

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 1

Application Note: JN-AN-1189

ZigBee Home Automation Demonstration

This Application Note demonstrates a typical ZigBee Home Automation (HA) network
based on the NXP JN516x wireless microcontroller. The supplied demonstration
application employs Lighting devices (lights, sensors and switches) from the ZigBee
Home Automation Profile Specification version 1.2.2. The application optionally
demonstrates the Over-The-Air (OTA) download of application images from an OTA
server in the network.

The application uses HA clusters to transfer data between the devices in a wireless
network in order to control lights. The hardware for the devices is implemented using
components from the NXP JN516x Evaluation Kits. The device software was
developed using NXP Application Programming Interfaces (APIs).

The Application Note also includes a demonstration of a typical ZigBee Home
Automation (HA) network with Green Power (GP) support. This solution employs a GP
device from the ZigBee Green Power Profile Specification version 1.0.

1 Introduction

This Application Note provides an example ZigBee Home Automation (HA) wireless network
solution which uses the NXP JN516x-EK001 or JN516x-EK004 Evaluation Kit. This
demonstration employs HA Lighting devices, allowing the user to control lights from
controller devices such as dimmer switches and sensors. The demonstration also allows
Over-the-Air (OTA) updates of application images on light devices to be performed.

Components from the evaluation kit can be used as HA devices and other devices as follows:

• One Lighting/Sensor Expansion Board (DR1175) is used as a Dimmable Light

• One Lighting/Sensor Expansion Board (DR1175) is used as a Colour Dimmable Light

• One Lighting/Sensor Expansion Board (DR1175) is used as a Light Sensor

• The Remote Control Unit (DR1159) can be used as either of the following HA devices:

o Colour Dimmer Switch

o Remote Control (must be used when Light Sensor is included in network)

• One Generic Expansion Board (DR1199) is used as a Dimmer Switch

• One Generic Expansion Board (DR1199) is used as an Occupancy Sensor

• One Generic Expansion Board (DR1199) is used to simulate a Smart Plug

• One Generic Expansion Board (DR1199) is used as a Green Power (GP) Switch

• One USB Dongle (DR1198) is used as the ZigBee Co-ordinator node for the network

• One USB Dongle (DR1198) is used as an OTA server device

The expansion boards are each fitted to a Carrier Board (DR1174). The evaluation kit and its
components are described in the relevant kit’s User Guide (JN-UG-3093 or JN-UG-3108).

There is no need to use every supplied HA device type in your demonstration network. You
can choose which device types to use, provided that a sensible combination is selected.

 ZigBee Home Automation Demonstration

2 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

The device software was developed using the following NXP Application Programming
Interfaces (APIs): ZigBee PRO APIs, JenOS APIs, HA API, GP API and JN516x Integrated
Peripherals API. These APIs are described in their own User Guides.

A list of useful reference documents is provided in Section 10.

1.1 System Overview

This example of an HA network consists of the following Lighting devices from the HA
profile: Dimmable Light, Colour Dimmable Light, Dimmer Switch, Colour Dimmer Switch,
Occupancy Sensor and Light Sensor. From the HA profile’s Generic devices, the Remote
Control device should be used instead of the Colour Dimmer Switch when the Light Sensor
is used. There is also an OTA server device which can store and serve application images in
the network. In the Green Power (GP) demonstration, a GP Switch device from the GP
profile is used. The sub-sections below provide a brief introduction to these device types.
Advanced user information is provided in Section 8.5.

For details of all the above HA devices and the clusters that they include, refer to the ZigBee
Home Automation User Guide (JN-UG-3076) and the ZigBee Cluster Library User Guide
(JN-UG-3103). The GP device and cluster are described in the ZigBee Green Power User
Guide (JN-UG-3095).

1.1.1 Dimmable Light

The HA Dimmable Light device resides on a permanently-powered node (DR1175
Lighting/Sensor Expansion Board) which acts as a Router in the network. This light node will
attempt to join an existing network.

The implemented Dimmable Light device includes the mandatory clusters defined for this
device in the HA Specification. Special versions of the Dimmable Light device are also
provided, as follows:

• A Dimmable Light device which includes the GP cluster is provided for the GP
demonstration

• A Dimmable Light device which includes the Simple Metering cluster is provided in
order to be eligible for Icontrol certification (see Section 11.3)

This light node allows user interaction through power-cycling in order to perform various
operations, as indicated below:

• To put the light node into Identify mode, power-cycle the node
CONFIG_FIND_BIND_POWER_CYCLES times - this number can be changed in the
configuration makefile, but the default value is 3.

• To clear the Binding and Group tables on the light node, power-cycle the node
CONFIG_FACTORY_RESET_POWER_CYCLES times - this number can be changed
in the configuration makefile, but the default value is 5.

• To perform a ‘Factory New’ reset and leave the network, power-cycle the node
CONFIG_FACTORY_NEW_POWER_CYCLES times - this number can be changed in
the configuration makefile, but the default value is 7. This also clears context data on
the node – see Section 5.7.2.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 3

 Note 1: For the above operations to be performed successfully, the
power-on logic must not reset itself before the next user interaction. The
logic will be reset if the light is left on for more than 2 seconds.

 Note 2: The light will briefly flash On, Off and then On again to indicate
the acceptance of the user input for the above three operations.

 Note 3: If the light is not in the network, there will be a ‘Breathe’
indication. This effect can be controlled by the compiler flag

BREATH_EFFECT - by default, this is enabled in this application.

 Note 4: By default, following a power-cycle the Dimmable Light will
restore its last previous light level. If you do not want to resume from the
last light level, you must remove or comment out the following line in the
manufacturer configuration file manu_config.mk for the device:
RESTORE_DIM_LEVEL ?= 1

1.1.2 Colour Dimmable Light

The HA Colour Dimmable Light device resides on a permanently-powered node (DR1175
Lighting/Sensor Expansion Board) which acts as a Router in the network. This light node will
attempt to join an existing network.

The implemented Colour Dimmable Light device includes the mandatory clusters defined for
this device in the HA Specification. A special version of the Colour Dimmable Light device
which includes the GP cluster is provided for the GP demonstration.

This light node allows user interaction through power-cycling in order to perform various
operations. This is exactly the same as described for the Dimmable Light in Section 1.1.1.

1.1.3 Dimmer Switch

The HA Dimmer Switch device resides on a node (DR1199 Generic Expansion Board) which
acts as an End Device in the network. This switch device can be used to perform the
commissioning of the light devices and control them. For the operational details, refer to
Section 5.1.

The implemented Dimmer Switch device includes the mandatory and certain optional
clusters defined for this device in the HA Specification.

1.1.4 Colour Dimmer Switch

The HA Colour Dimmer Switch device resides on a node (DR1159 Remote Control Unit)
which acts as an End Device in the network. This switch device can be used to perform the
commissioning of the light devices and control them. For the operational details, refer to
Section 5.2.

The implemented Colour Dimmer Switch device includes the mandatory and certain optional
clusters defined for this device in the HA Specification.

 ZigBee Home Automation Demonstration

4 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

1.1.5 Occupancy Sensor

The HA Occupancy Sensor device resides on a node (DR1199 Generic Expansion Board)
which acts as an End Device in the network. This sensor device can be bound to a light
device through EZ-mode Commissioning ‘Find and Bind’. Once it has successfully bound,
the sensor can report occupancy to the light device. For the operational details, refer to
Section 5.3.

The implemented Occupancy Sensor device includes the mandatory and certain optional
clusters defined for this device in the HA Specification.

1.1.6 Light Sensor

The HA Light Sensor device resides on a node (DR1175 Lighting/Sensor Expansion Board)
which acts as an End Device in the network. The Light Sensor can report a light luminance-
level to an application that controls light dimming based on the ambient light-level (the
controlled light is located on another DR1175 board). In this demonstration, it can be used to
control any HA Lighting device that supports the Level Control cluster, e.g. Dimmable Light
and Colour Dimmable Light. The Light Sensor device is bound to the Remote Control device
(see Section 1.1.7) which forms a group of lights to control (the binding and grouping is done
through EZ-mode Commissioning). For the operational details of the Light Sensor, refer to
Section 5.4.

The implemented Light Sensor device includes the mandatory and certain optional clusters
defined for this device in the HA Specification.

1.1.7 Remote Control

The HA Remote Control device resides on a node (DR1159 Remote Control Unit) which acts
as an End Device in the network. This device can be used to perform the commissioning of
the light devices and control them. For the operational details, refer to Section 5.2.

This device is used instead of the Colour Dimmer Switch when the Light Sensor is employed
in the network. In this case, it allows the DR1159 Remote Control Unit to receive a
luminance-level measurement from the Light Sensor, calculate an appropriate target light-
level and send a ‘Move to Level’ command to the Dimmable Light (this requires the
Illuminance Measurement cluster which is not available in the Colour Dimmer Switch
device).

The implemented Remote Control device includes the mandatory and certain optional
clusters defined for this device in the HA Specification.

1.1.8 Smart Plug (Mains Power Outlet)

The Smart Plug device is referred to as the “Mains Power Outlet” and resides on a node
(DR1199 Generic Expansion Board) which acts as an End Device in the network. In the real
world, such a device would be used to monitor the instantaneous power consumption of an
attached appliance (by means of the Simple Metering cluster) but in this demonstration the
device can simply be switched on and off. For the operational details, refer to Section 5.6.

The implemented Smart Plug device includes the mandatory and certain optional clusters
defined for this device in the HA Specification.

1.1.9 OTA Server

The OTA Server resides on a node (DR1198 USB Dongle) which acts as a Router in the
network. The node joins the network and sends out an OTA Image Notify command on
power-up. It responds to OTA client requests and serves application upgrade images which
are stored in external Flash memory on the target client.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 5

1.1.10 Green Power Switch

The Green Power (GP) Switch device resides on a node (DR1199 Generic Expansion Board)
which acts as a ZigBee Green Power Device. It can be used to control a light in the network.
In practice, it may be an Energy Harvesting (EH) node but this is not the case in this
demonstration. For the operational details, refer to Section 5.5.

2 Compatibility

The software provided with this Application Note is intended for use with the following
evaluation kit and SDK (Software Developer’s Kit) versions:

Product Type Part Number Version or Build

Evaluation Kit JN516x-EK001 -

JN516x-EK004 -

JN516x ZLL/HA SDK JN-SW-4168 1620

‘BeyondStudio for NXP’ Toolchain JN-SW-4141 1308

3 Additional Hardware Options

The supplied software can also be built for NXP’s monochrome LED bulb Reference
Designs (building the application is described in Section 10.3). Use the build configuration
for the appropriate hardware Reference Design build type within the Eclipse development
environment.

• HW Ref DR1190 – SSL2108 Bulb

• HW Ref DR1192 – SSL2108 SYNC Bulb

Similarly, there are build configurations for applications that run on the following NXP
hardware supporting colour lights:

• HW Ref DR1121 – SSL2108 SYNC Colour Controlled Tuneable White Light

• HW Ref DR1173 – RGB Colour Light

For details of these target Reference Designs and hardware, contact NXP.

 ZigBee Home Automation Demonstration

6 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

4 Loading the Application

Table 1 below lists the application binary files supplied with this Application Note and
indicates the JN516x Evaluation Kit components on which the binaries can be used. These
files are located in the Build directories for the relevant devices. Most binaries (except for
‘RemoteControl’) are provided for JN5168 and JN5169 – in the table, <x> can be 8 or 9.

Application Binary

Expansion Board
(+ Carrier Board)

Remote
Control

Unit

USB
Dongle

Generic LCD Lighting/Sensor

Coordinator_JN516<x>.bin ■

DimmableLight_JN516<x>_DR1175_LED_EXP_
MONO.bin * ■

DimmableLight_JN516<x>_DR1175_LED_EXP_
MONO_GP.bin */** ■

DimmableLightOpenHome_JN5169_DR1175.bin ■

ColorDimmableLight_JN516<x>_DR1175_LED_EX
P_RGB.bin ■

ColorDimmableLight_JN516<x>_DR1175_LED_EX
P_RGB_GP.bin ** ■

RemoteControl_JN5168_DR1159.bin ■

LightSensor_JN516<x>_DR1175.bin ■

OccupancySensor_JN516<x>_DR1199.bin ■

DimmerSwitch_JN516<x>_DR1199.bin ■

ColorDimmerSwitch_JN516<x>_DR1159.bin ■

MainsPowerOutlet_JN5169_DR1199.bin ■

EH_Switch_JN516<x>_DR1199.bin ** ■

Table 1: Device Type – Evaluation Kit Compatibility Matrix

* Versions of the Dimmable Light binaries are also supplied for the DR1190 and DR1192 bulbs (see Section 3):
DimmableLight_JN516<x>_DR1190_MONO.bin
DimmableLight_JN516<x>_DR1190_MONO_GP.bin
DimmableLight_JN516<x>_DR1192_MONO.bin
DimmableLight_JN516<x>_DR1192_MONO_GP.bin

**These files are used for ZigBee Green Power (GP) – see Section 7.

The supplied application binaries (see Table 1 above) can be loaded into the corresponding
evaluation kit components using the JN516x Flash Programmer within BeyondStudio for
NXP or the JN51xx Production Flash Programmer (JN-SW-4107). Note that the JN51xx
Production Flash Programmer must be used to load binaries (such as OTA upgrade images)
into JN516x external Flash memory.

! Caution: If loading this demonstration software for the first time, the
persistent data must be cleared in each device – refer to Section 5.7.

 Note: Pre-built binary files are also supplied for the OTA Upgrade feature
and are located in the Build/OTABuild directories for the relevant
devices. OTA Upgrade and the supplied files are described in Section 8.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 7

5 Device Functionality

This section describes how to use the HA demonstration once the JN516x evaluation kit
hardware has been programmed with the relevant binaries (as described in Section 4).

 Note 1: The binary files for the JN5168 chip are specified in this section.
If the JN5169 chip is to be used, the JN5169 binary versions must be
used (except for the Remote Control Unit, which is JN5168 only).

 Note 2: Setting up a network which contains a number of these devices is
described in Section 6.

5.1 Dimmer Switch Functionality

The binary file DimmerSwitch_JN5168_DR1199.bin should be programmed into the
JN5168 device associated with a DR1199 Generic Expansion Board to obtain the Dimmer
Switch functionality. This switch allows the commissioning and control of lights.

The Dimmer Switch functionality is detailed below:

Commissioning

On Off Brighter Dimmer

5.2 Colour Dimmer Switch and Remote Control Functionality

The JN5168 device of the DR1159 Remote Control Unit can be programmed with either of
the following binary files:

• ColorDimmerSwitch_JN5168_DR1159.bin if the unit is to be used as a Colour
Dimmer Switch device

• RemoteControl_JN5168_DR1159.bin if the unit is to be used as a Remote Control
device (in conjunction with the Light Sensor device)

Both binary files provide the same functionality for the commissioning and control of lights.
The Remote Control device provides additional functionality for use with the Light Sensor
device, as indicated in Section 1.1.7.

 ZigBee Home Automation Demonstration

8 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

The Remote Control Unit keypad functionality (for both device types) is detailed below:

On

Off

Scene

Shift0 Recall

Shift1 Set

Discover

Brightness level up

Brightness level down

Select Shift mode,
indicated by LEDs

(see table below)

Toggle
between unicast

and groupcast

Identify next bulb

Wake remote control

unit from sleep

Shift0 Saturation

2=Up, 4=Down

Shift1 Colour Loop

2=Start, 4=Stop

Shift0 Hue

1=Up, 3=Down

Shift1 Colour Temp

1=Up, 3=Down

Notes:

• When the unit is in the factory-new state, no buttons are available.

• The unit goes to sleep with RAM ON (this is the default sleep mode for the Remote
Control Unit) after an inactive period of 20 seconds. The unit can wake from this sleep
with a long press of any of the touch buttons. To preserve battery-life, the debounce
time for button-press detection is increased to 800 ms during sleep, so during this
period the user must press a button for longer than 800 ms for the unit to successfully
detect the button-press.

• When deep sleep is enabled, the unit enters deep sleep mode after a minimum
inactive period of 3 minutes. If the unit’s LEDs do not flash on pressing a touch-button,
the user should press hard on the “” button to wake the unit from deep sleep. The
unit saves the last controlled set of lights as persisted data in order to resume
operation following a reset or deep sleep.

• The device can operate the light device(s) using one of two addressing modes –
unicast or groupcast. Unicast mode allows the user to operate a single light device.
Groupcast mode allows the user to operate a group of light devices simultaneously.
Use the button ‘?’ to toggle between these two modes. After a power-on-reset or deep
sleep, the Remote Control Unit operates in groupcast mode.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 9

The Remote Control Unit can operate in four Shift modes (0, 1, 2 and 3) to accommodate
maximum functionality – most buttons have different functions in the different Shift modes.
The current Shift mode is indicated by a combination of the two LEDs on the Remote Control

Unit, as shown in the table below. To move to the next Shift mode, press the “*” button.

Shift Mode Left LED Right LED

Shift0 Off Off

Shift1 On Off

Shift2 Off On

Shift3 On On

 Note 1: After a power-on-reset or deep sleep, the Remote Control Unit
always operates in Shift0 mode.

 Note 2: The LEDs flash momentarily after each button-press to indicate
that the user command has been detected by the device.

The four tables below summarise the button functions in the four Shift modes.

Shift0 Mode Operation Button
On: Send a command to switch on the light(s). I
Off: Send a command to switch off the light(s). O
Increase Brightness: Increase the brightness level of the light(s) at the rate of

LEVEL_CHANGE_STEPS_PER_SEC_FAST. If the light is off, this will switch on the
light and then increase its level. The brightness will stop increasing when the button is
released.

+

Decrease Brightness: Decrease the brightness level of the light(s) at the rate of

LEVEL_CHANGE_STEPS_PER_SEC_FAST. The brightness will stop decreasing
when the button is released.

–

Move Hue Up: Send a command to move the hue of the light(s) up. The movement

will stop when the button is released. 1

Move Hue Down: Send a command to move the hue of the light(s) down. The

movement will stop when the button is released. 3

Increase Saturation: Send a command to move the saturation of the light(s) up. The

movement will stop when the button is released. 2

Decrease Saturation: Send a command to move the saturation of the light(s) down.

The movement will stop when the button is released. 4

Recall Scene 1: Groupcast a Recall Scene command to restore scene 1. A
Recall Scene 2: Groupcast a Recall Scene command to restore scene 2. B
Recall Scene 3: Groupcast a Recall Scene command to restore scene 3. C
Recall Scene 4: Groupcast a Recall Scene command to restore scene 4. D
Shift Menu: Cycle through the four Shift modes (0  1  2  3  0 etc). *
Groupcast/Unicast: Toggle between groupcast and unicast transmission modes. On

waking from sleep, this mode will always be groupcast. After commissioning to a light,
the mode will always be unicast with that light selected.

?

Select next light: Select the next light in the light database to be controlled by

unicast. An Identify command will be sent to the relevant light, and unicast
transmission mode will be selected.



EZ mode commissioning: Start commissioning to gather endpoint information about

existing devices in the network. #

Table 1: Button Functions in Shift0 Mode

 ZigBee Home Automation Demonstration

10 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

Shift1 Mode Operation Button
On: Send a command to switch on the light(s). I
Off: Send a command to switch off the light(s). O
Increase Brightness: Increase the brightness level of the light(s) at the rate of

LEVEL_CHANGE_STEPS_PER_SEC_MED. If the light is off, this will switch on the
light and then increase its level. The brightness will stop increasing when the button is
released.

+

Decrease Brightness: Decrease the brightness level of the light(s) at the rate of

LEVEL_CHANGE_STEPS_PER_SEC_MED. The brightness will stop decreasing
when the button is released.

–

Increase Colour temperature: Send a command to increase the colour temperature

of the light(s). The increase will stop when the button is released. 1
Decrease Colour temperature: Send a command to decrease the colour

temperature of the light(s). The decrease will stop when the button is released. 3
Start Move Hue: Send a Move Hue command to the light(s) to start a continuous

colour movement. The light will start cycling through colours. 2
Stop Move Hue: Send a Move Hue command to the light(s) to stop the continuous

colour movement. 4
Store Scene 1: Groupcast a Store Scene command to save the current settings as

Scene 1. A
Store Scene 2: Groupcast a Store Scene command to save the current settings as
Scene 2. B
Store Scene 3: Groupcast a Store Scene command to save the current settings as

Scene 3. C
Store Scene 4: Groupcast a Store Scene command to save the current settings as

Scene 4. D
Shift Menu: Cycle through the four Shift modes (0  1  2  3  0 etc). *
Groupcast/Unicast: Toggle between groupcast and unicast transmission modes. On

waking from sleep, this mode will always be groupcast. After commissioning to a light,
the mode will always be unicast with that light selected.

?

Select next light: Select the next light in the light database to be controlled by

unicast. An Identify command will be sent to the relevant light, and unicast
transmission mode will be selected.



EZ mode commissioning: Start commissioning to gather endpoint information about

existing devices in the network. #

Table 2: Button Functions in Shift1 Mode

Shift2 Mode Operation Button
On: Send a command to switch on the light(s). I
Off: Send a command to switch off the light(s). O
Increase Brightness: Increase the brightness level of the light(s) at the rate of

LEVEL_CHANGE_STEPS_PER_SEC_SLOW. If the light is off, this will switch on the
light and then increase its level. The brightness will stop increasing when the button is
released.

+

Decrease Brightness: Decrease the brightness level of the light(s) at the rate of

LEVEL_CHANGE_STEPS_PER_SEC_SLOW. The brightness will stop decreasing
when the button is released.

–

Increase Colour Temperature: Increase the colour temperature using Move to
Colour Temperature at pre-defined temperature values. 1
Decrease Colour Temperature: Decrease the colour temperature using Move to

Colour Temperature at pre-defined temperature values. 3
Add Group: Add group with group ID set to its network address (always unicast). 2
Remove Group: Remove group (always unicast). 4
Set Colour Point Next: Step to next fixed colour point (of 7) using Move to Hue and

Saturation command. A
Set Colour Point Previous: Step to previous fixed colour point (of 7) using Move to
Hue and Saturation command. B

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 11

Permit Join: Broadcast a ZigBee Management command to the network to instruct

Routers to set their ‘permit joining’ state to TRUE for 180 seconds. This opens the
network to classical joining.

C

Channel Change: Broadcast a ZigBee Management command to change the

operational channel to one of the other HA primary channels, selected at random. D
Shift Menu: Cycle through the four Shift modes (0  1  2  3  0 etc). *
Groupcast/Unicast: Toggle between groupcast and unicast transmission modes. On

waking from sleep, this mode will always be groupcast. After commissioning to a light,
the mode will always be unicast with that light selected.

?

Select Next Light: Select the next light in the light database to be controlled by

unicast. An Identify command will be sent to the relevant light, and unicast
transmission mode will be selected.



EZ-mode Commissioning: Start commissioning to gather endpoint information about
existing devices in the network. #

Table 3: Button Functions in Shift2 Mode

Shift3 Mode Operation Button Sequence

On: Send a command to switch on the light(s). The transmission mode will depend on
the current mode selected. I

Off: Send a command to switch off the light(s). O
Factory Reset: Factory reset the Remote Control Unit, restoring the application and
stack persistent data to its factory-new state. - + -

Colour Dimmer Switch: No function assigned

Remote Control: Initiate EZ-mode Commissioning with ‘Find and Bind’ – this is used

in the first part of the Light Sensor demonstration set-up described in Section 6.2.3
(this mode can be exited by pressing any key)

1

No function assigned 3
Colour Dimmer Switch: No function assigned

Remote Control: Initiate EZ-mode Commissioning with Grouping, to add identifying

nodes to a group and then to stop them from identifying – this is used in the second
part of the Light Sensor demonstration set-up described in Section 6.2.3
(this mode can be exited by pressing the * key or by the device entering sleep mode)

2

No function assigned 4

No function assigned A
No function assigned B
No function assigned C

No function assigned D
Shift Menu: Cycle through the four Shift modes (0  1  2  3  0 etc). *
Groupcast/Unicast: Toggle between groupcast and unicast transmission modes. On

waking from sleep, this mode will always be groupcast. After commissioning to a light,
the mode will always be unicast with that light selected.

?

Select next light: Select the next light in the light database to be controlled by

unicast. An Identify command will be sent to the relevant light, and unicast
transmission mode will be selected.



EZ-mode Commissioning: Start commissioning to gather endpoint information
about existing devices in the network. #

Table 4: Button Functions in Shift3 Mode

The sleep configuration of the Remote Control Unit is dependent on the value provided to

the KEEPALIVETIME flag through the build configuration:

• If KEEPALIVETIME = 0, sleep is disabled

• If KEEPALIVETIME = 20 (default configuration), the unit is awake for 20 seconds and
sleeps for SLEEP_TIME_MS (defined in zha_remote_node.c)

• If 0 < KEEPALIVETIME < 255, the unit will be awake for KEEPALIVETIME and then
sleeps for SLEEP_TIME_MS - in this case, the unit will never enter deep sleep mode

 ZigBee Home Automation Demonstration

12 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

• If KEEPALIVETIME = 255, the unit is awake for 20 seconds and sleeps for
SLEEP_TIME_MS (defined in zha_remote_node.c). After 3 minutes of inactivity (or
DEEP_SLEEP_TIME, as defined in zha_remote_node.c), the unit will enter deep
sleep mode.

5.3 Occupancy Sensor Functionality

The EZ-mode Commissioning ‘Find and Bind’ of the lights and the control of the Occupancy
attribute (of the Occupancy Sensing cluster) are driven from the Occupancy Sensor which
resides on a DR1199 Generic Expansion Board. The JN5168 device associated with the
board must be programmed with the binary file OccupancySensor_JN5168_DR1199.bin.
The Occupancy Sensor functionality is detailed below.

Commissioning

On Off Brighter Dimmer

 NA – Not allocated

In order to use the above binary file for the Occupancy Sensor, you will need to pair this
device with a light which contains the Occupancy Sensor cluster client. There is no pre-built
binary file for this light but the following build configuration (19) is provided for such a light:

This is a Colour Dimmable Light which should be used with a DR1175 Lighting/Sensor
Expansion Board (the ‘OTA Client’ feature of this build configuration can be ignored unless
an OTA upgrade is to be performed as described in Section 8). Building and loading an
application are described in Section 10.3. Once built, the resulting application binary file will
appear in the directory OTAColorDimmableLightWithOccupancy/Build/OTABuild and the
filename will be prefixed with OTAColorDimmableLightWithOccupancy.

5.3.1 Virtual PIR Simulation

Occupancy events are simulated by pressing a button on the board - button SW1 is
assigned as the output of a virtual PIR detector. There are two types of virtual occupancy
sensor: Open Collector and PWM. They are defined in the makefile under “PIR Sensor
Type”. The different sensor types and how to use them are detailed below.

EZ Find and Bind

NA NA NA Occupancy Event

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 13

Note that for both types of sensor, LED D1 on the Generic Expansion Board is used as an
indicator of the state of the Occupancy attribute:

• If the Occupancy attribute is 0 (i.e. Unoccupied), the LED is OFF

• If the Occupancy attribute is 1 (i.e. Occupied), the LED is ON

Also note the following uses of LEDs D2 and D3 on the Generic Expansion Board:

• LED D3 will flash during a ‘Find and Bind’ operation started using the button DIO8 - if it
continues to flash after completing the ‘Find and Bind’ then press the button again.

• The LEDs D2 and D3 may flash intermittently to indicate the operational state when
the JN5168 module is awake for sampling or rejoining.

Open Collector Sensor

An Open Collector sensor outputs a constant digital high/low signal for occupancy. In this
demonstration, ‘occupied’ is represented by digital low and ‘unoccupied’ is represented by
digital high.

To define a sensor as an Open Collector, uncomment the compile flag

PIR_TYPE_OPEN_COLLECTOR in the makefile.

 Simulating Unoccupied to Occupied Event:

 To move the sensor from the unoccupied to occupied state, press and hold SW1.

 Simulating Occupied to Unoccupied Event:

 Once in the occupied state, to simulate an ‘unoccupied’ event, release SW1. If no
further occupancy event is simulated by pressing the SW1 button within a certain
timeout period (180 seconds, by default), the sensor will automatically move to the
unoccupied state.

 Note: The timeout period can be customised using the macro
APP_OCCUPANCY_SENSOR_OCCUPIED_TO_UNOCCUPIED_DELAY.

 Once in the occupied state, the sensor can be kept in the occupied state with a single
button-press - a single transition of SW1 will reset the timer that keeps track of the

timeout defined by APP_OCCUPANCY_SENSOR_OCCUPIED_TO_UNOCCUPIED_DELAY.This

feature is provided to simulate maintaining the occupied state.

PWM Sensor

An PWM sensor toggles its digital output between high and low while occupied.

 Simulating Unoccupied to Occupied Event:

 To move the sensor from the unoccupied to occupied state, press SW1 a certain
number of times (5, by default) within a certain timeout period (10 seconds, by default).

 Note 1: The number of button-presses required can be customised using

the APP_OCCUPANCY_SENSOR_UNOCCUPIED_TO_OCCUPIED_THRESHOLD

macro.

 ZigBee Home Automation Demonstration

14 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

 Note 2: The timeout period can be customised using the

APP_OCCUPANCY_SENSOR_UNOCCUPIED_TO_OCCUPIED_DELAY macro.

 Simulating Occupied to Unoccupied Event:

 Once in the occupied state, if no further occupancy event is simulated by pressing the
SW1 button within a certain timeout period (180 seconds, by default), the sensor will
automatically move to the unoccupied state.

 Note: The timeout period can be customised using the macro
APP_OCCUPANCY_SENSOR_OCCUPIED_TO_UNOCCUPIED_DELAY

 Once in the occupied state, the sensor can be kept in the occupied state by repeating
the simulated occupancy event. This will reset the timer that keeps track of the timeout

defined by APP_OCCUPANCY_SENSOR_OCCUPIED_TO_UNOCCUPIED_DELAY.

Additional Sensor Functionality

The Occupancy Sensor will report its attributes if it is bound to at least one device, the
occupancy state is ‘occupied’ and one of the following actions occurs:

• It has joined a new network

• It has rejoined the network

• It has exited ‘Find and Bind’

The Occupancy Sensor will start a timer for the number of seconds defined by the macro

APP_OCCUPANCY_SENSOR_OCCUPIED_TO_UNOCCUPIED_DELAY if, the occupancy state is

‘unoccupied’ and one of the following actions occurs:

• It has joined a new network

• It has rejoined the network

• It has exited ‘Find and Bind’

Attribute Reporting

Attribute Reporting can be configured optionally by defining the macro

HA_SYSTEM_MIN_REPORT_INTERVAL to be greater than zero. If defined to be greater than

zero, the Occupancy Sensor reports the Occupancy attribute value to the light (to which it is

bound) after 1 second (or HA_SYSTEM_MIN_REPORT_INTERVAL) if there is any change in the

attribute or, otherwise, every 60 seconds (or HA_SYSTEM_MAX_REPORT_INTERVAL). On

receiving the attribute report:

• If the Occupancy attribute is 0 (i.e. Unoccupied), the light will switch OFF

• If the Occupancy attribute is 1 (i.e. Occupied), the light will switch ON

5.3.2 Sleep Options

The Occupancy Sensor is a sleeping End Device and will, by default, attempt to sleep with
RAM on and the oscillator on, whenever possible. It will wake up every

HA_SYSTEM_MAX_REPORT_INTERVAL, which by default is 60 seconds.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 15

Enabling Deep Sleep

The Occupancy Sensor can be configured to enter deep sleep by setting the

HA_SYSTEM_MAX_REPORT_INTERVAL to zero, which will disable periodic reporting. Since

periodic reporting is disabled, when in the unoccupied state the device does not need to
keep track of time, meaning it can go into deep sleep and wait for the virtual sensor to trigger
an occupancy event.

 Note: When the Occupancy Sensor is in the occupied state, the device
needs to start the ‘occupied to unoccupied’ timer, which means the
device will sleep with RAM held and the oscillator on.

 Note: Since the Occupancy Sensor is a sleepy End Device, there may be
a delay in sending out the attribute reports.

Enabling Sleep Prevention

The Occupancy Sensor can be kept awake by pressing the SW2 button, which causes the
LED to start flashing 250ms on, 250ms off. The device is put back into normal operational
mode by pressing the SW3 button, which stops the LED from flashing.

5.4 Light Sensor Functionality

The Light Sensor can be used to provide regular illuminance measurements (from the
Illuminance Measurement cluster) to a control application that adjusts the level of light
emitted by light nodes – these lights can be any HA Lighting devices that support the Level
Control cluster. The control application resides on the Remote Control device (see Section
1.1.7), to which the Light Sensor is bound, and the Remote Control device forms the lights
into a group for synchronous control. The binding and grouping are performed via EZ-mode
Commissioning (see Section 6.2.3).

The Light Sensor resides on a DR1175 Lighting/Sensor Expansion Board. The JN5168
device associated with the board must be programmed with the binary file
LightSensor_JN5168_DR1175.bin. The resulting board functionality is indicated below.

EZ Find and Bind

Light Sensor

 ZigBee Home Automation Demonstration

16 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

The Light Sensor can but put into ‘keep-alive’ mode by power-cycling 3 times. The two
modes of operation are as follows:

• Normal Mode: The Light Sensor sleeps and wakes up every

HA_SYSTEM_MAX_REPORT_INTERVAL, when it obtains a new light reading, updates

the u16MeasureValue attribute with the new reading and sends a periodic report.

This is done to reduce the current consumption, which increases the battery life.

• Keep-alive Mode: The Light Sensor is permanently active and obtains a new light
reading every second. If the light level changes since the last reading by at least

LIGHT_SENSOR_MINIMUM_REPORTABLE_CHANGE then the u16MeasuredValue

attribute is updated and the Light Sensor sends out an attribute report after

HA_SYSTEM_MIN_REPORT_INTERVAL (default 1 second). If there is no change, it will

send a report every HA_SYSTEM_MAX_REPORT_INTERVAL (default 60 seconds).

 Note 1: As a sleepy End Device, the Light Sensor goes through a
sleep/wake cycle. If an attribute change occurs just before the device
enters sleep mode, the attribute report will be sent out on the next wake-
up and there will therefore be a delay.

 Note 2: If the Light Sensor is to report frequently, it is recommended that
the bound transmission management feature is enabled in the ZCL by
defining CLD_BIND_SERVER in the zcl_options.h file. This feature and
the required resources are described in the ZigBee Cluster Library User
Guide (JN-UG-3103).

The (sleepy) Remote Control device polls its parent for messages once per second. After
receiving the attribute report, the Remote Control device (hosting the Illuminance
Measurement cluster client) will adjust the light level on the (grouped) light nodes based on
the reported illuminance measurement. The required calculation is detailed below, which
determines the light level that should be produced by the light for a given illuminance
measured at the Light Sensor.

At the Light Sensor, the maximum lux level (as measured by the ALS driver on the DR1175
board) is 4015 and minimum lux level is 1.

At the light, the light level to be produced is represented as a value in the range 0 to 255

(this is the u8CurrentLevel attribute of the Level Control cluster).

A divisor is defined which is used (later) in calculating the produced light level from the
measured Lux value:

ILLUMINANCE_LUX_LEVEL_DIVISOR = 4015/254 ~ 16

(i.e. ILLUMINANCE_MAXIMUM_LUX_LEVEL/CLD_LEVELCONTROL_MAX_LEVEL)

The value of the u8CurrentLevel attribute (of the Level Control cluster) for the light is then

calculated as follows:

CLD_LEVELCONTROL_MAX_LEVEL - (u16MeasuredLux/ILLUMINANCE_LUX_LEVEL_DIVISOR)

where u16MeasuredLux is the attribute of the Illuminance Measurement cluster reported to

the light.

Therefore:

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 17

• When the measured illuminance is at its maximum value of 4015 lux, the light level to
be produced by the light is 4

• When the measured illuminance is at its minimum value of 1 lux, the light level to be
produced by the light is 254

 Note: The Light Sensor needs a light source to measure the correct
thresholds for proper operation (sensitivity increases based on the
amount of light falling on sensor).

5.5 GP Switch Functionality

The Green Power (GP) Switch device employs a DR1199 Generic Expansion Board, which
features four switches SW1-SW4. The switch functionality is detailed below.

If a GP Switch is required, the JN5168 device associated with a Generic Expansion Board
must be programmed with the binary file EH_Switch_JN5168_DR1199.bin.

A ‘factory new’ GP Switch should be commissioned using Commissioning button (SW1). The
light node to be commissioned should first be put into GP self-commissioning mode. Then
the Commissioning button must be repeatedly pressed at an interval of one second until a
visual indication is observed on the light node, indicating successful commissioning. For full
details of GP Switch commissioning, refer to Section 7.2. After the GP Switch has been
commissioned, it can be used to send commands to the light (On, Off, Brighter and Dimmer).

5.6 Smart Plug (Mains Power Outlet) Functionality

A Smart Plug or “Mains Power Outlet” can be used to monitor the instantaneous power
consumption of an attached appliance (by means of the Simple Metering cluster). However,
in this demonstration the device can simply be switched on and off, either using a button on
the unit or remotely from a switch node, such as a Dimmer Switch. LEDs on the unit indicate
whether the device is on or off.

 ZigBee Home Automation Demonstration

18 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

The binary file MainsPowerOutlet_JN5169_DR1199.bin should be programmed into the
JN5169 device associated with a DR1199 Generic Expansion Board to obtain the Smart
Plug functionality. The device functionality is detailed below:

Commissioning

On Off Brighter Dimmer

The button SW1 allows the user to manually toggle the on/off state of the device.

The device can also be controlled remotely from a switch device in the network, such as the
Dimmer Switch (see Section 5.1). Note that only the On and Off buttons on the Dimmer
Switch node can be used to control the Smart Plug.

The current state of the device is indicated by the LEDs D1 and D2, with D1 illuminated
when the device is off and D2 illuminated when the device is on.

For information on the commissioning the Smart Plug device, refer to Section 6.3.

Toggle
State

N/A

N/A

N/A N/A

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 19

5.7 Clearing Context Data on the Devices

When loading the application for the first time, any persistent context data must be cleared in
each of the devices.

5.7.1 On Co-ordinator

The Co-ordinator in this application resides on a DR1198 USB Dongle and has no switch
inputs.

The context data on the Co-ordinator is stored in EEPROM and can be cleared using the
JN516x Flash Programmer within BeyondStudio for NXP by selecting the Erase EEPROM
option in the Program serial device dialogue box (see image below). For information on
using this Flash programmer, refer to the BeyondStudio for NXP Installation and User Guide
(JN-UG-3098).

5.7.2 On All Light Nodes

The context data on a light node is stored in EEPROM and can be cleared using the JN516x
Flash Programmer within BeyondStudio for NXP with the Erase EEPROM option, as
described for the Co-ordinator in Section 5.7.1.

Alternatively, the context data can be cleared by leaving the light on for at least 2 seconds
and then power-cycling seven times - in this sequence, the light must be ON for less than
2 seconds following an OFF. This alternative method is the same for all the Light builds.

5.7.3 On Dimmer Switch Node

The context data on the Dimmer Switch node is stored in EEPROM and can be cleared
using the JN516x Flash Programmer within BeyondStudio for NXP with the Erase EEPROM
option, as described for the Co-ordinator in Section 5.7.1.

Alternatively, the context data can be cleared during normal operation of the device. This is
done by pressing and releasing the ‘RST’ button while holding down the ‘DIO8’ button (both
buttons are on the DR1174 Carrier Board).

5.7.4 On Remote Control Node

The context data on the Remote Control node is stored in EEPROM and can be cleared
using the JN516x Flash Programmer within BeyondStudio for NXP with the Erase EEPROM
option, as described for the Co-ordinator in Section 5.7.1.

Alternatively, the context data can be cleared as follows:

1. Press the button * repeatedly until both of the LEDs illuminate (Shift3 mode).

2. Now enter the button sequence –, +, –.

5.7.5 On Occupancy Sensor Node

The context data on the Occupancy Sensor node can be cleared using exactly same
methods as described for the Dimmer Switch in Section 5.7.3.

 ZigBee Home Automation Demonstration

20 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

5.7.6 On Light Sensor Node

The context data on the Light Sensor node can be cleared using exactly same methods as
described for the Dimmer Switch in Section 5.7.3.

5.7.7 On Smart Plug Node

The context data on the Smart Plug (Mains Power Outlet) node is stored in EEPROM and
can be cleared using the JN516x Flash Programmer within BeyondStudio for NXP with the
Erase EEPROM option, as described for the Co-ordinator in Section 5.7.1.

Alternatively, the context data can be cleared during normal operation of the device. This is
done by pressing and holding down the SW1 button on the DR1199 Generic Expansion
Board.

5.7.8 On OTA Server Node

The context data on the OTA Server node is stored in EEPROM and can be cleared using
the JN516x Flash Programmer within BeyondStudio for NXP with the Erase EEPROM
option, as described for the Co-ordinator in Section 5.7.1.

5.7.9 On GP Switch

The context data on a GP Switch node can be cleared by power-cycling the node. This is
done by pressing and releasing the ‘RST’ button while holding down the ‘DIO8’ button (both
buttons are on the Carrier Board). Alternatively, the context can be cleared by power-cycling
the node 13 consecutive times. The required number of power-cycles can be modified using
the configuration macro CLEAR_PERSISTENT_SHORT_PRESS in the header file
EH_Switch_Configurations.h.

6 Setting Up the Network

This section describes how to create the demonstration network and commission light
nodes. This set-up process employs EZ-mode Commissioning, which is fully detailed in the
ZigBee Cluster Library User Guide (JN-UG-3103). The Green Power demonstration set-up is
described separately in Section 7.

The network set-up procedure is presented in two stages, as follows:

• First the network is formed, in which the various nodes join the network – this is
described in Section 6.1.

• Then links are established between the controller nodes and light nodes, through
either binding or grouping, depending on the type of controller device:

o The grouping method is described in Section 6.2.1

o The binding (Find and Bind) method is described in Section 6.2.2

 Note 1: When the Light Sensor and Remote Control devices are to be
included in the network, both binding and grouping must be used for
these devices – this special case is described in Section 6.2.3.

 Note 2: Introducing a Smart Plug (Mains Power Outlet) into the network
is described in Section 6.3.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 21

6.1 Forming the Network

The procedure below describes how to form the demonstration network using EZ-mode
Commissioning. This network formation process is the same irrespective of whether ‘Find
and Bind’ or Grouping will be later used to establish control links to the light nodes.

1. Plug the Co-ordinator node (USB Dongle) into a PC or an USB power supply.

 The Co-ordinator will create a network - the green LED on the dongle will start to flash
when the network has been successfully created.

 The Co-ordinator opens the network for other HA devices to join for a period of 180
seconds after start-up or reset - the orange LED on the dongle will start to flash
indicating the network is open for joining.

 Note that the network will also be opened for joining in the following circumstances:

o When a light node joins the network, it broadcasts a ‘permit join’ message
containing an EZ-mode Commissioning time of 180 seconds, allowing other
nodes to join it during this time (that is, the network will remain open to joining
for a further 180 seconds from that point).

o If the Network Steering phase of EZ-mode Commissioning is invoked on a
light node or switch node that is already part of the network, this will open the
network for joining for a period of 180 seconds from the point at which the
steering was invoked.

 Note 1: Once a node has joined the network, it will remain in the network,
even through a power-cycle.

 Note 2: If you wish to add a node after the 180-second period has
expired, start network steering on any of the nodes or power-cycle the
Co-ordinator node.

 2. Power-up the light nodes (Lighting/Sensor Expansion Boards).

 A light node will start searching for a suitable HA network with joining allowed. During
this search, the light implements a “breathe” effect (a gradual change in light level
between minimum and maximum values).When a light node has joined the Co-
ordinator, the light stops the breathe effect (when the breathe effect is not enabled on a
light, the light flashes once to indicate that joining is complete).

 Note: To reset a light node to the ‘Factory New’ state, power-cycle the

node 7 times to clear context data, as described in Section 5.7.2.

3. Power-up the Dimmer Switch node (Generic Expansion Board).

 On power-up, a Dimmer Switch node will search for a suitable network - the LED pair
D1+D3 and LED D2 will flash alternately during the search.

 When a suitable open network is found (‘permit join’ is true), the switch node will join
and indicate success by briefly illuminating LEDs D1-D3.

 ZigBee Home Automation Demonstration

22 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

 Note: To reset the Dimmer Switch node to the ‘Factory New’ state, press
and hold down the button ‘DIO8’ and then press the switch ‘RST’, both of
which are on the underlying DR1174 Carrier Board.

4. Plug the OTA Server node (USB Dongle) into a PC.

 The OTA Server will join the network and then the green LED on the USB Dongle will
light up.

5. Power-up the Colour Dimmer Switch or Remote Control device (Remote Control Unit)
by inserting batteries.

 Note that the Remote Control Unit should have been programmed as an HA Remote
Control device only if the Light Sensor is to be used (Step 7) in the network, otherwise it
should have been programmed as an HA Colour Dimmer Switch device.

 On power-up, this node will search for a suitable network - the LED pair (left and right)
will continuously flash during the search.

 When a suitable open network is found (‘permit join’ is true), the node will join and
indicate success by briefly illuminating both LEDs, and then move to operational mode
Shift0 (when both LEDs will be off).

 Note: To reset the Remote Control Unit node to the ‘Factory New’ state,
press the button * repeatedly until both LEDs illuminate to indicate Shift3
mode, and then enter the button sequence –, +, –.

6. Power-up the Occupancy Sensor node (Generic Expansion Board).

 On power-up, an Occupancy Sensor node will search for a suitable network – during the
search, the LED D3 will flash one second On and one second Off.

 When a suitable open network is found (‘permit join’ is true), the node will join and
indicate success by switching off the LED D3.

 Note: To reset an Occupancy Sensor node to the ‘Factory New’ state,
press and hold down the button ‘DIO8’ and then press the switch ‘RST’,
both of which are on the underlying DR1174 Carrier Board.

7. Power-up the Light Sensor node (Lighting/Sensor Expansion Board), if required.

 Note that this step is optional and the Light Sensor can only be used if the Remote
Control Unit has been programmed as an HA Remote Control device.

 On power-up, a Light Sensor node will search for a suitable network – during the
search, the red LED D4 will flash one second On and one second Off.

 When a suitable open network is found (‘permit join’ is true), the sensor node will join
and indicate success by turning off the LED.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 23

 Note: To reset a Light Sensor node to the ‘Factory New’ state, press and
hold down the button ‘DIO8’ and then press the switch ‘RST’, both of
which are on the underlying DR1174 Carrier Board.

8. Perform the rest of the network set-up to establish control links between the controller
nodes and light nodes – refer to Section 6.2.

6.2 Commissioning

This section describes how to commission light nodes to be controlled from a controller node
either as a group of lights or as bound devices. You must use the method appropriate for
each controller device, as follows:

• Dimmer Switch: Use grouping (Section 6.2.1) or binding (Section 6.2.2)

• Colour Dimmer Switch: Use grouping (Section 6.2.1)

• Occupancy Sensor: Use binding (Section 6.2.2)

• Light Sensor and Remote Control: Use both binding and grouping (Section 6.2.3)

The commissioning of light nodes is performed per controller node.

The procedures assume that the network has been formed as described in Section 6.1.

6.2.1 Commissioning Light Nodes - Groups and Scenes

In the following procedure, you will collect light nodes into a group to be controlled by either
of the following controller devices:

• Dimmer Switch

• Colour Dimmer Switch

In this demonstration, there is only one group on these devices. You will also configure and
save a scene for this group of lights.

1. Start the discovery of lights from a switch.

On Dimmer Switch node:

Enter identify mode by pressing and holding down the Commissioning button (DIO8) on
the node (on the DR1174 Carrier Board).

 On Colour Dimmer Switch node:

Enter identify mode by pressing the Commissioning button (#) on the node (on the
DR1159 Remote Control Unit).

2. Identify a light and add it to a group.

After Step 1 above, wait for a minimum of 3 seconds for a discovered light node to
identify itself (which it does by toggling the state of its three white LEDs in the case of a
Dimmable Light, or turning the multi-colour LED to red in the case of a Colour Dimmable
Light).

If the light is initially off, it will switch on and identify itself - only one light node will
identify itself at a time.

 ZigBee Home Automation Demonstration

24 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

 During this state (for one light node), you can use the switches SW1-SW4 on the
Dimmer Switch node as follows:

• Press SW1 to join the light to the group

• Press SW2 to remove the light from the group (if it is already a member)

• Press SW3 to move on to another discovered light (not yet in the group)

• Press SW4 to select the previous light from the group

 Similarly, during this state (for one light node), you can use the buttons in Shift2 mode
on the Colour Dimmer Switch node (Remote Control Unit) as follows:

• Press 2 to join the light to the group

• Press 3 to remove the light from the group (if it is already a member)

• Press > to move on to another discovered light (not yet in the group).

 Once the light node is added to a group, it can be controlled as part of the group (in
group mode).

3. Enter individual control mode.

 On Dimmer Switch node:

Upon releasing the Commissioning button (DIO8) after Step 2 above, the Dimmer
Switch node will enter individual control mode for the currently selected light node.

On Colour Dimmer Switch node:

On the Colour Dimmer Switch, individual control mode can be entered by pressing the
“?” button.

4. Configure the brightness of the currently selected light for a scene.

On Dimmer Switch node:

On the Dimmer Switch node, you can now configure the currently selected light for a
scene by setting its brightness level using the switches SW1-SW4 as follows:

• Press SW1 to switch the light on (full brightness)

• Press SW2 to switch the light off

• Press SW3 to increase its brightness level

• Press SW4 to decrease its brightness level

 On Colour Dimmer Switch node:

 For adding scenes from the Colour Dimmer Switch, refer to Section 5.2.

5. Repeat Steps 1 to 4 for each light node to be included in the group and scene.

6. After adding all the required light nodes to a group and configuring them for a scene,
you can save the settings to one of two possible scenes.

 On Dimmer Switch node:

 On the Dimmer Switch, this is done by pressing either of the following switch
combinations: SW1+SW3 or SW2+SW4.

On Colour Dimmer Switch node:

 For saving scenes from the Colour Dimmer Switch, refer to Section 5.2.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 25

! Caution: To exit the commissioning process from the Dimmer Switch as
described above, a scene is saved and this will over-write any previously
saved scene corresponding to the switch combination used. To exit
without saving a scene, leave the switch in individual control mode for 30
seconds, which will return you to control mode and will not write a scene.

7. Enter control mode.

 On Dimmer Switch node:

 The Dimmer Switch now enters control mode and can be used to control the group of
lights as follows.

• Press SW1 to switch the lights on

• Press SW2 to switch the lights off

• Press SW3 to increase their brightness level

• Press SW4 to decrease their brightness level

• Press switch combination SW1+SW3 or SW2+SW4 to recall a scene

 On Colour Dimmer Switch node:

 For the control of lights from the Colour Dimmer Switch, refer to Section 5.2.

 Note: To save light settings for the other scene, repeat the above

procedure (but be sure to form the same group of lights).

6.2.2 Commissioning Light Nodes - Binding

In the following procedure, a controller node is bound to one or more light nodes (if bound to
multiple light nodes, the lights will be controlled synchronously). The controller node can be
either of the following devices:

• Dimmer Switch

• Occupancy Sensor

This method of control does not allow the use of scenes.

1. Put the light node(s) into identify mode by power-cycling the node three times. The light

will then enter identify mode and remain in identify mode for up to EZ_MODE_TIME*60

seconds, where EZ_MODE_TIME is in minutes and set to 3 minutes in the application.

The light will indicate this by flashing.

2. Entering the Commissioning mode from the different devices.

 On the Dimmer Switch node:

 Make sure the Dimmer Switch node is in group control mode, as follows:

a) Press and hold down the button SW3.

b) Press and hold down the Commissioning button, DIO8.

c) Release SW3.

 ZigBee Home Automation Demonstration

26 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

 Following this sequence, the Dimmer Switch node will be in EZ-mode Commissioning
and LED1 will start to flash (when DIO8 is released, the node exits EZ-mode
Commissioning and returns to group control mode).

On the Occupancy Sensor node:

 Press and hold down the Commissioning button, DIO8, to enter EZ-mode
Commissioning ‘Find and Bind’ mode (when DIO8 is released, the node will exit EZ-
mode Commissioning).

 The Occupancy Sensor node will now start the ‘Find and Bind’ phase and LED D3 will
start to flash (500ms on and 500ms off).

3. The Dimmer Switch node can now be used to perform the following actions.

 Press SW1 to bind the Dimmer Switch node to the light node(s) in identify mode.

 While the Dimmer Switch node is in EZ-mode Commissioning, you can use the switches
SW1-SW4 to perform various operations, as follows:

• Press SW1 to bind clusters

• Press SW2 to ‘factory reset’ the switch node without leaving the network

• Press SW3 to add the light node (in identify mode) to the switch’s group

• Press SW4 to initiate a change of channel (all network nodes must be active)

4. Release button DIO8 to complete the binding process. You can then use switches
SW1-SW4 on the Dimmer Switch node to control the lights, as indicated in Error!
Reference source not found..

While controlling the lights through bound transmissions, group transmissions will be ignored
by the switch. Therefore, at any one time, the Dimmer Switch can be used to control bound
or grouped devices, but not both.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 27

6.2.3 Commissioning Light Sensor, Remote Control and Light Nodes

When the Light Sensor and Remote Control devices are used, both binding and grouping
must be used in the network:

• The Light Sensor is bound to the Remote Control device, allowing the Light Sensor to
send regular luminance measurements to the Remote Control device, where this data
is interpreted and translated into control instructions for the lights nodes.

• The light nodes are grouped by the Remote Control device, allowing the Remote
Control device to synchronously control the grouped lights.

This arrangement is illustrated in Figure 1 below.

Light

Sensor

Light

NXP

Remote

Control

Light
Light Sensor binds with Remote

Control in order to send it regular

illuminance measurements

Remote Control groups Lights

in order to control them

synchronously

Figure 1: Light Sensor/Remote Control Set-up

 Note 1: A light node in the above network can be any HA Lighting device
that supports the Level Control cluster – for example, a Dimmable Light
or a Colour Dimmable Light.

 Note 2: In this network, the Light Sensor and Remote Control are both
sleepy End Devices. The light nodes are Routers. The Co-ordinator
resides on a USB Dongle (from the evaluation kit). Therefore, messages
from the Light Sensor will be sent to the Remote Control via its parent
(which may be one of the light nodes or the dongle) and, when awake,
the Remote Control must poll its parent for these messages.

 ZigBee Home Automation Demonstration

28 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

The following procedure describes how to set up the required binding and group – you must
perform both parts of the procedure in quick succession.

Part 1 – Bind Light Sensor to Remote Control

1. Put the Light Sensor into the EZ-mode Commissioning ‘Find and Bind’ state by pressing
and holding down the Commissioning button, DIO8 (when DIO8 is released, the node
will exit EZ-mode Commissioning). The Light Sensor will also identify itself in this mode
by flashing LED D4 once per second (only while the button is held down).

2. Put the Remote Control device into the EZ-mode Commissioning ‘Find and Bind’ state
by pressing the “1” key in Shift3 mode. This also puts the device into identify mode by
flashing both LEDs once per second.

 You can exit EZ-mode Commissioning ‘Find and Bind’ on the Remote Control device at
any time by pressing any key (in Shift3 mode).

3. Wait for the Light Sensor to bind to the Remote Control device - when this binding
completes, the Light Sensor and Remote Control device will both stop identifying
themselves (LEDs will stop flashing).

4. Exit the ‘Find and Bind’ state on both devices as follows:

a) On the Light Sensor device, release button DIO8.

b) On the Remote Control device, press any key (in Shift3 mode) once only (if you
accidently press the key two or more times, you will exit EZ-mode Commissioning
and will need to restart the commissioning process from the beginning).

! Important: Part 2 of the procedure, below, must now be executed within
20 seconds, before the Remote Control device goes to sleep.

Part 2 – Group Lights for Remote Control

5. Put the light nodes to be controlled into identify mode by power-cycling each node three
times. The light will then enter identify mode and remain in identify mode for up to

EZ_MODE_TIME*60 seconds, where EZ_MODE_TIME is in minutes and set to 3 minutes in

the application. The light will indicate this by flashing.

6. Put the Remote Control device into the EZ-mode Commissioning ‘Grouping’ state by
pressing the “2” key in Shift3 mode.

 You can exit EZ-mode Commissioning ‘Grouping’ on the Remote Control device at any
time by pressing the “*” key (in Shift3 mode). This mode will also be automatically exited
if the device goes to sleep (due to inactivity).

7. Wait for the Remote Control device to add a light to the group - when this occurs, the
light stops flashing.

8. If there are any lights still to be grouped (still identifying themselves) then repeat Steps
6 and 7 for the next light.

 When all the lights have stopped identifying themselves, they are all in the group.

There is a known issue relating to the operation of this network – refer to Appendix E.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 29

6.3 Commissioning Smart Plug (Mains Power Outlet)

The Smart Plug (Mains Power Outlet) device can be switched on and off from a switch
device in the network. This section describes how the Smart Plug can be introduced into the
network and bound to a Dimmer Switch that will be used to control the Smart Plug. For
information on the Dimmer Switch and Smart Plug functionality, refer to Section 5.1 and
Section 5.6.

6.3.1 Introducing Smart Plug to Network

The Dimmer Switch and Smart Plug nodes are introduced into the network as described in
Section 6.1, where the Smart Plug is used instead of a light node. The network joining
behavior of the Smart Plug is as described below.

When the Smart Plug node is powered on, it starts to search for a suitable HA network with
joining allowed. During this search, LED D2 on the DR1999 Generic Expansion Board
flashes every 200ms. When the node has joined the network, D2 stops flashing and
illuminates permanently, indicating that the Smart Plug is in the ‘on’ state.

6.3.2 Binding Dimmer Switch and Smart Plug

Once the Smart Plug is in the network, it must be bound to a Dimmer Switch as follows:

1. Power cycle the Smart Plug node 3 times to enter EZ-mode Commissioning. The Smart
Plug device will now start the ‘Find and Bind’ phase and LED D2 will start to flash
(500ms on and 500ms off).

2. On the Dimmer Switch node, press button SW1 to bind the Dimmer Switch node to the
Smart Plug.

 While the Dimmer Switch node is in EZ-mode Commissioning, you can use the switches
SW1-SW4 to perform various operations, as follows:

o Press SW1 to bind clusters

o Press SW2 to ‘factory reset’ the switch node without leaving the network

o Press SW3 to add a node to the switch’s group

o Press SW4 to initiate a change of channel (all network nodes must be active)

 The Smart Plug node will automatically exit EZ-mode Commissioning once ‘Find and
Bind’ is complete. However, you can exit at any time by power cycling the Smart Plug.

3. You can now use the Dimmer Switch to control the Smart Plug (see Section 5.6).

 Note: While controlling the Smart Plug through bound transmissions,
group transmissions are ignored by the device. Therefore, at any one
time, the Dimmer Switch can be used to control bound or grouped
devices, but not both.

 ZigBee Home Automation Demonstration

30 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

7 Setting Up the Green Power (GP) Network

This section describes how to create the Green Power (GP) demonstration network. This
network employs the following ZigBee devices, hardware components and binary files:

• Co-ordinator: This is the DR1198 USB Dongle, programmed with the binary file
Coordinator_JN5168.bin

• Dimmable Light: This is a DR1174 Carrier Board fitted with a DR1175
Lighting/Sensor Expansion Board, programmed with the binary file
DimmableLight_JN5168_DR1175_LED_EXP_MONO_GP.bin

• Colour Dimmable Light: This is a DR1174 Carrier Board fitted with a DR1175
Lighting/Sensor Expansion Board, programmed with the binary file
ColorDimmableLight_JN5168_DR1175_LED_EXP_RGB_GP.bin

• GP Switch: This is a DR1174 Carrier Board fitted with a DR1199 Generic Expansion
Board, programmed with the binary file EH_Switch_JN5168_DR1199.bin

The GP Switch is used to control a light node, which can be a Dimmable Light or Colour
Dimmable Light. You may use more than one light node in the network and the GP Switch
can be commissioned to control all of them.

 Note 1: The Dimmable Light and Colour Dimmable Light devices can
each act as both a GP Proxy node and Sink node in this network.

 Note 2: Alternative Dimmable Light binary files are provided for the
DR1190 and DR1192 bulbs (see Section 3 and Section 4).

The network set-up procedure is presented in two stages, as follows:

• First the ZigBee PRO network is formed – this is described in Section 7.1.

• Then the GP Switch is commissioned – this is described in Section 7.2.

GP Switch decommissioning is also described in Section 7.3.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 31

7.1 Forming the Network

The process described below uses EZ-mode Commissioning, which is fully detailed in the
ZigBee Cluster Library User Guide (JN-UG-3103), to form an HA network.

1. Plug the Co-ordinator node (USB Dongle) into a PC.

 The Co-ordinator will create a network - the green LED on the dongle will start to flash
when the network has been created.

 The Co-ordinator opens the network for other HA devices to join for a period of 180
seconds after start-up or reset - the orange LED on the dongle will start to flash when
the network is open for joining.

 Note that the network will also be opened for joining in the following circumstances:

o When a light node joins the network, it broadcasts a ‘permit join’ message
containing an EZ-mode Commissioning time of 180 seconds, allowing other
nodes to join it during this time (that is, the network will remain open to joining
for a further 180 seconds).

o If the Network Steering phase of EZ-mode Commissioning is invoked on a
light node or switch node that is already part of the network, this will open the
network for joining for a duration of 180 seconds.

2. Power up the light nodes (Lighting/Sensor Expansion Boards).

 A light node will start searching for a suitable HA network with joining allowed. During
this search, the light implements a “breathe” effect (a gradual change in light level
between minimum and maximum values).When a light node has joined the Co-
ordinator, the light stops the breathe effect (when the breathe effect is not enabled on a
light, the light flashes once to indicate that joining is complete).

 Note: To reset a light node to the ‘Factory New’ state, power-cycle the
node 7 times to clear context data, as described in Section 5.7.2.

 Note: If you wish to add a node after the 180-second period has expired,
re-initiate EZ-mode Commissioning by power-cycling the USB Dongle.

 The network will be formed in less than 10 seconds. The nodes will then remain in this
network, even through a power cycle.

3. Power up the GP Switch node (Generic Expansion Board).

 ZigBee Home Automation Demonstration

32 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

7.2 GP Switch Commissioning

In the following commissioning procedure, a GP Switch node is paired with one or more light
nodes (Dimmable Light or Colour Dimmable Light devices).

1. Put each of the light nodes to be commissioned into GP self-commissioning mode by
power-cycling the light node 3 times. The light will then enter commissioning mode and
indicate this by flashing.

2. On the GP Switch node, press the Commissioning button (SW1) repeatedly at an
interval of one second until all the lights stop flashing and return to their original states
(the GP Switch sends commissioning packets to the light nodes on each button-press).

 Note: The switch SW1 should not be pressed too fast nor too slow. It
should be pressed at approximately a one-second interval. A light node
will clear the buffered packets for the GP Switch after 5 seconds, so the
switch should receive the packets within 5 seconds.

The GP Switch is now paired with the light node(s) and can be used to control the light(s).
The switches SW1-SW4 on the GP Switch can be used to send On, Off, Brighter and
Dimmer commands to the light node(s).

 Note 1: When a commissioned light is in normal operational mode (not in
commissioning or decommissioning mode), it will not process any
commissioning or decommissioning packets that it receives. So this light
will not be affected by commissioning packets sent when adding another
light to those controlled by the GP Switch (apart from updating its internal
tables). In addition, a commissioned light in normal operational mode will
ignore any received On/Off commands when another light is in
commissioning mode.

 Note 2: Once the GP Switch is commissioned with light nodes,
repeatedly pressing button SW1 will result in decommissioning packets
being transmitted. Therefore, before attempting to commission new light
nodes, the GP Switch must be factory-reset so that context data on the
switch will be cleared (see Section 5.7.9) and the switch will subsequently
transmit commissioning packets when SW1 is repeatedly pressed. This
will commission the switch only with new lights that are in commissioning
mode without disturbing the lights that are already commissioned.

 Note 3: There is actually no difference at the GP cluster level between
the commissioning and decommissioning modes of a light - a light can
accept both commissioning and decommissioning commands in either
mode. For practical reasons, the two modes have been distinguished in
their visual indications and, to avoid confusion, you are advised to only
commission in commissioning mode and only decommission in
decommissioning mode.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 33

7.3 GP Switch Decommissioning

Once commissioned and in operational mode, a light node can be decommissioned from the
GP Switch as follows:

1. Put the light node into decommissioning mode by power-cycling the light node 4 times.
Following this power-cycling, the light will be in the ON state, but a little time later the
light will go into the OFF state when the node enters decommissioning mode.

2. On the GP Switch node, press the Commissioning button (SW1) repeatedly at an
interval of one second until the light goes into the ON state – this state indicates that the
node has been successfully decommissioned.

 Note 1: Once started, decommissioning can be aborted by pressing any
button other than SW1.

 Note 2: On repeatedly pressing button SW1, the GP Switch will transmit
decommissioning packets. If a commissioned light is in normal
operational mode (not in commissioning or decommissioning mode), it
will not process any commissioning or decommissioning packets that it
receives. So this light will not be affected by decommissioning packets
sent when removing another light from those controlled by the GP Switch
(apart from updating its internal tables). In addition, a commissioned light
in normal operational mode will ignore any received On/Off commands
when another light is in decommissioning mode.

 Note 3: If button SW1 on the GP Switch is pressed a certain number of
times (13 by default, see Section 5.7.9) then it will be reset and lose
context data about the network. In this case, the GP Switch will need to
be re-commissioned in order to control the lights in the network.

 ZigBee Home Automation Demonstration

34 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

8 OTA Upgrade of Devices

This section describes the OTA upgrade of nodes in an HA lighting network.

All the nodes are contained in a single HA network. The network includes a node hosting the
OTA Upgrade server and one or more nodes hosting the OTA Upgrade client. The OTA
clients reside on the target nodes.

8.1 OTA Upgrade Server

On power-up, the OTA server checks whether there is a valid OTA upgrade image in its
external Flash memory, starting at Sector 0. If it finds a valid image, it transmits an Image
Notify broadcast to the entire network.

If the OTA server receives a Query Next Image Request from an OTA client (see below), it
responds with the details of the available image. The upgrade starts if the upgrade image
has a different version from that of the current image running on the client node.

 Note: An upgrade image can be loaded into the OTA server’s external
Flash memory using the JN51xx Production Flash Programmer
(JN-SW-4107), described in the JN51xx Production Flash Programmer
User Guide (JN-UG-3099).

8.2 OTA Upgrade Client

OTA Upgrade images are downloaded to Flash memory on the OTA client nodes - internal
Flash memory (with 32Kbyte sectors) for JN5169 and external Flash memory for JN5168.

A node containing the OTA client periodically sends a Query Next Image Request (by calling
the function eOTA_ClientQueryNextImageRequest()) to the OTA server.

Dimmable Light
Node

(with OTA)

Dimmable Light
Node

(with OTA)

Dimmer Switch
Node (with OTA)

Coordinator

PC
(JN51xx Flash
Programmer)

OTA Server
Node

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 35

The following state machine diagram illustrates the OTA discovery process implemented in
the client node.

Start

Discover

server every

one minute

Found server?

Query image

and

wait 15 secs

Image =

current image
Download timeout

(2 mins)

Downloading

(timeout

repeatedly

reset)

Download

complete
YES

NO

YES

Path 2

NO

Path 1

YES

Path 3

NO

Figure 2: OTA Upgrade Discovery Process on Client

 Note: The timings mentioned in the above diagram are those that are
currently present in the demonstration code, but can be tuned via the
appropriate macro definitions - please refer to Macros appendix of this
document.

The OTA client in the above flowchart attempts to discover the OTA server and, if
successful, queries the server for an upgrade image.

The following scenarios (corresponding to Paths 1, 2 and 3 in the above flowchart) do not
lead to a successful download.

Path 1 – No server found:

In this case, another query is performed after 1 minute.

In the demonstration the periodicity of the server search is one minute, but in a real
implementation it can be in terms of days. A macro is defined for this period.

For one minute, the macro definition is:

 #define OTA_QUERY_TIME_IN_SEC 60

For one day, this becomes:

 #define OTA_QUERY_TIME_IN_SEC 86400

 ZigBee Home Automation Demonstration

36 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

Path 2 – Server is found but new image is same as current image:

In this case, another query for a new (different) image is performed after one minute plus a
small delay to wait for a query response.

It is possible for the client to request an OTA download of an image on the server that has
the same version as the client’s current image. To enable this functionality, you must include
the following line in the zcl_options.h file on the client:

#define OTA_ENABLE_IMAGE_RE_INSTALL

It is important to note that if this option is enabled, the client will continually request the same
image while this image still remains on the server. It is the responsibility of the application to
deal with this behaviour.

Path 3 - Server is found and image is available but download timeout occurs:

In this case, a valid image is available but the image download does not start within a
timeout period (measured from the query response), where this period is defined as:

(2 * OTA_DL_IN_PROGRESS_TIME_IN_SEC) + random value between 1 and 2 seconds

The result is typically 3+ minutes.

8.3 OTA Upgrade Demonstration Files

Pre-built binary files for OTA upgrades (and downgrades) of devices are supplied with this
Application Note. For each device type, the files are located in the corresponding
Build/OTABuild directory. The files for a device type cover one or more of the following:

• Image upgrade (v1 to v2)

• Image upgrade (v1 to v2) on a device which uses encryption

• Image downgrade (v2 to v1)

• Image downgrade (v2 to v1) on a device which uses encryption

In the case of encrypted files, the target node must contain the same encryption key as the
one in the image file (see Section 8.5).

The table below lists and describes the supplied pre-built binary files for the above cases.
The binaries are provided for JN5168 and JN5169 – in the table below, <x> can be 8 or 9.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 37

OTA Binary Notes

OTA Upgrade Server

OTAServer_JN516<x>.bin To be loaded into JN516x
internal Flash memory of
DR1198 USB Dongle
(which also acts as the
network Co-ordinator)

Dimmer Switch – image upgrade

DimmerSwitch_JN516<x>_DR1199_OTA_Client_v1.bin Bootable v1 image to be
loaded into JN516x
internal Flash memory on
the switch node when
demonstrating an image
upgrade

DimmerSwitch_JN516<x>_DR1199_OTA_v2.ota/.bin * OTA v2 image to be
loaded into JN516x
external Flash memory
on the OTA server when
demonstrating an image
upgrade

Dimmable Light – image upgrade

DimmableLight_JN516<x>_DR1175_LED_EXP_MONO_OTA_Client_v1.bin Bootable v1 image to be
loaded into JN516x
internal Flash memory on
the light node when
demonstrating an image
upgrade

DimmableLight_JN516<x>_DR1175_LED_EXP_MONO_OTA_v2.ota/.bin * OTA v2 image to be
loaded into JN516x
external Flash memory
on the OTA server when
demonstrating an image
upgrade

Dimmable Light – image upgrade with encryption

DimmableLight_JN516<x>_DR1175_LED_EXP_MONO_OTA_Client_v1_Enc.bin Encrypted bootable v1
image to be loaded into
JN516x internal Flash
memory on the light node
when demonstrating an
image upgrade on a node
which uses encryption

DimmableLight_JN516<x>_DR1175_LED_EXP_MONO_OTA_v2_Enc.ota/.bin * Encrypted OTA v2 image
to be loaded into JN516x
external Flash memory
on the OTA server when
demonstrating an image
upgrade on a light node
which uses encryption

Dimmable Light – image downgrade

DimmableLight_JN516<x>_DR1175_LED_EXP_MONO_OTA_Client_v2.bin Bootable v2 image to be
loaded into JN516x
internal Flash memory on
the light node when
demonstrating an image
downgrade

DimmableLight_JN516<x>_DR1175_LED_EXP_MONO_OTA_v1.ota/.bin * OTA v1 image to be
loaded into JN516x
external Flash memory
on the OTA server when
demonstrating an image

 ZigBee Home Automation Demonstration

38 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

downgrade

Dimmable Light – image downgrade with encryption

DimmableLight_JN516<x>_DR1175_LED_EXP_MONO_OTA_Client_v2_Enc.bin Encrypted bootable v2
image to be loaded into
JN516x internal Flash
memory on the light node
when demonstrating an
image downgrade on a
node which uses
encryption

DimmableLight_JN516<x>_DR1175_LED_EXP_MONO_OTA_v1_Enc.ota/.bin * Encrypted OTA v1 image
to be loaded into JN516x
external Flash memory
on the OTA server when
demonstrating an image
downgrade on a light
node which uses
encryption

Colour Dimmable Light

ColorDimmableLight_JN516<x>_DR1175_LED_EXP_RGB_OTA_<xxx> Eight images as
described above for
Dimmable Light

Colour Dimmable Light with Occupancy Sensor

OTAColorDimmableLightWithOccupancy_JN516<x>_DR1175_LED_EXP_RGB_
OTA_<xxx>

Eight images as
described above for
Dimmable Light

Table 2: Pre-built Binary Files for OTA Upgrade/Downgrade Demonstrations

* Each OTA upgrade binary is provided in two versions, with .ota and .bin extensions. The .bin file contains a
4-byte chip-specific header for use with the former JN51xx Flash Programmer v1.8.9. The .ota file does not

contain this header and is for use with the current JN51xx Production Flash Programmer (JN-SW-4107).

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 39

8.4 OTA Upgrade Procedure

The following procedure demonstrates the OTA upgrade of a Dimmable Light application.
You can implement the procedure using the NXP resources provided in this Application Note
and a JN516x Evaluation Kit (the named files are for the JN5168 device but the procedure is
the same for the JN5169 device with the corresponding JN5169 binary files).

 Note 1: This procedure explains how to build the relevant binary files
using BeyondStudio for NXP - detailed build instructions are provided in
Section 10.3. However, pre-built files for OTA upgrade demonstrations
are supplied with this Application Note (see Section 8.3). Therefore, you
can omit the build steps and use the pre-built files, if you wish.

 Note 2: When building an upgrade image, both a .bin and a .ota file will
be produced containing the image. The .ota file is for use with the current
JN51xx Production Flash Programmer (JN-SW-4107) and the .bin file is
for use with the former JN51xx Flash Programmer (JN-SW-4007) – see
Section 8.3. Both files are also supplied pre-built.

 Note 3: This procedure assumes that you will use the JN51xx Production
Flash Programmer (JN-SW-4107) to program the external Flash memory
of the JN5168 device on the USB Dongle. In this case, you will need the
upgrade images in the form of .ota files (rather than .bin files).

 Note 4: For the JN5169 device, the macro OTA_MAX_BLOCK_SIZE
should be defined as 48 (bytes) in the zcl_options.h file.

1. Configure hardware jumper setting for OTA upgradable light

 The evaluation kit hardware that is used for the Dimmable Light node is a DR1174
Carrier Board fitted with a DR1175 Lighting/Sensor Expansion Board. The Carrier Board
has a SPI Flash device that can be used as external storage during the OTA download
process. To make use of this Flash device, the SPI jumper must be set to “SSZ” on the
Carrier Board, as shown below.

 ZigBee Home Automation Demonstration

40 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

2. Compile the images for the Dimmable Light node

 An OTA upgrade image has certain special properties and a special header in the
binary file. This Application Note provides a build configuration to compile the Dimmable
Light application code for an OTA upgrade image using the NXP JN51xx Encryption
Tool (JET). The build configurations are listed below, in which the “OTA Client
DimmableLight1” configuration is selected.

 Note: The JN51xx Encryption Tool (JET) is provided in the JN516x
ZigBee Home Automation SDK (JN-SW-4168). It must be placed in the
directory Tools/OTAUtils. The makefile for the above configuration runs
a batch script. JET is described in the JET User Guide (JN-UG-3081).

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 41

 The build configuration “OTA Client DimmableLight1” will result in the following two
binary files, both located in the /DimmableLight/Build/OTABuild directory:

o DimmableLight_JN5168_DR1175_LED_EXP_MONO_OTA_Client_v1.bin:
This binary file must be programmed into the JN5168 module of the
Dimmable Light device. This file has been coded as version 1 of the
Dimmable Light image.

o DimmableLight_JN5168_DR1175_LED_EXP_MONO_OTA_v2.ota: This file
is version 2 of the Dimmable Light image and has the OTA headers required
by the OTA server. This image is required to be distributed over-air from the
OTA server. Hence, this image needs to be programmed into the external
Flash device of the OTA server node.

 Device programming is covered in Step 4.

3. Compile the OTA server image

 An OTA server node must be introduced to the network and a special build
configuration “OTA Server Router” is provided to build the appropriate binary files. This
build configuration is selected in the list below.

 The “OTA Server Router” build configuration will create a binary filed called
OTAServer_JN5168.bin in the /OTAServer/Build/OTABuild directory. This binary
must be programmed into the DR1198 USB Dongle that will act as the OTA server - see
Step 4.

 ZigBee Home Automation Demonstration

42 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

4. Program the OTA nodes

 The binary files of the OTA demonstration must now be programmed into the hardware.
This involves programming binary files into JN516x internal and external Flash memory.
Since external Flash devices cannot be programmed from BeyondStudio for NXP, you
should use the JN51xx Production Flash Programmer (JN-SW-4107) which can
program both JN516x internal and external Flash memory, and is described in the
JN51xx Production Flash Programmer User Guide (JN-SW-3099).

a) OTAServer_JN5168.bin: This image provides the OTA server functionality and
needs to be programmed into the ‘internal’ Flash device of the DR1198 USB
Dongle that is to be used as the OTA server hardware.

b) DimmableLight_JN5168_DR1175_LED_EXP_MONO_OTA_v2.ota: This is the
Dimmable Light upgrade image (v2) and needs to be programmed into the
‘external’ Flash device of the USB Dongle used as the OTA server

c) DimmableLight_JN5168_DR1175_LED_EXP_MONO_OTA_Client_v1.bin: This
is the Dimmable Light image (v1) that has OTA client capability and needs to be
programmed into the ‘internal’ Flash device of the Dimmable Light node (DR1174
Carrier Board with external Flash device enabled and fitted with DR1175
Lighting/Sensor Expansion Board).

5. Distribute the OTA Upgrade image

 The transfer of the OTA upgrade image from OTA server to client starts automatically
when either of the following conditions is met:

o The OTA client in the Dimmable Light node receives an Image Notify
command from the OTA server

o The OTA client receives a response to a Query Next Image Request with a
file version which is different from that of the currently running image

 The transfer can alternatively be initiated manually (before it is initiated automatically)
by pressing the Reset (RST) button on the OTA client node.

 Whenever there is OTA activity, the orange LED on the OTA server dongle lights up.

 Note: To upgrade to another version (v3) of the OTA image, prepare a
DimmableLight_JN5168_DR1175_LED_EXP_MONO_OTA_v3.ota file
using the JET utility. Repeat the programming step 4b to store this
upgrade image in the OTA server. Power cycle the OTA server node and
the download will start when either of the conditions mentioned in Step 5
is met.

8.5 Serving OTA Encrypted Images

The OTA server can serve application images to clients that implement encryption. The
encrypted OTA upgrade image for the client needs to be stored in the server’s external Flash
memory.

In this application, an encrypted OTA image is indicated by the most significant bit of the

ImageType parameter in the OTA header. For example:

Unencrypted Dimmable Light is represented by ImageType = 0x0101

Encrypted Dimmable Light is represented by ImageType = 0x1101

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 43

8.5.1 Encrypting an Image

In this application, an encrypted image is prepared using the JET tool. The JET commands
are invoked through a batch file named <Light or Switch >CreatOtaEncClient.bat located
in the /OTABuild folder. This batch file is called from the respective Makefile when building
the target with the OTA option enabled. The image needs to be encrypted using the same
encryption key as is present in the target device (see Section 8.5.2 below). For details of the
encryption options using the JET tool, refer to the JET User Guide (JN-UG-3081).

As part of the existing build of the OTA versions of the Dimmable Light and Dimmer Switch
applications, the encrypted binary and OTA upgrade images are generated in the /OTABuild
folder.

For JN5168, the above build process will produce an encrypted image and a non-encrypted
image, but the latter may not be needed. For JN5169, a macro is provided which allows just
one image to be built, encrypted or non-encrypted. This macro, OTA_ENCRYPTED, must be
included in the make command for the build:

• OTA_ENCRYPTED=1 to generate an encrypted image

• OTA_ENCRYPTED=0 to generate an non-encrypted image

For example, the following make command builds an encrypted Colour Dimmable Light
application image for the JN5169 device:

make LIGHT=ColorDimmableLight DR=DR1175 REV=r1v1 TYPE=RGB OTA=1

JENNIC_CHIP=JN5169 OTA_ENCRYPTED=1

Note that you must perform a clean build every time an encrypted or non-encrypted image is
re-built for JN5169.

8.5.2 Programming an Encryption Key into a Device

In order to implement encryption/decryption, a JN516x module must be programmed with an
128-bit AES encryption key. This is stored in the One Time Programmable (OTP) memory
within the Index Sector of the chip’s internal Flash memory - see the datasheet for your chip.

The AES encryption key can be programmed into a JN516x device using the JN51xx

Production Flash Programmer (JN-SW-4107) with the --deviceconfig= option, as

described in the JN51xx Production Flash Programmer User Guide (JN-UG-3099).

8.6 OTA Support for a Battery-Powered End Device (Target)

An End Device is often battery-powered and may also be sleepy (goes through sleep/wake
cycles) to conserve power. The OTA support for battery-powered End Devices in this
demonstration includes constantly monitoring the battery voltage, since an OTA upgrade
should not continue when the supply voltage becomes low.

 Note: A sleepy End Device receives data by polling its parent for buffered
data packets while awake (it cannot receive data while asleep) and this is
how it receives OTA upgrade images. The sleep period does not change
during an OTA upgrade.

In this demonstration, the only End Device that supports OTA upgrades is the Dimmer
Switch. A build configuration for a Dimmer Switch OTA client is provided and is called “OTA
Client DimmerSwitch” (this is the same as the OTA build configuration for the Dimmable
Light device).

 ZigBee Home Automation Demonstration

44 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

An encrypted OTA upgrade image can be produced for the Dimmer Switch as described in
Section 8.5.1.

To enable the voltage check, the compile-time option CHECK_VBO_FOR_OTA_ACTIVITY
must be defined. In this demonstration, it is enabled in the Dimmer Switch makefile for the
OTA build.

When the voltage check is enabled, the following behaviour is expected:

• The Dimmer Switch will not enter ‘deep sleep’ mode once an OTA upgrade has been
started, but ‘warm sleep’ cycles will continue.

• Upon reset or wake-up, the voltage monitoring is initialised to check for the battery
voltage falling below 2.4V (defined by the macro APP_OTA_VBATT_LOW_THRES).

• OTA upgrade activities such as server discovery and block download requests
continue while the battery voltage is at or above 2.4V but stop when it falls below this
threshold.

• When OTA upgrade activity stops, the device enters ‘deep sleep’ mode when there is
no further user activity (such as a button-press) before the expiry of the ‘deep sleep’
counter.

• If the device is non-sleepy (KEEPALIVETIME is equal to 0 in the build configuration)
then a suspended OTA upgrade will resume only if the voltage rises back above 2.7V
(defined by the macro APP_OTA_VBATT_HI_THRES).

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 45

9 Advanced User Information

9.1 Saving Network Context

All device types are protected from losing their network configuration during a power outage
by means of context saving. The required network parameters are automatically preserved
in non-volatile memory by the ZigBee PRO Stack (ZPS). On restart, the radio channel,
Extended PAN ID (EPID) and security keys are restored.

Application-specific information can also be preserved in the non-volatile memory, which is
most commonly used to preserve the application’s operating state.

9.2 Security Key

The HA profile uses a public pre-configured link key. This link key can be obtained from the
ZigBee HA Profile Specification.

9.3 Adding More Devices to the Network

The maximum number of devices in the network is set to 10 in the ZigBee PRO Stack (ZPS)
Configuration Editor. However, this value can be increased to have more lights and control
units in the network. This is done by modifying the ZigBee Network Parameters in the ZPS
Configuration Editor. These parameters and the editor are described in dedicated chapters
of the ZigBee PRO Stack User Guide (JN-UG-3101).

The maximum number of GP Switches in the network is set to 2. This can be increased by
increasing the sizes of the Translation table, Sink table, GP Transmit Queue and GP
Security table. The Translation table and Sink table sizes can be configured in
zcl_options.h - these parameters are described in the ZigBee Green Power User Guide
(JN-UG-3095). The GP Transmit Queue and GP Security table sizes can be configured in
the ZPS Configuration Editor.

9.4 Adding More Groups to a Light

Each light is configured with a group addressing table of size 8. This allows each light to be
a member of 8 different groups. To increase this group addressing table size, increase the
value of the “Group Addressing Table Size” in the ZPS Configuration Editor. Also update the
CLD_GROUPS_MAX_NUMBER_OF_GROUPS macro in the zcl_options.h file to match
the updated value of "Group Addressing Table Size" in the ZPS Configuration Editor.

9.5 Adding More Scenes to a Light

Each light is configured to have 16 scenes. This allows 16 scenes to be added in the device.
To increase the number of scenes, edit the CLD_SCENES_MAX_NUMBER_OF_SCENES
macro in the zcl_options.h file.

9.6 OTA Upgrade Image Validation

Normally during an OTA upgrade, the entire upgrade image is downloaded to the OTA client
before the image is validated by checking the embedded link key - if the link key in the image
does not match the one in the target device then the image is rejected as an invalid image.

This is an inefficient way of validating a new application image - since the link key is
contained in the image header, the validation can be performed once the first Kilobyte of the
image has been downloaded. The embedded link key can then be extracted and compared
with the link key in the device. If there is no match, the download can be aborted. One

 ZigBee Home Automation Demonstration

46 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

Kilobyte is chosen to ensure that the link key in the upgrade image is written to Flash
memory on the target device before the validation begins.

For an encrypted image, the link key must be decrypted before the comparison can be
performed. If the encryption key on the target device (used to decrypt the image) is not the
same as the key used to encrypt the image then the validation will fail (even if the embedded
link key is the correct one).

9.7 EZ-mode Commissioning

EZ-mode Commissioning is used in the demonstration to a join a node to the network and to
establish one or more pairings between the joined node and other nodes in the network. For
such a pairing, there are two types of device from a commissioning perceptive:

• Initiator: The device that will act as a source for operational transactions

• Target: The device that will need to receive operational transactions

For a complete introduction to EZ-mode Commissioning, refer to the ZigBee Cluster Library
User Guide (JN-UG-3103).

Once a node has joined the network, if it needs to perform one-to-many operational
transactions with other devices in the network then it should be grouped or bound to the
relevant devices. Grouping and binding both allow this one-to-many communication but
there are factors that should be taken into consideration.

• Binding: This is best confined to situations with a small number of target devices (up
to four). In this case, the initiator needs to store all the target information in a Binding
table, requiring a table entry for each relevant cluster on each relevant endpoint on
each target node. Therefore, if the number of target devices is large then the Binding
table will be large and consume memory. Binding is suitable when a device needs to
report regularly to a small number of target devices.

• Grouping: This is appropriate when an operation is to be performed with a large
number of network devices (more than four) - for example, for an On/Off Switch which
can send an On or Off command to a large set of lights that should all receive and
execute the same command.

The following diagram illustrates the ‘Find and Bind/Group’ process within EZ-mode
Commissioning. This requires a button to be pressed on a target to put it in Identify mode
and a button to be pressed on the initiator to start the ‘Find and Bind/Group’ phase.

 Note: In the case of binding, depending on whether the initiator has the
target’s IEEE address available locally in the device (Address Map entry),
it may need to perform an IEEE address look-up before it can perform the
binding.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 47

Initiator Target

User puts target into

Identify mode

User puts initiator into

‘Find and Bind’ or

Grouping mode

Identify Query Request (Broadcast)

Identify Query Response (Unicast)

Simple Descriptor Request (Unicast)

Bind or group?

Simple Descriptor Response (Unicast)

Add to Group if Identifying (Unicast)

Group

Create local

binding

Invoke callback

function Stop Identifying (Unicast)

Bind

By a similar process to the above, a node can be removed from a group.

In this application, groups and bindings can be reset by performing an EZ-mode
Commissioning reset invoked by a user-defined button. This causes the devices to remove
their binding and group entries allowing the device to be re-commissioned with another set
of devices.

This application provides methods to perform the grouping and binding of targets through
functions contained in haEzFindAndBind.h. Details of the functions are provided in the EZ-
mode Commissioning chapter of the ZCL User Guide (JN-UG-3103). However, for a quick
reference, the functions are listed below with brief descriptions.

eEZ_FindAndBind(): This function can be called by both the initiator and target devices at
any point in time to start the ‘Find and Bind’ phase. It requires the local endpoint number and
the type of the calling device.

• On a target device, this call will cause the device to enter Identify mode for a time
defined by EZ_MODE_TIME (180 seconds, be default).

• On an initiator device, this call will result in the transmission of an Identify Query
Request to discover the target devices that are currently in Identify mode. This
discovery process is repeated with a period defined by EZ_RESPONSE_TIME

 ZigBee Home Automation Demonstration

48 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

(10 seconds, by default) until the timeout defined by EZ_MODE_TIME (180 seconds,
by default) expires or the user exits this mode by taking an action which results in a
call to vEZ_Exit().

When a target is discovered by responding to an Identify Query Request, the initiator
performs a further Simple Descriptor Request to discover the matching clusters and, if
required, an IEEE address look-up after which it binds to the target via its local Binding table.

eEZ_Group(): This function is similar to the above function except this one starts the
Grouping process at the initiator (instead of binding).

vEZ_SetGroupId(): This function sets the Group ID that will be used by the initiator for
grouping (and must be called before eEZ_Group()).

u16EZ_GetGroupId(): This function returns the Group ID currently in use by the initiator.

vEZ_Exit(): This function causes the device to exit the ‘Find and Bind’ or Grouping process.

vEZ_FactoryReset(): This function performs a reset of the Group and Binding tables on the
local endpoint. It can be used by both initiator and target.

• When called on a target, it removes all the local Group table entries

• When called on the initiator, it removes all the local Binding table entries. If there is a
group server, it removes all the local Group table entries and sends a Remove Group
command as a groupcast to allow the targets in the group to be freed up.

eEZ_GetFindAndBindState(): This function returns the current state of the EZ-mode
Commissioning process on the local endpoint.

eEZ_ExcludeClusterFromEZBinding(): This function can be used to exclude clusters that
are not intended to be bound, in order to save Binding table space on the initiator. By
default, all the clusters on the endpoint will be considered for binding.

vEZ_EZModeNWKFindAndBindHandler(): This function needs to be called on the initiator
when a stack event occurs. It handles transactions such as the Simple Descriptor Response
and IEEE Address Response from the target during EZ-mode Commissioning.

vEZ_EPCallBackHandler(): This function needs to be called on the initiator from the
endpoint callback function. It handles the Identify cluster commands such as Query Identify
Response from potential targets during EZ-mode Commissioning.

vEZModeCb(): This callback function is invoked by the EZ-mode Commissioning process
when a grouping or binding is created on the initiator. The developer should add further
actions within this function based on the possible events.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 49

9.8 Report Manager

A Report Manager is available that is responsible for generating reports (as configured) on a
node. Depending on the usage of system resources, the Report Manager may sometimes
need to retransmit a report. The Report Manager is an optional feature that, if required, must
be enabled (see below). The feature is normally required for periodic reporting, such as from
a sensor. However, if a sensor does not require use of the Report Manager due to power
saving preferences, the feature can be left unused in order to achieve a smaller code size.

If required, the Report Manager must be enabled in the ZCL using the following macros in
the zcl_options.h file:

• Define CLD_BIND_SERVER

• Define MAX_NUM_BIND_QUEUE_BUFFERS to an appropriate value

• Define MAX_PDU_BIND_QUEUE_PAYLOAD_SIZE to an appropriate value

For more information on the above macros, refer to the ZigBee Cluster Library User Guide
(JN-UG-3103).

10 Developing with the Application Note

This section provides additional information that may be useful when developing with this
Application Note.

10.1 Useful Documents

Before commencing a ZigBee Home Automation development, you are recommended to
familiarise yourself with the following documents:

[R1] - JN-UG-3101 ZigBee PRO User Guide
[R2] - JN-UG-3075 JenOS User Guide
[R3] - JN-UG-3076 ZigBee Home Automation User Guide
[R4] - JN-UG-3103 ZigBee Cluster Library User Guide
[R5] - JN-UG-3087 JN516x Integrated Peripherals API User Guide
[R6] - JN-UG-3095 ZigBee Green Power User Guide
[R7] - ZigBee HA Profile Specification
[R8] - ZigBee Cluster Library (ZCL) Specification
[R9] - ZigBee Green Power Profile Specification
[R10] - docs-13-0553-37-00ha-ha-1-2-errata-document

Documents [R1] to [R6] can be obtained from the Wireless Connectivity area of the NXP
web site, while documents [R7] to [R10] can be obtained from the ZigBee Alliance web site.

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity

 ZigBee Home Automation Demonstration

50 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

10.2 Debugging the Demonstration Application

10.2.1 Serial Debug

Each node in the demonstration prints out debug information via the UART port based on
the debug flags set in the Makefile. This debug information can be viewed using terminal
emulator software, e.g. Tera Term. Connect the node of interest to a PC using the Mini-USB
cable (supplied in the evaluation kit) and configure the terminal emulator’s COM port as
follows:

BAUD Rate 115200

Data 8 bits

Parity None

Stop bit 1 bit

Flow Control None

Debug can be disabled for production by setting the ‘Trace’ flag in the relevant node’s
Makefile to zero. The Makefile also defines a subset of debug flags that allows localised
debug statements to be collectively enabled or disabled, e.g. TRACE_START.

By default, there are certain debug print lines left in the Application Note code to trace any
issues.

10.2.2 JTAG Debug

The application on a node can be debugged from BeyondStudio for NXP via a JTAG
connection. This method requires additional hardware to form the JTAG interface on the
node, including a JTAG expansion board and JTAG adaptor/dongle. JTAG debugging is fully
described in the Application Note JN516x JTAG Debugging in BeyondStudio (JN-AN-1203).

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 51

10.3 Building and Loading the Application

This section provides application build instructions. If you simply wish to use the supplied
application binaries, refer to Section 4.

10.3.1 Pre-requisites and Installation

Before you start to build and load the application, please ensure that you have following
installed on your development PC:

• BeyondStudio for NXP (JN-SW-4141)

• JN516x ZigBee Home Automation SDK (JN-SW-4168)

 Note: For the installation instructions, please refer to BeyondStudio for
NXP Installation and User Guide (JN-UG-3098) and the Release Notes
supplied with the JN516x ZigBee Home Automation SDK (JN-SW-4168).

In order to build the application, this Application Note (JN-AN-1189) must be unzipped into
the directory:

<BeyondStudio for NXP installation root>\workspace

where <BeyondStudio for NXP Installation root> is the path into which BeyondStudio for
NXP was installed (by default, this is C:\NXP\bstudio_nxp). The workspace directory is
automatically created when you start BeyondStudio for NXP.

All files should then be located in the directory:

…\workspace\JN-AN-1189-ZigBee-HA-Demo

There is a sub-directory for each application, each having Source and Build sub-directories.

10.3.2 Build Instructions

The software provided with this Application Note can be built for the JN5168 or JN5169
device.

The applications can be built from the command line using the makefiles or from
BeyondStudio for NXP – makefiles and Eclipse-based project files are supplied.

• To build using makefiles, refer to Section 10.3.2.1.

• To build using BeyondStudio for NXP, refer to Section 10.3.2.2.

 Note: An OTA upgrade build can be enabled by uncommenting the line

OTA=1 in the manufacturer configuration file manu_config.mk.

Alternatively, when building from the command line using makefiles (see

Section 10.3.2.1), the option OTA=1 can be added to the build command.

 ZigBee Home Automation Demonstration

52 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

10.3.2.1 Using Makefiles

This section describes how to use the supplied makefiles to build the applications. Each
application has its own Build directory, which contains the makefiles for the application.

To build an application and load it into a JN5168 or JN5169 device, follow the instructions
below.

 Note: The make commands given below will build the application
according to the default build options in the makefile (e.g. device type).
To use alternative build options, these must be specified in the make
command. The required options for different builds can be obtained from
the build configurations provided in BeyondStudio for NXP.

1. Ensure that the project directory is located in

<BeyondStudio for NXP installation root>\workspace

2. Start an MSYS shell by following the Windows Start menu path:
All Programs > NXP > MSYS Shell

3. Navigate to the Build directory for the application to be built and follow the instructions
below for your chip type:

 For JN5168:

 At the command prompt, enter:

 make clean all

 Note that for the JN5168, you can alternatively enter the above command from the top
level of the project directory, which will build the binaries for all applications.

 For JN5169:

 At the command prompt, enter:

 make JENNIC_CHIP=JN5169 clean all

 In both of the above cases, the binary file will be created in the Build directory, the
resulting filename indicating the chip type (e.g. 5168) for which the application was built.

4. Load the resulting binary file into the device. You can do this from the command line
using the JN51xx Production Flash Programmer (JN-4107), described in the JN51xx
Production Flash Programmer User Guide (JN-UG-3099).

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 53

10.3.2.2 Using BeyondStudio for NXP

This section describes how to use BeyondStudio for NXP to build the demonstration
application.

To build the application and load it into JN5168 or JN5169 devices, follow the instructions
below:

1. Ensure that the project directory is located in

<BeyondStudio for NXP installation root>\workspace

2. Start the BeyondStudio for NXP and import the relevant project as follows:

a) In BeyondStudio, follow the menu path File>Import to display the Import dialogue
box.

b) In the dialogue box, expand General, select Existing Projects into Workspace
and click Next.

c) Enable Select root directory and browse to the workspace directory.

d) In the Projects box, select the project to be imported and click Finish.

3. In the makefile(s) for application(s) to be built, ensure that the JN516x chip on which the
application is to run is correctly specified in the line beginning JENNIC_CHIP. For
example, in the case of the JN5169 device, this line should be:

JENNIC_CHIP=JN5169

4. Build an application. To do this, ensure that the project is highlighted in the left panel of

BeyondStudio and use the drop-down list associated with the hammer icon in the
toolbar to select the relevant build configuration – once selected, the application will
automatically build. Repeat this to build the other applications.

 The binary files will be created in the relevant Build directories for the applications.

5. Load the resulting binary files into the devices. You can do this using the integrated
Flash programmer, as described in the BeyondStudio for NXP Installation and User
Guide (JN-UG-3098).

 Note: To program a binary file into JN516x external Flash memory, you
will need to use the JN51xx Production Flash Programmer (JN-4107),
described in the JN51xx Production Flash Programmer User Guide
(JN-UG-3099). This tool can be used to program JN516x internal or
external Flash memory.

 ZigBee Home Automation Demonstration

54 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

10.4 Application Start-up

This section describes the typical start-up flow of an NXP ZigBee PRO device. Note that not
all devices sleep, hence the ‘Warm Start’ path is not always applicable.

Cold Start

Warm Start

vInitialiseApp()

Stabilise clock

Debug initialisation

Watchdog Event Trap

Start the OS

vAppMain() PWRM_CALLBACK(Wakeup)

Debug initialisation

RAM held?

No

Restore MAC settings

General hardware re-initialisation

Restart the OS

Yes

Power Manager initialisation

Persistent Data Manager initialisation

Protocol Data Unit Manager initialisation

General hardware initialisation

APP_vInitialiseNode()

LED initialisation

Button initialisation

Clear context (optional)

Load context

Load the pre-configured link key (no context)

Initialise the Application Framework

Start the ZBP stack (context restore)

Initialise the ZCL

Commissioning initialisation

Idle Loop:

Reset the Watchdog timer

Service the Power Manager

OS_ISR(APP_ButtonsDIOChanged)

Wake Timer ISR

Clear down interrupt flag and execute

the user-defined callback function

vWakeCallBack()

Activate the wake-up task

OS_TASK(APP_WakeUpTask)

Schedule the next wake-up event

Update the local clock

Start the poll timer

Activate the main task

Returning to the idle loop

after the main task completes

Sleep?

Sleep

PWRM_CALLBACK(PreSleep)

Save MAC settings

Disable hardware peripherals

Clear DIO interrupt flags

No

Yes

app_xxxx_node.c

app_start.c

File Key:

app_buttons.c

app_sleep_functions.c

Doze

ISR/Task

activates &

completes

Figure 3: Typical Start-up Flow

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 55

10.5 HA Device Start-up

The start-up flows for a light node (Dimmable Light or Colour Dimmable Light) and switch
node (Dimmer Switch or Colour Dimmer Switch) with respect to different states (Factory
New or Non-Factory New), are described in the sub-sections below.

10.5.1 Factory New Light

The light node acts as a Router in the ZigBee network. On power-up, a ‘Factory New’ light
performs a network discovery on each channel selected in the ZPS configuration. Once the
scan is complete, the light node will attempt MAC association with the discovered networks.

10.5.2 Non-Factory New Light

Once the light node has joined a network, the ZigBee PRO stack and the application save
the network context and commissioning parameters to the on-chip EEPROM. On
subsequent power cycles, the light node restores these parameters and then functions the
same as before the reset.

10.5.3 Factory New Switch

The switch node acts as an End Device in the ZigBee network. On power-up, a ‘Factory
New’ switch performs a network discovery on each channel selected in the ZPS
configuration. Once the scan is complete, the switch node will attempt MAC association with
the discovered networks.

10.5.4 Non-Factory New Switch

Once the switch node has joined a network, the ZigBee PRO stack and the application save
the network context and commissioning parameters to the on-chip EEPROM. On
subsequent power cycles, the switch node restores these parameters and will function the
same as before the reset.

10.6 Guidelines for Modifying the Switch

This section highlights the key areas of interest within the code, in case the developer
wishes to alter the switch node’s functional states or move to a different user interface.

10.6.1 Operational State Machine

The operational state machine (sDeviceDesc.eNodeState) is located within
zha_switch_node.c for the Dimmer switch and within zha_remote_node.c for the Remote
Control device. Additional states must be added to this switch statement if further operational
modes are required.

10.6.2 Handling a Key Press and Release

For Dimmer Switch:

The function that handles a key press and release is located in
app_switch_state_machine.c as part of APP_ZHA_Remote_Task. The events related to
key input are processed in this task with the sAppEvent.eType event as a parameter. Any
changes to the key handling should be made within the corresponding switch statement. The
file also contains the key-press handler function, vApp_ProcessKeyCombination(). Any
alteration to the key map to allow different functionality should go in this function.

Similarly, the vApp_ProcessKeyCombination() function can be modified to add a function
that is called upon release of a key.

 ZigBee Home Automation Demonstration

56 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

For Colour Dimmer Switch or Remote Control:

The DR1159 Remote Control Unit is used to implement a Colour Dimmer Switch device or a
Remote Control device. The unit contains a capacitive-touch screen which senses key
touches - the driver files for this functionality are DriverCapTouch.c and
app_captouch_buttons.c. When a touch is detected, an application event is raised for the
remote task with sAppEvent.eType as a parameter.

This event is subsequently translated to the appropriate commands - the translation is
located in the file zha_remote_node.c. Any changes to the key map should be made within
this file.

10.7 Joining and Re-joining

This application implements a common joining state machine in the haEzJoin.c file. All of
the join and re-join implementation is included in this file.

The function vEZ_EZModeNWKJoinHandler() is used for both joining and re-joining
purposes by specifying the appropriate action in the function parameters. This function is a
wrapper on top of the underlying stack function and is managed by a state machine. The
function is called from the application when a stack event occurs.

When an End Device loses its parent, the above function is called with an action flag to start
a re-join. The re-join behaviour of the End Device is summarised below for each relevant HA
Lighting device type used:

• Dimmer Switch

o Detects parent loss when a poll or ping fails, and initiates joining process

o Can continue its sleep/wake cycle during the joining process

• Light Sensor

o Detects parent loss when a poll or ping fails, and initiates joining process

o Can continue its sleep/wake cycle during the joining process

• Occupancy Sensor

o Detects parent loss when a poll or ping fails, and initiates joining process

o Can continue to sleep for 50 seconds and stay awake for 10 seconds in order
to attempt a re-join once per minute

• Colour Dimmer Switch or Remote Control

o Detects parent loss when a poll or ping fails, and initiates joining process

o If no parent found, continues to sleep and scan the keypad - as soon as the
user interacts via the keypad, a re-join is initiated and the unit resumes
normal operation once the re-join is complete

o Re-join process involves scanning all channels for the parent – during this
process, a user interaction via the keypad brings the re-joining process back
to the last known operating channel of the device to make the joining faster

The above function and other associated functions are detailed in the EZ-mode
Commissioning chapter of the ZCL User Guide (JN-UG-3103).

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 57

10.8 Child Ageing

The application takes into account child ageing for Routers and the Coordinator upon a
power-on reset. The following diagram illustrates the child ageing implementations.

Router Router

Child is

present?

Remove child from

Neighbour table

Network Address Look-up for End Device children (Broadcast)

Network Address Look-up Response (Unicast)

Yes

Do nothing

No

On a power-on reset of a Router, the device broadcasts a ‘Network Address Look-up’
request containing the IEEE addresses of the sleepy End Devices from its Neighbour table
(NT) that were previously children of the Router (before the reset). On receiving the request,
any other Router that has a relevant address in its NT will respond. On receiving this
response, the initiating Router assumes that the specified End Device child has moved to
the parent which has just responded and it removes the relevant entry from its own NT.

10.9 Pinging Parent

In the above mechanism for ageing children, there is one possible scenario where the
Router parent has removed an End Device child from its NT while the child is asleep but, on
waking, the child still thinks this Router is its parent that it should be polling for data. To
avoid this scenario, in this application there is a mechanism for the sleepy End Device to
ping its parent at 60-second intervals. If there is no response from the parent, the End
Device then re-joins the network.

 ZigBee Home Automation Demonstration

58 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

11 Useful Device Information

11.1 Light and LED Indication of Different States

The light and LED indications on each of the network devices in the demonstration are
summarised below:

Device Light/LED Indication

All lights Breathe: Light node is joining the network

Single Flash: User input accepted during power-cycling

Constantly ON: Light node has joined the network

Dimmer Switch LEDs D1, D2 and D3 flash alternately: Joining or re-joining the network

LEDs D1,D2 and D3 constantly OFF: Node in the network

Colour Dimmer Switch
(Remote Control Unit)

Both LEDs flash 1 second ON, 1 second OFF: Joining or re-joining the network

One or both LEDs constantly ON or OFF (no flashing): Node in the network

Both LEDs flash quickly: Low battery

Right LED flashes 800ms OFF, 200ms ON: Unit is sleeping with key scanning

Light Sensor LED D4 flashes 1 second ON, 1 second OFF: Joining or re-joining the network

LED D4 flashes 250ms ON, 250ms OFF: Keep-alive mode

LED D4 OFF: Node is in the network or sleeping

LED D4 flashes 500ms ON, 500ms OFF: Initiator mode active

Occupancy Sensor LED D1 (Sensor State): ON – Occupied, OFF - Unoccupied

LED D2 flashes 1 second ON, 1 second OFF: Initiator mode active

LED D3 flashes 1 second ON, 1 second OFF: Joining or re-joining the network

LED D3 flashes 250ms ON, 250ms OFF: Keep-alive mode

During sleep, LED D1 indicates the sensor state but LED D3 is OFF

Co-ordinator
(USB Dongle)

Green LED flashes: Formed the network

Amber LED flashes: ‘Permit Join’ enabled

OTA Server
(USB Dongle)

Green LED On : Joined the network

Amber LED flashes: OTA activity

11.2 Sleep Cycles in the End Devices

In this application, the different End Devices employ different sleep and wake periods, as
summarised below.

 Note: In this section, references are made to ‘warm sleep’. This is sleep

with RAM held – that is, the contents of RAM are preserved during sleep.

11.2.1 Dimmer Switch

Once the Dimmer Switch is in the network, the device will cycle through 6 seconds of being
awake and 6 seconds of ‘warm sleep’ (sleep with RAM held). During this sleep, the device
can be woken by pressing any of the buttons SW1-SW4 or DIO8.

A ‘deep sleep’ timer is also started which, by default, is set to 1 minute. This timer is reset
when there is user activity. If the timer expires (due to no user activity), the device enters
deep sleep mode. The device can be woken from deep sleep by pressing any of the buttons
SW1-SW4.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 59

! Caution: The button DIO8 should not be pressed to wake the device
from deep sleep, as this button is used in clearing persisted context data.

11.2.2 Colour Dimmer Switch or Remote Control

Once the Remote Control Unit (Colour Dimmer Switch or Remote Control device) is in the
network, it remains awake for 20 seconds of inactivity and then starts a 1-second sleep/wake
cycle in which it is asleep (warm sleep) for 800 ms and is awake for 200 ms. During the
wake period, the device scans the keypad for user input and also sends a poll request to its
parent to detect parent loss.

A ‘deep sleep’ mode is also available, but is not enabled by default. If used, a deep sleep
timer is started on first entering warm sleep. This timer is reset when there is user activity. If
the timer expires (due to no user activity), the device enters deep sleep mode.

11.2.3 Light Sensor

The Light Sensor goes through a 12-second sleep/wake cycle in which it is asleep (warm
sleep) for 6 seconds and awake for 6 seconds. During the wake periods, the device listens
for its parent.

11.2.4 Occupancy Sensor

The Occupancy Sensor goes through a sleep/wake cycle of 1 minute, which is equal to the
maximum attribute reporting interval (HA_SYSTEM_MAX_REPORT_INTERVAL). The
sensor wakes:

• Every minute to send an attribute report and poll its parent to check for pending data

• As the result of a button-press to simulate the motion detection pulses

After dealing with the above processing, the device returns to warm sleep.

In every sleep/wake cycle, the device spends approximately 57 seconds asleep and
3 seconds awake.

11.3 Dimmable Light with iControl Support
A special version of the Dimmable Light device application is provided to support the
requirements for Icontrol certification. Icontrol provides a framework for consistent
operational behavior between devices from different manufacturers (and is in addition to
ZigBee certification). The Dimmable Light device with Icontrol support includes the Simple
Metering cluster, which is not included in the standard Dimmable Light device. Otherwise,
the functionality is the same for the two versions of the device.

The application binary file for the Icontrol version of the Dimmable Light device is:

DimmableLightOpenHome_JN5169_DR1175.bin

Therefore, a pre-built application is available for JN5169 only.

To rebuild this application, the zcl_options.h file must include the following line to enable
the Simple Metering cluster:

#define CLD_SIMPLE_METERING

Note that Icontrol requires that the Dimmable Light restores its last previous light level
following a power-cycle. This feature is enabled by default in the device application.

 ZigBee Home Automation Demonstration

60 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

12 Release Details

12.1 New Features

ID Feature Description

Version 1.15

Version 1.14

Version 1.13

Version 1.12

lpsw6960 OTA Image Stamp
Support

Added app support for OTA client image stamp

lpsw6958 Support for Simple
Metering Server
Cluster

Added app support for Simple Metering server cluster update

lpsw6954 Reset of Basic cluster
support added

Add app support for Basic Cluster ‘Reset Defaults’ command

lpsw6951 Diagnostic cluster
added

Diagnostic Cluster server update

Version 1.11

lpsw7071 Dimmable Light for
Icontrol

Dimmable Light device suitable for Icontrol certification

lpsw7073 Smart Plug Smart Plug (Mains Power Outlet) device

lpsw7536 ZCL Factory New Support for basic reset to ZCL factory new

Version 1.10

N/A OTA download of
same image

Same version of an OTA image can now be downloaded from the
OTA server to a client.

12.2 Known Issues

ID Severity Description

Version 1.15

Version 1.14

Version 1.13

Version 1.12

Version 1.11

Version 1.10

lpap550 Low The light flashes momentarily when the following sequence of
operations is performed: dim the light down, then switch off the light and
then send an identify command to the light - when the light switches
back on, it flashes briefly.

- Medium If a Light Sensor is re-allocated a different network address after being
commissioned to a Remote Control, commissioning must be restarted
as described in Section 6.2.3.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 61

12.3 Bug Fixes

ID Description

Version 1.15

Version 1.14

Version 1.13

Lpsw7920 Open Home light now sends a QNI within 5minutes and then every 24 hours.

Lpsw8271 Deferred confirm queue added to all configuration files.

Lpsw7921 APS ack’s switch on for all lighting devices

Lpsw8298 Frees APDU when ZPS_eAplZdpNwkAddrRequest() fails

Lpsw7864 Address conflict issue fixed when large number of device all join at once.

Lpsw7965 Set instantaneous demand as reportable.

Lpsw7963 Added poll request for Open home light.

Lpsw7962 Mgmt leave issue fixed.

Version 1.12

Version 1.11

lpsw5462 The previous dim level of a bulb was not restored following a power cycle. The level
attribute is now preserved across resets.

lpsw5585 When an OTA image is created using the appropriate build target, it contains 4 extra
bytes at the start of the file - these are a version number used by the Flash programmer.
However, these bytes cause the NTS test harness to reject the image when certifying
the OTA cluster.

lpsw5595 Need to add a build option that allows a developer to easily change the number of
power cycles required to put a lamp into the ‘factory new’ state, to clear PDM and to
identify itself. This option should allow an (or all) of these to be disabled by setting the
number of power cycles to zero.

lpsw5642 When the value of CLD_LEVELCONTROL_MAX_LEVEL is changed in the
zcl_options.h file, this value is not applied when the lamp is power cycled. The value
applied following a reset is hardcoded to 0xFE, but it should actually use the
CLD_LEVELCONTROL_MAX_LEVEL value.

lpsw6961 The OTA client attribute Manufacturer ID is not initialized until an OTA is performed.
Before that it reads back as 0.

lpsw7320 OTA needs to take into account the remapping of Flash by the bootloader.

lpsw7445 Touchlink handling of scan response fails if number of endpoints is not 1.

lpsw7526 Header file app_exceptions.h contained wrong copperplate. This has been corrected.

lpsw7527 Include the Mains Power Outlet example.

lpsw7528 The ZigBee OTA cluster specification (Revision 23, version 1.1, document number
095264r23, section 6.10.5.2.4) states that the version value may be the same as the
client.

lpsw7529 OTAColorDimmableLightWithOccupancy wrong Device ID setting.

Version 1.10

lpap558 Two versions of OTA binaries provided - OTA version and bin version.

lpap578 bAHI_APRegulatorEnabled is checked before any ADC conversion.

lpap579 Colour control name is now defined correctly.

lpap583/
lpap606

Management, remove and APS leave functionality can be changed in the application.

lpap592 Same version of OTA image can now be downloaded.

lpap600 Sensor now sends report if the sensor re-joins via another device in the network.

lpap607 Missing LD files for JN5164 device now added.

lpap632 APS acks enabled by default.

 ZigBee Home Automation Demonstration

62 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

Appendix A - Source File Descriptions

Automatically Generated Files

Each device has several files that are automatically generated at build-time from the JenOS
and ZPS configurations. These files are not generally used by the developer but are located
in the respective device’s \Source folders, in case they are of interest.

Common Files

A number of common files are used across all device types and are located within the
\Common\Source folder. The following table gives a brief description of each of the
common files.

Filename Description

app_common.h Contains the common macro definitions used in the project. It contains
the conditional inclusion of the appropriate device headers.

app_events.h Contains global definitions for the events in the HA application.

os_msg_types.h Contains all the include files required.

PDM_ID.h Contains the PDM_IDs that are used in PDM load and restore.

app.zpscfg and app_GP.zpscfg This is the ZPS configuration file, which is used to configure generic
network and node parameters. This includes profile, cluster, endpoint
and RF channel configurations. For more information, refer to the “ZPS
Configuration Editor” chapter of the ZigBee PRO Stack User Guide
(JN-UG-3101).

There is a separate ZPS configuration supporting ZigBee Green Power
for lights and switches – the filename is app_GP. A Green Power build of
an application must include this configuration.

haEzJoin.c/.h These are the EZ-mode Commissioning files. For details of EZ-mode
Commissioning, refer to the relevant chapter of the ZigBee Cluster
Library User Guide (JN-UG-3103).

haEzFindAndBind.c/.h These are commissioning files for binding a cluster based on the Simple
Descriptor request/response.

app_zbp_utilities.c/.h Contain the debug functions for ZigBee PRO function calls in the
application.

app_buttons.c/.h Contain button sampling/de-bouncing, interrupt routines and button task
to post messages under application events.

AgeChildren.c/.h Implement the child table. The ageing is done at the start-up of a Router
node in order to clean up the child table in case a child has moved to a
different parent while the node was off.

haKeys.c/.h Contain the pre-defined link keys for the HA profile

PingParent.c/.h Implement a ping mechanism for querying the network address of the
parent from an End Device.

app_exceptions.c/.h Contain the exception routines.

App_GreenPower.c/.h Contain the ZigBee Green Power related functionality to be included for a
node which supports GP.

App_pdm.c/.h Contain PDM functions, including the callback function for error debug.

app_ota_client.c/h Contain application routines for OTA initialisation, OTA server discovery
and application retries.

app_scenes.c/h Contain scenes store, load and management routines.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 63

Dimmable Light Source Files

The following table gives a brief description of the files used by the Dimmable Light device,
which are located in the \Common_Light\Source folder.

Filename Description

app_manage_temperature.c/.h Manages the radio recalibration temperature corrections.

app_start_light.c Start-up module with vAppMain and sleep/wake-up callback functions. All

the initialisation for start-up and wake-up is available in this module.

app_light_effect.c/.h Implement the breathe effect and other identify effects.

app_zcl_light_task.c/h ZCL event handler for the node - the endpoint callback function is part of
this module. This also contains the node task and functional state machine.

zha_light_node.c/h Contains HA application command send/receive functions. It also handles
the initialisation of HA states by calling appropriate PDM store and retrieve
descriptors.

App_ZHA_Light_JN516x_mono.
oscfgdiag

This is the JenOS configuration diagram file, which is used to configure
certain application building blocks, such as pre-emptive tasks, software
timers, mutexes and Interrupt Service Routines. For more information, refer
to the JenOS User Guide (JN-UG-3075).

This is used for the lights without “SYNC” in the build target, such as a
DR1174 Carrier Board with DR1175 Lighting/Sensor Expansion Board.

App_ZHA_Light_JN516x_rgb.
oscfgdiag

This is the JenOS configuration diagram file, which is used to configure
certain application building blocks, such as pre-emptive tasks, software
timers, mutexes and Interrupt Service Routines. For more information, refer
to the JenOS User Guide (JN-UG-3075).

This is used for the lights with “SYNC” in the build target, such as an SSL
SYNC bulb.

app_power_on_counter.c/h Application power ON counter management to change the state to
identify/factory reset or a full reset

app_reporting.c/h Default reporting and loading values upon power on.

Dimmer Switch Source Files

The following table gives a brief description of the files used by the Dimmer Switch device,
which are located in the \Common_Switch\Source folder.

Filename Description

app_start_switch.c Start-up module with vAppMain and sleep/wake-up callback functions. All

the initialisation for start-up and wake-up is available in this module.

app_switch_state_machine.c/.h Contain logic for button-presses and resulting actions/commands

app_zcl_switch_task.c/h ZCL event handler for the node - the endpoint callback function is part of
this module. This also has the node task and functional state machine.

zha_switch_node.c/h Contain the HA application command send/receive functions for the switch.
It also handles the initialisation of HA states by calling the appropriate PDM
store and retrieve descriptors.

App_ZHA_Controller_JN516x.os
cfgdiag

This is the JenOS configuration diagram file, which is used to configure
certain application building blocks, such as pre-emptive tasks, software
timers, mutexes and Interrupt Service Routines. For more information, refer
to the JenOS User Guide (JN-UG-3075).

 ZigBee Home Automation Demonstration

64 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

Colour Dimmer Switch Source Files

The following table gives a brief description of the files used by all the Colour Dimmer Switch
device, and are located in the \Common_Controller\Source folder

Filename Description

app_captouch_buttons.c/h Capacitive-touch remote button task and event handler. It also defines the
DIO ISR that is used for capacitive touch.

app_led_control Defines LED initialisation and how to set/reset LEDs. It also defines the
callback function for LED flashes.

app_start_remote.c Start-up module with vAppMain and sleep/wake-up callbacks. All the

initialisation for start-up and wake-up is available in this module.

app_zha_remote_task.c/h ZCL event handler for the node - the endpoint callback function is part of this
module. This also contains the node task and functional state machine.

DriverCapTouch.c/h Capacitive-touch driver module.

zha_remote_node.c/h Contains the HA application command send/receive functions and key map
for the Remote Control Unit. It also handles the initialisation of HA states by
calling the appropriate PDM store and retrieve descriptors.

App_ZHA_Controller_JN516x.
oscfgdiag

This is the JenOS configuration diagram, which is used to configure certain
application building blocks, such as pre-emptive tasks, software timers,
mutexes and Interrupt Service Routines. For more information, refer to the
JenOS User Guide (JN-UG-3075).

Light Sensor Source Files

The following table gives a brief description of the files used by the Light Sensor device,
which are located in the \LightSensor\Source folder.

Filename Description

app_start_sensor.c Start-up module with vAppMain and sleep/wake-up callback functions. All

the initialisation for start-up and wake-up is available in this module.

app_sensor_state_machine.c/.h Handles the ZigBee PRO stack events for both running and start-up states.

app_zcl_sensor_task.c/h ZCL event handler for the node - the endpoint callback function is part of
this module. This also contains the node task and ZCL tick task.

zha_sensor_node.c/h Handles the initialisation of HA states by calling the appropriate PDM store
and retrieve descriptors. It processes all queues and sends them to the
relevant module.

app_blink_led.c/h Handles the LED blink rate based on the API functions called.

app_event_handler.c/h Handles all application events passed via the queue. This includes DIO
changes, report sending and wake timer expiry. Contains ‘find and bind’
and polling keep-alive functionality.

app_nwk_event_handler.c/h Handles all network-related stack events, including network join, leave and
poll request/response.

app_reporting.c/h Creates and restores saved reports, and defines which attributes are
reportable.

app_sleep_handler.c/h Determines at which point the device will go to sleep.

app_zcl_tick_handler.c/h Holds the number of ticks remaining until a periodic report will be sent out.
This needs to be updated when the device comes out of a timed sleep.

app_power_on_counter.c/h Keeps track of the number of power-cycles that have occurred. When a
certain number of power-cycles have occurred, user-defined functionality is
executed.

app_light_sensor_buttons.c/h Implements a Light Sensor-specific de-bounce algorithm and ISR handler.

App_ZHA_LightSensor_JN516x.
oscfgdiag

This is the JenOS configuration diagram file, which is used to configure
certain application building blocks, such as pre-emptive tasks, software
timers, mutexes and Interrupt Service Routines. For more information, refer
to the JenOS User Guide (JN-UG-3075).

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 65

Occupancy Sensor Source Files

The following table gives a brief description of the files used by the Occupancy Sensor
device, which are located in the \OccupancySensor\Source folder.

Filename Description

app_start_sensor.c Start-up module with vAppMain and sleep/wake-up callback functions. All
the initialisation for start-up and wake-up is available in this module.

app_sensor_state_machine.c/.h Handles the ZigBee PRO stack events for both running and start-up states.

app_zcl_sensor_task.c/h ZCL event handler for the node - the endpoint callback function is part of
this module. This also contains the node task and ZCL tick task.

zha_sensor_node.c/h Handles the initialisation of HA states by calling the appropriate PDM store
and retrieve descriptors. It processes all queues and sends them to the
relevant module.

PIR/app_PIR_events.h Uses an interface pattern which declares the functions that the PIR drivers
should implement. It also defines the different timer events within the driver.

PIR/app_PIR_OpenCollector_
events.c

Defines the interface pattern declared in app_PIR_events.h. This is a

single on/off PIR driver.

PIR/app_PIR_pwm_events.c Defines the interface pattern declared in app_PIR_events.h. This reacts to

an occupied event based on a number of rising and falling edges
(APP_OCCUPANCY_SENSOR_TRIGGER_THRESHOLD), defined in the
file App_OccupancySensor.h, within a time-frame
(APP_OCCUPANCY_SENSOR_UNOCCUPIED_TO_OCCUPIED_DELAY)

app_blink_led.c/h Handles the LED blink rate based on the API functions called.

app_event_handler.c/h Handles all application events passed via the queue. This includes DIO
changes, report sending and wake timer expiry. Contains ‘find and bind’
and polling keep-alive functionality.

app_nwk_event_handler.c/h Handles all network-related stack events, including network join, leave and
poll request/response.

app_reporting.c/h Creates and restores saved reports, and defines which attributes are
reportable.

app_sleep_handler.c/h Determines at which point the device will go to sleep.

app_zcl_tick_handler.c/h Holds the number of ticks remaining until a periodic report will be sent out.
This needs to be updated when the device comes out of a timed sleep.

app_occupancy_buttons.c/h Implements an Occupancy Sensor-specific de-bounce algorithm and ISR
handler.

App_ZHA_OccupancySensor_
JN516x.oscfgdiag

This is the JenOS configuration diagram file, which is used to configure
certain application building blocks, such as pre-emptive tasks, software
timers, mutexes and Interrupt Service Routines. For more information, refer
to the JenOS User Guide (JN-UG-3075).

GP Switch Source Files

The following table gives a brief description of the files used by the GP Switch, which are
located in the \EH_Switch\Source folder.

Filename Description

AHI_EEPROM.c/.h Contain EEPROM access functions for persistent data storage.

EH_Button.c/.h Contain functionality for button interrupt handling and invocation of mapped
commands.

EH_IEEE_802154_Switch.c/.h Provide functionality for the GP Switch including start-up, the switch state
machine and IEEE 802.15.4 MAC functionality.

EH_IEEE_Commands.c/.h Contain the GP Switch command encoding and decoding functionality.

EH_IEEE_Features.c/.h Contain functionality for persistent data storage and state machine handling
of the switch.

EH_Timer.c/.h Contain timer functionality.

EH_Switch_Configurations.h Contains the configuration settings for the GP Switch. The configuration
settings are detailed in Appendix B.

 ZigBee Home Automation Demonstration

66 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

Device-specific Source Files

The following table gives a brief description of the device-specific source files, located in the
\<DeviceType>\Source\ folder.

Filename Description

App_<DeviceType>.c/h Device-specific module that has the device definition and registration
functions for the device type (e.g. Dimmer Switch, Dimmable Light). It
also handles device-specific initialisation.

OTA Server Source Files

The following table gives a brief description of the files used by the OTA Server device,
which are located in the \OTAServer\Source folder.

Filename Description

App_endpoint.c Contains a template endpoint (number 1).

app_start_upgrade_server.c Start-up module with vAppMain and sleep/wake-up callback functions. All

the initialisation for start-up and wake-up is available in this module.

app_exception.c/.h Implements all the exception handlers.

app_zcl_server_node_task.c/h ZCL event handler for the node - the endpoint callback function is part of
this module. This also contains the node task and functional state machine.

zha_upgrade_server_node.c/h Contains HA application command send/receive functions. It also handles
the initialisation of HA states by calling appropriate PDM store and retrieve
descriptors.

App_OTAServer_JN516x.oscfgd
iag

This is the JenOS configuration diagram file, which is used to configure
certain application building blocks, such as pre-emptive tasks, software
timers, mutexes and Interrupt Service Routines. For more information, refer
to the JenOS User Guide (JN-UG-3075).

App_ota_server.c/h Application routines for OTA initialisation.

App_pdm.c/h Application state and debug routines for PDM.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 67

Appendix B – Preprocessing Macro Descriptions

Compile-time macros to manipulate ZigBee Cluster Library functionality are defined in the
zcl_options.h file for the respective device. Other than these ZCL-specific macros, the
demonstration application uses the following macros for ease of development and testing.

Macro Description

HALT_ON_EXCEPTION Stops execution in the case of an exception. Otherwise, allows the
application to continue after a reset following an exception.

POLL_TIME 1-second standard poll-time

POLL_TIME_FAST 100-ms fast poll-time

TEN_HZ_TICK_TIME 100-ms timer to provide tick for HA clusters

NUMBER_DEVICE_TO_BE_DISCOVERED The higher this value, the more service discoveries are triggered

OS_STRICT_CHECKS OS strict check for task handlers

SLEEP_ENABLE Enables sleep for a switch node

BUTTON_MAP_DR1175 Button mapping for DR1175 (Lighting/Sensor Expansion Board)

SSL_2108 Build code for different target - SSL_2108 for an NXP LED lamp

DEEP_SLEEP_ENABLE Enables deep sleep for a switch node

KEEP_ALIVETIME Time, in seconds, before the switch node goes to sleep

DEEP_SLEEP_TIME Counter for the number of sleeps after which the switch node will
enter deep sleep

APP_LONG_SLEEP_DURATION_IN_SEC Time, in seconds, for which the switch node will be in the sleep
state before it starts polling

MAX_REJOIN_TIME Time, in seconds, before a node will try to join again after an
unsuccessful join attempt (when no deep sleep enabled)

BACK_OFF_TIME Time, in seconds, for which a node will back off before it attempts a
joining (when no deep sleep enabled)

OTA_MAX_BLOCK_SIZE Maximum image block size, in bytes, for OTA transfer. Should be
set to 48 for JN5169 (and this value will also work for JN5168)

OTA_QUERY_TIME_IN_SEC The time interval, in seconds, for which the OTA client will try to
discover the OTA server

OTA_DISCOVERY_TIMEOUT_IN_SEC Timeout, in seconds, before the OTA client declares the timeout
without any servers discovered

OTA_DL_IN_PROGRESS_TIME_IN_SEC Timeout, in seconds, for detecting the download has been stopped

MAX_SERVER_EPs Maximum number of OTA server instances on a node

MAX_SERVER_NODES Maximum number of OTA server nodes in the network

BREATH_EFFECT Adds “Breathe” effect to the lights during network discovery

EZ_MODE_TIME EZ-mode Commissioning time, in minutes. Should be fixed at 3.

EZ_RESPONSE_TIME Time, in seconds, between requests to allow any response to be
serviced. Defined as 10.

EZ_MAX_TARGET_DEVICES Maximum number of nodes in the network that can be discovered
per single query. Set to 10.

EZ_NUMBER_OF_ENDPOINTS Number of endpoints on a node that can invoke EZ-mode
Commissioning. This is same as HA_NUMBER_OF_ENDPOINTS
because each HA endpoint on a device should also be able to
perform commissioning.

EZ_MAX_CLUSTER_EXCLUSION_SIZE The maximum number of clusters that need to be excluded during
a ‘Find and Bind’ operation. Based on the ‘use case’ scenario, a
user may want to change the cluster IDs so that the ‘Find and Bind’
or Grouping will not form a group or binding for this cluster.

EZ_MODE_TARGET Defines the EZ-mode Commissioning target.

EZ_MODE_INITIATOR Defines the EZ-mode Commissioning initiator.

COLOUR_TEMP_CHANGE_STEPS_PER_

SEC

Rate of movement in Move Colour Temperature command in
Colour Dimmer Switch.

MOVE_COLOUR_TEMPERATURE_MAX Maximum colour temperature in Move Colour Temperature
command in Colour Dimmer Switch or Remote Control.

 ZigBee Home Automation Demonstration

68 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

MOVE_COLOUR_TEMPERATURE_MIN Minimum colour temperature in Move Colour Temperature
command in Colour Dimmer Switch or Remote Control.

MOVE_TO_COLOUR_TEMP_IN_

TRANSITION_TIME

Transition time for Move to Colour Temperature command in
Colour Dimmer Switch or Remote Control.

LEVEL_CHANGE_STEPS_PER_SEC_SLOW Rate of movement in Move Level command in Colour Dimmer
Switch in Shift2 mode.

LEVEL_CHANGE_STEPS_PER_SEC_MED Rate of movement in Move Level command in Colour Dimmer
Switch or Remote Control in Shift1 mode.

LEVEL_CHANGE_STEPS_PER_SEC_FAST Rate of movement in Move Level command in Colour Dimmer
Switch or Remote Control in Shift0 mode.

HUE_CHANGE_STEPS_PER_SEC Rate of movement in Move Hue command in Colour Dimmer
Switch or Remote Control.

SATURATION_CHANGE_STEPS_PER_SEC Rate of movement in Move Saturation command in Colour Dimmer
Switch or Remote Control.

LIGHT_SENSOR_MINIMUM_MEASURED_

VALUE

Default value for Illuminance Measurement cluster attribute
u16MinMeasuredValue in Light Sensor.

LIGHT_SENSOR_MAXIMUM_MEASURED_

VALUE

Default value for Illuminance Measurement cluster attribute
u16MaxMeasuredValue in Light Sensor.

LIGHT_SENSOR_MINIMUM_

REPORTABLE_CHANGE

Minimum reportable change for which reports should be sent from
Light Sensor.

LIGHT_SENSOR_SAMPLING_TIME_IN_

SECONDS

Rate at which samples are read from Light sensor driver.

LIGHT_SENSOR_NUMBER_OF_REPORTS Number of attributes to be reported by Light Sensor and to be
saved in EEPROM.

OCCUPANCY_SENSOR_UNOCCUPIED_TO_

OCCUPIED_DELAY

Default value for the Occupancy Sensing cluster attribute
u8PIRUnoccupiedtoOccupiedDelay in the Occupancy Sensor.

OCCUPANCY_SENSOR_OCCUPIED_TO_

UNOCCUPIED_DELAY

Default value for the Occupancy Sensing cluster attribute
u8PIROccupiedtoUnccupiedDelay in the Occupancy Sensor.

OCCUPANCY_SENSOR_UNOCCUPIED_TO_

OCCUPIED_THRESHOLD

Default value for the Occupancy Sensing cluster attribute
u8PIRUnoccupiedtoOccupiedThreshold in the Occupancy Sensor.

OCCUPANCY_NUMBER_OF_REPORTS Number of attributes to be reported by Occupancy Sensor and to
be saved in EEPROM

ILLUMINANCE_MAXIMUM_LUX_LEVEL Maximum level of Lux measured by Light Sensor for which light
has to be completely dimmed off (defined at Dimmable Light with
Illuminance Measurement cluster).

ILLUMINANCE_LUX_LEVEL_DIVISOR The divisor used for converting Lux measurement to a value of
Level Control cluster attribute u8CurrentLevel, as described in
Section 5.4

POWER_ON_PRE_INIT_COUNTER_DB_

IN_MSEC

Time, in milliseconds, after which the Power-On Counter (POC)
sequence will be validated on a Dimmable Light and the POC will
be incremented and written to Non-Volatile Memory (NVM). The
default value is 250 ms.

POWER_ON_COUNTER_DB_IN_MSEC Time, in milliseconds, during which a Dimmable Light must be
switched off after the POC is validated in order for the power-on
sequence to be considered valid. On expiry of this time, the Power-
On Counter (POC) will be reset to 0 and saved to NVM, then the
EZ-mode Commissioning actions will be invoked. The default value
is 1750 ms.

GP_SECURITY This macro should be defined if GP security should be defined.

GPD_SEC_PRECONFIG_MODE This macro should be defined if the light has a security key for the
GP Switch. The key should be defined in GP_SHARED_KEY

GP_SECURITY_LEVEL The GP security level to be used by the light node.

GP_SHARED_KEY The GP shared key. The key should be defined using this macro
when GPD_SEC_PRECONFIG_MODE is also defined

GP_DISABLE_SECURITY_FOR_

CERTIFICATION

This macro can be defined to disable security for non-secured
joining and receiving /transmitting unsecured GP cluster packets.
This can be used for GP certification.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 69

The compile-time macros to manipulate the configuration settings on the GP Switch node
are as follows:

Macro Description

GPD_DEFAULT_CHANNEL This macro should contain the default operating channel of device.
This channel may be overridden during commissioning. This will be
the default operating channel if channel request and channel
configurations are not supported.

GPD_FIXED This macro should be defined for a fixed, non-movable GP Switch.

GPD_NO_OF_COMMANDS_IN_

OPERATIONAL_CHANNEL

The number of commands to send in a channel on each button-
press.

GPD_SUPPORT_PERSISTENT_DATA If data needs to be stored in persistent memory, this macro must
be configured.

GPD_SOURCE_ID 4-byte GPD source address of the GP Switch.

GPD_WITH_SECURITY If data needs to be secured, this macro must be configured.

GPD_SEND_DECOMM_CMD To support the decommissioning command, this macro must be
defined.

GPD_DEFAULT_PANID This macro should contain the initial PAN ID of the device. This
PAN ID may be overridden during commissioning.

GPD_MAX_PAYLOAD The maximum payload size for the GP Switch.

DECOMMISSIONING_SHORT_PRESS The number of short button-presses required to send a
decommissioning command.

CLEAR_PERSISTENT_SHORT_PRESS The number of short button-presses required to clear persistent
data.

GPD_TYPE The GP source node type. The possible values are:
GP_LEVEL_CONTROL_SWITCH
GP_ON_OFF_SWITCH

GPD_SEND_CHANNEL_REQUEST To support channel request and channel configuration commands,
this macro must be defined.

GPD_NO_OF_CHANNEL_PER_COMM_

ATTEMPT

The number of channel request commands sent in a channel on
each button-press.

PRIMARY_CHANNELS A list of the channel numbers that will be considered for
commissioning.

SECONDARY_CHANNELS A list of the channel numbers that will be considered for
commissioning. Note that enabling all channels will increase the
commissioning time. This list should be enabled only if required.

GPD_WITH_SECURITY Enables GP security on switch.

GPD_KEY_TYPE The key type supported by the switch.

GPD_KEY The key that is configured on the switch.

GPD_RX_ENABLE Indicates that the switch is Rx capable.

GPD_RX_AFTER_TX Indicates that the switch is capable of receiving for a short time
after transmitting a request

GPD_NO_OF_REQ_BEFORE_RX The number of commands transmitted in a channel during
commissioning before going into receive mode.

GPD_REQ_PANID Enables a request for a PAN ID during commissioning.

MOVE_RATE The rate to be specified in the move up/ move down commands.

 ZigBee Home Automation Demonstration

70 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

Appendix C - Build File Descriptions

Common Build Files

The following table gives a brief description of the build files, located in the
\Common_<Light>\Build and \Common_<Controller>\Build folders.

Filename Description

Makefile This common Makefile is used to build the binary file for the specific HA device based on input

manu_config This is the configuration file for the light devices located in the respective light device Build

folders. The file contains configurations to control certain features in the light at build-level
based on manufacturers’ preferences.

Device-specific Linker Files

The following table gives a brief description of the device-specific linker files, located in the

\ <DeviceType>\Build\ folders.

Filename Description

APP_stack_size_JN5168.ld Linker command file defining the default application stack size. Can adjust
_stack_size for the desired stack size.

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 71

Appendix D – Dimmable Light Power-Cycle Operations

The Dimmable Light device allows certain operations to be performed by power-cycling the
device a certain number of times – see Section 1.1.1. The diagram below illustrates the
timings and events involved in these operations.

E
V
E
N
T: P

ow
er

-O
n

E
V
E
N
T: T

im
er

 e
xp

ire
s
@

 T
1

DT1 DT2 DT1 DT2 DT1
DT2

0 1 2 3 4 0

0 1 1 00 1 0 0

DT1 DT2

Good POC

[Power-On Counter]

Bad POC

[Power-On Counter]

POC Transition Zone

[Continue Sequence]

POC Clear Zone

[Abort Sequence]

E
V
E
N
T: T

im
er

 e
xp

ire
s
@

 T
2

EVENT: Early Power-Off

(not on long enough)
EVENT: Late Power-Off

(on too long)

POC Guard Zone

[Abort Sequence]
EVENT:Power-On

Init SW timer [T1]

EVENT: Timer Expired

Read POC from NVM

POC++

Write POC to NVM

Init SW timer [T2]

EVENT: Timer Expired

Read POC

= 3  EZ

= 5  FN (Stay in NWK)

= 7  FN (Full)

POC = 0

Write POC to NVM

Enter EZ-mode Commissioning

as a result of event activities at this

point if good POC sequence

1

Figure 4: Dimmable Light Power-Cycling Operations

The values of ΔT1 and ΔT2 in the above diagram are defined by compile-time constants:

ΔT1 = POWER_ON_PRE_INIT_COUNTER_DB_IN_MSEC

ΔT2 = POWER_ON_COUNTER_DB_IN_MSEC

These values are described in the table in Appendix B and illustrated below.

POWER_ON_PRE_INIT_COUNTER_DB_IN_MSEC

POWER_ON_COUNTER_DB_IN_MSEC

Figure 5: Dimmable Light Compile-time Constants

 ZigBee Home Automation Demonstration

72 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

Appendix F - Application Code Size Statistics

The demonstration application of this Application Note has the following memory footprint on
the JN5168 device, using the JN516x ZigBee Home Automation SDK (JN-SW-4168).

 Note: The above filenames are as produced by the compiler. Some files
(e.g. OTA files) are then processed using the JN51xx Encryption Tool
(JET) which extends the filenames (e.g. by adding a version number).

Components Text Size

(Bytes)

Data Size

(Bytes)

BSS Size

(Bytes)

ColorDimmableLight_JN5168_DR1175_LED_EXP_RGB.bin 154169 2336 21325

ColorDimmableLight_JN5168_DR1175_LED_EXP_RGB_GP.bin 187436 2712 27581

ColorDimmableLight_JN5168_DR1175_LED_EXP_RGB_OTA.bin 166749 2448 22193

ColorDimmableLight_JN5168_DR1173_LED_EXP_RGB.bin 154273 2336 21229

ColorDimmerSwitch_JN5168_DR1159.bin 111822 2056 24477

RemoteControl_JN5168_DR1159.bin 113658 2104 24725

ColorTempTunableWhiteLight_JN5168_DR1221_CCTW.bin 146666 2364 21417

ColorTempTunableWhiteLight_JN5168_DR1221_CCTW_GP.bin 180370 2748 27409

Coordinator_JN5168.bin 106165 1780 17549

DimmableLight_JN5168_DR1175_LED_EXP_MONO.bin 135503 1984 20261

DimmableLight_JN5168_DR1175_LED_EXP_MONO_GP.bin 168606 2360 26533

DimmableLight_JN5168_DR1175_LED_EXP_MONO_OTA.bin 148017 2100 21133

DimmableLight_JN5168_DR1190_MONO.bin 135231 1984 20245

DimmableLight_JN5168_DR1190_MONO_GP.bin 168314 2356 26521

DimmableLight_JN5168_DR1192_MONO.bin 136271 2016 20261

DimmableLight_JN5168_DR1192_MONO_GP.bin 169402 2388 26529

DimmerSwitch_JN5168_DR1199.bin 111914 2120 23621

DimmerSwitch_JN5168_DR1199_OTA.bin 124890 2248 24501

LightSensor_JN5168_DR1175.bin 114418 2016 20397

OccupancySensor_JN5168_DR1199.bin 119086 1912 20109

OTAServer_JN5168.bin 125626 1904 19813

EH_Switch_JN5168_DR1199.bin 4809 92 5887

ZigBee Home Automation Demonstration

JN-AN-1189 (v1.15) 26-Jun-2017 © NXP Semiconductors 2017 73

Revision History

Version Notes

1.0 First release

1.1 Build warnings resolved, devices renamed, SSL2108/Green Power information added to text,
ZigBee keys removed

1.2 ZPS Configuration Editor issue resolved in software

1.3 Channel masks updated to support preferred channels.

Internal EEPROM usage optimised for scenes.

Switch state-machine modified for commissioning.

1.4 Updated with the OTA Upgrade demonstration

1.5 Updated for the HA 1.2.1 release and Green Power demonstration included

1.6 Fixed recall scenes for driver DR1221

1.7 Updated for the ZigBee Home Automation Specification v1.2.2 and for the ‘BeyondStudio for NXP’
toolchain. Revised functionality for Occupancy Sensor and other minor updates also made.

1.8 Updated to support JN5169 device

1.9 Binaries rebuilt on JN-SW-4168 SDK v1279 for improved radio settings

1.10 Updated with the new features and bug fixes detailed in Section 12

1.11 Updated with the new features and bug fixes detailed in Section 12.

Binaries rebuilt on JN-SW-4168 SDK v1461.

1.12 Updated with the new features and bug fixes detailed in Section 12.

Binaries rebuilt on JN-SW-4168 SDK v1470.

1.13 Updated with the new features and bug fixes detailed in Section 12.

Binaries rebuilt on JN-SW-4168 SDK v1595.

1.14 Binaries rebuilt on JN-SW-4168 SDK v1611.

1.15 Binaries rebuilt on JN-SW-4168 SDK v1620.

 ZigBee Home Automation Demonstration

74 © NXP Semiconductors 2017 JN-AN-1189 (v1.15) 26-Jun-2017

Important Notice

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any
products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

All trademarks are the property of their respective owners.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

