

JenNet-IP Application Template

Application Note

JN-AN-1190

v2004

27/01/2015

 JenNet-IP Application Template

Application Note

2 © NXP Laboratories UK 2015 JN-AN-1190 v2004

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 3

Contents

About this Manual 5
Organisation 5
Conventions 6
Acronyms and Abbreviations 6
Compatibility 7
Related Documents 8
Trademarks 9
Certification 9

1 Introduction 10

2 System Concepts 11
2.1 Gateway System Topology 12

2.1.1 Gateway GUIs 14
2.1.2 Gateway Hardware 19

2.2 Coordinator System Topology 21
2.3 Standalone System Topology 22
2.4 Gateway/Coordinator Failure 23
2.5 MIBs and Variables 23
2.6 Custom Protocols 24
2.7 Identifiers 25

2.7.1 Device ID (32 bits) 25
2.7.2 Device Type IDs (16 bits) 26
2.7.3 MIB IDs (32 bits) 27

2.8 Message Transmission 28
2.8.1 Unicast Messaging 28
2.8.2 Multicast Messaging 28

3 Device Concepts 29
3.1 Template 29
3.2 Digital I/O 29

4 System Operation 30
4.1 Gateway System Operation 31

4.1.1 Gateway System Operation Overview 32
4.1.2 Setting Up the Gateway System 1
4.1.3 Operating the Template Devices 11
4.1.4 Operating the Digital I/O Devices 19
4.1.5 Group Configuration and Control 28

5 MIB Variable Reference 33
5.1 Node MIBs 34

5.1.1 NodeStatus MIB (0xFFFFFE80) 34
5.1.2 NodeControl MIB (0xFFFFFE82) 40
5.1.3 NodeConfig MIB (0xFFFFFE81) 42

5.2 Network MIBs 43
5.2.1 NwkStatus MIB (0xFFFFFE88) 43
5.2.2 NwkSecurity MIB (0xFFFFFE8B) 46
5.2.3 NwkTest MIB (0xFFFFFE8C) 50
5.2.4 NwkConfig MIB (0xFFFFFE89) 57
5.2.5 NwkControl MIB (0xFFFFFE8A) 57
5.2.6 NwkProfile MIB (0xFFFFFE8D) 57

5.3 Peripheral MIBs 58
5.3.1 AdcStatus MIB (0xFFFFFE90) 58

 JenNet-IP Application Template

Application Note

4 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.3.2 DioStatus MIB (0xFFFFFE70) 61
5.3.3 DioConfig MIB (0xFFFFFE71) 63
5.3.4 DioControl MIB (0xFFFFFE72) 75

6 Software Reference 78
6.1 Standard Device Software Features 79

6.1.1 Standard DeviceType Folder Features 80
6.1.2 Common Module Features 92
6.1.3 Standard MIB Module Features 93

6.2 DeviceTemplate Folder 96
6.2.1 DeviceTemplate Makefile 97
6.2.2 DeviceDefs.h 97
6.2.3 DeviceTemplate.c 97

6.3 Common Folder 98
6.3.1 Config.h 98
6.3.2 Node.h, Node.c 98
6.3.3 AHI_EEPROM.h, AHI_EEPROM.c 109
6.3.4 Exception.h, Exception.c 109
6.3.5 Security.h, Security.c 109
6.3.6 Address.h, Address.c 109
6.3.7 Table.h, Table.c 109
6.3.8 Uart.h, Uart.c 109
6.3.9 FtoA.h, FtoA.h 109
6.3.10 Ovly.h 109
6.3.11 Zcl.h 109

6.4 MibCommon Folder 110
6.4.1 MibNode 110
6.4.2 MibGroups 111
6.4.3 MibNodeStatus 112
6.4.4 MibNodeControl 113
6.4.5 MibNwkStatus 114
6.4.6 MibNwkSecurity 115
6.4.7 MibNwkTest 120
6.4.8 MibAdcStatus 122

6.5 DeviceDio Folder 124
6.5.1 DeviceDio Makefile 124
6.5.2 DeviceDefs.h 125
6.5.3 DeviceDio.c 125

6.6 MibDio Folder 127
6.6.1 MibDioConfig 127
6.6.2 MibDioStatus 129
6.6.3 DioControl MIB 130

6.7 DeviceProtocol Folder 131
6.7.1 DeviceProtocol Makefile 131
6.7.2 DeviceDefs.h 132
6.7.3 DeviceProtocol.c 133
6.7.4 Protocol.h 134
6.7.5 Protocol.c 135

Appendices 138
A Revision History – JN-SW-4141 Toolchain 138
B Revision History – JN-SW-4041 Toolchain 142

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 5

About this Manual
This manual provides information about the JenNet-IP Application Template
Application Note (JN-AN-1190). This Application Note provides source code for
creating Smart Devices that operate in a low power Wireless Personal Area
Network (WPAN). These Smart Devices can be monitored and controlled using
the standard Internet Protocol (IP) from within the WPAN, externally from a Local
Area Network (LAN) and also from a Wide Area Network (WAN) such as the
internet.

The design of the source code is covered in detail to provide enough information
for developers to add to the code in order to develop different Smart Devices.
Developers writing applications for devices within the WPAN will find this
information useful.

The Management Information Bases (MIBs) and variables implemented in the
devices in this Application Note are covered. These allow the devices within the
WPAN to be monitored and controlled. Developers writing applications to control
devices within the WPAN from inside or outside the WPAN will find this
information useful.

Organisation

This manual consists of the following chapters:

 Section 1 "Introduction" provides an overview of the Application Note

 Section 2 "System Concepts" describes the features of a JenNet-IP system
at a high level.

 Section 3 "Device Concepts" describes the features of the devices
implemented in the Application Note at a high level.

 Section 4 "System Operation" describes how to operate the devices in the
Application Note as an end user.

 Section 5 "MIB Variable Reference" describes in detail the MIBs and
variables implemented in the devices in this Application Note. These allow
devices within the WPAN to be monitored and controlled. Developers
writing applications to monitor and control devices in the WPAN from
devices inside or outside the WPAN should refer to this chapter.

 Section 6 "Software Reference" describes the source code in detail.
Developers that want to adapt the existing devices or create new devices
that operate within the WPAN should refer to this chapter.

 JenNet-IP Application Template

Application Note

6 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters and variables are represented in italics type.

Code fragments are represented in the Courier typeface.

Acronyms and Abbreviations

The following acronyms and abbreviations are used in this document:

API Application Programming Interface

CCT Colour Controlled Temperature

DIO Digital Input/Output

GUI Graphical User Interface

HS Shorthand for the hue and saturation of the HSV colour space

HSV Hue, saturation, value colour space

IP Internet Protocol

LAN Local Area Network

LED Light Emitting Diode

LQI Link Quality Indication

MIB Management Information Base

OND Over Network Download

PDM Persistent Data Manager

RGB Red/Green/Blue

SDK Software Developer’s Kit

WAN Wide Area Network

WPAN Wireless Personal Area Network

XY Shorthand for the xy components of the CIE xyY colour space.

xyY Colour representation in the CIE xyY colour space.

XYZ Colour representation in the CIE XYZ colour space.

http://en.wikipedia.org/wiki/Color_temperature
http://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space
http://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space
http://en.wikipedia.org/wiki/CIE_1931_color_space

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 7

Compatibility

The software provided with this Application Note has been tested with the
following evaluation kits and SDK versions. The SDK installers are available from
the NXP Wireless Connectivity Techzone JenNet-IP webpage:

http://www.nxp.com/techzones/wireless-connectivity/jennet-ip.html

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

JN516x Evaluation Kit JN516x EK001 - - JN5168
JN5164

SDK Toolchain JN-SW-4141 v1111 v1111 JN5168
JN5164

JenNet-IP JN516x SDK
Libraries

JN-SW-4165 v1.2 v1107 JN5168

JN5164

http://www.nxp.com/techzones/wireless-connectivity/jennet-ip.html

 JenNet-IP Application Template

Application Note

8 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Related Documents

The following documents provide further information on the hardware and
software used in this Application Note. They can be downloaded from the NXP
Wireless Connectivity TechZone JenNet-IP webpage:

http://www.nxp.com/techzones/wireless-connectivity/jennet-ip.html

JN-UG-3093: JN516x EK001 Evaluation Kit User Guide

Provides information on how to operate the JN516x Evaluation Kit.

JN-UG-3098: Beyond Studio for NXP Installation and User Guide

Provides information on installing and using the Software Developer’s Kit.

JN-UG-3080: JenNet-IP WPAN Stack User Guide

Provides detailed information on the concepts and operation of the JenNet-IP
WPAN network stack. This includes reference information for the functions,
structures and variables that make up the JenNet-IP WPAN APIs that were used
to create the applications in this Application Note.

JN-UG-3086: JenNet-IP LAN/WAN Stack User Guide

Provides detailed information on creating applications to access JenNet-IP
devices via a LAN or WAN.

JN-UG-3087: JN516x Integrated Peripherals API

Provides information on the API functions used to program the JN516x on-chip
peripherals.

JN-AN-1110: JenNet-IP Border-Router Application Note

Provides source code for the JenNet-IP border-router.

JN-AN-1162: JenNet-IP Smart Home Application Note

Provides JenNet-IP device examples based upon JenNet-IP Application
Template (JN-AN-1190). These examples are focused upon a Smart Lighting
system.

JN-AN-1190: JenNet-IP Application Template

Provides template software to use a basis for developing Smart Devices.

http://www.nxp.com/techzones/wireless-connectivity/jennet-ip.html

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 9

Trademarks

“JenNet”, “JenNet-IP” and the tree icon are trademarks of NXP B.V..

Certification

In order to use the JenNet-IP trademark and logo on a JenNet-IP product, the
product must be certified. This is to ensure that the product correctly supports
the JenNet-IP protocol and that JenNet-IP products will interoperate with each
other. It is possible to use the JenNet-IP software stack on non-certified products
but, in this case, the JenNet-IP trademark and logo cannot be displayed on the
product. For further information, see www.JenNet-IP.com.

 JenNet-IP Application Template

Application Note

10 © NXP Laboratories UK 2015 JN-AN-1190 v2004

1 Introduction
This Application Note provides template software for developing Smart Devices
to operate in a network. This allows the control and monitoring of Smart Devices
via standard Internet Protocol messages over a low power radio network.

Smart Devices can be controlled and monitored from within the low power radio
network and also, with the addition of a JenNet-IP Gateway, from a standard
Local Area Network (LAN) and even a Wide Area Network (WAN) such as the
internet.

The Application Note includes software for the following Smart Devices:

 Template device providing the minimum functionality required for devices
to join and maintain their place in a low power wireless network.
Developers can add additional software to the template to create a wide
variety of Smart Devices.

 Digital input/output (DIO) device allowing the DIO pins of the JN516x
devices to be configured monitored and controlled in a generic manner.
This can be used for simple prototyping of devices using digital input and
output. It also serves as an example of how to create new Smart Devices
from the template.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 11

2 System Concepts
This section covers the general concepts of a JenNet-IP system.

JenNet-IP networks can operate in one of three modes:

 Gateway Mode includes a gateway device allowing access to the low-
power wireless Smart Devices from other Internet Protocol devices
connected via the local IP network, Wi-Fi or even from the external
internet. Smart Devices can also be controlled by other Smart Devices
within the low power wireless network such as remote controls and
sensors. This system provides the most flexibility and options for
controlling and monitoring Smart Devices.

 Coordinator Mode replaces the gateway device with a simple Coordinator
device. This effectively creates a network from only the low power wireless
Smart Devices and so does not allow connections to a local IP network or
the internet.

 Standalone Mode does not include a gateway device. The Smart Devices
form a low power wireless network that can only be controlled by other
Smart Devices from within the network such as the remote control included
in JenNet-IP Smart Home (JN-AN-1162). This type of system provides a
low cost entry point for building a Smart Device system while allowing a
gateway device to be added later.

 Note the examples and illustrations in this section are taken
from JenNet-IP Smart Home (JN-AN-1162) as they provide
good example of a complete JenNet-IP system.

 JenNet-IP Application Template

Application Note

12 © NXP Laboratories UK 2015 JN-AN-1190 v2004

2.1 Gateway System Topology

The following diagram shows the topology of a typical gateway system built from
the lighting devices in JenNet-IP Smart Home (JN-AN-1162):

The components of the system are as follows:

Routers

The IP routers, provide Internet Protocol routing services for devices in the
network. This provides standard IP routing of packets in the LAN and WAN
domains via standard internet router devices.

Commands from devices in the LAN or WAN can be passed into the WPAN via
the JenNet-IP gateway using cabled Ethernet connections or Wi-Fi links as
shown by the solid and dotted grey lines in the LAN and WAN domains of the
gateway system topology diagram.

Gateway

Adding a JenNet-IP gateway device to the internet router extends the IP network
into the WPAN domain providing low power wireless access to the Smart Device
network. The JenNet-IP gateway includes a border router device, (either
internally or externally), which provides the WPAN radio services.

Commands sent to individual devices in the WPAN follow the tree structure of
the JenNet-IP network, (represented by the dotted grey lines in the WPAN
domain of the gateway system topology diagram).

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 13

Commands broadcast to groups of devices are simply broadcast to every device
in range of the original transmission, receiving devices then re-broadcast the
commands ensuring that they reach every device in the network. Only the
devices that are members of the group the command is addressed to will take
any action (such as turning on a bulb) upon receipt of a group broadcast (though
all devices re-broadcast to ensure the command reaches all devices in the
network).

Smart Devices

 Bulbs: allow wireless control of lighting in the home. These devices act as
router nodes in the low power JenNet-IP wireless network extending the
network for other Smart Devices to join.

 Sensors: monitor occupancy and light levels in an area and can control the
bulbs based upon their readings.

 Remote controls: allow control of other Smart Devices in the low power
JenNet-IP wireless network. These devices operate as sleeping broadcaster
devices in order to allow mobile operation and preserve battery life. To do this
they spend most of their time asleep, thus preserving power, only waking to
read button inputs. Commands are always broadcast to a group of devices so
the remote control does not need to maintain a full connection to the network.
This allows the remote control to be freely moved around the area covered by
the WPAN.

In a gateway system the Smart Devices form a JenNet-IP tree network allowing
messages to be directed to both individual nodes in the form of unicasts and
groups of nodes in the form of broadcasts from within the wireless PAN and any
connected LAN or WAN.

 JenNet-IP Application Template

Application Note

14 © NXP Laboratories UK 2015 JN-AN-1190 v2004

2.1.1 Gateway GUIs

The gateway provides a number of GUIs, served as webpages to allow
administration, monitoring and control of the Smart Devices.

The gateway’s landing page, accessed by entering the IP address of the
gateway into a connected browser, provides links to the various GUIs:

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 15

2.1.1.1 Gateway Configuration Interface

The gateway contains an Administrator GUI, based upon OpenWRT, served as a
series of webpages that allow configuration of WPAN network settings.

 JenNet-IP Application Template

Application Note

16 © NXP Laboratories UK 2015 JN-AN-1190 v2004

The Administrator GUI interface also includes authorisation modules that are
used to control which devices are allowed to join the WPAN. Devices attempting
to join are placed into a grey list so the user is aware of their presence. Devices
in the grey list can be authorised to join by the user in which case they are
placed into a white list and allowed to join the network.

The white list includes the MAC addresses of the devices allowed into the
network and a commissioning key for each device. The commissioning key in the
white list must match the key programmed into the device attempting to join the
network or it will not be able to join.

The devices in this Application Note use a commissioning key derived from the
device’s MAC address which allows the key to be pre-populated when a device
is grey listed. However this is potentially insecure, a more secure solution would
be to provide a random key out of band. The most convenient method for doing
this would be to include an NFC tag on the device or its packaging that can be
scanned into the gateway prior to installation. Other possible methods would be
to print the key on the device and enter it into the gateway when white listing the
device.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 17

2.1.1.2 Gateway JIP Browser

The gateway contains a generic engineering JenNet-IP Browser interface. This
allows the devices in the WPAN to be discovered. The MIBs and variables in
each device can be accessed allowing them to be viewed and edited.

This interface is a convenient way to explore how devices can be monitored and
controlled before writing applications or creating new devices that need to
interact with other devices in the network, as every variable in every device can
be easily accessed.

 JenNet-IP Application Template

Application Note

18 © NXP Laboratories UK 2015 JN-AN-1190 v2004

2.1.1.3 Gateway Smart Devices Demonstration

The Smart Devices GUI serves webpages specifically designed to control bulb
devices. Bulbs can easily be turned on or off and the brightness level and colour
of the bulbs can be set.

Groups of bulbs may be controlled together to set them all with the same
settings. Finally bulbs can be placed into scenes which allow them to be
configured with different settings but to have those settings activated at the same
time by broadcasting a single command through the network, (and so avoid
having to send a separate command to each bulb).

 The Smart Devices GUI does not provide an interface to
place bulbs into groups or configure scenes, the JenNet-IP
Browser GUI must be used for this purpose.

The Smart Devices GUI only provides control of bulbs, other
device types must be controlled using the JenNet-IP Browser
GUI.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 19

2.1.2 Gateway Hardware

The Internet Router/JenNet-IP Gateway hardware is formed from three
components:

 Internet Router: This provides standard IP routing services, in most
configurations this is an off-the-shelf device running the stock
manufacturer’s firmware.

 Border Router Host: This runs a version of the Linux based OpenWRT
system customised by NXP to allow the management of JenNet-IP
networks. Connected to the internet router via Ethernet or Wi-Fi. The
software for the border router host is described in JenNet-IP Border
Router (JN-AN-1110).

 Border Router Node: This runs on a JN5168 device and provides the low
power radio services to the border router host. It is connected to the
border router host via a serial link. The software for the border router
node is described in JenNet-IP Border Router (JN-AN-1110).

These three components can be combined in a number of different
configurations:

2.1.2.1 Internet Router with Custom Firmware

This is the configuration provided in the JN516x Evaluation Kit (EK001).

 The internet router is a standard off-the-shelf router running NXP’s
customised version of the Linux based OpenWRT. This allows both
standard internet routing software and the border router host software to
run as a single package in one device, with both pieces of software
running on the same processor. These components run on the Linksys
WRT160NL in the JN516x Evaluation Kit (EK001).

 The border router node runs on a second device with a serial connection
to the border router host. This component runs on a JN516x USB dongle
from the JN516x Evaluation Kit (EK001).

The configuration isn’t really suitable for end users as it requires replacing the
stock firmware in a compatible commercial internet router which is often a
difficult process. However it is suitable for development use as it allows the use
of an easily obtainable consumer internet router in the JN516x Evaluation Kit
(EK001).

 JenNet-IP Application Template

Application Note

20 © NXP Laboratories UK 2015 JN-AN-1190 v2004

2.1.2.2 Combined Border Router

This is the configuration implemented in the Reference Design JN5168/LPC3240
Gateway (JN-RD-6040):

 The internet router is a standard off-the-shelf router running the
manufacturer’s stock firmware.

 The border router host and node are combined in a single device with the
host OpenWRT firmware running on an LPC3240 microcontroller and the
node firmware running on a JN5168. The border router device is
connected to the internet router via Ethernet (or Wi-Fi if using suitable
hardware).

This configuration is most suitable for end users as it allows existing IP systems
to be easily extended to include JenNet-IP devices by simply connecting the
border router device to the network.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 21

2.2 Coordinator System Topology

The following diagram shows the topology of a coordinator system built from the
lighting devices in JenNet-IP Smart Home (JN-AN-1162):

This topology replaces the gateway with a Coordinator device that does not allow
connection to an existing IP network. The Coordinator device independently
creates the network for the other devices to join and accepts any device
attempting to join its network.

In a Coordinator system the Smart Devices form a JenNet-IP tree network
allowing messages to be directed to both individual nodes in the form of unicasts
and groups of nodes in the form of broadcasts from within the WPAN only.

The Coordinator firmware is implemented in JenNet-IP Application Template
(JN-AN-1190) using the Coordinator build of the template application. This
firmware could be extended to allow additional control over which nodes are
allowed to join the network and also implement control and/or monitoring of the
other devices in the network.

 JenNet-IP Application Template

Application Note

22 © NXP Laboratories UK 2015 JN-AN-1190 v2004

2.3 Standalone System Topology

The following diagram shows the topology of a standalone system built from the
lighting devices in JenNet-IP Smart Home (JN-AN-1162):

This topology does not include a Coordinator node to form the network. Instead a
remote control chooses a security key for the network and can be placed into a
commissioning mode using a sequence of keys. While in commissioning mode
other Smart Devices in range can communicate with the remote control to
retrieve the security key and other network settings and join the network.

Once Smart Devices are members they may be controlled by remote controls
and other devices in the system.

When in standalone mode the Smart Devices do not form a tree network but
instead only accept broadcast commands and re-broadcast them for other
standalone Smart Devices to receive, only devices that are in the broadcast
group the command is addressed to will act upon the command.

The remote control firmware is implemented in JenNet-IP Smart Home (JN-AN-
1162) using the remote control application.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 23

2.4 Gateway/Coordinator Failure

When devices in a gateway or coordinator system lose contact with the network
they will continue to receive broadcast commands and so operate in a similar
way to devices in a standalone system. While in this mode they attempt to re-join
the network (possibly with a different parent).

This allows Smart Devices to be controlled from other devices running within the
WPAN (such as remote controls and sensors) even while not in the tree network
as long as broadcast messages are used. This situation may occur if a gateway
or coordinator device is powered off.

2.5 MIBs and Variables

The functionality of the Smart Devices is implemented by a set of Management
Information Bases (MIBs). Each MIB provides a set of variables that allow the
device to be monitored and controlled. Each MIB groups together a set of
variables that provides access to a particular function of the device.

Where different devices implement the same functionality they do so via the
same set of MIBs. Therefore some MIBs are common to many devices types
while other MIBs are specific to certain device types.

The template software included in JenNet-IP Application Template (JN-AN-1190)
may be re-used to program additional devices types. The included code and
common MIBs may be used unchanged in order to introduce new devices to a
network. The tasks for a developing a new device type will then typically include
some combination of the following:

 For a device to be remotely monitored – appropriate MIBs and variables
need to be created with the variables being set to appropriate values for
the data being monitored.

 For a device to remotely monitor other devices – it must identify the
devices to be monitored in the network then read the variables to obtain
the data being monitored. Similar functionality is required when writing
applications to monitor devices from outside the WPAN.

 For a device to be remotely controlled – appropriate MIBs and variables
need to be created. When the variables are written to by remote devices
appropriate actions should be taken to respond to the command.

 For a device to remotely control other devices – it must identify the devices
to be controlled in the network then write to the appropriate variables to
control the device. Similar functionality is required when writing
applications to control devices from outside the WPAN.

Section 5 "MIB Variable Reference" covers each MIB and variable implemented
in this Application Note in detail for comprehensive information.

 JenNet-IP Application Template

Application Note

24 © NXP Laboratories UK 2015 JN-AN-1190 v2004

2.6 Custom Protocols

The use of MIB and variables provides a standardised device-centric way to
monitor and control devices. Development of a new application is focussed on
the functionality to be provided by each device rather than on developing
wireless protocols.

In some scenarios it may be necessary to develop custom wireless protocols.
This can be achieved in JenNet-IP by opening additional sockets in devices, then
sending and receiving messages at the 6LoWPAN layer of the stack.

When using 6LoWPAN layer messaging in this way, it is also possible to make
use of JenNet-IP MIBs and variables for additional flexibility.

The JenNet-IP Application Template (JN-AN-1190) includes the DeviceProtocol
application (which can be built as a Coordinator, Router or End Device) that
illustrates how to do this.

 Note: The JenNet-IP Border Router (JN-AN-1110) only opens
the socket used for MIB and variable based communications.
If the border router needs to send or receive 6LoWPAN level
messages it will be necessary to adapt the border router
firmware.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 25

2.7 Identifiers

Various identifiers are used to identify devices, manufacturers, products and
MIBs. These are described in the following sections:

2.7.1 Device ID (32 bits)

The 32-bit Device ID is used to identify different devices. Devices with the same
Device ID must contain identical MIBs.

! The Device ID is often used to cache information about the
MIBs that are present in a device. Therefore if the MIBs are
changed then a new Device ID should be allocated.

! When changing the MIBs in a device during development, it
may be necessary to power down the changed device and
reset the gateway to clear any information cached in the
gateway for the device.

The Device IDs are made available in the DeviceID MIB present in each device.

The Device ID is divided into three components, described below:

2.7.1.1 Sleeping Device Flag (1 bit)

The most significant bit is used to indicate whether a device is a sleeping End
Device. Setting the bit indicates a sleeping End Device.

Software communicating with an End Device may request an End Device to stay
awake to receive further messages and thus improve the responsiveness of the
End Device when many messages need to be sent. This bit can be used to
identify such devices.

2.7.1.2 Manufacturer ID (15-bits)

The next most significant 15 bits represent the Manufacturer ID which identifies
the manufacturer of a device. All the devices in the Application Note use NXP’s
Manufacturer ID of 0x0801.

Manufacturer IDs are allocated by NXP. Customers preparing to go into
production can request a Manufacturer ID from NXP to use in their products.
Customers should not use Manufacturer IDs allocated to other companies,
including NXP’s Manufacturer ID, in their own products.

During development, the Manufacturer ID 0x0001 may be used by anyone.

 JenNet-IP Application Template

Application Note

26 © NXP Laboratories UK 2015 JN-AN-1190 v2004

2.7.1.3 Product ID (16 bits)

The least significant 16 bits represent the Product ID these are allocated by the
manufacturer to identify different products.

Where a manufacturer is using their own Manufacturer ID (or the global 0x0001
Manufacturer ID), they may allocate Product IDs as they see fit.

2.7.2 Device Type IDs (16 bits)

The 16-bit Device Type IDs are used as a short-hand to identify classes of
devices. Multifunctional devices may include more than one Device Type ID. It is
also valid for a device to include no Device Type IDs.

For example, there may be many different manufacturers of bulbs each with a
range of bulbs resulting in many different Device IDs being used in bulbs.
However, they may all use the standard Device Type ID of 0x00E1 to indicate a
single channel dimmable bulb.

The Device Type ID is surfaced to the application layers during some
communications and may be used to decide which action to take depending
upon the Device Type ID. For example, the commissioning features on the
remote control use the Device Type ID included in a join request to determine if a
device is of a type that can currently be commissioned.

The Device Type IDs are made available in the DeviceID MIB present in each
device.

There are two kinds of Device Type IDs, as described below:

2.7.2.1 Standard Device Type IDs

Standard Device Type IDs are allocated by NXP for use in standardised devices.
These can be recognised by the most significant bit being 0.

When using a standard Device Type ID, certain MIBs must be present in the
device in order to provide a standardised device.

2.7.2.2 Manufacturer Device Type IDs

Manufacturer Device Type IDs can be allocated by customers using their own
Manufacturer ID within the Device ID. In order to correctly determine the Device
Type, the Device Type ID must be used in conjunction with the Manufacturer ID
within the Device ID.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 27

2.7.3 MIB IDs (32 bits)

Each MIB has a 32-bit MIB ID which provides a convenient way to access MIBs
irrespective of the order of the MIBs in a device. MIBs with the same IDs in
different devices must contain the same set of variables. Each MIB also has a
name making it easier for humans to read.

! The MIB ID is often used to cache information about the
variables that are present in a MIB. Therefore if the variables
are changed then a new MIB ID should be allocated.

! When changing the variables in a device during development,
it may be necessary to power down the changed device and
reset the gateway to clear any information cached in the
gateway for the changed MIB.

There are two types of MIB IDs, as described below:

2.7.3.1 Standard MIB IDs

Standard MIB IDs are allocated by NXP for use in standardised devices. These
can be recognised by the upper 16 bits being set to 0xFFFF. The lower 16 bits
identify the purpose of the MIB and are allocated by NXP.

Customers using a standard MIB must include the variables specified for that
MIB by NXP. If the variables in such a MIB are adapted by the customer then the
standard MIB ID should be replaced with a Manufacturer MIB ID to maintain
standardisation.

2.7.3.2 Manufacturer MIB IDs

Manufacturer MIB IDs can be allocated by customers using their own
Manufacturer ID within the Device ID. The upper 16 bits should be the
Manufacturer ID (as used in the Device ID). The lower 16 bits identify the
purpose of the MIB and are allocated by the manufacturer.

 JenNet-IP Application Template

Application Note

28 © NXP Laboratories UK 2015 JN-AN-1190 v2004

2.8 Message Transmission

There are two different ways to transmit messages in a JenNet-IP network, as
described below:

2.8.1 Unicast Messaging

Unicast messages are sent to a single node. They can be used to set or get MIB
variables and any response is returned using a unicast back to the requesting
node. When these messages are sent they must follow the network tree and so
are normally only used in a gateway network.

Typical usage is in a gateway network to monitor and control individual devices.

This method of messaging is also used in a standalone network when a remote
control is commissioning new devices into its network. During this time a minimal
tree network is in place between the remote control and the device being
commissioned, so the remote control is able to use unicasts to commission
devices.

2.8.2 Multicast Messaging

Multicast messages (or broadcasts) are sent to every non-sleeping node in a
network. When each node receives a multicast message it is retransmitted for
other nodes to receive and forward in turn. Each node keeps a history of recently
received messages allowing duplicate messages to be filtered out.

Multicast messages can be addressed to groups of devices. While each
multicast is always retransmitted by every node, only nodes that are members of
the group will act upon the received message. The groups to which each node
belongs can be configured using the stack’s Groups MIB.

Multicast messages can be used to set MIB variables. To avoid radio congestion
no responses are returned for received multicast messages, so they cannot be
used to get variables.

These messages are typically used by the remote control to control devices.
Multicasts may also be issued from or via the gateway or sensors to control
groups of nodes.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 29

3 Device Concepts
This section covers the concepts of the devices implemented in this Application
Note:

3.1 Template

The template devices provide the minimal functionality to get a node running in a
JenNet-IP network. As such they are intended to be copied and built upon in
order to create devices that provide specific functionality.

The template software can be built as a Coordinator (for use where a gateway is
undesirable), Router or End Device.

3.2 Digital I/O

The digital I/O device builds on the template software to provide an example of
how to extend the template. MIBs implemented in this device allow full control of
the digital I/O pins of the JN516x chip.

The digital I/O software can be built as a Router or End Device.

 JenNet-IP Application Template

Application Note

30 © NXP Laboratories UK 2015 JN-AN-1190 v2004

4 System Operation
This section describes the operation of the devices implemented in the
Application Note.

The software is written to run on the hardware included in the JN516x Evaluation
Kit (EK001). The hardware provided in the evaluation kit is separately described
in JN516x EK001 Evaluation Kit User Guide (JN-UG-3093).

The devices in this Application Note support three modes of operation:

 Gateway system in which the nodes of a WPAN can be controlled:

 from outside the WPAN, via an IP connection from a PC

 from within the WPAN, from other wireless devices

 Coordinator system in which the nodes of a WPAN can be controlled only
from a wireless device within the WPAN (there is no external IP
connection) using unicasts and/or broadcasts.

 Standalone system in which the nodes of a WPAN can be controlled only
from a wireless device within the WPAN (there is no external IP
connection) using broadcasts.

The devices in the JenNet-IP Application Template (JN-AN-1190) and JenNet-IP
Smart Home (JN-AN-1162) Application Notes are capable of operating in all
three types of systems. However, due to the nature of the included applications
there may be limitations in the functionality when used in certain system types.

Gateway System

The devices in both these Application Notes are fully functional with access to all
features when used in a gateway system using the lighting GUIs and the generic
JenNet-IP browser implemented in the border router host software.

Coordinator System

The Coordinator device is implemented by the template device in JenNet-IP
Application Template (JN-AN-1190). This Coordinator device will accept all the
devices types in the Application Notes into its network except for the low energy
switch devices in JenNet-IP Smart Home (JN-AN-1162).

However as there is no method to provide general access to MIB variables this
template is provided as a simple example of how to create such a system.

Standalone System

The remote control device is implemented in JenNet-IP Smart Home (JN-AN-
1162). The remote control is only able to accept bulb devices into its network.
JenNet-IP Smart Home (JN-AN-1162) describes how to set up a standalone
system using only these devices.

However, as there is no method to provide general access to MIB variables the
functionality is limited to using the remote control to control bulb devices.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 31

4.1 Gateway System Operation

This chapter describes how to use the contents of the JN516x Evaluation Kit
(EK001) to set up and run the JenNet-IP Application Template (JN-AN-1190) .
This demonstration is based on a WPAN with nodes containing one of two
device types:

1. Template software, which serves as example code showing how to create
a basic device that joins and maintains it place in a network. This device,
by its nature, does not include any additional application functionality.

2. Digital I/O software, which provides example code showing how to extend
the template to include additional application functionality. This software
allows the digital I/O line of the chips to be configured and controlled. The
software can be remotely configured to monitor the buttons and control the
LEDs on the evaluation kit hardware.

 JenNet-IP Application Template

Application Note

32 © NXP Laboratories UK 2015 JN-AN-1190 v2004

4.1.1 Gateway System Operation Overview

In the JenNet-IP Application Template (JN-AN-1190) a set of devices form a
WPAN which can be accessed from a PC located on an Ethernet bus. The
components of an evaluation kit are used in the demonstration as follows:

 Carrier Boards with Generic Expansion Boards: The four carrier boards
supplied in the kit are pre-fitted with Lighting/Sensor or Generic Expansion
Boards and JN516x modules. Each of these four board assemblies acts as
a node of the WPAN, where the JN516x module on each node is
programmed as a WPAN Router or End Device. In the demonstration, the
buttons and LEDs on the Carrier Board and Generic Expansion Board may
be monitored and controlled when running the digital I/O software.

 USB Dongle: This demonstration uses one of the supplied USB dongles
programmed as the border router node and WPAN Coordinator. The
dongle connects to the Linksys router (via the USB extension cable).
Together they provide the gateway which is the interface between the
WPAN and LAN/WAN domains - the dongle handles the WPAN side of this
interface. The dongle is also the Coordinator node of the WPAN. (The
second USB Dongle may be used to run the template firmware in order to
create a larger network.)

 Linksys Router: The Linksys router is programmed with an NXP firmware
upgrade, based upon OpenWRT, which allows the router to operate as the
border router host and a standard IP router. It is connected to the above
USB dongle (via the USB extension cable). Together they provide the
gateway which is the interface between the WPAN and LAN/WAN domains
- the router handles the LAN/WAN side of the interface and connects to the
Ethernet bus on which the controlling PC is located.

The Application Template system is illustrated below.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 33

The WPAN will have a tree topology but its precise topology cannot be pre-
determined since the network is formed dynamically. One or more of the Routers
may be leaf-nodes of the tree, in which case their routing capability will not be
used.

4.1.1.1 Device Control from a PC

In this demonstration, control and monitoring commands can be issued from a
PC on an Ethernet LAN connected to the border router, from where the
commands will be delivered to the target nodes in a WPAN. A command can be
directed to an individual node in the form of a unicast or to groups of nodes in the
form of a broadcast.

A generic JenNet-IP Browser application is provided on the Linksys router that
allows a PC user to monitor and control the devices in the WPAN. This
application runs on the router and serves web pages to a normal web browser on
the PC, allowing the user to interact with the WPAN nodes through the border
router.

The JenNet-IP Browser application provides a low-level interface for monitoring
and controlling the devices in the WPAN, allowing the user to access the MIBs
on the WPAN nodes. The application can be accessed by entering the following
(case-sensitive) IP address into the web browser:

http://192.168.11.1/Browser.html

The JenNet-IP Browser can be accessed via the gateway’s landing page by
simply entering the IP address of the gateway into a web browser on the PC:

http://192.168.11.1/

The other interfaces provided by the gateway, the Smart Devices Demonstration
and the Gateway Configuration interfaces, are also accessible from the
gateway’s landing page. These interfaces are described later in in this document.

http://192.168.11.1/Browser.html
http://192.168.11.1/

4.1.2 Setting Up the Gateway System

This section describes the general procedures for setting up the gateway system
using the evaluation kit components, instructions for specific device types are
included in later sections of the Application Note.

4.1.2.1 Programming the Device Firmware

To run the software in this Application Note, the appropriate firmware must be
programmed into the evaluation kit hardware.

 Pre-built firmware binaries are provided with this Application
Note. If you wish to compile your own binaries, instructions for
importing the Application Note into the IDE and compiling are
included in Beyond Studio for NXP Installation and User
Guide (JN-UG-3098).

 Instructions on how to connect the evaluation kit boards to a
PC and program them with firmware are included in Beyond
Studio for NXP Installation and User Guide (JN-UG-3098).

 If the board has previously been used, it will retain settings
(e.g. PAN ID) from the previous network to which it belonged,
which may prevent it joining the JenNet-IP network. These
settings may be cleared during programming by erasing the
EEPROM data in the device.

Pre-built binary files are included in the Binary folder of the Application Note for
programming into the evaluation kit boards. The binaries to be used are specified
in the sections covering each device type later in this document.

4.1.2.2 Setting Up the Border Router

In setting up the LAN part of the demo system, you will need the following
components:

 A PC running Windows XP or Windows 7

 Linksys router and USB extension cable (from the evaluation kit)

 USB dongle (from the evaluation kit)

 Ethernet cable (from the evaluation kit)

To set up the border router part of the system, follow the instructions below.

Step 1 Program the border router node firmware into a USB dongle (once only)

If the USB dongle is not already programmed with the latest border router node
firmware it should be updated prior to running the application.

 JenNet-IP Application Template

Application Note

2 © NXP Laboratories UK 2015 JN-AN-1190 v2004

 The USB dongles provided in the evaluation kit are pre-
loaded with an older version of the border router node
firmware and should be updated to the latest version before
using the Application Note. The Application Note JenNet-IP
Border Router (JN-AN-1110) contains the border router node
firmware.

 Instructions on how to connect the USB dongles to a PC and
program them with firmware are included in Beyond Studio for
NXP Installation and User Guide (JN-UG-3098) .

Step 2 Connect the PC to the Linksys router

a) Boot up the PC.

b) Use the supplied Ethernet cable to connect the PC to the Linksys router (but
do not power on the Linksys router yet). Use a blue Ethernet socket on the
router (do not use the yellow socket labelled ‘Internet’).

Step 3 Connect the USB dongle to the Linksys router

Connect the USB dongle (which is programmed as a border router node and as
a WPAN Coordinator) to the USB socket of the Linksys router via the supplied
USB extension cable (use of this cable improves the radio performance of the
dongle).

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 3

Step 4 Power on the Linksys router

Connect the power supply to the Linksys router. The unit will automatically power
on (this will also start the USB dongle). The power LED will first flash and then
the central LED will flash. The unit is ready when the central LED stops flashing
and remains illuminated.

Since the USB dongle will also be the Coordinator of the WPAN, this device will
create a network, for the moment consisting of just the Coordinator - the rest of
the network will be formed later.

Step 5 Program the Border Router Host firmware into the Linksys router (once
only)

If the Linksys Router is not already programmed with the latest border router
host firmware it should be updated before continuing to run the application.

 The Linksys router provided in the evaluation kit is pre-loaded
with an older version of the border router host firmware and
should be updated to the latest version before using the
Application Note.

 The Application Note JenNet-IP Border Router (JN-AN-1110)
contains the border router host firmware and instructions to
update the Linksys router.

Step 6 Enable JenNet-IP in the Linksys router from the PC (once only)

The latest border router host firmware is able to work with JenNet-IP or ZigBee
PRO low power wireless networks. The Linksys router firmware must be enabled
for use with a JenNet-IP system before continuing to use the application.

a) Launch a web browser on the PC.

b) Access the JenNet-IP Border-Router Configuration interface on the Linksys
router by entering the following IP address into the browser:
http://192.168.11.1/ then click the Gateway Configuration Interface link

c) On the resulting web page, log in with username “root” and password
“snap”.

http://192.168.11.1/

 JenNet-IP Application Template

Application Note

4 © NXP Laboratories UK 2015 JN-AN-1190 v2004

d) On the next web page, select the ZigBee Gateway tab, then select the
ZigBee – JIP sub-tab.

The ZigBee – JIP sub-tab is illustrated in the screenshot below:

c) In the ZigBee - JIP sub-tab, make sure that the Enable checkbox is not
ticked.

d) If the checkbox was cleared, click the Save & Apply button to save the
changes.

e) Next select the JenNet-IP tab, then select the 6LoWPANd sub-tab.

The 6LoWPANd sub-tab is illustrated in the screenshot below:

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 5

f) In the 6LoWPANd sub-tab, make sure that the Enable checkbox is ticked.

g) If the checkbox was set click the Save & Apply button to save the changes.

h) Once the border router has correctly created a network the IEEE 802.15.4
Channel value will be non-zero and the IEEE 802.15.4 PAN ID will display a
value different than 0xffff. The page may need to be refreshed to update this
information.

Step 7 Check the Linksys router configuration from the PC (optional)

If you wish, you can now check the system configuration on the Linksys router as
described below - you should not need to change the default settings.

 Note: The low energy switch binary included in JenNet-IP
Smart Home (JN-AN-1162) operates only on channel 21. If
you intend to add the low energy switch to your system you
should channel to channel 21 at this stage.

a) Use a web browser on the PC to access the 6LoWPANd sub-tab in the
JenNet-IP Border Router Configuration interface as described in Step 6 if it
is not already open.

b) The 6LoWPANd sub-tab is illustrated in the screenshot above.

The fields in the above screenshot are described in the table below.

Field Description

Enable Checkbox used to enable/disable the 6LoWPANd
interface

Serial Device Indicates serial port to which Border-Router node
(dongle) is connected on the Linksys router

Interface Indicates the network interface that hosts the JenNet-
IP network.

IEEE 802.15.4 Channel Number of the radio channel used in the WPAN -
selected by the Co-ordinator in this demo and should
not be changed when running the demo system.

IEEE 802.15.4 PAN ID 16-bit PAN ID of wireless network – selected by the
Co-ordinator in this demo and should not be changed
when running the demo system

 JenNet ID 32-bit Network Application ID of WPAN

Wireless Network IPv6 Pre-fix 64-bit IPv6 address prefix for WPAN

c) In the 6LoWPANd sub-tab, click the Edit button on the right-hand side.

 JenNet-IP Application Template

Application Note

6 © NXP Laboratories UK 2015 JN-AN-1190 v2004

d) In the 6LoWPANd Configuration screen (which now appears), click on the
General Setup tab. This displays similar fields to those listed in the table
above, as shown in the screenshot below:

e) In the General Setup tab:

 Ensure that the Enable Interface checkbox is ticked.

 Ensure that the Enable 15.4 Bandwidth Throttling checkbox is unticked.

 Ensure that the JenNet Network Id to start field is set to 0x11111111 (this
is an application-specific identifier).

 If you intend to add the low energy switch from JenNet-IP Smart Home
(JN-AN-1162) to the system, change the Channel field to 21

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 7

f) Now select the Security tab (see screenshot below) and ensure that the
JenNet Security Enabled checkbox is ticked.

g) If you have made any changes, click the Save & Apply button to implement
them.

 JenNet-IP Application Template

Application Note

8 © NXP Laboratories UK 2015 JN-AN-1190 v2004

4.1.2.3 Adding Devices to the WPAN

This section describes the general process used to add devices to the WPAN,

instructions for specific devices are included in later sections.

In setting up the WPAN part of the demo system, you will need the following

components:

 Border router part of the system (set up as described in Section 4.1.2.2
"Setting Up the Border Router")

 Evaluation kit boards fitted with JN516x modules, optional expansion
boards, antennae and batteries. These boards must be programmed with
the required firmware

 (Optional) second USB dongle programmed with the required firmware

 JN516x EK001 Evaluation Kit User Guide (JN-UG-3093)
contains instructions for connecting the evaluation kit
components together.

You can use as many of the boards as you like in this demonstration - for

example, you may wish to initially use only one board.

General instructions applicable to all devices are below, (further information for

specific device types, where applicable, are included in the following sections):

Step 1 Start the node

Perform the following for just one node:

On power-up, the node will attempt to join the WPAN (for which the USB dongle

is the Coordinator). There is no timeout on the node’s attempt to find and join the

WPAN, but the node will not be able to join until it has been whitelisted (next

step).

 Note: If the board has previously been used, it will retain
settings (e.g. PAN ID) from the previous network to which it
belonged. This information can be cleared during
programming by erasing the EEPROM data held in the
device. To clear this information at run-time and return to the
factory settings, perform a factory reset as follows: Wait at
least 2 seconds following power-up and then press the Reset
button on the carrier board 4 times with less than 2 seconds
between two consecutive presses. After the reset, the board
will try to join a new network.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 9

Step 2 Access the Gateway Configuration interface from the PC

If not already done (from the border router set-up), access the JenNet-IP

Gateway Configuration interface from the PC as follows:

e) Launch a web browser on the PC.

f) Access the JenNet-IP landing page on the Linksys router by entering the
following IP address into the browser:

http://192.168.11.1/

g) Select the Gateway Configuration Interface link

h) On the resulting web page, log in with username root and password snap.

Step 3 Display the ‘whitelist’ of WPAN nodes in the interface on the PC

i) In the interface, select the JenNet-IP tab and then select the Whitelist sub-
tab. Normally, this sub-tab shows a list of the detected WPAN nodes,
identified by their IPv6 addresses, as illustrated in the screenshot below.
Those nodes that are ticked (in the checkbox on the left-hand side) are in
the whitelist and so are allowed into the network. Currently, only the
evaluation kit board should be listed and should be unticked (greylisted) - if
it does not appear, refresh the list by clicking Whitelist again.

h) Put the evaluation kit board into the whitelist by ticking its checkbox on the
left-hand side and click the Save & Apply button. The unit should now be
able to join the network.

 The easiest way to check whether a device has joined the
network is to access the JIP Browser interface in the gateway
as described in the next section.

 JenNet-IP Application Template

Application Note

10 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Step 4 Add additional nodes to the whitelist in the JenNet-IP Gateway
Configuration interface

Additional nodes can be added to the whitelist by repeating the above steps.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 11

4.1.3 Operating the Template Devices

The template devices in the WPAN can be controlled from the PC via IP. Due to

its nature as a template, this application provides very little functionality to

explore. However its MIB variables can be accessed from a PC for monitoring

purposes and some variables can be written to.

4.1.3.1 Setting Up the Template Devices

In setting up the template part of the demo system, you will need the following

components:

 LAN part of the system (set up as described in Section 4.1.2.2 "Setting Up
the Border Router".

 Carrier Boards (DR1174) fitted with JN516x modules, antennae and
batteries programmed with the required firmware.

To set up the bulb part of the system follow the instructions below:

Step 1 Setup template hardware

The template device firmware can be used on any of the evaluation kit boards,
the second USB dongle and the Carrier Boards (DR1174) are sufficient to run
this software.

 JenNet-IP Application Template

Application Note

12 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Step 2 Program the template software

The following pre-built binaries are provided in the Application Note for use on

the evaluation kit boards.

0x11111111s_DeviceTemplate_DR1174_EndDevice_JN5168_v0000.bin

0x11111111s_DeviceTemplate_DR1174_Router_JN5168_v0000.bin

When adding these devices to a gateway system only the Router or End Device
should be used (the Coordinator will create its own separate network).

! It is recommended to erase the contents of the device’s
EEPROM when programming the device otherwise it may
retain settings for an old network and be prevented from
joining the new network created in this section.

Step 3 Add the template devices to the network

Follow the general procedure for powering on the boards and white listing the
devices described in Section 4.1.2.3 "Adding Devices to the WPAN".

On power-up, the node will attempt to join the WPAN (for which the USB dongle

is the Coordinator).

Step 4 Template device feedback

The template device does not provide any feedback to indicate it has joined the

network. The following section describes how to access the template device from

the PC which can also be used to verify it has joined.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 13

4.1.3.2 Template Control from PC

The template devices can be accessed from the JenNet-IP Browser, which runs

on the Linksys router and is available via a normal web browser on the PC. The

JenNet-IP Browser is a generic tool that can query and navigate through the

devices, MIBs and variables in a JenNet-IP network.

Step 1 Access the JenNet-IP Browser

The JenNet-IP browser is accessed by selecting the JIP Browser link on the

gateway landing page at:

http://192.168.11.1/

Step 2 Border router node selection

The JenNet-IP Browser first displays a list of border router nodes connected to
the border router host as shown in the following screenshot:

It is possible to connect more than one border router node to the host. They will
be displayed on this page of the JenNet-IP Browser.

The IPv6 address of each border router node is displayed on the left of the table.

To view the devices in the border router node’s network tick the checkboxes on
the right hand side. Then click Discover Network(s) to display a list of devices
in the network(s).

It is possible to return to the Border Router Node Selection page by clicking
Border Routers in the navigation bar at the top of the JenNet-IP Browser’s
pages. If devices are removed from or added to a network, it may be necessary
to return to this page to re-discover the network and display the updated device
list.

 JenNet-IP Application Template

Application Note

14 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Step 3 Display the device list

The resulting Network Devices page lists the nodes in the WPAN, as illustrated

in the screenshot below.

The left side displays the name assigned to the device. Devices assign

themselves a name when they are started from a factory state and can be

changed by the user if required. In the above example:

 ‘Border-Router’ refers to the USB dongle attached to the Linksys router.

 The other entries refer to the WPAN nodes that are running the template
software. The default names assigned to devices use the following pattern:

 The first character indicates the type of device, where the makefile for
the build assigns one. In the above example ‘T’ indicates a template
device and ‘D’ indicates a digital I/O device.

 The next four hexadecimal digits indicate the Product ID part of the
Device ID.

 The fifth character indicates the node type within the network. In the
above example, ‘r’ indicates a Router node and ‘e’ indicates a sleeping
End Device node.

 The next two characters indicate the JN51xx chip running the software,
JN5168 in the above example.

 The remaining hexadecimal digits after the space are the least
significant digits of the device’s MAC address.

The right side displays the IPv6 address of the device.

It is possible to return to the Device Selection page by clicking Devices in the
navigation bar at the top of the JenNet-IP Browser’s pages.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 15

Step 4 Display the template device’s MIB list

Clicking on a template device’s name displays a MIBs page for that particular
template device, containing a list of the MIBs on the node, as illustrated in the
screenshot below:

The IPv6 address of the relevant node is shown at the top of the page.

On the left side of the page are the MIB names while the MIB IDs are displayed

to the right.

It is possible to return to the MIB Selection page by clicking MIBs in the
navigation bar at the top of the JenNet-IP Browser’s pages.

 Router nodes will respond more quickly than End Device
nodes when using the JenNet-IP Browser. This is because
the system may need to wait for an End Device to wake from
sleep mode before communicating with it, whereas Router
nodes are always powered and able to receive
communications at any time.

 JenNet-IP Application Template

Application Note

16 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Step 5 Display the Node MIB’s variables

Clicking on a MIB name displays a page showing the variables within the MIB (as

shown in the screenshot of the Node MIB below).

The variable names and values are shown on the left, the variable indices and
control buttons are on the right.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 17

Step 6 Editing MIB variables

Variable values displayed in an edit box can be written to. To change the value of

the DescriptiveName variable, edit the current name and click the Set button to

transmit the new name to the device.

This value will be saved in permanent memory and retained even if the device is

power cycled. If the network is re-discovered (by returning to the Border Routers

page), it will also be displayed on the Devices list page

 JenNet-IP Application Template

Application Note

18 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Step 7 Reading variables

Variable values displayed as text are read-only values. As the browser uses a

static webpage to display its information, the page must be refreshed to update

any changed variables.

The NwkStatus MIB contains a RunTime variable which is updated to indicate

how long the device has been running, as shown in the following screenshot:

The changes in this variable can be observed by displaying and refreshing the

NwkStatus MIB for a node in the browser. Individual variables can be updated by
clicking the Refresh button to the right of the variable contents.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 19

4.1.4 Operating the Digital I/O Devices

The digital I/O devices allow the digital I/O pins of the JN516x device to be
configured, monitored and controlled remotely.

4.1.4.1 Setting Up the Digital I/O Devices

In setting up the digital I/O part of the demo system, you will need the following

components:

 LAN part of the system (set up as described in Section 4.1.2.2 "Setting Up
the Border Router".

 Carrier Boards (DR1174) fitted with JN516x modules, antennae and
batteries programmed with the required firmware.

 It is recommended that the Carrier Boards are fitted with Generic
Expansion Boards (DR1199) as these connect switches and LEDs to the
input and output ins.

To set up the bulb part of the system follow the instructions below:

Step 1 Setup digital I/O hardware

The digital I/O device firmware can be used on any of the evaluation kit boards,
as this software allows control of digital I/O. The use of the Generic Expansion
Board (DR1199) is recommended as it provides additional buttons and LEDs to
control compared to the Carrier Board alone.

 JenNet-IP Application Template

Application Note

20 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Step 2 Program the digital I/O software

The following pre-built binaries are provided in the Application Note for use on

the evaluation kit boards.

0x11111111s_DeviceDio_DR1199_EndDevice_JN5168_v0000.bin
0x11111111s_DeviceDio_DR1199_Router_JN5168_v0000.bin

When adding these devices to a gateway system the Router or End Device may
be used. The Router build will provide respond more quickly to commands
compared to the End Device as the End Device can only receive messages
when it wakes from sleep mode.

! It is recommended to erase the contents of the device’s
EEPROM when programming the device otherwise it may
retain settings for an old network and be prevented from
joining the new network created in this section.

Step 5 Add the digital I/O devices to the network

Follow the general procedure for powering on the boards and white listing the
devices described in Section 4.1.2.3 "Adding Devices to the WPAN".

On power-up, the node will attempt to join the WPAN (for which the USB dongle

is the Coordinator).

Step 6 Digital I/O device feedback

The digital I/O device does not provide any feedback to indicate it has joined the

network. The following section describes how to access the template device from

the PC which can also be used to verify it has joined.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 21

4.1.4.2 Digital I/O Device Configuration from PC

The digital I/O devices in the WPAN can be configured from the PC via IP. Each

of the digital I/O lines can be configured to operate as either an input or output.

When used in conjunction the evaluation kit Carrier and Generic Expansion

Boards the LEDs can be controlled and the buttons monitored.

The following digital I/O lines available on the evaluation kit boards are shown in

the table below:

Board Usage DIO DIO Mask Operation

Carrier Board (DR1174) LED D3 DIO3 0x00008 Inverted

LED D6 DIO2 0x00004 Inverted

Button DIO8 DIO8 0x00100 Inverted

Generic Expansion Board

(DR1199)

LED D1 DIO16 0x10000 Normal

LED D2 DIO13 0x02000 Normal

LED D3 DIO0 0x00001 Normal

Button SW1 DIO11 0x00800 Inverted

Button SW2 DIO12 0x01000 Inverted

Button SW3 DIO17 0x20000 Inverted

Button SW4 DIO1 0x00002 Inverted

LCD Expansion Board

(DR1201)
Button SW1 DIO11 0x00800 Inverted

Button SW2 DIO12 0x01000 Inverted

Button SW3 DIO17 0x20000 Inverted

Button SW4 DIO1 0x00002 Inverted

The Operation column indicates how the DIO line is connected:

 “Normal” indicates that when the corresponding bit is set, the LED is on or
the button is pressed.

 “Inverted” indicates that when the corresponding bit is set, the LED is off or
the button is released.

 JenNet-IP Application Template

Application Note

22 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Step 1 Accessing the Digital I/O device MIBs

From the Devices page, select one of the digital I/O devices to display its MIBs
as shown in the following screenshot:

The digital I/O device contains many of the same MIBs as the template device.

These MIBs present information and controls common to all device types. The

digital I/O device also contain extra MIBs (where the names begin “Dio”). These

MIBs expose the digital I/O functionality of the device.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 23

Step 2 Accessing the DioConfig MIB

As an example, to configure the pins for the LEDs and buttons on a combination

of the Carrier Board (DR1174) and Generic Expansion Board (DR1199),

navigate to the DioConfig MIB of a digital I/O device to be configured using the

JenNet-IP Browser.

a) Enter 0x21902 into the edit box for the DirectionInput variable and click the
Set button. This will configure the DIO lines connected to the buttons to
operate as inputs. DIO lines not included in the mask will remain unaffected.

b) Enter 0x1200D into the edit box for the DirectionOutput variable and click
the Set button. This will configure the DIO lines connected to the LEDs to
operate as outputs. DIO lines not included in this mask will remain
unaffected.

The screenshot below shows these settings:

The JenNet-IP Browser displays most fields in decimal format. However,
hexadecimal values may be entered by adding a leading “0x”.

 JenNet-IP Application Template

Application Note

24 © NXP Laboratories UK 2015 JN-AN-1190 v2004

The DirectionInput and DirectionOutput variables operate on only a subset of
the digital I/O lines. As such, when the change has been applied, the value will
be reset to zero internally (refreshing these variables will demonstrate this).
However, editing these values affects the Direction variable that can be used to
set the direction of every digital I/O line in a single operation. Refreshing the
Direction variable displays the updated value as shown in the above
screenshot.

4.1.4.3 Digital I/O Device Monitoring from PC

The digital I/O devices in the WPAN can be monitored from the PC via IP. Each

of the digital I/O lines configured as an input can be read.

Step 1 Accessing the DioStatus MIB

To read the state of the buttons simply navigate to the DioStatus MIB page for

the device to monitor, as shown in the screenshot below:

The Input variable indicates which inputs are currently set in the form of a

bitmask. The value is displayed as a decimal number by default.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 25

Step 2 Changing a button state

To check the operation of the Input variable, hold down a button on the

evaluation kit board and refresh the browser page or Input variable field. The

value in the Input variable field should change for the changed input as shown

below:

The JenNet-IP Browser displays the value in decimal notation.

The JenNet-IP Browser does not poll for new values or set up traps to monitor

values, making it necessary to refresh the page or variable to read back changed

values.

All buttons have inverted operation, where the input is set high when the button

is released and set low when the button is pressed.

 JenNet-IP Application Template

Application Note

26 © NXP Laboratories UK 2015 JN-AN-1190 v2004

4.1.4.1 Digital I/O Device Control from PC

The digital I/O devices in the WPAN can be controlled from the PC via IP. Each

of the digital I/O lines configured as an output can be controlled.

Step 1 Accessing the DioControl MIB

To set the state of the LEDs, navigate to the DioControl MIB page for the device

to control, as shown below:

Step 2 Output variable

The Output variable indicates which outputs are currently set this information

takes the form of a bitmask. The value is displayed as a decimal number, by

default. Writing to the Output variable sets the state of all output pins in a single

operation.

Step 3 OutputOn and OutputOff variables

It is often more useful to be able to change the state of a single (or subset) of the
output pins without affecting any others. The OutputOn and OutputOff variables

provide these features. The OutputOn variable will set the output state of only

the pins specified in the written bitmask, leaving all other pins unchanged.
Similarly, the OutputOff variable sets the specified output pins low, leaving all

other pins unchanged.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 27

Step 4 Changing the LEDs

The LEDs on the Generic Expansion Board (DR1199) use “Normal” operation

where setting the appropriate bit high switches on the LED. While the LEDs on

the Carrier Board (DR1174) use “Inverted” operation where setting the

appropriate bit low switches on the LED.

Writing a value of 0x4 to the OutputOff variable will switch on LED D6 on a

Carrier Board (DR1174), while writing a value of 0x4 to the OutputOn variable

will switch off LED D6, as shown below:

Step 5 Checking the Output variable

Refreshing the page or Output variable should display the new value resulting
from any writes to the OutputOn or OutputOff variables as shown above.

The JenNet-IP Browser displays the value in decimal notation.

The JenNet-IP Browser does not poll for new values or set up traps to monitor

values, making it necessary to refresh the page or variable to read back changed

values.

The OutputOn and OutputOff variables are reset to zero once any writes have
been applied to the Output variable. This can be seen by refreshing the
OutputOn and/or OutputOff variables.

 JenNet-IP Application Template

Application Note

28 © NXP Laboratories UK 2015 JN-AN-1190 v2004

4.1.5 Group Configuration and Control

The devices in the WPAN can be enrolled into groups. The devices within a

group can be controlled synchronously by issuing a single command for the

group. For example, in a real situation, the table lamps in a lounge could belong

to a group, allowing all the table lamps to be switched on/off or dimmed at the

same time. Note that a device can be enrolled into more than one group (or into

no groups).

A group has an associated multicast address which is stored inside each

member node. A command for a group includes the relevant multicast address

but is broadcast to all nodes in the WPAN. A receiving node is able to use the

multicast address to identify itself as a member of the group and therefore

execute the command.

 End Device nodes cannot receive multicast messages, as
they spend the majority of their time asleep or with the radio
off.

Device software may automatically place the device into groups on start-up. The

devices in this Application Note automatically place themselves into the “All

Devices” group which has the IPv6 address FF15::F00F. Other device types may

place themselves into groups automatically, allowing all devices of a specific type

to be controlled together. Devices may be removed from these predefined

groups by the user, so membership is not guaranteed.

IPv6 group addresses always have the most significant 16 bits set to FF15. This

leaves many possible addresses available for users.

Some devices such as remote controls need to use groups unique to that device.

These addresses take the form:

FF15::mmmm:mmmm:mmmm:mmmm:gggg

where:

 The mmmm components are the MAC address of the device

 The gggg bits are sequentially allocated by the device, so it may have
many groups it can transmit to.

Incorporating the MAC address of the transmitting device into the group address

reduces the likelihood of a device being accidentally added to a group that can

be controlled by another device. Such devices often have methods to include in

their groups devices that are within direct range.

When creating groups from outside the WPAN, similar techniques can be used to

ensure that group addresses remain unique to the device transmitting commands

to the group.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 29

A command transmitted to a group takes the form of a write to a MIB variable.

For this to be effective, the MIB and variable must be present in the receiving

device and the device must be a member of the addressed group.

Groups can be configured from the remote PC and, where enabled, from other

devices within the WPAN such as a remote control. Group configuration is

described below.

4.1.5.1 Configuring Groups on the PC

This section describes how to set up groups of devices (WPAN nodes) for control

from a PC via an IP connection. Groups of devices can be set up from the

JenNet-IP Browser, which runs on the Linksys router and is accessed via a

normal web browser on the PC.

Step 1 Accessing the Groups MIB

To configure the node’s group memberships, first navigate to the page for a

Router node that is to be added to the group. Click on the Groups MIB on the

node’s MIB page. This takes you to the Groups MIB page that lists the variables

contained in the Groups MIB, as illustrated in the screenshot below.

 JenNet-IP Application Template

Application Note

30 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Step 2 View current group memberships

The addresses of the groups to which the node currently belongs are displayed

in the Groups list at the top of the page.

Note that the leading FF of the group address is omitted from the display and

does not need to be included when manipulating the other variables. This part of

the address is assumed to be FF.

Also note that the group addresses are entered as a single string of hexadecimal

digits (following the leading 0x). The leading value of 15 is assumed to be in the

most significant position of the address. All the following digits are shifted down

to the least significant positions.

So an IPv6 group address FF15::F00F is displayed and should be entered as

“0x15f00f”.

Step 3 Add node to a group

a) Enter the identifier of the group in the AddGroup variable.

b) Click on the Set button for AddGroup.

c) Refresh the page or the Groups table variable. The new group should now
appear in the Groups table variable.

Step 4 Remove node from a group

a) Enter the identifier of the group in the RemoveGroup variable.

b) Click on the Set button for RemoveGroup.

c) Refresh the page or the Groups table variable. The group should now
disappear from the Groups table variable.

Step 5 Remove node from all groups

a) Enter a non-zero value in the ClearGroups variable.

b) Click on the Set button for ClearGroups.

c) Refresh the page or the Groups table variable. All groups should disappear
from the Groups table variable.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 31

4.1.5.2 Controlling Groups of Devices from the PC

This section describes how to control groups of devices (WPAN nodes) from a

PC via an IP connection. Groups of devices can be controlled from the JenNet-IP

Browser, which runs on the Linksys router and is accessed via a normal web

browser on the PC.

To control a number of devices a command is broadcast that performs a write to

a MIB variable. For the command to be effective, the nodes must be members of

the group plus the MIB and variable must be present in the device.

Step 1 Access the NodeControl MIB

To reset a group of nodes, first navigate to the page for a Router node that is to

be reset. Click on the NodeControl MIB on the Node’s MIB page. This takes you

to the NodeControl MIB page that lists the variables contained in the

NodeControl MIB, as illustrated in the screenshot below.

Step 2 Set the Reset variable timer

Writing to the Reset variable sets a timer, in seconds, after which the node will

reset. Enter 10 to set a 10 second timer.

 Do not press the Set button or press Enter, as this will

transmit a unicast message to the selected node.

 JenNet-IP Application Template

Application Note

32 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Step 3 Multicast the command to a group of nodes

Normal updates are unicast only to the node being displayed. However, clicking

the Multicast Set button for a variable will prompt for a multicast IPv6 address

as shown below.

Entering the group address of FF15::F00F then clicking Set will transmit the

command to all Router nodes that are currently members of the “All Devices”

group. After 10 seconds the affected Router nodes will reset.

 If any of the End Devices or Router nodes that are not
members of the group have one of the affected Routers as
their parent, they may need to re-join the network following
the reset.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 33

5 MIB Variable Reference
This section provides reference information on the MIBs and variables created
by in JenNet-IP Application Template (JN-AN-1190).

The application MIBs are grouped together logically into functional groups and
each individual MIB contains a logically grouped set of variables.

Note that the JenNet-IP stack provides a number of MIBs and variables that
become available in every JenNet-IP device. These MIBs and variables are
documented in JenNet-IP WPAN Stack User Guide (JN-UG-3080). The MIBs
implemented by the stack are the Node, JenNet, Groups, OND and DeviceID
MIBs.

 JenNet-IP Application Template

Application Note

34 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.1 Node MIBs

The Node MIBs provide access to functionality relating to node operation.

The source code for these MIBs is in the MibCommon folder.

5.1.1 NodeStatus MIB (0xFFFFFE80)

The NodeStatus MIB provides status information for the node.

This MIB is optional and is not included in all the example devices.

5.1.1.1 SystemStatus Variable

Description

The SystemStatus variable provides access to the System Status register as
set at power-on or reset.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read

Values

0x0001 Wake-up Status – if set the device has woken from
sleep.

0x0002 Memory Status – indicates woken from sleep with
memory held.

0x0004 Analogue Peripheral Power Status – set when the
voltage regulator for the analogue peripheral is enabled.

0x0008 Protocol clock Status – set when protocol clock is
enabled and running with no significant lag.

0x0010 MISOS – value on the SPI MISOS pin.

0x0020 Voltage Brownout Status – set when the supply voltage
is below the VBO threshold.

0x0040 Voltage Brownout Status Valid – set when the VBO
status bit is valid.

0x0080 Watchdog Reset Status – set when the watchdog has
reset the node.

0x0100 Voltage Brownout Reset Status – set when the VBO has
reset the node.

Default

Determined at power-on or reset.

Trap Notifications

None.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 35

5.1.1.2 ColdStartCount Variable

Description

The ColdStartCount variable provides a count of the number of cold starts
(power-ons or resets) experienced by the device.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read

Values

0 to 65535

Default

0

Trap Notifications

None.

5.1.1.3 ResetCount Variable

Description

The ResetCount variable provides a count of the number of deliberate resets
applied to the device (by writing to the NodeControl MIB Reset variable).

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read

Values

0 to 65535

Default

0

Trap Notifications

None.

 JenNet-IP Application Template

Application Note

36 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.1.1.4 WatchdogCount Variable

Description

The WatchdogCount variable provides a count of the number resets caused
by the watchdog tripping.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read

Values

0 to 65535

Default

0

Trap Notifications

None.

5.1.1.5 BrownoutCount Variable

Description

The BrownoutCount variable provides a count of the number resets caused
by the brownout tripping.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read

Values

0 to 65535

Default

0

Trap Notifications

None.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 37

5.1.1.6 HeapMin Variable

Description

The HeapMin variable indicates the start address of the heap of dynamically
allocated memory. This shouldn’t change at run-time. It effectively indicates
the end of the statically allocated software image and data in RAM and so
reflects the RAM requirements of the application.

Storage

Volatile

Type

Uint32 Unsigned Integer, 32 bits

Access

Read

Values

0x04000000 – 0x04FFFFFF

Default

Depends upon application size

Trap Notifications

None.

 JenNet-IP Application Template

Application Note

38 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.1.1.7 HeapMax Variable

Description

The HeapMax variable indicates the maximum address in memory that has
been dynamically allocated on the heap. The difference between this value
and HeapMin represents the maximum size the heap has reached while the
software has been running.

Storage

Volatile

Type

Uint32 Unsigned Integer, 32 bits

Access

Read

Values

0x04000000 – 0x04FFFFFF

Default

Depends upon application size

Trap Notifications

None.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 39

5.1.1.8 StackMin Variable

Description

The StackMin variable indicates the minimum address in memory that has
been reached by the processor’s stack. The stack grows down from address
0x04FFFFFF so the difference indicates the maximum size the stack has
reached.

The amount of unused memory can be calculated by the difference between
StackMin and HeapMax. If this is zero or very low, the application runs the
risk of crashing due to the stack or heap overwriting each other.

! The method currently used to monitor this value only detects the
allocation of data to the stack which is written to. The current
application sometimes allocates data which is not written to so
values reported here may not be accurate.

Storage

Volatile

Type

Uint32 Unsigned Integer, 32 bits

Access

Read

Values

0x04000000 – 0x04FFFFFF

Default

Depends upon application functions

Trap Notifications

None.

 JenNet-IP Application Template

Application Note

40 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.1.2 NodeControl MIB (0xFFFFFE82)

The NodeControl MIB provides control over the node’s operation.

5.1.2.1 Reset Variable

Description

The Reset variable causes the device to countdown for a number of seconds
and then perform a software reset.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 A reset is not pending. A pending reset can be cancelled
by writing 0 into this variable.

1 to 65535 Number of seconds remaining until the node resets.

Default

0

Trap Notifications

On remote edits.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 41

5.1.2.2 FactoryReset Variable

Description

The FactoryReset variable causes the device to countdown for a number of
seconds and then perform a factory reset, returning all settings to their default
values.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 A factory reset is not pending. A pending reset can be
cancelled by writing 0 into this variable.

1 to 65535 Number of seconds remaining until the node resets.

Default

0

Trap Notifications

On remote edits.

 JenNet-IP Application Template

Application Note

42 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.1.3 NodeConfig MIB (0xFFFFFE81)

The NodeConfig MIB is reserved for future use and is currently not present in
devices.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 43

5.2 Network MIBs

The Network MIBs provide variables to monitor and configure the device within
the network.

The source code for these MIBs is in the MibCommon folder.

5.2.1 NwkStatus MIB (0xFFFFFE88)

The NwkStatus MIB contains variables that indicate the status of the device
within the network.

5.2.1.1 RunTime Variable

Description

The RunTime variable specifies how long the software has been running in
seconds.

Storage

Volatile – but derived from UpTime and DownTime variables

Type

Uint32 Unsigned Integer, 32 bits

Access

Read

Values

0 to 4294967296

Default

0

Trap Notifications

Every hour the device has run.

Upon joining a network.

 JenNet-IP Application Template

Application Note

44 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.2.1.2 UpCount Variable

Description

The UpCount variable specifies how many times the device has joined or re-
joined the network.

Storage

Permanent

Type

Uint16 Unsigned Integer, 16 bits

Access

Read

Values

0 to 65535

Default

0

Trap Notifications

Upon joining a network.

5.2.1.3 UpTime Variable

Description

The UpTime variable specifies how long the device has been in the network,
in seconds.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read

Values

0 to 4294967296

Default

0

Trap Notifications

Every hour the device has been in the network.

Upon joining a network.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 45

5.2.1.4 DownTime Variable

Description

The DownTime variable specifies how long the device software has been out
of the network, in seconds.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read

Values

0 to 4294967296

Default

0

Trap Notifications

Upon joining a network.

 JenNet-IP Application Template

Application Note

46 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.2.2 NwkSecurity MIB (0xFFFFFE8B)

The NwkSecurity MIB contains the various security keys used by the device and
also information about the network.

5.2.2.1 KeyNetwork

Description

The KeyNetwork variable contains the key used by the device while in the
network. The key is usually obtained when joining the network.

Storage

Permanent

Type

Blob Blob, 128 bits

Access

Read, Write

Values

Any Network key.

Default

Unspecified

Trap Notifications

On remote edits.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 47

5.2.2.2 KeyGateway

Description

The KeyGateway variable contains the commissioning key used by the device
while trying to join a gateway network.

Storage

Permanent

Type

Blob Blob, 128 bits

Access

Read, Write

Values

Any Gateway commissioning key.

Default

Unspecified

Trap Notifications

On remote edits.

5.2.2.3 KeyStandalone

Description

The KeyStandalone variable contains the commissioning key used by the
device while trying to join a standalone network.

Storage

Permanent

Type

Blob Blob, 128 bits

Access

Read, Write

Values

Any Standalone commissioning key.

Default

Unspecified

Trap Notifications

On remote edits.

 JenNet-IP Application Template

Application Note

48 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.2.2.4 Channel

Description

The Channel variable contains the number of the radio channel the device is
currently operating on.

Storage

Volatile

Type

uint8 Unsigned integer 8 bits

Access

Read

Values

11-26 Current channel

Default

Unspecified

Trap Notifications

None

5.2.2.5 PanId

Description

The PanId variable contains the PAN ID of the network the device is currently
a member of.

Storage

Volatile

Type

Uint16 Unsigned integer 16 bits

Access

Read

Values

Any Current PAN ID

Default

Unspecified

Trap Notifications

None

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 49

5.2.2.6 Rejoin Variable

Description

The Rejoin variable causes the device to count down for a number of
seconds, then discard the current network channel, PAN ID and Network Key
and perform a reset to force a full re-join of the network. This is useful when
moving a network to a new channel.

Storage

Volatile

Type

Uint16 Unsigned Integer, 16 bits

Access

Read, Write

Values

0 A re-join is not pending. A pending re-join can be
cancelled by writing 0 into this variable.

1 to 65535 Number of seconds remaining until the node re-joins.

Default

0

Trap Notifications

On remote edits.

 JenNet-IP Application Template

Application Note

50 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.2.3 NwkTest MIB (0xFFFFFE8C)

The NwkTest MIB contains variables that can be used to run packet error and
signal strength tests.

While the source code for this MIB is included in the Application Note, it is not
normally compiled into applications but is made available for testing and
evaluation use.

5.2.3.1 Tests Variable

Description

The Tests variable is used to initiate a number of transmission tests. When
set to a non-zero value, the node will transmit the specified number of
packets to its parent to measure the packet error rate and signal strength of
the returned packets.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 No effect.

1 to 255 Number of test transmissions.

Default

0

Trap Notifications

On remote edits.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 51

5.2.3.2 TxReq Variable

Description

The TxReq variable contains the number of test transmission attempts to be
made.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 255 Number of test transmission requests.

Default

0

Trap Notifications

On remote edits.

5.2.3.3 TxOk Variable

Description

The TxOk variable contains the number of successful test transmissions.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 255 Number of successful test transmissions.

Default

0

Trap Notifications

On remote edits.

 JenNet-IP Application Template

Application Note

52 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.2.3.4 RxOk Variable

Description

The RxOk variable contains the number of successfully received test
transmission responses.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 255 Number of successful test responses.

Default

0

Trap Notifications

On remote edits.

5.2.3.5 RxLqiMin Variable

Description

The RxLqiMin variable contains the lowest Link Quality Indicator (LQI) from
the successfully received test transmission responses.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 255 Minimum LQI value of test responses.

Default

0

Trap Notifications

On remote edits.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 53

5.2.3.6 RxLqiMax Variable

Description

The RxLqiMax variable contains the highest LQI value from the successfully
received test transmission responses.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 255 Maximum LQI value of test responses.

Default

0

Trap Notifications

On remote edits.

5.2.3.7 RxLqiMean Variable

Description

The RxLqiMean variable contains the mean average LQI value from the
successfully received test transmission responses.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 255 Mean average LQI value of test responses.

Default

0

Trap Notifications

On remote edits.

 JenNet-IP Application Template

Application Note

54 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.2.3.8 CwChannel Variable

Description

CwChannel is a placeholder variable to allow constant wave transmission on
the specified channel. The source code to enable this is not included in the
public Application Note.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

11 to 26 Channel for constant wave transmission.

Default

0

Trap Notifications

On remote edits.

5.2.3.9 MacRetries Variable

Description

The MacRetries variable specifies the maximum number of MAC level retries
that should be made when transmitting test packets.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read, Write

Values

0 to 255 Maximum MAC level retries for test packets.

Default

0

Trap Notifications

On remote edits.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 55

5.2.3.10 TxLqiMin Variable

Description

The TxLqiMin variable contains the lowest LQI value from the successfully
transmitted test transmission requests. This is only filled in when the parent
device also has the NwkTest MIB implemented.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 255 Minimum LQI value of test transmissions.

Default

0

Trap Notifications

On remote edits.

5.2.3.11 TxLqiMax Variable

Description

The TxLqiMax variable contains the highest LQI value from the successfully
transmitted test transmission requests. This is only filled in when the parent
device also has the NwkTest MIB implemented.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 255 Maximum LQI value of test transmissions.

Default

0

Trap Notifications

On remote edits.

 JenNet-IP Application Template

Application Note

56 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.2.3.12 TxLqiMean Variable

Description

The TxLqiMean variable contains the mean average LQI value from the
successfully transmitted test transmission requests. This is only filled in when
the parent device also has the NwkTest MIB implemented.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 255 Mean average LQI value of test transmissions.

Default

0

Trap Notifications

On remote edits.

5.2.3.13 RxLqi Variable

Description

The RxLqi variable contains the LQI value of the last received packet on the
node. When reading this variable it should be the LQI of the last hop of the
get request itself. This test transmissions actually request this variable which
allows the transmitted LQIs to be calculated from the returned values.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 255 LQI value of last received packet.

Default

0

Trap Notifications

On remote edits.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 57

5.2.4 NwkConfig MIB (0xFFFFFE89)

This MIB is no longer included in the JenNet-IP Application Notes. It originally
contained variables allowing the network operation of the device to be
configured.

5.2.5 NwkControl MIB (0xFFFFFE8A)

The NwkControl MIB is reserved for future use to contain variables that allow the
network operation of the device to be controlled.

5.2.6 NwkProfile MIB (0xFFFFFE8D)

This MIB is no longer included in the JenNet-IP Application Notes. It originally
contained variables allowing the network profile used by the device to be
configured.

 JenNet-IP Application Template

Application Note

58 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.3 Peripheral MIBs

The Peripheral MIBs provide generic information for peripheral devices.

The source code for the AdcStatus MIB is in the MibCommon folder.

The source code for the DIO MIBs is in MibDio folder.

5.3.1 AdcStatus MIB (0xFFFFFE90)

The AdcStatus MIB contains variables that indicate the status of the ADC inputs.
This module provides useful functionality that can be enabled and used without
the MIB and variables being registered.

When the on-chip temperature ADC input is monitored the software in this MIB
re-calibrates the radio and applies oscillator settings to ensure continued radio
operation even when the temperature is changing.

Each variable and its use is described in the following chapters:

5.3.1.1 Mask Variable

Description

The Mask variable indicates which ADC inputs have been enabled by the
application.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0x01 ADC 1

0x02 ADC 2

0x04 ADC 3

0x08 ADC 4

0x10 ADC On-Chip Temperature. When this is enabled this
module will automatically perform temperature
calibration, and push and pull the oscillator if an
oscillator control pin is specified.

0x20 ADC On-Chip Voltage

Default

Set by application

Trap Notifications

None

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 59

5.3.1.2 Read Table

Description

The Read table provides access to the current raw readings from the 6 ADC
inputs. Usually other MIBs will pick up these readings and convert them to the
appropriate measurement.

Storage

Volatile

Type

Uint16 [6] Unsigned Integer, 16 bits, 6 entries

Access

Read

Values

0 to 65535 ADC reading.

Default

0

Trap Notifications

None.

5.3.1.3 ChipTemp Variable

Description

The ChipTemp variable contains the on-chip temperature in tenths of a
degree Celsius when the ADC source is being read.

Storage

Volatile

Type

Int16 Signed Integer, 16 bits

Access

Read

Values

0 to 65535 On-chip temperature ADC reading.

Default

0

Trap Notifications

None.

 JenNet-IP Application Template

Application Note

60 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.3.1.4 CalTemp Variable

Description

The CalTemp variable contains the on-chip temperature in tenths of a degree
Celcius when the radio was last calibrated.

Storage

Volatile

Type

Int16 Signed Integer, 16 bits

Access

Read

Values

0 to 65535 On-chip temperature ADC reading at time of last radio
calibration.

Default

0

Trap Notifications

None.

5.3.1.5 Oscillator Variable

Description

The Oscillator variable contains the level of oscillator pulling currently being
applied.

Storage

Volatile

Type

Uint8 Unsigned Integer, 8 bits

Access

Read

Values

0 to 255 Level of oscillator pulling being applied.

Default

0

Trap Notifications

None.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 61

5.3.2 DioStatus MIB (0xFFFFFE70)

The DioStatus MIB contains variables that indicate the status of the Digital I/O
input lines.

All these variables operate as bitmaps where each DIO is represented by a bit
(e.g. bit 4 corresponds to DIO4). To manipulate the DIOs, the appropriate
variable bits should be manipulated.

Each variable and its use are described in the following sub-sections:

5.3.2.1 Input Variable

Description

The Input variable indicates which inputs are high or low. Where a bit is set,
the corresponding input is high.

The value returned matches the value returned by the
u32AHI_DioReadInput() function in the Integrated Peripherals API.

Storage

Volatile

Type

Uint32 Unsigned Integer, 32 bits

Access

Read

Values

0 to 0xFFFFFFFF Bitmap where set bits indicate the corresponding DIOs
are high.

Default

0

Trap Notifications

Upon input DIO changes.

 JenNet-IP Application Template

Application Note

62 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.3.2.2 Interrupt Variable

Description

The Interrupt variable indicates which input(s) last generated an interrupt.
Where a bit is set the corresponding input generated the most recent
interrupt.

The value returned matches the value returned by the
u32AHI_DioInterruptStatus() function in the Integrated Peripherals API.

Storage

Volatile

Type

Uint32 Unsigned Integer, 32 bits

Access

Read

Values

0 to 0xFFFFFFFF Bitmap where set bits indicate the corresponding DIOs
generated the most recent interrupt.

Default

0

Trap Notifications

Upon input DIO interrupts.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 63

5.3.3 DioConfig MIB (0xFFFFFE71)

The DioConfig MIB contains variables that allow the configuration of the DIO
lines to be read or altered.

All these variables operate as bitmaps where each DIO is represented by a bit
(e.g. bit 4 corresponds to DIO4). To manipulate the DIOs, the appropriate
variable bits should be manipulated.

Each variable and its use are described in the following sub-sections:

5.3.3.1 Direction Variable

Description

The Direction variable indicates whether each DIO line is an input or an
output.

When written to, it configures the direction of all DIO lines in a single
operation. The DirectionInput and DirectionOutput MIB variables may be used
to alter the direction of individual or multiple DIO lines.

This variable mirrors the REG_GPIO_DIR register.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0 to 0xFFFFFFFF Bitmap where set bits indicate the corresponding DIOs
are outputs and clear bits indicate they are inputs.

Default

0

Trap Notifications

Upon input DIO direction changes.

 JenNet-IP Application Template

Application Note

64 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.3.3.2 Pullup Variable

Description

The Pullup variable indicates which DIO lines have the internal pull-up
resistor enabled.

When written to, it configures the pull-ups of all DIO lines in a single
operation. The PullupEnable and PullupDisable MIB variables may be used to
alter the pull-ups for individual or multiple DIO lines.

This variable mirrors the REG_SYS_PULLUP register DIO bits.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits indicate the corresponding DIOs
pull-ups are enabled.

Default

0

Trap Notifications

Upon input, DIO pull-up changes.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 65

5.3.3.3 InterruptEnabled Variable

Description

The InterruptEnabled variable indicates which DIO input lines are enabled to
generate interrupts.

When written to it configures the interrupts of all DIO input lines in a single
operation. The InterruptEnable and InterruptDisable MIB variables may be
used to configure the interrupts for individual or multiple DIO input lines.

This variable mirrors the REG_SYS_WK_EM register DIO bits.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits indicate the corresponding DIOs
input should generate interrupts.

Default

0

Trap Notifications

Upon input, DIO enabled interrupt changes.

 JenNet-IP Application Template

Application Note

66 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.3.3.4 InterruptEdge Variable

Description

The InterruptEdge variable indicates the edge on which DIO input lines
should generate interrupts.

When written to, it configures the interrupt edge of all DIO input lines in a
single operation. The InterruptRising and InterruptFalling MIB variables may
be used to configure the interrupt edge for individual or multiple DIO input
lines.

This variable mirrors the REG_SYS_WK_ET register DIO bits.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits correspond to leading edges.

Default

0

Trap Notifications

Upon input, DIO interrupt edge changes.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 67

5.3.3.5 DirectionInput Variable

Description

The DirectionInput variable configures individual or multiple DIO lines to
operate as inputs.

Writing to this variable is equivalent to setiing the u32Inputs parameter when
calling the vAHI_DioSetDirection() function.

Storage

Volatile (but stored as part of the Direction variable)

Type

Uint32 Unsigned Integer, 32 bits

Access

Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits indicate the corresponding DIOs
should be configured as inputs. The directions of DIOs
corresponding to clear bits are not affected.

Default

0

Trap Notifications

None

 JenNet-IP Application Template

Application Note

68 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.3.3.6 DirectionOutput Variable

Description

The DirectionOutput variable configures individual or multiple DIO lines to
operate as outputs.

Writing to this variable is equivalent to setting the u32Outputs parameter
when calling the vAHI_DioSetDirection() function.

Storage

Volatile (but stored as part of the Direction variable)

Type

Uint32 Unsigned Integer, 32 bits

Access

Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits indicate the corresponding DIOs
should be configured as outputs. The direction of DIOs
corresponding to clear bits are not affected.

Default

0

Trap Notifications

None

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 69

5.3.3.7 PullupEnable Variable

Description

The PullupEnable variable enables individual or multiple DIO internal pull-up
resistors.

Writing to this variable is equivalent to setting the u32On parameter when
calling the vAHI_DioSetPullup() function.

Storage

Volatile (but stored as part of the Pullup variable)

Type

Uint32 Unsigned Integer, 32 bits

Access

Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits indicate the corresponding DIO
pull-ups should be enabled. The pull-ups of DIOs
corresponding to clear bits are not affected.

Default

0

Trap Notifications

None

 JenNet-IP Application Template

Application Note

70 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.3.3.8 PullupDisable Variable

Description

The PullupDisable variable disables individual or multiple DIO internal pull-up
resistors.

Writing to this variable is equivalent to setting the u32Off parameter when
calling the vAHI_DioSetPullup() function.

Storage

Volatile (but stored as part of the Pullup variable)

Type

Uint32 Unsigned Integer, 32 bits

Access

Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits indicate the corresponding DIOs
pull-ups should be disabled. The pull-ups of DIOs
corresponding to clear bits are not affected.

Default

0

Trap Notifications

None

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 71

5.3.3.9 InterruptEnable Variable

Description

The InterruptEnable variable enables individual or multiple DIO inputs to
generate interrupts.

Writing to this variable is equivalent to setting the u32Enable parameter when
calling the vAHI_DioInterruptEnable() function.

Storage

Volatile (but stored as part of the InterruptEnabled variable)

Type

Uint32 Unsigned Integer, 32 bits

Access

Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits indicate the corresponding DIO
input interrupts should be enabled. The interrupt
configuration of DIOs corresponding to clear bits are not
affected.

Default

0

Trap Notifications

None

 JenNet-IP Application Template

Application Note

72 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.3.3.10 InterruptDisable Variable

Description

The InterruptDisable variable disables individual or multiple DIO inputs to
generate interrupts.

Writing to this variable is equivalent to setting the u32Disable parameter when
calling the vAHI_DioInterruptEnable() function.

Storage

Volatile (but stored as part of the InterruptEnabled variable)

Type

Uint32 Unsigned Integer, 32 bits

Access

Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits indicate the corresponding DIO
input interrupts should be disabled. The interrupt
configuration of DIOs corresponding to clear bits are not
affected.

Default

0

Trap Notifications

None

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 73

5.3.3.11 InterruptRising Variable

Description

The InterruptRising variable configures individual or multiple DIO inputs to
generate interrupts on a rising edge.

Writing to this variable is equivalent to setting the u32Rising parameter when
calling the vAHI_DioInterruptEdge() function.

Storage

Volatile (but stored as part of the InterruptEdge variable)

Type

Uint32 Unsigned Integer, 32 bits

Access

Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits indicate the corresponding DIO
input interrupts should be raised on a rising edge. The
interrupt configurations of DIOs corresponding to clear
bits are not affected.

Default

0

Trap Notifications

None

 JenNet-IP Application Template

Application Note

74 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.3.3.12 InterruptFalling Variable

Description

The InterruptFalling variable configures individual or multiple DIO inputs to
generate interrupts on a falling edge.

Writing to this variable is equivalent to setting the u32Falling parameter when
calling the vAHI_DioInterruptEdge() function.

Storage

Volatile (but stored as part of the InterruptEdge variable)

Type

Uint32 Unsigned Integer, 32 bits

Access

Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits indicate the corresponding DIO
input interrupts should be raised on a falling edge. The
interrupt configurations of DIOs corresponding to clear
bits are not affected.

Default

0

Trap Notifications

None

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 75

5.3.4 DioControl MIB (0xFFFFFE72)

The DioControl MIB contains variables that allow the DIO output lines to be
controlled.

All these variables operate as bitmaps where each DIO is represented by a bit
(e.g. bit 4 corresponds to DIO4). To manipulate the DIOs, the appropriate
variable bits should be manipulated.

Each variable and its use is described in the following sub-sections:

5.3.4.1 Output Variable

Description

The Output variable indicates which DIO output lines are high or low.

When written to, it sets the state of all DIO output lines in a single operation.
The OutputOn and OutputOff MIB variables may be used to set the state of
individual or multiple DIO output lines.

This variable mirrors the REG_GPIO_DOUT register.

Storage

Permanent

Type

Uint32 Unsigned Integer, 32 bits

Access

Read, Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits indicate the corresponding DIO
outputs are high and clear bits indicate the outputs are
low.

Default

0

Trap Notifications

Upon input, DIO output changes.

 JenNet-IP Application Template

Application Note

76 © NXP Laboratories UK 2015 JN-AN-1190 v2004

5.3.4.2 OutputOn Variable

Description

The OutputOn variable sets individual or multiple DIO output line states to
high.

Writing to this variable is equivalent to setting the u32On parameter when
calling the vAHI_DioSetOutput() function.

Storage

Volatile (but stored as part of the Output variable)

Type

Uint32 Unsigned Integer, 32 bits

Access

Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits indicate the corresponding DIO
outputs should be high. The state of DIO outputs
corresponding to clear bits are not affected.

Default

0

Trap Notifications

None

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 77

5.3.4.3 OutputOff Variable

Description

The OutputOff variable sets individual or multiple DIO output line states to
low.

Writing to this variable is equivalent to setting the u32Off parameter when
calling the vAHI_DioSetOutput() function.

Storage

Volatile (but stored as part of the Output variable)

Type

Uint32 Unsigned Integer, 32 bits

Access

Write

Values

0 to 0xFFFFFFFF Bitmap in which set bits indicate the corresponding DIO
outputs should be low. The state of DIO outputs
corresponding to clear bits are not affected.

Default

0

Trap Notifications

None

 JenNet-IP Application Template

Application Note

78 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6 Software Reference
This section provides information on the software for each of the device types.
Every device follows the same basic flow of function calls that form a JenNet-IP
device application, as detailed in JenNet-IP WPAN Stack User Guide (JN-UG-
3080).

JenNet-IP applications are built using the JenNet-IP WPAN Stack API and
Integrated Peripherals API. The majority of application calls are into the top
layers of each stack, though there may be cases where the lower layers are
accessed directly.

The diagram below shows the layers upon which the application is written. The
black arrows represent the majority of calls to the upper layers of the stack, while
the lighter grey arrows indicate the minority of calls into the lower layers:

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 79

6.1 Standard Device Software Features

This section covers features that are common to all device software.

The upper layer of application software for each device group is contained in a
folder named DeviceType, where Type is the type of the device. For example
the upper layer of software for the template application will be found in the
Devicetemplate folder. Within this folder the main source file for the device,
including the entry point for the code, is found in a file named DeviceType.c.

Every JenNet-IP device shares common functionality. This common code is
located in the Common folder and all device types call into it to perform standard
processing tasks. This code is responsible for managing the device’s place in the
network.

The core application functionality of a JenNet-IP device is provided by the code
for the MIBs that the device supports. The code for the MIBs is grouped together
where a set of MIBs provide related functionality. The code for the MIBs can be
found in folders named MibGroup where Group is the name for the group of
MIBs.

The MibCommon folder groups together the MIBs that are found in all device
types. These MIBs provide functionality to manage the node and its place in the
network. The functions that implement these MIBs are called from the code
located in the Common folder, allowing them to be easily reused in all device
types.

Other MibGroup folders also exist to provide MIBs that are specific to certain
device types. For example, the MibDio folder contains the code for the digital I/O
MIBs used by the digital I/O device. The functions that implement these MIBs are
called directly from the DeviceType.c module.

Some device types will also include a set of hardware driver source files in a
folder named DriverType where Type is the type of driver. These drivers are
called into from the MIB code that controls the hardware. All drivers of a specific
type share a common interface. This makes creating different types of a
particular device very easy, as only the hardware driver for the particular
hardware needs to be replaced.

The image below shows these application layers for the JenNet-IP Smart Home
(JN-AN-1162) bulb application:

The following sections describe the features commonly found in all these
components. Later sections describe the specific features of the code for each
device type, the common code and the MIB code.

 JenNet-IP Application Template

Application Note

80 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.1.1 Standard DeviceType Folder Features

The source files for each device type are found in a folder named DeviceType,
where Type is the name of the device.

A makefile can be found in the Build sub-folder, while the source code is
located in the Source sub-folder.

6.1.1.1 Standard DeviceType Makefile

Each device type has a makefile. The makefile (or values passed into it on the
command line) determines which CPU and hardware platform the software is
built to run upon.

Makefile variables are also used to specify network parameters and settings.

Further makefile variables control which MIBs are built into the application and
also which MIBs are registered with JIP to make them available for use in the
device. This is most useful to add test MIBs during development while reducing
the memory overhead.

The following sections describe the significant variables used in the makefile.

TARGET

This variable specifies the target name for the compilation. It should only be
necessary to change this if creating a new device type from a copy of the
template.

JENNIC_SDK

This variable specifies the SDK installation in the Beyond Studio for NXP
toolchain that should be used to compile the application. It should not be
necessary to change this value.

JENNIC_CHIP

This variable specifies the microcontroller for which the software should be
compiled.

Each individual value creates a separate #define that is used to determine the
microcontroller type, where necessary, in the source code.

The following values are valid:

JN5168 for JN5168-001 chips, this creates the #define JENNIC_CHIP_JN5168.

JN5164 for JN5164-001 chips, this creates the #define JENNIC_CHIP_JN5164.

JENNIC_CHIP_FAMILY

This variable specifies the chip family.

JENNIC_CHIP_SHORT

This variable is a short, two-character name for the chip and is used to form the
default value for the Node MIB’s Name variable.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 81

DEVICE_NAME

This variable specifies the hardware platform for which the software should be
compiled. This generally equates to the circuit board on which the microcontroller
is mounted upon, but may also take into account additional hardware on other
circuit boards within the device.

In some devices, such as bulbs, the same source may be recompiled for
different hardware with just minor changes, usually at the lowest hardware driver
level, to support different hardware platforms.

This value is usually passed into make on the command line, depending upon

which build target was selected.

The #define MK_DEVICE_NAME is set to the contents of this variable in the
form of a string to allow source code decisions to be made based on the
hardware platform being targeted.

This variable is also used to select the values for the JIP Device ID, JIP Device
Type and Over Network Download Image via the JIP_DEVICE_ID,
JIP_DEVICE_TYPE and OND_DEVICE_TYPE makefile variables. The first two
of these are exposed to the source files as the #defines MK_JIP_DEVICE_ID
and MK_JIP_DEVICE_TYPE.

NODE_TYPE

This variable specifies the node type for which the application should be
compiled. The following options are available:

 Coordinator: The node runs as a Coordinator device. Only the template
device can be compiled as a Coordinator.

 Router: The node runs as a Router device.

 EndDevice: The node runs as an End Device.

This variable is usually passed into make on the command line.

The node type is exposed to the application source files as the #define
MK_NODE_TYPE.

NODE_TYPE_CHAR

This variable is a short, single-character name for the node type and is used to
form the default value for the Node MIB’s Name variable.

 JenNet-IP Application Template

Application Note

82 © NXP Laboratories UK 2015 JN-AN-1190 v2004

NETWORK_ID

This variable specifies the 32-bit JenNet-IP Network ID used to control which
network the template binary is able to join. This value is surfaced to the source
code via the #define MK_NETWORK_ID.

Where devices are being created with the intention of interoperating with other
standard JenNet-IP devices and networks, the default value of 0x11111111
should be retained.

Where manufacturers are creating closed systems built from only their products
a value may be chosen at random. In particular, when building a system with a
Coordinator based upon the template (instead of the border router) it is sensible
to choose a different value for the NETWORK_ID. This is because the default
Coordinator template will accept any node attempting to join its network and thus
devices may not join the appropriate network when there is more than one in
range.

CHANNEL

This variable specifies the channels that the device may operate on. The default
value of 0 allows all channels, while a value between 11 and 26 allows only that
single channel. The value is surfaced to the source code via the #define
MK_CHANNEL

SECURITY

This variable specifies if radio communications should be encrypted. The default
value of 1 enables security mode, while a value of 0 disables security mode. This
value is surfaced to the source code via the #define MK_SECURITY.

It is recommended that security be used. While the application can be compiled
for unsecured use, it is not a supported mode of operation for the application.

PRODUCTION

This variable specifies if the binary is a production build and is surfaced to the
source code via the #define MK_PRODUCTION.

A value of 1 enables a production build, this will override the SECURITY variable
value by enforcing encryption of radio data, and also reset the software if an
exception is raised.

The default value of 0 disables a production build.

FACTORY_RESET_MAGIC

This variable can be used to overwrite the default magic number used to verify
the EEPROM contents.

It is sometimes useful to overwrite this to force a factory reset when updating
software in a device.

JENNIC_PCB

This variable specifies the evaluation kit hardware to compile for and includes
the appropriate platform libraries in the compilation.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 83

JENNIC_STACK

This variable specifies the networking stack to compile for and includes the
appropriate network libraries in the compilation.

There should be no need to change this value.

JENNIC_MAC

This variable specifies the IEEE 802.15.4 MAC libraries to be compiled into the
application.

There should be no need to change it from the default value.

OND_CHIPSET

This variable specifies the chip for which the binary is built, as used by the Over
Network Download (OND) functionality.

OND_DEVICE_TYPE

This is the 32-bit ID used to identify different software builds, as used in OND.

Usually this matches JIP_DEVICE_ID but may be different where new software
has a different set of MIBs from the old software, requiring a change in Device ID
while still preserving the ability to update the software using OND.

TRACE

This variable when set to 1 enables debugging of application events to the
UART. This adds considerable extra code.

The default value of 0 disables the debug build.

JIP_DEVICE_TYPE

This variable specifies the 16-bit Device Type ID compiled into the application.

It may be necessary to change this when creating a new device from the
template.

JIP_DEVICE_TYPE_CHAR

This variable is a short, single-character name for the device type and is used to
form the default value for the Node MIB’s Name variable.

JIP_CR_MANUFACTURER_ID

This variable is the 16-bit Manufacturer ID that forms part of the 32-bit JIP
Device ID.

This value is used for Coordinator or Router node types, with the most significant
bit cleared to indicate a non-sleeping device.

To prevent re-use of Device IDs, this value should be replaced with your own
Manufacturer ID when creating your own devices.

 JenNet-IP Application Template

Application Note

84 © NXP Laboratories UK 2015 JN-AN-1190 v2004

JIP_ED_MANUFACTURER_ID

This variable is the 16-bit Manufacturer ID that forms part of the 32-bit JIP
Device ID.

This value is used for End Device node types, with the most significant bit set to
indicate a sleeping device.

To prevent re-use of Device IDs, this value should be replaced with your own
Manufacturer ID when creating your own devices.

JIP_PRODUCT_ID

This variable is the 16-bit Product ID that forms part of the 32-bit JIP Device ID.

When creating your own devices you may allocate your own Product IDs when
used in conjunction with your Manufacturer ID.

JIP_DEVICE_ID

This variable is the 32-bit JIP Device ID formed from the Manufacturer and
Product IDs.

This value is used to identify different devices within a JenNet-IP network.

JIP_NODE_NAME

This variable specifies the default value for the Node MIB’s DescriptiveName
variable.

The default value forms a name from shortened forms of the Device Type,
Product ID, Node Type and Chip variables.

This variable may be overridden from the command line.

This variable is surfaced to the application via the #define
MK_JIP_NODE_NAME.

The software appends the least significant 3 bytes of the device’s MAC address
in hexadecimal to complete the name.

BLD_MIB_NAME Variables

The set of variables beginning BLD_MIB determine which MIBs are compiled
into the application. A value of 1 will build that MIB into the application, while a
value of 0 will exclude it.

These flags are used in the makefile to specify compilation of appropriate source
files.

The flags are also used in the source code via the equivalent #defines beginning
MK_BLD_MIB.

Removing unnecessary MIBs from a device during development frees up
additional memory that may allow the use of other test MIBs and UART
debugging code.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 85

REG_MIB_NAME Variables

The set of variables beginning REG_MIB determine which MIBs are registered
with the stack making their variables available for remote access. The
corresponding BLD_MIB variable must be 1 for this flag to have any effect.

When set to 1 the MIB will be registered and the variables made available for
remote access, when set to 0 the MIB is not registered.

These flags are used by the source code via the equivalent #defines beginning
MK_REG_MIB.

Compiling a MIB but leaving it unregistered allows the MIB to perform its role in
the device using a set of hardcoded values while freeing up RAM to be used for
other purposes.

VERSION

This variable embeds a 16-bit version number into the binary file that can be
queried remotely and also used to automate software downloads using the Over
Network Download (OND) features of JenNet-IP.

This value may be passed in on the command line. Pre-built binaries in the
Application Note will have their version number set via the command line. Each
release will increase this value from its previous value.

Building without passing in a value will cause a value to be automatically
generated from the day of the week, the hour and minute of the build. While this
will produce different values for each build, the counter will effectively reset to a
lower value every 7 days.

The automatic OND features rely on an increasing version number to be
effective. A formal release scheme that includes increasing version numbers is
recommended to make best use of this feature.

 JenNet-IP Application Template

Application Note

86 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Binary File Naming

The names of the binary files incorporate a number of the variables described
above in the following format:

{NETWORK_ID}{SECURITY_CHAR}_CH{CHANNEL}_DeviceType_
{DEVICE_NAME}_{NODE_TYPE}_{JENNIC_CHIP}_{BUILD}_v{VERSION}.bin

where:

 {NETWORK_ID} is the NETWORK_ID variable value.

 {SECURITY_CHAR} is p for a production build, s for a secure build, u for
an unsecure build.

 {CHANNEL} specifies the single channel the device will operate on. If all
channels are supported, this component is not included in the name.

 {DEVICE_NAME} is the DEVICE_NAME variable value.

 {NODE_TYPE} is the NODE_TYPE variable value.

 {JENNIC_CHIP} is the JENNIC_CHIP variable value.

 {BUILD} is set to DEBUG when the TRACE variable is 1 and is omitted
from the filename for non-debug binaries.

 {VERSION} is the value of the VERSION variable. This is only included in

the filename when specified on the command line to make.

The compilation produces a single file for JN516x devices:

 .bin may be used both when directly programming a device using one of
the Flash Programmer utilities and also updating devices using the OND
mechanism.

6.1.1.2 Standard DeviceDefs.h Features

This header file contains #defines that can be used to configure the default
behaviour of the device and alter the timing characteristics of the device.

The initial set of operating defines are also used by the Common\Node.c
module and so must be present for all devices.

For some devices types there may also be #defines that are accessed by the
MIB modules. Such #defines must be present to allow compilation of the MIB
modules.

A set of debug flags are then included that control which modules output
debugging messages when debugging is enabled.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 87

6.1.1.3 Standard DeviceType.c Features

The main module for each device type is named DeviceType.c where Type
indicates the type of the device. All device types follow the same basic pattern
described below. Where additional functionality is included, this is described in
the sections for the source code for the individual device.

The standard JIP callback functions are implemented in this source file along
with code to operate the application at the highest level. However, the main body
of code that performs the actual work is mostly contained in the common
modules used by the application. As such, different device types are
implemented by calling into a different set of MIB modules as required.

The following sections describe the features of the DeviceType.c source code.
Functions called during initialisation of the device are mostly presented in the
order in which they are called, though it is not a fully linear sequence.

#defines

There are a number of local #define values that control the operation of the
device. The most notable are described below.

#define DEVICE_ADC_MASK

This value defines the mask of ADC readings that should be monitored by the
AdcStatus MIB.

The on-chip temperature sensor should be included in order to allow
recalibration of the radio and oscillator control due to changes in temperature.

Some hardware platforms use an ADC input to monitor the bus voltage in the
device which may need to be above a particular level to allow operation of the
device.

The value is therefore selected from a combination of the hardware platform and
microcontroller being used.

#define DEVICE_ADC_SRC_BUS_VOLTS

This value determines which of the ADC inputs is being used to monitor the
device’s bus voltage so that the appropriate reading can be passed to other
modules for monitoring.

The value is selected from a combination of the hardware platform and
microcontroller being used.

#define DEVICE_ADC_PERIOD 25

This is the period at which the ADC readings are made in units of 10ms. The
default value of 25 equates to 250ms, so each reading is taken 4 times per
second.

 JenNet-IP Application Template

Application Note

88 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Local Variables

The following local variables are used in DeviceType.c

PRIVATE bool_t bSleep;

This variable is used by the End Device build of the application to flag when it is
ready to sleep.

Public Functions

The following public functions are commonly used:

void AppColdStart (void);

This function is the entry point to the application following a reset or waking from
sleep without memory held.

It simply calls Device_vInit().

void AppWarmStart (void);

This function is the entry point to the application following a wake from sleep with
memory held, which should only happen on sleeping End Devices.

It simply calls Device_vInit().

void Device_vInit (bool_t bWarmStart);

This function controls the overall initialisation of the device.

The code mostly consists of calling initialisation functions in various other stack,
peripheral and common modules, to ensure they are ready to be used.

The common node handling module is initialised by a call to Node_vInit().

The next initialisation steps for a cold start are:

Calls the Node_bTestFactoryResetEeprom() function to test if a factory
reset should be applied due to an on – off – on – off – on sequence.

A call is made to Device_vPdmInit() to initialise the Persistent Data Manager
and data used by the MIBs in the application.

If a factory reset is required the Device_vReset() function is called to carry
out the reset.

A call is made to Device_eJipInit() which takes care of initialising the JenNet-
IP stack and begin the process of joining a network.

Once the above initialisation is completed the software enters the main loop,
contained in the Device_vMain() function.

If Device_vMain() is allowed to exit on an End Device the node is placed into
sleep mode with a call to Device_vSleep().

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 89

void Device_vPdmInit (void);

This function simply calls Node_vPdmInit() to initialise the Persistent Data
Manager (PDM) and each of the common MIBs used by the application.

When building on the template additional MIBs may be initialised following the
call to Node_vPdmInit() once the PDM has been initialised.

void Device_vReset (bool_t bFactoryReset);

This function is used to reset the device. The parameter determines whether it
should be a standard reset or a factory reset.

In the template this function simply calls the common Node_vReset() function
which resets data in the common MIBs (if appropriate for a factory reset) before
resetting the device.

When building on the template, additional MIBs may be factory reset before the
call to Node_vReset() where the device is actually reset.

teJIP_Status Device_eJipInit (void);

This function initialises the JIP stack and registers the common MIBs with the
stack by calling the common Node_eJipInit() function.

When building on the template, additional MIBs may be registered with the stack
after the call to Node_eJipInit() when the stack is up and running.

void v6LP_ConfigureNetwork (

 tsNetworkConfigData *psNetworkConfigData);

This callback function is called by the stack from the eJIP_Init() function during
initialisation to allow the operation of the stack to be configured.

This function simply calls the common Node_v6lpConfigureNetwork() function
to handle this task.

 JenNet-IP Application Template

Application Note

90 © NXP Laboratories UK 2015 JN-AN-1190 v2004

void Device_vMain (void);

This function contains the main application loop which runs while the device is to
stay awake.

Before entering the loop, the bSleep variable is set to FALSE and the loop
continues until this variable is set to TRUE.

Each time around the loop:

 The on-chip watchdog is restarted.

 The common modules are given the opportunity to perform main loop
processing with a call to Node_vMain().

 If the stack is not running the main loop is allowed to exit in order to place
the device into sleep mode.

 If not entering sleep the device is placed into doze mode until the next
interrupt in order to preserve power.

This function only returns when the software decides that the device should be
placed into a sleep mode.

When building on the application template, other modules can perform main loop
processing by calling into them from here.

void v6LP_DataEvent (int iSocket,

 te6LP_DataEvent eEvent,

 ts6LP_SockAddr *psAddr,

 uint8 u8AddrLen);

This callback function is called by the stack for data events at the 6LowPAN
level. It simply calls the common Node_v6lpDataEvent() function.

As this application is written to operate at the JIP level (reading and writing to
MIB variables), any packets received from this level of the stack are simply
discarded by Node_v6lpDataEvent().

void vJIP_StackEvent (te6LP_StackEvent eEvent,

 uint8 *pu8Data,

 uint8 u8DataLen);

This callback function is used to inform the application of stack events relating to
the status of the device in the network. This function simply calls the common
Node_bJipStackEvent() function to handle these events.

The return value from Node_bJipStackEvent() indicates if an End Device poll
has indicated that there is no data remaining in the parent device. In the
application template, End Devices are prepared for sleep mode when this takes
place.

When building on the template, stack events may be passed to other modules
from this function as required.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 91

void v6LP_PeripheralEvent (uint32 u32Device,

 uint32 u32ItemBitmap);

This callback function is called by the stack each time a peripheral raises an
interrupt. This function is called from within the interrupt context. The following
peripheral device enumerations are handled in this function. (Interrupts from
other peripherals can be accessed here when adapting the template to create
other device types):

E_AHI_DEVICE_SYSCTRL

The application uses Wake Timer 1 for general timing purposes on End
Devices, as it can be used to maintain accurate timing periods. This Wake
Timer is regularly calibrated against other system clocks to maintain accuracy

On sleeping End Device the stack uses Wake Timer 0 to time sleep periods.
While in a network, the stack’s use of Wake Timer 0 is largely circumvented
by the use of Wake Timer 1, but it is allowed to run normally when joining a
network.

The wake timer interrupt events are part of the system controller and so raise
interrupts for this device. These are passed on to the common modules
through a call to Node_vSysCtrlEvent().

E_AHI_DEVICE_TICK_TIMER

The JenNet-IP stack runs the tick timer so that it generates an interrupt every
10ms. This is used internally by JenNet-IP for timing and may also be used by
applications as long as its operation is unchanged.

Coordinator and Router applications make use of this timer to maintain
accurate timing periods, as this timer is always run along with the stack.

End Devices make little use of this timer as it only runs when the stack is
running. It is only used to time short operations that require the use of the
radio.

These events are simply passed on to the common modules through a call to
Node_vTickTimerEvent().

E_AHI_DEVICE_ANALOGUE

When using the common Node.c software the AdcStatus MIB is configured to
manage the ADC peripherals to take regular readings. Each time a reading is
completed an interrupt will be generated. The interrupts are passed on to
Node.c by calling the Node_u8AnalogueEvent() function.

The Node_u8Analogue() function returns the ADC input for the completed
reading. The ADC readings can be passed into other MIBs for further
processing (when building on the template).

void Device_vTick (void);

This function is called by Node_vMain() whenever the tick timer has fired
outside of interrupt context.

This function is empty in the application template but code may be added to pass
tick timer events into other modules (when building on the template).

 JenNet-IP Application Template

Application Note

92 © NXP Laboratories UK 2015 JN-AN-1190 v2004

void Device_vAppTimer100ms (void);

This function is called by Node_vMain() whenever the Wake Timer 1 has fired
outside of interrupt context. This timer is run with an interval of 100ms by the
application.

This function is empty in the application template but code may be added to pass
these events into other modules when building upon the template.

void Device_vSecond (void);

This function is called by Node_vMain() each time a second passes.

This function is empty in the application template but code may be added to pass
these events into other modules (when building upon the template).

void Device_vException (uint32 u32HeapAddr,

 uint32 u32Vector,

 uint32 u32Code);

This function, if present in an application, is called following the standard
exception handler in Exception.c. It may be used to take additional actions if an
exception is raised.

In the template, the software is simply restarted.

void Device_vSleep (void);

This function is called in End Device nodes if the main loop is allowed to exit and
puts the node into sleep mode.

The function Node_vSleep() is called to allow the common pre-sleep handling to
take place before entering sleep mode.

When building on the template, additional pre-sleep handling can be added
before the call to Node_vSleep().

void Device_vPreSleepCallback (void);

This function is called from Node.c just before the stack enters sleep mode.

The function is empty in the template application but it is a useful place to disable
peripherals and external devices to preserve power while sleeping (when
building upon the template).

6.1.2 Common Module Features

The DeviceType.c files rely heavily on a set of common modules located in the
Common folder.

The most important file of these is the Node.c file that implements code common
to all node types, wrapping the use of the common MIBs into a single source file.

A detailed description of the common modules is included in JenNet-IP
Application Template (JN-AN-1190).

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 93

6.1.3 Standard MIB Module Features

Each MIB implemented in the Application Note is included in a group with a
folder named MibGroup, where Group defines the group name. Each MIB in a
group works with the others to provide a set functionality serving a common
purpose. For example the MibCommon folder contains MIBs that are useful in
all devices types.

Each individual MIB is built from a number of files with a common naming
scheme, example filenames are given in the form MibName below, where Name
should be replaced with the actual MIB’s name.

6.1.3.1 MibGroup.h

MibGroup.h contains defines used throughout the MibGroup modules. These
are mostly MIB ID numbers, variable indices within each MIB and specific MIB
variable values where a set of enumerations is used.

6.1.3.2 MibNameDef.h

Each MIB has a MIB definition header file named MibNameDef.h. These header
files make use of JenNet-IP macro definitions to define the variables in each
MIB. This includes their names, data types and access flags.

6.1.3.3 MibNameDec.c

Each MIB has a MIB declaration file named MibNameDec.c. These source files
make use of JenNet-IP macro definitions to declare each MIB and its variables,
including the read and write function pointers and a pointer to the data
associated with each variable. These source files also instantiate each MIB’s
handle that is needed for various JIP functions.

6.1.3.4 MibName.h

Each MIB has a header file named MibName.h. This header includes the data
structure definitions used by the MIB and the public function prototypes
implemented by the MIB.

typedef struct tsMibNamePerm;

Each MIB that stores data in the PDM has a data structure named
tsMibNamePerm, which is retrieved from the PDM at initialisation and stored
when the data changes. The members of this structure map onto the permanent
variables of the MIB.

typedef struct tsMibNameTemp;

Each MIB that has variables that do not need to be stored in the PDM has a data
structure named tsMibNameTemp. The members of this structure map onto the
temporary variables of the MIB.

 JenNet-IP Application Template

Application Note

94 © NXP Laboratories UK 2015 JN-AN-1190 v2004

typedef struct tsMibName;

Each MIB has a structure named tsMibName that contains all the global data
used by the MIB. This includes instances of the permanent and temporary data
structures. This structure also includes the MIB handle, the PDM record
descriptor (in MIBs that use the PDM) and other data specific to the MIB.

6.1.3.5 MibName.c

Each MIB has a source file named MibName.c. These source files implement
the functions required of each MIB. Many MIBs contain similar functions that
carry out a common task in each MIB (though the effects in each MIB differ). For
example, all MIBs contain an initialisation function that is called when a device
using that MIB is started. However each MIB will initialise its own data and
hardware (that will vary from MIB to MIB).

The following functions are commonly found in the MIB source files, not that not
all MIB implement all functions:

PUBLIC void MibName_vInit(thJIP_Mib *hMibNameInit,

 tsMibName *psMibNameInit);

This function initialises the MIB’s data structure, reading data from the PDM if
required.

PUBLIC void MibName_vRegister (void);

This function registers the MIB with the stack, making the variables available to
be accessed by other devices.

A flag is often set to ensure that default data is written to the PDM the first time
the device runs.

PUBLIC void MibName_vMain (void);

This function is called each time around the main loop and allows the MIB to
perform frequently required processing activities.

PUBLIC void MibName_vTick (void);

This function should be called each time the stack’s 10ms tick timer fires and
may be used for timing purposes by the MIB software.

The function checks if any of its MIB variables have trap updates to transmit and
calls Node_vJipNotifyChanged() to produce the transmission.

PUBLIC void MibName_vAppTimer100ms (void);

This function should be called each time the application’s 100ms timer fires and
may be used for timing purposes by the MIB software.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 95

PUBLIC void MibName_vSecond (void);

This function should be called once per second and may be used for timing
purposes.

It is common to make a call to MibName_vSaveRecord() to save data to the
PDM, if required.

PUBLIC void MibName_vStackEvent (

 te6LP_StackEvent eEvent,

 uint8 *pu8Data,

 uint8 u8DataLen);

This function is used to track if the node is a member of a network.

PUBLIC void MibName_vSaveRecord (void);

This function checks the save record flag and saves the record to PDM where
appropriate.

 JenNet-IP Application Template

Application Note

96 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.2 DeviceTemplate Folder

The DeviceTemplate folder of the Application Note contains source code for a
template device. The template device can operate as a Coordinator, Router or
End Device node:

 The Coordinator build is able to create the network and automatically
accept Routers and End Devices as children. The Coordinator build
should only be used for creating closed systems. For systems that
require the use of a connection to LAN / WAN or to access devices using
the JenNet-IP Browser, the border router should be used as the network
Coordinator. As the Coordinator needs to be able to route messages to
other nodes at any time it must be permanently powered and the radio
left on in receive mode at all times.

 The Router build is able to join a network and maintain its place within the
network. It can also extend the network by allowing other Routers or End
Devices to join. The Routers are able to transmit and receive both unicast
and multicast messages. As the Routers need to be able to route
messages to other nodes at any time they must be permanently powered
and the radio left on in receive mode at all times.

 The End Device build is able to join a network and maintain its place
within the network. The End Devices can transmit and receive unicast
messages, but they can only transmit multicast messages. The End
Devices spend the majority of their time asleep and so can be battery
powered. They are not able to route messages to other nodes.

The template devices contain only the core functionality of a JenNet-IP device.
They do not provide any application-specific functions. Adding code to the
template devices is the best way to create new types of JenNet-IP devices. The
developer can focus on writing code to provide the device’s functionality using
the network maintenance code unchanged. The devices in JenNet-IP Smart
Home (JN-AN-1162) are based on this template code.

The application code is structured into layers, as shown below, with the code for
each layer in a separate folder of the Application Note.

The Common folder contains code that is shared by all types of devices. The
source file Common\Node.c actually provides the majority of the network joining
and maintenance code. Node.c in turn makes use of a number of MIBs that can
be used to monitor, configure and control an individual node and its operation
within the network. These MIBs are implemented by the code in the
MibCommon folder.

The source code in the DeviceTemplate folder contains the main module
implementing the standard JIP callback functions. The callback functions then
make calls into the stack libraries and common modules as required.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 97

6.2.1 DeviceTemplate Makefile

The makefile for DeviceTemplate uses the variables listed in Section 6.1.1.1
"Standard DeviceType Makefile" with the following differences:

DEVICE_NAME

The template device supports only the following value:

 DR1174 for the Carrier Board (DR1174)

NODE_TYPE

The following builds are available for the Template device:

 Coordinator: The node runs as a Coordinator device.

 Router: The node runs as a Router device.

 EndDevice: The node runs as an End Device.

6.2.2 DeviceDefs.h

This header file contains #defines that can be used to configure the default
behaviour of the device. These are the same as those described in Section
6.1.1.2 "Standard DeviceDefs.h Features".

6.2.3 DeviceTemplate.c

DeviceTemplate.c contains the main source code for the template application. It
follows the pattern described in Section 6.1.1.3 "Standard DeviceType.c
Features".

 JenNet-IP Application Template

Application Note

98 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.3 Common Folder

The Common folder of the Application Note contains source code that is used
by many device types in the JenNet-IP Application Template and JenNet-IP
Smart Home Application Note.

6.3.1 Config.h

Config.h contains definitions for the default network identifiers and operating
parameters that are shared by all device types.

6.3.2 Node.h, Node.c

Node.c contains the core functionality for a node to join and maintain its place in
the network. The functionality supports Coordinator, Router and End Device
node types. When developing new device types, the network maintenance
functions in this source code module can be used “as-is”, leaving the developer
to concentrate on the functionality of the device being developed.

Most of the functionality is contained within the MibCommon modules. There
are many calls to functions in MibCommon that implement the required
functionality.

The following sections briefly describe the features of the Node.c source code.
Functions called during initialisation of the device are mostly presented in the
order in which they are called, although it is not a fully linear sequence.

 We recommend that developers do not add functionality for
device specific MIBs to this source code module. The correct
place for calls into device specific MIBs is in the
DeviceName.c modules (refer to DeviceDio.c for examples
of device specific MIB handling).

The MIBs that are managed by Node.c are common to all
devices in a system.

6.3.2.1 #defines

There are a number of local #define values in Node.c that control the operation
of the node. The most notable are described below:

#define FACTORY_RESET_MAGIC 0xFA5E13CB

This #define is used to verify the contents of the EEPROM data used to detect
the on-off factory reset power cycle sequence.

#define FACTORY_RESET_TICK_TIMER 32000000

This #define is used to time the on-off factory reset power cycle sequence.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 99

#define NODE_WAKE_TIMER_100MS

This #define is used to determine if Wake Timer 1 should be used for general
timing in the application.

 On Coordinators and Routers, this is set the FALSE resulting in the 100ms
and 1s timers being derived from the 10ms tick timer run by the stack.

 On End Devices this is set to TRUE, resulting in the 100ms and 1s timers
being derived from Wake Timer 1.

6.3.2.2 External Data

A number of externally declared variables are used by Node.c.

Each MIB in the MibCommon modules used by Node.c requires two external
variables to be accessed in Node.c:

 sMibName: Data structure, data used by the MIB is contained in a
structure of the type tsMibName with the variable name sMibName,
(where Name is the actual name of the MIB.) These data structure types
are defined in the corresponding MibName.h include file of the Application
Note, while the structure itself is declared in the MibNameDec.c source file
of the Application Note which contains the MIB declaration.

 hMibName: MIB handle, passed to JIP functions to allow access to MIBs
and variables. These are of the type thJIP_Mib and named hMibName
(where Name is the actual name of the MIB). The variable is actually
declared in the MibNameDec.c source file of the Application Note.

6.3.2.3 Public Functions

The following public functions are implemented in Node.c:

void Node_vInit (bool_t bWarmStart);

This function should be called during a warm or cold start to initialise the Node.c
module. In DeviceTemplate.c it is called from the Device_vInit() function.

Its main purpose is to determine the type and size of the memory to store
persistent data and allocate the data for use by the Persistent Data Manager
(PDM), Over Network Download (OND) and factory reset detection modules and
functions.

It also starts UART debugging when enabled, initialises the exception handler,
enables the chip to run at high temperatures and initialises Wake Timer 1 (when
enabled).

bool_t Node_bTestFactoryResetEeprom (void);

This function is used to check a sequence of the device being powered on and
off with specific timings in order to invoke a factory reset. This may be necessary
for devices without buttons or other external interfaces that can be used to
generate a factory reset (such as a light bulb). While this function detects the
sequence, the factory reset is performed later in the boot sequence, if required.

 JenNet-IP Application Template

Application Note

100 © NXP Laboratories UK 2015 JN-AN-1190 v2004

The exact sequence begins with the device having to be powered on for a period
greater than two seconds. The device should then be powered on and off such
that there are three consecutive periods of the device being powered for less
than two seconds. The device should then be powered on one last time and after
two seconds the device will apply a factory reset. These timings are illustrated in
the diagram below:

This strict pattern is used to reduce the risk of an accidental factory reset,
especially if children might be playing with a wired light switch, with two long
“guard” periods required either side of the three short periods.

In order to detect this sequence the software sets a flag upon being powered on.
If the device remains on for two seconds the flag is cleared. A history of these
flags is maintained in storage even when power is removed so that the timing
sequence can be detected.

The default method for JN516x devices is to store the flags in EEPROM
memory. As the data is updated each time the device is powered on, a whole
EEPROM sector is used to store just a few bytes of data. However, using
EEPROM memory provides the most reliable method of retaining the flags while
power is removed.

Two 32-bit values are used to validate the data stored in the EEPROM. The first
is a magic number defined as FACTORY_RESET_MAGIC. The second is the
JIP Device ID. On start up the factory reset data is read. If the validation values
are incorrect the data is configured for an initial start-up and written back to the
EEPROM. The remainder of the EEPROM sector is filled with junk values.

A third 32-bit value is used to track the on-off timings that trigger a factory reset,
although only the least significant 8 bits are used. In a device that has been
running for more than two seconds, its value will be 0b11111111. Once the flags
have been read the software works from the least significant bit of the byte to the
most significant bit looking for a bit set to 1. When it encounters the first bit it sets
it to zero and stops looking. The new value is then written back to the EEPROM
(0b11111110 for the first iteration. This value is also used immediately when
invalid data is found in the EEPROM).

A two second timer is started. If the timer completes, the current byte value is
checked and if a factory reset is not required, the least significant bit is set back
to 1 and written back to the EEPROM, indicating a long “on” cycle ready for the
next iteration.

If the device is switched off while the timer is running, the test byte with some
bits set to zero will remain in the EEPROM and the remaining least significant set
bit will be cleared on the next iteration.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 101

If the device is powered off each time before the two second timer expires, the
tested byte value will have the sequence of values 0b11111110, 0b11111100,
0b11111000, as the least significant 3 bits get set to zero and stored in the
EEPROM.

When the device is next switched on and is left on when the 2 second timer
expires, the test byte has a value of 0b11110001 (the final bit being set after the
timer expires for this last iteration). If this pattern is encountered, the function
return value indicates that the factory reset sequence has been detected.

If the device continues to be switched off quickly after the third iteration, more
bits get cleared from the test byte and the factory reset is not triggered as the
byte value is never set to 0b11110001 when the timer expires.

Two copies of the factory reset data are held in the EEPROM with the old copy
only being invalidated after the new one has been written. This ensures that the
loss of power during a write always leaves a valid record and avoids
unintentionally performing a factory reset.

void Node_vPdmInit (void);

This function is used to initialise the PDM data and the data for each of the
common MIBs implemented in the MibCommon modules and used by the
application.

The PDM is initialised first with a call to PDM_vInit().

A PDM record for the device is then read. This record simply contains the 32-bit
JIP Device ID. If the Device ID read from the PDM does not match that of the
running software, all PDM data is deleted and the device reset. This ensures that
if the software in a chip is changed, the PDM data is cleared as PDM data for
one device may not be compatible with another device. When the device PDM
record is not present, the correct data is written to the PDM.

Each common MIB has its own initialisation function, with each called in turn. In
general the MIB initialisation functions will read their data from the PDM, and will
initialise data and hardware as required.

void Node_vReset (bool_t bFactoryReset);

This function is used to reset the device. The parameter determines whether it
should be a standard reset or a factory reset.

 For a standard reset, the NodeStatus MIB’s count of resets is incremented,
all outstanding PDM data is saved. The NodeControl MIB’s Reset variable
can be used to schedule a reset.

 For a factory reset the device erases the PDM data for most of the
common MIBs (the data for the NwkStatus MIB is retained in order to
preserve the timer and counter variables). The NodeControl MIB’s
FactoryReset variable can be used to schedule a factory reset. The factory
reset power cycle sequence may also trigger this during booting.

The device is then reset, forcing it through a cold start.

 JenNet-IP Application Template

Application Note

102 © NXP Laboratories UK 2015 JN-AN-1190 v2004

teJIP_Status Node_eJipInit (void);

This function initialises the JIP stack and registers the common MIBs.

A call to MibNwkSecurity_eJipInit() handles the initialisation of the stack.

When running as an End Device node type, the pre-sleep callback function
Node_vPreSleepCallback() is registered with the stack.

Once the JenNet-IP stack is running, the common MIBs used by the application
are registered with the stack so that they become accessible when the device
joins the network.

Each common MIB has a register function. These are called in sequence to
register the each MIB with the stack.

void Node_v6lpConfigureNetwork (

 tsNetworkConfigData *psNetworkConfigData);

This function should be called from the stack’s v6LP_ConfigureNetwork() call-
back function, which is called by the stack from the eJIP_Init() function during
initialisation to allow the operation of the stack to be configured.

This function simply calls MibNwkSecurity_v6lpConfigureNetwork() to
configure the network and apply the correct security settings for a join or re-join
of the network.

When this function returns the JenNet-IP stack begins the process of joining or
re-joining a network. Control is then returned back to the application after the call
to eJIP_Init() in Node_eJipInit().

void Node_v6lpResume (void);

This function can be called to resume running the stack “on demand” in End
Devices. This is most useful when detecting an event while awake without the
stack running in order to resume the stack to transmit data.

This function simply updates the stack state. The stack is actually resumed in
Node_vMain().

void Node_v6lpDataEvent (int iSocket,

 te6LP_DataEvent eEvent,

 ts6LP_SockAddr *psAddr,

 uint8 u8AddrLen);

This function should be called from the stack’s v6LP_DataEvent() callback
function which is called by the stack for data events at the 6LowPAN level. As
this application is designed to operate at the JIP level (reading and writing to MIB
variables) any packets received from this level of the stack are simply discarded
by this function.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 103

bool_t Node_vJipStackEvent (te6LP_StackEvent eEvent,

 uint8 *pu8Data,

 uint8 u8DataLen);

This function should be called from the stack’s vJIP_StackEvent() callback
function which is used to inform the application of stack events relating to the
status of the device in the network. The following events are handled:

STACK_STARTED, STACK_JOINED

Indicates the device has successfully created, joined or re-joined a network.

The first time a device joins a network, its memberships to the multicast
groups stored in EEPROM are restored.

If the device has joined a standalone network for the first time and a
commissioning timeout is specified, the factory reset timer will be started. If
the device does not complete commissioning, which ends with a cancellation
of the factory reset timer, it will automatically be factory reset and have to re-
join the network. This is commonly used to ensure that a newly installed
device is properly programmed with group membership and other values
upon joining a standalone system.

STACK_RESET

Indicates the device has lost contact with its network or has been unable to
join after scanning all channels.

NETWORK_ANNOUNCE

This event is raised whenever the border router’s announcement message is
received. The border router transmits this message once per minute. Devices
running in standalone mode switch to trying to re-join a gateway network
upon receiving this message, (this mode change is handled by the
NwkSecurity MIB).

NODE_JOINED

This event is raised on Coordinator and Router devices when a new node is
accepted as a child.

When running as a Coordinator, this clears the authorisation data currently
allocated to the new child, allowing another child to join.

NODE_LEFT

This event is raised on Coordinator and Router devices when a child node is
lost.

NODE_AUTHORISE

This event is raised on Coordinator devices when an unrecognised device is
attempting to join the network using the older broadcast mechanisms.

In the Coordinator build, when no other device is already in the process of
being authorised, the authorisation data is configured to allow the device to
join the network on its next attempt.

This code could be extended to only allow new nodes to join within a certain
time period of a button press or by checking a list of authorised MAC
addresses (if control over which nodes are allowed to join is required).

 JenNet-IP Application Template

Application Note

104 © NXP Laboratories UK 2015 JN-AN-1190 v2004

NODE_AUTH_UCAST

This event is raised on Coordinator devices when an unrecognised device is
attempting to join the network using the newer, more efficient, unicast
mechanism.

This event is handled in a similar way to the NODE_AUTHORISE event in
Coordinator builds.

NODE_JOINED_NWK

This event is raised on Coordinator devices when a new node is accepted
into the network and it is not a direct child of the Coordinator.

When running as a Coordinator, this clears the authorisation data currently
allocated to the new child, allowing another child to join.

NODE_LEFT_NWK

This event is raised on Coordinator devices when a node is lost from the
network and it was not a direct child of the Coordinator.

E_STACK_POLL

This event is raised on End Devices upon completing a request for data to its
parent node.

If data is retrieved from the parent node, another poll request is made using a
call to e6LP_Poll(). This ensures that all data is retrieved from the parent
node to avoid data loss due to messages timing out.

When no data is available, TRUE is returned to the calling application
allowing decisions to be made on when the End Device should sleep.

Once the event has been handled by the software in Node.c, the stack events
are also passed on to some of the other MIBs used by the application that need
to be aware of the status of the device within the network or control its operation
within the network. The following MIBs all have stack event functions;
NwkStatus; NwkSecurity; NwkTest.

The NwkSecurity MIB includes code to determine if the device should switch
between standalone and gateway mode.

void Node_vMain (void);

This function is called from the main loop in the DeviceName.c file.

The Node_vAppTimer100ms() function is called to allow application timing
every 100ms.

The Node_vSecond() function is called to allow application timing every second.

For End Devices, the stack state is checked and the stack is resumed when
required.

The Node_vTick() function is called whenever the 10ms tick timer run by the
stack has fired.

Finally the vJIP_Tick() function is called if the stack is running to provide the
stack with processing time for its operations.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 105

uint8 Node_vSysCtrlEvent (uint32 u32Device,

 uint32 u32ItemBitmap);

This function should be called from the stack’s v6LP_PeripheralEvent() call-
back function (which is called by the stack each time a peripheral generates an
interrupt) when a System Control peripheral interrupt is generated. This function
is called from within the interrupt context.

Wake Timer 0

When the stack is run as an End Device the stack uses Wake Timer 0 to
control sleep periods. Interrupts from this wake timer are used to resume the
stack. This wake timer is used when joining the network. When a device is in
a network, Wake Timer 1 is managed by the application to control waking and
sleeping.

Wake Timer 1

The End Device builds use Wake Timer 1 running at 100ms intervals for their
internal timers.

This timer is used to update the second timer that runs at a 1 second interval,
allowing the application to perform timing tasks at 1 second intervals, and is
picked up and processed in the main context.

Whilst running in a network as an End Device, this timer is used to resume
the stack at configured intervals to maintain the device’s place in the network.

The firing of the 100ms timer is also flagged for the main context to process,
allowing the application to perform timing tasks at 100ms intervals.

uint8 Node_vTickTimerEvent (uint32 u32Device,

 uint32 u32ItemBitmap);

This function should be called from the stack’s v6LP_PeripheralEvent() call-
back function (which is called by the stack each time a peripheral generates an
interrupt) when a tick timer peripheral interrupt is generated. This function is
called from within the interrupt context.

Whilst the stack is running it runs the tick timer at 10ms intervals. This function
simply sets a flag which the main context reads to determine when the tick timer
has fired.

On Coordinator and Router builds, this event is used to derive the 100ms and 1s
timer function calls.

 JenNet-IP Application Template

Application Note

106 © NXP Laboratories UK 2015 JN-AN-1190 v2004

uint8 Node_u8Analogue (uint32 u32Device,

 uint32 u32ItemBitmap);

This function should be called from the stack’s v6LP_PeripheralEvent() call-
back function (which is called by the stack each time a peripheral generates an
interrupt) when an analogue peripheral interrupt is generated. This function is
called from within the interrupt context.

The AdcStatus MIB configures the ADC peripherals to take regular readings.
Each time a reading is completed, an interrupt will be raised.

The MibAdcStatus_u8Analogue() function in the AdcStatus MIB is called to
allow processing of the ADC reading. When the AdcStatus MIB handles a
reading from the on-chip temperature sensor, it will recalibrate the radio and
manipulate the oscillator to compensate for changes in temperature.

This function returns the ADC source of the completed reading, so that it may be
passed to other modules used in the calling application.

void Node_vTick (void);

This function is called from Node_vMain() every 10ms while the stack is running.

For End Devices Wake Timer 1 is checked to see if it has stalled and been
restarted with a call to Node_vCheckWakeTimer1().

On Coordinator builds, the timer is maintained which is used to limit the length of
time an individual node may continue to attempt to join the network.

The tick is passed up to the DeviceName.c module with a call to
Device_vTick(), which in turn may pass the tick to device-specific MIBs.

Some common MIBs have timing functions that need to be called when the stack
is running. These MIBs have a tick function that is called every time the tick timer
has interrupted. These MIBs are the NwkStatus, NwkTest and AdcStatus MIBs.

void Node_vAppTimer100ms (void);

This function is called from Node_vMain() every 100ms, derived from the Tick
Timer (Coordinators and Routers) or Wake Timer 1 (End Devices).

This event is passed up to the DeviceName.c file with a call to
Device_vAppTimer100ms(), which in turn may pass the event to device-specific
MIBs.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 107

void Node_vSecond (void);

This function is called from Node_vMain() every second. Its timing is derived
from the Tick Timer (Coordinators and Routers) or Wake Timer 1 (End Devices).

Where a timeout for joining a network is specified, the timer is checked here and
the node prevented from joining when it expires.

When running as a Coordinator, the network announce message is broadcast
every 30 seconds.

The second is passed up to the DeviceName.c file with a call to
Device_vSecond(), which in turn may pass the tick onto device-specific MIBs.

Some common MIBs have timing functions that need to be called every second.
These MIBs have a second function that is called once per second. These MIBs
are the NodeControl, NwkStatus and NwkSecurity MIBs.

void Node_vJipNotifyChanged (thJIP_Mib hMib,

 uint32 *pu32VarFlags,

 uint32 u32VarMask,

 uint8 u8VarCount);

This function provides a generic way to transmit trap updates from the MIBs in
the application.

Each MIB provided in the Application Notes maintains a mask of variables for
which a trap update is outstanding. The MIB handle, a mask of outstanding
updates, a full mask for the MIB and the number of variables in the MIB are
passed into this function each time the tick timer is fired while the stack is
running. The Node_vJipNotifyChanged() function will then transmit the trap
update for a single variable, where required.

This mechanism throttles the transmission on trap updates to one per MIB every
10ms, in addition to providing a generic interface.

void Node_vCheckWakeTimer1 (void);

This function checks whether Wake Timer 1 has over-run and restarts it if
necessary. This is used as a safety net in the event that an interrupt from Wake
Timer 1 is missed.

uint32 Node_u32StackState (void);

This is a data access function that returns the current stack state maintained by
the Node.c module.

uint32 Node_u32TimerSeconds (void);

This is a data access function that returns the current second timer value
maintained by the Node.c module.

bool_t Node_bJoined (void);

This is a data access function that returns the flag that indicates if the node has
joined a network since it was powered on.

 JenNet-IP Application Template

Application Note

108 © NXP Laboratories UK 2015 JN-AN-1190 v2004

bool_t Node_bUp (void);

This is a data access function that returns the flag which updates if the node is
currently a member of a network.

uint64 Node_u64WakeTimer1Period (void);

This is a data access function that returns the timer period being used by Wake
Timer 1.

void vJIP_StayAwakeRequest (void);

This function is called by the stack on End Devices when a packet is received
that indicates the node should stay awake to receive another packet.

In practice, the End Device actually returns to sleep but resumes the stack to
receive the following packet a short time later, thus extending battery life.

void Node_vSleep (void);

This function is called to place an End Device into sleep mode.

If the stack is running the node is placed into sleep mode by calling
v6LP_Sleep() which allows the stack to complete its processing before sleeping.

If the stack is not running, Wake Timer 0 is checked to see if it has over-run and
is restarted (if necessary). The chip is placed directly into sleep mode through a
call to vAHI_Sleep().

void Node_vPreSleepCallback (void);

This function is called on an End Device just before the stack places the chip into
sleep mode and allows the application a final chance to tidy any data before
sleeping.

First the higher application level is notified that the chip is about to sleep through
a call to Device_vPreSleepCallback().

Wake Timer 1 is checked for an overrun and is restarted (if necessary) through a
call to Node_vCheckWakeTimer1().

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 109

6.3.3 AHI_EEPROM.h, AHI_EEPROM.c

Contains low level functions to directly access the EEPROM on JN516x devices.
These functions are used to quickly store data when monitoring the on-off power
sequence that is used in some devices to invoke a factory reset.

The use of the Persistent Data Manager (PDM) is recommended to store the
majority of application data.

6.3.4 Exception.h, Exception.c

Contains exception handlers to dump exception data to Flash memory (and
UART when debugging is enabled) for later analysis.

6.3.5 Security.h, Security.c

Implements some helper functions used to derive commissioning security keys
from MAC addresses.

6.3.6 Address.h, Address.c

Implements helper functions to build group addresses from MAC addresses, plus
data access functions for MIB variables containing addresses.

6.3.7 Table.h, Table.c

Implements data access functions for MIB table variables.

6.3.8 Uart.h, Uart.c

Implements minimal UART functions that efficiently output data to the UART.

These functions provide a light-weight alternative to the full debugging libraries.

6.3.9 FtoA.h, FtoA.h

Implements routines to print float values to the UART.

6.3.10 Ovly.h

Contains #defines to strip out the use of the overlay functions in code shared
with ZigBee applications.

6.3.11 Zcl.h

Contains common return values used in functions shared with ZigBee
applications.

 JenNet-IP Application Template

Application Note

110 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.4 MibCommon Folder

The MibCommon folder contains modules that implement a number of MIBs that
can be reused in many different device types. The MIBs provide access to
monitor, configure and control devices at the node and network levels plus
generic ADC monitoring that recalibrates the radio if the temperature changes.

The common MIBs are controlled from the common Node.c module rather than
directly from the DeviceType.c module, allowing their easy integration into
different device types.

6.4.1 MibNode

The Node MIB is mainly implemented and created in the JenNet-IP stack.
However, the stack does not save the contents of the Node MIB’s
DescriptiveName variable in the PDM. This code performs the task of saving and
restoring the PDM data for this MIB.

6.4.1.1 Public Functions

The following public functions are implemented in MibNode.c:

void MibNode_vInit (tsMibNode *psMibNodeInit);

This function initialises the Node MIB’s data structure, reading it from the PDM (if
available).

void MibNode_vRegister (void);

The stack actually registers the Node MIB. However, this is good point to set the
value of the DescriptiveName variable and register a callback function, so that
remote updates to the name can be saved to the PDM.

6.4.1.2 Callback Functions

The following callback functions are implemented in MibNode.c:

void MibNode_vUpdateName (char *pcName)

This function is registered with the stack and is called whenever the Node MIB’s
DescriptiveName variable is remotely updated. The new name is stored and
written to the PDM.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 111

6.4.2 MibGroups

The Groups MIB is mainly implemented and created in the JenNet-IP stack.
However, the stack does not save the contents of the Groups MIB’s Groups table
in the PDM. This code performs the task of saving and restoring the PDM data
for this MIB.

6.4.2.1 Public Functions

The following public functions are implemented in MibGroups.c:

void MibGroup_vInit (tsMibGroup *psMibGroupInit);

This function initialises the Groups MIB’s data structure, reading it from the PDM
(if available).

If group data cannot be read from the PDM, the data is manipulated to add the
device to the “All Devices” group.

The maximum number of supported groups is also passed to the stack.

void MibGroup_vRestore (void);

This function is called when the device joins a network. If the groups stored in
the PDM have not yet been applied following a power cycle then the device is
placed back into its groups.

PDM_teRecoveryState MibGroup_ePdmStateInit (void);

This function returns the PDM status of the Group record during initialisation.
Some MIBs use this to place the device into a specific group, if data was not
read from the PDM.

6.4.2.2 Callback Functions

The following callback functions are implemented in MibGroups:

bool_t bJIP_GroupCallback (teJIP_GroupEvent eEvent,

 in6_addr *psAddr);

This stack call-back function is called whenever the device is added to or
removed from a group.

This function updates the group membership list appropriately and writes the
data to the PDM.

 JenNet-IP Application Template

Application Note

112 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.4.3 MibNodeStatus

The NodeStatus MIB provides information on the status of the node, including
counts for how many times the device has booted plus watchdog and brownout
errors.

6.4.3.1 Public Functions

The following public functions are implemented in MibNodeStatus.c:

void MibNodeStatus_vInit (

 thJIP_Mib hMibNodeStatusInit,

 tsMibNodeStatus *psMibNodeStatusInit);

This function initialises the NodeStatus MIB’s data structure, reading it from the
PDM (if available).

The status of the system at start up is checked, and the MIB variables and
counters are updated as appropriate.

void MibNodeStatus_vRegister (void);

This function registers the MIB with the stack, making the variables available to
be accessed by other devices, and ensures updated data is written to the PDM.

void MibNodeStatus_vIncrementResetCount (void);

This function should be called whenever the device is intentionally performing a
software reset. It increments the reset count and writes data to the PDM.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 113

6.4.4 MibNodeControl

The NodeControl MIB allows the operation of the node to be controlled, mainly
providing methods to reset a node.

6.4.4.1 Public Functions

The following public functions are implemented in MibNodeControl.c:

void MibNodeControl_vInit (

 thJIP_Mib hMibNodeControlInit,

 tsMibNodeControl *psMibNodeControlInit);

void MibNodeControl_vRegister (void);

These functions are implemented in the standard way.

void MibNodeControl_vSecond (uint32 u32TimerSeconds);

This function should be called once per second. It checks the timers used to
schedule a reset or a factory reset. When the scheduled time is reached, it
performs the appropriate reset.

teJIP_Status MibNodeControl_vSetReset (uint16 u16Val

 void *pvCbData);

This function is called by the stack whenever the Reset variable is written to. It
sets the time at which the node should be reset.

teJIP_Status MibNodeControl_vSetFactoryReset (

 uint16 u16Val

 void *pvCbData);

This function is called by the stack whenever the FactoryReset variable is written
to. It sets the time at which the node should be factory reset.

 JenNet-IP Application Template

Application Note

114 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.4.5 MibNwkStatus

The NwkStatus MIB allows the status of the network layer to be monitored. The
source code for this MIB also ensures that the frame counter is retained and re-
applied across power cycles.

6.4.5.1 Public Functions

The following public functions are implemented in MibNwkStatus.c:

void MibNwkStatus_vRegister (void);

void MibNwkStatus_vTick (void);

void MibNwkStatus_vSaveRecord (void);

These functions are implemented in the standard way.

void MibNwkStatus_vInit (

 thJIP_Mib hMibNwkStatusInit,

 tsMibNwkStatus *psMibNwkStatusInit,

 bool_t bMibNwkStatusSecurity);

This function initialises the NwkStatus MIB’s data structure, reading it from the
PDM (if available). It also initialises internal variables from the PDM data.

The frame counter read from Flash memory is increased to ensure it is greater
than the value used prior to the device being powered off.

void MibNwkStatus_vSecond (void);

This function should be called once per second.

The frame counter in the MAC is checked and if it has advanced sufficiently from
the previously saved value, an update to the PDM data is flagged.

The various timers used to monitor the run-time, up-time and down-time of the
node in the network are updated and trap update flags are set when required.

A call is made to MibNwkStatus_vSaveRecord() to save data to the PDM, if
required.

void MibNwkStatus_vStackEvent (te6LP_StackEvent eEvent);

This function is used to track if the node is a member of a network, incrementing
the up counter each time a network is joined or re-joined. The status of the
device in the network is also recorded and a flag is set to write the data to the
PDM.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 115

6.4.6 MibNwkSecurity

The NwkSecurity MIB configures and controls the network security aspects of
the application. It plays a large role in the process of joining a network and
switching between gateway and standalone modes.

6.4.6.1 Public Functions

The following public functions are implemented in MibNwkSecurity.c:

void MibNwkSecurity_vInit (void);

void MibNwkSecurity_vRegister (void);

These functions are implemented in the standard way.

teJIP_Status MibNwkSecurity_eJipInit (void);

This function is called from the Node_eJipInit() function. It sets up the stack
initialisation structure passing it into eJIP_Init() to start the stack running.

void MibNwkSecurity_v6lpConfigureNetwork (

 tsNetworkConfigData *psNetworkConfigData);

This function is called from the Node_v6lpConfigureNetwork() function. It
allows the NwkSecurity MIB to apply its network security data during stack
configuration.

The configuration data in the psNetworkConfigData structure is updated to
complete the stack configuration.

If the network and commissioning keys have not been retrieved from the PDM
the defaults keys are calculated and saved. Only Coordinator builds construct a
network key. The other devices join the network using one of their
commissioning keys and obtain the network key when they successfully join.

If the device has already been in a network, the configuration data is updated to
only allow it to scan on the known channel and to join the network with the
known PAN ID.

If the device already has a network key, having previously been a member of a
network, the network key is restored.

If the device was in a gateway system, the stack is enabled to receive
broadcasts on the old channel and PAN ID while it attempts to re-join.

If the device was in a Standalone network the security descriptors for the other
nodes in the network (that it is aware of) are restored and the device is placed
back into standalone mode.

If the device has never been in a network and it is a Router or End Device, the
gateway commissioning key is restored for use while joining. Coordinator
devices simply apply the network key which they are to use for their network.

 JenNet-IP Application Template

Application Note

116 © NXP Laboratories UK 2015 JN-AN-1190 v2004

void MibNwkSecurity_vSetUserData (void);

This function adds the Network ID and Device Type IDs of the device to the
beacon response and establish route messages that the stack transmits.

void MibNwkSecurity_vMain (void);

This function should be called each time around the main loop.

The function checks to see if a Beacon Response has been received from a
node in standalone commissioning mode and completes the process of switching
to standalone mode to allow it to join the standalone network.

void MibNwkSecurity_vSecond (uint32 u32TimerSeconds);

This function should be called once per second.

The network re-join timer is checked. When the scheduled time to re-join a
network is reached, the network key is deleted and the node reset. This forces
the node to go through a full re-join using the commissioning key and will scan
across all channels in the mask.

uint8 MibNwkSecurity_u8StackEvent (

 te6LP_StackEvent eEvent,

 uint8 *pu8Data,

 uint8 u8DataLen);

This function should be called to pass stack events into the NwkSecurity MIB.

The following events are handled:

STACK_STARTED, STACK_JOINED

These events indicate that the node has created or joined a network.

The OND system is initiailised.

The channel and PAN ID of the network are stored. They are also applied to
the network configuration data to ensure any future re-joins only scan the
known channel and limit join attempts to the known PAN ID.

On Routers and End Devices, the network key is noted. If a standalone
system has been joined, the node is taken out of standalone commissioning
mode and the parent’s security information saved.

Finally the PDM data is saved to EEPROM.

STACK_RESET

The E_STACK_RESET event is raised in two different situations:

1. The device is not currently in a network. It has reached the end of a
scan cycle looking for network to join and is about to restore the full
scan channel mask and begin again.

2. The device is currently in a network. It indicates that contact with the
network has been lost.

Code is included to handle the E_STACK_RESET event that is expected
when switching from standalone to gateway mode. This code reverts back to
gateway mode in case of failure to join a standalone network.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 117

STACK_NETWORK_ANNOUNCE

The E_STACK_NETWORK_ANNOUNCE event is raised when the regular
announcement transmitted by the border router is received. If the device is
operating in standalone mode, this indicates that the gateway network is
available. In this case, the device will attempt to re-join the gateway network.

bool_t MibNwkSecurity_bAddSecureAddr (

 MAC_ExtAddr_s *psMacAddr);

This function reserves an entry in the security table for the node with the
specified MAC address. This is used when the node joins a standalone network
to ensure it is always able to decode messages from the node that
commissioned it into the network.

bool_t MibNwkSecurity_bDelSecureAddr (

 MAC_ExtAddr_s *psMacAddr);

This function removes an entry in the security table for the node with the
specified MAC address.

void MibNwkSecurity_vResetSecureAddr (void);

This function clears all the reserved security table entries.

void MibNwkSecurity_vSetSecurityKey (uint8 u8Key);

This function is used to set the appropriate commissioning or network key for the
current stack mode.

teJIP_Status MibNwkSecurity_eSetKey (const uint8 *pu8Val,

 uint8 u8Len,

 void *pvCbData);

This function is called by the stack to set the value of the security key variables
in the NwkSecurity MIB and is specified in the MIB declaration in
MibNwkSecurityDec.c. When this function is called, the new values are saved
by the PDM. Note that the new security keys are not applied until the node is
restarted.

void MibNwkSecurity_vGetKey (thJIP_Packet hPacket,

 void *pvCbData);

This function is called by the stack to get the value of the security key variables
in the NwkSecurity MIB and is specified in the MIB declaration in
MibNwkSecurityDec.c.

teJIP_Status MibNwkSecurity_vSetRejoin (uint16 u16Val

 void *pvCbData);

This function is called by the stack whenever the Rejoin variable is written to. It
sets the time at which the node should re-join a network via the full
commissioning process.

 JenNet-IP Application Template

Application Note

118 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.4.6.2 Callback Functions

The following callback functions are implemented in MibNwkSecurity.c:

bool_t MibNwkSecurity_bBeaconNotifyCallback (

 tsScanElement *psBeaconInfo,

 uint16 u16ProtocolVersion);

This function is called by the stack whenever a Beacon Response is received.

Coordinator devices simply accept any Beacon Responses, as they are used
only when automatically selecting a PAN ID which must be different from any
other PAN IDs being used in the vicinity.

In Router and End Device builds:

 The Network ID included in the response is validated against the Network
ID of the WPAN the device is trying to join.

 The LQI level of the response is checked to ensure it meets minimum
requirements. The Join Profile being used by the stack may impose higher
requirements.

 Where a Beacon Response is received from a node in standalone
commissioning mode, the node begins the process of switching to
standalone mode.

bool_t MibNwkSecurity_bScanSortCallback (

 tsScanElement *pasScanResult,

 uint8 u8ScanListSize,

 uint8 *pau8ScanListOrder);

This function provides an alternative parent sorting algorithm to that used by the
stack. The callback is disabled by default but can enabled by removing the
comment around the call to vApi_RegScanSortCallback() in the
MibNwkSecurity_vSetUserData() function.

The stack’s ordering for Routers trying to join a network is:

1. Depth – closest to the Coordinator, to minimise packet hops through the
network.

2. Children – fewest children, to spread the work of routing packets through
the network among the Routers.

3. Signal Strength – highest to ensure the best connection (a minimum signal
strength is also imposed by the stack).

The stack’s ordering for End Devices trying to join a network is:

1. Signal Strength – highest to ensure the best connection (a minimum signal
strength is also imposed by the stack).

2. Children – fewest children, to spread the work of routing packets through
the network among the Routers.

3. Depth – closest to the Coordinator, to minimise packet hops through the
network.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 119

The default sorting algorithm works well in most situations but Routers in
particular may choose a relatively weak link in order to join as close to the
Coordinator as possible. This alternative sorting algorithm attempts to balance
the need to join as high up the tree as possible while still maintaining a strong
link to the chosen parent.

The alternative algorithm makes use of a pivot signal strength set by the #define
MIB_NWK_SECURITY_SCAN_SORT_PIVOT_LQI that has a default value of
96.

Responses with signal strengths at or above the pivot LQI are sorted above
those below the pivot LQI.

The results at or above the pivot LQI are then sorted by Depth, Children then LQI
(as for Routers above). This ensures that the results with a relatively strong
signal still favour joining close to the Coordinator.

The result below the pivot LQI are then sorted by LQI, Children then Depth (as
for End Devices above). This ensures that the results with a relatively weak
signal favour joining the strongest links.

bool_t MibNwkSecurity_bScanSortCheckSwap (

 tsScanElement *pasScanResult,

 uint8 u8ScanListItem,

 uint8 *pau8ScanListOrder);

This is the sorting function for the pivot based scan result ordering. It compares
two entries in the results list, swapping their positions if necessary.

bool_t MibNwkSecurity_bNwkCallback (

 MAC_ExtAddr_s *psAddr,

 uint8 u8DataLength,

 uint8 *pu8Data);

This function is called by the stack whenever a node is trying to join the network
and establish its route to the Coordinator.

The Network ID of the node trying to join is validated against the Network ID of
the potential parent node.

 JenNet-IP Application Template

Application Note

120 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.4.7 MibNwkTest

The NwkTest MIB contains variables that can be used to run packet error and
signal strength tests.

While the source code for this MIB is included in the Application Note, it is not
normally compiled into applications but is made available for testing and
evaluation use.

6.4.7.1 Public Functions

The following public functions are implemented in MibNwkTest.c:

void MibNwkTest_vInit (thJIP_Mib hMibNwkTestInit,

 tsMibNwkTest *psMibNwkTestInit);

void MibNwkTest_vRegister (void);

These functions are implemented in the standard way.

void MibNwkTest_vTick (void);

This function should be called every 10ms to allow the NwkTest MIB to time the
transmission of its test messages.

void MibNwkTest_vStackEvent (te6LP_StackEvent eEvent,

 uint8 *pu8Data,

 uint8 u8DataLen);

This function should be called to pass stack events to the NwkTest MIB. These
are used to track when the device is a member of a network. Upon joining or re-
joining a network the parent node’s address is retained and used as a
destination address for test messages while the test is running.

teJIP_Status MibNwkTest_eSetTests (uint8 u8Val,

 void *pvCbData);

This function is called by the stack to set the value of the Tests variable in the
NwkTest MIB and is specified in the MIB declaration in MibNwkTestDec.c.

The test results are reset to default values, ready to be populated when the test
runs.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 121

6.4.7.2 Callback Functions

These callback functions are implemented in MibNwkTest.c:

void vJIP_Remote_DataSent (ts6LP_SockAddr *psAddr,

 teJIP_Status eStatus);

The stack calls this callback function to indicate the status of a transmission
attempt. While the test is running, a successful transmission increments the
TxOk variable.

void vJIP_Remote_GetResponse (ts6LP_SockAddr *psAddr,

 uint8 u8Handle,

 uint8 u8MibIndex,

 uint8 u8VarIndex,

 teJIP_Status eStatus,

 teJIP_VarType eVarType,

 const void *pvVal,

 uint32 u32ValSize);

This function is called by the stack to return the result of a MIB variable Get
Request. This is the command used in the test messages so this function is
called when there is a successful response. The RxOk variable is incremented
and the LQI value of the received packet measured and used to update the
RxLqiMin, RxLqiMax and RxLqiMean MIB variables.

A successful response contains the LQI value of the transmitted test packet,
allowing the TxLqiMin, TxLqiMax and TxLqiMean values to be calculated.

 JenNet-IP Application Template

Application Note

122 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.4.8 MibAdcStatus

The AdcStatus MIB runs and monitors ADC readings as configured by the
application. Any combination of ADC inputs may be configured. All are read at
the same rate, as set by the application.

When the on-chip temperature input is used, the radio is recalibrated and the
oscillator pulled as required to compensate for changes in temperature.

6.4.8.1 Public Functions

The AdcStatus MIB contains the following public functions:

void MibAdcStatus_vRegister (void);

This function is implemented in the standard way.

void MibAdcStatus_vInit (thJIP_Mib hMibAdcStatusInit,

 tsMibAdcStatus *psMibAdcStatusInit,

 uint8 u8AdcMask,

 uint8 u8Period);

This function is called from the MibAdcStatus_vInit() patch function.

It performs basic initialisation of the MIB’s data. The ADC readings are initialised
with a call to MibAdcStatus_vResume().

void MibAdcStatus_vTick (void);

This function should be called every 10ms, triggered by the tick timer.

A counter is maintained and the next ADC reading is started at regular intervals
using the MibAdcStatus_vStart() function.

void MibAdcStatus_vResume (void);

This function starts or resumes running the ADC conversions following a cold or
warm start initiating the MibAdcStatus_vStart() function.

void MibAdcStatus_vStart (void);

This function begins the reading of the next ADC input.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 123

uint8 MibAdcStatus_u8Analogue (void);

This function should be called each time an analogue interrupt is generated
indicating the completion of an ADC reading.

This function stores the result, making it available for access via the MIB. Results
from non-JN5148 chips are scaled up to 12-bits.

When the ADC result is from the on-chip temperature sensor, it is converted to
tenths of a degree Celsius. If the temperature has changed by more than 20
degrees since the radio was last calibrated, it is recalibrated. The temperature is
also checked to determine if it has moved through a value that requires the
oscillator to be pulled or pushed and action is taken if required.

This function returns the ADC source of the reading, allowing other interested
source code modules to be updated with the new reading.

uint16 MibAdcStatus_u16Read (uint8 u8Adc);

This function returns the most recent raw 12-bit reading for the specified ADC
source.

int32 MibAdcStatus_i32Convert (uint8 u8Adc,

 int32 i32Min,

 int32 i32Max);

This function converts and returns the most recent reading for the specified ADC.
The i32Min and i32Max parameters specify the values corresponding to the
minimum and maximum raw 12-bit readings. So this provides a generic
conversion routine.

int16 MibAdcStatus_i16DeciCentigrade (uint8 u8Adc);

This function converts and returns the most recent reading for the specified ADC
as a temperature in tenths of a degree Celsius.

 JenNet-IP Application Template

Application Note

124 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.5 DeviceDio Folder

The DeviceDio folder of the Application Note contains source code for a generic
digital input/output (DIO) device. This allows the DIO pins of the microcontroller
to be configured, monitored and controlled. The DIO device can operate as a
Router or End Device node.

The source code has been constructed by adding to the code for the template
device described in Section 6.1 "Standard Device Software Features". The
additional functionality is contained within the DIO MIB source code, described
later. The code in the DeviceDio folder just makes calls to the DIO MIB functions
as appropriate. The descriptions of the source code in this section cover only the
additional code added to the template source code.

Adding additional code to the template device is the best way to create new
types of JenNet-IP devices. The developer can focus on writing code to provide
the device’s functionality using the network maintenance code as-is.

The following diagram shows the layers that form the DeviceDio application on
top of the JenNet-IP WPAN Stack:

The code to implement the DIO MIBs is contained in MibDio folder. The DIO
device also makes use of the common code and common MIBs in the Common
and MibCommon folders.

6.5.1 DeviceDio Makefile

The makefile for DeviceDio uses the variables listed in Section 6.1.1.1
"Standard DeviceType Makefile" with the following differences:

DEVICE_NAME

The DIO device supports only the following value:

 DR1199 for the Generic Expansion Board (DR1199).

This board is selected as it supports a number of switches that may be
configured for use as digital inputs and LEDs that may be configured for use as
digital outputs. However as the software provides generic access to the DIO
pins, it may be run on any hardware platform.

NODE_TYPE

The following builds are available for the DIO device:

 Router: The node runs as a Router device.

 EndDevice: The node runs as an End Device.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 125

BLD_MIB_NAME Variables

The DIO device makefile adds additional variables to control the building of the
DioStatus, DioConfig and DioControl MIBs.

REG_MIB_NAME Variables

The DIO device makefile adds additional variables to control the registration of
the DioStatus, DioConfig and DioControl MIBs.

6.5.2 DeviceDefs.h

This header file contains a few #defines that can be used to configure the default
behaviour of the device. These are the same as those described in Section
6.1.1.2 "Standard DeviceDefs.h Features".

Additional debug flags for DIO MIBs are included.

6.5.3 DeviceDio.c

DeviceDio.c contains the main source code for the digital I/O application. It
follows the pattern described in Section 6.1.1.3 "Standard DeviceType.c
Features" with the following additions:

6.5.3.1 #includes

Additional #includes are used to provide access to the DIO MIB modules used in
DeviceDio.c.

6.5.3.2 External Variables

External data variables are added to access the data and handles of the DIO
MIBs. Each MIB has two variables:

 sMibName: Data used by the MIB is contained in a structure of the type
tsMibName with the variable name sMibName, (where Name is the actual
name of the MIB.) These data structure types are defined in the
corresponding MibName.h include file of the Application Note, while the
structure itself is declared in the MibNameDec.c source file of the
Application Note which contains the MIB declaration.

 hMibName: MIB handle passed to JIP functions to allow access to MIBs
and variables. These are of the type thJIP_Mib and named hMibName
(where Name is the actual name of the MIB). The variable is actually
declared in the MibNameDec.c source file of the Application Note.

 JenNet-IP Application Template

Application Note

126 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.5.3.3 Public Functions

The following public functions are implemented in DeviceDio.c:

void Device_vPdmInit (void);

The DIO MIB modules are initialised here.

void Device_vReset (bool_t bFactoryReset);

The factory reset of the DIO MIBs permanent data is performed here.

teJIP_Status Device_eJipInit (void);

The DIO MIBs are registered with the JenNet-IP stack in this function.

void v6LP_PeripheralEvent (uint32 u32Device,

 uint32 u32ItemBitmap);

The DIOs may be configured to generate interrupts when the state of the inputs
change. These interrupts are surfaced to the application via the System Control
interrupt. These events are passed on to the DioStatus MIB via a call to the
MibDioStatus_vSysCtrl() function for further processing.

void Device_vTick (void);

This function is called from the common Node.c module every 10ms when the
stack is running.

Tick functions in the DIO MIBs are called to allow the MIBs to interact with the
stack.

void Device_vAppTimer100ms (void);

This function is called from the common Node.c module every 100ms.

MibDioStatus_vAppTimer100ms() is called to allow the DioStatus MIB to
perform its regular processing.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 127

6.6 MibDio Folder

The MibDio folder contains modules that implement MIBs that can be reused in
many different device types. The MIBs provide access for configuring, monitoring
and controling the digital I/O lines of the JN516x chips.

6.6.1 MibDioConfig

The DioConfig MIB allows the operation of the digital I/O lines to be configured.
The directions, pull-ups and interrupts of the I/O lines can all be configured.

6.6.1.1 Public Functions

The following public functions are implemented by MibDioConfig:

void MibDioConfig_vRegister (void);

void MibDioConfig_vTick (void);

These functions are implemented in the standard way.

void MibDioConfig_vInit (thJIP_Mib hMibDioConfigInit,

 tsMibDioConfig *psMibDioConfigInit);

This function initialises the DioConfig MIB’s data structure, reading it from the
PDM if available.

The direction, pull-ups and interrupt settings of the digital I/O lines are configured
as specified.

teJIP_Status MibDioConfig_eSetDirection (

 uint32 u32Val,

 void *pvCbData);

teJIP_Status MibDioConfig_eSetPullup (

 uint32 u32Val,

 void *pvCbData);

teJIP_Status MibDioConfig_eSetInterruptEnabled (

 uint32 u32Val,

 void *pvCbData);

teJIP_Status MibDioConfig_eSetInterruptEdge (

 uint32 u32Val,

 void *pvCbData);

These functions are called by the stack to set the value of variables in the
DioConfig MIB and are specified in the MIB declaration in MibDioConfigDec.c.
When these functions are called, a flag is set to ensure the new values are
saved by the PDM.

The above functions operate by writing directly to JN51xx registers. As such,
they configure all the digital I/O pins in a single operation.

 JenNet-IP Application Template

Application Note

128 © NXP Laboratories UK 2015 JN-AN-1190 v2004

teJIP_Status MibDioConfig_eSetDirectionInput (

 uint32 u32Val,

 void *pvCbData);

teJIP_Status MibDioConfig_eSetDirectionOutput (

 uint32 u32Val,

 void *pvCbData);

teJIP_Status MibDioConfig_eSetPullupEnable (

 uint32 u32Val,

 void *pvCbData);

teJIP_Status MibDioConfig_eSetPullupDisable (

 uint32 u32Val,

 void *pvCbData);

teJIP_Status MibDioConfig_eSetInterruptEnable (

 uint32 u32Val,

 void *pvCbData);

teJIP_Status MibDioConfig_eSetInterruptDisable (

 uint32 u32Val,

 void *pvCbData);

teJIP_Status MibDioConfig_eSetInterruptRising (

 uint32 u32Val,

 void *pvCbData);

teJIP_Status MibDioConfig_eSetInterruptFalling (

 uint32 u32Val,

 void *pvCbData);

These functions are called by the stack to set the value of variables in the
DioConfig MIB and are specified in the MIB declaration in MibDioConfigDec.c.
When these functions are called, a flag is set to ensure the new values are
saved by the PDM.

The above functions operate by calling the Integrated Peripherals API functions.
As such they may be used to configure a subset of the digital I/O pins leaving
other digital I/O pins unchanged.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 129

6.6.2 MibDioStatus

The DioStatus MIB provides information on the status of the Digital I/O lines,
including the current input states and interrupt flags.

6.6.2.1 Public Functions

The following public functions are implemented by MibDioStatus:

void MibDioStatus_vRegister (void);

void MibDioStatus_vTick (void);

These functions are implemented in the standard way.

void MibDioStatus_vInit (thJIP_Mib hMibDioStatusInit,

 tsMibDioStatus *psMibDioStatusInit);

This function initialises the DioStatus MIB’s data structure.

The initial values of the variables are read from the JN51xx registers.

void MibDioStatus_vAppTimer100ms (void);

This function should be called every 100ms. The states of the digital I/O input
lines are read from the JN516x register.

void MibDioStatus_vSysCtrl (uint32 u32Device,

 uint32 u32ItemBitmap);

This function should be called when a system control interrupt is generated, as
input interrupts are included in this handler.

The inputs that generated the interrupt are stored in the Interrupt variable and
any devices with traps are updated.

The state of the inputs are also read and used to update the Input variable. Any
devices with traps on this variable are updated.

 JenNet-IP Application Template

Application Note

130 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.6.3 DioControl MIB

The DioControl MIB allows output lines of the JN51xx to be controlled.

6.6.3.1 Public Functions

The following public functions are implemented in MibDioControl:

void MibDioControl_vRegister (void);

void MibDioControl_vTick (void);

These functions are implemented in the standard way as described in
MibName.c.

void MibDioControl_vInit (

 thJIP_Mib hMibDioControlInit,

 tsMibDioControl *psMibDioControlInit);

This function initialises the DioControl MIB’s data structure reading it from the
PDM if available.

The output pins are restored to the state stored in the PDM data structure.

These functions are called by the stack to set the value of some variables in the
DioControl MIB and are specified in the MIB declaration in MibDioControlDec.c.
When these functions are called a flag is set to ensure the new values are saved
by the PDM.

These functions are used when the new value can only take a limited set of
values and needs to be validated or when the device must take some action
when a variable is set.

teJIP_Status MibDioConfig_eSetOutput (uint32 u32Val,

 void *pvCbData);

This function is called by the stack when the Output variable is set remotely. It
sets the state of the output pins by writing directly to the JN516x register. As
such it controls all the output pins in a single operation.

teJIP_Status MibDioConfig_eSetOutputOn (uint32 u32Val,

 void *pvCbData);

teJIP_Status MibDioConfig_eSetOutputOff (uint32 u32Val,

 void *pvCbData);

These functions are called by the stack when the OutputOn and OutputOff
variables are written to. They turn on or off a subset of the output pins leaving
other output pins unchanged. They operate by calling the Application Hardware
Interface (AHI) functions.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 131

6.7 DeviceProtocol Folder

The DeviceProtocol folder of the Application Note contains source code for a
generic template device that allows messaging at the 6LoWPAN layer in addition
to using MIBs and variables. This allows custom protocols to be used where the
use of MIBs and variables is inappropriate. The protocol device can operate as a
Coordinator, Router or End Device node.

The source code has been constructed by adding to the code for the template
device described in Section 6.1 "Standard Device Software Features". The
additional functionality is contained within the Protocol.c module. The code in
the DeviceProtocol.c just makes calls to the Protocol.c functions as
appropriate. The descriptions of the source code in this section cover only the
additional code added to the template source code.

Adding additional code to the protocol device is the best way to create new types
of JenNet-IP / 6LoWPAN devices. The developer can focus on writing code to
provide the device’s functionality using the network maintenance code as-is.

The following diagram shows the layers that form the DeviceProtocol application
on top of the JenNet-IP WPAN Stack:

To illustrate the use of a custom protocol the device implements a simple
protocol in which each node sends a Register Request command to the
Coordinator every 15 seconds. The Coordinator then replies with a Register
Response command.

The protocol device makes use of the common code and common MIBs in the
Common and MibCommon folders.

6.7.1 DeviceProtocol Makefile

The makefile for DeviceProtocol uses the variables listed in Section 6.1.1.1
"Standard DeviceType Makefile" with the following differences:

DEVICE_NAME

The protocol device supports only the following value:

 DR1174 for the Carrier Board (DR1174)

NODE_TYPE

The following builds are available for the protocol device:

 Coordinator: The node runs as a Coordinator device.

 Router: The node runs as a Router device.

 EndDevice: The node runs as an End Device.

 JenNet-IP Application Template

Application Note

132 © NXP Laboratories UK 2015 JN-AN-1190 v2004

NETWORK_ID

The Network ID is set to the non-standard value of 0x00001190. This is to
ensure that when building a system using the Coordinator build, the other nodes
do not join a standard (MIB and variable only) network.

The devices in this system are able to join a network managed by a border router
in the normal way but the Router and End Devices will need to be re-built using
the standard (0x11111111) Network ID.

Devices using 6LoWPAN messaging in this way in a gateway system will only be
able to communicate with other devices using 6LoWPAN messages if both the
source and destination devices have the same IPv6 port open. To allow the
border router to participate in such communications, you will need to add
additional code to open the correct port. Coordinator and Router nodes that do
not have the IPv6 port open will still route such packets through the network for
the nodes that do.

6.7.2 DeviceDefs.h

This header file contains a #defines that can be used to configure the default
behaviour of the device. This are the same as those described in Section 6.1.1.2
"Standard DeviceDefs.h Features", with the following differences:

#define DEVICE_UDP_SOCKETS 3

This #define is used to override the standard two sockets made available for use
with JenNet-IP applications, adding a third socket for use with the 6LoWPAN
communications implemented in this device.

Debug Flags

Additional debug flags for the Protocol.c module are included.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 133

6.7.3 DeviceProtocol.c

DeviceProtocol.c contains the main source code for the protocol application. It
follows the pattern described in Section 6.1.1.3 "Standard DeviceType.c
Features" with the following additions:

6.7.3.1 #includes

Additional #includes are used to provide access to the protocol modules used in
DeviceProtocol.c.

6.7.3.2 Public Functions

The following public functions are implemented in DeviceProtocol.c:

void Device_vInit (bool_t bWarmStart);

The protocol module is initialised with a call to Protocol_vInit().

void Device_vMain (void);

The protocol module main processing is allowed to run each time around the
main loop via a call to Protocol_vMain().

void v6LP_DataEvent (int iSocket,

 te6LP_DataEvent eEvent,

 ts6LP_SockAddr *psAddr,

 uint8 u8AddrLen);

This callback function is called by the stack for data events at the 6LowPAN level
instead of simply calling Node_v6lpDataEvent() to discard such messages. As
in the other devices, these events are passed on to the protocol module through
a call to Protocol_v6lpDataEvent() for processing.

void vJIP_StackEvent (te6LP_StackEvent eEvent,

 uint8 *pu8Data,

 uint8 u8DataLen);

This call-back function is used to inform the application of stack events relating to
the status of the device in the network. This function passes these events on to
the protocol module through a call to Protocol_vJipStackEvent().

void Device_vSecond (void);

This function is called by Node_vMain() once per second.

This timer event is passed into the protocol module through a call to
Protocol_vSecond().

 JenNet-IP Application Template

Application Note

134 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.7.4 Protocol.h

Protocol.h contains the public interface to the protocol module.

6.7.4.1 #defines

A small number of #defines are specified here.

#define PROTOCOL_PORT (1190)

Specifies the number of the IPv6 port to be opened and used for 6LoWPAN
messaging.

#define PROTOCOL_GROUP 0x1190

Specifies an IPv6 multicast group address allowing multicast messages at the
6LoWPAN layer.

#define PROTOCOL_CMD_REG_REQ 'R'

Specifies the character that indicates a Register Request command within the
6LoWPAN payload.

#define PROTOCOL_CMD_REG_RSP 'r'

Specifies the character that indicates a Register Response command within the
6LoWPAN payload.

#define PROTOCOL_CMD_REG_REQ_SECONDS 15

Specifies the number of seconds between each node’s transmission of the
Register Request command.

6.7.4.2 Structures

A small number of structures are declared here:

typedef struct tsProtocolCmdRegReq;

Specifies the data in the Register Request command. This structure is used as
the payload when sending this command.

typedef struct tsProtocolCmdRegReq;

Specifies the data in the Register Response command. This structure is used as
the payload when sending this command.

6.7.4.3 Public Function Prototypes

The public function prototypes for the module are defined here. These functions
are covered in the next section.

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 135

6.7.5 Protocol.c

Protocol.c contains the source code for the protocol handling. It includes code
to open the IPv6 port, make a multicast group available for use and send and
receive data using the 6LoWPAN layer.

6.7.5.1 #defines

The following #defines are specified:

#define PROTOCOL_CMD_SEND_REG_REQ 0x1

This flag is used to indicate that a Register Request command should be sent to
the Coordinator.

6.7.5.2 Local Variables

The following local variables are declared:

bool_t bProtocolSocket;

This flag is used to track whether the IPv6 socket has been opened.

int iProtocolSocket;

This variable contains the socket number after the socket has been opened and
is used when sending and receiving communications using the socket.

ts6LP_SockAddr s6lpSockAddrCoord;

Holds the socket address of the Coordinator, uses the short form with an
address of 0 that implies messages sent to the address should be directed to the
network Coordinator.

ts6LP_SockAddr s6lpSockAddrNetwork;

Holds the socket address of the group used for multicasting to the network.

ts6LP_SockAddr s6lpSockAddrUnicast;

Available for general unicast messaging.

ts6LP_SockAddr s6lpSockAddrLocal;

Hold the socket address of the local device running the software.

uint32 u32CmdRegReqSecond;

Used in Routers and End Devices to track the time of the last Register Request
transmission and initiate the next.

uint32 u32CmdSend;

Used in Routers and End Devices to flag which messages need to be sent from
the main loop.

 JenNet-IP Application Template

Application Note

136 © NXP Laboratories UK 2015 JN-AN-1190 v2004

6.7.5.3 Public Functions

The following public functions are implemented in Protocol.c:

void Protocol_vInit (bool_t bWarmStart);

On a cold start, this function initialises the Coordinator, Network and Unicast
socket addresses.

void Protocol_vJipStackEvent (te6LP_StackEvent eEvent,

 uint8 *pu8Data,

 uint8 u8DataLen);

On the Coordinator the network formation is indicated by the STACK_STARTED
event. In this case, the socket is opened with a call to Protocol_vOpenSocket()
.

On Routers and End Devices the STACK_JOINED event indicates the device
has joined a network. In this case, the socket is opened with a call to
Protocol_vOpenSocket() and the flag set to transmit the Register Request
command to the Coordinator.

void Protocol_vJipStackEvent (te6LP_StackEvent eEvent,

 uint8 *pu8Data,

 uint8 u8DataLen);

The DATA_RECEIVED event indicates that data has been received.

 First the received message is extracted with a call to i6LP_RecvFrom().

 If successful, the message type is determined from the first character of the
payload.

 Where a recognised command has been received, the payload is cast to
the appropriate message structure and passed into a message handler for
that type of message.

The data for the other types of messages, IP_DATA_RECEIVED and
6LP_ICMP_MESSAGE, are simply discarded with calls to i6LP_RecvFrom().

void Protocol_vMain(void);

This function is called once each time around the main loop.

On Router and End Device nodes, the flags are checked to see if any messages
should be transmitted. If the network is up and the stack is running, the message
is sent by calling a command specific function.

On an End Device, if a message needs to be sent, the network is up but the
stack is not running, the stack is resumed. On a future call to Protocol_vMain()
once the stack is running, the command will be sent.

void Protocol_vSecond (uint32 u32TimerSeconds);

This function is called once per second.

On Routers and End Devices, the time of the last Register Request transmission
is checked against the current time. If it is time to send the command again, the
flag is set to trigger this in Protocol_vMain().

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 137

6.7.5.4 Private Functions

void Protocol_vOpenSocket (void);

This function is called whenever the node creates or joins a network.

If the socket has not yet been opened, the following tasks are performed:

 The socket is opened.

 The socket is bound to the node’s local IPv6 address.

 The socket is bound to the multicast IPv6 address to allow the use of
broadcast packets.

void Protocol_vSendTo (ts6LP_SockAddr *ps6lpSockAddr,

 uint8 *pu8Data,

 uint16 u16DataLen);

This function provides a generic wrapper around the stack’s i6LP_SendTo()
function. Prior to transmitting, it ensures the network is up, the stack is running
and allocates a data buffer for the message.

void Protocol_vSendCmdRegRsp (ts6LP_SockAddr *ps6lpSockAddr);

This function is only included in a Coordinator build. It is used to transmit
Register Response command back to a requesting node.

void Protocol_vRecvCmdRegReq (

 ts6LP_SockAddr *ps6lpSockAddr,

 tsProtocolCmdRegReq *psProtocolCmdRegReq);

This function is only included in a Coordinator build. It is used to receive a
Register Request command. The Coordinator uses the
Protocol_vSendCmdRegRsp() function to reply to the sending node.

void Protocol_vSendCmdRegReq (ts6LP_SockAddr *ps6lpSockAddr);

This function is only included in Router and End Device builds. It is used to
transmit the Register Request command to the Coordinator.

void Protocol_vRecvCmdRegRsp (

 ts6LP_SockAddr *ps6lpSockAddr,

 tsProtocolCmdRegRsp *psProtocolCmdRegRsp);

This function is only included in Router and End Device builds. It is used to
handle a received Register Response command from the Coordinator.

 JenNet-IP Application Template

Application Note

138 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Appendices

A Revision History – JN-SW-4141 Toolchain

This appendix contains the revision history for the Application Note built on the
JN-SW-4141 Beyond Studio for NXP Toolchain, most recent first.

A.1 27/01/2015: Public v2004

Changes

Public release on Beyond Studio for NXP Toolchain.

Lpap443: Devices – detect joining a standalone network via fast commissioning.

Devices detect joining a standalone network via fast commissioning. If the ping
interval is 0 the device enters standalone mode (if not already in standalone
mode).

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4141 v1111 v1111 JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4165 v1.2 v1107 JN5168
JN5164

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 139

A.2 19/12/2014: Internal v2003

Changes

This release includes updated documentation for review and also some small
code changes for improved performance.

Lpap362: Template – update documentation for new code structure.

Done.

Lpap365: Routers – choose best setting for u8JNT_IndirectTxBuffers

The number of indirect buffers for packets to End Device children has been
increased to improve End Device performance.

Lpap400: Devices – protect against EEPROM corruption caused by noisy power
supplies

Two copies of the factory reset data are held in EEPROM to ensure there is
always a valid record if one gets corrupted by a write being interrupted by loss of
power.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4141 v1111 v1111 JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4165 v1.2 v1107 JN5168
JN5164

A.3 21/10/2014: Internal v2002

Changes

No changes, built to release alongside JN-AN-1162 JenNet-IP Smart Home
Application Note v2002.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4141 v1111 v1111 JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4165 v1.2 v1107 JN5168
JN5164

 JenNet-IP Application Template

Application Note

140 © NXP Laboratories UK 2015 JN-AN-1190 v2004

A.4 26/09/2014: Internal v2001

Changes

This release tidies up the compilation warnings from the previous release and
adds the option to build a Coordinator version of the template device.

Lpap335: Template – Create Coordinator based upon template

DeviceTemplate can be built as a Coordinator that automatically allows any
device to join its network. This allows the creation of networks without a
Gateway.

Pre-built binaries are not provided.

The default Network ID of 0x11111111 should be changed in the makefiles when
using this type of Coordinator to prevent it accepting nodes that are trying to join
a Gateway JenNet-IP network that should go through the whitelist
commissioning process.

Lpap377: Template – Add example of 6LoWPAN layer messaging

DeviceProtocol can be built as a Coordinator, Router or End Device and
provides a simple example of opening and using a port for messaging at the
6LoWPAN layer. This allows the use of customer developed protocols instead of
or in addition to the standard JenNet-IP MIB and variable protocols. The
additional functionality is included in the Protocol.c source file which implements
a very simple protocol where devices regularly communicate with the
Coordinator.

Pre-built binaries are not provided.

The default Network ID of 0x11111111 should be changed in the makefiles of
when using this type of Coordinator to prevent it accepting nodes that are trying
to join a Gateway JenNet-IP network that should go through the whitelist
commissioning process.

Lpap378: Devices – Port to Beyond Studio for NXP Toolchain

Done.

Lpap379: Devices – Increase security frame counter on all power cycles

Avoids potential issues with messages being ignored. Previously, this was only
increased for devices that were in a standalone mode network.

Lpap382: Template – Coordinator not decrementing authorisation timer

This could result in a node that fails to complete the joining process preventing
other nodes joining the network.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4141 v1111 v1111 JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4165 v1.2 v1107 JN5168
JN5164

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 141

A.5 29/08/2014: Internal v2000

Changes

This release is the initial port onto the new Toolchain for internal test purposes.
There are a lot of compilation warnings and errors. However the code does
compile and run.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4141 v1051 v1051 JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4165 v1.2 v1107 JN5168
JN5164

 JenNet-IP Application Template

Application Note

142 © NXP Laboratories UK 2015 JN-AN-1190 v2004

B Revision History – JN-SW-4041 Toolchain

This appendix contains the revision history for the Application Note built on the
JN-SW-4041 Eclipse Toolchain, most recent first.

B.1 01/08/2014: Internal v1068

Changes

The following application changes were made in this release:

Lpap373: Devices – Better generation of automatic version number

With old scheme, spaces in user names could alter the number of words in the
parsed output that generated the version number.

Lpap375: End Devices – Set ping interval to 2

Now End Devices ping when they wake up. Changing this setting prevents pings
if application data was sent in the previous wake cycle.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 V1.1.3 v1097 JN5168
JN5164

B.2 23/07/2014: Internal v1067

Changes

This release is built on a new version of the JIP SDK that includes various stack
fixes.

The following application changes were made in this release:

Lpsw5263: End Devices – Re-joins with commissioning key instead of network
key

If an End Device is power cycled twice without re-joining, the application clears
the flag indicating that the device was in a network and so on the second power
cycle re-joins using the commissioning key – fixed (in application).

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 V1.1.3 v1094 JN5168
JN5164

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 143

B.3 20/05/2014: Internal v1066

Changes

This release is identical to the v1065 release with the exception of the binaries
being compiled using a patched version of the JenNet library.

The following changes were made in this release:

Lpsw4947: Devices – JenNet only tries to join first scan result entry

Needs to time out the Establish Route Request and move onto the next entry
(instead of resetting the stack and starting again) – fixed.

Note this fix requires a patched JenNet library that is not included in the current
v1050 installer.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v1050

(Patched)

JN5168
JN5164

 JenNet-IP Application Template

Application Note

144 © NXP Laboratories UK 2015 JN-AN-1190 v2004

B.4 08/05/2014: Internal v1065

Changes

This main purpose of this release is to resolve a few final bug fixes.

The following changes were made in this release:

Lpap368: Devices – Use static variable for in call to vJIP_SetDeviceTypes()

Otherwise they don’t get correctly reported in the DeviceID MIB – fixed.

Lpap369: Devices – Optional join timeout fires repeatedly

The optional join timeout that stops a device trying to join after a certain time
fires repeatedly once the timeout value is reached – fixed.

End Devices should only stop trying to join while the stack is running and the
application must place the chip into sleep mode when joining is cancelled – fixed.

Lpap370: Devices – Enable debug earlier

Especially for End Devices, as problems may be caused if not enabled – fixed.

Lpap371: Devices – Make sure MibNwkSecurity_vSecond is called

Instead of calling MibNwkStatus_vSecond() twice – fixed.

Lpap372: Devices – Rejoin (without power cycle) scanning all channels and PAN
IDs

Need to limit the channel and PAN IDs in the stack when JOINED event is raised
– fixed.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v1050 JN5168
JN5164

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 145

B.5 16/04/2014: Internal v1064

Changes

This main purpose of this release is to port the applications to the new Mini-MAC
to free up additional code-space for application use.

The following changes were made in this release:

Lpap366: End Devices – remove software reset following network loss

Done.

Lpsw4766: End Devices - not sleeping after network re-join

Fixed in stack.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v1050 JN5168
JN5164

B.6 27/03/2014: Internal v1063

Changes

This main purpose of this release is to port the applications to the new Mini-MAC
to free up additional code-space for application use.

The following changes were made in this release:

Lpap361: Devices - Adapt for use with Mini-MAC

To create additional code-space for applications.

Known Issues

The following issues remain in this release:

Lpsw4766: End Devices - not sleeping after network re-join

Workaround in place to software reset End Devices when they lose contact with
the network.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 - V1015 JN5168
JN5164

 JenNet-IP Application Template

Application Note

146 © NXP Laboratories UK 2015 JN-AN-1190 v2004

B.7 22/01/2014: Internal v1062

Changes

The main purpose of this release is to optimise the battery life of the End Device
template. The Digital Input/Output device has been re-introduced to the package.

The following changes were made in this release:

Lpap279: Devices – Update copyright header

For new devices and year.

 Lpap333: DIO MIBs – Adapt for End Device use

DeviceDio and associated MIBs updated to use the new template for use as a
Router or End Device.

Lpap356: Devices – Initialise DIO lines for lowest power consumption

Mainly for End Device use.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v940 JN5168
JN5164

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 147

B.8 22/01/2014: Internal v1061

Changes

This main purpose of this release is to optimise the battery life of the End Device
template. The End Device Illuminance Sensor has also been added to the
package. Only source code for the template device is included in the release
package.

The following changes were made in this release:

Lpap341: End Devices – Optimise start-up time

Wait until the stack or UART needs to be used before waiting for the 32MHz
clock to stablise.

Lpap342: End Devices – Use network key for rejoin following a power cycle

Instead of the commissioning key.

Lpap350: End Device Template – Exclude MIB Group modules from compilation

End Devices cannot receive broadcasts, so it is pointless to persist group
memberships and some code space is gained.

Lpap352: Template – Exclude MIB NodeStatus from compilation

Does not provide much benefit, removed to save code space.

Lpap353: End Devices – Optimise battery life

Removed unnecessary idling, doesn't doze before sleeping, optimised path
through main loop.

Respect "stay awake" flag by sleeping then polling a short period later instead of
actually staying awake in doze mode.

Alter default timing intervals, 2 seconds parent poll, 5 minutes OND query,
100ms between OND query and data poll.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v940 JN5168
JN5164

 JenNet-IP Application Template

Application Note

148 © NXP Laboratories UK 2015 JN-AN-1190 v2004

B.9 04/09/2013: Internal v1060

This release re-factors the common MIBs for use with End Devices. The MIB
source is now compiled directly into the application rather than into a library.

Note: That the DIO MIBs have not yet been updated to work with End Devices
so the source is not included in this release.

Changes

The following changes were made in this release:

Lpap300: MibCommon – remove MIB libraries and re-factor for EndDevice use

The code has been flattened to remove the libraries and the patches to the old
JN514x libraries and ROM builds integrated into the flattened code. As a result,
this code is now suitable only for JN516x chips.

Lpap336: Template – Update for improved End Device use

Use updated common MIBs.

Allow frequent waking and sleeping for timing purposes without necessarily
running the stack. Wake Timer 0 is used to wake and sleep with quite long
intervals and is used to run the stack in a normal way. Wake Timer 1 is used to
wake and sleep (or interrupt) every 100ms and is used to drive a running timer
for application use – the stack is not started when waking from this source. This
effectively results in two timer threads running in the application.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5168
JN5164

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v940 JN5168
JN5164

JenNet-IP Application Template
Application Note

JN-AN-1190 v2004 © NXP Laboratories UK 2015 149

B.10 04/09/2013: Public v1059

First release.

Compatibility

Product Type Part Number Public
Version

Internal
Version

Supported
Chips

SDK Toolchain JN-SW-4041 v1.1 - JN5148-J01
JN5142-J01

JenNet-IP JN516x SDK Libraries JN-SW-4065 - v940 JN5168
JN5164

 JenNet-IP Application Template

Application Note

150 © NXP Laboratories UK 2015 JN-AN-1190 v2004

Important Notice
Limited warranty and liability — Information in this document is believed to be accurate and reliable.
However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to
the accuracy or completeness of such information and shall have no liability for the consequences of use of
such information. NXP Semiconductors takes no responsibility for the content in this document if provided by
an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential
damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the
removal or replacement of any products or rework charges) whether or not such damages are based on tort
(including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’
aggregate and cumulative liability towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published
in this document, including without limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable
for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death
or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such
inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes
only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP
Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors
product is suitable and fit for the customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should provide appropriate design and
operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is
based on any weakness or default in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s
applications and products using NXP Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party customer(s). NXP does not accept any
liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control
regulations. Export might require a prior authorization from competent authorities.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

	About this Manual
	Organisation
	Conventions
	Acronyms and Abbreviations
	Compatibility
	Related Documents
	Trademarks
	Certification

	1 Introduction
	2 System Concepts
	2.1 Gateway System Topology
	2.1.1 Gateway GUIs
	2.1.1.1 Gateway Configuration Interface
	2.1.1.2 Gateway JIP Browser
	2.1.1.3 Gateway Smart Devices Demonstration

	2.1.2 Gateway Hardware
	2.1.2.1 Internet Router with Custom Firmware
	2.1.2.2 Combined Border Router

	2.2 Coordinator System Topology
	2.3 Standalone System Topology
	2.4 Gateway/Coordinator Failure
	2.5 MIBs and Variables
	2.6 Custom Protocols
	2.7 Identifiers
	2.7.1 Device ID (32 bits)
	2.7.1.1 Sleeping Device Flag (1 bit)
	2.7.1.2 Manufacturer ID (15-bits)
	2.7.1.3 Product ID (16 bits)

	2.7.2 Device Type IDs (16 bits)
	2.7.2.1 Standard Device Type IDs
	2.7.2.2 Manufacturer Device Type IDs

	2.7.3 MIB IDs (32 bits)
	2.7.3.1 Standard MIB IDs
	2.7.3.2 Manufacturer MIB IDs

	2.8 Message Transmission
	2.8.1 Unicast Messaging
	2.8.2 Multicast Messaging

	3 Device Concepts
	3.1 Template
	3.2 Digital I/O

	4 System Operation
	4.1 Gateway System Operation
	4.1.1 Gateway System Operation Overview
	4.1.1.1 Device Control from a PC

	4.1.2 Setting Up the Gateway System
	4.1.2.1 Programming the Device Firmware
	4.1.2.2 Setting Up the Border Router
	4.1.2.3 Adding Devices to the WPAN

	4.1.3 Operating the Template Devices
	4.1.3.1 Setting Up the Template Devices
	4.1.3.2 Template Control from PC

	4.1.4 Operating the Digital I/O Devices
	4.1.4.1 Setting Up the Digital I/O Devices
	4.1.4.2 Digital I/O Device Configuration from PC
	4.1.4.3 Digital I/O Device Monitoring from PC
	4.1.4.1 Digital I/O Device Control from PC

	4.1.5 Group Configuration and Control
	4.1.5.1 Configuring Groups on the PC
	4.1.5.2 Controlling Groups of Devices from the PC

	5 MIB Variable Reference
	5.1 Node MIBs
	5.1.1 NodeStatus MIB (0xFFFFFE80)
	5.1.1.1 SystemStatus Variable
	5.1.1.2 ColdStartCount Variable
	5.1.1.3 ResetCount Variable
	5.1.1.4 WatchdogCount Variable
	5.1.1.5 BrownoutCount Variable
	5.1.1.6 HeapMin Variable
	5.1.1.7 HeapMax Variable
	5.1.1.8 StackMin Variable

	5.1.2 NodeControl MIB (0xFFFFFE82)
	5.1.2.1 Reset Variable
	5.1.2.2 FactoryReset Variable

	5.1.3 NodeConfig MIB (0xFFFFFE81)

	5.2 Network MIBs
	5.2.1 NwkStatus MIB (0xFFFFFE88)
	5.2.1.1 RunTime Variable
	5.2.1.2 UpCount Variable
	5.2.1.3 UpTime Variable
	5.2.1.4 DownTime Variable

	5.2.2 NwkSecurity MIB (0xFFFFFE8B)
	5.2.2.1 KeyNetwork
	5.2.2.2 KeyGateway
	5.2.2.3 KeyStandalone
	5.2.2.4 Channel
	5.2.2.5 PanId
	5.2.2.6 Rejoin Variable

	5.2.3 NwkTest MIB (0xFFFFFE8C)
	5.2.3.1 Tests Variable
	5.2.3.2 TxReq Variable
	5.2.3.3 TxOk Variable
	5.2.3.4 RxOk Variable
	5.2.3.5 RxLqiMin Variable
	5.2.3.6 RxLqiMax Variable
	5.2.3.7 RxLqiMean Variable
	5.2.3.8 CwChannel Variable
	5.2.3.9 MacRetries Variable
	5.2.3.10 TxLqiMin Variable
	5.2.3.11 TxLqiMax Variable
	5.2.3.12 TxLqiMean Variable
	5.2.3.13 RxLqi Variable

	5.2.4 NwkConfig MIB (0xFFFFFE89)
	5.2.5 NwkControl MIB (0xFFFFFE8A)
	5.2.6 NwkProfile MIB (0xFFFFFE8D)

	5.3 Peripheral MIBs
	5.3.1 AdcStatus MIB (0xFFFFFE90)
	5.3.1.1 Mask Variable
	5.3.1.2 Read Table
	5.3.1.3 ChipTemp Variable
	5.3.1.4 CalTemp Variable
	5.3.1.5 Oscillator Variable

	5.3.2 DioStatus MIB (0xFFFFFE70)
	5.3.2.1 Input Variable
	5.3.2.2 Interrupt Variable

	5.3.3 DioConfig MIB (0xFFFFFE71)
	5.3.3.1 Direction Variable
	5.3.3.2 Pullup Variable
	5.3.3.3 InterruptEnabled Variable
	5.3.3.4 InterruptEdge Variable
	5.3.3.5 DirectionInput Variable
	5.3.3.6 DirectionOutput Variable
	5.3.3.7 PullupEnable Variable
	5.3.3.8 PullupDisable Variable
	5.3.3.9 InterruptEnable Variable
	5.3.3.10 InterruptDisable Variable
	5.3.3.11 InterruptRising Variable
	5.3.3.12 InterruptFalling Variable

	5.3.4 DioControl MIB (0xFFFFFE72)
	5.3.4.1 Output Variable
	5.3.4.2 OutputOn Variable
	5.3.4.3 OutputOff Variable

	6 Software Reference
	6.1 Standard Device Software Features
	6.1.1 Standard DeviceType Folder Features
	6.1.1.1 Standard DeviceType Makefile
	TARGET
	JENNIC_SDK
	JENNIC_CHIP
	JENNIC_CHIP_FAMILY
	JENNIC_CHIP_SHORT
	DEVICE_NAME
	NODE_TYPE
	NODE_TYPE_CHAR
	NETWORK_ID
	CHANNEL
	SECURITY
	PRODUCTION
	FACTORY_RESET_MAGIC
	JENNIC_PCB
	JENNIC_STACK
	JENNIC_MAC
	OND_CHIPSET
	OND_DEVICE_TYPE
	TRACE
	JIP_DEVICE_TYPE
	JIP_DEVICE_TYPE_CHAR
	JIP_CR_MANUFACTURER_ID
	JIP_ED_MANUFACTURER_ID
	JIP_PRODUCT_ID
	JIP_DEVICE_ID
	JIP_NODE_NAME
	BLD_MIB_NAME Variables
	REG_MIB_NAME Variables
	VERSION
	Binary File Naming

	6.1.1.2 Standard DeviceDefs.h Features
	6.1.1.3 Standard DeviceType.c Features
	#defines
	#define DEVICE_ADC_MASK
	#define DEVICE_ADC_SRC_BUS_VOLTS
	#define DEVICE_ADC_PERIOD 25
	Local Variables
	PRIVATE bool_t bSleep;
	Public Functions
	void AppColdStart (void);
	void AppWarmStart (void);
	void Device_vInit (bool_t bWarmStart);
	void Device_vPdmInit (void);
	void Device_vReset (bool_t bFactoryReset);
	teJIP_Status Device_eJipInit (void);
	void v6LP_ConfigureNetwork (tsNetworkConfigData *psNetworkConfigData);
	void Device_vMain (void);
	void v6LP_DataEvent (int iSocket, te6LP_DataEvent eEvent, ts6LP_SockAddr *psAddr, uint8 u8AddrLen);
	void vJIP_StackEvent (te6LP_StackEvent eEvent, uint8 *pu8Data, uint8 u8DataLen);
	void v6LP_PeripheralEvent (uint32 u32Device, uint32 u32ItemBitmap);
	void Device_vTick (void);
	void Device_vAppTimer100ms (void);
	void Device_vSecond (void);
	void Device_vException (uint32 u32HeapAddr, uint32 u32Vector, uint32 u32Code);
	void Device_vSleep (void);
	void Device_vPreSleepCallback (void);

	6.1.2 Common Module Features
	6.1.3 Standard MIB Module Features
	6.1.3.1 MibGroup.h
	6.1.3.2 MibNameDef.h
	6.1.3.3 MibNameDec.c
	6.1.3.4 MibName.h
	typedef struct tsMibNamePerm;
	typedef struct tsMibNameTemp;
	typedef struct tsMibName;

	6.1.3.5 MibName.c
	PUBLIC void MibName_vInit(thJIP_Mib *hMibNameInit, tsMibName *psMibNameInit);
	PUBLIC void MibName_vRegister (void);
	PUBLIC void MibName_vMain (void);
	PUBLIC void MibName_vTick (void);
	PUBLIC void MibName_vAppTimer100ms (void);
	PUBLIC void MibName_vSecond (void);
	PUBLIC void MibName_vStackEvent (te6LP_StackEvent eEvent, uint8 *pu8Data, uint8 u8DataLen);
	PUBLIC void MibName_vSaveRecord (void);

	6.2 DeviceTemplate Folder
	6.2.1 DeviceTemplate Makefile
	DEVICE_NAME
	NODE_TYPE

	6.2.2 DeviceDefs.h
	6.2.3 DeviceTemplate.c

	6.3 Common Folder
	6.3.1 Config.h
	6.3.2 Node.h, Node.c
	6.3.2.1 #defines
	#define FACTORY_RESET_MAGIC 0xFA5E13CB
	#define FACTORY_RESET_TICK_TIMER 32000000
	#define NODE_WAKE_TIMER_100MS

	6.3.2.2 External Data
	6.3.2.3 Public Functions
	void Node_vInit (bool_t bWarmStart);
	bool_t Node_bTestFactoryResetEeprom (void);
	void Node_vPdmInit (void);
	void Node_vReset (bool_t bFactoryReset);
	teJIP_Status Node_eJipInit (void);
	void Node_v6lpConfigureNetwork (tsNetworkConfigData *psNetworkConfigData);
	void Node_v6lpResume (void);
	void Node_v6lpDataEvent (int iSocket, te6LP_DataEvent eEvent, ts6LP_SockAddr *psAddr, uint8 u8AddrLen);
	bool_t Node_vJipStackEvent (te6LP_StackEvent eEvent, uint8 *pu8Data, uint8 u8DataLen);
	void Node_vMain (void);
	uint8 Node_vSysCtrlEvent (uint32 u32Device, uint32 u32ItemBitmap);
	uint8 Node_vTickTimerEvent (uint32 u32Device, uint32 u32ItemBitmap);
	uint8 Node_u8Analogue (uint32 u32Device, uint32 u32ItemBitmap);
	void Node_vTick (void);
	void Node_vAppTimer100ms (void);
	void Node_vSecond (void);
	void Node_vJipNotifyChanged (thJIP_Mib hMib, uint32 *pu32VarFlags, uint32 u32VarMask, uint8 u8VarCount);
	void Node_vCheckWakeTimer1 (void);
	uint32 Node_u32StackState (void);
	uint32 Node_u32TimerSeconds (void);
	bool_t Node_bJoined (void);
	bool_t Node_bUp (void);
	uint64 Node_u64WakeTimer1Period (void);
	void vJIP_StayAwakeRequest (void);
	void Node_vSleep (void);
	void Node_vPreSleepCallback (void);

	6.3.3 AHI_EEPROM.h, AHI_EEPROM.c
	6.3.4 Exception.h, Exception.c
	6.3.5 Security.h, Security.c
	6.3.6 Address.h, Address.c
	6.3.7 Table.h, Table.c
	6.3.8 Uart.h, Uart.c
	6.3.9 FtoA.h, FtoA.h
	6.3.10 Ovly.h
	6.3.11 Zcl.h

	6.4 MibCommon Folder
	6.4.1 MibNode
	6.4.1.1 Public Functions
	void MibNode_vInit (tsMibNode *psMibNodeInit);
	void MibNode_vRegister (void);

	6.4.1.2 Callback Functions
	void MibNode_vUpdateName (char *pcName)

	6.4.2 MibGroups
	6.4.2.1 Public Functions
	void MibGroup_vInit (tsMibGroup *psMibGroupInit);
	void MibGroup_vRestore (void);
	PDM_teRecoveryState MibGroup_ePdmStateInit (void);

	6.4.2.2 Callback Functions
	bool_t bJIP_GroupCallback (teJIP_GroupEvent eEvent, in6_addr *psAddr);

	6.4.3 MibNodeStatus
	6.4.3.1 Public Functions
	void MibNodeStatus_vInit (thJIP_Mib hMibNodeStatusInit, tsMibNodeStatus *psMibNodeStatusInit);
	void MibNodeStatus_vRegister (void);
	void MibNodeStatus_vIncrementResetCount (void);

	6.4.4 MibNodeControl
	6.4.4.1 Public Functions
	void MibNodeControl_vInit (thJIP_Mib hMibNodeControlInit, tsMibNodeControl *psMibNodeControlInit); void MibNodeControl_vRegister (void);
	void MibNodeControl_vSecond (uint32 u32TimerSeconds);
	teJIP_Status MibNodeControl_vSetReset (uint16 u16Val void *pvCbData);
	teJIP_Status MibNodeControl_vSetFactoryReset (uint16 u16Val void *pvCbData);

	6.4.5 MibNwkStatus
	6.4.5.1 Public Functions
	void MibNwkStatus_vRegister (void); void MibNwkStatus_vTick (void); void MibNwkStatus_vSaveRecord (void);
	void MibNwkStatus_vInit (thJIP_Mib hMibNwkStatusInit, tsMibNwkStatus *psMibNwkStatusInit, bool_t bMibNwkStatusSecurity);
	void MibNwkStatus_vSecond (void);
	void MibNwkStatus_vStackEvent (te6LP_StackEvent eEvent);

	6.4.6 MibNwkSecurity
	6.4.6.1 Public Functions
	void MibNwkSecurity_vInit (void); void MibNwkSecurity_vRegister (void);
	teJIP_Status MibNwkSecurity_eJipInit (void);
	void MibNwkSecurity_v6lpConfigureNetwork (tsNetworkConfigData *psNetworkConfigData);
	void MibNwkSecurity_vSetUserData (void);
	void MibNwkSecurity_vMain (void);
	void MibNwkSecurity_vSecond (uint32 u32TimerSeconds);
	uint8 MibNwkSecurity_u8StackEvent (te6LP_StackEvent eEvent, uint8 *pu8Data, uint8 u8DataLen);
	bool_t MibNwkSecurity_bAddSecureAddr (MAC_ExtAddr_s *psMacAddr);
	bool_t MibNwkSecurity_bDelSecureAddr (MAC_ExtAddr_s *psMacAddr);
	void MibNwkSecurity_vResetSecureAddr (void);
	void MibNwkSecurity_vSetSecurityKey (uint8 u8Key);
	teJIP_Status MibNwkSecurity_eSetKey (const uint8 *pu8Val, uint8 u8Len, void *pvCbData);
	void MibNwkSecurity_vGetKey (thJIP_Packet hPacket, void *pvCbData);
	teJIP_Status MibNwkSecurity_vSetRejoin (uint16 u16Val void *pvCbData);

	6.4.6.2 Callback Functions
	bool_t MibNwkSecurity_bBeaconNotifyCallback (tsScanElement *psBeaconInfo, uint16 u16ProtocolVersion);
	bool_t MibNwkSecurity_bScanSortCallback (tsScanElement *pasScanResult, uint8 u8ScanListSize, uint8 *pau8ScanListOrder);
	bool_t MibNwkSecurity_bScanSortCheckSwap (tsScanElement *pasScanResult, uint8 u8ScanListItem, uint8 *pau8ScanListOrder);
	bool_t MibNwkSecurity_bNwkCallback (MAC_ExtAddr_s *psAddr, uint8 u8DataLength, uint8 *pu8Data);

	6.4.7 MibNwkTest
	6.4.7.1 Public Functions
	void MibNwkTest_vInit (thJIP_Mib hMibNwkTestInit, tsMibNwkTest *psMibNwkTestInit); void MibNwkTest_vRegister (void);
	void MibNwkTest_vTick (void);
	void MibNwkTest_vStackEvent (te6LP_StackEvent eEvent, uint8 *pu8Data, uint8 u8DataLen);
	teJIP_Status MibNwkTest_eSetTests (uint8 u8Val, void *pvCbData);

	6.4.7.2 Callback Functions
	void vJIP_Remote_DataSent (ts6LP_SockAddr *psAddr, teJIP_Status eStatus);
	void vJIP_Remote_GetResponse (ts6LP_SockAddr *psAddr, uint8 u8Handle, uint8 u8MibIndex, uint8 u8VarIndex, ...

	6.4.8 MibAdcStatus
	6.4.8.1 Public Functions
	void MibAdcStatus_vRegister (void);
	void MibAdcStatus_vInit (thJIP_Mib hMibAdcStatusInit, tsMibAdcStatus *psMibAdcStatusInit, uint8 u8AdcMask, uint8 u8Period);
	void MibAdcStatus_vTick (void);
	void MibAdcStatus_vResume (void);
	void MibAdcStatus_vStart (void);
	uint8 MibAdcStatus_u8Analogue (void);
	uint16 MibAdcStatus_u16Read (uint8 u8Adc);
	int32 MibAdcStatus_i32Convert (uint8 u8Adc, int32 i32Min, int32 i32Max);
	int16 MibAdcStatus_i16DeciCentigrade (uint8 u8Adc);

	6.5 DeviceDio Folder
	6.5.1 DeviceDio Makefile
	DEVICE_NAME
	NODE_TYPE
	BLD_MIB_NAME Variables
	REG_MIB_NAME Variables

	6.5.2 DeviceDefs.h
	6.5.3 DeviceDio.c
	6.5.3.1 #includes
	6.5.3.2 External Variables
	6.5.3.3 Public Functions
	void Device_vPdmInit (void);
	void Device_vReset (bool_t bFactoryReset);
	teJIP_Status Device_eJipInit (void);
	void v6LP_PeripheralEvent (uint32 u32Device, uint32 u32ItemBitmap);
	void Device_vTick (void);
	void Device_vAppTimer100ms (void);

	6.6 MibDio Folder
	6.6.1 MibDioConfig
	6.6.1.1 Public Functions
	void MibDioConfig_vRegister (void); void MibDioConfig_vTick (void);
	void MibDioConfig_vInit (thJIP_Mib hMibDioConfigInit, tsMibDioConfig *psMibDioConfigInit);
	teJIP_Status MibDioConfig_eSetDirection (uint32 u32Val, void *pvCbData); teJIP_Status MibDioConfig_eSetPullup (...
	teJIP_Status MibDioConfig_eSetDirectionInput (uint32 u32Val, void *pvCbData); teJIP_Status MibDioConfig_eSetDirectionOutput (...

	6.6.2 MibDioStatus
	6.6.2.1 Public Functions
	void MibDioStatus_vRegister (void); void MibDioStatus_vTick (void);
	void MibDioStatus_vInit (thJIP_Mib hMibDioStatusInit, tsMibDioStatus *psMibDioStatusInit);
	void MibDioStatus_vAppTimer100ms (void);
	void MibDioStatus_vSysCtrl (uint32 u32Device, uint32 u32ItemBitmap);

	6.6.3 DioControl MIB
	6.6.3.1 Public Functions
	void MibDioControl_vRegister (void); void MibDioControl_vTick (void);
	void MibDioControl_vInit (thJIP_Mib hMibDioControlInit, tsMibDioControl *psMibDioControlInit);
	teJIP_Status MibDioConfig_eSetOutput (uint32 u32Val, void *pvCbData);
	teJIP_Status MibDioConfig_eSetOutputOn (uint32 u32Val, void *pvCbData); teJIP_Status MibDioConfig_eSetOutputOff (uint32 u32Val, void *pvCbData);

	6.7 DeviceProtocol Folder
	6.7.1 DeviceProtocol Makefile
	DEVICE_NAME
	NODE_TYPE
	NETWORK_ID

	6.7.2 DeviceDefs.h
	#define DEVICE_UDP_SOCKETS 3
	Debug Flags

	6.7.3 DeviceProtocol.c
	6.7.3.1 #includes
	6.7.3.2 Public Functions
	void Device_vInit (bool_t bWarmStart);
	void Device_vMain (void);
	void v6LP_DataEvent (int iSocket, te6LP_DataEvent eEvent, ts6LP_SockAddr *psAddr, uint8 u8AddrLen);
	void vJIP_StackEvent (te6LP_StackEvent eEvent, uint8 *pu8Data, uint8 u8DataLen);
	void Device_vSecond (void);

	6.7.4 Protocol.h
	6.7.4.1 #defines
	#define PROTOCOL_PORT (1190)
	#define PROTOCOL_GROUP 0x1190
	#define PROTOCOL_CMD_REG_REQ 'R'
	#define PROTOCOL_CMD_REG_RSP 'r'
	#define PROTOCOL_CMD_REG_REQ_SECONDS 15

	6.7.4.2 Structures
	typedef struct tsProtocolCmdRegReq;
	typedef struct tsProtocolCmdRegReq;

	6.7.4.3 Public Function Prototypes

	6.7.5 Protocol.c
	6.7.5.1 #defines
	#define PROTOCOL_CMD_SEND_REG_REQ 0x1

	6.7.5.2 Local Variables
	bool_t bProtocolSocket;
	int iProtocolSocket;
	ts6LP_SockAddr s6lpSockAddrCoord;
	ts6LP_SockAddr s6lpSockAddrNetwork;
	ts6LP_SockAddr s6lpSockAddrUnicast;
	ts6LP_SockAddr s6lpSockAddrLocal;
	uint32 u32CmdRegReqSecond;
	uint32 u32CmdSend;

	6.7.5.3 Public Functions
	void Protocol_vInit (bool_t bWarmStart);
	void Protocol_vJipStackEvent (te6LP_StackEvent eEvent, uint8 *pu8Data, uint8 u8DataLen);
	void Protocol_vJipStackEvent (te6LP_StackEvent eEvent, uint8 *pu8Data, uint8 u8DataLen);
	void Protocol_vMain(void);
	void Protocol_vSecond (uint32 u32TimerSeconds);

	6.7.5.4 Private Functions
	void Protocol_vOpenSocket (void);
	void Protocol_vSendTo (ts6LP_SockAddr *ps6lpSockAddr, uint8 *pu8Data, uint16 u16DataLen);
	void Protocol_vSendCmdRegRsp (ts6LP_SockAddr *ps6lpSockAddr);
	void Protocol_vRecvCmdRegReq (ts6LP_SockAddr *ps6lpSockAddr, tsProtocolCmdRegReq *psProtocolCmdRegReq);
	void Protocol_vSendCmdRegReq (ts6LP_SockAddr *ps6lpSockAddr);
	void Protocol_vRecvCmdRegRsp (ts6LP_SockAddr *ps6lpSockAddr, tsProtocolCmdRegRsp *psProtocolCmdRegRsp);

	Appendices

