

NFC Commissioning

User Guide

JN-UG-3112

Revision 1.0

 19 Nov 2015

 NFC Commissioning

User Guide

2 © NXP Semiconductors 2015 JN-UG-3112 v1.0

Contents

About this Manual 3
Organisation 3
Conventions 3
Acronyms and Abbreviations 3
Related Documents 3
Support Resources 3
Trademarks 4

1 NFC Commissioning 5
1.1 System Overview 5

1.1.1 NFC Commissioning Implementation Options 6
1.2 NTAG Format 10

2 NFC Software Architecture 11
2.1 NFC Component 11
2.2 NDEF Component 11
2.3 NSC Component 11
2.4 NTAG Component 11
2.5 I2C Driver Component 11

3 API Reference 12
3.1 NFC Component API 12
3.2 NDEF Component API 13
3.3 NSC Component API 15
3.4 API NTAG Component 16
3.5 API I2C Driver 18

4 API Workflow 20
4.1 NTAG Creation by the Device 20
4.2 Device Commissioning at Boot 20

Appendices 21
Appendix A - Source File Descriptions 21
Appendix B – Preprocessing Macro Descriptions 22

NFC Commissioning
User Guide

JN-UG-3112 v1.0 © NXP Semiconductors 2015 3

About this Manual
This manual describes the fundamentals of NFC commissioning and its
implementation in a ZigBee network.

Organisation

This manual consists of 4 chapters, as follows:

 Chapter 1 introduces the concept of Near Field Communication (NFC)
used for out of band commissioning of ZigBee devices

 Chapter 2 describes the software components used for NFC
commissioning

 Chapter 3 details the API used for NFC Commissioning

 Chapter 4 gives a brief description of the API workflow

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier typeface.

Acronyms and Abbreviations

NFC Near Field Communication

NDEF NFC Data Exchange Format

NTAG NFC tag

API Application Programming Interface

MAC Media Access Control

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

Related Documents

JN-AN-1221 ZigBee HA Lighting with NFC Application Note

Support Resources

To access JN516x support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity TechZone:

www.nxp.com/techzones/wireless-connectivity

All NXP resources referred to in this manual can be found at the above address,
unless otherwise stated.

file:///C:/Users/frq06534/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/NU0POWNF/www.nxp.com/techzones/wireless-connectivity

 NFC Commissioning

User Guide

4 © NXP Semiconductors 2015 JN-UG-3112 v1.0

Trademarks

All trademarks are the property of their respective owners.

NFC Commissioning
User Guide

JN-UG-3112 v1.0 © NXP Semiconductors 2015 5

1 NFC Commissioning
ZigBee devices need a commissioning phase to get access to a ZigBee network.
They need to get a network key (NK) from the network coordinator.

NFC can offer an easy method to transfer the network key data from the
coordinator to an end device which is powered or unpowered, via two different
ways:

 Tapping the coordinator

 Using a third-part device like a smartphone

1.1 System Overview

NFC feature can operate in various ways depicted in the following diagram:

NFC provides an easy and safe way of commissioning devices into low power
radio networks independently of the network’s communication protocol (ZigBee,
WiFi, Bluetooth or Bluetooth Low Energy).

 NFC Commissioning

User Guide

6 © NXP Semiconductors 2015 JN-UG-3112 v1.0

1.1.1 NFC Commissioning Implementation Options

There are different scenarios where NFC can be used to commission devices as
shown below:

Scenario 1 depicts the simplest form of NFC integration. An NFC label is used to
store specific data related to the node – such data includes the device type and
the MAC address. This information is transferred to the gateway during an NFC
“tap” between the end node and the gateway where the data is stored in a white
list. When the device is powered “ON”, the gateway which is in commissioning
mode, will recognize the MAC address and commission the device.

Moreover, the NFC label and the ZigBee device must be treated as a pair at
production level, i.e. each ZigBee microcontroller must be associated to a label
which can be difficult to manage logistically.

Although a low-cost solution, it remains quite restrictive in its usage.

Scenario 2 uses an NTAG I²C device on the same PCB hardware as the JN516x
device. More information on the NTAG I²C device can be found here:
http://www.nxp.com/products/identification_and_security/smart_label_and_tag_ic
s/connected_tag_solutions/series/NT3H1101_NT3H1201.html

The NTAG device includes information such as the MAC address, the Link key of
the device, the device type and a join command. This information is written
automatically by the ZigBee microcontroller into the NTAG at the first power up of
the device. It is recommended that this be done in production.

During an NFC action, this information is transferred to the gateway reader, and
the reader writes in the NTAG the network information. The device information can
then be stored in a whitelist or a database in the gateway host.

http://www.nxp.com/products/identification_and_security/smart_label_and_tag_ics/connected_tag_solutions/series/NT3H1101_NT3H1201.html
http://www.nxp.com/products/identification_and_security/smart_label_and_tag_ics/connected_tag_solutions/series/NT3H1101_NT3H1201.html

NFC Commissioning
User Guide

JN-UG-3112 v1.0 © NXP Semiconductors 2015 7

When the device is powered ON, the information contained in the NTAG are
transferred to the ZigBee microcontroller. The “join” command is then used to
commission the device onto the network, all radio data packets are encrypted with
the network key. Note that the JN516x in the end node also erases all the network
information contained in the NTAG to ensure that the NTAG cannot be read to get
access to sensitive information.

Scenario 2 has been selected to demonstrate the ZigBee commissioning via NFC
in the JN516x-EK004 Evluation Kit.

 No encryption (protected by short range of NFC)

 Out of band (NFC only) instant key and network parameters exchange

 Faster commissioning

 Possibility to issue commands: reset, decommission, etc.

To prevent the exposure of critical ZigBee information in the NTAG-I²C,
secure commissioning, scenarios 3 and 4, have been implemented by NXP
and can be used as guidelines to help developers with their applications.
These implementations require Elliptic curve cryptography, and the said
curves can be purchased through licensing either at Certicom or TLS MBED
or any other curve providers. As such, due to licensing fees, these
implementations are not provided by NXP in their evaluation kits or as a
reference design.

Scenario 3 uses symmetric key cryptography. The end device’s private key is
stored in the ZigBee microcontroller while its public key is stored in the NTAG
device. The public key is transferred to the gateway during an NFC “tap”. The
gateway uses the node’s public key and its own private key to encrypt the Network

https://www.certicom.com/
https://tls.mbed.org/

 NFC Commissioning

User Guide

8 © NXP Semiconductors 2015 JN-UG-3112 v1.0

key using Elliptic Curve Diffie-Hellman cryptography. Then in the same NFC
action, the gateway transfers the Encrypted network key and the gateway public
key to the NTAG device.

When the device is powered “ON”, the NTAG is read. The firmware in the micro
controller recognizes the tag’s NDEF information in the network data section and
re-initializes the software. The software decrypts the network key and then
launches the ZigBee application. This is done sequentially as the data decryption
is requires exclusive use of the CPU.

Note that in scenario 3, a secure element is used to run the cryptographic software.
The secure element is a tamper proof IC and therefore adds extra security both
physically and at the software level.

Scenario 4 reuses the basic concept of symmetric key cryptographic, and also
includes authentication.

In this implementation the node has a specific identification which is linked to a
private key securely stored in the ZigBee device. This ID is transferred to the
gateway during an NFC tap. The gateway authenticates the device through the
cloud and via a white list. Once it is authenticated the cloud server sends the
corresponding public key to the gateway where it is used with the gateway’s
private key to encrypt the network key.

The NFC reader then transfers the encrypted network key and the gateway’s
public key to the end device.

NFC Commissioning
User Guide

JN-UG-3112 v1.0 © NXP Semiconductors 2015 9

When the device is powered ““ON””, the NTAG is read. The firmware in the micro
controller recognizes the tag’s NDEF information and re-initializes the software.
The software decrypts the network key and then launches the ZigBee application.
This is done sequentially as the data decryption is requires exclusive use of the
CPU.

For further security, a secure element is implemented in the gateway to provide a
secure connection to the cloud and also to run all the encryption software. Note
that the solution can be made even more secure by implementing a secure
element on the node side to securely store the end node’s private key.

 NFC Commissioning

User Guide

10 © NXP Semiconductors 2015 JN-UG-3112 v1.0

1.2 NTAG Format

The exchange of data between the node device and the gateway is done via the
standard NTAG format from the NFC forum. The structure is as followed:

Node profile data is written by the device as described in Chapter 4.1.

NFC Commissioning
User Guide

JN-UG-3112 v1.0 © NXP Semiconductors 2015 11

2 NFC Software Architecture
The software structure is organized in several layers as shown below:

2.1 NFC Component

This component implements the NFC loop task.

2.2 NDEF Component

This component implements the NDEF layer driver. Functions in this layer can
be used by the application(s) to read/write in the NTAG. To be able to do so,
each application must register its own unique NDEF type and use the lock and
unlock API functions of this layer to get/release exclusive access to the NTAG
EEPROM. This layer will use a callback function to notify the application of
possible modifications in the NDEF message in the NTAG after a NFC reader
(eg. smart phone) has accessed the tag data.

2.3 NSC Component

This component implements the NFC Secure Commissioning module and uses
the LIBSLL library when the “NFC_COMMISSIONING” compilation switch is set.

2.4 NTAG Component

This component implements the NTAG I2C driver.

2.5 I2C Driver Component

This file implements the low-level I2C driver.

 NFC Commissioning

User Guide

12 © NXP Semiconductors 2015 JN-UG-3112 v1.0

3 API Reference

3.1 NFC Component API

void vNfcInit (void)

This function initializes the NFC module (this source file), initializes the ntag layer (source

file ntag.c), and takes care of initializing the NFC Secure Commissioning module (source

file nsc.c) when NFC_COMMISSIONING is enabled. After the NTAG-I2C IC has been

successfully initialized, the EEPROM of the NTAG is read out to check whether there is a

Secure Join instruction in the NTAG.

void vNfcInitPostProcessing (bool bUseNTAGirqs)

This function does the NFC Secure Commissioning post processing (when

NFC_COMMISSIONING is enabled) after reset of the CPU, as post processing of

function vNfcInit(). Optionally it enables the IRQ detection for the field detect (FD) pin of

the NTAG.

void vNfcTagFdPinIRQ (void)

This function is called when the Field Detect (FD) pin of the NTAG-I2C IC goes low,

because of the presence of a NFC field.

void vNfcToggleDBG (void)

 This function toggles the Nfc debug trace output when DEBUG_NFC is defined.

file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nfc_8c.html%23ab4df304ed5e08c8d222b0856456e8ecb
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8c.html
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nsc_8c.html
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nfc_8c.html%23a3fd2b1fa6dc2d65471ecc2b309da42a1
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nfc_8c.html%23ab4df304ed5e08c8d222b0856456e8ecb
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nfc_8c.html%23a18ec9140d39ab30d0ee1c2c04a0e1724
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nfc_8c.html%23a2a47046180b22f2ccbc0603d061d0a41

NFC Commissioning
User Guide

JN-UG-3112 v1.0 © NXP Semiconductors 2015 13

3.2 NDEF Component API

teNDEF_Statu

s

eNdefRegisterMsg (const uint8 *pu8NdefType, uint8 u8NdefTypeLength, uint8

*pu8NdefId, uint8 u8NdefIdLength, uint32 u32NdefPayloadLength,

void(*pCallbackFunc)(ndef_rec_info_t *))

This function tries to register the NDEF message with the specified NDEF

payload type, optional NDEF payload identifier, and callback function pointer.

All applications that want to read/write a NDEF msg in the NTAG should

register its payload type as soon as possible after reset of the CPU (after

JenOS is started). When the last application registers its NDEF payload type,

then the function eNdefFormatNtag() is called by this function.

void vNdefParser (void)

This function reads the NTAG EEPROM (from start of user memory till the

TLV terminator) and parses the TLVs that it finds. During this parsing it has

exclusive R/W access to the NTAG. Before calling the callback function

belonging to the parsed NDEF message, the lock on the NTAG is released. In

the applications callback function, use the functions

eNdefLockNtag() / eNdefReadMsg() / eNdefWriteMsg

/ eNdefUnlockNtag() to access the payload of the related NDEF.

teNDEF_Statu

s eNdefLockNtag (const uint8 *pu8NdefType)

This function tries to get exclusive R/W access to the specified NDEF in the

NTAG EEPROM. After having gained exclusive R/W access the

functions eNdefReadMsg() and eNdefWriteMsg() can be used to read

and/or write to the specified NDEF payload area. The exclusive R/W access

must be released by calling the function eNdefUnlockNtag().

teNDEF_Statu

s eNdefUnlockNtag (const uint8 *pu8NdefType)

This function releases the exclusive R/W access to the specified NDEF in the

NTAG EEPROM, but only in the case that this application actually holds the

lock.

teNDEF_Statu

s

eNdefReadMsg (const uint8 *pu8NdefType, uint32 u32NdefOffset, uint8

*pu8Data, uint32 u32DataLength)

file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8h.html%23aecaa8a9bb179667c5c87e52bd5e10acf
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8h.html%23aecaa8a9bb179667c5c87e52bd5e10acf
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8c.html%23ad3cbd8ffe18b01b877b1eb3cbf5dcc21
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8h.html%23ada04d34a6c5430491a6f28a9261b3cdb
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8c.html%23a222a73b8410b1c7833f6ec6416cd2e76
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8c.html%23a844007ec7d14d1b8e6fa243e90d81bfd
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8h.html%23aecaa8a9bb179667c5c87e52bd5e10acf
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8h.html%23aecaa8a9bb179667c5c87e52bd5e10acf
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8c.html%23acb32637537c20924bd73024a6dcefb78
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8h.html%23aecaa8a9bb179667c5c87e52bd5e10acf
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8h.html%23aecaa8a9bb179667c5c87e52bd5e10acf
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8c.html%23a4ef0e2b3279feefaf177d11ae43702f8
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8h.html%23aecaa8a9bb179667c5c87e52bd5e10acf
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8h.html%23aecaa8a9bb179667c5c87e52bd5e10acf
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8c.html%23aace98e02c3d3263cd1e3b5888597e1ae

 NFC Commissioning

User Guide

14 © NXP Semiconductors 2015 JN-UG-3112 v1.0

This function reads NDEF payload data from the NTAG EEPROM. This

function checks whether the caller only reads from his own NDEF payload

area.

teNDEF_Statu

s

eNdefWriteMsg (const uint8 *pu8NdefType, uint32 u32NdefOffset, uint8

*pu8Data, uint32 u32DataLength)

This function writes NDEF payload data into the NTAG EEPROM. This

function checks whether the caller only writes to his own NDEF payload area.

teNDEF_Statu

s eNdefFormatNtag (void)

This function writes the TLVs, NDEF headers and TLV terminator into the

NTAG EEPROM. This function can be used to repair the NTAG format as

designed by the application. RETURNS: This function returns

E_NDEF_SUCCESS when the NTAG is formatted. One of the following errors

is returned when it couldn't format the NTAG:

E_NDEF_ERR_NTAG_ALREADY_LOCKED,

E_NDEF_ERR_NTAG_NO_MEM_LOCK, E_NDEF_ERR_WRITE_HDR or

E_NDEF_ERR_WRITE_TERMINATOR.

void vNdefToggleDBG (void)

 This function toggles the Ndef debug trace output when DEBUG_NFC is

defined.

file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8h.html%23aecaa8a9bb179667c5c87e52bd5e10acf
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8h.html%23aecaa8a9bb179667c5c87e52bd5e10acf
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8c.html%23a8f45e6ae81449c5348d833734c4c1ff9
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8h.html%23aecaa8a9bb179667c5c87e52bd5e10acf
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8h.html%23aecaa8a9bb179667c5c87e52bd5e10acf
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8c.html%23a222a73b8410b1c7833f6ec6416cd2e76
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ndef_8c.html%23aa65777ccc6ddd8083aa2c5c3a45f3987

NFC Commissioning
User Guide

JN-UG-3112 v1.0 © NXP Semiconductors 2015 15

3.3 NSC Component API

void vNscInit (void)

This function initializes the NSC module (this source file), and registers a NDEF payload

type with the NDEF layer driver.

void vNscDoSslDecrypt (void)

This function initializes the Elliptic Curve library (libssl), and handles the ECC decryption

of the Secure Join command that was read out of the NTAG at startup. The Elliptic Curve

library can only be initialized successfully when there is enough RAM available (heap and

stack).

void vNscInitPostProcessing (void)

This function handles the actual joining or leaving just after startup, and initiates the

writing of ECC public key and link_info into the NTAG.

void vNscActOnCommand (void)

This function initiates the NFC Secure Commissioning when a join or leave command

have just been written into the NTAG via the RF side of the NTAG IC.

void vNscJoinNetworkFinished (void)

This function initiates the writing of NFC secure join/leave info into the NTAG, and clears

the join command from the NTAG.

void vNscLeaveNetworkFinished (void)

This function initiates the writing of NFC secure join/leave info into the NTAG, clears the

leave command from the NTAG, and clears the ECC persistent data.

void vNscEraseCommissioningData (void)

 This function clears the ECC persistent data.

void vNscToggleDBG (void)

 This function toggles the Nsc debug trace output when DEBUG_NFC is defined.

file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nsc_8c.html%23a61bbf1edca455e5c807741629a0b285f
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nsc_8c.html%23a613f377477bdccbcfcfadb8c3dab3d8b
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nsc_8c.html%23a9402fb790d376d017452ebf0098c3584
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nsc_8c.html%23a8fc09f918bf03d158a46afaa15f0c363
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nsc_8c.html%23a96e1429e8b08f8e2bb4979bcc4691920
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nsc_8c.html%23ab554359b77532fd97304e37acebc92fc
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nsc_8c.html%23a8c927d88f06557c0dd04784a0a0b009d
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/nsc_8c.html%23ac46021c56b352eceb2318e228f3d60f2

 NFC Commissioning

User Guide

16 © NXP Semiconductors 2015 JN-UG-3112 v1.0

3.4 API NTAG Component

bool bNtagPower (ntag_power_cmd_t cmd)

This function checks the availability of the NTAG-I2C, which is useful when it is an

optional module in the device. In some devices the NTAG IC can be powered down to

save energy. When the NTAG IC is powered on the manufacturer ID and validation

registers are read and validated.

bool bNtagSetup (uint16 u16Wdt, uint8 end_block)

This function sets the NTAG watchdog, plus the LAST_NDEF_BLOCK which when

read from RF side results in the flag NDEF_DATA_READ in NS register to be set.

bool bNtagGetNsReg (uint8 *pu8regval)

Using the I2C driver, read the NS register of the NTAG-I2C. Since the flag

NS_REG_NDEF_DATA_READ is automatically reset on reading the NS_REG, the

bool bNtagDataAvailable is used to remember that NS_REG_NDEF_DATA_READ was

set. After reading out the NTAGs EEPROM the

function vNtagClearNdefDataRead() is used to clear bool bNtagDataAvailable.

void vNtagClearNdefDataRead (void)

 This function clears the bNtagDataAvailable boolean.

bool bNtagTry2SetI2cLock (void)

This function can be used to try to set the I2C_LOCKED bit, which means that the

NTAG EEPROM is locked for read/write access from the I2C side. The

function bNtagReleaseI2cLock() can be used to release the lock from the I2C side on

the NTAG EEPROM.

bool bNtagStartRead (uint16 u16Offset)

 Set the reader to u16Offset of the start of the stream.

uint32 u32NtagRead (uint8 *pu8Buffer, uint32 u32Nbyte)

Read or skip the requested bytes from the NTAG-I2C IC. When pu8Buffer is equal to

NULL, requested bytes will be skipped in the byte stream.

file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8c.html%23a7a496c10ca20e6653b1dcdeedaa02f89
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8h.html%23a6a582dbf6eebc8eb83ee421596416d07
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8c.html%23a68a1f30c08dd22204dada020f38530cd
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8c.html%23a7c329bab86f17ff51d1a39bc670e8408
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8c.html%23a0992f850b831539ec56639605446a2c1
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8c.html%23a532d5598efc88b1c551b68ad8790f327
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8c.html%23ace7505f66f656ecb537f434702301aa3
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8c.html%23a362115e5fb795217c223d04f4e853e94
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8c.html%23a643ebed0eb3c7ad573c57a108d770edb

NFC Commissioning
User Guide

JN-UG-3112 v1.0 © NXP Semiconductors 2015 17

bool bNtagStartWrite (uint16 u16Offset)

 Set the writer to u16Offset of the start of the stream.

uint32 u32NtagWrite (uint8 *pu8Buffer, uint32 u32Nbyte)

 Write the passed bytes to the NTAG-I2C IC.

bool bNtagFlush (void)

 Writes the remaining bytes from wr_buf to the NTAG-I2C IC.

bool bNtagReleaseI2cLock (void)

 Instruct the NTAG to release the EEPROM lock by I2C side.

file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8c.html%23a904ce02a2bd30a9214d776b6b81516f9
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8c.html%23a08a5f2e0c9d3ecb9d99c3aba8a66548b
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8c.html%23ad53e0b662fde0666af581c5709d6fd87
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/ntag_8c.html%23ace7505f66f656ecb537f434702301aa3

 NFC Commissioning

User Guide

18 © NXP Semiconductors 2015 JN-UG-3112 v1.0

3.5 API I2C Driver

void i2c_init (bool bUseDio16Dio17, bool bI2Cclk400khz)

This function initializes the I2C hardware block of the JN516x. When multiple I2C slaves

are connected to the I2C bus, concurrent access to these slaves via this driver must be

prevented by a semaphore. However, since these semaphores are only available when

JenOS is started, the boolean bBusLockingEnabled is introduced to make access to

these slaves possible, even before JenOS is started. After this init the I2C bus locking is

enabled. Use the function i2c_EnableBusLocking() to disable/enable I2C bus locking

when needed before JenOS is started.

void i2c_EnableBusLocking (bool_t bEnable)

 This function sets the internal boolean bBusLockingEnabled.

void i2c_LockBus (void)

 This function locks the I2C bus depending on the internal boolean bBusLockingEnabled.

void i2c_UnlockBus (void)

This function unlocks the I2C bus depending on the internal boolean

bBusLockingEnabled.

bool i2c_BusWriteReg (uint8 u8Address, uint8 u8Command, uint8 u8Length, uint8 *pu8Data)

 This function writes data to a I2C slave.

bool i2c_BusReadData (uint8 u8Address, uint8 u8Command, uint8 u8Length, uint8 *pu8Data)

 This function reads data from a I2C slave.

bool i2c_ReadNtagReg (uint8 u8Address, uint8 u8Command, uint8 u8Reg, uint8 *pu8Data)

 This function reads out a specified NTAG register.

bool i2c_CheckSlaveAvailable (uint8 u8Address)

This function checks if a I2C slave with the given slave address is communicating on the

I2C bus.

file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/_i2_c___driver_8c.html%23af5af6f9cd7217d41f3442cc9e841fd92
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/_i2_c___driver_8c.html%23ac674ef51e26ace2efc4f69b05338e0fc
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/_i2_c___driver_8c.html%23ac674ef51e26ace2efc4f69b05338e0fc
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/_i2_c___driver_8c.html%23aec5bd38ff10200f89fdff41be8b63276
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/_i2_c___driver_8c.html%23a0010794f357b1e9fbd62af62dcc099b1
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/_i2_c___driver_8c.html%23a890a3855d730a1aa1ad992f470449070
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/_i2_c___driver_8c.html%23a4714160a57fe85357d7d28d5b91ba171
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/_i2_c___driver_8c.html%23ad574d5ac0881084bed09aa5bd520b6e4
file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/_i2_c___driver_8c.html%23a350591d2fccb7a5c66934e70928ccd50

NFC Commissioning
User Guide

JN-UG-3112 v1.0 © NXP Semiconductors 2015 19

void i2c_ToggleDBG (void)

 This function toggles the debug output if DEBUG_I2C_DRIVER is defined.

file:///C:/JN-AN-xxxx-JN516x-NFC-Example/Doxygen/html/_i2_c___driver_8c.html%23ae3cc8b53f74686fb715aa6e77c5d831e

 NFC Commissioning

User Guide

20 © NXP Semiconductors 2015 JN-UG-3112 v1.0

4 API Workflow

4.1 NTAG Creation by the Device

At device start-up, writes the TLVs, NDEF headers and TLV terminator into the
NTAG EEPROM using the NTAG formats provided by the application.

This process is used either to:

 Create the NTAG on the first power up (possibly during production test)

 Repair the NTAG (possibly during reboot by the user after a malfunction)

4.2 Device Commissioning at Boot

This process only takes place if NTAG contains payload information with network
data provided by RF from the Gateway coordinator (see Chapter 1.2) for data
format).

NFC Commissioning
User Guide

JN-UG-3112 v1.0 © NXP Semiconductors 2015 21

Appendices

Appendix A - Source File Descriptions

NFC Component Files

A number of common files are used across all device types and are located
within the \Common\Source folder. The following table gives a brief description
of each of the common files.

Filename Description

nfc.c / h Implements the NFC loop task using the NFC module

ntag.c / h Implements the I2C NTAG driver

ndef.c/h Implements the NDEF layer driver to read / write NDEF messages

nsc.c / h Implements the secure NFC commissioning using the NFC module

 NFC Commissioning

User Guide

22 © NXP Semiconductors 2015 JN-UG-3112 v1.0

Appendix B – Preprocessing Macro Descriptions

Compile-time macros to manipulate ZigBee NFC commissioning functionality are
defined in the app_config.h file for the respective device.

The compile-time macros to configure NFC components are as follows:

Macro Description

NFC_SUPPORT Enable use of NFC

NFC_COMMISSIONING Build flag to enable NFC commissioning (activate NSC
component)

SUPPORT_LIBSSL Enable ECC secure commissioning via LIBSSL library

NTAG_FD_PIN NTAG field detector DIO pin number

CONFIG_NUMBER_OF_APP_NDEF_MSG Number of NDEF messages registered by the application

CONFIG_NDEF_MAX_TYPE_LENGTH Max of bytes of the NDEF message payload

NFC Commissioning
User Guide

JN-UG-3112 v1.0 © NXP Semiconductors 2015 23

Revision History

Version Date Description

1.0 19-Nov-2015 First release

 NFC Commissioning

User Guide

24 © NXP Semiconductors 2015 JN-UG-3112 v1.0

Important Notice
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the consequences of use of such information.
NXP Semiconductors takes no responsibility for the content in this document if provided by an information source
outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential
damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the
removal or replacement of any products or rework charges) whether or not such damages are based on tort
(including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’
aggregate and cumulative liability towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published
in this document, including without limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable
for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death
or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such
inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes
only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP
Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors
product is suitable and fit for the customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is
based on any weakness or default in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s
applications and products using NXP Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party customer(s). NXP does not accept any
liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control
regulations. Export might require a prior authorization from competent authorities.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

