
© Freescale Semiconductor, Inc., 2012. All rights reserved.

Freescale Semiconductor ARDRM
Reference Manual Rev. 3.0, 4/2012

Airbag Reference Demonstrator

Reference Manual

Important Notice

Freescale provides the enclosed product(s) under the following conditions:

This demonstrator is intended for use of ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY. It is
provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and supply terminals.
This demonstrator may be used with any development system or other source of I/O signals by simply connecting it to the host
MCU or computer board via off-the-shelf cables. This demonstrator is not intended to represent a final design recommendation
for any particular application. Final device in an application will be heavily dependent on proper printed circuit board layout and
heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality.

The goods provided may not be complete in terms of required design, marketing, and or manufacturing related protective
considerations, including product safety measures typically found in the end product incorporating the goods. Due to the open
construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic
discharge. In order to minimize risks associated with the customers applications, adequate design and operating safeguards
must be provided by the customer to minimize inherent or procedural hazards. For any safety concerns, contact Freescale sales
and technical support services.

As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and
therefore may not meet the technical requirements of the directive. Please be aware that the products received may not be
regulatory compliant or agency certified (FCC, UL, CE, etc.).

Should this demonstrator not meet the specifications indicated in the kit, it may be returned within 30 days from the date of
delivery and will be replaced by a new kit.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typical”, must be validated for each customer application
by customer’s technical experts.

Freescale does not convey any license under its patent rights nor the rights of others. Freescale products are not designed,
intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Freescale product could create a situation
where personal injury or death may occur.

Should a Buyer purchase or use Freescale products for any such unintended or unauthorized application, The Buyer shall
indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that Freescale was negligent regarding
the design or manufacture of the part.

Freescale and the Freescale Logo are registered trademarks of Freescale, Inc. Freescale, Inc. is an Equal
Opportunity/Affirmative Action Employer. Freescale and the Freescale Logo are registered in the US Patent and Trademark
Office. All other product or service names are the property of their respective owners.

Airbag Reference Demonstrator, Rev. 3.0

2 Freescale Semiconductor

Table of Contents
Paragraph Page
Number Number

Airbag Reference Demonstrator, Rev. 2.0

Freescale Semiconductor TOC-1

Chapter 1 Introduction
1.1 Relevant Documents ...1

Chapter 2 ARD System Outline

Chapter 3 Standard Products Description
3.1 MC9S12XEG128MAA - Microcontroller ..3
3.2 MC33789 – Airbag System Basis Chip ...3

3.2.1 Power Supply Block...3
3.2.2 Safing Block...3
3.2.3 DC Sensors ...3
3.2.4 PSI5 Satellite Sensors ...3
3.2.5 LIN Physical Layer...3
3.2.6 Lamp Driver ...3
3.2.7 Diagnostics ..3

3.3 MC6801QR2 - ECU Local Sensor ...3
3.4 MC33797 – Four Channel Squib Driver ..4
3.5 MMA5xxxWR2 – High G Satellite Collision Sensor ...4

Chapter 4 Function Description
4.1 MC33789 – Airbag System Basis Chip ...5

4.1.1 Power Supply – Boost Converter and Energy Reserve...5
4.1.2 Power Supply – Energy Reserve Capacitor ESR Diagnostic5
4.1.3 Power Supply – Buck Converter..5
4.1.4 Power Supply – SYNC Pulse Supply...5
4.1.5 Power Supply – ECU Logic Supply ...5
4.1.6 Safing Block – Sensor Data Thresholds ..6
4.1.7 Safing Block – Diagnostics ..6
4.1.8 DC Sensors ...6
4.1.9 Satellite Sensor Interface...6

LIN Physical Layer 6
Lamp Driver 7
Diagnostics 7

4.2 MMA6801QR2 – Local ECU Acceleration Sensor ..7
4.2.1 Configuration - General ...7
4.2.2 Configuration – Axis Operation..7
4.2.3 Configuration – Arming Operation ...7
4.2.4 Configuration – Arming Threshold ...8
4.2.5 Status...8

4.3 MM33797 – Four Channel Squib Driver (FCS) ...8
4.4 MMA5xxxWR2 – High G Satellite Collision Sensor ...8

Table of Contents

Airbag Reference Demonstrator, Rev. 2.0

TOC-2 Freescale Semiconductor

Chapter 5 Airbag Reference Demonstrator Firmware and Setup
5.1 Airbag Reference Demonstrator Demo ...9
5.2 Warnings ...9
5.3 Airbag Reference Demonstrator PCB Detail Description ..10
5.4 Airbag Reference Demonstrator - GUI ..10

5.4.1 Firmware downloading - GUI version ..10
5.4.2 Hardware and Software Setup...11
5.4.3 GUI Demonstration ..11

Debug mode 11
Application Mode 12

5.5 Airbag Reference Demonstrator - “Application” ...13
5.5.1 Firmware Downloading - “Application Demonstrator” ..14
5.5.2 Airbag Reference Demonstrator - “Application”...15

Chapter 6 Software - Boot Assist Module
6.1 Boot Assist Module (BAM) ...17

6.1.1 Example of the BAM source code ...17

Chapter 7 Software - Basic Operating System
7.1 Acquisition Phase ..20

7.1.1 Source code of the Acquisition phase ...21
7.2 Decision Phase ..23

7.2.1 Example of the API Source Code Used in Decision Phase - Front Decision23
7.3 Deployment Phase ..24

7.3.1 Example of the API Source Code Used in Deployment Phase25

Appendix A SW Concept ..27
A.1 Airbag System Basis Chip SW Driver ..27
A.2 ASBC API parameters detail descriptions ...28
A.3 Central Accelerometer Driver ..31
A.4 ACC Parameters Detail Descriptions ..32
A.5 SQUIB Driver ...34
A.6 SQUIB Parameters Detail Descriptions ...35

Appendix B Airbag Reference Demonstrator Implementation details37
B.1 Airbag Reference Demonstrator Schematics ..37
B.2 ARD Placement and Layout ..42
B.3 Bill of Materials ..43

Appendix C Acronyms ..45

Introduction

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 1

Chapter 1 Introduction

The Freescale Airbag Reference Demonstrator (ARD), a SafeAssure
solution, is an application demonstrator system that provides an airbag
ECU implementation example using Freescale standard products and
firmware. It exercises the primary functions in those products as well as
any diagnostic features. The firmware does not constitute a true airbag
application, but is intended to demonstrate features and capabilities of
Freescale’s standard products for the airbag market.

The current ARD addresses a mid-range airbag market segment, with up
to eight squib drivers (for squibs and seatbelt pre-tensioners) and four
satellite sensor interfaces supporting four or more high g collision sensors
positioned around the vehicle. All other vehicle infrastructure (including
seat belt sensors and vehicle communications networks) and ECU
functions (including full power supply architecture and a local mid g X/Y
safing sensor) are also supported.

The ARD hardware is implemented using standard Freescale
microcontroller, analog and sensor family products. In the case of
sensors, the families include both local ECU and satellite sensors. The
ARD implements a system safety architecture based on the features in
the standard products supported by appropriate firmware.

The example ECU is implemented on a single printed circuit board (pcb).
Vehicle functions – in principal, satellite sensors, seat belt switches and
warning lamps – are implemented on separate pcbs and mounted on a
base plate.

This Reference Manual is intended to detail the available hardware
functionality and related software drivers (firmware) offered in the
Freescale ARD.

1.1 Relevant Documents
[1] Airbag Reference Demonstrator – ARD Reference Manual
[2] MC33789 – System Basis Chip Data Sheet
[3] MMA68xx - SPI Medium-g Dual Channel Local ECU Sensor Data Sheet
[4] MC33797 – Four Channel Squib Driver IC Data Sheet
[5] MMA5xxxWR2 - PSI5 High-g Satellite Sensor Data Sheet

ARD System Outline

Airbag Reference Demonstrator, Rev. 3.0

2 Freescale Semiconductor

Chapter 2 ARD System Outline

The high level system block diagram here outlines the way the Freescale standard products are used to implement an example
airbag ECU.

• MC9S12XEG128MAA – Microcontroller
• MC33789 – Airbag System Basis Chip
• MMA6801QR2 – ECU Local X/Y Accelerometer
• MM33797 – Four Channel Squib Driver
• CAN Phy – High Speed CAN Physical Layer
• MMA5xxxWR2 – High G Collision Satellite Sensor

Standard Products Description

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 3

Chapter 3 Standard Products Description

All devices used in the Freescale ARD are standard products and those devices are described here.

3.1 MC9S12XEG128MAA - Microcontroller
This microcontroller is a member of the highly successful S12 family of automotive microcontrollers that includes flexible Flash
memory, which allows cost efficient implementation of internal EEPROM emulation, and a rich selection of peripherals to support
an efficient system connection.

3.2 MC33789 – Airbag System Basis Chip
This device implements all vehicle sensor interfaces and the airbag system support functions.

3.2.1 Power Supply Block
• A switch mode power supply DC-DC converter in a boost configuration to generate the high voltage level (33 V), in

which energy is stored in the autarky capacitor, and used to allow continued operation of the system for a defined time
following a collision, which leads to disconnection of the battery

• A switch mode power supply DC-DC converter in a buck configuration, to efficiently step down the boost supply to a
level suitable for supplying the satellite sensors interfaces (9.0 V) and further regulators, for the local ECU supplies

• A charge pump to double the output of the buck converter, to supply the necessary voltage for the PSI5 sync pulse
generation (18 V), to facilitate operation of the satellite sensor interfaces in synchronous mode, and therefore more than
one sensor per interface. This is only enabled if more than one satellite sensor per interface is required

• A linear regulator to provide the local logic supply (5.0 V) for ECU devices i.e. microcontroller, local sensor, squib
driver,...

3.2.2 Safing Block
This block includes an SPI monitor which inputs sensor data read by the microcontroller over the sensor SPI interface, and
compares it to pre-defined threshold acceleration values for each local and vehicle collision sensor. Based on this comparison,
where the threshold is exceeded in three consecutive acquisition cycles, the system is armed by enabling the safing outputs,
which in turn enables the squib drivers, so that the application can fire the necessary squibs based on the airbag algorithm results.

3.2.3 DC Sensors
A low speed (D.C.,) interface which connects to resistive and hall effect sensors which are used to check whether seat belts are
being worn through seat belt switches and seat position through seat track sensors.

3.2.4 PSI5 Satellite Sensors
Satellite sensors interfaces, which connect to collision sensors distributed around the vehicle. The interfaces implement the PSI5
V1.3 specification, and can operate in asynchronous and synchronous modes.

3.2.5 LIN Physical Layer
For connection to vehicle diagnostic interface (K-line) or Occupant Classification System.

3.2.6 Lamp Driver
A high or low side driver which can be configured in hardware which supports PWM driven LED or warning lamp driver.

3.2.7 Diagnostics
A number of measures which allow diagnosis of implemented functions on the system basis chip, e.g. all voltage supplies
including power transistor temperature monitors, autarky capacitor ESR, etc.

3.3 MC6801QR2 - ECU Local Sensor
The ECU local sensor acceleration data is used by the airbag application to cross check the acceleration data received from the
satellite collision sensors, to confirm that a collision is really happening, and that airbags need to be deployed.

Standard Products Description

Airbag Reference Demonstrator, Rev. 3.0

4 Freescale Semiconductor

The local sensor used in the ARD is dual channel, and confirms both frontal and side impacts. In addition, the MC6801QR2
includes it’s own safing block, which will compare the measured acceleration to configurable thresholds and set safing outputs
accordingly. This function is used in the ARD to enable the squib drivers, and therefore be an independent part of the system
safing architecture – both the safing blocks in the system basis chip and in the local sensor must enable the squib drivers before
the application is able to fire the appropriate squibs.

3.4 MC33797 – Four Channel Squib Driver
Each channel consists of a high side and a low side switch. The ARD uses two MC33797 devices connected in cross-coupled
mode, i.e. high side switch from one device and low side switch from the other, connected to each squib or seat belt pre-tensioner.
This ensures no single point of failure in the squib output stage.

The MC33797 implements a comprehensive set of diagnostic features that allows the application to ensure that the squib driver
stage is operating correctly.

3.5 MMA5xxxWR2 – High G Satellite Collision Sensor
A single channel acceleration sensor operating in the range of 60 – 480g (depending on G-cell fitted), which includes a PSI5 V1.3
interface for direct connection to the system basis chip. The device can operate in either asynchronous (point-to-point single
sensor connection) or synchronous (bus mode with multiple sensors connected to each interface) mode. The device can be used
either for frontal collisions or side impacts.

Function Description

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 5

Chapter 4 Function Description

The following section describes individual functions and how they relate to firmware.

4.1 MC33789 – Airbag System Basis Chip

4.1.1 Power Supply – Boost Converter and Energy Reserve

Default setting for the boost converter is ON and will start up when VBATT exceeds a predefined limit. Initially, the boost converter
will charge a small capacitor. Default setting for the energy reserve is OFF to prevent current inrush at key on. The firmware must
turn the energy reserve on through the PS_CONTROL register once VBOOST is stable. Firmware can monitor VBOOST through
the analog output pin selected through AI_CONTROL register. After the energy reserve is turned on, the large energy reserve
capacitor (min 2200 μF) will be charged.

4.1.2 Power Supply – Energy Reserve Capacitor ESR Diagnostic

During ESR diagnostic, the energy reserve capacitor is slightly discharged and the firmware can calculate, based on the
discharge rate, the value of the capacitor’s effective series resistance – this is a measure of the condition of the capacitor.

4.1.3 Power Supply – Buck Converter

Default setting for the buck converter is ON and will start up when VBOOST starts up. Firmware can monitor VBUCK through the
analog output pin selected through AI_CONTROL register.

4.1.4 Power Supply – SYNC Pulse Supply

Default setting for the SYNC supply is OFF. Firmware needs to turn the SYNC supply on through PS_CONTROL register only if
the satellite sensors are operating in synchronous mode. Firmware can monitor VSYNC through the analog output pin selected
through the AI_CONTROL register.

4.1.5 Power Supply – ECU Logic Supply

The internal ECU logic supply is always on and firmware has no configuration to perform.

Device Function Config Register Diagnosis Comment

MC33789 Energy Reserve Supply PS_CONTROL AI_CONTROL

Device Function Config Register Diagnosis Comment
MC33789 Energy Reserve Capacitor

Diagnostic
ESR_DIAG ESR_DIAG

Device Function Config Register Diagnosis Comment

MC33789 Satellite Sensor Supply PS_CONTROL AI_CONTROL

Device Function Config Register Diagnosis Comment
MC33789 Satellite Sensor SYNC Pulse

Supply
PS_CONTROL AI_CONTROL

Device Function Config Register Diagnosis Comment
MC33789 Linear Regulator - -

Function Description

Airbag Reference Demonstrator, Rev. 3.0

6 Freescale Semiconductor

4.1.6 Safing Block – Sensor Data Thresholds

In order to be able to change the sensor data threshold value or values at which the ARM/DISARM pin are set to active (i.e. the
system is armed when a sensor value exceeds the defined threshold), a secure firmware sequence must be carried out to unlock
the threshold register using T_UNLOCK. Once that is done, the threshold can be changed by firmware through the SAFE_TH_n
register.

NOTE
There is no special firmware required to input sensor data into the safing block. The SPI
protocol on the sensor SPI interface is the same to both the local sensor and the satellite
sensor interfaces on the system basis chip, and whenever the microcontroller reads a
sensor value, the response from the sensor or system basis chip is recognized as being
sensor data, and is automatically read into the safing block. The only requirement the
application has to meet is that the sensor data is read in the correct sequence, starting with
the local sensor X-axis data followed by the Y-axis, and then the satellite sensor interfaces
on the system basis chip.

4.1.7 Safing Block – Diagnostics

The firmware has the capability to change the mode in which the safing block is operating, so that diagnosis of the ARM/DISARM
pins can be diagnosed or the scrapping mode (i.e. the system is armed when no sensor data exceeds any threshold, used to fire
all squibs when a vehicle is being scrapped) can be entered. Either of these changes is only possible at startup prior to the safing
block entering normal operation.

4.1.8 DC Sensors

The firmware must select which sensor is active and which supply voltage is used on that sensor through the DCS_CONTROL
register. The firmware must also select the correct sensor to be read through the analog output pin using the AI_CONTROL
register. Note that both registers can be returned to their default state by a correct write to the DIAG_CLR register.

4.1.9 Satellite Sensor Interface

The firmware must select the correct mode of operation of the satellite sensor interface and enable each interface individually.
The interfaces should be enabled one at a time to reduce current inrush.

When the interface is enabled, the satellite sensor will automatically send it’s initialization data, and the firmware must handle
this data to ensure the sensor is operating correctly.

4.1.9.1 LIN Physical Layer

Device Function Config Register Diagnosis Comment
MC33789 Threshold T_UNLOCK,

SAFE_TH_n
-

Device Function Config Register Diagnosis Comment
MC33789 Linear Regulator - SAFE_CTL

Device Function Config Register Diagnosis Comment
MC33789 Seat belt/Seat track sensor

interface
DCS_CONTROL,

AI_CONTROL
-

Device Function Config Register Diagnosis Comment
MC33789 Satellite Sensor LINE_MODE,

LINE_ENABLE
-

Device Function Config Register Diagnosis Comment
MC33789 LIN physical layer LIN_CONFIG -

Function Description

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 7

The firmware has the potential to change the configuration of the LIN physical layer, but the default setting is the most common
configuration.

A special mode exists which allows the raw Manchester encoded data from a satellite sensor to be monitored on the LIN output
pin, but this is only for the debug operation.

4.1.9.2 Lamp Driver

The firmware must configure whether the driver is a high or low side switch, and the PWM output duty cycle. In the response to
the command, the firmware can check that high or low thresholds on the pins have been exceeded, and whether an
over-temperature shutdown has occurred.

As part of the application, the warning lamp should be turned on at key on, kept illuminated until the startup diagnostic procedure
has completed, and the system is ready to start operating.

4.1.9.3 Diagnostics

The firmware can monitor the operation of the main ASIC through the STATUS and AI_CONTROL registers.

4.2 MMA6801QR2 – Local ECU Acceleration Sensor
The local ECU acceleration sensor is a dual channel device which also includes a safing block. At start up, configuration, offset
cancellation, and self test of the device, take place before the configuration is complete (’ENDINIT’ set) and the device goes into
normal operation.

4.2.1 Configuration - General

The general configuration sets up the data format, whether offset monitoring is enabled, and the functionality of the ARM_X and
ARM_Y output pins. When configuration is complete, the ENDINIT bit is set and this locks out access to the configuration
registers

4.2.2 Configuration – Axis Operation

The axis operation configuration triggers self-test and selects one of the low pass filter options for each axis.

4.2.3 Configuration – Arming Operation

The arming operation configuration defines the arming pulse stretch period and the arming window, which has different
meanings, depending on which arming mode is configured.

Device Function Config Register Diagnosis Comment
MC33789 Lamp driver GPOn_CTL GPOn_CTL

Device Function Config Register Diagnosis Comment
MC33789 Diagnostics - STATUS,

AI_CONTROL

Device Function Config Register Diagnosis Comment
MMA6801QR2 Configuration DEVCFG -

Device Function Config Register Diagnosis Comment
MMA6801QR2 Configuration DEVCFG_X,

DEVCFG_Y
-

Device Function Config Register Diagnosis Comment
MMA6801QR2 Configuration ARMCFG_X,

ARMCFG_Y
-

Function Description

Airbag Reference Demonstrator, Rev. 3.0

8 Freescale Semiconductor

4.2.4 Configuration – Arming Threshold

For each axis, both the positive and negative threshold can be set above which and when the arming window requirements are
met, the arm outputs will be set to active as defined in the arming operations register.

In the startup phase, the threshold can be set to such a level that when the self test deflection is triggered, the arming outputs
will become active. This can be used as part of the self-test at startup. After completion of the self test, thresholds should be set
back to the correct application values, and before the configuration is complete, by setting the ‘ENDINIT’ bit, after which no further
configuration changes can be made.

The complete startup and self-test procedure is described in the ARD specification (Airbag Reference Design).

Note that after the configuration is complete and the ‘ENDINIT’ bit is set, a CRC check of the configuration is carried out in the
background, which will lead to an error in the status register if a configuration bit flips.

4.2.5 Status

Internal errors are flagged in the DEVSTAT register.

4.3 MM33797 – Four Channel Squib Driver (FCS)
The ARD uses two FCS in cross-coupled mode to implement eight squib drivers.

The FCS is addressed using an 8-bit SPI interface over which commands and data are sent.

The only configuration possible is the time the device remains enabled after the fire enable (FEN1, FEN2) pins have been
activated. This is equivalent to the arming pulse stretch time applied to the safing output on both the system basis chip and the
local ECU sensor. Two commands are required to change this time – first is an unlock command and second is the programmed
time between 0 and 255 ms. Default is 0 ms.

Firing the squibs also requires two commands – the first arms one of the banks of drivers, the second turns on the required
switches. More than one switch can be turned on by a single command.

The majority of the commands relate to diagnostics of the FCS and the connected squibs. A full list of diagnostic commands is
available in the ARD specification (Airbag Reference Design).

4.4 MMA5xxxWR2 – High G Satellite Collision Sensor
No configuration of the MMA5xxxWR2 is possible. All configuration of the device is done off line prior to assembly in the system.

As soon as the device is switched on, it will begin an internal configuration and self test, and also sends initialization data, which
is received in the system basis chip and checked by the application. Once the device has completed sending the initialization
data, which concludes with an OK or NOK message, it enters normal operation and starts sending sensor data, either
autonomously if in asynchronous mode, or in response to SYNC pulses on the satellite sensor interface if in synchronous mode.

Device Function Config Register Diagnosis Comment
MMA6801QR2 Configuration ARMT_XP, ARMT_XN

ARMT_YP, ARMT_YN
-

Device Function Config Register Diagnosis Comment
MMA6801QR2 Status - DEVSTAT

Airbag Reference Demonstrator Firmware and Setup

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 9

Chapter 5 Airbag Reference Demonstrator Firmware and Setup

5.1 Airbag Reference Demonstrator Demo
The ECU is implemented on a single printed circuit board (PCB). Vehicle functions - in principal, satellite sensors, seat belt
switches, and warning lamp - are implemented on separate PCBs and mounted on a base Plexiglas plate. This set is placed on
rubber columns on the heavy aluminium base plate. Squibs are replaced by resistors with corresponding values to actual squibs.

Figure 5-1. Airbag Reference Demonstrator Demo Description

5.2 Warnings
The user should be aware of:

• Operating power supply voltage from 6.0 to 20 V DC continuous
• Nominal voltage 12 V DC (automotive battery)
• Observe power supply voltage polarity. The devices have incorporated reverse battery protection, however, on-board

electrolytic capacitors may be damaged.

Rear Left Satellite SensorDriver Satellite Sensor

Passenger Satellite SensorWarning Lamp

Rear Left Pretensioner SQUIB

Rear Left SQUIB

Rear Right Pretensioner SQUIB

Rear Right SQUIB
Driver SQUIB

Driver Pretensioner SQUIB

Power Supply Voltage

Passenger SQUIB

Passenger Pretensioner SQUIB

Seat Belt Buckle Sensors

Rear Right Satellite Sensor

Airbag Reference Demonstrator Firmware and Setup

Airbag Reference Demonstrator, Rev. 3.0

10 Freescale Semiconductor

5.3 Airbag Reference Demonstrator PCB Detail Description

Figure 5-2. ARD PCB Detail Description

5.4 Airbag Reference Demonstrator - GUI
FreeMASTER GUI application can work in 2 modes:

• Debug Mode - GUI firmware together with GUI applications allow debug of the main ARD devices - MC33789 (Airbag
System Basis Chip), MC33797 (Four Channel Squib Driver), and MMA6801QR2 (Central Accelerometer). The device
registers are readable and configurable. At all times, the registers remain visible and can be monitored. This is intended
to aid engineers understand both the hardware and software routines.

• Application Mode - application mode allows the users to view acceleration data from central and satellite
accelerometers. These numerical values are also plotted on a graph, which allows informative outlook to the
acceleration levels of all sensors. Deployment of squibs is simulated in this mode on a simple car model picture, using
pictures of both front and side deployments.

5.4.1 Firmware downloading - GUI version
When using the Code Warrior Development Studio S12(X) first time, install the Code Warrior IDE from the Freescale web page.

1. From CD open Code Warrior project file:
“\ARD_Firmwares\AirbagReferenceDesign_GUIFirmware\ard_gui_middle\ard_gui_middle.mcp”.

2. Connect the DC power supply 12 V. Observe polarity: red is positive, blue or black is negative.
3. Connect attached P&E micro debugger to J11 connector on the ARD main board and plug the USB cable to the PC

USB port.
4. Press function key F5 or go to “Project” and select “Debug”.
5. After finish of the downloading, unplug P&E micro debugger from the J11 port.

BDM
Multi-link
Connector

Central
Accelerometer
MMA6801QR2

CAN Transceiver

Four Channel
Squib Driver #2
MC33797

Energy
Reserve
Capacitors

Airbag
System
Basis
Chip
MC33789

RS232 Communication Port

Four Channel
Squib Driver #1
MC33797

Microcontroller
MC9S12XEG128

OnBoard
LED1
OnBoard
LED2

Airbag Reference Demonstrator Firmware and Setup

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 11

NOTE
This firmware is loaded into Airbag Reference Demonstrator Demo after delivery and
immediately ready for using with the FreeMASTER GUI application without doing steps
above.

5.4.2 Hardware and Software Setup
When using the FreeMASTER first time, install the FreeMASTER tool from the enclosed CD, as well as the USB drivers. If you
have already done this, proceed to point 5.

1. From the CD run file: FreeMASTER\FMASTERSW.exe and leave all steps as the default.
2. Connect the DC power supply 12 V. Observe polarity: red is positive, blue or black is negative.
3. Plug the USB cable to the PC USB port. On the screen bottom right-hand corner will appear the message: “Found New

Hardware”. Please install the USB drivers located in the enclosed CD, directory \USB_Driver. USB driver is installed
twice. Once itself USB driver and second virtual RS232 COM port.

4. PC desktop, mouse right click the icon “My computer” and select “Properties”. The “System Properties” window will
open. Select the tab “Hardware” and then click on the “Device Manager” button. In a new window, expand the “Ports
(COM & LPT)”. If you have installed the USB drivers properly, the virtual COM ports will be listed, e.g. “USB Serial Port
(COMx)”. The PC assignees COMx port number. Note the port number used for FreeMASTER control pages
configuration.

5. Copy folder “AirbagReferenceDesign_GUI\” from the CD to your local hard drive. You will be able to save the
FreeMASTER configuration.

6. Open the Airbag Reference Demonstrator FreeMASTER control page.
7. “\ARD_GUI\MiddleARD_FreeMASTER.pmp”.
8. Immediately after opening, a message box may appears:

Click OK and proceed steps as follows.
1. Configure the COM port number and COM port speed 38400Bd, menu “Project\Options...”, the tab “Comm”. Write

proper serial communication port COMx (see bullet 4).
2. Open “File\Start communication” to establish the connection.
3. In case you do not execute mentioned steps properly, the message depicted in point 7 appears. The error sources

could be:
4. The ARD demo has no power.
5. COM ports are not assigned correctly.
6. Press Ctrl+S to save your settings.

5.4.3 GUI Demonstration

5.4.3.1 Debug mode
Parameters of the devices MC33789, MC33797, or MMA6801QR2, can be arbitrarily changed. Parameters are sent to the
selected device after the button press “Send Parameters To Reference Board“. All meaningful device registers are shown in the
registry table “Command Responses Table” at the bottom of the each device page. For each cell in this table, a tool-tip help is
available. Just place the mouse cursor over the cell to see descriptions of the selected register (see example page Figure 5-3).

Airbag Reference Demonstrator Firmware and Setup

Airbag Reference Demonstrator, Rev. 3.0

12 Freescale Semiconductor

Figure 5-3. FreeMASTER Debug Page for the MC33789 Device

NOTE
After starting the watchdog refresh (Watchdog -> Enable), parameters “Safing Thresholds”
and “Dwell Extensions” in MC33789 can not be changed.

5.4.3.2 Application Mode
This simple ARD application mode allows to (see Figure 5-4):

• View acceleration data from central and satellite accelerometers. These numerical values are displayed in points where
sensors should be placed inside the car.

• View acceleration data plotted on a graph, which allows informative outlook to the acceleration levels of all sensors and
a simple car model simulation of the both front and side collisions. Plotted data is only informative, since transferred
data from sensors is averaged for illustration of ARD functionality only.

• Simulate deployment of an airbag when the acceleration data reaches the threshold values. These thresholds are set
to very low limits, so the soft hit to sensor place by fingers or by rubber hand tool cause relevant airbags “deployment”.
This deployment is shown as inflated bags picture in a place where the “collision” occurred. Any “collision” at the driver
or passenger place causes inflation of two front airbags. Impact from left side causes inflation of the left side airbags,
and from right side causes deployment of the right sides airbags. Anytime after deployment, simulation is possible to
reset an inflated bag or bags by pressing button “Reset Deployed Airbags”.

Airbag Reference Demonstrator Firmware and Setup

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 13

Figure 5-4. FreeMASTER Application Mode

NOTE
In this GUI mode during simulated airbags “deployment”, the relevant squibs drivers are not
activated.

5.5 Airbag Reference Demonstrator - “Application”
GUI firmware was designed specifically for communication with the GUI, but firmware uses the same API and low level drivers,
as the version described in this chapter, which is intended to demonstrate the functionality of the hardware in an application
environment.

The ARD application demonstrator firmware goes through the phases as indicated in Figure 5-5.

Airbag Reference Demonstrator Firmware and Setup

Airbag Reference Demonstrator, Rev. 3.0

14 Freescale Semiconductor

Figure 5-5. Flowchart of the “Application Demonstrator“

Firmware has been divided into GUI firmware as described in 5.4, “Airbag Reference Demonstrator - GUI, and the real firmware
described in this chapter for keeping the readability of the C code, and also to allow full access to each analog device and its
registers in the GUI mode.

5.5.1 Firmware Downloading - “Application Demonstrator”
When using the Code Warrior Development Studio S12(X) for the first time, install the Code Warrior IDE from the Freescale web
page.

1. From the CD, open the Code Warrior project file:
“\ARD_Firmwares\AirbagReferenceDesign_Firmware\ard_application_middle\ard_application_middle.mcp”.

2. Connect the DC power supply 12 V. Observe polarity: red is positive, blue or black is negative.
3. Connect the attached P&E micro debugger to the J11 connector on the ARD main board, and plug the USB cable into

the PC USB port.
4. Press function key F5, or go to “Project” and select “Debug”.
5. After finishing the download, unplug the P&Emicro debugger from the J11 port.

NOTE
This firmware is NOT loaded into Airbag Reference Demonstrator Demo after delivery, and
for this ARD functionality, it is necessary to do all the above steps.

Airbag Reference Demonstrator Firmware and Setup

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 15

5.5.2 Airbag Reference Demonstrator - “Application”
This real ARD application demonstrator allows simple user friendly verification of the functionality. Threshold values for initiation
of the airbag deployment are set at very low level limits, so simulation can take place without major car collision impact. Just a
soft hit to the sensor place by a finger, or by a rubber tool cause relevant airbag “deployment”.

All ARD SW processes work in real time - reading acceleration values, evaluation and deployment of the squib drivers. This ARD
application works independently without communication with the GUI. Evaluation of a collision is indicated only by RED or
YELLOW on-board LEDs on the main ECU board.

Lighting up the yellow LED means that impact occurred from the left or right rear side, lighting of the red denotes the collision
occurred from front side. Both LEDs switched on it means that the collision occurred from front and also from left or right rear side.

In this demonstrator mode, the relevant squibs (represented by equivalent resistors) are fired, means the firing current flows
through resistors, representing the actual airbag squibs.

For a collision simulation (see Figure 5-6):
• hit the rear left sensor place => on-board YELLOW LED turns on
• hit the rear left sensor place => on-board YELLOW LED turns on
• hit the driver or passenger sensor place => on-board RED LED turns on

Simultaneously with on-board LEDs, the warning lamp is also turned on.

NOTE
Keep in mind that in case of a disconnection of the main supply voltage source (possible
automotive battery), the whole system is still powered by reserve capacitors in the Autarky
mode (roughly for 10 seconds), so it is possible to disconnect the power supply and still
operate the demonstrator.

After the power disconnection, please wait before turning off all on-board LEDs, and then
reconnecting the power supply.

Airbag Reference Demonstrator Firmware and Setup

Airbag Reference Demonstrator, Rev. 3.0

16 Freescale Semiconductor

Figure 5-6. Demonstration of the Airbag Application

Hitting this point causes
REAR RIGHT DEPLYOMENT

Hitting this point causes
REAR LEFT DEPLYOMENT

Yellow LED Red LED

Hitting this point (driver) causes
FRONT DEPLOYMENT

Hitting this point (passenger) causes
FRONT DEPLOYMENT

Software - Boot Assist Module

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 17

Chapter 6 Software - Boot Assist Module

6.1 Boot Assist Module (BAM)
The Boost Assist Module controls start up of the demonstrator. During start up of the system, the power supply chain (boost
converter, buck converter, and linear regulator) starts automatically once the input to ASBC device has exceeded 5.2 V for more
than 1.0 ms. Once stabilized, system RESET is released, allowing the microcontroller to start operating.

Once operating, the microcontroller can continue with the start up process. The microcontroller must turn on the charging of the
main energy reserve capacitor and satellite sensors (if present), configure acceleration thresholds for the safing block in central
accelerometer, and run a complete diagnostic check of the system before turning off the driver warning lamp.

Once the driver warning lamp has been switched off, the system is considered ‘ARMED’ and able to fire squibs, if no system fault
is found prior to a collision, this leads to the warning lamp being switched on again.

Figure 6-1. Boot Startup Architecture

6.1.1 Example of the BAM source code

This example of the BAM consists of initializing of all the devices on the main ECU board. Each device calls for one standalone
initialization API function, and other required features are configured by separate driver functions.

Checking if devices work properly are performed. If all required parameters are set correctly, no device reports any internal error,
and if all device tests and their peripherals are without error, the ARD application continues the BOM phase. Otherwise, the
systems halts and does not continue its operation.

Software - Boot Assist Module

Airbag Reference Demonstrator, Rev. 3.0

18 Freescale Semiconductor

/* Init Airbag System Basis Chip */

 ret_asbc = Asbc_Init(ARD_SPI_ASBC, &Asbc_Config[0]); /* initialization of the ASBC device MC33789 */

 if(ret_asbc == ASBC_OK){

 /* Setup ASBC device */

 Gpt_Enable(); /* enable ASBC watchdog refresh - enable RTI interrupt */

 ret_asbc = Asbc_SetSafingMode(ARD_SPI_ASBC, ASBC_SAFING_CHANGE_TO_SAFING_MODE,

 ASBC_SAFING_TEST_DIS, ASBC_SAFING_ARM_OUT_0); /* set ASBC device to the

 Safing mode, disable FEN/FDIS arming testing mode */

 if(ret_asbc == ASBC_NOT_OK) Ard_Status = ARD_ERROR; /* ASBC device is not in SAFING mode */

 ret_asbc = Asbc_SetVregMode(ARD_SPI_ASBC, &Asbc_VregConfig[0]); /* configure voltage regulators */

 ret_asbc = Asbc_SetGpo(ARD_SPI_ASBC, ASBC_GPO_1, ASBC_GPO_DC_66_7, ASBC_GPO_LS_DRIVER); /* driver

 warning lamp set ON (duty cycle 66,7%) */

 ret_asbc = Asbc_SetGpo(ARD_SPI_ASBC, ASBC_GPO_2, ASBC_GPO_DC_OFF, ASBC_GPO_HS_DRIVER); /* unused

 output */

 ret_asbc = Asbc_SetLinMode(ARD_SPI_ASBC, &Asbc_LinConfig[0]); /* LIN physical layer configuration */

 ret_asbc = Asbc_SetPsi5Mode(ARD_SPI_ASBC, &Asbc_Psi5Config[1]); /* configure PSI5 interface - turn satellite

 sensors interface OFF */

 /* Check ASBC device */

 /* Read System Basis Chip statuses */

 Asbc_Status.Asbc_StatFullEnable = ASBC_STAT_FULL_EN; /* truncated status of the ASBC device */

 ret_asbc = Asbc_GetStatus(ARD_SPI_ASBC, &Asbc_Status); /* common status of the ASBC device */

 ret_asbc = Asbc_GetLinStatus(ARD_SPI_ASBC, &Asbc_LinStatus); /* get LIN physical layer settings */

 ret_asbc = Asbc_GetPsi5Status(ARD_SPI_ASBC, &Asbc_Psi5Status); /* the status of the ASBC PSI5 interface */

 ret_asbc = Asbc_GetVregStatus(ARD_SPI_ASBC, ASBC_VREG_ESR_DIS, &Asbc_VregStatus); /* read status of the

 ASBC voltage regulators and measure state of the Energy Reserve capacitor */

 }else{

 Ard_Status = ARD_ERROR; /* Airbag System Basis Chip initialization failed */

 }

/* Init Central Accelerometer */

 if(Ard_Status != ARD_ERROR){ /* if the system basis chip started without error */

 ret_acc = Acc_Init(ARD_SPI_ACC, &Acc_Config[0]); /* setup central accelerator device */

 ret_acc = Acc_GetStatus(ARD_SPI_ACC, &Acc_Status); /* read the complete statuses of the ACC device */

 if(ret_acc != ACC_OK){ /* initalization or get ACC status failed */

 Ard_Status = ARD_ERROR; /* Central Accelerometer initialization failed */

Software - Boot Assist Module

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 19

 }

 }

 /* Init SQUIB drivers */

 if(Ard_Status != ARD_ERROR){ /* if the ASBC and ACC started without error */

 ret_squib = Squib_Init(ARD_SPI_SQUIB1); /* the function initializes the SQUIB1 driver - device MC33797 */

 if(ret_squib == SQB_OK){ /* if SQUIB1 initialized without any errors */

 ret_squib = Squib_GetStatus(ARD_SPI_SQUIB1, &Sqb1_Status); /* get status of the 1A, 1B, 2A, 2B of the SQUIB1 */

 if(ret_squib == SQB_OK){ /* if return from the Squib_GetStatus are without error */

 ret_squib = Squib_Init(ARD_SPI_SQUIB2); /* the function initializes the SQUIB2 driver - device MC33797 */

 if(ret_squib == SQB_OK){ /* if SQUIB2 initialized without any errors */

 ret_squib = Squib_GetStatus(ARD_SPI_SQUIB2, &Sqb2_Status); /* get status of the 1A, 1B, 2A, 2B of the SQUIB2 */

 if(ret_squib != SQB_OK){ /* if error return from the Squib_GetStatus */

 Ard_Status = ARD_ERROR;

 }

 }else Ard_Status = ARD_ERROR;

 }else Ard_Status = ARD_ERROR;

 }else Ard_Status = ARD_ERROR;

 }

 if(Ard_Status != ARD_ERROR){ /* if SQUIBs devices started without error - check all SQUIB1 and SQUIB2 parameters */

 /* SQUIB1 short to GND or to BATTERY */

 if(Sqb1_Status.Squib_1AShBatt == SQB_SH_TO_BATT_FAULT) Ard_Status = ARD_ERROR;

 if(Sqb1_Status.Squib_1AShGnd == SQB_SH_TO_GND_FAULT) Ard_Status = ARD_ERROR;

 if(Sqb1_Status.Squib_1BShBatt == SQB_SH_TO_BATT_FAULT) Ard_Status = ARD_ERROR;

 ….

 …

 …

Software - Basic Operating System

Airbag Reference Demonstrator, Rev. 3.0

20 Freescale Semiconductor

Chapter 7 Software - Basic Operating System

Once the start up phase has completed and the warning lamp has been switched off, the system is ready to operate normally, at
which time the airbag control algorithm will be running.

The control algorithm consists of three phases:
• Acquisition Phase – sensor data is acquired from all on-board and remote sensors
• Decision Phase – the decision is taken based on the available sensor data, and whether an airbag or airbags need to

be fired
• Deployment Phase – if the decision is taken to fire airbags, the relevant squib drivers must be armed and fired in

sequence

In normal operation mode, diagnostics and system status recording should operate. Period diagnostic checks should be carried
out in a fixed sequence, to ensure that over a period equivalent to the time for system status updates in EEPROM to be made,
a complete diagnostic check can be made.

7.1 Acquisition Phase
In the acquisition phase, the microcontroller reads the sensor data required to enable a deployment decision to be taken.

At the same time the microcontroller reads the sensor data, the safing block in MC33789 is loaded with the same sensor data
through the SPI-monitor block. An independent decision can then be taken by the MC33789 safing block based on the sensor
data whether to enable the squib drivers and allow deployment of the required airbag or airbags, which will be done under control
of the application on the microcontroller.

There is a fixed order in which data has to be read into the MC33789 safing block, even if a sensor in the sequence is missing
or has failed. Therefore, a dummy read of sensor data has to be made to maintain the sequence. For example, a read of a logical
channel equivalent to a non-implemented channel in the PSI5 block, i.e. any fourth channel of a PSI5 interface will result in a
response which contains the correct sequence number but not valid data.

Software - Basic Operating System

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 21

Figure 7-1. Acquisition Phase Flowchart

7.1.1 Source code of the Acquisition phase
Complete Acquisition phase including reading acceleration data from the main inboard sensor and satellite sensors is described
in the following source code.

/* Read acceleration data from central accelerometer and from satellite sensors */

 /* Synchronization pulse starts */

 SyncPulseStart(); /* rising edge of the SATSYNC pulse */

 /* Acquisition Sequence #0 and #1 - read central accelerometer X-axis and Y-axis data */

 ret_acc = Acc_GetAccelData(ARD_SPI_ACC, ACC_X_OFFSETCANCEL_SIGNED_ARMENABLE,

 ACC_Y_OFFSETCANCEL_SIGNED_ARMENABLE, &AccelerationData); /* read X and Y axis

 accelerometer moving value and error status */

 /* Acquisition Sequence #2 - dummy reading (PSI5 LC = 0011) */

 Asbc_ReadSensor(ARD_SPI_ASBC, ASBC_SEQUENCE_IDENTIFIER_02, ASBC_LOG_PSI5_CHAN1_DUMMY,

 &SensorDummy, SensStatus); /* dummy reading */

 /* Acquisition Sequence #3 - dummy reading (PSI5 LC = 0111) */

 Asbc_ReadSensor(ARD_SPI_ASBC, ASBC_SEQUENCE_IDENTIFIER_03, ASBC_LOG_PSI5_CHAN2_DUMMY,

 &SensorDummy, SensStatus); /* dummy reading */

Software - Basic Operating System

Airbag Reference Demonstrator, Rev. 3.0

22 Freescale Semiconductor

 /* Acquisition Sequence #4 - read front-left satellite (PSI5 LC = 0000) */

 Asbc_ReadSensor(ARD_SPI_ASBC, ASBC_SEQUENCE_IDENTIFIER_04, ASBC_LOG_PSI5_CHAN1_SLOT1,

 &SensorData_Driver, SensStatus); /* acceleration data from front left satellite sensor */

 /* Acquisition Sequence #5 - read front-right satellite (PSI5 LC = 0100) */

 Asbc_ReadSensor(ARD_SPI_ASBC, ASBC_SEQUENCE_IDENTIFIER_05, ASBC_LOG_PSI5_CHAN2_SLOT1,

 &SensorData_Passenger, SensStatus); /* acceleration data from front right satellite sensor */

 /* Acquisition Sequence #6 - read side-right satellite (PSI5 LC = 1000) */

 Asbc_ReadSensor(ARD_SPI_ASBC, ASBC_SEQUENCE_IDENTIFIER_06, ASBC_LOG_PSI5_CHAN3_SLOT1,

 &SensorData_RearRight, SensStatus); /* acceleration data from rear right satellite sensor */

 /* Acquisition Sequence #7 - read side-left satellite (PSI5 LC = 1100) */

 Asbc_ReadSensor(ARD_SPI_ASBC, ASBC_SEQUENCE_IDENTIFIER_07, ASBC_LOG_PSI5_CHAN4_SLOT1,

 &SensorData_RearLeft, SensStatus); /* acceleration data from rear left satellite sensor */

 /* Complete synchronization pulse */

 SyncPulseEnd(); /* falling edge of the SATSYNC pulse */

 /* Read ASBC Safing status */

 Asbc_Status.Asbc_StatFullEnable = ASBC_STAT_FULL_DIS; /* truncated status of the ASBC device */

 ret_asbc = Asbc_GetStatus(ARD_SPI_ASBC, &Asbc_Status); /* common status of the ASBC device */

 /* Check correct number of the valid data */

 if(Asbc_Status.Asbc_SafingDataCount == 6){ /* check correct number of the valid data - expected number is "6" */

 /* 1. reading is from central accelerometer X-axis */

 /* 2. reading is from central accelerometer Y-axis */

 /* 3. reading is from front left satellite sensor */

 /* 4. reading is from front right satellite sensor */

 /* 5. reading is from side right satellite sensor */

 /* 6. reading is from side left satellite sensor */

 DataErrorCounter = 0; /* clear data invalid counter */

 Ard_Status = ARD_DECISION; /* go to Decision Phase */

 }else{ /* Safing counter parameter Asbc_SafingDataCount contains a different number than expected */

 DataErrorCounter = DataErrorCounter + 1; /* increment data invalid counter */

 if(DataErrorCounter > ARD_DATA_INVALID_COUNT_LIMIT){ /* if the number of the invalid data exceed limit */

 Ard_Status = ARD_ERROR; /* reading attempts from sensors ended with failure (warning lamp ON and syst halt) */

 }else{ /* invalid counter did not exceed limit value */

 Ard_Status = ARD_ACQUISITION; /* system will stay here in the Acquisition Phase */

 }

 }

Software - Basic Operating System

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 23

7.2 Decision Phase
In the decision phase, the microcontroller interprets the sensor data read during the acquisition phase to calculate which, if any,
squibs need to be fired. The decision phase follows the acquisition phase as long as the DATA_VALID count in the acquisition
phase is correct.

The decision whether to fire a squib is always based on at least two sensor readings. Where two sensor readings confirm that a
deployment is required in three successive decision phases, a flag is set which will trigger the deployment, in the deployment
phase. If no deployment is necessary, the system will have time before the next acquisition phase starts to run diagnostic tests.

NOTE
The example flowchart in Figure 7-2 demonstrates a simple decision phase that is intended
only to demonstrate the functionality of the reference demonstrator hardware, and is not
intended to represent a true airbag application.

Figure 7-2. Decision Phase Flowchart

7.2.1 Example of the API Source Code Used in Decision Phase - Front Decision
An example of the SW implementation of the front decision is described in the following example. Any exceeding of the threshold
values at driver or passenger place causes transition to the deployment phase and deployment of two front airbags. Decisions
for the rear passengers are done in the same way.

FRONT DECISION
source code example is
shown in chapter 7.1.2.1

Software - Basic Operating System

Airbag Reference Demonstrator, Rev. 3.0

24 Freescale Semiconductor

/* FRONT DECISION */

if(AccelerationData.AccelDataX > ACC_X_ARM_THRESHOLD){ /* if data from accelerometer (X-axis) exceed thresholds */

 /* FRONT RIGHT DECISION */

 if(SensorData_Passenger > Asbc_Config[0].Asbc_SafingThreshold2){ /* data from front right sensor exceed Threshold2 */

 FrontRightCounter = FrontRightCounter + 1; /* increment number of the exceeded acceleration thresholds from the front

 right satellite sensor and from the central accelerometer */

 if(FrontRightCounter > ARD_DECISION_COUNT_LIMIT){ /* number of the exceeded accel values exceed counter limit */

 PassengerDeploy = DEPLOY_PASSENGER; /* passenger squib deployment required */

 }

 }else{ /* no thresholds were exceeded */

 FrontRightCounter = 0; /* clear front right counter */

 PassengerDeploy = NO_DEPLOY; /* reset deployment flag to default state */

 }

 /* FRONT LEFT DECISION */

 if(SensorData_Driver > Asbc_Config[0].Asbc_SafingThreshold2){ /* data from front left sensor exceed Threshold2 */

 FrontLeftCounter = FrontLeftCounter + 1; /* increment number of the exceeded acceleration thresholds from the front

 left satellite sensor and from the central accelerometer */

 if(FrontLeftCounter > ARD_DECISION_COUNT_LIMIT){ /* number of the exceeded accel values exceed counter limit */

 DriverDeploy = DEPLOY_DRIVER; /* driver squib deployment required */

 }

 }else{ /* no thresholds were exceeded */

 FrontLeftCounter = 0; /* clear front left counter */

 DriverDeploy = NO_DEPLOY; /* reset deployment flag to default state */

 }

}

7.3 Deployment Phase
The deployment phase is entered if the application has decided that at least one airbag needs to be deployed. Typically, more
than one deployment is needed in any collision – any airbag deployment will also be backed up with at least one seatbelt
pre-tensioner activation. Each of the four decisions taken in the decision phase is linked directly to an airbag and a related
seatbelt pre-tensioner. Prior to activation of the pre-tensioners, the condition of the seatbelt switch is checked using the DC
sensor on the MC33789.

As in a real airbag application, after the deployment phase, the system should return to the acquisition phase to attempt to deal
with a second collision, except in the case that all airbags and pre-tensioners have been deployed already.

Note: the example flowchart here demonstrates a simple deployment phase intended only to demonstrate the functionality of the
reference demonstrator hardware, and is not intended to represent a true airbag application.

Software - Basic Operating System

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 25

Figure 7-3. Deployment phase Flowchart

7.3.1 Example of the API Source Code Used in Deployment Phase
This source code example relates to the deployment of the driver seat. The other three seats would be driven by a similar code
sequence. If deployment is required, based on the verdict from a previous decision phase. The pre-tensioner for the seat belt is
deployed first before deployment of the main driver’s airbag.

Commands to switch Low-FET and High-FET switches are sent to the appropriate SQUIB DRIVER IC. The low side squib driver
must be activated prior to activating the high side squib driver.

DRIVER SEAT DEPLOYMENT
source code example is described in
the Deployment Phase chapter

Software - Basic Operating System

Airbag Reference Demonstrator, Rev. 3.0

26 Freescale Semiconductor

/* DEPLOY DRIVER SEAT */

if((DriverDeploy == DEPLOY_DRIVER) && (GetPort(ARM)) && (GetPort(ARM_X))){ /* driver squib deployment required? */

 /* Deploy driver pre-tensioner (if the driver seat belt is engaged) */

 if(DriverBuckle == TRUE){ /* the driver seat belt is engaged */

 /* Deploy driver pre-tensioner (the SQUIB2(LO_1B) driver must be activated prior the SQUIB1(HI_1B) driver) */

 ret_squib = Squib_Fire(ARD_SPI_SQUIB2, CMD_FIRE_1BLS); /* switch ON 1B Low Side on the SQUIB2 */

 if(ret_squib == SQB_NOT_OK) Ard_Status = ARD_ERROR; /* if any error occures */

 ret_squib = Squib_Fire(ARD_SPI_SQUIB1, CMD_FIRE_1BHS); /* switch ON 1B High Side on the SQUIB1 */

 if(ret_squib == SQB_NOT_OK) Ard_Status = ARD_ERROR; /* if any error occures */

 }

 /* Deploy driver airbag = the SQUIB2(LO_1A) driver must be activated prior to activating the SQUIB1(HI_1A) driver */

 ret_squib = Squib_Fire(ARD_SPI_SQUIB2, CMD_FIRE_1ALS); /* switch ON 1A Low Side on the SQUIB2 */

 if(ret_squib == SQB_NOT_OK) Ard_Status = ARD_ERROR; /* if any error occures */

 ret_squib = Squib_Fire(ARD_SPI_SQUIB1, CMD_FIRE_1AHS); /* switch ON 1A High Side on the SQUIB1 */

 if(ret_squib == SQB_NOT_OK) Ard_Status = ARD_ERROR; /* if any error occures */

 DriverDeploy = DRIVER_DEPLOYED; /* set driver airbag status - driver airbag deployed */

}

SW Concept

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 27

Appendix A SW Concept
ARD software is built on basic low level MCU drivers, which provide access to the modules ADC, GPIO, EEPROM, GPT. etc. in
the microprocessor, and provide all necessary MCU functions. The upper software layer contains drivers for all main ARD devices
- Main Airbag ASIC MC33789 (ASBC Driver), Central Accelerometer MMA6801QR2 (ACC Driver), and Four Channel Squib
Driver MC33797 (SQUIB Driver). These drivers have an MCU independent API, which means no modification of ASBC, SQUIB
or ACC drivers are needed for all MCU derivatives (8/16/32b).

Figure 7-4. SW Design concept

A.1 Airbag System Basis Chip SW Driver
The ASBC driver is written as a separate software module. The main advantage is full HW abstraction and API independence in
used MCU family. The driver API covers the entire functionality of the ASBC device, which means all registers can be
configured/read using API functions.

The ASBC Driver is dependent on the COM layer (basic SPI communication) and on the GPT driver (General Purpose Timer),
which provides timing functions that are needed primarily for watchdog control.

Figure 7-5. Airbag System Basis Chip SW Driver Concept

SW Concept

Airbag Reference Demonstrator, Rev. 3.0

28 Freescale Semiconductor

A.2 ASBC API parameters detail descriptions
Brief description of input and output API parameters is in the following paragraphs. Descriptions contains only a verbal description
of the parameter. Values which can variable acquired is described in the header file ASBC.h.

Parameters of the Asbc_Init API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Config (Asbc_ConfigType) - input configuration structure:

— Asbc_SafingThreshold0 - 8 bits safing 0 threshold value
— Asbc_SafingDwellExt0 - extension of the arming pulse width (either 255 ms or 2.0 s) for threshold0
— Asbc_SafingThreshold1 - 8 bits safing 1 threshold value
— Asbc_SafingDwellExt1 - extension of the arming pulse width (either 255 ms or 2.0 s) for threshold1
— Asbc_SafingThreshold2 - 8 bits safing 2 threshold value
— Asbc_SafingDwellExt2 - extension of the arming pulse width (either 255 ms or 2.0 s) for threshold2
— Asbc_SafingThreshold3 - 8 bits safing 3 threshold value
— Asbc_SafingDwellExt3 - extension of the arming pulse width (either 255 ms or 2.0 s) for threshold3

Table 7-1. Airbag System Basis Chip SW Driver API

Function Name Function Parameters Return Type Function Description
Asbc_Init Spi_Channel [in]

*Config [in]
Asbc_ReturnType Initialize the Airbag System Basis Chip and returns the

confirmation of initialization. Multiple initialization
configuration is supported via the Config parameter.

Asbc_GetStatus Spi_Channel [in]
*Status [out]

Asbc_ReturnType Return the status of the ASBC. Only the general statuses
are reported via this service.

Asbc_SetAnlMuxSourc
e

Spi_Channel [in]
Source [in]

Asbc_ReturnType Allow to change the analog parameter which is connected
to the AOUT output.

Asbc_SetDcsMuxSour
ce

Spi_Channel [in]
Source [in]
Voltage [in]

Asbc_ReturnType Determines which DC sensor input channel shell be
connected for diagnostic output.

Asbc_SetVregMode Spi_Channel [in]
*Config [in]

Asbc_ReturnType Set the ASBC Voltage regulator. Various configurations of
voltage regulators are supported via the Asbc_VregConfig
container.

Asbc_GetVregStatus Spi_Channel [in]
*Status [out]

Asbc_ReturnType Return the status of the ASBC Voltage regulators. This
also contains the Boost and Buck statuses.

Asbc_SetPsi5Mode Spi_Channel [in]
*Config [in]

Asbc_ReturnType Set the ASBC PSI5 four satellite sensor interface. Various
configurations of PSI5 interface are supported via the
Asbc_Psi5Config container.

Asbc_GetPsi5Status Spi_Channel [in]
*Status [out]

Asbc_ReturnType Return the status of the ASBC PSI5 interface.

Asbc_SetLinMode Spi_Channel [in]
*Config [in]

Asbc_ReturnType Set the ASBC LIN transceiver mode. Via the
Asbc_LinConfig configuration container various
configurations are supported.

Asbc_GetLinStatus Spi_Channel [in]
*Status [out]

Asbc_ReturnType Return the ASBC LIN transceiver status.

Asbc_SetGpo Spi_Channel [in]
GpoChannel [in]
GpoPwmDutyCycle [in]
GpoDriverConfig [in]

Asbc_ReturnType Set the ASBC output channel mode. Various configuration
for each output channel are supported via the
Asbc_GpoDriverConfig configuration container.

Asbc_GetGpoStatus Spi_Channel [in]
GpoChannel [in]
*Status [out]

Asbc_ReturnType Return the ASBC output channel status. This includes the
high/low side selection, thermal shutdown and the voltage
level.

Asbc_ReadSensor Spi_Channel [in]
SequenceIdentifier [in]
LogicalChannel [in]

Asbc_ReturnType This function provide sensor request/response to retrieve
sensor data from satellite interface block.

Asbc_FeedWatchdog Spi_Channel [in]
WD_Polarity [in]

Asbc_ReturnType Update the ASBC Watchdog. A successful watchdog
refresh is a SPI command (high), following another SPI
command (low).

Asbc_ProgramCmd Spi_Channel [in]
Command [in]
Data [in]
SpiResponse [out]

Asbc_ReturnType Send any ASBC command to the device and read its
response.

SW Concept

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 29

— Asbc_SafingThreshold4 - 8 bits safing 4 threshold value
— Asbc_SafingDwellExt4 - extension of the arming pulse width (either 255 ms or 2.0 s) for threshold4
— Asbc_SafingThreshold5 - 8 bits safing 5 threshold value
— Asbc_SafingDwellExt5 - extension of the arming pulse width (either 255 ms or 2.0 s) for threshold5
— Asbc_SafingThreshold6 - 8 bits safing 6 threshold value
— Asbc_SafingDwellExt6 - extension of the arming pulse width (either 255 ms or 2.0 s) for threshold6
— Asbc_SafingThreshold7 - 8 bits safing 7 threshold value
— Asbc_SafingDwellExt7 - extension of the arming pulse width (either 255 ms or 2.0 s) for threshold7

Parameters of the Asbc_GetStatus API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Status (Asbc_StatusType) output status structure containing the common status of the ASBC device:

— Asbc_VregSyncSuppOverTemp - Sync supply over-temperature error
— Asbc_VregSensRegulOverTemp - DC sensor regulator over-temperature error
— Asbc_VregBoostOverTemp - Boost supply over-temperature error
— Asbc_VregIgnState
— Asbc_WakeupPinState - wake-up pin state
— Asbc_WdogState - watchdog state
— Asbc_WdogErrStatus - watchdog error status
— Asbc_SafingSequenceErr - safing sequence error
— Asbc_SafingOffsetErr - safing offset error
— Asbc_SafingMode - safing mode status
— Asbc_SafingDataCount - number of digital sensor messages received with valid sensor data
— Safing threshold settings - these parameters are returned the same values as described in the initialization

function ASBC_Init

Parameters of the Asbc_SetAnlMuxSource API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Source (Asbc_AnlMuxSourceType) input parameter - analog source which will be connected to the MUX input

Parameters of the Asbc_SetDcsMuxSource API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Source (Asbc_DcsMuxSourceType) input parameter - sensor channel selection determines which DC sensor input

shall be connected for diagnostics output
• Voltage (Asbc_DcsMuxSourceType) input parameter - bias voltage selection determines which regulated voltage shall

be used as a bias supply on the DC sensor output stage for diagnostics

Parameters of the Asbc_SetSafingMode API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• SafingMode (Asbc_SafingModeRequestType) input parameter - safing mode request
• SafingTestEnable (Asbc_SafingTestEnableType) input parameter - safing test enable
• SafingLevel (Asbc_SafingLevelType) input parameter - arming output level

Parameters of the Asbc_SetVregMode API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Config (Asbc_VregConfigType) input configuration parameter - configuration of the ASBC voltage regulator:

— Asbc_VregSyncSupply (Asbc_VregConfigType) input parameter - Sync supply control
— Asbc_VregBoost (Asbc_VregBoostType) input parameter - Boost regulator control
— Asbc_VregBuck (Asbc_VregBuckType) input parameter - Buck regulator control
— Asbc_VregEnergyReserve (Asbc_VregEnergyReserveType) input parameter - energy reserve control

Parameters of the Asbc_GetVregStatus API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• VregEnergyReserveTest (Asbc_VregEnergyReserveTestType) input parameter - energy reserve test diagnostic

control
• Status (Asbc_VregStatusType) output structure containing the status of the ASBC voltage regulators:

— Asbc_VregBoost (Asbc_VregStatBoostType) - report boost voltage less/greater than threshold (~80% of target)
— Asbc_VregChargDischarFault (Asbc_VregStatChargDischarFaultType) - CER charge/discharge switch failure

status

SW Concept

Airbag Reference Demonstrator, Rev. 3.0

30 Freescale Semiconductor

— Asbc_VregSyncSupply (Asbc_VregSyncSupplyType) - Sync supply status
— Asbc_VregBoostEnable (Asbc_VregBoostType) - Boost regulator status
— Asbc_VregBuckEnable (Asbc_VregBuckType) - Buck regulator status
— Asbc_VregEnergyReserve (Asbc_VregEnergyReserveType) - energy reserve status
— Asbc_VregEnergyReserveValue (uint8) - energy reserve test diagnostic status

Parameters of the Asbc_SetPsi5Mode API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Config (Asbc_Psi5ConfigType) input configuration structure of the ASBC PSI5 interface:

— Asbc_PSI5Chann1Mode (Asbc_PSI5Chann1ModeType) - PSI5 channel 1 mode - Synchronous SATSYNC
(Steered Mode) or Synchronous TDM Mode

— Asbc_PSI5Chann1Enable (Asbc_PSI5Chann1EnableType) - PSI5 channel 1 enable/disable
— Asbc_PSI5Chann1SynPuls (Asbc_PSI5Chann1SynPulsType) - PSI5 channel 1 sync pulse enable/disable
— Asbc_PSI5Chann2Mode (Asbc_PSI5Chann2ModeType) - PSI5 channel 2 mode - Synchronous SATSYNC

(Steered Mode) or Synchronous TDM Mode
— Asbc_PSI5Chann2Enable (Asbc_PSI5Chann2EnableType) - PSI5 channel 2 enable/disable
— Asbc_PSI5Chann2SynPuls (Asbc_PSI5Chann2SynPulsType) - PSI5 channel 2 sync pulse enable/disable
— Asbc_PSI5Chann3Mode (Asbc_PSI5Chann3ModeType) - PSI5 channel 3 mode - Synchronous SATSYNC

(Steered Mode) or Synchronous TDM Mode
— Asbc_PSI5Chann3Enable (Asbc_PSI5Chann3EnableType) - PSI5 channel 3 enable/disable
— Asbc_PSI5Chann3SynPuls (Asbc_PSI5Chann3SynPulsType) - PSI5 channel 3 sync pulse enable/disable
— Asbc_PSI5Chann4Mode (Asbc_PSI5Chann4ModeType) - PSI5 channel 4 mode - Synchronous SATSYNC

(Steered Mode) or Synchronous TDM Mode
— Asbc_PSI5Chann4Enable (Asbc_PSI5Chann4EnableType) - PSI5 channel 4 enable/disable
— Asbc_PSI5Chann4SynPuls (Asbc_PSI5Chann4SynPulsType) - PSI5 channel 4 sync pulse enable/disable

Parameters of the Asbc_GetPsi5Status API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Status (Asbc_Psi5StatusType) output structure containing the status of the ASBC PSI5 interface: - returned parameters

are the same as is described in Asbc_SetPsi5Mode function above.

Parameters of the Asbc_SetLinMode API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Config (Asbc_LinConfigType) input configuration structure of the ASBC LIN bus interface:

— Asbc_LinSlewRate (Asbc_LinSlewRateType) - LIN slew rate selection
— Asbc_LinRXDMode (Asbc_LinRXDModeType) - RxD output function
— Asbc_LinRXOut (Asbc_LinRXOutType) - Rx output selection (for RxD satellite function)

Parameters of the Asbc_GetLinStatus API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Status (Asbc_LinStatusType) output structure containing the status of the ASBC LIN bus interface:

— Asbc_LinSlewRate (Asbc_LinSlewRateType) - LIN slew rate selection
— Asbc_LinRXDMode (Asbc_LinRXDModeType) - RxD output function
— Asbc_LinRXOut (Asbc_LinRXOutType) - Rx output selection (for RxD satellite function)

Parameters of the Asbc_SetGpo API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• GpoChannel (Asbc_GpoChannelType) - selected GPO pin
• GpoPwmDutyCycle (Asbc_GpoPwmDutyCycleType) - output PWM duty cycle
• GpoDriverConfig (Asbc_GpoDriverConfigType) - HS/LS driver configuration selection

Parameters of the Asbc_GetGpoStatus API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• GpoChannel (Asbc_GpoChannelType) - selected GPO pin
• Status (Asbc_GpoStatusType) output structure containing the status of the selected output:

— Asbc_GpoDriverConfig - HS/LS driver configuration selection
— Asbc_GpoDriverOn13 - driver ON 1/3 VPWR comparator result
— Asbc_GpoDriverOn23 - driver ON 2/3 VPWR comparator result
— Asbc_GpoDriverOff13 - driver OFF 1/3 VPWR comparator result

SW Concept

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 31

— Asbc_GpoDriverOff23 - driver OFF 2/3 VPWR comparator result

Parameters of the Asbc_ReadSensor API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• SequenceIdentifier (Asbc_PSI5SequenceIdentifierType) - PSI5 sequence identifier (used for synchronizing samples)
• LogicalChannel (Asbc_PSI5LogicalChannelType) - PSI5 logical channel selection
• SensorData (uint16) - data from selected satellite sensor
• SensorStatus (Asbc_SensorStatusType) - satellite sensor response status

Parameters of the Asbc_FeedWatchdog API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• WD_Polarity (Asbc_WdLevelType) - watchdog polarity value

Parameters of the Asbc_ProgramCmd API function:
• Spi_Channel (Asbc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Command (Asbc_SpiChannelType) - non sensor command
• Data (uint16) - data
• SpiResponse (uint16) - response to the sent command

A.3 Central Accelerometer Driver
The ACC driver is created as a separate software module. The main advantage is full HW abstraction and API independence in
used MCU family. The driver API covers the entire functionality of the main accelerometer, which means all accelerometer
functionality can be controlled using API functions.

The ACC Driver is dependent on the COM layer (basic SPI communication), and on the GPIO driver (General Purpose
Input/Output), which provides basic functions for controlling input/output MCU pins.

Figure 7-6. Central Accelerometer SW driver concept

Table 7-2. Central Accelerometer SW driver API

Function Name Function Parameters Return Type Function Description
Acc_Init Spi_Channel [in]

*Config [in]
Acc_ReturnType Initialize the central accelerometer device and

returns the confirmation of initialization. Multiple
initialization configuration is supported via the
Config parameter.

Acc_GetStatus Spi_Channel [in]
*Status [out]

Acc_ReturnType Return the whole status of the Mesquite
accelerometer device.

SW Concept

Airbag Reference Demonstrator, Rev. 3.0

32 Freescale Semiconductor

A.4 ACC Parameters Detail Descriptions
A brief description of input and output API parameters is in the following paragraphs. Descriptions contain only a verbal
description of the parameter. Values which each variable acquires is described in the header file ACC.h.

Parameters of the Acc_Init API function:
• Spi_Channel (Acc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Config (Acc_ConfigType) - input configuration structure:

— Acc_ConfSignData - this variable determines the format of acceleration data results
— Acc_OffsetMoni - offset monitor circuit enable/disable
— Acc_ArmOutput - mode of operation for the ARM_X/PCM_X and ARM_Y/PCM_Y pins
— Acc_XAxisSelfTest - enable or disable the self-test circuitry for X axis
— Acc_YAxisSelfTest - enable or disable the self-test circuitry for Y axis
— Acc_XLowPassFilter - the low pass filter selection bits independently select a low-pass filter for X axis
— Acc_YLowPassFilter - the low pass filter selection bits independently select a low-pass filter for Y axis
— Acc_XArmPulseStretch - pulse stretch time for X arming outputs
— Acc_YArmPulseStretch - pulse stretch time for Y arming outputs
— Acc_XArm_PosWin_CountLimit - X axis positive arming window size definitions or arming count limit definitions

function (depending on the state of the Acc_ArmOutput variable)
— Acc_YArm_PosWin_CountLimit - Y axis positive arming window size definitions or arming count limit definitions

function (depending on the state of the Acc_ArmOutput variable)
— Acc_XArm_NegWinSize - X axis negative arming window size definitions (meaning depend on the state of the

Acc_ArmOutput variable)
— Acc_YArm_NegWinSize - Y axis negative arming window size definitions (meaning depend on the state of the

Acc_ArmOutput variable)
— Acc_XArmPositiveThreshold - this value contain the X axis positive threshold to be used by the arming function
— Acc_YArmPositiveThreshold - this value contain the Y axis positive threshold to be used by the arming function
— Acc_XArmNegativeThreshold - this value contain the X axis negative thresholds to be used by the arming

function
— Acc_YArmNegativeThreshold - this value contain the Y axis negative thresholds to be used by the arming

function

Parameters of the Acc_GetStatus API function:
• Spi_Channel (Acc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Status (Acc_StatusType) output status structure containing the complete status of the ACC device:

— Acc_SerialNumber - device serial number
— Acc_LotNumberHigh - device high lot number value
— Acc_LotNumberMidd - device midd lot number value
— Acc_LotNumberLow - device low lot number value
— Acc_PartNumber - device part number
— Acc_XPositiveTestDeflection - device self test positive deflection values for X axis
— Acc_YPositiveTestDeflection - self test positive deflection values for Y axis
— Acc_XFullScaleAccelerationRange - X self test magnitude selection
— Acc_YFullScaleAccelerationRange - Y self test magnitude selection
— Acc_DeviceReset - this device reset flag is set during device initialization following a device reset
— Acc_X_OffsetOverRange - the offset monitor over range flag is set if the acceleration signal of the X axis reaches

the specified offset limit

Acc_GetAccelData Spi_Channel [in]
AccelCmdX [in]
AccelCmdY [in]
*Status [out]

Acc_ReturnType Read the X and Y axis accelerometer moving
values and other necessary statuses.

Acc_ProgramCmd Spi_Channel [in]
RegAddress [in]
Data [in]
SpiResponse [out]

Acc_ReturnType Read/write independently any IC register.

Table 7-2. Central Accelerometer SW driver API

Function Name Function Parameters Return Type Function Description

SW Concept

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 33

— Acc_Y_OffsetOverRange - the offset monitor over range flag is set if the acceleration signal of the Y axis reaches
the specified offset limit

— Acc_SpiMisoError - the MISO data mismatch flag is set when a MISO Data mismatch fault occurs
— Acc_DeviceInitFlag - the device initialization flag is set during the interval between negation of internal reset and

completion of internal device initialization
— Acc_SigmaDeltaOverRange - the sigma delta modulator over range flag is set if the sigma delta modulator for

either axis becomes saturated
— Acc_InterDataError - the internal data error flag is set if a customer or OTP register data CRC fault or other internal

fault is detected
— Acc_FuseWarning - the fuse warn bit is set if a marginally programmed fuse is detected
— Acc_InitEnd - the ENDINIT bit is a control bit use to indicate that the user has completed all device and system

level initialization tests, and that Mesquite will operate in normal mode
— Acc_SignData - this parameter determines the format of acceleration data results
— Acc_OffsetMoni - offset monitor circuit is enable/disable
— Acc_ArmOutput - the ARM Configuration type select the mode of operation for the ARM_X/PCM_X,

ARM_Y/PCM_Y pins
— Acc_XAxisSelfTest - enable or disable the self-test circuitry for X axis
— Acc_YAxisSelfTest - enable or disable the self-test circuitry for Y axis
— Acc_XLowPassFilter - the low pass filter selection bits independently select a low-pass filter for X axis
— Acc_YLowPassFilter - the low pass filter selection bits independently select a low-pass filter for Y axis
— Acc_XArmPulseStretch - pulse stretch time for X arming outputs
— Acc_YArmPulseStretch - pulse stretch time for Y arming outputs
— Acc_XArm_PosWin_CountLimit - X axis positive arming window size definitions or arming count limit definitions

function (depending on the state of the Acc_ArmOutput variable)
— Acc_YArm_PosWin_CountLimit - Y axis positive arming window size definitions or arming count limit definitions

function (depending on the state of the Acc_ArmOutput variable)
— Acc_Arm_XNegWinSize - X axis negative arming window size definitions (meaning depend on the state of the

Acc_ArmOutput variable)
— Acc_Arm_YNegWinSize - Y axis negative arming window size definitions (meaning depend on the state of the

Acc_ArmOutput variable)
— Acc_XArmPositiveThreshold - this value contain the X axis positive threshold to be used by the arming function
— Acc_YArmPositiveThreshold - this value contain the Y axis positive threshold to be used by the arming function
— Acc_XArmNegativeThreshold - this value contain the X axis negative thresholds to be used by the arming

function
— Acc_YArmNegativeThreshold - this value contain the Y axis negative thresholds to be used by the arming

function
— Acc_CountValue - value in the register increases by one count every 128 μs and the counter rolls over every

32.768 ms
— Acc_XOffsetCorrection - the most recent X axis offset correction increment/decrement value from the offset

cancellation circuit
— Acc_YOffsetCorrection - the most recent Y axis offset correction increment/decrement value from the offset

cancellation circuit

Parameters of the Acc_GetAccelData API function:
• Spi_Channel (Acc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• AccelCmdX (Acc_XAccelerationDataType) - X axis acceleration data request
• AccelCmdY (Acc_YAccelerationDataType) - Y axis acceleration data request
• Status (Acc_AccelStatusType) output data structure containing the accelerometer X/Y moving values and device

status:
— AccelDataX - X axis acceleration data
— AccelDataY - Y axis acceleration data
— AccelRespTypeX - type of the X axis acceleration response
— AccelRespTypeY - type of the Y axis acceleration response
— Acc_DeviceReset - device reset flag is set during device initialization following a device reset
— Acc_X_OffsetOverRange - the offset monitor over range flag is set if the acceleration signal of the X axis reaches

the specified offset limit
— Acc_Y_OffsetOverRange - the offset monitor over range flag is set if the acceleration signal of the Y axis reaches

the specified offset limit

SW Concept

Airbag Reference Demonstrator, Rev. 3.0

34 Freescale Semiconductor

— Acc_SpiMisoError - the MISO data mismatch flag is set when a MISO Data mismatch fault occurs
— Acc_DeviceInitFlag - the device initialization flag is set during the interval between negation of internal reset and

completion of internal device initialization
— Acc_SigmaDeltaOverRange - the sigma delta modulator over range flag is set if the sigma delta modulator for

either axis becomes saturated
— Acc_InterDataError - the internal data error flag is set if a customer or OTP register data CRC fault or other internal

fault is detected
— Acc_FuseWarning - the fuse warn bit is set if a marginally programmed fuse is detected
— Acc_CountValue - value in the register increases by one count every 128 μs and the counter rolls over every

32.768 ms

Parameters of the Acc_ProgramCmd API function:
• Spi_Channel (Acc_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• RegAddress (uint16) - address of the selected IC register
• Data (uint16) - data
• SpiResponse (uint16) - response to the sent command

A.5 SQUIB Driver
The SQUIB driver is created as a separate software module. The main advantage is full HW abstraction and API independence
in used MCU family. The driver API covers the entire functionality of the squib driver, which means all firing commands and
devices statuses can be controlled by API functions.

The SQUIB Driver is dependent on the COM layer (basic SPI communication) and on the GPIO driver (General Purpose
Input/Output), which provides basic functions for reading status on the arming pins.

Figure 7-7. SQUIB SW Driver Concept

Table 7-3. SQUIB SW Driver API

Function Name Function Parameters Return Type Function Description
Squib_Init Spi_Channel [in] Squib_ReturnType Initialize the SQUIB device and returns the

confirmation of the initialization.
Squib_Fire Spi_Channel [in]

Squib_Fire [in]
Squib_ReturnType This function provide explosion of the selected

SQUIB driver
Squib_GetStatus Spi_Channel [in]

*Status [out]
Squib_ReturnType Return the status of the SQUIB drivers (1A, 1B,

2A and 2B) and common status of the SQUIB IC.
Squib_ProgramCmd Spi_Channel [in]

Command [in]
Data [in]
Delay [in]
SpiResponse [out]

Squib_ReturnType Send any SQUIB command to the IC device and
read its response.

SW Concept

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 35

A.6 SQUIB Parameters Detail Descriptions
Brief description of input and output API parameters is in the following paragraphs. Descriptions contains only a verbal description
of the parameter. Values which each variable acquires is described in the header file SQUIB.h.

Parameters of the Squib_Init API function:
• Spi_Channel (Squib_SpiChannelType) - logical SPI channel number (not physical SPI channel)

Parameters of the Squib_GetStatus API function:
• Spi_Channel (Squib_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Status (Squib_StatusType) output status structure containing the complete status of the ACC

— Squib_Stat1ACurrTime - firing current in 1A squib line and records the “ON” time in which the IMEAS current is
above the threshold for 1A squib

— Squib_Stat1BCurrTime - firing current in 1B squib line and records the “ON” time in which the IMEAS current is
above the threshold for 1B squib

— Squib_Stat2ACurrTime - firing current in 2A squib line and records the “ON” time in which the IMEAS current is
above the threshold for 2A squib

— Squib_Stat2BCurrTime - firing current in 2B squib line and records the “ON” time in which the IMEAS current is
above the threshold for 2B squib

— Squib_Stat1ACurrent - line 1A FET driver current limit measurement status
— Squib_Stat1BCurrent - line 1B FET driver current limit measurement status
— Squib_Stat2ACurrent - line 2A FET driver current limit measurement status
— Squib_Stat2BCurrent - line 2B FET driver current limit measurement status
— Squib_Stat1ALowSideThermalShut - 1A Low Side Squib driver thermal shutdown status
— Squib_Stat1AHighSideThermalShut - 1A High Side Squib driver thermal shutdown status
— Squib_Stat1BLowSideThermalShut - 1B Low Side Squib driver thermal shutdown status
— Squib_Stat1BHighSideThermalShut - 1B High Side Squib driver thermal shutdown status
— Squib_Stat2ALowSideThermalShut - 2A Low Side Squib driver thermal shutdown status
— Squib_Stat2AHighSideThermalShut - 2A High Side Squib driver thermal shutdown status
— Squib_Stat2BLowSideThermalShut - 2B Low Side Squib driver thermal shutdown status
— Squib_Stat2BHighSideThermalShut - 2B High Side Squib driver thermal shutdown status
— Squib_Stat1VdiagResult - firing supply voltage (VDIAG_1) diagnostics - voltage level on the VDIAG_1 pin
— Squib_Stat1HSSafingSens - High Side Safing sensor diagnostics - monitors the VFIRE_XX pin connection to the

VDIAG_1 pin
— Squib_Stat2VdiagResult - firing supply voltage (VDIAG_2) diagnostics - voltage level on the VDIAG_2 pin
— Squib_Stat2HSSafingSens - High Side Safing sensor diagnostics - monitors the VFIRE_XX pin connection to the

VDIAG_2 pin
— Squib_1AShBatt - Squib short-to-battery diagnostics - voltage level on the SENSE_1A pin
— Squib_1AShGnd - Squib short-to-ground diagnostics - voltage level on the SENSE_1A pin
— Squib_1BShBatt - Squib short-to-battery diagnostics - voltage level on the SENSE_1B pin
— Squib_1BShGnd - Squib short-to-ground diagnostics - voltage level on the SENSE_1B pin
— Squib_2AShBatt - Squib short-to-battery diagnostics - voltage level on the SENSE_2A pin
— Squib_2AShGnd - Squib short-to-ground diagnostics - voltage level on the SENSE_2A pin
— Squib_2BShBatt - Squib short-to-battery diagnostics - voltage level on the SENSE_2B pin
— Squib_2BShGnd - Squib short-to-ground diagnostics - voltage level on the SENSE_2B pin
— Squib_Stat1ALowSideCont - continuity status for the Low Side driver SQB_LO_1A connection
— Squib_Stat1BLowSideCont - continuity status for the Low Side driver SQB_LO_1B connection
— Squib_Stat2ALowSideCont - continuity status for the Low Side driver SQB_LO_2A connection
— Squib_Stat2BLowSideCont - continuity status for the Low Side driver SQB_LO_2B connection
— Squib_1AOpnShBatt - Squib 1A harness short-to-battery status with an open Squib
— Squib_1AOpnShGnd - Squib 1A harness short-to-ground status with an open Squib
— Squib_1BOpnShBatt - Squib 1B harness short-to-battery status with an open Squib
— Squib_1BOpnShGnd - Squib 1B harness short-to-ground status with an open Squib
— Squib_2AOpnShBatt - Squib 2A harness short-to-battery status with an open Squib
— Squib_2AOpnShGnd - Squib 2A harness short-to-ground status with an open Squib
— Squib_2BOpnShBatt - Squib 2B harness short-to-battery status with an open Squib
— Squib_2BOpnShGnd - Squib 2B harness short-to-ground status with an open Squib
— Squib_StatVfireBTested - reports VFIRE testing has been finished

SW Concept

Airbag Reference Demonstrator, Rev. 3.0

36 Freescale Semiconductor

— Squib_StatVfire - reports of the voltage level on the VFIRE_XX pin
— Squib_StatV1diagV1 - firing supply voltage status - VDIAG_V1 voltage on the VDIAG1 pin
— Squib_StatV1diagV2 - firing supply voltage status - VDIAG_V2 voltage on the VDIAG1 pin
— Squib_StatV1diagV3 - firing supply voltage status - VDIAG_V3 voltage on the VDIAG1 pin
— Squib_StatV1diagV4 - firing supply voltage status - VDIAG_V4 voltage on the VDIAG1 pin
— Squib_StatV2diagV1 - firing supply voltage status - VDIAG_V1 voltage on the VDIAG2 pin
— Squib_StatV2diagV2 - firing supply voltage status - VDIAG_V2 voltage on the VDIAG2 pin
— Squib_StatV2diagV3 - firing supply voltage status - VDIAG_V3 voltage on the VDIAG2 pin
— Squib_StatV2diagV4 - firing supply voltage status - VDIAG_V4 voltage on the VDIAG2 pin
— Squib_StatFen1 - status of the FEN_1 arming input pin
— Squib_StatFen2 - status of the FEN_2 arming input pin
— Squib_StatFen1Latch - FEN1 latch status
— Squib_StatFen2Latch - FEN2 latch status
— Squib_StatRdiag - reports status of the R_DIAG resistor
— Squib_StatRlimit1 - reports the R_LIMIT_1 resistor value - reference currents derived by the R_LIMIT_1 and

R_LIMIT_2 resistors
— Squib_StatRlimit2 - reports the R_LIMIT_2 resistor value - reference currents derived by the R_LIMIT_1 and

R_LIMIT_2 resistors
— Squib_DeviceType - identifier the squib IC as a four- or two-channel squib driver IC
— Squib_StatVfireRtn1 - reports the resistance on the VFIRE_RTN1 pin for open pin connections
— Squib_StatVfireRtn2 - reports the resistance on the VFIRE_RTN2 pin for open pin connections
— Squib_Stat1AResistance - Squib 1A resistance value
— Squib_Stat1BResistance - Squib 1B resistance value
— Squib_Stat2AResistance - Squib 2A resistance value
— Squib_Stat2BResistance - Squib 2B resistance value
— Squib_Stat1ALoopsShorts - reports shorts between 1A squib lines and other firing loops
— Squib_Stat1BLoopsShorts - reports shorts between 1B squib lines and other firing loops
— Squib_Stat2ALoopsShorts - reports shorts between 2A squib lines and other firing loops
— Squib_Stat2BLoopsShorts - reports shorts between 2B squib lines and other firing loops
— Squib_Stat1ALoopsShortsAddIC - reports shorts between squib 1A loop and other loops on additional ICs
— Squib_Stat1BLoopsShortsAddIC - reports shorts between squib 1B loop and other loops on additional ICs
— Squib_Stat2ALoopsShortsAddIC - reports shorts between squib 2A loop and other loops on additional ICs
— Squib_Stat2BLoopsShortsAddIC - reports shorts between squib 2Bloop and other loops on additional ICs

Parameters of the Squib_Fire API function:
• Spi_Channel (Squib_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Squib_Fire (Squib_FireType) - firing commands for squibs pairs or for separate Low/High side

Parameters of the Squib_ProgramCmd API function:
• Spi_Channel (Squib_SpiChannelType) - logical SPI channel number (not physical SPI channel)
• Command (Squib_ProgCmdType) - Squib command
• Data (uint8) - data
• Delay (uint8) - Squib diagnostic delay time
• SpiResponse (uint8) - response to the sent command

Airbag Reference Demonstrator Implementation details

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 37

Appendix B Airbag Reference Demonstrator Implementation
details

B.1 Airbag Reference Demonstrator Schematics

Figure 7-8. Block Schematic of the ARD Board

� �

� �

� �

� �

� �

�
�

�
�

	
	

��
��
��
�	
��
�

��
��

��
�

��
��
��
�	
��
�

��
��
�

��
�

��
��
��
�	
��
�

��
��
�

��
�

��
��
��
�	
��
�

��
��
�

��
�

��
��
��
�	
��
�

��
��
�

�

��

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

���
���

����
�

����
�

����
�

����
�

���

���

���

���

���

���

���
���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�	

�

�

�

�

�

�

���

���

���

���

�
�
�

�
�
�

����
�

����
�

����
�

����
�

���
�

�

�

�

�

�

�

�

�

�

�

��
�

��
�

��
�

��
�

�
�

��

�

�
�

�

�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

�

�

�
�

�
�

��

�

�
�

��

�

��
�

��
�

��
�

��
�

��
�

�
�

��

�

��
�

��
�

�
�

�

�
�

�

��

�

�
�

�

��

�

�
�

�

��

�

�
�

�

��

�

�
�

�

��

�

�
�

�

��

�

�
�

�

��

�

�
�

�

��

�

�

�

��
�

�
�

�
�

�
�

�

�

�
�

	

�

�
	

�

�
�

�

�

�

�

�

��

�
�

�
�

�
�

�

�

�

�
�

�
�

�
 !

"
#$

%&
�#

'()
*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�.
)4

7!
89

&�
-'

,0
)

&�
:9

&�
::

�

�
��

�
�

&�
�
�
�;

�

:
�

�
�

 !
"

#$
%&

�#
'()

*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�.
)4

7!
89

&�
-'

,0
)

&�
:9

&�
::

�

�
��

�
�

&�
�
�
�;

�

:
�

�
�

 !
"

#$
%&

�#
'()

*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�.
)4

7!
89

&�
-'

,0
)

&�
:9

&�
::

�

�
��

�
�

&�
�
�
�;

�

:
�

�

�
<

�
�	

�
���

���
��

�
�

�

�
�

=

�
�

�
�

�

�
��

�

�

�
�

�
�

�

�
�

��

�

�
�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

���

�
�

�
�

�
�

�
�

�
�

��
�

���

���

���

���

�	
�

����
�

����
�

����
�

����
�

���
���

���

���
���

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

���

�
�
�

�
�
�

���

���

���

���

���

���
�

����
�

����
�

����
�

����
�

�
�

�
&>

&�
�

�
��

�&

�

�
�

��
�

�
�

�
��

�

�
��

�

�

�

�
�

�
�

�

�

�
�

��

�

�

��
�

�
�

��
�

�
�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�

���
�� ���

�
��

�

�

�
�

�
�

�

�
�

��

�

�
�

�
�

�
=

�
�

�
�

�

�
�

=

�
��

�
�

�

�
�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�
�	

�

�

�

�

�

�

�

�

�

�
��

�
�

�
�

�

	
�

�
��

�

�

�

�
�

�
�

�

�

�
�

��

�

�

�
�

�
��

��

�

��

�

�
�

�
�

�
�

�

�
�

�

�

�
�	
�>

�

�

��

�
=

�
�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

�

�

�
�

��
�

��
�

�
�

�

�
�

��
�

��
�

��
�

��
�

�
�

��

�

���

�
��

�
�

�

�
�

�

��
�

��
�

��
�

��
�

��
�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

�

�

�
��

�
�

�
�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

�

�

�

�

�
�	

���
��

����

�

�

�

�

�

Airbag Reference Demonstrator Implementation details

Airbag Reference Demonstrator, Rev. 3.0

38 Freescale Semiconductor

Figure 7-9. ARD Board - MCU + Central Accelerometer

� �

� �

� �

� �

� �

�
�

�
�

�
�

�
�

��
��

�

��
��

��
�

��
��

��
��

�
��

��
��

�

�!
�

��
"�

��
�!

"!
��

�!
 !

�

�
�

�
�

�
	

�
�

�

�
�

�
�

�

�

�
�

�

�

�

�
�

�
�

�
�

�
�

�

�
�

�

�

�
�

�

��
�

�
�

�

�

�

�

�
��

�

�

�

�
��

�

�

��
�

�
�

�

�

�

�

�
�

�
�

�

�

�
�

�
�

�

�

�

�
�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
=

�
�

�
��

�
�

�

�

�

�

�

�

�

�

�
�	

�

�

�

�
�

�

�

�

�

�

�

�
��

�
�

�
�

�
�

�

�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�

�
��

�

�

�
�

�
�

�

�

�
�

�
�

�

�

�
�

�

�
�

�

�
�

=

�
�

�

�

�

�
�

=

�
��

�

�

�

�
�

�

�
�

�
�

�

�

�

�
�	

�

�

�

�

�

�
�

�
��

�
�

�

�
�

�
�

�

�

�
�

�
�

�
�

	
�

�
�

�
�

�
�

�

���
��

�
��

�

�

�

�
�

�
�

�

�

�
�

�

�

�

�
�

�

�

���
��

�
�

�

�

�
�

�
�

�
�

��
�

�

�
�

�
�

�
�

�
�

�

�

�

�
=

�
�

�
�

�
�

�
�

�
�

��
�

�
�

��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�
�

�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

=

�

�
�

�
�

�
�

�

�
�

�

�
��

�

�

�
�

�
�

�

�
�

��

�

�
�

�

�

�

�
=

�
�

�
��

�
�

�
�

�
�

�
�

�
��

�

�

�

�
�

�
�

�

�

�
�

��

�

�

�
�

�

�
�

�

��
�

�
�

��
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�	

�

�

�

�

�

�

�

�

�

�
��

�
�

�
�

�
�

�

�
�

=

�
 !

"
#$

%&
�#

'()
*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�.
)4

7!
89

&�
-'

,0
)

&�
:9

&�
::

�

;
�
�

&�
&�
	�
��
��

&�
��
	�
	�
��

	�
	� �

�

�
�

 !
"

#$
%&

�#
'()

*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�.
)4

7!
89

&�
-'

,0
)

&�
:9

&�
::

�

;
�
�

&�
&�
	�
��
��

&�
��
	�
	�
��

	�
	� �

�

�
�

 !
"

#$
%&

�#
'()

*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�.
)4

7!
89

&�
-'

,0
)

&�
:9

&�
::

�

;
�
�

&�
&�
	�
��
��

&�
��
	�
	�
��

	�
	� �

�

�

?�
�

�
�

�
&�

�
�

?�
�

�
�

�
&�

�
�

�
�

�
��

�

�
��

�:
�

�
��

�:
�

�
��

�:
�

�
��

�:
�

�
��

��
5

�
��

��
5

�
��

:@
��

5
�

��
:@

��
5

�
��

�
��

��
A�

�
�

��
�

��
��

A�
�

�

�

	
�

�
=

�
�

�

�

	
�

�
=

�
�

�
�

��

�
�

�

�
�

��

�:
�

�
��

�:
�

�
��

�@
��

�
��

�@
��

�
��

:@
��

�
5

�
��

:@
��

�
5

�
��

�:
�

�
��

�:
�

�
��

:@
��

�
5

�
��

:@
��

�
5

�
��

=
�

��
�

�
�

��
=

�
��

�
�

�
�

�
��

�:
�

�
��

�:
�

�
��

�:
�

�
��

�:
�

�
�:

�@
��

�
�:

�@
��

�
��

�:
�

�
��

�:
�

�
��

:@
��

5
�

��
:@

��
5

�
��

�
�

��

:�
<

�
�

�
��

�
�

��

:�
<

�
�

�
�

�
�

�

�
�

�
��

�
�

=
�

�
�

�
�

�

�
�

�
B�

�
�

�
�

�
�

�

��

�
�

��
�:

���
�

�
�

�
��

�
�

�

��

�
�

�
�

�

�
�

��

���
�

�
�

��

�
�

�
�

�
��

��

���
�

�
��

��
5

�
��

��
5

�
��

��
�

A
�

��
��

�
A

�
�

�

�
��

�@
:�

�
��

�@
:�

�
��

:@
��

5
�

��
:@

��
5

�
��

:@
��

�
5

�
��

:@
��

�
5

�
��

�
��

��
A�

�
�

��
�

��
��

A�
�

�

�

	
�

�
=

�
�

�

�

	
�

�
=

�
�

�
�

��

�
�

�

�

�
��

:@
��

5
�

��
:@

��
5

�
��

�@
��

�
��

�@
��

�
��

�
�

�
�

��
�

�
�

�
�

�
�:

:@
��

5
�

�:
:@

��
5

�
��

�
�

��
��

�
�

�
��

�
�

��
�

�
��

��
�

�
�

��
� �

:

��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�

�
��

�
	

:
��

�
	

�
��

�
	

�
��

�
	

�
��

�
	

�
�:

�
	

�
��

�
	

�
��

�
	

�
��

�
�

:B
�

��
<

�:

�
�

�B
��

<
��

�
�

�
��

�
�

�
��

�
�

�B
�

�
��

��

�
�

�B
�

�
�

��

�
�

�B
�

�
�

	
��

�
�

�B
�

�
��

�
B�

�
��

��
��

�
?�

B�
�

?�
B�

�
�

�

�B
�

�

:B
�

�
�

�

:
��

�
?�

B�
�

?�
B�

�
�

�

�B
�

�
�:

B�
�

�

�
:

��

�
�

�

�
:B

�
�

:
��

��
�

�

:B
�
�

�
��

�
��

�
:B

�
�

�

�
:B

�
�

�

�
�B

�
�

�
��

�
�

:B
��

�

�
:B

��
�

�

�B
�
�

�
��

�
�

�
�:

B�
�

�

�
�B

�
�

�

�
:B

�
�

�

�
�B

�
�

�
��

�
�

�
:B

��
�

�

�B
��

�

�
:B

��
�

�

�B
�
�

�
�:

��
�

��
�

:B
�

��
�

�B
�

�
�

:B
�

�
�

:B
�

�
:

�

��
�

��
�

�B
�

�
�

��
B�

�
�

�B
�

�
�

�B
�

�
�

�

��
�

��
�

�B
�

�
�

�B
�

�
�

�B
�

�
�

�B
�

�
�

�

��
�

��
�

�B
�

�
�B

�
�
�

�B
�

�
�

�B
�

�
�

�

��
�

��
�

�B
�

��
�

�B
�

�
�

�B
�

�
�

�B
�

�
�

�:

��
�

��
�

�B
�

�
�

��
B�

�
�

�B
�

�
�

�B
�

�
�

��

��
�

��
�

�B
�

�
�

�B
�

�
�

�B
�

�
�

�B
�

�
�

��

�
�

�
:B

�
�

:
��

��
�

:B
�

�
�

��

�
�

�
�B

�
�

�
��

��
�

�B
�

�
�

��

��
�

:B
�

�:
�

��
�

�B
�

��
�

��
�

�B
�

��
�

��
�

�B
�

��
�

��
�

�B
�

��
��

�
�

�
�

�

�B�
�

�
�B

�
��

��

��
�

�B
�

��
��

��
�

�B
�

��
��

�

�
::

B

�

::
��

�

�
:�

B

�

:�
��

�

�
:�

B

�

:�
��

�

�
:�

B

�

:�
��

�

�
:�

B

�

:�
��

�

�
:�

B

�

:�
��

�

�
:�

B

�

:�
��

�

�
:�

B

�

:�
��

���
��

���
�
��

���5
�

������
��

����
��

�����
��

�����
��

���
�:

���
��

����
�:

����
�:

����
��

���
�
��

������
��

�����
��

�����
��

�
�

�
�

B	
�

�
�

��

�
�

�
�

�
�:

�
�

�

�

��

�
�

�
��

��
�

�
��

�
��

:@
��

5
�

��
:@

��
5

�
��

:@
��

5
�

��
:@

��
5

?�
��

�
�

�

�

�
�

?�
��

�
�

�

�

�
�

� � � � � �

Airbag Reference Demonstrator Implementation details

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 39

Figure 7-10. Airbag System Basis Chip

� �

� �

� �

� �

� �

�
�

�
�

	
	

�
�

�

�

�

��

�
���

	
�

�
�

�
�

	
�

�
�

�
�
�

�
�

	
�

�
�

�
�
�

�
�

	
�

�
�

�
�

	��������

	��������

�
�

�

	
�

��
�
�

�
�

	
�

��
�
�

�
�

	
�

��
�
�

�
�

	
�

��
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�
�

�

������

�
�

�
�

�
�

�
�

�

�

�

�
�

�
��

��

�

��

�
��

�

�

�
�

�
�

�

�

�
�

�
��

�

�

�
�

�

�
�

�
�

�

�

�
��

�

�

�

�
�

�

�
�

��

�

�

�
�

�

�
�

�

�

�

�
�

=
�

�
�

�
�

�
�

�
=

�
�

�
�

�
�

�

��

�

��

�
�

�
��

�
��

�
�

�

�
=

�
�

�
��

�

�
�

�
�

�
�

�

�
�

�

�

��

�
�

��

�

�
�

��

�

�
�

��

�

�
�

�

�

�

�
�

�
�

�

�
�

��
�

��
�

�
�

��
�

�
�

�

��
�

��
�

��
�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

��

�

�	���

����

�
�

�

�

�
�

�
�

�

�

�
�

��
�

�
�

=
�

�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

��

�

��
�

��
�

��
�

��
�

��
�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

�

�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

�

�

�
�

�

�

�

�
��

�
�

�
	

�
�

�

�
�

�

�

�

�
�

�
�

�

���
��

�
��

�
�

���
���

�
�

�
�

�
�

�
��

��

�

��

�

�
�

�
�

�
�

�

�
	

�>

�

�

��

�
=

�
�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

��

� ��
�

��
�

��
�

��
�

��
�

�
�

�
�

�
�

�
�

�
��

��
�

�
�

�

�
�

�
��

�

�

�

�
�

�
�

�

�

�
�

��

�

�

�
�

�

�
�

�

�
�

�

�

�
�

�
�

��

���
�

��
�

��
�

��
�

��
�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

�

�

�
��

�
�

�
�

�
�

�
 !

"
#$

%&
�#

'()
*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�
,$

7!
89

&�
-'

,0
)

&�
�9

&�
::

�

�
���

��
&�
��
�	
�

&�
��
��

&�
��

C

�
�

�
�

 !
"

#$
%&

�#
'()

*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�
,$

7!
89

&�
-'

,0
)

&�
�9

&�
::

�

�
���

��
&�
��
�	
�

&�
��
��

&�
��

C

�
�

�
�

 !
"

#$
%&

�#
'()

*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�
,$

7!
89

&�
-'

,0
)

&�
�9

&�
::

�

�
���

��
&�
��
�	
�

&�
��
��

&�
��

C

�
�

�

�
	

�

<
��

	
�

�
��

��

�
	

�

<
��

	
�

�
��

��

�

�
��

�
��

�:
�

�
��

�:
�

#
�

��
��

:.
5

#
�

��
��

:.
5

�
��

��
5

�
��

��
5

�
��

�
�

��
��

�
��

�
�

��
��

�
�

#
�

��
�.

5
#

�
��

�.
5

�
�:

�:
�

�
�:

�:
�

#�
��

�@
��

5
#�

��
�@

��
5

�
��

:@
��

�
5

�
��

:@
��

�
5

�
��

��
::

�
5

�
��

��
::

�
5

�
��

�@
:�

�
��

�@
:�

�
��

�:
$5

�
��

�:
$5

�
��

�:
$5

�
��

�:
$5

��
�

��
:�

�

��
�

��
:�

�

�
��

�:
:�

�
��

�:
:�

�
�� :

�
�� :

�
��

��
:�

5
�

��
��

:�
5

��
�

��
:�

�

��
�

��
:�

�
�

��
��

::
�

5

�
��

��
::

�
5

�
��

��
:�

5
�

��
��

:�
5

�
��

�:
:.

5

�
��

�:
:.

5

�
�:

��
�

5

�
�:

��
�

5

�
��

�:
�

�
��

�:
�

��
�

��
�

�
��

�
��

�
�

�
�

�
��

�:
�

�
��

�:
�

�
��

�:
�

�
��

�:
�

�
��

:@
:�

��
5

�
��

:@
:�

��
5

�
��

��
�

5

�
��

��
�

5

�
��

��
�&

�
�
�

�
��

��
�&

�
�
�

�
��

��
5

�
��

��
5

�
��

�:
:�

�
��

�:
:�

�
��

�
�

�	

�
��

�
�

�	

�
�

�
��

�
�

��
��

�

�
��

�
�

��
��

�

�

�
�

�

�
�

�
�

�
�

	
�

�
�

�

�
�

�

�
�

�
�

��

�

�

�
�

��

�

�

�
�

��

�

�

�
�

��

�

�

�
�

�

�

�
�

�:

�
�

��

�
�

��

�
�

�
��

�
��

��

�
�

��

�

��
=

�
�

��

�
�

��

�

��
�

�
��

�
��

�
�

�
��

�
�

��

�

�:

�
�

��

�

��

��
�

�
�

�
��

�
�

�

�

��
��

��
�

��
��

�
��

��
�

��
��

�
��

��
�

��
��

�
��

��
�

�:
��

�
��

��
�

��

�

�
�

�
�

�
��

��
�

��
�

�
�

��

�

�
�

��
�

�
�

�
�

��

5�
�

��

5�
��

��

�
�

�
�

�
�

�:

���

��

�
�

�
��

���
��

�
�

�
��

	
�

��
�
�

�
�

��
	

�
��

�
�

�
�

��

	
�

�
�

�
�
�

�
�

��
	

�
�

�
�

�
�

�
�

��

�
�

�
�

�

�

��

	
�

�
�

�
�

�
�:

	
�

�
�

�
�

��

�
	

�
�

��

�
�

�
�

��

	
�

��
�

�
��

	
�

��
�

��

�
�

�
��

�

�
�

��

����
��

�
�

=
�

�
��

�
�

�
�

�:
�

�
�

�
��

�
�

�
�

�
��

�
	

�
�

�

�

��

�
	

�
�

�
��

�
��

:@
��

.5
�

��
:@

��
.5

�
��

�
�

��
6�

�6
5

�
��

�
�

��
6�

�6
5�

�

�
��

�:
�

�
��

�:
�

�
��

��
::

�
5

�
��

��
::

�
5

�
��

�
�

��
��

�
��

�
�

��
��

�
�

�
��

:@
��

5
�

��
:@

��
5

�
�:

:@
��

5
�

�:
:@

��
5

�
��

��
::

�
5

�
��

��
::

�
5

�
��

�:
�

�
��

�:
�

Airbag Reference Demonstrator Implementation details

Airbag Reference Demonstrator, Rev. 3.0

40 Freescale Semiconductor

Figure 7-11. Squibs

� �

� �

� �

� �

� �

�
�

�
�

	
	

�
�

�

�

�

�

�

��

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

��

�

�
��

�

�

�
��

�

�

�
�

�
�

�
�

�
��

�
�

�

�

�

�
��

�

�

�
�

�
�

�
�

�
��

�
�

�

�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

=

�
�

�
�

�

�
�

=

�
�

�
�

�

�

�

��

�

�

��

�

�

��

�
�

�

�
�

�

��

�

��

�

��

�

��

�

�
�

�

�
�

�
��

�

�
�

�
�

�

�

��

�

��

�

��

�

��

�

��

�

�
�

�

�
�

�

��

�

�
�

�

�
�

�

��

�

��

�

��

�

�
�

�

�
�

�

��

�

��

�

��

�

�
�

�
��

�

��

�

�
�

�
��

�

��

�

��

�

�
�

�

�
�

�

��

�

��

�

�
�

�

�

�

�

�

��

�
�

�

�

�

�

�

��

�
�

�
�

�

�
��

�

�

�
�

��

�

�
�

�

�
�

�

�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

=

�
�

�
�

�

�
�

�
�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

�
�

�

�
�

�
�

�
�

�
 !

"
#$

%&
�#

'()
*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�
,$

7!
89

&

.%

.4
'&�

�9
&�

::
�

�D
 �
�

�
�

�
�

 !
"

#$
%&

�#
'()

*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�
,$

7!
89

&

.%

.4
'&�

�9
&�

::
�

�D
 �
�

�
�

�
�

 !
"

#$
%&

�#
'()

*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�
,$

7!
89

&

.%

.4
'&�

�9
&�

::
�

�D
 �
�

�
�

�

�
��

�:
�

�
��

�:
�

�
��

:@
��

5
�

��
:@

��
5

�
��

:@
��

5
�

��
:@

��
5

�
��

:@
��

5
�

��
:@

��
5

�
��

:@
��

5
�

��
:@

��
5

�
��

�:
�

�
��

�:
�

�
��

�:
�

�
��

�:
�

�
��

�
�

��
��

��
�

�
��

�
�

��
��

��
�

�
<

	

�

�

�

�

�
<

	

�

�

�

�

�
�

�

�

�
�

���
�

�
��

�
�

���
�:

�
5�

�
�

�
	

��
�

<
	

�
�

�	
��

�
�

�
�

�

�

�

�
�

�
�

�

�
��

�

�
5�

�
�

�

�

5�
�

�
��

�

�

��
��

�
��

�
�

�
�

�

�

	
��

�
<

	

�

�

�

	
��

�
<

	

�

�

�

	
��

�
�

�
�

�

�

	
��

�

�

��
��

�
��

5�
�

�
�:

�
<

	

�

�

�	

��
�

5�
�

�

�

	
��

�

�

�

�

��

�
5�

�
�

�
��

��

�
5�

�
�

�
��

��

�
�

�

�

�
��

�
5�

�
�

�

��
�

<
	

�
�

�

��

�
�

�
��

�
�

�:

�
�

�
�

�

�

��

�
<

	

�

�

�

��

�
��

:@
��

5
�

��
:@

��
5

�
��

�
�

��
��

��
�

�
��

�
�

��
��

��
�

�
<

	

�

�

�

�

�
<

	

�

�

�

�

�
�

�

�

�
�

���
�

�
��

�
�

���
�:

�
5�

�
�

�
	

��
�

<
	

�
�

�	
��

�
�

�
�

�

�

�

�
�

�
�

�

�
��

�

�
5�

�
�

�

�

5�
�

�
��

�

�

��
��

�
��

�
�

�
�

�

�

	
��

�
<

	

�

�

�

	
��

�
<

	

�

�

�

	
��

�
�

�
�

�

�

	
��

�

�

��
��

�
��

5�
�

�
�:

�
<

	

�

�

�	

��
�

5�
�

�

�

	
��

�

�

�

�

��

�
5�

�
�

�
��

��

�
5�

�
�

�
��

��

�
�

�

�

�
��

�
5�

�
�

�

��
�

<
	

�
�

�

��

�
�

�
��

�
�

�:

�
�

�
�

�

�

��

�
<

	

�

�

�

��

�
��

�:
�

�
��

�:
�

�
��

�:
�

�
��

�:
�

�
��

:@
��

5
�

��
:@

��
5

�
��

�:
�

�
��

�:
�

Airbag Reference Demonstrator Implementation details

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 41

Figure 7-12. Main Automotive Connector

� �

� �

� �

� �

� �

�
�

�
�

	
	

��
�

��
�

��
�

��
�

�
	

�

��
�

��
�

�
�

�

�

�

�

�

�

�

��
�

��
�

��
�

��
�

��
�

�
	

�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�
�

�
�

�

�

�
�

�
�

�

�

��

�

��

�

��

�

��

�

�
�

�
�

�

�

�
�

�
�

�

�

��

�

��

�

��

�

��

�

�

�

�

�

�

�

��
�

�
�

�
��

�

�
�

��

�

�
�

��

�

�
�

�

�
�

�
��

�
�

�
��

�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

�

��

�

�
�

�

��

�

�
�

�

��

�

�
�

�

�
�

�

��

�

�
�

�

��

�

�
�

�

��

�

�
�

�

��

�

��

�

�
�

�

�

��
�

��
�

��
�

��
�

�
	

�

�
�

��

�

�
�

��

�

�
�

��

�

�
�

��

�

��
�

��
�

�
�

�

�
�

�

�
�

�

�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

�

�

�

�

�

�

��
�

��
�

��
�

��
�

��
�

�
�

�

�
�

�
��

�

�
�

��

�

�
�

��

�

�
�

��

�

�
 !

"
#$

%&
�#

'()
*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�
)7

$)
47

!8
9&�

-'
,0

)
&�

�9
&�

::
�

�
��

�	
��
��

�
�

�
�

 !
"

#$
%&

�#
'()

*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�
)7

$)
47

!8
9&�

-'
,0

)
&�

�9
&�

::
�

�
��

�	
��
��

�
�

�
�

 !
"

#$
%&

�#
'()

*

�
#+

)
�

,-
./

)$
'&�

./
0)

�

)1

�
!'

)*
�

2)
)'

,3

�
!%

)&
�#

'()
*

��

�
&�

(!
44

#3#
-!

'#,
$*

5�
�

*
5�

�
�

*
�

�
	

�*

�
�

�
6�

�
�

�
�

&�
�

5*
&�

�
56

�
�

�
�

�
�

�
��
��
�&
�
	

	�
	�
�	

&

	�
��
�

�

�
)7

$)
47

!8
9&�

-'
,0

)
&�

�9
&�

::
�

�
��

�	
��
��

�
�

�

�
��

:@
:�

��
5

�
��

:@
:�

��
5

�
��

�@
�

�
��

�@
�

�
��

�:
$5

�
��

�:
$5

�
�:

�
:@

��
5

�
�:

�
:@

��
5

�
��

�@
�

�
��

�@
�

�
��

:@
:�

��
5

�
��

:@
:�

��
5

�
��

:@
��

5
�

��
:@

��
5

�
��

�
:@

��
5

�
��

�
:@

��
5

�
��

�@
�

�
��

�@
�

�
��

�:
$5

�
��

�:
$5

�
��

:
:@

��
5

�
��

:
:@

��
5

�
�:

�
:@

��
5

�
�:

�
:@

��
5

?�
�

�
�

�

�

�
��

?�
�

�
�

�

�

�
��

�
�

�
� �

� �
�

�
�:

��
��

��
��

��
��

��
��

��
�:

��
��

��
��

��
��

��
��

��
�:

��
��

��
��

��
��

��
��

��
�:

��
��

��
��

��
��

��
��

��
�:

��
��

��
��

��
��

�
��

�
:@

��
5

�
��

�
:@

��
5

�
��

:@
:�

��
5

�
��

:@
:�

��
5

�
�:

�
:@

��
5

�
�:

�
:@

��
5

�
�:

�
:@

��
5

�
�:

�
:@

��
5

�
��

:@
:�

��
5

�
��

:@
:�

��
5

�
��

�
:@

��
5

�
��

�
:@

��
5

�
��

�:
$5

�
��

�:
$5

�
��

�:
$5

�
��

�:
$5

�
��

�
:@

��
5

�
��

�
:@

��
5

�
�:

�
:@

��
5

�
�:

�
:@

��
5

�
�:

:
:@

��
5

�
�:

:
:@

��
5

�
��

:@
:�

��
5

�
��

:@
:�

��
5

�
��

�
:@

��
5

�
��

�
:@

��
5

�
��

�
:@

��
5

�
��

�
:@

��
5

�
��

�:
$5

�
��

�:
$5

�
�:

�
:@

��
5

�
�:

�
:@

��
5

�
��

�:
$5

�
��

�:
$5

�
��

:@
:�

��
5

�
��

:@
:�

��
5

�
��

�
:@

��
5

�
��

�
:@

��
5

�
�:

�
:@

��
5

�
�:

�
:@

��
5

�
��

�
:@

��
5

�
��

�
:@

��
5

�
��

:@
:�

��
5

�
��

:@
:�

��
5

�
��

:@
��

5
�

��
:@

��
5

�
��

:@
:�

��
5

�
��

:@
:�

��
5

�
�:

�:
$5

�
�:

�:
$5

�
�:

�
:@

��
5

�
�:

�
:@

��
5

�
��

�@
�

�
��

�@
�

�
��

�:
$5

�
��

�:
$5

�
�:

�
:@

��
5

�
�:

�
:@

��
5

�
��

�:
$5

�
��

�:
$5

Airbag Reference Demonstrator Implementation details

Airbag Reference Demonstrator, Rev. 3.0

42 Freescale Semiconductor

B.2 ARD Placement and Layout

Figure 7-13. Top View and Placement

Airbag Reference Demonstrator Implementation details

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 43

Figure 7-14. Bottom View

B.3 Bill of Materials
Table 7-4. Bill of Materials

Item
Number Quantity Part Reference Value Description

1 34

C11,C12,C14,C16,C21,C22,C46,C61,C64,
C72,C73,C74,C98,C99,C100,C101,C102,
C103,C104,C105,C106,C107,C108,C109,
C110,C111,C112,C113,C114,C115,C116,
C117,C118

0.1 μF CAP CER 0.10UF 25V 10% X7R 0603

2 3 C13,C15,C17 0.22 μF CAP CER 0.22UF 16V 10% X7R 0603
3 4 C18,C19,C45,C51 1.0 μF CAP CER 1.0UF 25V 10% X5R 0603
4 9 C31,C81,C82,C83,C84,C85,C86,C87,C88 0.047 μF CAP CER 0.047UF 50V 10% X7R 0603
5 1 C32 1.0 μF CAP ALEL 1.0UF 50V 20% - SMT
6 1 C33 100 μF CAP ALEL 100UF 25V 20% - SMT
7 1 C34 220 μF CAP ALEL 100UF 50V 20% - RADIAL TH
8 1 C35 0.22 μF CAP CER 0.22UF 50V 5% X7R 1206
9 4 C36,C37,C38,C39 2200 μF CAP ALEL 2200UF 35V +30/0% - RADIAL

10 5 C40,C62,C63,C65,C66 0.1 μF CAP CER 0.1UF 50V 5% X7R 0805
11 1 C41 330 pF CAP CER 330PF 50V 5% C0G 0603

12 11 C42,C49,C89,C90,C91,C92,C93,C94,C95,
C96,C97 10 nF CAP CER 0.01UF 50V 5% X7R 00603

13 1 C43 47 μF CAP TANT 47UF 16V 10% - 6032-28
14 1 C44 -0.12 μF CAP CER 0.12UF 50V 10% X7R 0603

Airbag Reference Demonstrator Implementation details

Airbag Reference Demonstrator, Rev. 3.0

44 Freescale Semiconductor

15 1 C47 4.7 μF CAP TANT 4.7UF 10V 10% - 3216-18
16 1 C50 47 μF CAP TANT 47UF 25V 10% - 7343
17 3 C52,C75,C77 220 pF CAP CER 220PF 50V 10% X7R 0603
18 1 C71 2.2 μF CAP CER 2.2UF 25V 10% X7R 0805
19 1 C76 2200 pF CAP CER 2200PF 50V 5% X7R 0603
20 1 D11 RED LED RED SGL 2MA 0805 SMT
21 1 D12 YELLOW LED YEL SGL 2MA 0805 SMT
22 1 D31 ES1D-13-F DIODE RECT 1A 200V SMA SMT
23 2 D32,D33 SS26T3 DIODE SCH PWR 2A 60V SMB
24 1 D34 ES2B DIODE RECT ULTRA FAST 2A 100V DO-214AA
25 1 J11 HDR 2X3 HDR 2X3 TH 2.54MM CTR 340H AU
26 1 J81 CON_2X28 CON 2X28 ASM RA TH 3MM SP 30.7MM - 118L
27 1 JP11 HDR_1X6 HDR 1X6 TH 100MIL SP 408H AU
28 1 L31 22UH IND PWR 22UH@100KHZ 2.25A 20% SMT
29 1 L32 150UH IND PWR 150UH@100KHZ 1.35A 20% SMT
30 1 L33 220UH IND PWR 220UH@100KHZ 1.15A 20% SMT
31 1 Q31 BCP69T1 TRAN PNP AUD 1A 20V SOT223
32 1 R11 3.3K RES MF 3.30K 1/10W 1% 0603

33 20
R12,R13,R14,R15,R16,R17,R18,R35,R36,
R37,R38,R39,R40,R41,R61,R62,R63,R64,
R65,R66

10K RES TF 10K 1/10W 5% RC0603

34 2 R19,R20 1.6K RES MF 1.6K 1/10W 1% 0603
35 1 R21 1.0M RES MF 1.0M 1/10W 1% 0603
36 1 R31 1.0K RES MF 100K 1/4W 1% 1206
37 2 R32,R34 100K RES TF 100K 1/10W 1% 0603
38 1 R33 215 OHM RES MF 215 OHM 1/2W 1% 2010
39 1 R42 0 RES MF ZERO OHM 1/10W 0603
40 2 R71,R72 60.4 RES MF 60.4 OHM 1/8W 1% 0805
41 4 R81,R82,R83,R84 3.3 RES MF 3.30 OHM 1/8W 1% 0805

42 1 U11 MCc9S12XEG128 IC MCU 16BIT 128K FLASH 12K RAM 50MHZ
5.5V QFP80

43 1 U12 MMA6801QR2
44 2 U13,U14 NL27WZ32 IC GATE OR DUAL 2-INPUT 1.65-5.5V US8
45 1 U31 MC33789 IC CTRL AIRBAG 5.2-20V LQFP64EP

46 2 U61,U62 MC33789EK IC SQUIB DRV AIRBAG FOUR CHANNEL 5V
SOICW32

47 1 U71 CAN Phy IC HS CAN XCVR 5V SOIC14
48 1 X11 4MHZ XTAL 4MHZ RSN 6V SMT

Freescale does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit drawings or
tables. While Freescale offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.

Table 7-4. Bill of Materials

Item
Number Quantity Part Reference Value Description

Acronyms

Airbag Reference Demonstrator, Rev. 3.0

Freescale Semiconductor 45

Appendix C Acronyms
ACC Central Accelerometer
ADC Analog To Digital Converter
API Application Protocol Interface
ARD Airbag Reference Demonstrator
ASBC Airbag System Basis Chip
BAM Boot Assist Module
BOS Basic Operation System
CAN Controller Area Network
COM Serial Communication Port
ECU Electronic Control Unit
EEPROM Electrically Erasable Programmable Read-Only Memory
GUI Graphical User Interface
GPT General Purpose Timer
GPO General Purpose Output
LIN Local Interconnect Network
MUX Multiplexer
N/A Not Applicable
PCB Printed Circuit Board
PSI5 Peripheral Sensor Interface 5
SPI Serial Peripheral Interface
SW Software
SQUIB Automobile AirBag
VREG Voltage Regulator
WD Watchdog

Document Number: ARDRM
Rev 3.0
4/2012

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for

each customer application by customer’s technical experts. Freescale does not convey

any license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,

Energy Efficient Solutions logo, mobileGT, PowerQUICC, SafeAssure, QorIQ, Qorivva,

StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S.

Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MagniV, MXC,

Platform in a Package, Processor expert, QorIQ Qonverge, QUICC Engine, Ready Play,

SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale

Semiconductor, Inc. All other product or service names are the property of their

respective owners.

© 2012 Freescale Semiconductor, Inc.

How to Reach Us:
Home Page:
freescale.com

Web Support:
freescale.com/support

	Chapter 1 Introduction
	1.1 Relevant Documents

	Chapter 2 ARD System Outline
	Chapter 3 Standard Products Description
	3.1 MC9S12XEG128MAA - Microcontroller
	3.2 MC33789 – Airbag System Basis Chip
	3.2.1 Power Supply Block
	3.2.2 Safing Block
	3.2.3 DC Sensors
	3.2.4 PSI5 Satellite Sensors
	3.2.5 LIN Physical Layer
	3.2.6 Lamp Driver
	3.2.7 Diagnostics

	3.3 MC6801QR2 - ECU Local Sensor
	3.4 MC33797 – Four Channel Squib Driver
	3.5 MMA5xxxWR2 – High G Satellite Collision Sensor

	Chapter 4 Function Description
	4.1 MC33789 – Airbag System Basis Chip
	4.1.1 Power Supply – Boost Converter and Energy Reserve
	4.1.2 Power Supply – Energy Reserve Capacitor ESR Diagnostic
	4.1.3 Power Supply – Buck Converter
	4.1.4 Power Supply – SYNC Pulse Supply
	4.1.5 Power Supply – ECU Logic Supply
	4.1.6 Safing Block – Sensor Data Thresholds
	4.1.7 Safing Block – Diagnostics
	4.1.8 DC Sensors
	4.1.9 Satellite Sensor Interface
	4.1.9.1 LIN Physical Layer
	4.1.9.2 Lamp Driver
	4.1.9.3 Diagnostics

	4.2 MMA6801QR2 – Local ECU Acceleration Sensor
	4.2.1 Configuration - General
	4.2.2 Configuration – Axis Operation
	4.2.3 Configuration – Arming Operation
	4.2.4 Configuration – Arming Threshold
	4.2.5 Status

	4.3 MM33797 – Four Channel Squib Driver (FCS)
	4.4 MMA5xxxWR2 – High G Satellite Collision Sensor

	Chapter 5 Airbag Reference Demonstrator Firmware and Setup
	5.1 Airbag Reference Demonstrator Demo
	5.2 Warnings
	5.3 Airbag Reference Demonstrator PCB Detail Description
	5.4 Airbag Reference Demonstrator - GUI
	5.4.1 Firmware downloading - GUI version
	5.4.2 Hardware and Software Setup
	5.4.3 GUI Demonstration
	5.4.3.1 Debug mode
	5.4.3.2 Application Mode

	5.5 Airbag Reference Demonstrator - “Application”
	5.5.1 Firmware Downloading - “Application Demonstrator”
	5.5.2 Airbag Reference Demonstrator - “Application”

	Chapter 6 Software - Boot Assist Module
	6.1 Boot Assist Module (BAM)
	6.1.1 Example of the BAM source code

	Chapter 7 Software - Basic Operating System
	7.1 Acquisition Phase
	7.1.1 Source code of the Acquisition phase

	7.2 Decision Phase
	7.2.1 Example of the API Source Code Used in Decision Phase - Front Decision

	7.3 Deployment Phase
	7.3.1 Example of the API Source Code Used in Deployment Phase

	Appendix A SW Concept
	A.1 Airbag System Basis Chip SW Driver
	A.2 ASBC API parameters detail descriptions
	A.3 Central Accelerometer Driver
	A.4 ACC Parameters Detail Descriptions
	A.5 SQUIB Driver
	A.6 SQUIB Parameters Detail Descriptions
	Appendix B Airbag Reference Demonstrator Implementation details
	B.1 Airbag Reference Demonstrator Schematics
	B.2 ARD Placement and Layout
	B.3 Bill of Materials
	Appendix C Acronyms

