

Application Note: JN-AN-1194b
ZigBee IoT Gateway - Host

This Application Note describes the hardware and software components that are
required to implement the Host processor part of a Linux- based ZigBee Internet of
Things (IoT) Gateway.
Creating a ZigBee IoT Gateway based on Linux allows the platform to utilise the vast
array of software available for the operating system to create a highly featured, robust
and scalable solution with a fast time to market.
Functions that are covered include:

• ZigBee-to-JIP protocol translation

• Interaction with ZigBee devices in a WPAN

• IPv6 Route and Prefix advertisement

• IPv6 multicast routing

• Zeroconf based discovery of the ZigBee network

• Initial programming of the Border Router node

• IPv6 to IPv4 compatibility

• Compiling OpenWrt

1 Application Overview
The Linux-based ZigBee IoT Gateway from NXP allows connection of a ZigBee network to
the IPv6 internet via an application data transltion process where ZigBee devices can
exchange data with any other IPv6 connected device, enabling the “Internet of Things”. For
situations where a native IPv6 connection to the internet is not available, several transition
mechanisms are available. This document describes the software on the host processor,
which forms the “ZigBee IoT Gateway Host”. It must be interfaced with a “ZigBee IoT
Gateway Control Bridge” described in the accompanying document JN-AN-1194 “ZigBee IoT
Gateway – Control Bridge” in order to form a complete ZigBee IoT Gateway.

1.1 Hardware
The required hardware to create the system described in this Application Note is:

• Any hardware platform (PC, Embedded device) capable of booting a Linux operating
system.

• JN5168 device to function as an IEEE802.15.4 WPAN interface (IoT Gateway ZigBee
Control Bridge).

JN-AN-1194b (v2.1) 4-Jun-2015 © NXP Laboratories UK 2015 1

 ZigBee IoT Gateway - Host

1.2 Operating System
The NXP IoT Gateway host functionality can be added to any Linux system, using common
system packages and a few developed by NXP. The firmware used in the NXP IoT Gateway
in the JN516x-EK001 Evaluation Kit is based upon the OpenWrt Linux distribution. This
distribution was chosen because it has support for many cheap commercial off-the-shelf
WiFi routers, and is also easy to port to new hardware platforms such as the NXP IoT
Gateway reference design (JN-RD-6040). It is very configurable and has a wide variety of
packages available for installation that provide a solution to almost any networking
requirement.

2 Architecture

2.1 Protocol View
This diagram shows the translations between the various network protocols that are
performed in the system. Client devices use the JIP protocol to access information on virtual
JenNet-IP devices within the Host processor in the Gateway. The Host also runs the
ZigBee-JIP daemon which converts accesses to the virtual devices into requests and
commands to the ZigBee Control Bridge. The requests and commands are transported to
the Control Bridge using a protocol over the bidirectional serial link between the Host and
Control Bridge. The Control Bridge receives the requests and commands and translates
them into ZigBee packets for sending to devices within the ZigBee wireless network.
Information and responses coming from ZigBee devices within the network are similarly sent
to the Host via the Control Bridge using the serial protocol

Figure 1: Protocols in the system

2 © NXP Laboratories UK 2015 JN-AN-1194b (v2.1) 4-Jun-2015

ZigBee IoT Gateway - Host

2.2 Network View
The diagram below shows the network layout. The gateway is connected to the LAN/WAN
via the Ethernet port of the gateway, designated as the eth0 network device with IPv6
address fd04:bd3:80e8:1::1. For a definition of how IPv6 addresses are specified see
http://en.wikipedia.org/wiki/IPv6_address. The gateway advertises a route to the IPv6 prefix
fd04:bd3:80e8:10::/64 which corresponds to the prefix of the virtual devices notionally
within the ZigBee network. Incoming packets from the LAN/WAN that are destined for the
ZigBee prefix (i.e. have the upper 64-bits of their destination address corresponding to this
prefix) are routed across the gateway by the Linux kernel and arrive on a virtual network
adaptor that has IPv6 addresses mapped to each node in the ZigBee network.

Figure 2: Device Addressing

3 Software Components

3.1 ZigBee / JIP interface (zigbee-jip-daemon)
The ZigBee / JIP daemon (zigbee_jip_daemon) creates a virtual network device in the
gateway called zb0 on which it registers IPv6 addresses for each node in the ZigBee
network. It creates a socket for communications with the nodes, which is bound to the IPv6
addresses of the ZigBee nodes. The socket is used to host JIP MIBs for the devices (e.g.
lights) on each node. Accesses to the node are passed to the ZigBee daemon which maps
these into the required serial commands. These are then sent to the ZigBee Gateway
Control Bridge node for sending into the network

Figure 3: ZigBee / JIP Interfacing

JN-AN-1194b (v2.1) 4-Jun-2015 © NXP Laboratories UK 2015 3

http://en.wikipedia.org/wiki/IPv6_address

 ZigBee IoT Gateway - Host

3.1.1 Compiling zigbee-jip-daemon
Untar the gzipped zigbee-jip-daemon source archive. Change directory into the JIP/Build
directory.

zigbee-jip-daemon depends on the following packages:

• Avahi (For Zeroconf discovery of the network)

• LibJIP
The dependency on Avahi can be removed by deleting the following line from the Makefile:

FEATURES ?= ZIGBEE-JIP_FEATURE_ZEROCONF

To compile zigbee-jip-daemon, run the makfilee in the JIP/Build directory.

3.1.2 Running zigbee-jip-daemon
zigbee-jip-daemon must be run as root in order to create the new network adaptor in the
kernel using the tun driver. The only required parameter is the serial port to which the
Control Bridge node is connected.

root@localhost # zigbee-jip-daemon –s /dev/ttyTX0

Many other parameters of the IEEE802.15.4 network can be set via command line options to
zigbee-jip-daemon. These options can be listed by running the zigbee-jip-daemon
command from a command line when logged into the gateway.

3.2 IPv6 Route and Prefix Advertisement (radvd)
IPv6 includes powerful automatic configuration services as part of the specification. The
Linux IPv6 Router Advertisement Daemon (radvd) implements these parts of the
specification and allows automatic configuration of routes and prefixes, amongst other
details. Install it via the package manager of your distribution. Information regarding radvd
may be found here: http://www.litech.org/radvd/.

Once radvd is installed, configure the following details in the configuration file (usually
/etc/radvd.conf).

interface eth0

{

 AdvDefaultPreference low;

 AdvSendAdvert on;

 prefix fd04:bd3:80e8:1::/64

 {

 AdvRouterAddr on;

 };

 route fd04:bd3:80e8:10::/64

 {

 AdvRouteLifetime 3600;

 AdvRoutePreference medium;

 };

};

4 © NXP Laboratories UK 2015 JN-AN-1194b (v2.1) 4-Jun-2015

http://www.litech.org/radvd/

ZigBee IoT Gateway - Host

This configuration is for eth0, the Ethernet interface connecting the IoT Gateway to the rest
of the network. The configuration tells radvd to:

• Set the preference of this router to low – this is set so that a default route to the
IPv6 internet via another router should take precedence.

• Send periodic router advertisements and respond to router solicitations.

• Include the link local address of the router in the advertisements.

• Advertise a prefix of fd04:bd3:80e8:1::/64. This will be the prefix that machines
connected to the Ethernet address will receive. If another IPv6 router exists on the
network to allow machines to receive a global address, this is not necessary. The
prefix advertisement includes the address of the router.

• Advertise a route to the prefix fd04:bd3:80e8:10::/64, which is the prefix used to
map devices from the ZigBee network. Machines connected to the gateway’s
Ethernet interface will establish a route to the prefix automatically.

After setting this up and starting radvd, machines connected to the Ethernet interface should
automatically acquire an IPv6 address with global scope and a route to the ZigBee network.

3.3 IPv6 Multicast Routing (mrd6)
IPv6 includes support for multicast to multiple hosts as an integral component of the
specification. The ZigBee IoT Gateway makes use of incoming IPv6 multicasts to map to
groups of devices within the ZigBee network. In order to route IPv6 multicasts between
interfaces, a userspace multicast routing daemon is required, called mrd6. Install it via the
package manager of your distribution. More information on mrd6 may be found here:
http://fivebits.net/proj/mrd6/.

IPv6 uses several ICMPv6 messages to implement the Multicast Listener Discovery (MLD)
protocol. MLD allows IPv6 multicast routers to determine which multicast groups are present
on hosts connected to their interfaces, such that incoming multicast packets may be
forwarded as appropriate. The Control Bridge node in the gateway interprets IPv6 multicast
addresses and converts them into ZigBee group addresses, and advertises these addresses
to the gateway host where the mrd6 daemon receives them. This allows mrd6 to create
destination mappings for each of these groups on the ZigBee network interface. If any IPv6
multicast packets destined for any of these groups are received on other interfaces, mrd6
will create a source mapping and begin forwarding the multicast packets to the ZigBee
interface. The IoT Gateway Control Bridge node will map these into ZigBee group
communications and send them into the ZigBee network.

No special configuration of mrd6 is required to function in this mode.

3.4 Interaction with the ZigBee JIP MIBs - libJIP
The JIP protocol is fully described in JN-UG-3080 and JN-UG-3086. NXP provides a library
for interfacing with JenNet-IP devices or in this case ZigBee devices. From the JIP
perspective, the ZigBee devices are virtual devices mapped to their JIP representations via
the zigbee-jip-daemon running the JIP protocol from a Linux machine called libJIP. This
may be linked to a custom application, or used via a command-line program. The API to this
library for use in a custom application is described in JN-UG-3086.

JN-AN-1194b (v2.1) 4-Jun-2015 © NXP Laboratories UK 2015 5

http://fivebits.net/proj/mrd6/

 ZigBee IoT Gateway - Host

3.4.1 Compiling libJIP
Untar the gzipped libJIP source archive. Change to the Build directory of the unzipped
source tree.

libJIP depends on the following packages:

• libxml2 – This is used to save and load network caches in xml form.

The dependency on libxml2 can be removed by deleting the following line from the Makefile:
FEATURES ?= LIBJIP_FEATURE_PERSIST

However, this will render libJIP unable to preload network information and therefore all
information must be discovered from the ZigBee network every time it is needed.

To compile the library, run the Makefile in the Build directory. The compiled library is output
in the directory ../Library.

libJIP also includes a command-line client for interacting with the network nodes which is
output into the Build directory. The command-line client is documented in the JenNet-IP
User Guide JN-UG-3086.

3.5 Interaction with the ZigBee JIP MIBs(JIP Web interfaces)
The NXP ZigBee IoT Gateway includes a set of web interfaces to interact with the network.
There is a generic browser which allows all MIBs and variables on all nodes to be examined
and updated, and also a more targeted interface (Smart Devices) which allows devices to be
controlled by their functions, for example, dimming lights.

3.5.1 Compiling the JIP Web Interfaces
Extract the JIPweb tarball and change directory to the Build directory of the extracted source
tree. The JIP web interface depends on the following packages:

• Avahi - for Zeroconf discovery of the network

• libJIP - for interacting with the network.

To compile the JIP web interfaces, run the Makefile in the Build directory.

3.5.2 Making changes to the JIP Web interfaces
The core of the web interface is the following cgi program:

• /www/cgi-bin/JIP.cgi – This implements a generic JenNet-IP control interface. It can
be requested to take actions by specifying GET parameters. It returns results as
JSON which can then be parsed by Javascript to update the web page. The source
for this program is Source/JIP_cgi.c. The API to this program is described in Section
3.5.3.

There are also files within the NXP IoT Gateway’s filesystem which may be edited either on,
the gateway, or on a PC and then copied over to the NXP IoT Gateway:

• /www/style.css – This is the stylesheet for the JIP web interfaces. It may be modified
to change the colours and some aspects of the layout of the page.

• /www/NXP_Logo.gif – This is the company logo that is located in the top right hand
corner of the web interfaces. It may be changed to other images.

6 © NXP Laboratories UK 2015 JN-AN-1194b (v2.1) 4-Jun-2015

ZigBee IoT Gateway - Host

• /www/js/JIP.js – This is a Javascript library for issuing JIP requests to JIP.cgi. Its API
is described in section 3.5.4

• /www/Browser.html – This is a jQuery and AJAX-powered version of a generic
JenNet-IP browser. The page layout and style may all be edited in the HTML of the
web page. The content is generated by Javascript making asynchronous calls to the
JIP.cgi program.

• /www/SmartDevices.html – This is a jQuery and AJAX powered implementation of an
interface for interacting with JenNet-IP smart light bulbs. It allows control of individual
and groups of bulbs. The page layout and style may all be edited in the HTML of the
web page. The content is generated by Javascript making asynchronous calls to the
JIP.cgi program.

3.5.3 JIP.cgi API Reference
The JIP.cgi program may be run by making requests to the webserver on the NXP IoT
Gateway. The parameters passed as part of the request determine the action taken by
JIP.cgi. The results of the action are passed back to the web browser as JSON objects that
may be interpreted by Javascript.

GET or POST Parameters
The following parameters may be passed as POST parameters to JIP.cgi
Parameter Argument Description

action This argument informs JIP.cgi what request
is being made of it. Each possible action is
described below

 getVersion Retrieve JIP.cgi and libJIP version
information

 discoverBRs Find list of JIP Border Routers available from
this Gateway host

 discover Perform JIP discovery of a network
connected to a selected JIP Border Router

 GetVar Read a variable on a remote node

 SetVar Set a variable on a remote node

BRaddress String representation of JIP
Border Router IPv6 address

The returned JSON object contains a “Status” object and data relevant to the JIP request.
The status object contains number and string representations of the JIP status resulting from
the request.

Example object:
“Status”: { “Value”: 0, “Description”: “Success” }

Each supported action of JIP.cgi is described in the following sections.

JN-AN-1194b (v2.1) 4-Jun-2015 © NXP Laboratories UK 2015 7

 ZigBee IoT Gateway - Host

3.5.3.1 Get Version Information (action=getVersion
This action returns version information for the JIP.cgi program and libJIP. The returned
object contains a “Version” object. This contains each components name and a version
string.

Example object:
“Version”: { “JIPcgi”: “0.1 (r480000)”, “libJIP”: “0.15
(r480000)” }

3.5.3.2 Discover Control Bridge nodes (action=discoverBRs)
This action uses Zeroconf to perform a discovery of available gateway nodes at the
webserver. The returned object contains a “BRList” object which is an array of the IPv6
addresses of discovered gateway nodes, represented as strings.

Example object:
“BRList”: [“fd04:bd3:80e8:1:215:8d00:1234:5678”]

3.5.3.3 Discover a Network using JIP (action=discover)
This action discovers the network of nodes connected to a gateway node. The IPv6 address
of the JIP Border Router must be passed using the BRaddress parameter. The returned
object contains a “Network” object representing the discovered network. The network object
contains an array of nodes. Each node object contains a string representation of its IPv6
address, its Device ID as an integer, and an array containing its MIBs. Each MIB object
contains its ID as an integer, its name as a string and an array containing its variables. Each
variable object contains its name as a string, its index as an integer, its type as an integer, its
access type as an integer and its security type as an integer.

Example object:
“Network”: { “Nodes” : [{
“IPv6Address”=”fd04:bd3:80e8:1:215:8d00:1234:5678”, “DeviceID”:
2177865, “MiBs”: [{ “ID”: 50678885, “Name”: “Example MIB”,

“Vars”: [{ “Index”: 0, “Name”: “Int8Var”, “Type”: 0,
“AccessType”: 2, “Security”: 0 }] }] }] }

3.5.3.4 Get the Value of a Variable (action=GetVar)
This action reads a variable on a node in the network. The following arguments must also
be specified:

• BRaddress – IPv6 address of JIP border router

• nodeaddress – IPv6 address of the node

• mib – The name of the MIB containing the variable

• var – The name of the variable to read

The following arguments are optional:

• refresh – If set to “yes” then JIPcgi will rediscover the network before connecting to
the node. If set to “no” then a cached copy of the network contents from the previous
discovery will be used to look up the requested variable.

The returned object is as Section 3.5.3.3, but only a single node, MIB and variable are
returned. The variable object includes an additional pair named “Value”, containing the
current value of the variable.

8 © NXP Laboratories UK 2015 JN-AN-1194b (v2.1) 4-Jun-2015

ZigBee IoT Gateway - Host

3.5.3.5 Set the Value of a Variable (action=SetVar)
This action writes a variable on a node in the network. The following arguments must also
be specified:

• BRaddress – IPv6 address of JIP border router

• nodeaddress – IPv6 address of the node

• mib – The name of the MIB containing the variable

• var – The name of the variable to read

• value – String representing the value to set

The following arguments are optional:

• refresh – If set to “yes” then JIPcgi will rediscover the network before connecting to
the node. If set to “no” then a cached copy of the network contents from the previous
discovery will be used to look up the requested variable.

The returned object contains only the “Status” object.

3.5.4 JIP.js API Reference
To simplify access to JIP.cgi, there is a Javascript library included on the NXP IoT Gateway
which can be used to create web applications using JIP.

The Javascript file should be included using the following HTML tag:
<script src=“js/JIP.js”></script>

The following is a description of the functions provided by this library.

3.5.4.1 Get Version Information: JIP_GetVersion(callback)
This function requests the version information from JIP.cgi, then calls the specified callback
function with the received JSON object (see Section 3.5.3.1) as its parameter. The
application should check the status of the request before attempting to use the version
information.

3.5.4.2 Discover Border Router Nodes: JIP_DiscoverBRs(callback)
This function updates a list of available Border Router nodes within JIP.js. This list may be
accessed using the name BRList. Once the list has been discovered, the callback function is
invoked, passing the “Status” object of the request as its parameter. The application should
check the status of the request before attempting to use the information in the BRList
variable.

3.5.4.3 JIP_Context Object
A JIP_Context object is created to refer to the network behind a JIP Border Router. It is
possible within JIP,js to create multiple contexts, each referring to a separate network. The
JIP_Context provides a list of the available nodes via its Network attribute.

3.5.4.3.1 Connect to a Border Router using JIP_Context.Connect(IPv6Address)

This method may be used to associate the context with a given Border Router IPv6 address.

JN-AN-1194b (v2.1) 4-Jun-2015 © NXP Laboratories UK 2015 9

 ZigBee IoT Gateway - Host

3.5.4.3.2 Discover a Network using JIP_Context.Discover(callback)

This method (re)discovers the network of nodes connected to a JIP Border Router previously
associated with the context via the Connect() method. The function is passed a callback
function to call with the results of the operation. Upon completion, the Network attribute of
the JIP_Context is updated. The callback function is passed the “Status” object of the
request, and a reference to the JIP_Context as its parameters. The application should check
the status of the request before attempting to use the information in the JIP_Context.

3.5.4.3.3 Lookup Variables using JIP_Context.LookupVars(params)

This method returns a list of variable objects matching the constraints provided in the
params object. Constraints are passed as members within this object and may include:

• IPv6Address (string): Consider only the node with this IPv6 address

• mibID (integer): Consider only the MIB with given ID

• mibName (string): Consider only the MIB with given name

• varIndex (integer): Consider only variables with the given index

• varName (string): Consider only the variable with the given name

For example, this function may be used to retrieve a list of variable objects representing the
variables with name “Mode” in all MIBs, on all nodes within the network using the call:

vars = JIP_Context.LookupVars({ varName: “Mode” });

3.5.4.3.4 Get the Value of a Variable using variable.GetVar(callback, user)

This method of the variable object reads the current value of the variable. The function
should be passed a callback function and, if required, some user data. When the operation
has completed, the callback function is invoked. It is passed the status of the request, the
user data and a reference to the variable object (which should now contain the value in the
Data attribute). The application should check the status of the request before using the
value. The user data may be used to pass context data through the JIP library to the
callback function.

3.5.4.3.5 Set the Value of a Variable using variable.SetVar(value, callback, user)

This method of the variable object sets the value of a variable. The function should be
passed the required new value, a callback function and, if required, some user data. When
the operation has completed, the callback function is called. It is passed the status of the
request and a reference to the variable object. The user data may be used to pass context
data through the JIP library to the callback function.

3.6 Zeroconf Discovery of ZigBee Network (Avahi)
Zeroconf provides an easy way for local network services to be automatically discovered and
used with no manual configuration. Avahi provides a complete implementation of the
standard and is used to advertise the IPv6 address of the IoT Gateway Control Bridge, so
that other local network devices may connect to the ZigBee network. Install it via the
package manager of your distribution. More information on Avahi can be found here:
http://avahi.org.

zigbee-jip-daemon includes support for using Avahi as a client to advertise the IPv6
address of the Control Bridge node to the local network, using the service name “_jip._udp”.

10 © NXP Laboratories UK 2015 JN-AN-1194b (v2.1) 4-Jun-2015

http://avahi.org/

ZigBee IoT Gateway - Host

3.7 Initial Programming of the ZigBee Node
It may be desirable to allow the Gateway host to program the Gateway node with an initial
ZigBeeNodeControlBridge image, for example, during first bootup in the factory. This may
be achieved using the program JennicModuleProgrammer, which is a C implementation of
the protocol documented in the Boot Loader Operation application note, JN-AN-1003.

For instructions on how to run the JennicModuleProgrammer integrated in the IoT
Gateway Host firmware, see the ZigBee IoT Gateway User Guide (included in this
Application Note package).

3.7.1 Hardware Requirements
When the JN5168 chip boots, it checks if the MOSI line is held low – if this is the case it
enters bootloader mode. In the IoT Gateway hardware the MOSI and Reset lines of the
JN5168 are connected to GPIO lines of the Host processor which allows the Host to set the
JN5168 device into bootloader mode, and also to reset the device to exit bootloader mode
under the control of the JennicModuleProgrammer

3.7.2 Compiling JennicModuleProgrammer
Untar the gzipped JennicModuleProgrammer source archive. Change directory into the
Build directory of the unzipped file tree and run “make”. The Makefile will compile the
program. The compiled binary should then be installed to the target IoT Gateway system in
“/usr/bin”.

3.7.3 Running JennicModuleProgrammer
The program is supplied with a script JennicModuleProgram,sh which controls the GPIO
lines connected to MOSI and Reset to set the JN5168 device into bootloader mode. This
program should be run when logged into the Gateway Host processor. See the ZigBee IoT
Gateway User Guide in this Application Note package for details on how to log into the
gateway.

Invoke the script by typing
JennicModuleProgram.sh <filename>

where <filename> is the binary file to be programmed into the JN5168. It then runs the
JennicModuleProgrammer with the correct serial device and baud rate and after the device
has been programmed it performs a verification of the contents of the memory against the
contents of the binary file.

To view a summary of the options and flags which may be used with
JennicModuleProgrammer, type

JennicModuleProgrammer –v

which will display a list of the available options.

3.8 JIP4 IPv4 Compatibility
JenNet-IP supports an application layer IPv4 compatibility mechanism allowing the control of
JenNet-IP devices which only have an IPv6 address from an IPv4-only network. The
protocol for the application level encapsulation is detailed in Appendix A.

To provide the application layer compatibility, a userspace daemon, JIPd, is required to
listen on IPv4 sockets and forward requests to the IPv6 addresses of target nodes. It also
provides a TCP socket on IPv4 for a client to connect to, rather than using UDP datagrams.

JN-AN-1194b (v2.1) 4-Jun-2015 © NXP Laboratories UK 2015 11

 ZigBee IoT Gateway - Host

3.8.1 Compiling JIPd
The JIPv4 compatibility daemon JIPd advertises the JIPv4 service to the local network using
Zeroconf. This feature is provided by Avahi and may be disabled by removing the line

FEATURES ?= JIPD_FEATURE_ZEROCONF

from the Makefile, if required.

Untar the gzipped JIPd source archive. Change directory into the Build directory of the
unzipped file tree and run the Makefile . The Makefile will compile the daemon. This should
be installed to the target Border-Router system in “/usr/sbin”.

3.8.2 Running JIPd
No command line arguments are mandatory for JIPd. With no arguments, the daemon will
bind to all IPv4 addresses and listen for incoming UDP and TCP connections on the normal
JIP port, 1873. Requests to these sockets will be forwarded to the IPv6 addresses of nodes
in the ZigBee network. The host running the daemon must have an IPv6 route to the prefix
of the ZigBee network in order to forward these requests.

4 OpenWrt
The OpenWrt Linux distribution was chosen due to its large hardware support, small
footprint, ease of use and large set of available packages. OpenWrt uses a heavily modified
Buildroot environment to control the build process.

4.1 Compiling OpenWrt

4.1.1 Prerequisites
The following software packages will be required to build an OpenWrt image from the
sources supplied with this Application Note:

• Linux-based PC

• Host toolchain (gcc)

• Make utility

• Subversion and git

• Ncurses/ncurses-devel

4.1.2 Setting up the Build Environment
First the build environment for your target platform must be set up using the tarball from the
application source package.

Create a new directory in your home directory to work in. Change directory into the directory
and extract the openWRT source package using the following command:

$ tar –xzf openWRT_<version>.tar.gz

12 © NXP Laboratories UK 2015 JN-AN-1194b (v2.1) 4-Jun-2015

ZigBee IoT Gateway - Host

Change directory to the target for which you want to build (in this case we are building for the
Linksys WRT160NL – other targets include the LPC32xx family, as used in the NXP IoT
Gateway RD6040) using the following command:

$ cd OpenWrt/targets/wrt160nl

Setup the build environment by running the target Makefile using the following command:

$ make

The Makefile will check out a known version of OpenWrt’s source tree into a directory
openWRT/targets/<target>/backfire. It will then install the OpenWrt feeds and copy the
NXP modifications and a default configuration into the checked-out file tree. The NXP
modifications to the OpenWrt tree are held in 4 locations:

• openWRT/backfire – Contains a target-agnostic overlay to the source tree that is
rsync-ed over the top of the OpenWrt checkout.

• openWRT/targets/<target>backfire-changes – Contains a target-specific overlay to
the source tree that is rsync-ed over the top of the OpenWrt checkout and the target-
agnostic changes. This contains things like setting per-target configuration files or
additional packages.

• openWRT/targets/<target>/backfire-patches – Contains any patch files necessary
to be applied to the OpenWrt file tree.

• openWRT/targets/<target>/config – Contains the target-specific configuration file to
be copied into the OpenWrt file tree.

4.1.3 Install JenNet-IP Modifications into OpenWrt
Once the OpenWrt source tree has been checked out and modified with the NXP IoT
Gateway changes, the source for the additional packages must be copied into the build
directory.

Change directory to the build directory using the following command:
$ cd backfire

Create a directory for storage of the downloaded source of OpenWrt using the following
command:

$ mkdir dl

Alternatively, you may wish to create a symlink to a permanent source storage location using
the following command:

$ ln –s <path to source storage> ./dl

Now the source tarballs for the NXP JenNet-IP Border Router may be copied into the new
directory using the following command:

$ cp <path to JenNet-IP border router source>/*.tar.gz dl/

JN-AN-1194b (v2.1) 4-Jun-2015 © NXP Laboratories UK 2015 13

 ZigBee IoT Gateway - Host

4.1.4 Build OpenWrt
Once the source tree has been prepared and the NXP IoT Gateway source tarballs have
been copied, the OpenWrt build system can be used to compile an image for the target. If
any modifications to the included packages are desired, the OpenWrt configuration menu
may be used make the change using the following command:

$ make menuconfig

Now run the OpenWrt build process using the following command:

$ make

If extra verbosity is required to trace errors, add “V=99” to the make command. The build
process may take several hours the first time.

When the build is complete, the output binary files will be found in the directory:
 openWRT/targets/<target>/backfire/bin/<architecture>.

The root file-system for the target will be found in the directory:
openWRT/targets/<target>/backfire/build_dir/target-<ISA-
clibrary>/root-<architecture>/

Individual files may be copied to a target from this directory, or it could be mounted as an
NFS root file-system for quick debugging.

14 © NXP Laboratories UK 2015 JN-AN-1194b (v2.1) 4-Jun-2015

ZigBee IoT Gateway - Host

Appendix A: IPv4 interface – JIPv4
In order to allow client devices within an IPv4 network to communicate with the virtual
devices in the ZigBee Gateway Host which are assigned IPv6 addresses, a protocol is
required which is suitable for use over IPv4 infrastructure. This protocol must contain enough
information to be routed to a target virtual node in the IPv6 address space of the IoT
Gateway when messages are sent from the client, and for information sent back to the client
to be associated with the virtual node where it was generated.

The link between the client and IoT Gateway can use either UDP or TCP.

The IoT Gateway must either have a publicly-known IPv4 address or if the gateway is
situated behind a SOHO router exposing a single static IPv4 address, some other
mechanism to direct internet traffic intended for the gateway through the home network.

In order to provide the bridging function between IPv4 and IPv6, and also to make it easier to
deal with messages from the client, three extra fields have been added to the front of the JIP
packet. This format is referred to as JIPv4 to denote that it is essentially JIP but suitable for
use over IPv4, using either Ethernet or Wifi.

This format will be used between clients and an IoT Gateway, where it will be terminated.

The format of the packet is as follows

Version Length IPv6 Addr JIP packet

8-bits 16-bits (16+N) 128-bits N bytes

The format of the JIP packet, commands and responses is described in the JenNet-IP
WPAN User Guide (JN-UG-3080).

• The 8-bit Version field will allow any changes to the JIPv4 protocol to be identified. The
current value is 0x01.

• The 16-bit Length field contains the length of the remainder of the packet, i.e. the
number of bytes remaining to be read from the incoming packet to complete this
transaction.

• The 128-bit IPv6 Address field contains the 128-bit IPv6 address of the target or
source device in the virtual device.

To discover the (virtual) ZigBee devices available to be controlled, the IPv4 client
(e.g. smartphone on Internet) addresses the IoT Gateway Host directly using an address
formed of the IPv6 prefix for the virtual network in the most-significant 64-bits and 0 in the
least-significant 64-bits of the JIPv4 packet. This allows the list of devices and their IPv6
addresses to be returned to the client.

At the Gateway, a process (jipd) listening on the JIP UDP or TCP port (1873) receives
incoming JIPv4 packets and records the source IPv4 address and port number. It then
removes the raw JIP payload and sends it to the target IPv6 address in the Host
(zigbee-jip-daemon). Replies to commands or requests will be sent back to the recorded
IPv4 address and port.

JN-AN-1194b (v2.1) 4-Jun-2015 © NXP Laboratories UK 2015 15

 ZigBee IoT Gateway - Host

Revision History
Version Notes

1.0 First release
1.1 Package updated with extra software components
2.0 Updated with new web-UIs
2.1 zigbee-jip-daemon upgraded to version 1.4, which has fixed the issue in which the presence of

mono bulbs prevented the discovery of the network from the Gateway.

Important Notice
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any
products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

16 © NXP Laboratories UK 2015 JN-AN-1194b (v2.1) 4-Jun-2015

http://www.nxp.com/

	1 Application Overview
	1.1 Hardware
	1.2 Operating System

	2 Architecture
	2.1 Protocol View
	2.2 Network View

	3 Software Components
	3.1 ZigBee / JIP interface (zigbee-jip-daemon)
	3.1.1 Compiling zigbee-jip-daemon
	3.1.2 Running zigbee-jip-daemon

	3.2 IPv6 Route and Prefix Advertisement (radvd)
	3.3 IPv6 Multicast Routing (mrd6)
	3.4 Interaction with the ZigBee JIP MIBs - libJIP
	3.4.1 Compiling libJIP

	3.5 Interaction with the ZigBee JIP MIBs(JIP Web interfaces)
	3.5.1 Compiling the JIP Web Interfaces
	3.5.2 Making changes to the JIP Web interfaces
	3.5.3 JIP.cgi API Reference
	3.5.3.1 Get Version Information (action=getVersion
	3.5.3.2 Discover Control Bridge nodes (action=discoverBRs)
	3.5.3.3 Discover a Network using JIP (action=discover)
	3.5.3.4 Get the Value of a Variable (action=GetVar)
	3.5.3.5 Set the Value of a Variable (action=SetVar)

	3.5.4 JIP.js API Reference
	3.5.4.1 Get Version Information: JIP_GetVersion(callback)
	3.5.4.2 Discover Border Router Nodes: JIP_DiscoverBRs(callback)
	3.5.4.3 JIP_Context Object
	3.5.4.3.1 Connect to a Border Router using JIP_Context.Connect(IPv6Address)
	3.5.4.3.2 Discover a Network using JIP_Context.Discover(callback)
	3.5.4.3.3 Lookup Variables using JIP_Context.LookupVars(params)
	3.5.4.3.4 Get the Value of a Variable using variable.GetVar(callback, user)
	3.5.4.3.5 Set the Value of a Variable using variable.SetVar(value, callback, user)

	3.6 Zeroconf Discovery of ZigBee Network (Avahi)
	3.7 Initial Programming of the ZigBee Node
	3.7.1 Hardware Requirements
	3.7.2 Compiling JennicModuleProgrammer
	3.7.3 Running JennicModuleProgrammer

	3.8 JIP4 IPv4 Compatibility
	3.8.1 Compiling JIPd
	3.8.2 Running JIPd

	4 OpenWrt
	4.1 Compiling OpenWrt
	4.1.1 Prerequisites
	4.1.2 Setting up the Build Environment
	4.1.3 Install JenNet-IP Modifications into OpenWrt
	4.1.4 Build OpenWrt

	Appendix A: IPv4 interface – JIPv4

