20.1.88 A2323: Label is ignored

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 477

nassembler Messages

[DISABLE, INFORMATION, WARNING, ERROR]
Description

A label is specified in front of a directive, which does not accept any label. The macro
assembler ignores such label. These labels cannot not be referenced anywhere else in the
application. Labels will be ignored in front of following directives: ELSE, ENDIF, END,
ENDM, INCLUDE, CLIST, ALIST, FAIL, LIST, MEXIT, NOLIST, NOL, OFFSET,
ORG, NOPAGE, PAGE, LLEN, PLEN, SPC, TABS, TITLE, TTL.

Example

CodeSec: SECTION
label: PLEN 50
label2: LIST

Tips

Remove the label which is not required. If you need a label at that position in a section,
define the label on a separate line.

Example

CodeSec: SECTION

label:

PLEN 50

label2:

LIST

20.1.89 A2324: lllegal Base (2,8,10,16)
[ERROR]

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

478 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages
Description

An invalid base number follows a BASE directive. The valid base numbers are 2, 8, 10 or
16. The expression specified in a BASE directive must be an absolute expression and
must match one of the values enumerated above.

Example

BASE 67

dataSec: SECTION
label: EQU 35

BASE label

Tips
Specify one of the valid value in the BASE directive.

Example

BASE 16

dataSec: SECTION

label: EQU 8

BASE label

20.1.90 A2325: Comma or Line end expected

[ERROR]
Description

An incorrect syntax has been detected in a DC, FCB, FDB, FQB, XDEF, PUBLIC,
GLOBAL, XREF or EXTERNAL directive. This error message is generated when the
values enumerated in one of the directive enumerated above are not terminated by an end
of line character, or when they are not separated by a',' character.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 479

nassembler Messages

XDEF datalabl datalab2

XREF Dbbl, bb2, bb3, bb4

dataSec: SECTION
datalabl: DC.B 2 | 4 | 6 | 8

datalLab2: FCB 45, 66, 88

Tips

This is a comment

label3:DC.B 4

Use the ',' character as separator between the different items in the list or insert an end of

line at the end of the enumeration.

Example

XDEF datalLabl, dataLab2

XREF bbl, bb2, bb3, bb4

dataSec: SECTION
datalLabl: DC.B 2, 4, 6, 8
datalLab2: FCB 45, 66, 88

label3: DC.B 4

20.1.91 A2326: Label <Label> is redefined

[ERROR]

Description

A label redefinition has been detected. This message is issued when:

;This is a comment

 The label specified in front of a DS, DCB, FCC directive is already defined.

* One of the label names enumerated in a XREF directive is already defined.

 The label specified in front of an EQU directive is already defined.

» The label specified in front of a SET directive is already defined and not associated

with another SET directive.

* A label with the same name as an external referenced symbol is defined in the source

file.

¢ A label name is reused as section name.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

480

Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

Example

DatalsSec: SECTION
labell: DS.W 4
Data2Sec: SECTION

labell: DS.W 1

Tips
Modity your source code to use unique identifiers.

Example

DatalsSec: SECTION
dl labell: DS.W 4
Data2Sec: SECTION

d2 labell: DS.W 1

20.1.92 A2327: ON or OFF expected

[ERROR]
Description

The syntax for a MLIST or CLIST directive is not correct. These directives expects a
unique operand, which can take the value ON or OFF.

Example

CodeSec: SECTION

CLIST

Tips

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 481

3
4

4
A

nassembler Messages

Specify either ON or OFF after the MLIST or CLIST directive.

Example

CodeSec: SECTION

CLIST ON

20.1.93 A2328: Value is truncated

[DISABLE, INFORMATION, WARNING, ERROR]
Description

The size of one of the constants listed in a DC directive is bigger than the size specified
in the DC directive.

Example

DataSec: SECTION

cstl: DC.B $56, $784, SFF
cst2: DC.W $56, $784, SFF5634
Tips

Reduce the value from the constant to a value fitting in the size specified in the DC
directive.

Example
DataSec: SECTION

cstl: DC.B $56, $7, $84, SFF

cst2: DC.W $56, $784, SFF, $5634

20.1.94 A2329: FAIL found

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

482 Freescale Semiconductor, Inc.

g |

[ERROR]

Description

The FAIL directive followed by a number smaller than 500 has been detected in the
source file. This is the normal behavior for the FAIL directive. The FAIL directive is
intended for use with conditional assembly, to detect user defined error or warning

condition

Example

LE.B: MACRO

IFC ll\lll ,nn

FAIL "no data" ;

MEXIT
ENDIF
IFC "\2m",""
FAIL 600
DC.B \1
MEXIT
ENDIF
IFNC "\3",""
FAIL 400
ENDIF
DC.B \2,\1

ENDM

LE.B $12,534,356

20.1.95 A2330: String is not allowed

[ERROR]

Description

A string has been specified as initial value in a DCB directive. The initial value for a

Chapter 20 Assembler Messages

constant block can be any byte, half-word or word absolute expression as well as a simple

relocatable expression.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

483

g |

nassembler Messages

CstSec: SECTION

label: DCB.B 10, "aaaaaa"

Tips
Specify the ASCII code associated with the characters in the string as initial value.

Example

CstSec: SECTION

label: DCB.B 10, $61

20.1.96 A2332: FAIL found

[DISABLE, INFORMATION, WARNING, ERROR]
Description

The FAIL directive followed by a number bigger than 500 has been detected in the
source file. This is the normal behavior for the FAIL directive. The FAIL directive is
intended for use with conditional assembly, to detect user defined error or warning
condition

Example

LE.B: MACRO

IFC "\1",""
FAIL "no data" ; error
MEXIT

ENDIF

IFC "\2",""
FAIL 600 ; warning
DC.B \1
MEXIT

ENDIF

IFNC ||\3|| , "

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

484 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages
FAIL 400 ; error
ENDIF
DC.B \2,\1
ENDM

LE.B $12

20.1.97 A2333: Forward reference not allowed

[ERROR]
Description
A forward reference has been detected in an EQU instruction. This is not allowed.

Example

CstSec: SECTION

equlab: EQU label2

label2: DC.W $6754
Tips

Move the EQU after the definition of the label it refers to.

Example

CstSec: SECTION
label2: DC.W $6754

equlab: EQU label2

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 485

nassembler Messages

20.1.98 A2335: Exported SET label<name> is not supported

[ERROR]
Description
The SET directive does not allow a reference to an external label.
Example
XDEF setLab
const: SECTION

lab: DC.B 6

setLab: SET $77AA

Tips

SET labels initialized with absolute expressions can be defined in a special file to be
included by assembly files, or the EQU directive can be used.

Example

XDEF setLab
const: SECTION
lab: DC.B 6

setLab: EQU $77AA

See also

SET Directive

20.1.99 A2336: Value too big

[DISABLED, INFORMATION, WARNING, ERROR]

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

486 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

The absolute expression specified as initialization value for a block defined using DCB is
too big. This message is generated when the initial value specified in a DCB.B directive
cannot be coded on a byte. In this case the value used to initialize the constant block will
be truncated to a byte value.

Example

constSec: SECTION

labell: DCB.B 2, 312

In the previous example, the constant block is initialized with the value $38 (= 312
& $FF)

Tips
To avoid this warning, modify the initialization value to a byte value.

Example

constSec: SECTION

labell: DCB.B 2, 56

20.1.100 A2338: <FailReason>

[ERROR]
Description

The FAIL directive followed by a string has been detected in the source file. This is the
normal behavior for the FAIL directive. The FAIL directive 1s intended for use with
conditional assembly, to detect user defined error or warning condition

Example
LE.B: MACRO
IFC ll\lll , nn
FAIL "no data" ; error

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 487

nassembler Messages

MEXIT
ENDIF
IFC "\2",6 "
FAIL 600 ; warning
DC.B \1
MEXIT
ENDIF
IFNC "\3", "n
FAIL 400 ; error
ENDIF
DC.B \2,\1
ENDM

LE.B ; no args

20.1.101 A2340: Macro parameter already defined

[ERROR]

Description

A name of a macro parameter was already defined.
Note

Not all assemblers do support named macro parameters. Assembler not supporting this
will never issue this message.

20.1.102 A2341: Relocatable Section Not Allowed: an Absolute
file is currently directly generated

[ERROR]
Description

A relocatable section has been detected while the assembler tries to generate an absolute
file. This is not allowed.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

488 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

Example

DataSec: SECTION

Datal: DS.W 1
ORG $800
entry:
NOP
NOP

20.1.103 A2342: Label in an OFFSET section cannot be exported

[ERROR]
Description

An external defined label is provided as offset in an OFFSET directive or a label defined
in an offset is used in a DS directive.

Example
OFFSET 1
ID: DS.B 1
ALIGN 4
COUNT : DS.W 1
ALIGN 4
VALUE : DS.W 1
SIZE: EQU *
XDEF VALUE

DataSec: SECTION

Struct: DS.B SIZE

Tips
Use other labels to specify the size of the offset and the number of space to provide.

Example

OFFSET 1

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 489

A 4
4\ |

nassembler Messages

ID: DS.B 1
ALIGN 4
COUNT : DS.W 1
ALIGN 4
VALUE : DS.W 1
SIZE: EQU *

DataSec: SECTION

Struct: DS.B SIZE

20.1.104 A2345: Embedded type definition not allowed

[ERROR]

Description

The keyword STRUCT or UNION has been detected within a structured type definition.
This is not allowed.

Note

Not all assembler backends do support structured types. Assembler not supporting them
will not issue this message.

Example

myType: STRUCT

fieldl: DS.W 1

field2: DS.W 1

field3: DS.B 1

fieldx: STRUCT
XX DS.B 1
YYy: DS.B 1

ENDSTRUCT

field4: DS.B 3

field5: DS.W 1
ENDSTRUCT

Tips

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

490 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

Define the structured type as two separate structured types.

Example

typeX: STRUCT

XX : DS.B 1
VYy: DS.B 1
ENDSTRUCT

myType: STRUCT

fieldl: DS.W 1
field2: DS.W 1
field3: DS.B 1
fieldx: TYPE typeX
field4: DS.B 3
fields: DS.W 1
ENDSTRUCT

20.1.105 A2346: Directive or instruction not allowed in a type
definition

[ERROR]
Description

An instruction or an invalid directive has been detected in a structured type definition.
Only following directives are allowed in a structured type definition:

* DS, RMB, ALIGN, EVEN, LONGEVEN

* Conditional Assembly directives (IF, ELSE, IFCC, ..)

* Directives related to the formatting of the listing file (PLEN, SPC, ...)
» XDEF, XREF, BASE

Not all assembler backends do support structured types. Assembler not supporting them
will not issue this message.

Example

myType: STRUCT

fieldl: DS.W 1

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 491

A
4

4
A

nassembler Messages

field2: DS.W 1
field3: DS.B 1
cst: DC.B $34
field4: DS.B 3
field5: DS.W 1
ENDSTRUCT
Tips

Remove the invalid directive or instruction.

Example

myType: STRUCT

fieldl: DS.W 1
field2: DS.W 1
field3: DS.B 1
field4: DS.B 3
fields: DS.W 1
ENDSTRUCT

20.1.106 A2350: MEXIT is illegal (detected outside of a macro)

[ERROR]
Description
An MEXIT was found without a matching MACRO directive.

Example
MEXIT

Tips
Check for the correct writing of the MACRO directive. Do not use MEXIT as label.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

492 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

20.1.107 A2351: Expected Comma to separate macro arguments

[DISABLE, INFORMATION, WARNING , ERROR]
Description
Macro arguments must be separated by a comma.
Example
constants MACRO
DC.B \1+1, \2+1

ENDM

constants 1 2

Tips

Do not use spaces in macro parameters, instead use a comma:

constants 1,2

20.1.108 AZ2352: Invalid Character

[ERROR]

Description

An invalid character was found during parsing.
Tips

Check the source file for binary parts.

20.1.109 A2353: lllegal or unsupported directive SECT

[DISABLED, INFORMATION, WARNING, ERROR]

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 493

nassembler Messages

The assembler did not understand the whole SECT directive. The SECT directive is only
recognized when the option Option -Compat is present.

Tips
Use the SECTION directive instead.
See also

Option -Compat

20.1.110 A2354: Ignoring directive '<directive>'

[DISABLED, INFORMATION, WARNING , ERROR]
Description

The assembler is ignoring the specified directive. This message is used mainly for
directives which are not supported when the option Option -Compat is present.

See also

Option -Compat

20.1.111 A2355: lllegal size specification

[DISABLED, INFORMATION, WARNING, ERROR]
Description

The size specification given is not legal for this directive.
Tips

Use no size specification at all or use a different one.

20.1.112 A2356: lllegal RAD50 character

[DISABLED, INFORMATION, WARNING, ERROR]

Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

494 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

Note

Not all assemblers do support the RADS0 directive. This message is only issued by
assemblers which do support the RADSO0 directive.

See also

Directive RADS50

20.1.113 A2357: lllegal macro argument '<Argument>'

[DISABLED, INFORMATION, WARNING, ERROR]
Description

Macro argument started with the [? syntax have to end with ?]. However this second
pattern was not found.

See also
e Macro argument grouping
* Macros chapter
* Option -CMacAngBrack

20.1.114 A2358: Size prefix ignored

[DISABLED, INFORMATION, WARNING, ERROR]
Description

The used size prefix did not match with an previously specifid size prefix and was
therefore ignored.

Tips

Don't specify a size prefix unless you are certain about it. Use always the same prefix for
the same label.

20.1.115 A2359: String index out of bounds

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 495

nassembler Messages

[DISABLED, INFORMATION, WARNING, ERROR]
Description

The syntax is SUBSTR('STRING',start,count). The message occurs if 'start' or 'count’
value 1s less than zero.

20.1.116 A2360: Maximum SUBSTR recursion level reached

[DISABLED, INFORMATION, WARNING, ERROR]
Description

This message occurs when the recursive depth of SUBSTR operator (for example:
SUBSTR(SUBSTR(..))) exceeds the count 3000.

20.1.117 A2380: Cutting very long line

[DISABLED, INFORMATION, WARNING, ERROR]
Description
A line was longer than the limit 1024 characters. All remaining text is ignored.

Tips
 Split up the line into several lines.
* Remove trailing spaces and tabs.
 Use shorter identifiers.

20.1.118 A2381: Previous message was in this context
“<Context>'

[DISABLED, INFORMATION, WARNING, ERROR]
Description

The previous message was in a special context. Usually this message is used to show the
current macro expansion tree.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

496 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

Example

TABLE: MACRO
; \1: size of table to be generated
; \2: current value for table
\@size: EQU \1
if (\@size >= 2)
TABLE \@size/2,\2
TABLE \@size-\@size/2,\2+\@size/2
else
if (\@size == 1)
DC \2
endif
endif
ENDM

TABLE 4
Generates the following messages:

b.asm(9) : ERROR Al055: Error in expression
INFORMATION Macro Expansion DC

b.asm(5) : INFORMATION A2381: Previous message was in this
context 'Macro Invocation'

So the error happens at line 9 ("DC \2") which was called by line 5 twice and finally by
line 14. To fix this example, add a second parameter to the TABLE macro call:

TABLE 4,0

Tips

Check the message before the first A2381 to see the cause of the problem.

20.1.119 A2382: lllegal character ('\0') in source file

[ERROR]

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 497

g |

nassembler Messages

Description
An zero byte (a byte with ASCII code 0) was found in the source.
Tips

Check if the source file is binary.

20.1.120 A2383: Input line too long

[ERROR]
Description

An input line is longer then the translation limit. Input lines must not be longer than 1024
characters.

Tips

Split the input line. In recursive macros, use local SET labels to avoid lines growing with
the input buffer: Instead of:

TableTo: MACRO
if (\1 > 0)
DC.W \1
TableTo \1 - 1
endif

ENDM
Use:

TableTo: MACRO
if (\1 > 0)
DC.W \1
\@LocLabel: SET \1-1
TableTo \@LocLabel
endif

ENDM

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

498 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

20.1.121 A2400: End of Line expected

[DISABLED, INFORMATION, WARNING, ERROR]
Description

The assembler did not expect anything anymore on a line. This message can be generated
when: A comment, which does not start with the start of comment character (';'), is
specified after the instruction. A further operand is specified in the instruction. ...

Example

DataSec: SECTION

var: DS.B 1 Char variable

Tips

Remove the invalid character or sequence of characters from the line. Insert the start of
comment character at the beginning of the comment. Remove the superfluous operand.

Example

DataSec: SECTION

var: DS.B 1 ; Char variable

20.1.122 A2401: Complex relocatable expression not supported

[ERROR]
Description

A complex relocatable expression has been detected. A complex relocatable expression is
detected when the expression contains:

* An operation between labels located in two different sections.
* A multiplication, division or modulo operation between two labels.
* The addition of two labels located in the same section.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 499

r
A

4 |

nassembler Messages

XDEF offset
DataSecl: SECTION SHORT
Datalbll: DS.B 10
DataSec2: SECTION SHORT
Datalbl2: DS.W 15

offset: EQU Datalbl2 - DatalLbll

Tips

The macro assembler does not support complex relocatable expressions. The
corresponding expression must be evaluated at execution time.

Example

DataSecl: SECTION SHORT
Datalbll: DS.B 10
DataSec2: SECTION SHORT
Datalbl2: DS.W 15

Offset: DS.W 1
CodeSec: SECTION

evalOffset:

LD A, #DatalLbl2
SUB A, #Datalbll
LD Offset, A

XDEF Offset
Example

DataSecl: SECTION SHORT
Datalbll: DS.B 10
DataSec2: SECTION SHORT
Datalbl2: DS.W 15
Offset: DS.W 1
CodeSec: SECTION

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

500 Freescale Semiconductor, Inc.

h o
g |

evalOffset:
LD A,#%lo(DatalLbl2)
SUB A, #%lo(Datalbll)
LD Offset+1,A
LD A, #%hi (DatalLbl2)
SBC A, #%hi (DataLbll)
LD Offset+0,A
Example
DataSecl: SECTION SHORT
Datalbll: DS.B 10
DataSec2: SECTION SHORT
Datalbl2: DS.W 15
Offset: DS.W 1
CodeSec: SECTION
evalOffset:
LDA #DatalLbl2
SUB #Datalbll
STA Offset
Example
DataSecl: SECTION SHORT
Datalbll: DS.B 10
DataSec2: SECTION SHORT
Datalbl2: DS.W 15
Offset: DS.W 1
CodeSec: SECTION
evalOffset:

LDD #Datalbl2

SUBD #DatalLbll

Chapter 20 Assembler Messages

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

501

\
Y

4
A

nassembler Messages

STD Offset

XDEF Offset

Example
DataSecl: SECTION SHORT
Datalbll: DS.B 10
DataSec2: SECTION SHORT
Datalbl2: DS.W 15
Offset: DS.W 1
CodeSec: SECTION
evalOffset:
LT R4 ,Datalbll
LI R5,Datalbl2
SUBF R4,R4,R5
STH R4,0ffset
Example
DataSecl: SECTION
Datalbll: DS.B 10
DataSec2: SECTION
Datalbl2: DS.W 15
Offset: DS.W 1
CodeSec: SECTION
evalOffset:

LRW R6, [addLbl1l]
LD.B R7, (R6,0)
LRW R6, [addLbl1l]
LD.B R7, (R6,0)
SUBU R7,R8

LRW R6, [addOff]

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

502

Freescale Semiconductor, Inc.

g |

addLbll:
addLbll:

addoff:

Example

DataSecl:

DatalLbll:

DataSec2:

DatalLbl2:

Offset:

CodeSec:

ILD.B R7, (R6,0)
ALIGN 4

DC.W Datalbll
DC.W Datalbl2

DC.W Offset

SECTION SHORT
DS.B 10
SECTION SHORT
DS.W 15
DS.W 1

SECTION

MOVE #Datalbl2, A0

SUB #Datalbll, A0

MOVE A0, Offset

Chapter 20 Assembler Messages

If both DataSec1 and DataSec?2 are in the same section and defined in this module, the
assembler can compute the difference:

DataSecl: SECTION SHORT
Datalbl1:
DatalLbl2:
offset: EQU DatalLbl2 - DatalLbl1

DS.B 10
DS.W 15

20.1.123 A2402: Comma expected

[ERROR]

Description

A comma character is missing between two operands of an instruction or directive.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

503

g |

nassembler Messages

DataSec: SECTION
Data: DS.B 1
ConstSec: SECTION

DC.B 2 3

Tips
The comma (',') character is used as separator between instruction operands.
Example

DataSec: SECTION

Data: DS.B 1

ConstSec: SECTION

DC.B 2, 3

20.1.124 A2500: Equal expected

[ERROR]
Description
In a for directive, a = was expected.

Example

FOR j := $1000 TO $1003
DC.W

ENDFOR

Tips

Just use an equal in the example (no colon).

FOR j = $1000 TO $1003
DC.W j

ENDFOR

Check that the Option -Compat=Db is enabled.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

504 Freescale Semiconductor, Inc.

A\ 4
4\ 4
Chapter 20 Assembler Messages

See also
* Option -Compat
e Directive FOR

20.1.125 A2501: TO expected

[ERROR]
Description
In a for directive, a TO was expected.
Example
FOR j := $1000 < $1003

DC.W

ENDFOR

Tips
Just use a TO in the example.
FOR j = $1000 TO $1003

DC.W j

ENDFOR

Check that the Option -Compat=Db is enabled.

See also
* Option -Compat
e Directive FOR

20.1.126 A2502: ENDFOR missing

[ERROR]
Description

In a for directive, a ENFOR was expected.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 505

g |

nassembler Messages

Example

FOR j := $1000 < $1003

DC.W j

Tips
Check that every FOR has a corresponding ENDFOR.

FOR j = $1000 TO $1003
DC.W

ENDFOR

Check that the Option -Compat=b is enabled.

See also
* Option -Compat
e Directive FOR

20.1.127 A2503: ENDFOR without FOR

[ERROR]
Description
A ENDFOR without corresponding FOR was found.
Example
FOR j := $1000 < $1003

DC.W

ENDFOR

Tips

Check that every ENDFOR has a corresponding FOR. In the example, remove the
semicolon.

FOR j = $1000 TO $1003

DC.W

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

506 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

ENDFOR

Check that the Option -Compat=b is enabled.

See also
* Option -Compat
e Directive FOR

20.1.128 A2600: Addition of values from a different address
space

[ERROR]
Description

Addition of two values, that are not in the same address space.

20.1.129 A2601: Subtraction of values from a different address
space

[ERROR]
Description

Subtraction of two values, that are not in the same address space.

20.1.130 A2602: Operation of values from a different address
space

[ERROR]
Description

Operation of two values, that are not in the same address space.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 507

nassembler Messages

20.1.131 A3000: User requested stop

[DISABLE, INFORMATION, WARNING, ERROR]
Description

This message 1s used when the user presses the stop button in the graphical user interface.
Also when the assembler is closed during an assembly, this message is issued.

Tips

By moving this message to a warning or less, the stop functionality can be disabled.

20.1.132 A4000: Recursive definition of label <Label name>="">

[ERROR]
Description
The definition of an EQU label depends directly or indirectly on itself.

Example

XDEF tigger

pooh: EQU tigger - 2

tigger: EQU 2*pooh

Tips

This error usually indicates an error in some definitions. Determine the labels involved in
the recursive definition and eliminate the circular dependency.

20.1.133 A4001: Data directive contains no data

[WARNING]

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

508 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

Description
A data directive is empty, and no code is generated for this directive.

Example

DC.B ;7 1,2,3,4

Tips

This warning may indicate an error, or it may be intentional within a macro expansion,
for example.

20.1.134 A4002: Variable access size differs from previous
declaration

[WARNING]
Description

An implicit or explicit declaration of a label indicates an access size which differs from a
former declaration.

Tips

Indicating the access size of variables is particularly helpful in "header" files which
contain XREF directives, to be included by other files accessing these variables. If an
assembly file contains a

XREF.B obj

this warning message indicates potential problems.

20.1.135 A4003: Found XREF, but no XDEF for label <Label>,
ignoring XREF

[WARNING]
Description

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 509

nassembler Messages

The local definition of a label <Label> supersedes a global XREF declaration, if no
appropriate XDEF directive is given.

Example

XREF main

Code: SECTION
main: NOP ; is local, unless XDEF given
NOP
Tips

This warning may indicate a forgotten XDEF directive.

20.1.136 A4004: Qualifier ignored

[DISABLE, INFORMATION, WARNING, ERROR]
Description
An unknown qualifier to a SECTION or ORG directive is ignored.

Example

const: SECTION SHORT 1234 FOO

DC.B "hello", O

Tips

This warning may indicate a misspelled qualifier.

20.1.137 A4005: Access size mismatch for <Symbol>

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

510 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

[WARNING]
Description

Incompatible access sizes are attached to an object, either implicitly or explicitly. The
access size of an object is determined from XREF declarations, XDEF definitions and (if
applicable) from the access size of the section, where the object is placed into.

Example

XDEF.B two

const: SECTION

two: DC.B 2 ; implicit *.W definition

Tips

It is probably a good idea to eliminate mismatches, particularly if mismatches occur
between declarations in a "header file" and definitions in the assembly file.

20.1.138 AA4006: lllegal value "<ErrorDescription>'

[DISABLE, INFORMATION, WARNING, ERROR]
Description

The assembler could not compute the value of a constant. One possible reason for this
failure is an address space conversion function which is called with an address which is
illegal for the source address space.

Tips

Check the documentation for the used functions and fixup types.

20.1.139 A4100: Address space clash for <Symbol>

[ERROR]

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 511

nassembler Messages

Description

This message is only relevant for Harvard architectures (separate code and data address
spaces), and occurs for symbols whose address is used both as a code address and a data
address.

Tips

This clash may be intentional, but indicates an error in most cases.

20.1.140 A13001: lllegal Addressing Mode. <AddrModes>

[ERROR]
Description

An illegal addressing mode has been detected in an instruction. This message is generated
when an incorrect encoding is used for an addressing mode.

Example

STA #5545

Tips
Use a valid notation for the addressing mode encoding.

Example

STA $45

20.1.141 A13003: Value is truncated to one byte

[DISABLED, INFORMATION, WARNING, ERROR]
Description

An operand is only possible as 8 bit direct mode, but the actual passed in one is larger. As
labels are 16 bit by default.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

512 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

Example

MyData: SECTION
data: DS.B 1
POS EQU 2
MyCode: SECTION
entry:
ADD data
BCLR 7, data
BRCLR 4, data, entry
BSET 3, data

BRSET POS, data, entry

The following instructions do only support direct memory access. Using them with a
label without explicit size specification causes this message.

XREF label

ASR label

BCLR 2, label

BRSET 0, label, *

BSET 0, label

CBEQ 1label, *

CLR label

COM label

CPHX label; legal for HCSO08
DBNZ label, *

DEC label

INC label

LDHX label; legal for HCSO08
LSL label

LSR label

MOV #1, label

MOV label, 1label

NEG label

ROL label

ROR label

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 513

nassembler Messages

STHX label; legal for HCSO08

TST label

Tips

Use the Direct addressing Mode for the operand: as an example, you can define data in a
section located on page zero using the qualifier SHORT after the SECTION directive.
For labels defined with XREF, use the XREF.B or XREFB directive. For labels defined
with EQU, use EQU.B if the right side cannot be automatically determined to be direct.

MyData: SECTION SHORT
data: DS.B 1
POS EQU 2

MyCode: SECTION

entry:
CPHX data
BCLR 7, data
BRCLR 4, data, entry
BSET 3, data
BRSET POS, data, entry
Example

XREF.B label
ASR label

BCLR 2, label

See also
* chapter Using Direct Addressing mode to access Symbols

20.1.142 A13004: Value is truncated to two bytes

[DISABLED, INFORMATION, WARNING, ERROR]
Description

The value is larger than 16 bits. The higher bits are ignored.

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

514 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages
Tips

Specify only the lower 16 bits. Use the ">" operator to cut larger expressions.

20.1.143 A13101: lllegal operand format

[ERROR]

Description

An operand used in the instruction is using an invalid addressing mode.

Example

As an example, the following code generates the A13101 error message.
Entry:

ADC X+

LDA 2, SP

Tips

To solve this problem, use an allowed addressing mode for the instruction.

Entry:
ADC ,X
ADC X
ADC #$5

LDA 2, X

20.1.144 A13102: Operand not allowed

[ERROR]
Description

This error message is issued for instruction BCLR or BRSET when the operand is not a
DIRECT or an EXTENDED.

Example

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 515

A
4

4
A

nassembler Messages

Entry:

Tips

BRCLR

BRCLR

BSET

7,
7,

7,

X

SP

X

To solve this problem, use an allowed addressing mode for the instruction.

20.1.145 A13106: lllegal size specification

[ERROR]

Description

A size operator follows an instruction. Size operators are coded as semicolon character

followed by single character.

Example

MyData:
data:
MyCode :

entry:

Tips

Remove the size specification following the instruction.

Example

MyData:

data:

SECTION

DS.B 1

SECTION

ADC.B

ADC.L

ADC.W

ADC.Db

ADC.1

ADC.w

data

data

data

data

data

data

SECTION

DS.B 1

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

516

Freescale Semiconductor, Inc.

A
4

4
A

MyCode:

entry:

20.1.146 A13109: Positive value expected

SECTION

ADC data

[ERROR]

Description

When using the instruction BSET, BCLR, BRSET and BRCLR, this error message is

issued if the specified value for the bit number is negative.

Example

MyData:
data:

NEG

MyCode :

entry:

Tips

SECTION SHORT
DS.B 1
EQU -2

SECTION

BCLR -7, data

BRCLR -4, data, entry

BSET -3, data

BRSET NEG, data, entry

Use a positive value for the bit number:

MyData:

data:

POS

MyCode :

entry:

SECTION SHORT
DS.B 1
EQU 2

SECTION

BCLR 7, data
BRCLR 4, data,

BSET 3, data

entry

Chapter 20 Assembler Messages

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,

Rev. 10.6, 02/2014

Freescale Semiconductor, Inc.

517

A 4
4\ |

nassembler Messages

BRSET POS, data, entry

20.1.147 A13110: Bit number expected

[ERROR]
Description

When using the instruction BSET, BCLR, BRSET and BRCLR, this error message is
issued if the specified value for the bit number is not a Direct or an Extended.

Example
MyData: SECTION SHORT

data: DS.B 1

MyCode: SECTION

entry:
BCLR #$7, data
BRCLR #$4, data, entry
BRSET #$3, data, entry
BSET #$2, data
Tips

Use a correct value for the bit number: 0, 1, 2, 3,4, 5,6, 7

MyData: SECTION SHORT

data: DS.B 1

MyCode: SECTION

entry:
BCLR 7, data
BRCLR 4, data, entry
BSET 3, data

BRSET 2, data, entry

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

518 Freescale Semiconductor, Inc.

g |

Chapter 20 Assembler Messages

20.1.148 A13111: Value out of range

[DISABLE, INFORMATION, WARNING, ERROR]
Description

When using the instruction BSET, BCLR, BRSET and BRCLR, this error message is
issued if the specified value for the bit number is greater than 7.

Example
MyData: SECTION SHORT

data: DS.B 1

MyCode: SECTION

entry:
BCLR 20, data
BRCLR 70, data, entry
BSET 9, data
BRSET 200, data, entry
Tips

Use a correct value for the bit number: 0, 1, 2, 3,4, 5,6, 7

Example

MyData: SECTION SHORT

data: DS.B 1

MyCode: SECTION

entry:
BCLR 7, data
BRCLR 4, data, entry
BSET 3, data

BRSET 2, data, entry

20.1.149 A13203: Not a HCO08 instruction or directive

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 519

nassembler Messages

[ERROR]
Description

The identifier detected in an assembly line instruction part is neither an assembly
directive, nor an HCOS8 instruction, nor a user defined macro.

Example

CodeSec: SECTION

LDAA #$5510

Tips
* Change the identifier to an assembly directive, an HCOS instruction, or the name of a
user defined macros.
* If you are using a directive: make sure that there is at least one space in front of the
directive.

20.1.150 A13204: Instruction not supported by RS08 Core

[DISABLE, INFORMATION, WARNING, ERROR]
Description

The instruction specified does exist for HCO8 (or HCS08) but not for the RSO8 which
only supports a subset of the full HCOS instruction set.

Example

CodeSec: SECTION

PSHX

Tips
e Check the RSO8 reference manual for the supported instructions.

20.1.151 A13205: RS08 instructions only supported in RS08
mode (use option -Crs08)

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

520 Freescale Semiconductor, Inc.

Chapter 20 Assembler Messages

[ERROR]
Description

The instruction exists for the RS08 core, but not for the HCO8 (or HCS08) core. As the
assembler is currently in HCO8 mode, it does not support it.

Example

CodeSec: SECTION

ADCX

Tips
e Use the option -Crs08 to compile RSO8 code.
* When adapting RS08 code for the HCOS, check the reference manual which
instructions exist.

20.1.152 A13206: This instruction is only available for derivatives
with MMU

[ERROR]
Description
This message occurs for 'CALL' and 'RTC" instructions.

Tips:
» Specify -MMU option along with -Cs08 option (HCSO0S8 derivative).

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

Freescale Semiconductor, Inc. 521

}{ |

nassembler Messages

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual,
Rev. 10.6, 02/2014

522 Freescale Semiconductor, Inc.

g |

Index

‘<emd>' 419
“<Context>' 496
“<Description>' 459
“<ErrorDescription>' 5711
“<file>' 419
“<NewValue>'. 420
*<OldValue>', 420
*<Symbol>' 454
'<Argument>' 495
'<description>' 422
'<directive>' 494
'<file>' 418
"err.log" 202

(\0") 497
(<LabelName>): 460
(2,8,10,16) 478
(Assembler /46
(available 791
(binary) 268-272
(detected 492

(-Fh, 166
(HC(S)08) 248
(Integers) 411
(MMU) 192

(-Ms, 189

(PC 126

(RS08) 259, 260
(Set 426

(shared 105, 106
(Testl.asm) 384
(Testl.inc) 384
(Test2.asm) 385
(Test2.prm) 385
(unary) 269, 271, 272, 276
(use 520

(usually 726
(-WmsgFbv, 208
(-WmsgFiv, 210
[<LowValue>..<HighValue>] 457
[Editor] 397, 401
[Installation] 393
[Options] 394
[XXX_Assembler] 395, 403
<> 459

<Address> 456
<AddrModes> 512
<Character> 461
<Description> 458
<details> 438
<FailReason> 487
<FieldName> 442
<FileName> 420
<kind> 418

Index

<Label 508

<Label> 437, 480
<Label>, 509
<LabelName> 462
<Messageld> 419
<name> 438

<Name> 422
<Option> 420
<OptionName>. 420
<Size> 456
<SizeLimit> 439
<Symbol> 435, 460, 510, 511
<Symbol>. 436
<TypeName> 439, 441
<variablename> 422
-128..127 448
-32768..32767 450
-ArgFile: 154

-Asmdbg 95
-AsmDbg: 155

-Ci 91

-Ci: 155
-CMacAngBrack 92
-CMacAngBrack: 156
-CMacBrackets 92
-CMacBrackets: 157
-Compat: 158
-Compat= 94
-Compat=! 94
-Compat== 94
-Compat=a 93
-Compat=b 93
-Compat=c 93
-Compat=f 93
-Compat=s 93
-Crs08) 520
-CS08/-C08/-CRSO08: 161
-D 91

-D: 162, 459
-DefLabel: 164
-Env 95

-Env: 165

-F 89

-F2, 166

-F2o0, 166

-FA1 429

-FA2 429

-FA2): 166

-FA2o0, 166

-H: 168

-1: 169

-191

-L 89

-L: 169

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual

Freescale Semiconductor, Inc.

523

\
Y

y
A

muex

-Lasmc
-Lasmc=a 79, 90
-Lasmc=c 79, 90
-Lasmc=i 79, 90
-Lasmc=k 79, 90
-Lasmc=1 79, 90
-Lasmc=m 79, 90
-Lasmc=r 79, 90
-Lasmc=s 79

-Lasmc: 172

-Lasmc=s 90

-Lasms: 174

-Lc 89

-Le: 175

-Ld 89

-Ld: 177

-Le 89

-Le: 180

-Li 89

-Li: 182

-Lic: 184

-LicA: 185

-LicBorrow 95

-LicBorrow: 186

-LicWait 95

-LicWait: 187

-L1: 188

-MacroNest 92

-MacroNest: /90

-MacroNest) 426

-MCUasm 98

-MCUasm: 191

-MMU 98

-MMU: 192

-Mt): 189

-N: 192

-NoBeep: 193

-NoDebuglnfo: 794

-NoEnv: 195

-ObjN: 196

-Prod: 197

-Struct 9/

-Struct: /98

-V: 199

-View: 200

-W1 96

-W1: 201

-W2 96

-W2: 201

-WErrFile: 202

-Wmsg8x3 96

-Wmsg8x3: 203

-WmsgCE: 204

-WmsgCF: 205

-WmsgCI: 206

-WmsgCU: 207

-WmsgCW: 207

-WmsgFb 208

-WmsgFbm): 208
-WmsgFi 210
-WmsgFim): 210
-WmsgFob 97
-WmsgFob: 272
-WmsgFoi: 213
-WmsgFonf 97
-WmsgFonf: 215
-WmsgFonp 97
-WmsgFonp: 217
-WmsgNe 97
-WmsgNe: 218
-WmsgNi 97
-WmsgNi: 279
-WmsgNu: 220
-WmsgNw 97
-WmsgNw: 222
-WmsgSd: 223
-WmsgSe: 223
-WmsgSi: 224
-WmsgSw: 225
-WOutFile: 226
-WStdout: 227

16-bit 253, 255
8.3 203
8-bit 252, 254, 258

A

Al: 417

A1000: 422
A1001: 424
A1002: 424
A1003: 425
A1004 191
A1004: 426
A1051: 427
A1052: 428
A1053: 429
A1054: 429
A1055: 430
A1056: 431
A1057: 432
A1058: 432
A1059: 432
A1060: 433
A1061: 433
A1062: 433
A1101: 434
A1103: 434
A1104: 435
A1105: 436
A1106: 436
A1201: 437
A1202: 438

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual

524

Freescale Semiconductor, Inc.

g |

A1203:
Al251:
A1252:
A1253:
A13001
A13003
A13004
A1301:
A1302:
A1303:
A1304:
A1305:

A13101:
A13102:
A13106:
A13109:
A13110:
Al3111:
A13203:
A13204:
A13205:
A13206:

Al1401:
A1402:
A1405:
A1406:
A1407:
A1408:
Al1410:
Al411:
Al412:
Al413:
Al414:
Al415:
Al4l6:
Al417:
Al418:
Al1419:
A1502:
A1503:
A1601:
A1602:
A1603:
A1604:
A1605:

438
438
438
439
1512
1512
1514
439
441
441
442
445
515
515
516
517
518
519
519
520
520
521
448
450
450
451
452
452
452
453
454
455
455
456
456
457
458
458
459
459
459
460
460
461
462

A2: 418

A2301:
A2302:
A2303:
A2304:
A2305:
A2306:
A2307:
A2308:
A2309:
A2310:
A2311:
A2312:

462
463
464
465
466
466
467
468
469
469
470
471

A2313:
A2314:
A2316:
A2317:
A2318:
A23109:
A2320:
A2321:
A2323:
A2324:
A2325:
A2326:
A2327:
A2328:
A2329:
A2330:
A2332:
A2333:
A2335:
A2336:
A2338:
A2340:
A2341:
A2342:
A2345:
A2346:
A2350:
A2351:
A2352:
A2353:
A2354:
A2355:
A2356:
A2357:
A2358:
A2359:
A2360:
A2380:
A2381:
A2382:
A2383:
A2400:
A2401:
A2402:
A2500:
A2501:
A2502:
A2503:
A2600:
A2601:
A2602:
A3000:
A4000:
A4001:
A4002:
A4003:
A4004:
A4005:

472
472
473
474
474
475
476
477
477
478
479
480
481
482
482
483
484
485
486
486
487
488
488
489
490
491
492
493
493
493
494
494
494
495
495
495
496
496
496
497
498
499
499
503
504
505
505
506
507
507
507
508
508
508
509
509
510
510

Index

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual

Freescale Semiconductor, Inc.

525

\
Y

y
A

muex

A4006: 511

A4100: 511

A50: 418

A51: 419

A52: 419

A53: 419

A54: 420

A56: 420

A64: 420

A65: 422

A66: 422

ABS 69

Abs. 344

ABSENTRY 287, 437
absolute 236, 321, 365, 369, 371, 381,437, 454,
456,472

Absolute 69, 70, 74, 130, 144, 231, 278, 456, 488
ABSPATH: 130

access 386, 387, 509
Access 510

Accessing 355, 362, 363
Adapting 70

Adding 37

Addition 268, 507
address 174, 362, 507
Address 511

addressing 386, 387, 452, 453
Addressing 248, 259, 512
Align 288

ALIGN 288

alignment 301, 313

all 105, 106, 287
allocation /64

allowed 360, 424, 429, 452, 454, 459, 483, 485,
490, 491, 515

Allowed: 488

already 488

Already 119

Analysis 35

Analyzing 42

Angle 156

another 370

ANSI-C 355, 356
Appendices 391
application 371, 373, 383
Application 60, 200, 287
applications 365, 366
Applications 353, 365
are 429, 452, 459

area. 234

areas 235

argument 338, 436, 495
arguments /57, 493
Arguments 156
ASMOPTIONS: 130
Assemble 119, 120
Assembled 7179
assembler /30, 287

Assembler 25, 27,47, 48, 74-77, 79-81, 83, 84,
86-90, 92-95, 97100, 103, 104, 121, 149, 152,
199, 239, 283, 343, 353,417

Assembling 46, 47, 54, 119

assembly 155, 290, 296, 297, 299, 305, 307, 308,
355, 356, 366, 369, 385

Assembly 30, 41, 54, 69, 70, 74, 286, 365, 384
Assembly-Control 285

Associated 117

attributes 229

available 187, 521

B

Bar 102, 103
base 289

Base 478

BASE 289

batch 208, 212
Batch /46
because 432

been 119

beep 193

Begin 314
beginning 461
big 477, 486
Binary 280

Bit 518

Bitwise 271
Blank 330

block 298, 305, 424
Block 294
Borrow 186
bounds 495

box 192

Box 105,111, 113-115,118
brace 436
brackets 156, 157
break 324

Build 74-76, 87
byte 5712

bytes 439, 514

Cc

call 175

Calling 336

can /21

case 155, 193,433
CASE 425

CASE, 424
Changing 117
character 460, 461, 494, 497
Character 493
clash 511

Class 117

CLIST 290

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual

526

Freescale Semiconductor, Inc.

g |

closed 422, 466

Closing 436

Code Generation Options
Associate debug information to assembly
source file (-Asmdbg) 95

color 204-207

COM 109

Comma 479, 493, 503

command /54, 419

Command 107, 108, 119, 121

comment 433

Comment 239, 264, 411

compatibility 791

Compatibility 81, 93, 158,411,415

Compatibility modes Options
Add some additional directives 93
Alternate comment rules 93
-Compat 93
Ignore FF character at line start Symbol
prefixes 93
Operator != means equal (-Compat==) 94
Support $ character in symbols 94
Support additional ! symbols 94
Support FOR directive 93
Symbol prefixes (-Compat=s) 93

Complex 499

conditional 290, 299

Conditional 286, 296, 307, 308, 422, 424

configuration /26

Configuration /11, 113, 393,401

Configure 79, 89, 172, 174, 190

Configure listing file Options
Disable all (-Lasmc) 90
Do not write the absolute line (-Lasmc=a) 90
Do not write the address (-Lasmc=1) 90
Do not write the include mark column (-
Lasmc=i) 90
Do not write the location kind (-Lasmc=k) 90
Do not write the macro mark (-Lasmc=m) 90
Do not write the object code (-Lasmc=c) 90
Do not write the relative line (-Lasmc=r) 90
Do not write the source line (-Lasmc=s) 90

Configuring 48, 108

constant 432

Constant 230, 292, 294, 458

Constant-Definition 283

constants 266, 267, 326, 453

Constants 266, 411

containing 371, 373

contains 508

context 496

continuation /28

Continuation 420

Control 285, 286

Copyright /31

COPYRIGHT: 131

Core 520

Corresponding 384

Counter 288, 323
Create 30, 202, 226, 321
Created 70

Creating 37, 69
Creation /36

current /32

Current /24
CurrentCommandLine 404
currently 488

Cut 203

Cutting 432, 456, 496

D

data 164, 508

Data 230, 508
Data-Allocation 284

DCB 294

DDE 108

debug 155, 194

Debug 745

declaration 361, 509
Declare 328

declared 442, 474

deep. 426

Default /30, 132
DEFAULT 424, 425
DefaultDir 394
DEFAULTDIR: /32

Define 162, 292, 294, 295
defined 435, 436, 441, 488
Defining 234, 235, 335, 369, 372, 387
definition 177, 300, 314, 359, 361, 465, 490, 491,
508

Definition 332

Deleted 39

Derivative 161

derivatives 521

descriptions 287

Detailed 287

details /29

detected 424, 460, 461
developers 236
development 237

different 507

differs 509

direct 386, 387

Direct 250, 261, 333
directive 415, 422, 437, 459, 466, 493, 494, 508,
519

Directive 248, 283, 491
Directive, 460

directives 164, 283-287, 416
Directives 283, 412

directly 488

Directly 69, 365

directory 124, 132, 139, 185

Index

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual

Freescale Semiconductor, Inc.

527

\
Y

y
A

muex

Directory 29

direct-to-direct 255
direct-to-indexed 257
disable 223

Disable 86, 97, 220, 320, 321
Display 792

division 269

Division 427

Document 25

does 422

E

Early 237

Editor 29, 39, 105-108, 121
Editor_Exe 397, 402
Editor_Name 397, 401
Editor_Opts 398, 402
EditorCommandLine 408
EditorDDEClientName 408
EditorDDEServiceName 409
EditorDDETopicName 408
EditorType 407

ELF 438

ELF/DWAREF 7194

else 424

ELSE 296

Embedded 490

Emit /55

Enable 192, 310

enabled 429

end 431, 460, 466, 479

End 297-300, 499

END 297

ENDFOR 298, 505, 506
ENDIF 299

ENDM 300, 464

ENDSW 424

Enhanced 237

Entries 393, 401

entry /31, 287

Entry /20

environment /65, 195
Environment /13, 123, 125, 129, 132,422
ENVIRONMENT: /32
EQU 300, 452

Equal 504

EQUAL 432

Equate 300

ERRORFILE: /33

EVEN 301

every 185

Example 108, 117,279, 357, 384, 385, 398, 409
Example: 234, 235

exceeds 472

exist 422

expansion /80, 340, 422

Expansion 315

expansions 317

expected 428, 429, 433, 436, 445, 460, 468-471,
479, 481, 499, 503-505, 517, 518
Expected 493

expected: 460

exported 387, 438, 489

Exported 486

expression 278, 279, 427,430, 431, 499
Expression 277, 472

Extended 251, 262

extension 438

external 386

External 29, 265, 332, 333

F

FAIL 302, 482, 484

failure 458

family 761

fatal 205

feature /85, 186

Feedback 7120

field 240, 362, 363

Field 264, 442

field: 248

Field: 259

fields 360

file: 438

filename /96

Filename /133

filenames 203

files 143—-145, 194, 365, 472
Files 35, 4042, 46, 52, 54, 62, 143, 145
fixup 455, 456, 458

floating 187, 432

Floating 433

Floating-Point 267

force 388

Force 276, 301

Forcing 313

format 166, 203, 208, 210, 212,213, 215,217,433,
515

Forward 485

found 418, 469, 482, 484
Found 509

function 356

G

General 86, 98

General Options
MCUasm compatibility (-MCUasm) 98
MMU Support (-MMU) 98
Other Flags 98

Generate 169, 302

generated 488

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual

528

Freescale Semiconductor, Inc.

g |

generating 365, 454
Generating 40, 69, 74, 365
Generation 83, 95
GENPATH: 135

Global 105, 126, 393
Graphical 99

Group 37, 38, 394
grouping 156, 157, 338
Groups 35, 36

H

has 7179

HC(S)08/RS08 25

HCO08 241, 519

HCSO08 76, 77, 79-81, 83, 84, 86, 245

header 344

Help 168

Help) 791

here 424

HIGH 273, 451

HIGH_6_13 274

Highlights 25

Host 83, 94

Host Options
Application Standard Occurrence 95
Borrow license feature (-LicBorrow) 95
Set environment variable (-Env) 95
Wait until a license is available from floating
license server (-LicWait) 95

How 369

IDE 30, 46, 60, 74
identifiers 459

IFcc 308

ignored 477, 495, 510
ignored. 419

ignoring 509

Ignoring 494

illegal 464, 492

Mlegal 432, 434, 466, 474, 478, 493-495, 497, 511,
512,515,516
Immediate 249, 263
immediate-to-direct 255
Implicit 433

Improves 164

include 384, 472
Include 143, 169, 310
INCLUDE 310
included /82
INCLUDETIME: 136
increment 256, 257
index 495

Indexed 258, 263
Indexed, 251-253, 258

indexed-to-direct 256
Inherent 249, 260
initialization /26
initialized 450—452
Initializing 375, 378, 381
input /35
Input 52, 79, 90, 119, 143, 418, 498
Input options
Case insensitivity on label name (-Ci) 9/
Define label (use spaces to separate labels) (-
D) 91
Include file search paths (-1) 91
Support for structured types (-Struct) 91
Insert 324, 330
instruction 241, 246, 459, 460, 466, 491, 519, 521
Instruction 241, 520
instructions 245, 520
integer 403
Integer 266
interactive 210, 213
Interactive 146
Interface 99
Invalid 460-462, 493
Invoking 356

L

label 155, 188, 434, 438, 441, 460, 462, 475, 508,

509

Label 162, 240, 437, 459, 462, 477, 480, 489

label: 434

label<name> 486

labels 452

Labels 339, 415

Language 30, 80, 81, 92, 93

Language Options
Angle brackets for macro arguments grouping
(-CMacAngBrack) 92
Maximum MacroNest nesting (-MacroNest) 92
Square braces for macro arguments grouping (-
CMacBrackets) 92

large 452

Left 429

Length 312, 325, 331

level 426, 496

license 186, 187

License 184, 185, 187

Limitation: 439

Limitations 364

limits 281

line: 461

Lines 330

link 475

linker 375

Linker 65

List 152, 290, 317

LIST 310

Index

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual

Freescale Semiconductor, Inc.

529

\
Y

4
A

muex

listing 79, 145, 146, 169, 172, 174, 175, 177, 180,
182, 226, 344

Listing 40, 89, 145, 310, 320, 331, 343
Listing-File 285

LLEN 312

Loc 348

Local 106, 126, 401

located 333

Location 288, 323

log 419

Logical 272

long 438, 496, 498

LONGEVEN 313

Long-Word 313

LOW 274, 452

macro 157, 177, 190, 300, 314, 317, 335, 422, 436,
460, 493, 495
Macro 156, 175, 180, 248, 286, 315, 335, 336, 338,
340, 426, 463, 465467, 488
MACRO 374
macro) 492
macros 125, 336, 339, 341
Macros 335
Main 100
Make 365
Management /92
Managing 30
MAP_ADDR_6 275
mapping 419
maps 366
MASM 411
maximum /90
Maximum 496
mctools.ini /126
MCUasm 191,415
Memory 189, 192, 353, 366
memory, 452
Memory-to-memory 255-257
Menu 103-105
Message/Error 120
messages 86, 97, 201, 204-207, 218-220, 222, 418
Messages 84, 86, 95, 97,417
Messages Options
Create err.log Error file 96
Create Error Listing File 97
Cut file names in Microsoft format to 8.3 (-
Wmsg8x3) 96
Don't print INFORMATION messages (-W1)
96
Don't print INFORMATION or WARNING
messages (-W2) 96
Maximum number of error messages (-
WmsgNe) 97

Messages Options (index-continued-string)
Maximum number of information messages (-
WmsgNi) 97
Maximum number of warning messages (-
WmsgNw) 97
Message Format for batch mode (e.g. %"
Yot %e%o"(%l): %K %d: %m) (-
WmsgFob) 97
Message Format for no file information (e.g.
%K %d: %m) (-WmsgFonf) 97
Message Format for no position information
(e.g. o" %f%e%o": %K %d: %m) (-
WmsgFonp) 97
Set message file format for batch mode 96
Set messages to Disable 97
Set messages to Error 97
Set messages to Information 97
Set messages to Warning 97

MEXIT 315, 492

Microsoft 203

mismatch 570

missing 425, 462, 463, 505

Mixed 353, 366

MLIST 317

MMU 521

mode /46, 208, 210, 212, 213, 386, 387, 452, 453,

520

Mode. 512

model /89

models 353

modes 81, 93, 158, 248

Modes 259

Modifiers 710, 150

Modularity 236

modules 383

modulo 269

Moving 38

multiple 235

Multiple 236

Multiplication, 269

must 459, 472

N

name 436, 438, 445, 460, 463, 466, 468, 470, 473,
474

Name /40
name: 462
name>=""> 508
names /55
Negative 458
Nested 341
nesting /90, 426
Nesting 472
new 420

New 30, 37, 119
NOLIST 320

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual

530

Freescale Semiconductor, Inc.

g |

non-absolute 429

NOPAGE 321

not 146, 195,418, 419, 422, 424, 429, 433, 437,
442, 450454, 457459, 466, 469, 474, 483, 485,
486, 490, 491, 499, 515, 520

Not 488, 519

notify /92

number 289, 433, 518

Number /21, 218, 219, 222

0

Ob;j. 350

object 131, 136, 140, 365, 438, 454

Object 137, 144, 196, 438

Object-code 62

objects 429

OBJPATH: 137

Obsolete 416

occurred 417, 420

occurrence 200

offset 251-255, 363, 458

OFFSET 321, 489

offset, 258

Old 420

one 234,512

Online /91

only 520, 521

only) 126

open 419, 438

operand 515

Operand 248, 259, 515

operation 280, 432

Operation 240, 507

operations 280

operator 273-276, 388

Operator 274, 275, 277

operators 268—272

Operators 268, 412

option 420, 459, 520

Option 114, 152, 420

options 130, 154, 429

Options /49, 407

ORG 323

out 448, 450, 455, 457,495, 519

Out 452

output 227

Output 77, 79, 88, 89, 144, 166

output: 438

Output Options
Address size in the listing file (-Lasms) 89
Do not print included files in listing file (-Li)
89
Do not print macro call in listing file (-Lc) 89
Do not print macro definition in listing file (-
Ld) 89

Index

Output Options (index-continued-string)
Do not print macro expansion in listing file (-
Le) 89
Generate listing file (e.g. %(TEXTPATH)/
%n.Ist) (-L) 89
-Lasms 89
Object File Format (-F) 89
Show label statistics (-Li) 89
overflow 432, 456
overflow, 418
overlaps 237, 456
overriden 420
overview 335
Overview 27, 283

P

Paging 321

Panels 75, 76, 87
parameter 488
Parameter 354
parameters 336
parenthesis 428, 429
passing 354

path 130, 135, 137, 139, 169, 422
Path 393

PLEN 325

point 287, 432

Point 433

Pointer, 254, 255
portability 237
position 277
Positive 517
possible 457
Possible 426

post- 256, 257
post-increment 258
precedence 277
prefix 495

previous 509
Previous 496

Prints 799

PRM 60, 375, 385
processing 147
processing. 426
Programming 27
project.ini) /26
Project Information 32
projects) 105
propagated 458
Properties 75, 76, 87
Provide 331

Q

Qualifier 570

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual

Freescale Semiconductor, Inc.

531

\
Y

y
A

muex

R

RADS50 326, 494
RAD50-encoded 326
RAM 234, 235, 450452
range 448, 450, 455,457, 519
range: 457
reached 496
read 154
RecentCommandLineX, 403
RecentProject0, 396
RecentProjectl 396
recursion 496
recursion? 426
Recursive 508
redefined 480
redefinition 434, 466, 467, 474
redefinition: 439
reference 485
Reference 333
referenced 437
References 429
Rel. 346
Relational 272
relative 452, 455
Relative 254, 262, 453
relocatable 279, 372, 373, 378, 499
Relocatable 233, 236, 328, 454, 488
Removing 38
Renaming 38
Repeat 305
requested 508
required 473
reserved 434
Reserved 266, 459
Restoring 39
result 280
Return 354
Reusability 238
RGB 204-207
Right 428
ROM 234, 235
RS08 87-90, 92-95, 97, 98, 246, 520
RS08 Assembler Options
All options 88
Command 88
Command line pattern 88
Expert Settings 88

S

SaveAppearance 395
SaveEditor 396
SaveOnEXxit 395
SaveOptions 396
scheme 354

Search 135, 422

SECT 493

section 378, 381, 456, 474,475, 489
Section 229, 230, 328, 393-395, 397, 401, 403, 473,
474,488

SECTION 328

Section-Definition 283

sections 155, 229-231, 233, 236, 369, 371-373, 388
Sections 229

segmentation 366

Select all (-Compat) 93

semicolon 460

sensitivity 155

separate 493

Server 187

set 241, 246, 455

Set 165, 208, 210, 289, 312, 323, 325, 329, 331
SET 329,415,452, 486

Setting 105, 223-225

Settings 114, 115

Shift 270

Short 168, 261

SHORT 388

Show /88

ShowTipOfDay 406

Sign 269

Simple 279

size 174,439, 452, 456, 494, 509, 510, 516
Size 469, 495

skipping 418

small 476

source 155, 355, 356, 369, 372, 378, 381, 466, 497
Source 41, 46, 143, 239, 344, 351
Source-code 54

space 460, 507, 511

Space 295

SPC 330

Special 150, 245

specification 132, 133, 196, 469, 494, 516
Specify 154, 197

Specifying 119

Splitting 383

Square 157

S-Record 138, 145

SRECORD: 138

Stack 254, 255

standard 200, 227

start 433

Started 107, 108

starting 456

Starting 99

startup /97

statistic 419

statistics /88

Status 102

StatusbarEnabled 404

stop 508

Stop 426

string 326

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual

532

Freescale Semiconductor, Inc.

h o
g |

String 267, 471, 483, 495
Structure 25

structured 798, 359, 360, 362
Structured 359, 364, 439
SUBSTR 496

subtraction 268

Subtraction 507

support 164

Support 192, 198, 359

supported 433, 450-453, 486, 499, 520
Switch 155, 191

SWITCH 424

symbol 300

Symbol 329, 332, 333, 436, 470
symbol: 435, 436
Symbol-Linkage 284

symbols 264-266, 321, 386, 387
Symbols 264, 333

Syntax 239

T

Tab 331

table 375

Table 378, 381

TABS 331

taken 432

Temporary 139
Terminate 375
terminated 459

text 370

Text 139

TEXTPATH: 139

this 25, 419, 433, 475, 496
This 521

time /36

Tiny 260

TipFilePos 406

Title 100, 331

TITLE 331

TMP: 139

to... 369

too 426, 438, 452, 476, 477, 486, 498
Tool 74

Toolbar 102, 119
ToolbarEnabled 404
tools 105

tools) 106

Tracking 237
Translation 281
truncated 482, 512, 514
two 514

type 138, 359, 360, 439, 441, 442, 490, 491
Type 441, 445

type: 364

types 198, 230, 359
Types 360

Index

U

Unary 280
Undeclared 435, 436
Undefined 265

Unit /92

Unknown 417
unsupported 493

use /95

Use 119-121

used 4719

user 86, 97, 207, 220, 435, 436
User 99, 140, 508
USERNAME: 740

\'}

value 300, 420, 511, 517
Value 329, 354, 448, 450, 455, 457, 476, 477, 482,
486, 512,514, 519
Value<value> 457
values 507

variable 165, 362
Variable 361, 509
variables 129, 355
Vector 375, 378, 381
version /99

version. 419

very 496

View 105

vs. 236

w

Wait 187

warning 201, 207
Warning 222, 225
was 496

when 429

will 154

window 746
Window 700, 121
‘WindowFont 405
WindowPos 405
Wizard 70

word 301
Working 27, 369, 372
Write 227
Writing 41

X

XDEF 332, 509
XREF 333, 509
XREF, 509
XREFB 333

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual

Freescale Semiconductor, Inc.

533

PR 4

muex

your 41

y4

Zero 427

CodeWarrior Development Studio for Microcontrollers V10.x HC(S)08/RS08 Assembler Reference Manual

534 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Processor Expert are trademarks of
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other
product or service names are the property of their respective owners.

© 2010-2014 Freescale Semiconductor, Inc.

Document Number CWMCUS08ASMREF
Revision 10.6, 02/2014

2

Z“ freescale

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1: Using HC(S)08/RS08 Assembler
	Highlights
	Structure of this Document

	Chapter 2: Working with Assembler
	Programming Overview
	Project Directory
	External Editor

	Managing Assembly Language Project Using CodeWarrior IDE
	Create New Project
	Additional Project Information

	Analysis of Groups and Files in a Project
	CodeWarrior Groups
	Creating New Group
	Adding New File to the Project
	Renaming File or Group
	Moving File
	Removing File
	Restoring Deleted File
	Using Editor
	Generating Listing Files

	Writing your Assembly Source Files
	Analyzing Project Files
	Assembling Source Files
	Assembling and Linking with CodeWarrior IDE
	Assembling with Assembler
	Configuring Assembler
	Input Files
	Assembling Assembly Source-code Files

	Linking Application
	Linking with CodeWarrior IDE
	PRM File
	Linking Object-code Files

	Linking with Linker

	Directly Generating ABS File
	Creating Absolute Assembly Project
	Adapting Absolute Assembly File Created by Wizard
	Generating Absolute Assembly Using CodeWarrior IDE
	Generating Absolute Assembly Using Assembler Build Tool

	Assembler Build Properties Panels
	HCS08 Assembler Build Properties Panels
	HCS08 Assembler
	HCS08 Assembler > Output
	HCS08 Assembler > Output > Configure listing file
	HCS08 Assembler > Input
	HCS08 Assembler > Language
	HCS08 Assembler > Language > Compatibility modes
	HCS08 Assembler > Host
	HCS08 Assembler > Code Generation
	HCS08 Assembler > Messages
	HCS08 Assembler > Messages > Disable user messages
	HCS08 Assembler > General

	RS08 Assembler Build Properties Panels
	RS08 Assembler
	RS08 Assembler > Output
	RS08 Assembler > Output > Configure Listing File
	RS08 Assembler > Input
	RS08 Assembler > Language
	RS08 Assembler > Language > Compatibility modes
	RS08 Assembler > Host
	RS08 Assembler > Code Generation
	RS08 Assembler > Messages
	RS08 Assembler > Messages > Disable user messages
	RS08 Assembler > General

	Chapter 3: Assembler Graphical User Interface
	Starting Assembler
	Assembler Main Window
	Window Title
	Content Area
	Toolbar
	Status Bar
	Assembler Menu Bar
	File Menu
	Assembler Menu
	View Menu

	Editor Setting Dialog Box
	Global Editor (shared by all tools and projects)
	Local Editor (shared by all tools)
	Editor Started with Command Line
	Example of Configuring a Command Line Editor

	Editor Started with DDE
	CodeWarrior with COM
	Modifiers

	Save Configuration Dialog Box
	Environment Configuration Dialog Box

	Option Settings Dialog Box
	Message Settings Dialog Box
	Changing the Class Associated with a Message
	Example

	About Dialog Box
	Specifying Input File
	Use Command Line in Toolbar to Assemble
	Assembling a New File
	Assembling a File which has Already been Assembled
	Use File > Assemble Entry
	Use Drag and Drop

	Message/Error Feedback
	Use Information from Assembler Window
	Use User-defined Editor
	Line Number can be Specified on the Command Line
	Line Number cannot be Specified on the Command Line

	Chapter 4: Environment
	Current directory
	Environment macros
	Global initialization file - mctools.ini (PC only)
	Local configuration file (usually project.ini)
	Line continuation
	Environment variables details
	ABSPATH: Absolute file path
	ASMOPTIONS: Default assembler options
	COPYRIGHT: Copyright entry in object file
	DEFAULTDIR: Default current directory
	ENVIRONMENT: Environment file specification
	ERRORFILE: Filename specification error
	GENPATH: Search path for input file
	INCLUDETIME: Creation time in the object file
	OBJPATH: Object file path
	SRECORD: S-Record type
	TEXTPATH: Text file path
	TMP: Temporary directory
	USERNAME: User Name in object file

	Chapter 5: Files
	Input files
	Source files
	Include files

	Output files
	Object files
	Absolute files
	S-Record Files
	Listing files
	Debug listing files
	Error listing file
	Interactive mode (Assembler window open)
	Batch mode (Assembler window not open)

	File processing

	Chapter 6: Assembler Options
	Assembler Options
	Assembler Option details
	Using Special Modifiers
	Examples using special modifiers

	List of Assembler Option
	-ArgFile: Specify a file from which additional command line options will be read
	-AsmDbg: Emit assembly source file information in debug sections
	-Ci: Switch case sensitivity on label names OFF
	-CMacAngBrack: Angle brackets for grouping Macro Arguments
	-CMacBrackets: Square brackets for macro arguments grouping
	-Compat: Compatibility modes
	-CS08/-C08/-CRS08: Derivative family
	-D: Define Label
	-DefLabel: Improves support for data allocation directives
	-Env: Set environment variable
	-F (-Fh, -F2o, -FA2o, -F2, -FA2): Output file format
	-H: Short Help
	-I: Include file path
	-L: Generate a listing file
	-Lasmc: Configure listing file
	-Lasms: Configure the address size in the listing file
	-Lc: No Macro call in listing file
	-Ld: No macro definition in listing file
	-Le: No Macro expansion in listing file
	-Li: No included file in listing file
	-Lic: License information
	-LicA: License information about every feature in directory
	-LicBorrow: Borrow license feature
	-LicWait: Wait until floating license is available from floating License Server
	-Ll: Show label statistics
	-M (-Ms, -Mt): Memory model
	-MacroNest: Configure maximum macro nesting
	Message A1004 (available in the Online Help)
	-MCUasm: Switch compatibility with MCUasm ON
	-MMU: Enable Memory Management Unit (MMU) Support
	-N: Display notify box
	-NoBeep: No beep in case of an error
	-NoDebugInfo: No debug information for ELF/DWARF files
	-NoEnv: Do not use environment
	-ObjN: Object filename specification
	-Prod: Specify project file at startup
	-Struct: Support for structured types
	-V: Prints the Assembler version
	-View: Application standard occurrence
	-W1: No information messages
	-W2: No information and warning messages
	-WErrFile: Create "err.log" error file
	-Wmsg8x3: Cut filenames in Microsoft format to 8.3
	-WmsgCE: RGB color for error messages
	-WmsgCF: RGB color for fatal messages
	-WmsgCI: RGB color for information messages
	-WmsgCU: RGB color for user messages
	-WmsgCW: RGB color for warning messages
	-WmsgFb (-WmsgFbv, -WmsgFbm): Set message file format for batch mode
	-WmsgFi (-WmsgFiv, -WmsgFim): Set message file format for interactive mode
	-WmsgFob: Message format for batch mode
	-WmsgFoi: Message format for interactive mode
	-WmsgFonf: Message format for no file information
	-WmsgFonp: Message format for no position information
	-WmsgNe: Number of error messages
	-WmsgNi: Number of Information messages
	-WmsgNu: Disable user messages
	-WmsgNw: Number of Warning messages
	-WmsgSd: Setting a message to disable
	-WmsgSe: Setting a message to Error
	-WmsgSi: Setting a message to Information
	-WmsgSw: Setting a Message to Warning
	-WOutFile: Create error listing file
	-WStdout: Write to standard output

	Chapter 7: Sections
	Section attributes
	Code sections
	Constant sections
	Data sections

	Section types
	Absolute sections
	Relocatable sections
	Example: Defining one RAM and one ROM area.
	Example: Defining multiple RAM and ROM areas

	Relocatable vs. absolute sections
	Modularity
	Multiple developers
	Early development
	Enhanced portability
	Tracking overlaps
	Reusability

	Chapter 8: Assembler Syntax
	Comment line
	Source line
	Label field
	Operation field
	Instruction set
	HC08 instruction set
	Special HCS08 instructions
	RS08 instruction set

	Directive
	Macro

	Operand field: Addressing modes (HC(S)08)
	Inherent
	Immediate
	Direct
	Extended
	Indexed, no offset
	Indexed, 8-bit offset
	Indexed, 16-bit offset
	Relative
	Stack Pointer, 8-bit offset
	Stack Pointer, 16-bit offset
	Memory-to-memory immediate-to-direct
	Memory-to-memory direct-to-direct
	Memory-to-memory indexed-to-direct with post- increment
	Memory-to-memory direct-to-indexed with post- increment
	Indexed with post-increment
	Indexed, 8-bit offset, with post-increment

	Operand Field: Addressing Modes (RS08)
	Inherent (RS08)
	Tiny
	Short
	Direct
	Extended
	Relative
	Immediate
	Indexed

	Comment Field

	Symbols
	User-defined symbols
	External symbols
	Undefined symbols
	Reserved symbols

	Constants
	Integer constants
	String constants
	Floating-Point constants

	Operators
	Addition and subtraction operators (binary)
	Multiplication, division and modulo operators (binary)
	Sign operators (unary)
	Shift operators (binary)
	Bitwise operators (binary)
	Bitwise operators (unary)
	Logical operators (unary)
	Relational operators (binary)
	HIGH operator
	HIGH_6_13 Operator
	LOW operator
	MAP_ADDR_6 Operator
	PAGE operator
	Force operator (unary)
	Operator precedence

	Expression
	Absolute expression
	Example

	Simple relocatable expression
	Unary operation result
	Binary operations result

	Translation limits

	Chapter 9: Assembler Directives
	Directive Overview
	Section-Definition directives
	Constant-Definition directives
	Data-Allocation directives
	Symbol-Linkage directives
	Assembly-Control directives
	Listing-File Control directives
	Macro Control directives
	Conditional Assembly directives

	Detailed descriptions of all assembler directives
	ABSENTRY - Application entry point
	ALIGN - Align Location Counter
	BASE - Set number base
	CLIST - List conditional assembly
	DC - Define Constant
	DCB - Define Constant Block
	DS - Define Space
	ELSE - Conditional assembly
	END - End assembly
	ENDFOR - End of FOR block
	ENDIF - End conditional assembly
	ENDM - End macro definition
	EQU - Equate symbol value
	EVEN - Force word alignment
	FAIL - Generate Error message
	FOR - Repeat assembly block
	IF - Conditional assembly
	IFcc - Conditional assembly
	INCLUDE - Include text from another file
	LIST - Enable Listing
	LLEN - Set Line Length
	LONGEVEN - Forcing Long-Word alignment
	MACRO - Begin macro definition
	MEXIT - Terminate Macro Expansion
	MLIST - List macro expansions
	NOLIST - Disable Listing
	NOPAGE - Disable Paging
	OFFSET - Create absolute symbols
	ORG - Set Location Counter
	PAGE - Insert Page break
	PLEN - Set Page Length
	RAD50 - RAD50-encoded string constants
	SECTION - Declare Relocatable Section
	SET - Set Symbol Value
	SPC - Insert Blank Lines
	TABS - Set Tab Length
	TITLE - Provide Listing Title
	XDEF - External Symbol Definition
	XREF - External Symbol Reference
	XREFB - External Reference for Symbols located on the Direct Page

	Chapter 10: Macros
	Macro overview
	Defining a macro
	Calling macros
	Macro parameters
	Macro argument grouping

	Labels inside macros
	Macro expansion
	Nested macros

	Chapter 11: Assembler Listing File
	Page header
	Source listing
	Abs.
	Rel.
	Loc
	Obj. code
	Source line

	Chapter 12: Mixed C and Assembler Applications
	Memory models
	Parameter passing scheme
	Return Value
	Accessing assembly variables in an ANSI-C source file
	Accessing ANSI-C variables in an assembly source file
	Invoking an assembly function in an ANSI-C source file
	Example of a C file

	Support for structured types
	Structured type definition
	Types allowed for structured type fields
	Variable definition
	Variable declaration
	Accessing a structured variable
	Accessing a field address
	Accessing a field offset

	Structured type: Limitations

	Chapter 13: Make Applications
	Assembly applications
	Directly generating an absolute file
	Generating object files

	Mixed C and assembly applications

	Memory maps and segmentation

	Chapter 14: How to...
	Working with absolute sections
	Defining absolute sections in an assembly source file
	Linking an application containing absolute sections

	Working with relocatable sections
	Defining relocatable sections in a source file
	Linking an application containing relocatable sections

	Initializing Vector table
	Initializing the Vector table in the linker PRM file
	Initializing the Vector Table in a source file using a relocatable section
	Initializing the Vector Table in a source file using an absolute section

	Splitting Application into Modules
	Example of an Assembly File (Test1.asm)
	Corresponding include file (Test1.inc)
	Example of Assembly File (Test2.asm)
	Example of a PRM file (Test2.prm)

	Using Direct Addressing Mode to Access Symbols
	Using the direct addressing mode to access external symbols
	Using the direct addressing mode to access exported symbols
	Defining symbols in the direct page
	Using the force operator
	Using SHORT sections

	Chapter 15: Appendices
	Appendices

	Chapter 16: Global Configuration File Entries
	[Installation] Section
	Path
	Group

	[Options] Section
	DefaultDir

	[XXX_Assembler] Section
	SaveOnExit
	SaveAppearance
	SaveEditor
	SaveOptions
	RecentProject0, RecentProject1

	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts

	Example

	Chapter 17: Local Configuration File Entries
	[Editor] Section
	Editor_Name
	Editor_Exe
	Editor_Opts

	[XXX_Assembler] Section
	RecentCommandLineX, X= integer
	CurrentCommandLine
	StatusbarEnabled
	ToolbarEnabled
	WindowPos
	WindowFont
	TipFilePos
	ShowTipOfDay
	Options
	EditorType
	EditorCommandLine
	EditorDDEClientName
	EditorDDETopicName
	EditorDDEServiceName

	Example

	Chapter 18: MASM Compatibility
	Comment Line
	Constants (Integers)
	Operators
	Directives

	Chapter 19: MCUasm Compatibility
	Labels
	SET directive
	Obsolete directives

	Chapter 20: Assembler Messages
	Assembler Messages
	A1: Unknown message occurred
	A2: Message overflow, skipping <kind> messages
	A50: Input file '<file>' not found
	A51: Cannot open statistic log file `<file>'
	A52: Error in command line `<cmd>'
	A53: Message <MessageId> is not used by this version. The mapping of this message is ignored.
	A54: Option <Option> .
	A56: Option value overriden for option <OptionName>. Old value `<OldValue>', new value `<NewValue>'.
	A64: Line Continuation occurred in <FileName>
	A65: Environment macro expansion message '<description>' for <variablename>
	A66: Search path <Name> does not exist
	A1000: Conditional directive not closed
	A1001: Conditional else not allowed here
	A1002: CASE, DEFAULT or ENDSW detected outside from a SWITCH block
	A1003: CASE or DEFAULT is missing
	A1004: Macro nesting too deep. Possible recursion? Stop processing. (Set level with -MacroNest)
	A1051: Zero Division in expression
	A1052: Right parenthesis expected
	A1053: Left parenthesis expected
	A1054: References on non-absolute objects are not allowed when options -FA1 or -FA2 are enabled
	A1055: Error in expression
	A1056: Error at end of expression
	A1057: Cutting constant because of overflow
	A1058: Illegal floating point operation
	A1059: != is taken as EQUAL
	A1060: Implicit comment start
	A1061: Floating Point format is not supported for this case
	A1062: Floating Point number expected
	A1101: Illegal label: label is reserved
	A1103: Illegal redefinition of label
	A1104: Undeclared user defined symbol: <Symbol>
	A1105: Closing brace expected
	A1106: Undeclared user defined symbol: <Symbol>. Symbol name is expected as macro argument
	A1201: Label <Label> referenced in directive ABSENTRY is not absolute
	A1202: ELF output: <details>
	A1203:
	A1251: Cannot open object file: Object file name too long
	A1252: The exported label <name> is using an ELF extension
	A1253: Limitation: code size > <SizeLimit> bytes
	A1301: Structured type redefinition: <TypeName>
	A1302: Type <TypeName> is previously defined as label
	A1303: No type defined
	A1304: Field <FieldName> is not declared in specified type
	A1305: Type name expected
	A1401: Value out of range -128..127
	A1402: Value out of range -32768..32767
	A1405: PAGE with initialized RAM not supported
	A1406: HIGH with initialized RAM not supported
	A1407: LOW with initialized RAM not supported
	A1408: Out of memory, Code size too large
	A1410: EQU or SET labels are not allowed in a PC relative addressing mode
	A1411: PC Relative addressing mode is not supported to constants
	A1412: Relocatable object `<Symbol>' not allowed if generating absolute file
	A1413: Value out of relative range
	A1414: Cannot set fixup
	A1415: Cutting fixup overflow
	A1416: Absolute section starting at <Address> size <Size> overlaps with absolute section starting at <Address>
	A1417: Value out of possible range: Value<value> not in range [<LowValue>..<HighValue>]
	A1418: Negative offset is not propagated into the page in the fixup
	A1419: Constant fixup failure <Description>
	A1502: Reserved identifiers are not allowed as instruction or directive
	A1503: Error in option -D: `<Description>'
	A1601: Label must be terminated with a <:>
	A1602: Invalid character at end of label (<LabelName>): semicolon or space expected
	A1603: Directive, instruction or macro name expected: <Symbol> detected
	A1604: Invalid character detected at the beginning of the line: <Character>
	A1605: Invalid label name: <LabelName>
	A2301: Label is missing
	A2302: Macro name is missing
	A2303: ENDM is illegal
	A2304: Macro definition within definition
	A2305: Illegal redefinition of instruction or directive name
	A2306: Macro not closed at end of source
	A2307: Macro redefinition
	A2308: File name expected
	A2309: File not found
	A2310: Size specification expected
	A2311: Symbol name expected
	A2312: String expected
	A2313: Nesting of include files exceeds 50
	A2314: Expression must be absolute
	A2316: Section name required
	A2317: Illegal redefinition of section name
	A2318: Section not declared
	A2319: No section link to this label
	A2320: Value too small
	A2321: Value too big
	A2323: Label is ignored
	A2324: Illegal Base (2,8,10,16)
	A2325: Comma or Line end expected
	A2326: Label <Label> is redefined
	A2327: ON or OFF expected
	A2328: Value is truncated
	A2329: FAIL found
	A2330: String is not allowed
	A2332: FAIL found
	A2333: Forward reference not allowed
	A2335: Exported SET label<name> is not supported
	A2336: Value too big
	A2338: <FailReason>
	A2340: Macro parameter already defined
	A2341: Relocatable Section Not Allowed: an Absolute file is currently directly generated
	A2342: Label in an OFFSET section cannot be exported
	A2345: Embedded type definition not allowed
	A2346: Directive or instruction not allowed in a type definition
	A2350: MEXIT is illegal (detected outside of a macro)
	A2351: Expected Comma to separate macro arguments
	A2352: Invalid Character
	A2353: Illegal or unsupported directive SECT
	A2354: Ignoring directive '<directive>'
	A2355: Illegal size specification
	A2356: Illegal RAD50 character
	A2357: Illegal macro argument '<Argument>'
	A2358: Size prefix ignored
	A2359: String index out of bounds
	A2360: Maximum SUBSTR recursion level reached
	A2380: Cutting very long line
	A2381: Previous message was in this context `<Context>'
	A2382: Illegal character (`\0') in source file
	A2383: Input line too long
	A2400: End of Line expected
	A2401: Complex relocatable expression not supported
	A2402: Comma expected
	A2500: Equal expected
	A2501: TO expected
	A2502: ENDFOR missing
	A2503: ENDFOR without FOR
	A2600: Addition of values from a different address space
	A2601: Subtraction of values from a different address space
	A2602: Operation of values from a different address space
	A3000: User requested stop
	A4000: Recursive definition of label <Label name>="">
	A4001: Data directive contains no data
	A4002: Variable access size differs from previous declaration
	A4003: Found XREF, but no XDEF for label <Label>, ignoring XREF
	A4004: Qualifier ignored
	A4005: Access size mismatch for <Symbol>
	A4006: Illegal value `<ErrorDescription>'
	A4100: Address space clash for <Symbol>
	A13001: Illegal Addressing Mode. <AddrModes>
	A13003: Value is truncated to one byte
	A13004: Value is truncated to two bytes
	A13101: Illegal operand format
	A13102: Operand not allowed
	A13106: Illegal size specification
	A13109: Positive value expected
	A13110: Bit number expected
	A13111: Value out of range
	A13203: Not a HC08 instruction or directive
	A13204: Instruction not supported by RS08 Core
	A13205: RS08 instructions only supported in RS08 mode (use option -Crs08)
	A13206: This instruction is only available for derivatives with MMU

	Index

