

JN-AN-1110b (v1.2) 4-Sep-2014 © NXP Laboratories UK 2014 1

Application Note: JN-AN-1110b
JenNet-IP Border-Router Host

This Application Note describes the hardware and software components that are
required to implement a Linux-based Host side of a JenNet-IP Border-Router (the
Node side is described in an accompanying document).
Creating a JenNet-IP Border-Router based on Linux allows utilisation of the vast array
of software available for it to create a highly featured, robust and scalable solution
with a fast time-to-market.
Functions that are covered include:

• IPv6 packet routing
• Interaction with the JenNet-IP network nodes
• IPv6 route and prefix advertisement
• IPv6 multicast routing
• Node authentication (whitelisting) when security is enabled
• Zeroconf-based discovery of the JenNet-IP network
• Node firmware distribution
• Initial programming of the Border-Router Node
• JIP4 IPv4 compatibility
• JenNet-IP network traffic shaping
• Compiling OpenWrt

1 Application Overview
The Linux-based JenNet-IP Border-Router allows the connection of one or more
IEEE802.15.4 WPANs (Wireless Personal Area Networks) to the IPv6 Internet where they
can exchange data with any other IPv6-connected device, enabling the “Internet of Things”.
For situations where a native IPv6 connection to the Internet is not available, several
transition mechanisms are described. This document describes the software on the host
processor, which forms the “Border-Router Host” that connects to an IPv6 LAN/WAN. In
order to form a complete Border-Router, it must be interfaced with a “Border-Router Node”
that connects to the WPAN – here, the WPAN is a JenNet-IP network. The Border-Router
Node is described in an accompanying document.

2 Hardware
The required hardware to create the system described in this Application Note is:

• Any hardware platform (PC, Embedded device) capable of booting a Linux operating
system (Border-Router Host)

• JN5168 wireless microcontroller to function as an IEEE802.15.4 WPAN interface
(Border-Router Node)

 JenNet-IP Border-Router Host

2 © NXP Laboratories UK 2014 JN-AN-1110b (v1.2) 4-Sep-2014

3 Operating System
The NXP JenNet-IP Border-Router functionality can be added to any Linux system, using
common system packages and a few NXP developed ones. The NXP JenNet-IP Border-
Router provided in the JN516x-EK001 Evaluation Kit is based upon the OpenWrt Linux
distribution. This distribution was chosen because it has support for many cheap commercial
off-the-shelf WiFi routers. It is very configurable and has a wide variety of packages
available for installation that provide a solution to just about any networking requirement.

4 Software Components

4.1 IPv6 Packet Routing – 6LoWPANd
The most fundamental function of the Linux-based JenNet-IP Border-Router is to route IPv6
packets between the IEEE802.15.4 WPAN and the LAN/WAN. The daemon 6LoWPANd
(the 6LoWPAN routing Daemon) provides this function. Figure 1 below shows an overview of
the architecture around 6LoWPANd.

Figure 1: Role of 6LoWPANd

6LoWPANd uses the kernel “tun/tap” (http://en.wikipedia.org/wiki/TUN/TAP) virtual network
interface driver to pass IP packets between the kernel and userspace. It is a standard kernel
driver called “tun.ko”.

The Border-Router Node is connected via a serial interface from UART0 on the JN5168
device to an available UART on the host processor. This can be via a USB-serial converter,
if required.

The Border-Router Node (which is also the WPAN Co-ordinator) implements a simple serial
protocol (see Appendix 1) that allows the configuration of network parameters on the Border-
Router Node, and the passing of IPv6 packets between the node and the host. 6LoWPANd

6LoWPANd

/dev/tty /dev/tun

IPv6 Routing

Serial Ethernet Wifi

Userspace

Kernel

Physical

Client PC,
Smartphone,

tablet, etc

Border
router
node

http://en.wikipedia.org/wiki/TUN/TAP

JenNet-IP Border-Router Host

JN-AN-1110b (v1.2) 4-Sep-2014 © NXP Laboratories UK 2014 3

sends and receives IPv6 packets via the serial connection and passes these to and from the
kernel via the tun driver.

4.1.1 Compiling 6LoWPANd
Untar the gzipped 6LoWPANd source archive. Change to the Build directory.

6LoWPANd depends on the following packages:

• Avahi (for Zeroconf discovery of the network)

The dependency on Avahi can be removed by deleting the following line from the Makefile:
FEATURES ?= 6LOWPAND_FEATURE_ZEROCONF

To compile 6LoWPANd, run the Makefile in the Build directory.

4.1.2 Running 6LoWPANd
6LoWPANd must be run as root in order to create the new network adaptor in the kernel
using the tun driver. The only required parameter is the serial port to which the Border-
Router Node is connected.
root@localhost # 6LoWPANd –s /dev/ttyS0

Many other parameters of the IEEE802.15.4 network can be set via command line options to
6LoWPANd.

Once 6LoWPANd has started and is connected to the Border-Router Node, it will create a
new network interface named tun0 (this may be configured via the –interface parameter
to 6LoWPANd). This interface must be brought up and given a valid IPv6 address. A link
local address is all that is required. A route to the IPv6 prefix of the JenNet-IP network may
also be set up.
root@localhost # ifconfig tun0 up
root@localhost # ip -6 addr add fe80::1 dev tun0
root@localhost # ip -6 route add <JenNet-IP Prefix>/64 dev tun0

Once the IEEE802.15.4 network has been established, 6LoWPANd queries the Border-
Router Node for its IPv6 address. 6LoWPANd saves this address in a text file named
“/tmp/6LoWPANd.<Interface name>”, as well as establishing an address record with
Avahi, if Avahi support was compiled in. It should now be possible to ping the IPv6 address
of the WPAN Co-ordinator.
root@localhost # ping6 `cat /tmp/6LoWPANd.tun0`
PING fd04:bd3:80e8:2:215:8d00:12:147d
(fd04:bd3:80e8:2:215:8d00:12:147d): 56 data bytes
64 bytes from fd04:bd3:80e8:2:215:8d00:12:147d: seq=0 ttl=255 time=11.082 ms
64 bytes from fd04:bd3:80e8:2:215:8d00:12:147d: seq=1 ttl=255 time=9.977 ms
64 bytes from fd04:bd3:80e8:2:215:8d00:12:147d: seq=2 ttl=255 time=9.808 ms
64 bytes from fd04:bd3:80e8:2:215:8d00:12:147d: seq=3 ttl=255 time=9.505 ms

 JenNet-IP Border-Router Host

4 © NXP Laboratories UK 2014 JN-AN-1110b (v1.2) 4-Sep-2014

Once the localhost can ping the IPv6 address of the Border-Router Node, the routing
information for other machines on the LAN can be set up to allow them to also route to it.
This can be set up manually as follows. First, determine the link local address of the
Ethernet interface of the Border-Router via the command ip -6 addr:
root@localhost # ip -6 addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
 inet6 fe80::224:a5ff:fed8:1240/64 scope link
 valid_lft forever preferred_lft forever

Once the link local address is known, a route to the IPv6 prefix of the JenNet-IP network can
be set up on another machine via the following commands (Linux):
root@localhost # ip -6 route add <JenNet-IP Prefix>/64 via <Border router
Link Local Address> dev eth0

The machine must also be given an additional IPv6 address with global scope so that it can
send packets off link to the JenNet-IP network using the following commands (Linux):
 root@localhost # ip -6 addr add fd04:80e8:bd3:1::2 dev eth0

Following this, the machine should also be able to ping the IPv6 address of the Border-
Router Node.

4.2 IPv6 Route and Prefix Advertisement - radvd
IPv6 includes powerful automatic configuration as part of the specification. The Linux IPv6
Router Advertisement Daemon (radvd) implements these parts of the specification and
allows automatic configuration of routes and prefixes, amongst other details. Install it via the
package manager of your distribution. Information regarding radvd may be found here:
http://www.litech.org/radvd/.

Once radvd is installed, configure the following details in the configuration file (usually
/etc/radvd.conf).
interface eth0
{
 AdvDefaultPreference low;
 AdvSendAdvert on;
 prefix fd04:bd3:80e8:1::/64
 {
 AdvRouterAddr on;
 };
 route fd04:bd3:80e8:2::/64
 {
 AdvRouteLifetime 3600;
 AdvRoutePreference medium;
 };
};

http://www.litech.org/radvd/

JenNet-IP Border-Router Host

JN-AN-1110b (v1.2) 4-Sep-2014 © NXP Laboratories UK 2014 5

This configuration is for eth0, the Ethernet interface connecting the Border-Router to the rest
of the network. This configuration tells radvd to:

• Set the preference of this router to low – this is set so that a default route to the IPv6
Internet via another router should take preference.

• Send periodic router advertisements and respond to router solicitations.

• Include the link local address of the router in the advertisements.

• Advertise a prefix of fd04:bd3:80e8:1::/64. This will be the prefix that machines
connected to the Ethernet address will receive. If another IPv6 router exists on the
network to allow machines to receive a global address, this is not necessary. The
prefix advertisement includes the address of the router.

• Advertise a route to the prefix fd04:bd3:80e8:2::/64. Machines connected to the
Border-Router’s Ethernet interface will establish a route to the prefix automatically.

After setting this up and starting radvd, machines connected to the Ethernet interface should
automatically acquire an IPv6 address with global scope and a route to the JenNet-IP
network. They should be able to ping the IPv6 address of the Border-Router Node without
any manual configuration.

4.3 IPv6 Multicast Routing – mrd6
IPv6 includes support for multicast to multiple hosts as an integral component of the
specification. JenNet-IP makes use of IPv6 multicasts to implement group functionality. In
order to route IPv6 multicasts between interfaces, a userspace routing daemon is required,
called mrd6. Install it via the package manager of your distribution. More information on
mrd6 may be found here: http://fivebits.net/proj/mrd6/.

IPv6 uses several ICMPv6 messages to implement the Multicast Listener Discovery (MLD)
protocol. MLD allows IPv6 multicast routers to determine which multicast groups are present
on hosts connected to their interfaces, so that incoming multicast packets may be forwarded
as appropriate. The nodes in a JenNet-IP network send MLD messages through the network
to the Border-Router Node indicating their group membership. The Border-Router Node
passes these on to the Border-Router Host where mrd6 receives them. This allows mrd6 to
create destination mappings for each of these groups on the JenNet-IP network interface. If
any IPv6 multicast packets are received on other interfaces which are destined for any of
these groups, mrd6 will create a source mapping and begin forwarding the multicast packets
to the JenNet-IP interface. The Border-Router Node will then send these into the JenNet-IP
network.

No special configuration of mrd6 is required to function in this mode.

4.4 Interaction with the JenNet-IP Network Nodes - libJIP
The JenNet-IP (JIP) protocol is fully described in the NXP JenNet-IP User Guides with part
numbers JN-UG-3080 and JN-UG-3086. NXP provide a library called libJIP for interfacing
with JenNet-IP nodes (running the JIP protocol) from a Linux machine. This may be linked to
a custom application, or used via a command line program. The Application Programming
Interface (API) to this library for use in a custom application is described in the JenNet-IP
LAN/WAN Stack User Guide (JN-UG-3086).

http://fivebits.net/proj/mrd6/

 JenNet-IP Border-Router Host

6 © NXP Laboratories UK 2014 JN-AN-1110b (v1.2) 4-Sep-2014

4.4.1 Compiling libJIP
Untar the gzipped libJIP source archive. Change to the Build directory.

libJIP depends on the following packages:

• libxml2 – This is used to save and load network caches in XML form.

The dependency on libxml2 can be removed by deleting the following line from the Makefile:
FEATURES ?= LIBJIP_FEATURE_PERSIST

However, this will render libJIP unable to preload network information and therefore all
information must be discovered from the JenNet-IP network every time it is needed.

To compile the library, run the Makefile in the Build directory. The compiled library is output
in the directory ../Library.

libJIP also includes a command line client for interacting with the network nodes, which is
output in the Build directory. The command line client is documented in the JenNet-IP
LAN/WAN Stack User Guide (JN-UG-3086).

4.5 Interaction with JenNet-IP Network Nodes – JIP Web Interfaces
The NXP JenNet-IP Border-Router includes a set of web interfaces to interact with the
network. There is a generic browser which allows all MIBs and associated variables on all
nodes to be examined and updated.

4.5.1 Compiling the JIP Web Interfaces
Extract the JIPweb tarball and change to the Build directory. The JIP web interface depends
on the following packages:

• Avahi (for Zeroconf discovery of the network)

• libJIP (for interacting with the network)

To compile the JIP web interfaces, run the Makefile in the Build directory.

4.5.2 Making Changes to the JIP Web Interfaces
The core of the web interfaces is a cgi programs, /www/cgi-bin/JIP.cgi which implements a
generic JenNet-IP control interface. It can be requested to take actions by specifying GET or
POST parameters. It returns results as JSON which can then be parsed by Javascript to
update web based user interfaces. The source for this program is Source/JIP_cgi.c. The
API to this program is described in Section 4.5.3

JenNet-IP Border-Router Host

JN-AN-1110b (v1.2) 4-Sep-2014 © NXP Laboratories UK 2014 7

There are also files which may be edited on the NXP JenNet-IP Border-Router’s file system,
or on a PC and copied over to the NXP JenNet-IP Border-Router:

• /www/style.css : This is the style sheet for the JIP web interfaces. It may be modified
to change the colours and some aspects of the layout of the page

• /www/NXP_Logo.gif : This is the company logo that is located in the top right-hand
corner of the web interfaces. It may be changed to other images, but the path to it is
hardcoded in the JIP cgi programs (Browser.cgi and SmartDevices.cgi), so the
name must not be changed.

• /www/js/JIP.js : This is a Javascript library for issuing JIP requests to JIP.cgi. Its API
is described in Section 4.5.4

• /www/Browser.html : This is a jQuery and AJAX powered generic JenNet-IP browser.
The page layout and style may be edited in the HTML of the web page. The content is
generated by Javascript making asynchronous calls to the JIP.cgi program

• /www/SmartDevices.html : This is a jQuery and AJAX powered interface for
interacting with JenNet-IP smart light bulbs. It allows control of individual and groups of
bulbs. The page layout and style may be edited in the HTML of the web page. The
content is generated by Javascript making asynchronous calls to the JIP.cgi program

4.5.3 JIP.cgi API Reference
The JIP.cgi program may be run by making requests to the web server on the JenNet-IP
Border-Router. The parameters passed as part of the request determine the action taken by
JIP.cgi. The results of the action are passed back to the web browser as JSON objects that
may be interpreted by Javascript.

GET or POST Parameters
The following parameters may be passed as POST parameters to JIP.cgi:
Parameter Argument Description
action This argument informs JIP.cgi which request is being

made of it. Each possible action is described below.
 getVersion Retrieve JIP.cgi and libJIP version information
 discoverBRs Find list of Border-Router Nodes available from this

Border-Router Host.
 discover Perform JIP discovery of a network connected to a

selected Border-Router Node. Required
 GetVar Read a variable on a remote node. Required
 SetVar Set a variable on a remote node. Required
BRaddress String representation of Border-

Router Node’s IPv6 address

The returned JSON object contains a “Status” object and data relevant to the JIP request.
The status object contains number and string representations of the JIP status resulting from
the request. Example object:
“Status”: { “Value”: 0, “Description”: “Success” }

Each supported action of JIP.cgi is described in the following sections.

 JenNet-IP Border-Router Host

8 © NXP Laboratories UK 2014 JN-AN-1110b (v1.2) 4-Sep-2014

4.5.3.1 Get Version Information, action=getVersion
This action returns version information for the JIP.cgi program and libJIP. The returned
object contains a “Version” object. This contains each components name and a version
string. Example object:
“Version”: { “JIPcgi”: “0.1 (r480000)”, “libJIP”: “0.15 (r480000)” }

4.5.3.2 Discover Border-Router Nodes, action=discoverBRs
This action uses Zeroconf to perform a discovery of available Border-Router Nodes at the
web server. The returned object contains a “BRList” object which is an array of the IPv6
addresses of discovered Border-Router Nodes, represented as strings. Example object:
“BRList”: [“fd04:bd3:80e8:1:215:8d00:1234:5678”]

4.5.3.3 Discover a Network using JIP, action=discover
This action discovers the network of nodes connected to a Border-Router Node. The IPv6
address of the Border-Router node must be passed using the BRaddress parameter. The
returned object contains a “Network” object representing the discovered network. The
network object contains an array of nodes. Each node object contains a string representation
of its IPv6 address, its device ID as an integer, and an array containing its MIBs. Each MIB
object contains its ID as an integer, its name as a string and an array containing its
variables. Each variable object contains its name as a string, its index as an integer, its type
as an integer, its access type as an integer and its security type as an integer. Example
object:
“Network”: { “Nodes” : [{
“IPv6Address”=”fd04:bd3:80e8:1:215:8d00:1234:5678”, “DeviceID”: 2177865,
“MiBs”: [{ “ID”: 50678885, “Name”: “Example MIB”,
“Vars”: [{ “Index”: 0, “Name”: “Int8Var”, “Type”: 0, “AccessType”: 2,
“Security”: 0 }] }] }] }

4.5.3.4 Get the Value of a Variable, action=GetVar
This action reads a variable on a node in the network. The following arguments must also be
specified:

• BRaddress – IPv6 address of Border-Router Node

• nodeaddress – IPv6 address of the node

• mib – Name of the MIB containing the variable

• var – Name of the variable to read

The following argument is optional:

• refresh – If set to “yes” then JIP.cgi will rediscover the network before connecting to
the node. If set to “no” then a cached copy of the network contents from the previous
discovery will be used to look up the requested variable.

• stayawake – If set to “yes” then JIP.cgi will request that sleeping end devices stay
awake to receive a further request.

The returned object is as in Section 4.5.3.3, but only a single node, MIB and variable
matching the request are returned. The variable object includes an additional pair named
“Value” containing the current value of the variable.

JenNet-IP Border-Router Host

JN-AN-1110b (v1.2) 4-Sep-2014 © NXP Laboratories UK 2014 9

4.5.3.5 Set the Value of a Variable, action=SetVar
This action writes to a variable on a node in the network. The following arguments must also
be specified:

• BRaddress – IPv6 address of Border-Router Node

• nodeaddress – IPv6 address of the node

• mib – Name of the MIB containing the variable

• var – Name of the variable to read

• value – String representing the value to set

The following argument is optional:

• refresh – If set to “yes” then JIP.cgi will rediscover the network before connecting to
the node. If set to “no” then a cached copy of the network contents from the previous
discovery will be used to look up the requested variable.

• stayawake – If set to “yes” then JIP.cgi will request that sleeping end devices stay
awake to receive a further request.

The returned object contains only the “Status” object.

4.5.4 JIP.js API Reference
To simplify access to JIP.cgi, there is a Javascript library included on the NXP JenNet-IP
Border-Router which can be used to create web applications using JIP. The Javascript file
should be included using the following HTML tag:
<script src=“js/JIP.js”></script>

The following are descriptions of the functions provided by this library.

4.5.4.1 Get Version Information: JIP_GetVersion(callback)
This function requests the version information from JIP.cgi, then calls the specified callback
function with the received JSON object (see Section 4.5.3.1) as its parameter. The
application should check the status of the request before attempting to use the version
information.

4.5.4.2 Discover Border-Router Nodes: JIP_DiscoverBRs(callback)
This function updates a list of available Border-Router nodes within JIP.js. This list may be
accessed using the name JIP_BRList. Once the list has been discovered, the callback
function is called, passing the “Status” object of the request as its parameter. The application
should check the status of the request before attempting to use the information in the
JIP_BRList variable.

4.5.4.3 JIP_Context object
JIP.js uses an object orientated design, with an object used to represent each discovered
network. This object is of type JIP_Context and may be created as follows:
var ctx = new JIP_Context();

The context object supports the following methods.

 JenNet-IP Border-Router Host

10 © NXP Laboratories UK 2014 JN-AN-1110b (v1.2) 4-Sep-2014

4.5.4.3.1 Connect to a border router node: Connect(br)

This function associates a border router IPv6 address with a context. The border router is
passed as a string representation of the IPv6 address of the border router node.

4.5.4.3.2 Discover a network: Discover(callback)

This function discovers the network of nodes in the JenNet-IP network associated with a
connected border router node. The function is passed a callback function, to call with the
results of the operation. Upon completion, the contexts representation of the network is
updated. The member variable is named “Network”. The callback function is passed the
“Status” object of the request and the context as its parameters. The application should
check the status of the request before attempting to use the information in the context
variable.

4.5.4.3.3 Get the Value of a Variable: GetVar(variable, callback, user)

This function reads the value of a variable. The function should be passed a reference to the
variable’s object within the context object, a callback function, if required, some user data
and optionally a time interval if this request should be made regularly. When the operation
has completed, the callback function is called. It is passed the status of the request, the user
data and a reference to the variable’s object within the context object. The application should
check the status of the request before using the value. The user data may be used to pass
context data through the JIP library to the callback function.

4.5.4.3.4 Set the Value of a Variable: SetVar(variable, value, address, callback, user)

This function sets the value of a variable. The function should be passed a reference to the
variable’s object within the context object, the new value, an optional multicast IPV6
address, a callback function and, if required, some user data. When the operation has
completed, the callback function is called. It is passed the status of the request and the user
data. The user data may be used to pass context data through the JIP library to the callback
function.

4.6 Node Authentication - radiusd
When IEEE802.15.4 security is enabled in a JenNet-IP WPAN, joining nodes must be
authenticated before the network encryption key is shared with them so that they may join
the network. Node authentication is handled by the industry standard RADIUS protocol. The
Border-Router Node includes a RADIUS client that performs the Password Authentication
Protocol (PAP). The Border-Router Node will connect to the IPv6 address of a configured
RADIUS server and attempt to authenticate every node that attempts to join the network.

To provide the RADIUS authentication server, the freeradius2 package is used. Install it via
the package manager of your distribution. More information on freeradius2 may be found
here: http://freeradius.org/.

When a node attempts to join the JenNet-IP network, it does so using a “commissioning”
encryption key, unique to that node, as described in the JenNet-IP WPAN Stack User Guide
(JN-UG-3080). This culminates in the Border-Router Node sending a RADIUS “access
request” packet to the configured RADIUS server. The server should respond with either an
“access deny”, or an “access accept” message. The “access accept” message includes the
commissioning key of the node in its payload.

The username and password that are presented to the RADIUS server are both a string
representation of the MAC address of the node attempting to join. The shared secret

http://freeradius.org/

JenNet-IP Border-Router Host

JN-AN-1110b (v1.2) 4-Sep-2014 © NXP Laboratories UK 2014 11

between the Border-Router Node and the RADIUS server is a string representation of the
network encryption key.

The following configuration items need to be specified:

• Authorisation listen address: IPv6 address - for example, all: ipv6addr = ::

• Client entry for the Border-Router Node, using the network encryption key as its
shared secret. This is added via a configuration directive such as:
client <Border router IPv6 address> { secret = <Network Key> }

• List of allowed MAC addresses (usernames). It is suggested that this is included from
another configuration file via a directive such as:
$INCLUDE <Path to JenNet-IP users file>

Each user record has the following format:
<MAC Address of Node> Cleartext-Password := “<MAC Address of Node>”
 Vendor-Specific = “0x00006DE96412<Node Commisioning Key>”

The Vendor-Specific attribute is the vendor type 100 (0x64) of NXP Semiconductors
(0x006DE9), which is 16 bytes long (0x12). The following is an example entry for a node with
MAC address 00:15:8D:00:00:09:FD:C7 and commissioning key
0x112233445566778899AABBCCDDEEFF.
00158D000009FDC7 Cleartext-Password := “00158D000009FDC7
 Vendor-Specific = “0x00006DE9641200112233445566778899AABBCCDDEEFF”

4.6.1 Node Greylisting
In most use cases, JenNet-IP systems will need a semi-automatic way of allowing nodes to
join a network, once a user has selected nodes that are known to them. In the Border-Router
supplied in NXP JN516x evaluation kits, this process is achieved using greylisting. NXP
provide a patch to freeradius2 that implements a new authentication module, called
rlm_greylist. This patch may be found in the OpenWrt source tarball under the path:
OpenWrt/backfire/feeds/packages/net/freeradius2/200-rlm-greylist.patch

This new authentication module will claim authentication of users that have not been claimed
by any other module, i.e. if the username cannot be found by any other module, this module
will claim to have found it and handle the authentication. In handling the authentication,
rlm_greylist will run a configured external script with the arguments “—user=<Username>”.
It is then the responsibility of this script to perform any actions necessary to add the new
node into a user interface for display and selection. This user interface should ask the user
to confirm the MAC address of the newly joining node and its commissioning key - for
example, by reading them from the packaging. If they confirm the MAC address and
commissioning key then an entry for the node, with its commissioning key, can be created in
the users’ file, allowing the node access to the network. If not, then the MAC address may be
forgotten.

4.7 Zeroconf Discovery of JenNet-IP Network (Avahi)
Zeroconf provides an easy way for local network services to be automatically discovered
and used with no manual configuration required. Avahi provides a complete implementation
of the standard and is used to advertise the IPv6 address of the Border-Router Node, so that
other local network devices may connect to the JenNet-IP network. Install it via the package
manager of your distribution. More information on Avahi may be found here: http://avahi.org.

http://avahi.org/

 JenNet-IP Border-Router Host

12 © NXP Laboratories UK 2014 JN-AN-1110b (v1.2) 4-Sep-2014

6LoWPANd includes support for using Avahi as a client to advertise the IPv6 address of the
Border-Router Node to the local network, using the service name “_jip._udp”.

4.8 Node Firmware Distribution (OND)
JenNet-IP supports Over-the-Network Download (OND) of new firmware images to nodes.
This functionality is provided by the Border-Router Host via a daemon called
FWDistributiond. The daemon answers requests for firmware from nodes in the network,
and will push new firmware into the network if instructed to do so. There is a command line
client to the daemon provided in the source.

4.8.1 Compiling Firmware Distribution Tools
The firmware distribution daemon uses the kernels INOTIFY mechanism to monitor for
firmware images in a directory. To use this feature, the kernel configuration option
CONFIG_INOTIFY_USER should be selected.

Untar the gzipped FWDistribution source archive. Change to the Build directory and run
the makefile, which should compile the daemon and command line client. These should be
installed into the target Border-Router system in “/usr/sbin” and “/usr/bin” respectively.

4.8.2 Running the Firmware Distribution Daemon
The only parameters required by the firmware distribution daemon are either a list of
firmware files that should be available for download (each specified via a “-f” command line
option), or a directory that should be monitored for firmware images (if INOTIFY support is
enabled), which is specified via a “-d” command line option. For example:
root@localhost # FWDistributiond –d /var/nxp/firmware/

The daemon should start and load in any compatible firmware files from the directory. It will
then monitor this directory for further files being created or moved here. If they are valid
firmware images then they will be loaded and made ready for distribution.

4.8.3 Running the Firmware Distribution Command Line Client
The built-in firmware distribution client can be used to control any aspect of the firmware
distribution daemon. Firstly, it can be used to list the firmware images that are available
using the “-l” command line option.
root@localhost # FWDistributionControl -l
List of available firmwares:
Device ID Chip Revision Filename
0x801500e1 0x141c 491 0x3a773a77s_CH18_DeviceBulb_DR1050_JN5148_v491.ond

This list contains the files from the monitored directory (or passed as individual files when
the daemon was started) that have been deemed to be a valid firmware image.

The daemon may be commanded to begin a broadcast download to the JenNet-IP network
using the “-d” command line option. In this case, the device ID, chip type, revision and the
IPv6 address of the Border-Router Node must also be specified, as follows:
FWDistributionControl –d –I <DeviceID> -T <Chip Type> -R <Revision> -6
<IPv6 Address of Border router node> --block-interval=<time between
broadcast blocks>

JenNet-IP Border-Router Host

JN-AN-1110b (v1.2) 4-Sep-2014 © NXP Laboratories UK 2014 13

The following parameters are specified

• -d : Initiate a download

• -I : Download an image appropriate for devices with the specified ID, if one is
available

• -T : Download an image appropriate for devices of the specified chip type, if one is
available

• -R : Download an image with the specified revision, if one is available

• -6 : Download the image via the Border-Router Node specified

• --block-interval : In units of 10ms, the time to wait between broadcasts of each
block in the image. The default is 100 (or 1 second) between blocks. This is suitable
for smaller networks. In larger networks, or those carrying more traffic, this should be
set to a larger value to slow down the broadcast. This makes more bandwidth
available to other network services.

For example, the firmware listed previously may be downloaded from the Border-Router to
the connected JenNet-IP network using this command:
root@localhost # FWDistributionControl -d -I 0x801500e1 -T 0x141c -R 491 -6
`cat /tmp/6LoWPANd.tun0`

The progress of a broadcast download may be monitored using the “-m” command line
argument, as follows:
FWDistributionControl –m –I <DeviceID> -T <Chip Type> -R <Revision> -6
<IPv6 Address of Coordinator>

For example, to monitor the progress of the broadcast download started previously, the
following command may be run:
root@localhost # FWDistributionControl -m -I 0x801500e1 -T 0x141c -R 491 -6
`cat /tmp/6LoWPANd.tun0`
Monitoring status
fd04:bd3:80e8:2:215:8d00:12:147d 0xffffffffffffffff 0x801500e1 0x141c
491 - 285 / 3215 : 0
This shows the number of blocks of firmware that have been sent and the total size of the
firmware image.

Once a complete image has been downloaded, the nodes must be commanded to reset and
move to the new firmware image. This can be achieved using the “-r” command line
argument, as follows:
FWDistributionControl –r –I <DeviceID> -T <Chip Type> -R <Revision> -6
<IPv6 Address of Coordinator> --reset-timeout=<time to reset> --reset-
depth-influence=<time offset based on network depth> --reset-repeat-
count=<number of reset repeats> --reset-repeat-time=<time between reset
messages>

 JenNet-IP Border-Router Host

14 © NXP Laboratories UK 2014 JN-AN-1110b (v1.2) 4-Sep-2014

There are a few extra parameters to control how the reset occurs:

• --reset-timeout : In units of 10ms, how long to wait to reset after receiving the
command

• --reset-depth-influence : This parameter can be used to make nodes that are
lower in the JenNet tree wait longer before resetting than those higher up. This should
cause the tree to collapse from the top to the bottom and then reform with minimal
traffic. This parameter sets the number of milliseconds to add to the reset timeout per
layer of depth in the tree

• --reset-repeat-count : By default, the reset command is broadcast into the
network once, but this parameter can be used to specify that the reset command is to
be sent multiple times

• --reset-repeat-time : By default, if multiple reset commands are sent, there will
be a 200ms interval between consecutive commands. This parameter allows the user
to increase or decrease this time. Each time a reset command is sent, the timeout
(time until reset) within the command is decremented by this interval, so that the final
reset time remains the same when multiple commands are sent

For example, to reset the nodes (that received the previously distributed firmware) after
6 seconds, the following command may be used:
root@localhost # FWDistributionControl -r -I 0x12345678 -T 0x0001 -R 2
-6 `cat /tmp/6LoWPANd.tun0` --reset-timeout=600
Requesting Reset of Device ID 0x12345678 via coordinator
fd04:bd3:80e8:2:215:8d00:12:147d in 6.00 seconds, depth influence=10

These nodes should now reset and begin running the new firmware image.

4.8.4 Creating a Custom Firmware Distribution Client
The firmware distribution daemon is controlled via a Unix socket that is used to pass
messages between clients and the daemon. The protocol for this communication is in the
FWDistribution source, in the file Source/Common/FWDistribution_IPC.h. The command
line client (in Source/Clients/CLI_main.c) should be studied as an example.

4.9 Initial Programming of the Border-Router Node
The recommended way to upgrade the firmware in the Border-Router Node is to use OND.
However, it may be desirable to allow the Border-Router Host to program the Border-Router
Node with an initial JenNet-IP image - for example, during first boot-up in the factory. This
may be achieved using the program JennicModuleProgrammer, which is a C
implementation of the protocol documented in the Application Note “Boot Loader Operation”
(JN-AN-1003).

4.9.1 Hardware Requirements
When the JN516x chip boots, it checks whether the MOSI line is held low – if so, it enters
bootloader mode. It is therefore recommended that the host processor has some means to
assert this and the reset line, so that it can automatically put the JN516x device into
bootloader mode. This could be achieved by connecting these lines to the GPIO of the host
processor.

JenNet-IP Border-Router Host

JN-AN-1110b (v1.2) 4-Sep-2014 © NXP Laboratories UK 2014 15

4.9.2 Compiling JennicModuleProgrammer
Untar the gzipped JIPd source archive. Change to the Build directory and run the makefile,
which should compile the program. The resulting file should be installed into the target
Border-Router system in “/usr/bin”.

4.9.3 Running JennicModuleProgrammer
First put the JN516x device into bootloader mode using GPIO, if connected, or push-buttons.
When the device enters bootloader mode, it listens for commands at 1Mbaud for 100ms
before dropping back to 38400 baud. So if JennicModuleProgrammer can be started within
100ms of the program/reset lines being asserted then “–initialbaud” and
“–programbaud” should both be set to 1000000. Otherwise, set “-initialbaud” to
38400(default) and “–programbaud” to 1000000(default). Use “–serial” to specify the serial
device to which the Border-Router Node is connected. The connected device should be
identified as the right device type.

Once it can be verified that the device is communicating, specify the “–firmware” option with
a binary file to program. The “–verify” option may also be specified to verify that the write to
Flash memory has been successful.

4.10 JIP4 IPv4 Compatibility
JenNet-IP supports an application layer IPv4 compatibility mechanism allowing the control of
JenNet-IP devices which only have an IPv6 address from an IPv4-only network.

To provide the application layer compatibility, the userspace daemon JIPd is required to
listen on IPv4 sockets and forward requests to the IPv6 addresses of target nodes. It also
provides a TCP socket on IPv4 for a client to connect to, rather than using UDP datagrams.

4.10.1 Compiling JIPd
The JIPv4 compatibility daemon JIPd advertises the JIPv4 service to the local network using
Zeroconf. This feature is provided by Avahi and, if not required, can be disabled by
removing the line “FEATURES ?= JIPD_FEATURE_ZEROCONF” from the Makefile.

Untar the gzipped JIPd source archive. Change to the Build directory and run the makefile,
which should compile the daemon. The resulting file should be installed into the target
Border-Router system in “/usr/sbin”.

4.10.2 Running JIPd
No command line arguments are mandatory to JIPd. With no arguments, the daemon will
bind to all IPv4 addresses and listen for incoming UDP and TCP connections on the normal
JIP port, 1873. Requests to these sockets will be forwarded to the IPv6 addresses of nodes
in the JenNet-IP network. The host running the daemon must have an IPv6 route to the
prefix of the JenNet-IP network in order to forward these requests.

4.11 JenNet-IP Traffic Shaping
The standard Linux Quality of Service (QoS) mechanisms may be used to shape the traffic
through the interface to the JenNet-IP network. This may be desirable to prevent excessive
traffic on the JenNet-IP network causing network overload. If this is desired, it is
recommended to create a high-speed traffic class for traffic to the Border-Router Node,
limited by the speed of the serial connection to the Border-Router Node. For the rest of the
IPv6 prefix of the JenNet-IP network, a maximum data-rate of 5kbps is recommended.

 JenNet-IP Border-Router Host

16 © NXP Laboratories UK 2014 JN-AN-1110b (v1.2) 4-Sep-2014

The “tc” package and related kernel modules are required for this. Install them via your
package manager.

The following example commands limit traffic to 900kbps to the Border-Router Node and
5kbps to the rest of the JenNet-IP network.
root@localhost # tc qdisc add dev <JenNet-IP net device> root handle 1: htb
default 12
root@localhost # tc class add dev <JenNet-IP net device> parent 1: classid
1:10 htb rate 900kbit ceil 900kbit
root@localhost # tc filter add dev <JenNet-IP net device> protocol ipv6
parent 1: u32 match ip6 dst <IPv6 address of Border Router Node> classid
1:10
root@localhost # tc class add dev <JenNet-IP net device> parent 1: classid
1:12 htb rate 5kbit ceil 5kbit burst 1 cburst 1
root@localhost # tc qdisc add dev <JenNet-IP net device> protocol ipv6
parent 1:12 handle 20: pfifo limit 5

5 Network Security and Firewall Guidelines

5.1 IEEE802.15.4 Security
The IEEE802.15.4 network is secured using 128-bit AES encryption. The network uses a
single key shared amongst all authenticated devices. In order to join a network, a device
must be authenticated. During this period, the device should use a unique commissioning
key. This key must be shared with the Border-Router node such that it can distribute this key
and allow the joining device to join. For maximum security, the commissioning key should
be:

• Unique to each device

• Not derived from any information that is available ‘on air’

• Shared with the Border-Router via an out-of-band method that cannot be sniffed - for
example, via NFC or QR code or printed text on the device. Of course, the target
environment of the device must be considered for this selection and whether potential
attackers will have physical access to the device - for example, if it may be placed
outside a user’s home

For ease of demonstration, by default, this Application Note and the JN-AN-1162 “JenNet-IP
Smart Home” Application Note use a commissioning key that is derived from the MAC
address. This approach is not recommended for use in customer products because it leaves
open a security hole allowing a malicious device to retrieve the network key in use.

5.2 JIP Security
JenNet-IP uses a protocol called JIP, built upon the industry standard protocol UDP. This
protocol provides control and monitoring of devices via end-to-end IPv6 packets. Within the
IEEE802.15.4 WPAN, these are AES128-encrypted at the network level, but JIP/UDP does
not provide any form of authentication or authorization of commands. As such, allowing JIP
traffic to flow between the JenNet-IP network and the public Internet is not recommended
due to the potential for malicious parties to intercept packets from and send packets to JIP
devices. NXP recommends the use of a gateway between the IEEE802.15.4 WPAN and the
public Internet to ensure that only trusted devices may send packets into the IEEE802.15.4
WPAN and that packets leaving the IEEE802.15.4 WPAN are suitably secured using a
protocol of the customer’s choice for transport on the public Internet.

JenNet-IP Border-Router Host

JN-AN-1110b (v1.2) 4-Sep-2014 © NXP Laboratories UK 2014 17

5.3 IP Network Security (Firewall)
In order to prevent malicious JIP traffic reaching the JenNet-IP network, this Application Note
software enables the IP firewall present in openWrt on Router-type devices such as the
Linksys wrt160nl (Gateway-type devices, such as the NXP JN-RD-6040 IoT Gateway, do not
use the firewall as it is assumed that the firewall protecting the Ethernet network of the IoT
gateway will provide the required protection). This is the recommended approach for
customers creating gateway devices that are connected to the public Internet. Only ports
related to required services should be opened to the Internet, to limit the attack surface of
the gateway and reduce the risk of malicious parties compromising the JenNet-IP network.

Linux provides a very powerful IP firewall which is configurable via the iptables and
ip6tables commands. There is a wealth of information on the proper configuration of
Linux iptables firewalls on the Internet - the project homepage is
http://www.netfilter.org/projects/iptables/.

The following are guidelines on configuring a secure firewall using iptables:

• Set the INPUT and FORWARD policies to REJECT - this will drop any packets that do
not match a specific rule

• REJECT all traffic from the public Internet going to the JIP default port (UDP 1873)

• ACCEPT traffic to ports that are specifically required by necessary services on the
gateway

• Do not allow ssh access (TCP port 22) from the public Internet unless absolutely
necessary

These rules must be applied separately for IPv4 and IPv6 using the iptables and
ip6tables commands respectively.

http://www.netfilter.org/projects/iptables/

 JenNet-IP Border-Router Host

18 © NXP Laboratories UK 2014 JN-AN-1110b (v1.2) 4-Sep-2014

6 Using Multiple Gateways
The JenNet-IP IEEE802.15.4 stack supports a maximum of 250 nodes in a single network.
However, networks with a larger number of nodes than this may be formed through the use
of multiple Border-Routers, each coordinating a network of up to 250 devices. Each
IEEE802.15.4 WPAN has a separate IPv6 prefix but IP routing means that every device may
be contacted by any other device, and all devices are similarly routable from the LAN/WAN.

6.1 Single Gateway with Multiple Border Routers
In this case, a single gateway device supports multiple connected Border-Router nodes
forming multiple networks. This may be achieved, for example, by adding additional USB-
serially connected Border-Router nodes via a USB hub.

In this example, each Border-Router is configured via 6LoWPANd to be on a separate /64
IPv6 prefix. Radvd is then used to advertise a route to both of these prefixes to the Ethernet
network. The following are the openWrt configuration files necessary to set this
configuration.

/etc/config/6LoWPAN
config 6LoWPANd 'tun0'
 option ignore '0'
 option tty '/dev/ttyUSB0'
 option baudrate '1000000'
 option interface 'tun0'
 option activityled 'none'
 option channel '11'
 option pan '0x1234'
 option jennet '0x11111111'
 option prefix 'fd04:bd3:80e8:2::'
 option qos_enable '0'
 option secure '1'
 option jennet_key '::1'
 option auth_scheme '1'
 option radius_ip 'fd04:bd3:80e8:1::1'

Gateway

Ethernet

USB
hub

JN5168
Border
Router

JN5168
Border
Router

USB

USB

JenNet-IP Border-Router Host

JN-AN-1110b (v1.2) 4-Sep-2014 © NXP Laboratories UK 2014 19

config 6LoWPANd 'tun1'
 option ignore '0'
 option tty '/dev/ttyUSB1'
 option baudrate '1000000'
 option interface 'tun1'
 option activityled 'none'
 option channel '11'
 option pan '0x1235'
 option jennet '0x11111111'
 option prefix 'fd04:bd3:80e8:3::'
 option qos_enable '0'
 option secure '1'
 option jennet_key '::1'
 option auth_scheme '1'
 option radius_ip 'fd04:bd3:80e8:1::1'

/etc/config/radvd

config 'interface'
 option 'interface' 'lan'
 option 'AdvSendAdvert' '1'
 option 'ignore' '0'
 option 'IgnoreIfMissing' '1'
 option 'AdvSourceLLAddress' '1'
 option 'AdvDefaultPreference' 'medium'

config 'prefix'
 option 'ignore' '0'
 option 'interface' 'lan'
 option 'AdvOnLink' '1'
 option 'AdvAutonomous' '1'
 list 'prefix' 'fd04:bd3:80e8:1::/64'
 option 'AdvRouterAddr' '1'

config 'route'
 option 'ignore' '0'
 option 'interface' 'lan'
 option 'AdvRouteLifetime' '3600'
 option 'AdvRoutePreference' 'medium'
 list 'prefix' 'fd04:bd3:80e8:2::/64'

config 'route'
 option 'ignore' '0'
 option 'interface' 'lan'
 option 'AdvRouteLifetime' '3600'
 option 'AdvRoutePreference' 'medium'
 list 'prefix' 'fd04:bd3:80e8:3::/64'

 JenNet-IP Border-Router Host

20 © NXP Laboratories UK 2014 JN-AN-1110b (v1.2) 4-Sep-2014

6.2 Multiple Gateways with Individual Border-Routers
In this case, a single Border-Router node is connected to each gateway, and multiple
gateway devices are connected together via an Ethernet backbone.

In this example, each gateway configures a Border-Router via 6LoWPANd to be on a
separate /64 IPv6 prefix. Each gateway then uses Radvd to advertise a route to the relevant
/64 prefix to the Ethernet network. Other devices in the Ethernet network set up routes to
each prefix via the relevant gateway using the router advertisements sent by Radvd. The
following are the openWrt configuration files necessary to set this configuration.

Gateway 1: /etc/config/6LoWPAN
config 6LoWPANd 'tun0'
 option ignore '0'
 option tty '/dev/ttyUSB0'
 option baudrate '1000000'
 option interface 'tun0'
 option activityled 'none'
 option channel '11'
 option pan '0x1234'
 option jennet '0x11111111'
 option prefix 'fd04:bd3:80e8:2::'
 option qos_enable '0'
 option secure '1'
 option jennet_key '::1'
 option auth_scheme '1'
 option radius_ip 'fd04:bd3:80e8:1::1'

Gateway 1: /etc/config/radvd
config 'interface'
 option 'interface' 'lan'
 option 'AdvSendAdvert' '1'
 option 'ignore' '0'
 option 'IgnoreIfMissing' '1'
 option 'AdvSourceLLAddress' '1'
 option 'AdvDefaultPreference' 'medium'

Gateway

Ethernet

USB

JN5168
Border
Router

Gateway

Ethernet

USB

JN5168
Border
Router

Ethernet Switch

Ethernet

JenNet-IP Border-Router Host

JN-AN-1110b (v1.2) 4-Sep-2014 © NXP Laboratories UK 2014 21

config 'prefix'
 option 'ignore' '0'
 option 'interface' 'lan'
 option 'AdvOnLink' '1'
 option 'AdvAutonomous' '1'
 list 'prefix' 'fd04:bd3:80e8:1::/64'
 option 'AdvRouterAddr' '1'

config 'route'
 option 'ignore' '0'
 option 'interface' 'lan'
 option 'AdvRouteLifetime' '3600'
 option 'AdvRoutePreference' 'medium'
 list 'prefix' 'fd04:bd3:80e8:2::/64'

Gateway 2: /etc/config/6LoWPAN
config 6LoWPANd 'tun0'
 option ignore '0'
 option tty '/dev/ttyUSB0'
 option baudrate '1000000'
 option interface 'tun0'
 option activityled 'none'
 option channel '11'
 option pan '0x1234'
 option jennet '0x11111111'
 option prefix 'fd04:bd3:80e8:3::'
 option qos_enable '0'
 option secure '1'
 option jennet_key '::1'
 option auth_scheme '1'
 option radius_ip 'fd04:bd3:80e8:1::1'

Gateway 2: /etc/config/radvd
config 'interface'
 option 'interface' 'lan'
 option 'AdvSendAdvert' '1'
 option 'ignore' '0'
 option 'IgnoreIfMissing' '1'
 option 'AdvSourceLLAddress' '1'
 option 'AdvDefaultPreference' 'medium'

config 'route'
 option 'ignore' '0'
 option 'interface' 'lan'
 option 'AdvRouteLifetime' '3600'
 option 'AdvRoutePreference' 'medium'
 list 'prefix' 'fd04:bd3:80e8:3::/64'

In this case, gateway 1 acts as a master. It advertises the IPv6 prefix to the Ethernet network
and gateway 2 configures itself as a device within this prefix. Gateway 1 also acts as the
RADIUS server (on address fd04:bd3:80e8:1::1). Every other gateway is configured to use
this master gateway as its RADIUS server. In this way, a centralised white-list may be
maintained for the whole system. Alternatively, each gateway may have a separate white-list
by setting each gateway’s configured RADIUS IPv6 address to its Ethernet IPv6 address.

 JenNet-IP Border-Router Host

22 © NXP Laboratories UK 2014 JN-AN-1110b (v1.2) 4-Sep-2014

This may be useful in controlling the commissioning process to force nodes to join a
particular network. Otherwise, the nodes will tend to join the smallest available network.

6.3 Configuration of IPv6 Routing to /64 Prefixes on Linux
In order for IPv6 devices to be able to send packets to each other, they require a “route” to
be set. The route may be set up manually by the network administrator, or automatically
using the method built into IPv6 called “router advertisement”.

Routes must be set up on each client device and gateway in the system so that they know
which gateway is responsible for forwarding packets into the destination JenNet-IP
IEEE802.15.4 WPAN. To allow devices within a JenNet-IP IEEE802.15.4 WPAN to connect
to devices in other JenNet-IP IEEE802.15.4 WPANs, the connected gateway must have a
route configured to the destination prefix. Likewise, the target gateway must have a route
back to the source prefix in order to route responses.

In general, in a multiple gateway configuration, every gateway and client device must have a
route configured to each /64 prefix that is in use.

6.3.1 Manual Configuration
On Linux, a route to a /64 prefix may be configured manually using the command:
ip -6 route add <prefix>/64 via <gateway link local address> dev <network device>

where:

• <prefix> is the prefix of the required IEEE802.15.4 WPAN

• <gateway link local address> is the link local IPv6 address of the gateway that
has the required Border-Router node attached

• <network device> is the name of the network device through which this network is
accessible - for example, “eth0”

This should be repeated for each /64 prefix in use.

6.3.2 Automatic Configuration
In order for Linux (including openWrt running on each gateway device) to accept advertised
routes to /64 prefixes, some additional configuration is necessary. In the default
configuration, Linux will accept only advertised default routes (routes to the /0 prefix). This is
because it is assumed that automatic configuration is used only for the simplest of cases
(the default route) and anything more complex must be configured manually. Changes are
required to the kernel configuration to allow reception of non-default router advertisements,
and a runtime configuration change is necessary to enable this.

The required kernel change is to ensure that the kernel configuration options
CONFIG_IPV6_ROUTER_PREF and CONFIG_IPV6_ROUTE_INFO are enabled. In
openWrt, these options are set via the default kernel configuration and are disabled by
default. To enable them, edit the file:

backfire/target/<target>/backfire/target/linux/generic/config-3.3
Ensure that the above two options are enabled and rebuild the image.

Once the running kernel has these options enabled, a new sysfs file is created at:

/proc/sys/net/ipv6/conf/<interface>/accept_ra_rt_info_max_plen

JenNet-IP Border-Router Host

JN-AN-1110b (v1.2) 4-Sep-2014 © NXP Laboratories UK 2014 23

By default, this file has the value 0, meaning that the maximum prefix length that the kernel
will accept from router advertisements is 0, i.e. a default route. Setting this value to 64 allows
the kernel to accept routes to the /64 prefixes advertised by radvd on each gateway.

When the kernel is set up to forward IPv6 packets between interfaces (as is always the case
on an Ethernet to JenNet-IP gateway), an additional change is necessary to accept router
advertisements containing a default route – it is necessary to change the value in the
following sysfs file:

/proc/sys/net/ipv6/conf/<interface>/accept_ra
This is usually set to 1 to accept router advertisements. In order to accept router
advertisements while forwarding is enabled, this must be set to 2.

Each of these changes to sysfs files may be done automatically at each boot by adding the
options to the /etc/sysctrl.conf file.

6.4 Multicasts in a Multiple Gateway System
Each gateway has an instance of the multicast forwarding daemon mrd6 running (see
Section 4.3). On each gateway, this daemon builds a list of multicast groups that exist in the
connected JenNet-IP IEEE802.15.4 network. Using this knowledge, it selectively forwards
multicast packets that arrive on the Ethernet interface into the JenNet-IP network. This does
not work in reverse, however, and mrd6 does not send group membership information or
multicast packets that originate within the JenNet-IP IEEE802.15.4 network out onto the
Ethernet. Therefore, global and group control are limited to being originated outside of the
JenNet-IP IEEE802.15.4 networks. This is an advantage in that multicasts are constrained
within each network, limiting the overall traffic, but it means that a device within one of the
networks cannot broadcast to devices in another network. Therefore, the network topology
should be designed such that controller devices are located within the same network as the
devices they control.

Global and group controls are always available to other client devices on the Ethernet
network, as these will be forwarded across the gateway by mrd6.

7 OpenWrt
The OpenWrt Linux distribution was chosen due to its large hardware support, small
footprint, ease of use and large set of available packages. OpenWrt uses a heavily modified
Buildroot environment to control the build process.

7.1 Compiling OpenWrt

7.1.1 Prerequisites
The following software packages will be required to build an OpenWrt image from the
sources supplied with this Application Note.

• Linux-based PC

• Host toolchain (gcc)

• Make

• Subversion and git

• Ncurses/ncurses-devel

 JenNet-IP Border-Router Host

24 © NXP Laboratories UK 2014 JN-AN-1110b (v1.2) 4-Sep-2014

7.1.2 Setup the Build Environment
First the build environment for your target platform must be set up using the tarball from the
application source package.

Create a new directory in your home directory in which to work. Change to this directory and
extract the openWRT source package using the following command:
$ tar –xzf openWRT_<version>.tar.gz

Change directory to the target that you want to build (in this case, we are building for the
Linksys WRT160NL) using the following command:
$ cd OpenWrt/targets/wrt160nl

Set up the build environment by running the target makefile using the following command:

$ make

The makefile will check out a known version of OpenWrt’s source tree into a directory
openWRT/targets/<target>/backfire. It will then install the OpenWrt feeds, copy the NXP
JenNet-IP Border-Router modifications and a default configuration into the checkout. The
NXP JenNet-IP Border-Router modifications to the OpenWrt tree are held in 4 locations:

• openWRT/backfire : Contains a target-agnostic overlay to the source tree that is
resynchronised over the top of the OpenWrt checkout

• openWRT/targets/<target>backfire-changes : Contains a target-specific overlay to
the source tree that is resynchronised over the top of the OpenWrt checkout and the
target agnostic changes. This contains items such as setting per-target configuration
files or additional packages

• openWRT/targets/<target>/backfire-patches : Contains any patch files necessary to
be applied to the OpenWrt checkout

• openWRT/targets/<target>/config : Contains the target-specific configuration file to
be copied into the OpenWrt checkout

7.1.3 Install JenNet-IP Modifications to OpenWrt
Once the OpenWrt source tree has been checked out and modified with the NXP JenNet-IP
Border-Router changes, the source for the additional packages must be copied into the build
directory.

Change directory to the Build directory using the following command:
$ cd backfire

Create a directory for the storage of the downloaded source of OpenWrt using the following
command:
$ mkdir dl

Alternatively you may wish to create a symlink to a permanent source storage location using
the following command:
$ ln –s <path to source storage> ./dl

JenNet-IP Border-Router Host

JN-AN-1110b (v1.2) 4-Sep-2014 © NXP Laboratories UK 2014 25

Now the source tarballs for the NXP JenNet-IP Border-Router may be copied into the new
directory using the following command:
$ cp <path to JenNet-IP border router source>/*.tar.gz dl/

7.1.4 Build OpenWrt
Once the source tree has been prepared and the NXP JenNet-IP Border-Router source
tarballs have been copied, the OpenWrt build system can be used to compile an image for
the target. If any modifications to the included packages are desired, the OpenWrt
configuration menu may be used to change this using the following command:
$ make menuconfig

Now run the OpenWrt build process using the following command:
$ make

If extra verbosity is required to trace errors, add “V=99” to the make command. The build
process may take several hours the first time.

When the build is complete, the output binary files may be found in the directory:
openWRT/targets/<target>/backfire/bin/<architecture>

The root file-system for the target may be found in the directory:
openWRT/targets/<target>/backfire/build_dir/target-<ISA-clibrary>/root-<architecture>/
Individual files may be copied to a target from this directory, or they could be mounted as an
NFS root file-system for quick debugging.

 JenNet-IP Border-Router Host

26 © NXP Laboratories UK 2014 JN-AN-1110b (v1.2) 4-Sep-2014

Revision History
Version Notes

1.0 First release
1.1 Formatting and minor changes made
1.2 Updated for JenNet-IP v1.2

Important Notice
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any
products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and
conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This document
supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life
support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP
Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in
such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further
testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is
customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s
applications and products planned, as well as for the planned application and use of customer’s third party customer(s).
Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any
weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).
Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and the products or of the application or use by
customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export
might require a prior authorization from competent authorities.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which
may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the
accuracy or completeness of information included herein and shall have no liability for the consequences of use of such
information.

All trademarks are the property of their respective owners.

 NXP Semiconductors

For the contact details of your local NXP office or distributor, refer to:

 www.nxp.com

http://www.nxp.com/

	1 Application Overview
	2 Hardware
	3 Operating System
	4 Software Components
	4.1 IPv6 Packet Routing – 6LoWPANd
	4.1.1 Compiling 6LoWPANd
	4.1.2 Running 6LoWPANd

	4.2 IPv6 Route and Prefix Advertisement - radvd
	4.3 IPv6 Multicast Routing – mrd6
	4.4 Interaction with the JenNet-IP Network Nodes - libJIP
	4.4.1 Compiling libJIP

	4.5 Interaction with JenNet-IP Network Nodes – JIP Web Interfaces
	4.5.1 Compiling the JIP Web Interfaces
	4.5.2 Making Changes to the JIP Web Interfaces
	4.5.3 JIP.cgi API Reference
	4.5.4 JIP.js API Reference

	4.6 Node Authentication - radiusd
	4.6.1 Node Greylisting

	4.7 Zeroconf Discovery of JenNet-IP Network (Avahi)
	4.8 Node Firmware Distribution (OND)
	4.8.1 Compiling Firmware Distribution Tools
	4.8.2 Running the Firmware Distribution Daemon
	4.8.3 Running the Firmware Distribution Command Line Client
	4.8.4 Creating a Custom Firmware Distribution Client

	4.9 Initial Programming of the Border-Router Node
	4.9.1 Hardware Requirements
	4.9.2 Compiling JennicModuleProgrammer
	4.9.3 Running JennicModuleProgrammer

	4.10 JIP4 IPv4 Compatibility
	4.10.1 Compiling JIPd
	4.10.2 Running JIPd

	4.11 JenNet-IP Traffic Shaping

	5 Network Security and Firewall Guidelines
	5.1 IEEE802.15.4 Security
	5.2 JIP Security
	5.3 IP Network Security (Firewall)

	6 Using Multiple Gateways
	6.1 Single Gateway with Multiple Border Routers
	6.2 Multiple Gateways with Individual Border-Routers
	6.3 Configuration of IPv6 Routing to /64 Prefixes on Linux
	6.3.1 Manual Configuration
	6.3.2 Automatic Configuration

	6.4 Multicasts in a Multiple Gateway System

	7 OpenWrt
	7.1 Compiling OpenWrt
	7.1.1 Prerequisites
	7.1.2 Setup the Build Environment
	7.1.3 Install JenNet-IP Modifications to OpenWrt
	7.1.4 Build OpenWrt

