A5M20TG042

Airfast Power Amplifier Module

Rev. 1 — 20 May 2024

Product data sheet

1 General description

The A5M20TG042 is a Doherty power amplifier module designed for wireless infrastructure applications that demand high performance in the smallest footprint. Ideal for applications in massive MIMO systems, outdoor small cells and low power remote radio heads. The field-proven LDMOS and GaN integrated power amplifiers are designed for TDD and FDD 32T mMIMO systems.

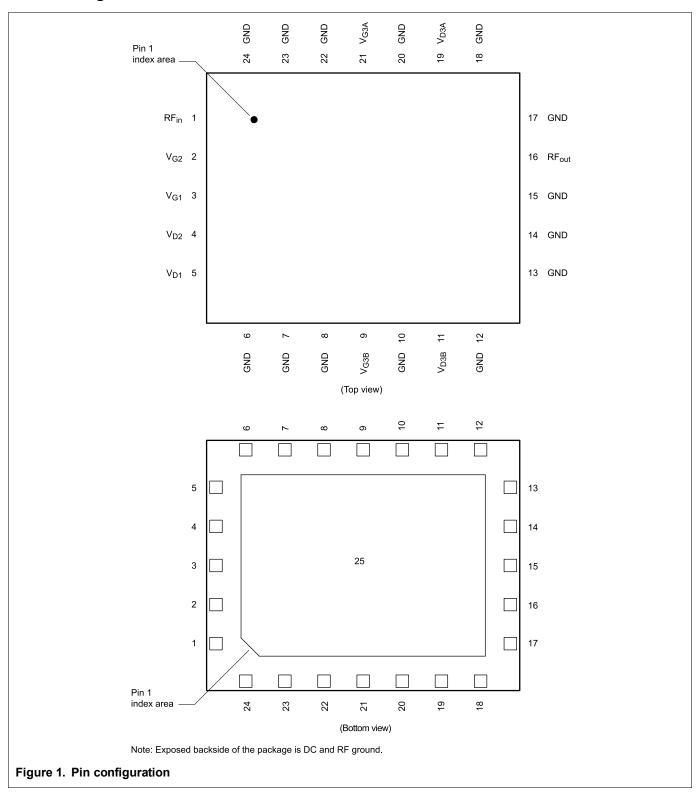
2 Features and benefits

- 3-stage module solution that includes a 2-stage LDMOS integrated circuit as a driver and a GaN final stage amplifier
- Advanced high performance in-package Doherty
- Fully matched (50 ohm input/output, DC blocked)
- Reduced memory effects for improved linearized error vector magnitude
- Simultaneous dual band operation (B3–B1/B66)

3 Typical performance

Table 1. 1805–2200 MHz — Typical LTE performance

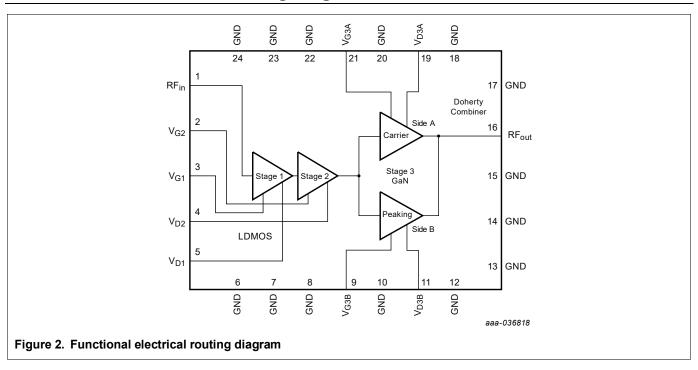
 P_{out} = 16 W Avg., V_{D1} + V_{D2} = 28 Vdc, V_{D3A} = V_{D3B} = 45 Vdc, 1 \times 20 MHz LTE, input signal PAR = 8 dB @ 0.01% probability on CCDF. [1]


Carrier center frequency	Gain (dB)	ACPR (dBc)	PAE (%)
1815 MHz	47.7	<i>–</i> 27.1	43.5
2000 MHz	49.1	-31.8	43.5
2190 MHz	48.3	-33.4	42.7

[1] All data measured with device soldered to NXP reference circuit.

Pinning information

Pinning 4.1



4.2 Functional pin description

Table 2. Functional pin description

Pin number	Pin function	Pin description
1	RF _{in}	RF input
2	V_{G2}	Gate voltage, stage 2
3	V_{G1}	Gate voltage, stage 1
4	V _{D2}	Drain voltage, stage 2
5	V _{D1}	Drain voltage, stage 1
6, 7, 8, 10, 12, 13, 14, 15, 17, 18, 20, 22, 23, 24, 25	GND	Ground
9	V_{G3B}	Peaking gate voltage, stage 3
11	V _{D3B}	Peaking drain voltage, stage 3
16	RF _{out}	RF output
19	V_{D3A}	Carrier drain supply, stage 3
21	V_{G3A}	Carrier gate supply, stage 3

5 Functional electrical routing diagram

Ordering information

Table 3. Ordering information

Device Tape and reel information		Package
A5M20TG042T1	T1 suffix = 1,000 units, 32 mm tape width, 13-inch reel	20 mm × 16 mm Module

Product marking 7

Figure 3. Product marking

Table 4. Product marking trace code

Identifier	Description
А	Assembly location
WL	Wafer lot indicator
YYWW	Date code
Z	Assembly lot

Limiting values

Table 5. Limiting values

Rating	Symbol	Value	Unit
Stage 1 and stage 2 gate-bias voltage range	V_{G1}, V_{G2}	–0.5 to +5	Vdc
Stage 1 and stage 2 operating voltage range	V_{D1},V_{D2}	24 to 32	Vdc
Stage 3 gate-bias voltage range	$V_{\rm G3A},V_{\rm G3B}$	–8 to 0	Vdc
Stage 3 operating voltage range	V_{D3A}, V_{D3B}	44 to 52	Vdc
Maximum forward gate current, I _{G (A+B)} , @ T _C = 25°C	I _{GMAX}	17.0	mA
Storage temperature range	T _{stg}	-65 to +150	°C
Case operating temperature	T _C	125	°C
Peak input power (2000 MHz, pulsed CW, 10 μsec(on), 10% duty cycle)	P _{in}	11.0	dBm

9 Lifetime

Table 6. Lifetime

Characteristic	Symbol	Value	Unit
Mean time to failure (Case temperature 125°C, 16 W Avg., $V_{D1} + V_{D2} = 28 \text{ Vdc}$, $V_{D3A} = V_{D3B} = 45 \text{ Vdc}$)	MTTF	> 10	Years

10 Thermal characteristics

Table 7. Thermal characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance by infrared measurement, active die surface-to-case (Case temperature 115 $^{\circ}$ C, P _D = 22.7 W)	R _{esc} (IR)	1.9 ^[1]	°C/W
Thermal resistance by finite element analysis, channel-to-case (Case temperature 125 $^{\circ}$ C, P _D = 22.7 W)	R _{echc} (FEA)	3.4 ^[2]	°C/W

^[1] Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to https://www.nxp.com/RF and search for AN1955. High conductivity thermal interface used.

11 ESD protection characteristics

Table 8. ESD protection characteristics

Test methodology	Class
Human Body Model (per JS-001-2023)	1B
Charge Device Model (per JS-002-2022)	C2a

12 Moisture sensitivity level

Table 9. Moisture sensitivity level

Test methodology	Rating	Package peak temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	250	°C

^[2] $R_{\theta CHC}$ (FEA) must be used for purposes related to reliability and limitations on maximum channel temperature. MTTF may be estimated by the expression MTTF (hours) = $10^{[A+B/(T+273)]}$, where T is the channel temperature in degrees Celsius, A = -11.6 and B = 9129.

13 Electrical characteristics

13.1 DC characteristics — off characteristics

Table 10. DC characteristics — off characteristics

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Characteristic	Symbol	Min	Тур	Max	Unit
GaN stage 3 carrier — off characteristics					
Off-state drain leakage (V_{DS} = 150 Vdc, V_{GS} = -8 Vdc)	I _{D(BR)}		_	4.0	mAdc
Off-state gate leakage (V _{DS} = 48 Vdc, V _{GS} = –8 Vdc)	I _{GLK}	-4.0	_	_	mAdc
GaN stage 3 peaking — off characteristics					
Off-state drain leakage (V _{DS} = 150 Vdc, V _{GS} = –8 Vdc)	I _{D(BR)}	_	_	5.5	mAdc
Off-state gate leakage (V _{DS} = 48 Vdc, V _{GS} = –8 Vdc)	I _{GLK}	-5.5	_	_	mAdc

13.2 DC characteristics — on characteristics

Table 11. DC characteristics — on characteristics

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Characteristic	Symbol	Тур	Range	Unit
LDMOS stage 1 — on characteristics				
Gate threshold voltage (V_{DS1} = 10 Vdc, I_{D1} = 2.4 μ Adc)	V _{GS1(th)}	1.3	±0.4	Vdc
Gate quiescent voltage $(V_{DS1} = 28 \text{ Vdc}, I_{DQ1} = 25 \text{ mAdc}, \text{ measured in production test fixture})$	V _{GS1(Q)}	2.0	±0.4	Vdc
LDMOS stage 2 — on characteristics				
Gate threshold voltage (V_{GS2} = 10 Vdc, I_{D2} = 12.8 μ Adc)	V _{GS2(th)}	1.3	±0.4	Vdc
Gate quiescent voltage $(V_{DS2} = 28 \text{ Vdc}, I_{DQ2} = 65 \text{ mAdc}, \text{ measured in production test fixture})$	V _{GS2(Q)}	1.9	±0.4	Vdc
GaN stage 3 carrier — on characteristics				
Gate threshold voltage (V _{GS3A} = 10 Vdc, I _{D3A} = 10 mAdc)	V _{GS3A(th)}	-2.8	±1.0	Vdc
Gate quiescent voltage $(V_{DS3A} = 45 \text{ Vdc}, I_{DQ3A} = 75 \text{ mAdc}, \text{ measured in production test fixture})$	V _{GS3A(Q)}	-2.6	±1.0	Vdc
GaN stage 3 peaking — on characteristics				
Gate threshold voltage (V _{GS3B} = 10 Vdc, I _{D3B} = 10 mAdc)	V _{GS3B(th)}	-2.8	±1.0	Vdc
Gate quiescent voltage (V_{DS3B} = 45 Vdc, I_{DQ3B} = 0 mAdc, measured in production test fixture)	V _{GS3B(Q)}	-2.7	±1.0	Vdc

13.3 Functional tests

Table 12. Functional tests — 1805 MHz

(In NXP production test fixture, $T_A = 25^{\circ}\text{C}$ unless otherwise noted)^[1] $V_{D1} + V_{D2} = 28 \text{ Vdc}$, $V_{D3A} = V_{D3B} = 45 \text{ Vdc}$, $I_{DQ1} = 25 \text{ mA}$, $I_{DQ2} = 65 \text{ mA}$, $I_{DQ3A} = 75 \text{ mA}$, $V_{G3B} = (V_{BIAS} - 2.05)^{[2]} \text{ Vdc}$, $P_{out} = 16 \text{ W Avg.}$, 1-tone CW, f = 1805 MHz.

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G	45.0	48.1	1	dB
Power added efficiency	PAE	34.0	40.9	_	%
Saturated power ^[3] (Pulsed CW, 5% duty cycle)	P _{sat}	49.0	51.0	_	dBm

- [1] Part input and output matched to 50 ohms.
- [2] Increase V_{G3B} (peaking side) until I_{DQ3B} = 50 mA current is attained, and then subtract 2.05 V for final V_{G3B} bias voltage.
- [3] P_{sat} is defined at P3dB compression point.

Table 13. Functional tests — 2200 MHz

(In NXP production test fixture, $T_A = 25^{\circ}\text{C}$ unless otherwise noted)^[1] $V_{D1} + V_{D2} = 28 \text{ Vdc}$, $V_{D3A} = V_{D3B} = 45 \text{ Vdc}$, $I_{DQ1} = 25 \text{ mA}$, $I_{DQ2} = 65 \text{ mA}$, $I_{DQ3A} = 75 \text{ mA}$, $V_{G3B} = (V_{BIAS} - 2.05)^{[2]} \text{ Vdc}$, $P_{out} = 16 \text{ W Avg.}$, 1-tone CW, f = 2200 MHz.

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G	44.5	48.1		dB
Power added efficiency	PAE	34.0	41.6	_	%
Saturated power ^[3] (Pulsed CW, 5% duty cycle)	P_{sat}	48.0	50.0	_	dBm

- [1] Part input and output matched to 50 ohms.
- [2] Increase V_{G3B} (peaking side) until I_{DQ3B} = 50 mA current is attained, and then subtract 2.05 V for final V_{G3B} bias voltage.
- [3] P_{sat} is defined at P3dB compression point.

13.4 Wideband ruggedness

Table 14. Wideband ruggedness

(In NXP reference circuit, T_A = 25°C unless otherwise noted)^[1] I_{DQ1} = 25 mA, I_{DQ2} = 65 mA, I_{DQ3A} = 75 mA, V_{G3B} = (V_{BIAS} – 2.05)^[2] V_{dC} , f = 2000 MHz, Additive White Gaussian Noise (AWGN) with 10 dB PAR.

Characteristic	Test results
ISBW of 400 MHz at $V_{DD3A} = V_{DD3B} = 55$ Vdc, 3 dB input overdrive from 16 W Avg. modulated output power	No device degradation

- [1] All data measured with device soldered to NXP reference circuit.
- [2] Increase V_{G3B} (peaking side) until I_{DQ3B} = 50 mA current is attained, and then subtract 2.05 V for final V_{G3B} bias voltage.

A5M20TG042

13.5 Typical performance

Table 15. Typical performance

(In NXP reference circuit, $T_A = 25$ °C unless otherwise noted)^[1] $V_{D1} + V_{D2} = 28$ Vdc, $V_{D3A} = V_{D3B} = 45$ Vdc, $I_{DQ1} = 25$ mA, $I_{DQ2} = 65$ mA, $I_{DQ3A} = 75$ mA, $V_{G3B} = (V_{BIAS} - 2.05)^{[2]}$ Vdc, $P_{out} = 16$ W Avg., 1×20 MHz LTE, f = 2000 MHz.

Characteristic	Symbol	Min	Тур	Max	Unit
VBW resonance point, 2-tone, 1 MHz tone spacing (IMD third order intermodulation inflection point)	VBW _{res}	_	460	_	MHz
Quiescent current accuracy over temperature ^[3] with 2.2 k Ω gate feed resistors (–40 to 105°C) Stage 1 with 2.2 k Ω gate feed resistors (–40 to 105°C) Stage 2	ΔI_{QT}		2.4 1.0		%
1-carrier 20 MHz LTE, 8 dB input signal PAR					_
Gain	G	_	49.1		dB
Power added efficiency	PAE	_	43.5	_	%
Adjacent channel power ratio	ACPR	_	-31.8		dBc
Adjacent channel power ratio	ALT1	_	-47.2	_	dBc
Adjacent channel power ratio	ALT2	_	-50.1	_	dBc
Gain flatness ^[4]	G _F	_	1.7	_	dB
Pulsed CW, 10% duty cycle					_
Saturated power ^[5]	P _{sat}	_	50.9	_	dBm
AM/PM @ saturated power ^[5]	Φ	_	-15.0	_	0
Gain variation @ Avg. power over temperature (–40°C to +105°C)	ΔG	_	0.038	_	dB/°C
Output power variation @ saturated power over temperature ^[5] (–40°C to +105°C)	ΔP _{sat}	_	0.005	_	dB/°C

- [1] All data measured with device soldered to NXP reference circuit.
- [2] Increase V_{G3B} (peaking side) until I_{DQ3B} = 50 mA current is attained, and then subtract 2.05 V for final V_{G3B} bias voltage.
- [3] Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to https://www.nxp.com/RF and search for AN1977 or AN1987.
- [4] Gain flatness = $Max(G(f_{Low} \text{ to } f_{High})) Min(G(f_{Low} \text{ to } f_{High}))$.
- [5] P_{sat} is defined at P3dB compression point.

Correct biasing sequence

Turn ON:

Bias ON the GaN final stage first (stage 3)

- 1. Set gate voltage $V_{\rm G3A}$ and $V_{\rm G3B}$ to -8 V.
- 2. Set drain voltage V_{D3A} and V_{D3B} to nominal supply voltage (+45 V).
- 3. Increase V_{G3B} (peaking side) until I_{DQ3B} = 50 mA current is attained, and then subtract 2.05 V for final V_{G3B} bias voltage.
- 4. Increase V_{G3A} (carrier side) until I_{DQ3A} current is attained.

Bias ON the LDMOS drivers second (stages 1 and 2)

- 5. Set drain voltage V_{D1} and V_{D2} to nominal supply voltage (+28 V), in no particular order.
- 6. Increase gate voltage V_{G2} until I_{DQ2} current is attained.
- 7. Increase gate voltage V_{G1} until I_{DQ1} current is attained.
- 8. Apply RF input power to desired level.

Turn OFF:

Bias OFF the GaN final stage first (stage 3)

- 1. Disable RF input power.
- 2. Adjust gate voltage V_{G3A} and V_{G3B} to -8 V.
- 3. Adjust drain voltage V_{D3A} and V_{D3B} to 0 V. Allow adequate time for drain voltage to reduce to 0 V from external drain capacitors.
- 4. Disable V_{G3A} and V_{G3B}.

Bias OFF the LDMOS drivers second (stages 1 and 2)

- 5. Adjust gate voltage V_{G1} and V_{G2} to 0 V.
- 6. Adjust drain voltage V_{D1} and V_{D2} to 0 V.

14 Component layout and parts list

14.1 Component layout

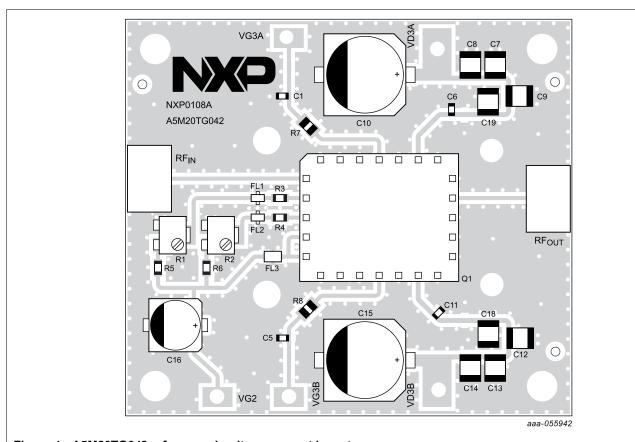
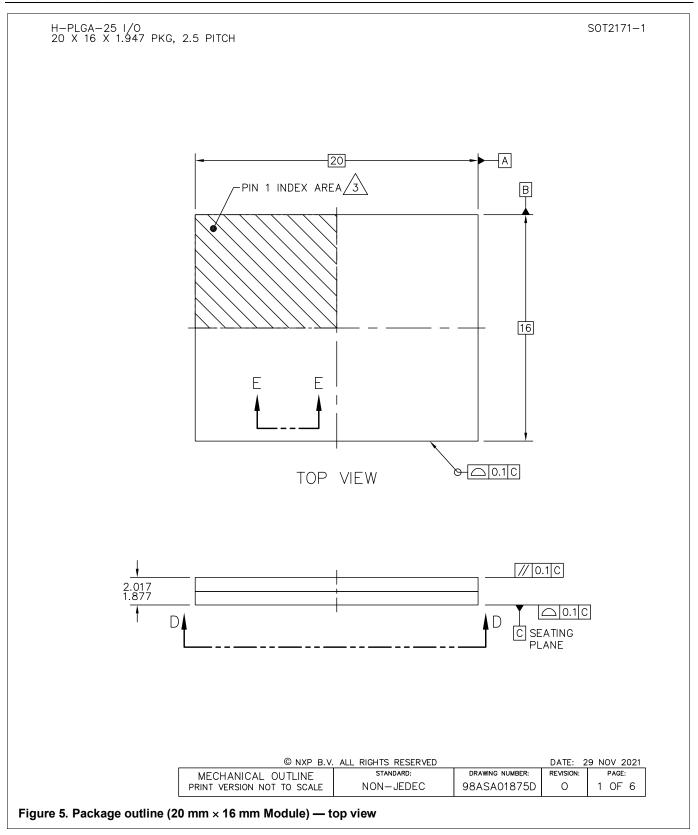
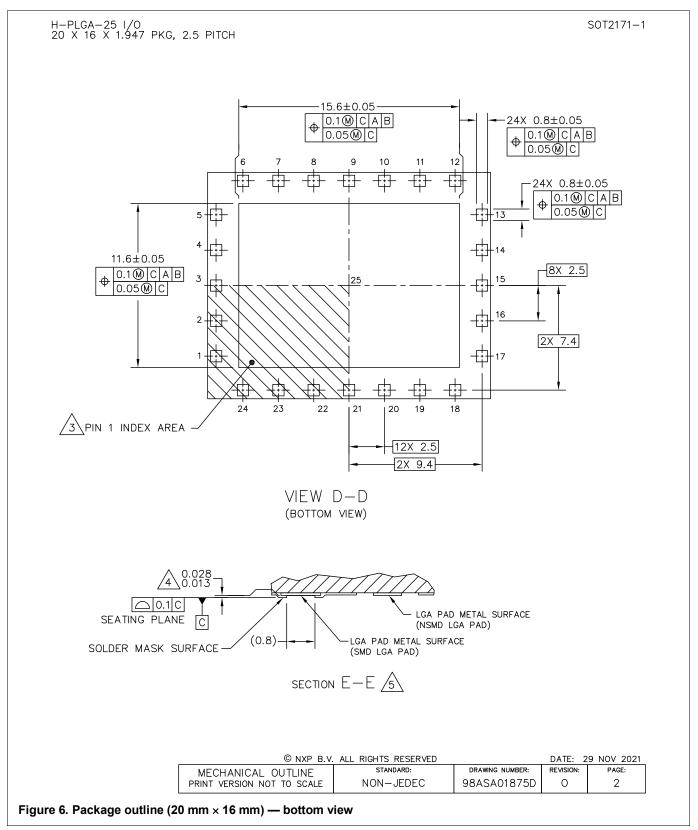


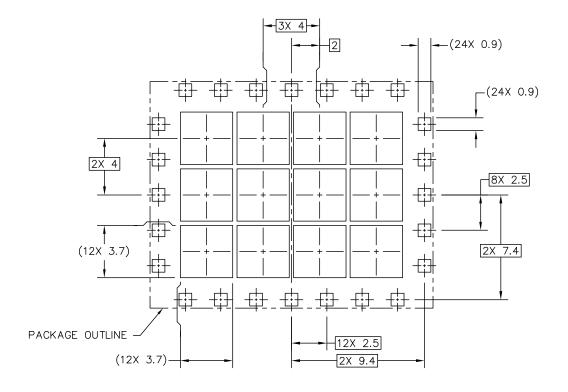
Figure 4. A5M20TG042 reference circuit component layout


14.2 Component designations and values


Table 16. A5M20TG042 reference circuit component designations and values

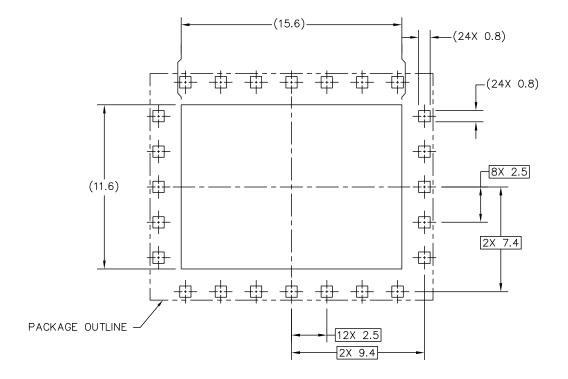
Part	Description	Part number	Manufacturer
C1, C5	1 μF chip capacitor	GRT188R61H105KE13D	Murata
C6, C11	15 pF chip capacitor	GQM1875C2E150JB12	Murata
C7, C8, C9, C12, C13, C14, C18, C19	4.7 μF chip capacitor	C3225X7S2A475M200AE	TDK
C10, C15	120 μF, 63 V electrolytic capacitor	EEEFN1J121UV	Panasonic
C16	47 μF, 50 V electrolytic capacitor	EEEFN1H470XP	Panasonic
FL1, FL2	2.2 μF feed through capacitor	NFM18PC225B0J3D	Murata
FL3	22 nF feed through capacitor	NFM21HC223R1H3	Murata
Q1	Power amplifier module	A5M20TG042	NXP
R1, R2	5 kΩ, 1/4 W surface mount potentiometer	3224W-001-502E	Bourns
R3, R4	10 Ω, 1/10 W chip resistor	CRCW060310R0FKEA	Vishay
R5, R6	10 kΩ, 1/10 W chip resistor	RC0603FR-0710KP	Yageo
R7, R8	5.6 Ω, 1/8 W chip resistor	RC0805FR-075R6L	Yageo
РСВ	RO4350B, 0.010", ε _r = 3.66	NXP0108A	Multek

Note: Component numbers C2, C3, C4 and C17 are intentionally omitted.


15 Package information

Note: Vias on the bottom of the package are part of the substrate design and do not impact attachment of the package to the printed circuit board.

H-PLGA-25 I/O 20 X 16 X 1.947 PKG, 2.5 PITCH SOT2171-1

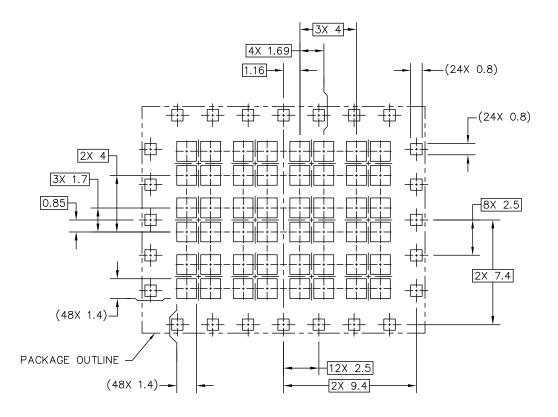

PCB DESIGN GUIDELINES - SOLDER MASK OPENING PATTERN

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

© NXP B.V.	ALL RIGHTS RESERVED		DATE: 2	9 NOV 2021
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01875D	0	3

Figure 7. Package outline (20 mm × 16 mm Module) — PCB design guidelines: solder mask opening pattern

H-PLGA-25 I/O 20 X 16 X 1.947 PKG, 2.5 PITCH SOT2171-1


PCB DESIGN GUIDELINES - I/O PADS AND SOLDERABLE AREAS

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

© NXP B.V.	ALL RIGHTS RESERVED		DATE: 2	9 NOV 2021
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01875D	0	4

Figure 8. Package outline (20 mm \times 16 mm Module) — PCB design guidelines: I/O pads and solderable areas

H-PLGA-25 I/O 20 X 16 X 1.947 PKG, 2.5 PITCH SOT2171-1

RECOMMENDED STENCIL THICKNESS 0.125 OR 0.15

PCB DESIGN GUIDELINES - SOLDER PASTE STENCIL

THIS SHEET SERVES ONLY AS A GUIDELINE TO HELP DEVELOP A USER SPECIFIC SOLUTION. DEVELOPMENT EFFORT WILL STILL BE REQUIRED BY END USERS TO OPTIMIZE PCB MOUNTING PROCESSES AND BOARD DESIGN IN ORDER TO MEET INDIVIDUAL/SPECIFIC REQUIREMENTS.

© NXP B.V. ALL RIGHTS RESERVED			DATE: 2	9 NOV 2021
MECHANICAL OUTLINE	STANDARD:	DRAWING NUMBER:	REVISION:	PAGE:
PRINT VERSION NOT TO SCALE	NON-JEDEC	98ASA01875D	0	5

Figure 9. Package outline (20 mm \times 16 mm Module) — PCB design guidelines: solder paste stencil

H-PLGA-25 I/O 20 X 16 X 1.947 PKG, 2.5 PITCH SOT2171-1

NOTES:

- 1. ALL DIMENSIONS IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3.

PIN 1 FEATURE SHAPE, SIZE AND LOCATION MAY VARY.

DIMENSION APPLIES TO ALL LEADS.

THE BOTTOM VIEW SHOWS THE SOLDERABLE AREA OF THE PADS. THE CENTER PAD (PINS 25) IS SOLDER MASK DEFINED. SOME PERIPHERAL PADS ARE SOLDER MASK DEFINED (SMD) AND OTHERS ARE NON—SOLDERMASK DEFINED (NSMD).

 © NXP B.V. ALL RIGHTS RESERVED
 DATE:
 29 NOV 2021

 MECHANICAL OUTLINE PRINT VERSION NOT TO SCALE
 STANDARD: DRAWING NUMBER: REVISION: PAGE: 98ASAO1875D
 PAGE: 0

Figure 10. Package outline (20 mm × 16 mm Module) — notes

A5M20TG042

16 Product documentation and tools

Refer to the following resources to aid your design process.

Application notes

· AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Development tools

· Printed circuit boards

17 Failure analysis

At this time, because of the physical characteristics of the part, failure analysis is limited to electrical signature analysis. In cases where NXP is contractually obligated to perform failure analysis (FA) services, full FA may be performed by third party vendors with moderate success. For updates contact your local NXP Sales Office.

18 Revision history

The following table summarizes revisions to this document.

Table 17. Revision history

Document ID	Release date	Description
A5M20TG042 Rev. 1	20 May 2024	Initial release of product data sheet

Legal information

Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nxp.com.

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer,

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

Airfast — is a trademark of NXP B.V.

A5M20TG042

Airfast Power Amplifier Module

Contents

1	General description	1
2	Features and benefits	1
3	Typical performance	1
4	Pinning information	2
4.1	Pinning	2
4.2	Functional pin description	3
5	Functional electrical routing diagram	3
6	Ordering information	4
7	Product marking	4
8	Limiting values	4
9	Lifetime	
10	Thermal characteristics	5
11	ESD protection characteristics	5
12	Moisture sensitivity level	5
13	Electrical characteristics	6
13.1	DC characteristics — off characteristics	6
13.2	DC characteristics — on characteristics	
13.3	Functional tests	7
13.4	Wideband ruggedness	7
13.5	Typical performance	8
14	Component layout and parts list	10
14.1	Component layout	
14.2	Component designations and values	11
15	Package information	12
16	Product documentation and tools	18
17	Failure analysis	18
18	Revision history	18
	Legal information	19

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.