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1. Introduction 
This application note describes the implementation of 
the sensorless Motor Control Reference Solution 
Package (MCRSP) software for a 3-phase Permanent 
Magnet Synchronous Motor (PMSM), including 
a motor parameters identification algorithm, running on 
32-bit Kinetis V and E series MCUs. The sensorless 
control software itself and the PMSM control theory in 
general is described in Sensorless PMSM Field-
Oriented Control (document DRM148). The NXP 
Freedom board (FRDM-MC-LVPMSM), Tower 
System modular development platform module 
(TWR-MC-LV3PH), and High-Voltage Platform 
power stages (HVP-MC3PH) are used as hardware 
platforms for the PMSM control reference solution. 
The hardware-dependent part of the sensorless control 
software is addressed as well, including detailed 
peripheral setup and the Motor Control Peripheral 
Drivers (MCDRV). The motor parameters 
identification theory and the algorithms are also 
described in this document. The last part of this 
document introduces and explains the user interface 
represented by the Motor Control Application Tuning 
(MCAT) page based on FreeMASTER run-time 
debugging tool. These tools represent a simple and 
user-friendly way of motor parameter identification, 
algorithm tuning, software control, debugging, and 
diagnostics. 
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2. Development Platforms 
There are these three standard NXP power stages: 

• FRDM-MC-LVPMSM 
• TWR-MC-LV3PH 
• HVP-MC3PH 

2.1. FRDM-MC-LVPMSM 
This evaluation board (in a shield form factor) effectively turns a Freedom development board into a 
complete motor-control reference design, compatible with the existing Freedom development boards—
FRDM-KV31F, FRDM-KV10Z, and FRDM-KE15Z. The Freedom motor-control headers are 
compatible with Arduino™ R3 pin layout. 

The FRDM-MC-LVPMSM board has a power-supply input voltage of 24–48 V DC with a reverse 
polarity protection circuitry. An auxiliary power supply of 5.5 V DC is available to provide power to 
the FRDM MCU boards. The output current reaches up to 5 A RMS. The inverter is realized by the 
3-phase bridge inverter (six MOSFETs) and the 3-phase MOSFET gate driver. Analog quantities (such 
as 3-phase motor currents, DC-Bus voltage, and DC-Bus current) are measured on this board. There is 
also an interface for speed/position sensors (Encoder Hall). The block diagram of a complete Freedom 
motor-control development kit is shown in this figure: 

 
Figure 1. Freedom motor-control development platform block diagram 

The FRDM-MC-LVPMSM board does not require a complicated setup and there is only one way to 
connect this shield board to the Freedom MCU board. See the user’s guide for your version of MCRSP 
(document PMSMCRSPUG). For more information about the Freedom development platform, 
visit www.nxp.com/freedom. 

http://www.nxp.com/doc/PMSMCRSPUG
http://www.nxp.com/freedom
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2.2. TWR-MC-LV3PH 
This module effectively turns a Tower System development module into a complete motor-control 
reference design, compatible with the existing Tower System Kinetis V and E modules. This module 
provides all necessary feedback signals to drive PMSM and BLDC motors. The TWR-MC-LV3PH 
module has the power-supply input voltage of 12–24 V DC, extendable up to 50 V DC, with reverse 
polarity protection circuitry. An auxiliary power supply of 5 V DC and 3.3 V DC provides power supply 
for the Tower System MCU modules. The output current reaches up to 5 A RMS. The inverter is 
realized by the 3-phase bridge inverter (six MOSFETs) and the 3-phase MOSFET gate driver. Analog 
quantities (such as 3-phase motor currents, 3-phase motor back-EMF voltage, DC-bus voltage, and DC-
bus current) are measured on this board. There is an interface for speed/position sensors (Encoder Hall) 
and a connector for a braking resistor. There is also a user LED, a power-on LED, and six PWM LED 
diodes for diagnostics. The block diagram of a complete Tower System motor-control development kit 
is shown in this figure: 

 
Figure 2. Tower System motor-control development platform block diagram 

The TWR-MC-LV3PH module does not require a complicated setup. Keep in mind that the side with 
the white stripe must be connected to the primary (white) elevator. See the user’s guides for the TWR-
MC-LV3PH (document TWRMCLV3PHUG) and for your version of MCRSP 
(document PMSMCRSPUG). For more information about the Tower System visit www.nxp.com/tower. 

2.3. HVP-MC3PH 
The 3-phase High-Voltage Development Platform (HVP) is a 115/230 V, 1 kW power stage that is an 
integral part of the embedded motion-control series of development tools. It is supplied in the 
HVP-MC3PH kit. Combined with the HVP daughter board, it provides a ready-made software 
development platform for more than one-horsepower motors. The block diagram of a complete 
high-voltage motor-control development kit is shown in the following figure. 

http://www.nxp.com/doc/TWRMCLV3PHUG
http://www.nxp.com/doc/PMSMCRSPUG
http://www.nxp.com/tower
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Figure 3. High-Voltage Development Platform block diagram  

The HVP-MC3PH power stage does not require any complicated setup and there is only one way to 
connect a daughter board to the HVP. See the user’s guides for the HVP power stage 
(document HVPMC3PHUG) and for your version of MCRSP (document PMSMCRSPUG).  

NOTE 
Due to high voltage, the HVP platform can represent a safety risk when 
not handled properly. For more information about the High-Voltage 
Development Platform, visit www.nxp.com/hvp. 

3. MCU Features and Peripheral Settings 
The peripherals used for motor control vary among different Kinetis V MCUs. The following sections 
describe the peripheral settings and application timing for each MCU. There are also differences among 
the MC platforms for different MCUs. These differences are summarized in tables. 

3.1. KV1x family 
The KV10Z and KV11Z MCU families are highly scalable members of the Kinetis V series and provide 
a cost-competitive motor-control solution. Built upon the ARM® Cortex®-M0 core running at 75 MHz 
with up to 128 KB of flash and up to 16 KB of RAM, the MCUs deliver a platform that enables the 
customers to build a scalable solution portfolio. The additional features include dual 16-bit ADCs 
sampling at up to 1.2 MS/s in 12-bit mode and 20 channels of flexible motor-control timers (PWMs) 
across six independent time bases. For more information, see KV11F Sub-Family Reference Manual 
(document KV11P64M75RM). 

http://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com/doc/PMSMCRSPUG
http://www.nxp.com/hvp
http://www.nxp.com/doc/KV11P64M75RM
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3.1.1. Hardware timing and synchronization 
A correct and precise timing is crucial in motor-control applications. The motor-control dedicated 
peripherals handle the timing and synchronization on the hardware layer. In addition, you can set the 
PWM frequency as a multiple of the ADC interrupt (FOC calculation) frequency; in this case, 
FOC freq  = PWM freq /2. The timing diagram is shown in this figure: 

 
Figure 4. Hardware timing and synchronization on KV11Z and KV10Z 

• The top signal (PWM counter) shows the FTM counter reloads. The dead time is emphasized 
at the PWM top and PWM bottom signals. The FTM_TRIG is generated on the PWM reload, 
which triggers the PDB (resets the PDB counter). 

• The PDB generates the first pre-trigger for the first ADC (phase current) sample with a delay of 
approximately Tdeadtime / 2. This delay ensures correct current sampling at duty cycles close 
to 100 %. 

• When the conversion of the first ADC sample (phase current) is completed, the ADC ISR is 
entered. At first, the next FTM_TRIG is disabled (TRIG off). This ensures that the 
PDB counter is not reset at the next PWM reload. The FOC is then calculated. 

• The PDB ISR is called in the middle of the next PWM period (PDB delay). This interrupt 
enables the FTM_TRIG (TRIG on) at the next PWM reload. The PDB ISR has lower priority 
than the ADC ISR. The PDB delay length determines the ratio between the PWM and FOC 
frequencies. 

• The PDB uses the back-to-back mode to automatically generate the pre-trig 1 (for DC-bus 
voltage measurement) immediately after the first conversion is completed.  
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3.1.2. Peripheral settings 
The peripherals used for motor control are described in this section. On KV10Z and KV11Z, a 6-channel 
FlexTimer (FTM) is used for 6-channel PWM generation, and two 16-bit SAR ADCs are used for phase 
currents and DC-bus voltage measurement. The FTM and ADC are synchronized by the Programmable 
Delay Block (PDB). One channel from another independent FTM is used for slow loop interrupt 
generation. 

3.1.2.1. PWM generation—FTM0 

• The FTM is clocked from the 75 MHz System clock. 
• Only six channels are used, the other two are masked in the OUTMASK register. 
• The channels (0+1, 2+3, and 4+5) are combined into pairs, with each pair running in a 

complementary mode. 
• The Fault mode is enabled for each combined pair with automatic fault clearing (the PWM 

outputs are re-enabled at the first PWM reload after the fault input returns to zero). 
• The PWM period (frequency) is determined as a time needed for the FTM to count from CNTIN 

to MOD. By default, CNTIN = -MODULO / 2 = -3750 and MOD = MODULO / 2 - 1 = 3749. 
Because the FTM is clocked from the 75 MHz System clock, it takes 0.0001 s (10 kHz). 

• Inserting dead time is enabled for each combined pair. The dead time length is calculated as 
System clock 75 MHz × T deadtime . The dead time varies among platforms. 

• The FTM generates a trigger to PDB at counter initialization. 
• The FTM fault input is enabled, but its polarity and source vary among platforms. 

3.1.2.2. Analog sensing—ADC0, ADC1 
• The ADCs operate as 12-bit, single-ended converters. 
• The clock source for both ADCs is the 25 MHz Bus clock divided by 2 = 12.5 MHz. 
• For ADC calibration purposes, the ADC clock is set to 3.125 MHz. Continuous conversion and 

averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the SC 
register is filled with its default values and the clock is set back to 12.5 MHz. 

• Both ADCs are triggered from the PDB pre-triggers. 
• An interrupt that serves the FOC fast-loop algorithm is generated after the first conversion is 

completed. 

3.1.2.3. PWM and ADC synchronization—PDB0 
• Unlike FTM, the PDB is clocked from the Bus clock, which is 3× slower than the System clock 

(used for FTM). Therefore the modulo value at PDB is divided by 3. 
• The PDB is triggered from the FTM0_TRIG. 
• At each channel, the pre-trigger 0 is generated 0.5 × T deadtime  after the FTM0_TRIG. 
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• At each channel, the pre-trigger 1 is generated immediately after the first conversion is 
completed using the back-to-back mode. 

• The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result 
register is not read and the same pre-trigger occurs at this ADC. 

• The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached. 
This interrupt enables the FTM_TRIG (see Figure 4).  

• The PDB Sequence Error and PDB Delay interrupts share a common interrupt vector. 
Which event generates the interrupt is determined at the beginning of the interrupt according to 
the ERR flag. 

3.1.2.4. Over-current detection at FRDM platform—CMP1 
• The plus input to the CMP is taken from the analog pin. 
• The minus input to the CMP is taken from the 6-bit DAC0 reference. The DAC reference is set 

to 3.197 V (62 / 64 × VDD ) which corresponds to 7.73 A (in 8.25 A scale). 
• The CMP filter is enabled and four consecutive samples must match. 

3.1.2.5. Slow-loop interrupt generation—FTM2 
• The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the 

System clock / 16 to keep its modulo value reasonably low. 
• The FTM counts from CNTIN = 0 to SPEED_MODULO. 
• The interrupt is enabled and generated at the counter reload that serves the slow loop. 

3.1.2.6. Communication with MC33937 MOSFET driver—SPI 
• The SPI runs in the master mode. 
• The SPI chip select 1 signal is active in logic high. 
• The baud rate is 3.12 MHz. 
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3.1.3. Peripheral settings differences among platforms 
There are differences in peripheral settings among different platforms. This table summarizes these 
differences: 

Table 1. KV10 and KV11 platform differences 

Peripheral Feature 
Platform 

FRDM Tower System HVP 

FTM0 

PWM polarity high sides active high 
low sides active high 

high sides active low 
low sides active high 

high sides active high 
low sides active high 

Fault source FLT0, CMP1 out FLT1, input pin FLT0, input pin 
Fault polarity Active high Active high Active low 

Dead time 0.5 µs 0.5 µs 1.5 µs 
SPI Driver on SPI No Yes No 
PDB Pre-trigger 0 delay 0.25 µs 0.25 µs 0.75 µs 

3.1.4. CPU load and memory usage 
The following information apply to the demo application built using IAR® Embedded Workbench® IDE 
in release configuration (maximum optimization for speed). Table 4 shows the memory usage and CPU 
load. The memory usage is calculated from the linker .map file, including 2 KB FreeMASTER recorder 
buffer (allocated in RAM) and 4.2 KB FreeMASTER TSA (Target-Side Addressing) table (allocated in 
flash). The CPU load is measured using the SysTick timer. The CPU load is dependent on the fast loop 
(FOC calculation) and slow loop (speed loop) frequency. In this case, it applies to the fast loop of 10 
kHz and the slow loop of 1 kHz. The total CPU load is calculated according to these equations: 

Eq. 1 𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 ∙
𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇
𝒇𝒇𝑪𝑪𝑪𝑪𝑪𝑪

∙ 𝟏𝟏𝟏𝟏𝟏𝟏 [%] 

Eq. 2 𝑪𝑪𝑪𝑪𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 ∙
𝒇𝒇𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒇𝒇𝑪𝑪𝑪𝑪𝑪𝑪

∙ 𝟏𝟏𝟏𝟏𝟏𝟏 [%] 

Eq. 3 𝑪𝑪𝑪𝑪𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 + 𝑪𝑪𝑪𝑪𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 [%] 

where: 

𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇   —CPU time consumed by the fast loop 

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇  —number of cycles consumed by the fast loop 

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇   —frequency of the fast loop calculation (10 kHz) 

𝒇𝒇𝑪𝑪𝑪𝑪𝑪𝑪   —CPU frequency 

𝑪𝑪𝑪𝑪𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔  —CPU time consumed by the slow loop 

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔  —number of cycles consumed by the slow loop 

𝒇𝒇𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔   —frequency of the slow loop calculation (1 kHz) 

𝑪𝑪𝑪𝑪𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕  —total CPU load consumed by the motor control 
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Table 2. KV10 and KV11 CPU load and memory usage 

— KV10 KV11 
CPU clock [MHz] 75 75 

Fast Control Loop [cycles] (%) 4355 (58.1 %) 3438 (45.8 %) 
Slow Control Loop [cycles] (%) 632 (0.8 %) 515 (0.7 %) 

Total CPU load [%] 58.9 % 46.5 % 
Flash usage [B] 24 232 24 288 
RAM usage [B] 3 853 3 857 

3.2. KV3x family 
The KV31F MCU is a highly scalable member of the Kinetis V series and provides a high-performance, 
cost-competitive motor-control solution. Built upon the ARM Cortex-M4 core running at 120 MHz, 
with up to 512 KB of flash and up to 96 KB of RAM combined with the floating-point unit, it delivers a 
platform enabling customers to build a scalable solution portfolio. The additional features include dual 
16-bit ADCs sampling at up to 1.2 MS/s in 12-bit mode, 20 channels of flexible motor-control timers 
(PWMs) across four independent time bases, and a large RAM block, enabling local execution of fast 
control loops at full clock speed. For more information, see KV31F Sub-Family Reference Manual 
(document KV31P100M120SF7RM). 

3.2.1. Hardware timing and synchronization 
A correct and precise timing is crucial in motor-control applications. The motor-control dedicated 
peripherals handle the timing and synchronization on the hardware layer. You can set the PWM 
frequency as a multiple of the ADC interrupt (FOC calculation) frequency, in this case 
FOC freq  = PWM freq /2. The timing diagram is shown in this figure: 

 
Figure 5. Hardware timing and synchronization on KV31F 
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• The top signal (PWM counter) shows the FTM counter reloads. The dead time is emphasized 
on the PWM top and PWM bottom signals. The FTM_TRIG is generated at the PWM reload, 
which triggers the PDB (resets the PDB counter). 

• The PDB generates a first pre-trigger for the first ADC (phase current) sample with a delay of 
approximately Tdeadtime / 2. This delay ensures correct current sampling at duty cycles close 
to 100 %. 

• When the conversion of the first ADC sample (phase current) is completed, the ADC ISR is 
entered. At first, the next FTM_TRIG is disabled (TRIG off). This ensures that the 
PDB counter does not reset at the next PWM reload. The FOC is then calculated. 

• In the middle of the next PWM period (PDB delay) the PDB ISR is called. This interrupt 
enables the FTM_TRIG (TRIG on) at the next PWM reload. The PDB ISR has lower priority 
than the ADC ISR. The PDB delay length determines the ratio between the PWM and FOC 
frequencies. 

• The PDB uses back-to-back mode to automatically generate the pre-trig 1 (to measure the 
DC-bus voltage) immediately after the first conversion is completed.  

3.2.2. Peripheral settings 
This section describes only the peripherals used for motor control. KV31F uses a 6-channel FlexTimer 
(FTM) to generate a 6-channel PWM, and two 16-bit SAR ADCs to measure the phase currents and 
DC-bus voltage. The FTM and ADC are synchronized via Programmable Delay Block (PDB). 
One channel from another independent FTM is used for slow-loop interrupt generation. 

3.2.2.1. PWM generation—FTM0 

• The FTM is clocked from the 60 MHz Bus clock. 
• Only six channels are used, the other two are masked in the OUTMASK register. 
• Channels 0+1, 2+3, and 4+5 are combined in pairs and they are running in a complementary 

mode. 
• The Fault mode is enabled for each combined pair with automatic fault clearing (PWM outputs 

are re-enabled at the first PWM reload after the fault input returns to zero). 
• The PWM period (frequency) is determined as a time for the FTM to count from CNTIN to 

MOD. By default, CNTIN = -MODULO / 2 = -3000 and MOD = MODULO / 2 - 1 = 2999. 
The FTM is clocked from the 60 MHz System clock, so it takes 0.0001 s (10 kHz). 

• Dead time insertion is enabled for each combined pair. The dead time length is calculated as 
System clock 60 MHz × T deadtime . The dead time varies among platforms. 

• The FTM generates a trigger for the PDB on counter initialization. 
• The FTM fault input is enabled, but its polarity and source vary among platforms. 
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3.2.2.2. Analog sensing—ADC0 and ADC1 
• The ADCs operate as 12-bit, single-ended converters. 
• The clock source for both ADCs is the 48 MHz IRC48 clock, divided by 2 = 24 MHz. 
• For ADC calibration purposes, the ADC clock is set to 6 MHz. Continuous the conversion and 

averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the SC 
register is filled with its default values and the clock is set back to 24 MHz. 

• Both ADCs are triggered by the PDB pre-triggers. 
• There is an interrupt that serves the FOC fast-loop algorithm, and it is generated after the first 

conversion is completed. 

3.2.2.3. PWM and ADC synchronization—PDB0 
• Like the FTM, the PDB is clocked from the 60 MHz Bus clock.  
• The PDB is triggered by the FTM0_TRIG. 
• The pre-trigger 0 at each channel is generated 0.5 × T deadtime  after the FTM0_TRIG. 
• The pre-trigger 1 at each channel is generated immediately after the first conversion is completed 

using the back-to-back mode. 
• The PDB Sequence Error interrupt is enabled. This interrupt is generated when a certain result 

register is not read and the same pre-trigger occurs at the ADC. 
• The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached. 

This interrupt enables the FTM_TRIG (Figure 5). 
• The PDB Sequence Error and PDB Delay interrupts both share a common interrupt vector. 

Which event generated the interrupt is determined at the beginning of the interrupt according to 
the ERR flag. 

3.2.2.4. FRDM platform over-current detection—CMP1 
• The plus input for the CMP is taken from the analog pin. 
• The minus input for the CMP is taken from the 6-bit DAC0 reference. The DAC reference is set 

to 3.197 V (62 / 64 × VDD ), which corresponds to 7.73 A (in the 8.25 A scale). 
• The CMP filter is enabled and four consecutive samples must match. 

3.2.2.5. Slow-loop interrupt generation—FTM2 
• The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the 

System clock / 16 to keep its modulo value reasonably low. 
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO. 
• The interrupt that serves the slow loop is enabled and generated at the reload. 
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3.2.2.6. Communication with MC33937 MOSFET driver—SPI 
• The SPI runs in the master mode. 
• The SPI chip-select 1 signal is active in logic high. 
• The baud rate is 3.12 MHz. 

3.2.3. Peripheral settings differences among platforms 
There are differences in peripheral settings among different platforms. This table summarizes these 
differences: 

Table 3. KV31 platform differences 

Peripheral Feature 
Platform 

Freedom Tower System HVP 

FTM0 

PWM polarity high sides active high 
low sides active high 

high sides active low 
low sides active high 

high sides active high 
low sides active high 

Fault source FLT1, CMP1 out GPIO pin checked in SW, 
no HW connection to FTM. FAULT 0, input pin 

Fault polarity Active high Active high Active low 
Dead time 0.5 µs 0.5 µs 1.5 µs 

SPI Driver on SPI No Yes No 
PDB Pre-trigger 0 delay 0.25 µs 0.25 µs 0.75 µs 

3.2.4. CPU load and memory usage 
The following information apply to the demonstration application built using IAR Embedded 
Workbench IDE. Table 4 shows the memory usage and CPU load. The memory usage is calculated from 
the linker .map file, including 2 KB FreeMASTER recorder buffer (allocated in RAM) and 4.2 KB 
FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using 
the SysTick timer. The CPU load depends on the fast loop (FOC calculation) and slow loop (speed loop) 
frequencies. In this case, it applies to the fast loop frequency of 10 kHz and the slow loop frequency of 1 
kHz. The total CPU load is calculated according to Eq. 3. 

Table 4. KV31 CPU load and memory usage 

— KV31 
CPU clock [MHz] 120 

Fast Control Loop [cycles] (%) 3042 (25.4 %) 
Slow Control Loop [cycles] (%) 543 (0.4 %) 

Total CPU load [%] 25.8 % 
Flash usage [B] 24 896 
RAM usage [B] 3 797 

3.3. KV4x family 
The KV46F family of Kinetis MCUs is a high-performance solution built upon the ARM Cortex-M4 
core running at 168 MHz with floating-point unit and up to 256 KB of flash and 32 KB of RAM. It is 
targeted mainly at motor-control applications. Advanced peripherals, such as high-resolution 
Pulse-Width Modulation (PWM) modules with a total of 30 PWM channels and dual 12-bit 
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Analog-to-Digital Converters (ADCs) make these devices ideal for high-end motor-control applications. 
For more information, see KV4x Reference Manual (document KV4XP100M150RM). 

3.3.1. Hardware timing and synchronization 
A correct and precise timing is crucial in motor-control applications. The motor-control peripherals 
handle the timing and synchronization on the hardware layer. You can set the PWM frequency as a 
multiple of the ADC interrupt (FOC calculation) frequency, in this case FOC freq  = PWM freq / 2. 
The timing diagram is shown in this figure: 

 
Figure 6. Hardware timing and synchronization on KV46F 

• The top signal (SM0 counter) shows the eFlexPWM counter. The dead time is emphasized in 
the PWM top and PWM bottom signals. The SM0 submodule generates the master reload at 
every second opportunity. 

• The SM3 counter runs with a SM0 counter / 2 frequency, and its reload is synchronized with 
the master reload. 

• The SM3 generates a trigger (val4 – TRIG0) for the ADC scan with a delay of approximately 
Tdeadtime / 2. This delay ensures correct current sampling at duty cycles close to 100 %. 

• When the ADC scan completes, the ADC ISR is entered. The FOC calculation is made in this 
interrupt. 

3.3.2. Peripheral settings 
Only the peripherals used for motor control are described in this section. On KV46F, three submodules 
from the enhanced FlexPWM (eFlexPWM) are used to generate a 6-channel PWM, and two 12-bit 
cyclic ADCs are used to measure the phase currents and DC-bus voltage. The eFlexPWM and ADC are 
synchronized using the fourth eFlexPWM submodule. One channel from the independent FTM is also 
used to generate the slow-loop interrupt. 
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3.3.2.1. PWM generation—PWMA 
• The eFlexPWM is clocked from the 74 MHz Fast Peripheral clock. 
• Six channels from three submodules are used to generate a 3-phase PWM. Submodule 0 

generates a master reload event every nth opportunity, depending on user-defined 
M1_FOC_FREQ_VS_PWM_FREQ. Submodules 1, 2, and 3 are reloaded when the master reload 
occurs. 

• Submodules 1 and 2 are clocked from submodule 0. 
• The counters at submodules 1 and 2 are synchronized with the master sync signal from 

submodule 0. The counter at submodule 3 is synchronized with the master reload signal from 
submodule 0. 

• Submodule 3 is used for synchronization with the ADC. The clock for submodule 3 is divided 
by 2 (37 MHz). The Val 4 register generates the output trigger Tdeadtime / 2 after the PWM reload. 

• The fault mode is enabled for channels A and B at submodules 0, 1, and 2 with automatic fault 
clearing. The PWM outputs are re-enabled at the first PWM reload after the fault input returns to 
zero). The PWM fault input pin and its polarity vary among platforms. 

• The PWM period (frequency) is the time the counter needs to count from INIT to VAL1. 
By default INIT = -MODULO / 2 = -3700 and VAL1 = MODULO / 2 - 1 = 3699. The eFlexPWM 
clock runs at 74 MHz, so the frequency is 0.0001 s (10 kHz). 

• Dead time insertion is enabled. The dead time length is calculated as the Fast Peripheral clock 
74 MHz × T deadtime . The dead time varies among platforms. 

3.3.2.2. Analog sensing—ADC12 
• The ADC12 wrapper contains two independent ADCs. The ADCs operate as 12-bit, single-ended 

converters. ADC12 operates in a triggered parallel mode (ADC0 and ADC1 convert 
SAMPLE0+SAMPLE8 and SAMPLE1+SAMPLE9 simultaneously). The ADC scan is triggered 
by the SYNC0 signal. 

• The clock source for ADC12 is the 74 MHz Fast Peripheral clock divided by 3 = 24.6 MHz. 
• Only SAMPLE0, SAMPLE1, SAMPLE8, and SAMPLE9 are enabled.  
• The end-of-scan interrupt that serves the FOC fast loop algorithm is generated after the entire 

scan is completed. 

3.3.2.3. Peripheral interconnections—XBARA 
• The PWMA_TRG0 output trigger generated by submodule 3 is connected to the ADC_SYNC0 

input. 
• The over-current pin input signal is connected to the PWMA fault input that varies among 

platforms. 
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3.3.2.4. Slow loop interrupt generation—FTM1 
• The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the 

System clock / 16 to keep its modulo value reasonably low. 
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO. 
• The interrupt enabled and generated at the reload serves the slow loop. 

3.3.2.5. Communication with MC33937 MOSFET driver—SPI 
• The SPI runs in the master mode. 
• The SPI chip select 1 signal is active in logic high. 
• The baud rate is 3.12 MHz. 

3.3.3. Peripheral settings differences among platforms 
There are some differences in peripheral settings among different platforms. This table summarizes 
those differences: 

Table 5. KV46 platform differences 

Peripheral Feature 
Platform 

Tower System HVP 

PWMA 

PWM polarity high sides active low 
low sides active high 

high sides active high 
low sides active high 

Fault source FAULT 0, input pin FAULT 1, input pin 
Fault polarity Active high Active low 

Dead time 0.5 µs 1.5 µs 
SM3_VAL4 10 dec (delay 0.27 µs) 28 dec (delay 0.76 µs) 

SPI Driver on SPI Yes No 

3.3.4. CPU load and memory usage 
The following information apply to the demonstration application built using IAR Embedded 
Workbench IDE. Table 6 shows the memory usage and CPU load. The memory usage is calculated from 
the linker .map file, including 2 KB FreeMASTER recorder buffer (allocated in RAM) and 4.2 KB 
FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using 
the SysTick timer. The CPU load depends on the fast loop (FOC calculation) and slow loop (speed loop) 
frequencies. In this case, it applies to the fast loop frequency of 10 kHz and the slow loop frequency of 1 
kHz. The total CPU load is calculated according to Eq. 3. 

Table 6. KV46 CPU load and memory usage 

— KV46 
CPU clock [MHz] 148 

Fast Control Loop [cycles] (%) 2230 (15.1 %) 
Slow Control Loop [cycles] (%) 380 (0.2 %) 

Total CPU load [%] 15.3 % 
Flash usage [B] 24 772 
RAM usage [B] 3 753 
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3.4. KV5x family 
The KV58F family of Kinetis MCUs is a high-performance solution built upon the ARM Cortex-M7 
core running at 220 MHz with floating-point unit and up to 1 MB of flash and 64 KB of RAM. 
The advanced peripherals, such as high-resolution Pulse-Width Modulation (PWM) modules with a total 
of 42 PWM channels and four 12-bit high-speed Analog-to-Digital Converters (ADCs) with a sampling 
rate of 5 MSPS, make these devices ideal for high-end multi-motor control applications. For more 
information, see KV5x Reference Manual (document KV5XP144M220RM). 

3.4.1. Hardware timing and synchronization 
A correct and precise timing is crucial in motor-control applications. Therefore, the motor-control 
dedicated peripherals handle the timing and synchronization on the hardware layer. You can set the 
PWM frequency as a multiple of the ADC interrupt (FOC calculation) frequency, in this case 
FOC freq  = PWM freq / 2. The timing diagram is shown in this figure: 

 
Figure 7. Hardware timing and synchronization on KV58F 

• The top signal (SM0 counter) shows the eFlexPWM counter. The dead time is emphasized in 
the PWM top and PWM bottom signals. The SM0 submodule generates the master reload 
every second opportunity. 

• The SM3 counter runs with a frequency of SM0 counter / 2 and its reload is synchronized 
with master reload. 

• The SM3 generates a trigger (val4 – TRIG0) for the ADC scan with a delay of approximately 
Tdeadtime / 2. This delay ensures correct current sampling at duty cycles close to 100 %. 

• When the ADC scan is completed, the ADC ISR is entered. The FOC calculation is done in this 
interrupt. 
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3.4.2. Peripheral settings 
Only the peripherals used for motor control are described in this section. On KV46F, three submodules 
from the enhanced FlexPWM (eFlexPWM) are used to generate a 6-channel PWM, and two 12-bit 
high-speed ADCs are used to measure the phase currents and DC-bus voltage. The eFlexPWM and 
HSADC are synchronized via the fourth eFlexPWM submodule. One channel from an independent FTM 
is used to generate the slow-loop interrupt. 

3.4.2.1. PWM generation—PWMA 

• eFlexPWM is clocked from the 100 MHz Fast Peripheral clock. 
• Six channels from three submodules are used to generate a 3-phase PWM. Submodule 0 

generates the master reload event every nth opportunity, depending on user-defined 
M1_FOC_FREQ_VS_PWM_FREQ. Submodules 1, 2, and 3 are reloaded when the master reload 
occurs. 

• Submodules 1 and 2 are clocked from submodule 0. 
• The counters at submodules 1 and 2 are synchronized with the master sync signal from 

submodule 0. The counter at submodule 3 is synchronized with the master reload signal from 
submodule 0. 

• Submodule 3 is used for synchronization with the ADC. The clock for submodule 3 is divided 
by 2 (50 MHz). The Val 4 register generates the output trigger T deadtime / 2 after the PWM 
reload. 

• The fault mode is enabled for channels A and B at submodules 0, 1, and 2 with automatic fault 
clearing (PWM outputs are re-enabled the first PWM reload after the fault input returns to zero). 
The PWM fault input pin and its polarity vary among platforms. 

• The PWM period (frequency) is determined as a time for the counter to count from INIT to 
VAL1. By default INIT = -MODULO / 2 = -5000 and VAL1 = MODULO / 2 - 1 = 4999. 
The eFlexPWM clock is 100 MHz, so the PWM period is 0.0001 s (10 kHz). 

• The dead time insertion is enabled. The dead time length is calculated as the Fast peripheral 
clock 100 MHz × T deadtime . The dead time varies among the platforms. 

3.4.2.2. Analog sensing—ADC12 
• The HSADC wrappers are similar to the cyclic ADC12 wrapper at KV46. There are two 

wrappers—HSADC0 and HSADC1. The HSADC0A and HSADC1A are used for MC analog 
sensing. 

• The clock source for HSADC0A and HSADC1A is the 100 MHz Fast Peripheral clock divided 
by 4 = 25 MHz. 

• The ADCs operate as 12-bit, single-ended converters. ADC12 operates in a triggered sequential 
mode (HSADC0A converts SAMPLE0 and SAMPLE1, and HSADC1A also converts 
SAMPLE0 and SAMPLE1). Each HSADC scan is triggered by the SYNC0 generated by 
the eFlexPWM. 

• Only SAMPLE0 and SAMPLE1 are enabled at each ADC. 
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• The end-of-scan interrupt that serves the FOC fast-loop algorithm is generated after the entire 
scan (SAMPLE0, SAMPLE1) is completed by HSADC0. 

3.4.2.3. Peripheral interconnections—XBARA 
• The PWM0_OUT_TRG30 output trigger generated by submodule 3 is connected to the 

HSADC0A_SYNC and HSADC1A_SYNC inputs. 
• The over-current pin input signal is connected to the PWM0_FAULT0 fault input. 

3.4.2.4. Slow-loop interrupt generation—FTM2 
• The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the 

System clock / 16 to keep its modulo value reasonably low. 
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO. 
• The interrupt that serves the slow loop is enabled and generated at reload. 

3.4.2.5. Communication with MC33937 MOSFET driver—SPI 
• SPI runs in a master mode. 
• The SPI chip select 1 signal is active in logic high. 
• The baud rate is 3.12 MHz. 

3.4.3. Peripheral settings differences among platforms 
There are differences in peripheral settings among different platforms. This table summarizes those 
differences: 

Table 7. KV58 platform differences 

Peripheral Feature 
Platform 

Tower System 

PWMA 

PWM polarity high sides active low 
low sides active high 

Fault source FAULT 0, input pin 
Fault polarity Active high 

Dead time 0.5 µs 
SM3_VAL4 13 dec (delay 0.26 µs) 

SPI Driver on SPI Yes 
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3.4.4. CPU load and memory usage 
The following information apply to the demonstration application built using IAR Embedded 
Workbench IDE. Table 8 shows the memory usage and CPU load. The memory usage is calculated from 
the linker .map file, including 2 KB FreeMASTER recorder buffer (allocated in RAM) and 4.2 KB 
FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using 
the SysTick timer. The CPU load depends on the fast loop (FOC calculation) and slow loop (speed loop) 
frequencies. In this case, it applies to the fast loop frequency of 10 kHz and the slow loop frequency of 1 
kHz. The total CPU load is calculated according to Eq. 3. 

Table 8. KV58 CPU load and memory usage 

— KV58 
CPU clock [MHz] 237.5 

Fast Control Loop [cycles] (%) 1709 (7.2 %) 
Slow Control Loop [cycles] (%) 271 (0.1 %) 

Total CPU load [%] 7.3 % 
Flash usage [B] 25 917 
RAM usage [B] 3 793 

3.5. KE1xZ family 
The KE15Z is a part of Kinetis E series of ARM Cortex-M0+ MCUs. The Kinetis E series family is a 
product portfolio with an enhanced ESD/EFT performance for cost-sensitive, high-reliability 
applications used in the environments with high electrical noise. 

Built upon the ARM Cortex-M0+ core running at 72 MHz with up to 256 KB of flash and 32 KB of 
RAM, it delivers a platform that enables you to build a scalable solution portfolio. For more 
information, see KE1xZ Sub-Family Reference Manual (document KE1xZP100M72SF0RM). 

  

http://www.nxp.com/doc/KE1xZP100M72SF0RM
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3.5.1. Hardware timing and synchronization 
A correct and precise timing is crucial in motor-control applications. The motor-control dedicated 
peripherals handle the timing and synchronization on the hardware layer. The timing diagram is shown 
in this figure: 

 
Figure 8. Hardware timing and synchronization on KV11Z and KV10Z 

3.5.2. Peripheral settings 
This section describes only the peripherals used for motor control. The KE15Z uses a 6-channel 
FlexTimer (FTM) to generate a 6-channel PWM and two 12-bit SAR ADCs to measure the back-EMF 
voltage, DC-bus current, and DC-bus voltage. The FTM and ADC are synchronized via the 
Programmable Delay Block (PDB). One channel from another independent FTM is used for the 
slow-loop interrupt generation. 

3.5.2.1. PWM generation—FTM0 
• The FTM is clocked from the 72-MHz System clock. 
• Only six channels are used, the other two are masked in the OUTMASK register. 
• Channels 0+1, 2+3, and 4+5 are combined in pairs and running in a complementary mode. 
• The PWM period (frequency) is determined as a time for the FTM to count from CNTIN to 

MOD. By default, CNTIN = -MODULO / 2 = -3600 and MOD = MODULO / 2 - 1 = 3599. The 
FTM is clocked from the 72-MHz System clock, so the PWM period is 0.0001 s (10 kHz). 

• The dead time insertion is enabled for each combined pair. The dead time length is calculated as 
System clock 72 MHz × Tdeadtime. The dead time length is 0.5 µs. 

• The FTM generates a trigger for the PDB on the counter initialization. 
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3.5.2.2. Analog sensing—ADC0 and ADC1 
• The ADCs operate as 12-bit, single-ended converters. 
• The clock source for both ADCs is the 24-MHz Bus clock divided by 2 = 12 MHz. 
• For the ADC calibration purposes, the ADC clock is set to 3 MHz. The continuous conversion 

and averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the 
SC register is filled with its default values and the clock is set back to 12 MHz. 

• Both ADCs are triggered by the PDB pre-triggers. 
• An interrupt that serves for the fast-loop algorithm calculation is generated when the first 

conversion is completed. 

3.5.2.3. PWM and ADC synchronization—PDB0 
• Like the FTM, the PDB is clocked from the 72-MHz System clock. 
• The PDB is triggered by the FTM0_TRIG. 
• At each channel, the pre-trigger 0 is generated 0.5 × Tdeadtime after the FTM0_TRIG. 
• At each channel, the pre-trigger 1 is generated immediately after the first conversion is 

completed using the back-to-back mode. 
• The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached. 

This interrupt enables the FTM_TRIG (see Figure 8). 
• The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result 

register is not read and the same pre-trigger occurs at this ADC. For more information about the 
PDB error sequence handling, see Tips and Tricks Using PDB in Motor Control Applications on 
Kinetis (document AN4822). 

3.5.2.4. Slow-loop interrupt generation—FTM2 
• The slow loop is usually 10× (or more) slower than the fast loop. Therefore, the FTM2 is clocked 

from the System clock / 16 to keep its modulo value reasonably low. 
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO. 
• The interrupt that serves the slow loop is enabled and generated at the reload. 

3.5.3. CPU load and memory usage 
The following information apply to the demonstration application built using the IAR Embedded 
Workbench IDE. Table 9 shows the memory usage and CPU load. The memory usage is calculated from 
the linker .map file, including the 2 KB FreeMASTER Recorder buffer (allocated in RAM) and 4.2 KB 
FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using 
the SysTick timer. The CPU load depends on the fast-loop (FOC calculation) and slow-loop 
(speed-loop) frequencies. In this case, it applies to the fast-loop frequency of 10 kHz and the slow-loop 
frequency of 1 kHz. The total CPU load is calculated according to Eq. 3. 

 

http://www.nxp.com/doc/AN4822
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Table 9. KE15Z CPU load and memory usage 

— KE15Z 
CPU clock [MHz] 72 

Fast Control Loop [cycles] (%) 4177 (58.0 %) 
Slow Control Loop [cycles] (%) 605 (0.8 %) 

Total CPU load [%] 58.8 % 
Flash usage [B] 20 665 
RAM usage [B] 3 727 

3.6. KE1xF family 
The KE18F is a part of Kinetis E series of ARM Cortex-M4 MCUs. This device is a 32-bit Kinetis MCU 
based on the ARM Cortex-M4 processor. It is an extension of the existing Kinetis E series MCU family 
with an enhanced CPU performance and additional memories and peripherals. This sub-family provides 
up to 168 MHz CPU performance, 512 KB flash, and 64 KB SRAM. 

For more information, see KE1xZ Sub-Family Reference Manual (document KE1xFP100M168SF0RM). 

3.6.1. Hardware timing and synchronization 
A correct and precise timing is crucial in motor-control applications. The motor-control-dedicated 
peripherals handle the timing and synchronization on the hardware layer. The timing diagram is shown 
in this figure: 

 
Figure 9. Hardware timing and synchronization on KV11Z and KV10Z 
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3.6.2. Peripheral settings 
This section describes only the peripherals used for motor control. The KE18F uses a 6-channel 
FlexTimer (FTM) to generate a 6-channel PWM, and two 12-bit SAR ADCs to measure the back-EMF 
voltage, DC-bus current, and DC-bus voltage. The FTM and ADC are synchronized via the 
Programmable Delay Block (PDB). One channel from another independent FTM is used for the 
slow-loop interrupt generation. 

3.6.2.1. PWM generation—FTM0 

• The FTM is clocked from the 168-MHz System clock. 
• Only six channels are used, the other two are masked in the OUTMASK register. 
• Channels 0+1, 2+3, and 4+5 are combined in pairs and running in a complementary mode. 
• The PWM period (frequency) is determined as a time for the FTM to count from CNTIN to 

MOD. By default, CNTIN = -MODULO / 2 = -8400 and MOD = MODULO / 2 - 1 = 8399. The 
FTM is clocked from the 168-MHz System clock, so it takes 0.0001 s (10 kHz). 

• The dead time insertion is enabled for each combined pair. The dead time length is calculated as 
System clock 168 MHz × Tdeadtime. The dead time length is 0.5 µs. 

• The FTM generates a trigger for the PDBs on the counter initialization. 

3.6.2.2. Analog sensing—ADC0 and ADC2 
• The ADCs operate as 12-bit, single-ended converters. 
• The clock source for both ADCs is the 84-MHz Bus clock divided by 2 = 42 MHz. 
• For the ADC calibration purposes, the ADC clock is set to 10.5 MHz. The continuous conversion 

and averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the 
SC register is filled with its default values and the clock is set back to 42 MHz. 

• Both ADCs are triggered by the PDB pre-triggers. 
• The interrupt that serves for the fast-loop algorithm calculation is generated when the first 

conversion is completed. 

3.6.2.3. PWM and ADC synchronization—PDB0, PDB2 
• Like the FTM, the PDB is clocked from the 168-MHz System clock. 
• The PDB is triggered by the FTM0_TRIG. 
• At each channel, the pre-trigger 0 is generated 0.5 × Tdeadtime after the FTM0_TRIG. 
• At each channel, the pre-trigger 1 is generated immediately after the first conversion is 

completed using the back-to-back mode. 
• The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached. 

This interrupt enables the FTM_TRIG (see Figure 9). 
• The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result 

register is not read and the same pre-trigger occurs at this ADC. For more information about the 
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PDB error sequence handling, see Tips and Tricks Using PDB in Motor Control Applications on 
Kinetis (document AN4822). 

3.6.2.4. Slow-loop interrupt generation—FTM2 
• The slow loop is usually 10× (or more) slower than the fast loop. Therefore, the FTM2 is clocked 

from the System clock / 16 to keep its modulo value reasonably low. 
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO. 
• The interrupt that serves the slow loop is enabled and generated at the reload. 

3.6.2.5. Communication with MC33937 MOSFET driver—LPSPI 
• The SPI runs in the master mode. 
• The SPI chip select 2 signal is active in the logic high. 
• The baud rate is 0.5 MHz. 

3.6.3. CPU load and memory usage 
The following information apply to the demonstration application built using the IAR Embedded 
Workbench IDE. Table 10 shows the memory usage and CPU load. The memory usage is calculated 
from the linker .map file, including the 2 KB FreeMASTER Recorder buffer (allocated in RAM) and 
4.2 KB FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is 
measured using the SysTick timer. The CPU load depends on the fast-loop (FOC calculation) and 
slow-loop (speed-loop) frequencies. In this case, it applies to the fast-loop frequency of 10 kHz and the 
slow-loop frequency of 1 kHz. The total CPU load is calculated according to Eq. 3. 

Table 10. KE18F CPU load and memory usage 

— KE18F 
CPU clock [MHz] 168 

Fast Control Loop [cycles] (%) 2296 (13.7 %) 
Slow Control Loop [cycles] (%) 283 (0.2 %) 

Total CPU load [%] 13.9 % 
Flash usage [B] 23 247 
RAM usage [B] 3 785 

4. Motor Control Peripheral Drivers 
Motor Control Peripheral Drivers (MCDRV) represent a simple way of peripheral initialization and 
access for the purposes of 3-phase ACIM or PMSM control. The features provided by the MCDRV 
library are 3-phase PWM generation and 3-phase current measurement, as well as the DC-bus voltage 
and auxiliary quantity measurement. The principles of both the 3-phase current measurement and PWM 
generation using the Space Vector Modulation (SVM) technique are described in Sensorless PMSM 
Field-Oriented Control (document DRM148).  

The MCDRV are divided into two parts:  
• The first part is the peripheral initialization module, consisting of mcdrv_<platform>-

http://www.nxp.com/doc/AN4822
http://www.nxp.com/doc/DRM148
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<device>.c and mcdrv_<platform>-<device>.h files, which are unique for each supported 
device. The header file includes all MCDRV setup options including the ADC channel 
assignment. The source file contains the functions to initialize all peripherals used for motor 
control. This module is described in Section 4.2, “Motor Control Peripheral Drivers API”.   

• The second part consists of the peripheral driver library modules for each supported periphery. 
Generally, all ADC and PWM periphery drivers share the same API within their class. This 
enables the higher-level code to be platform-independent, as the peripheral driver function calls 
were replaced by universally named macros. The list of supported peripherals and the API of 
their drivers is described in Section 4.2, “Motor Control Peripheral Drivers API”. 

4.1. Motor Control Peripheral Drivers initialization 
The MCDRV initialization module consists of a set of MCU peripheral-initialization functions, as well 
as all the definitions that you can specify. The functions are contained in device-specific 
mcdrv_<platform><device>.c source and mcdrv_<platform><device>.h header files. Out of all 
functions in the MCDRV initialization module, call the MCDRV_Init_M1() function during MCU 
startup and before calling any other MCDRV functions. All peripherals used by a given device for 
motor-control purposes are initialized within this function.  

The mcdrv_<platform><device>.h header files offer several macros that you can define: 
• M1_MCDRV_ADC—this macro specifies the ADC periphery used. If you select an unsupported 

periphery, the preprocessor error is issued. 
• M1_MCDRV_PWM3PH—this macro specifies the PWM periphery used. If you select an 

unsupported periphery, the preprocessor error is issued. 
• M1_PWM_FREQ—PWM frequency, for example, 10 kHz. 
• M1_FOC_FREQ_VS_PWM_FREQ—enables you to call the fast loop interrupt every 1st, 2nd, 

3rd, and nth PWM reload. This is convenient when the PWM frequency must be higher than the 
maximal fast-loop interrupt length (running out of CPU performance). 

• M1_PWM_PAIR_PH[A..C]—these macros enable simple assignment of the physical motor 
phases to the PWM periphery channels or submodules. Change the order of the motor phases 
this way. 

• M1_ADC[0,1]_PH_[A..C]—these macros serve to assign the ADC channels for phase-current 
measurement. The general rule is that at least one of the phase currents must be measurable on 
both ADC converters and the remaining two phase currents must be measurable on different 
ADC converters. The reason for this is that the selection of the phase-current pair to measure 
depends on the current SVM sector. When this rule is broken, preprocessor error is issued. 
For more information about the 3-phase current measurement, see Sensorless PMSM 
Field-Oriented Control (document DRM148). The unassigned ADC channels are set to the 
MCDRV_CHAN_OFF value. 

• M1_ADC[0,1]_UDCB and M1_ADC[0,1]_AUX—use these defines to select the ADC channel 
to measure the DC-bus voltage and one user-defined auxiliary quantity, which is not used 
directly for motor control (the IPM temperature is measured by default). The rule for the ADC 
channel assignment is that the DC-bus voltage and the auxiliary quantity must be measurable on 
different ADC converters. If this rule is broken, preprocessor error is issued.  

http://www.fsls.co/doc/DRM148
http://www.fsls.co/doc/DRM148
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4.2. Motor Control Peripheral Drivers API 
The ADC and PWM motor-control drivers share the same API within their class. To ensure the device 
independency of MCDRV API, all driver functions are accessible via universally named macros in the 
mcdrv_<platform>-<device>.h files. 

The available API for the ADC MC drivers is: 
• bool_t M1_MCDRV_ADC_PERIPH_INIT()—by default, this function is called during the ADC 

peripheral initialization procedure invoked by the MCDRV_Init_M1() function, and it must not 
be called again after the peripheral initialization is done.  

• bool_t M1_MCDRV_CURR_3PH_CHAN_ASSIGN(MCDRV_ADC_T*)—calling this function 
assigns the proper ADC channels for the next 3-phase current measurement based on the SVM 
sector. This function always returns true. 

• bool_t M1_MCDRV_CURR_3PH_CALIB_INIT(MCDRV_ADC_T*)—this function initializes the 
phase-current channel-offset measurement. This function always returns true. 

• bool_t M1_MCDRV_CURR_3PH_CALIB(MCDRV_ADC_T*)—this function reads the current 
information from the unpowered phases of a standstill motor and filters them using moving 
average filters. The goal is to obtain the value of the measurement offset. The length of the 
window for moving average filters is set to eight samples by default. This function always 
returns true. 

• bool_t M1_MCDRV_CURR_3PH_CALIB_SET(MCDRV_ADC_T*)—this function asserts the 
phase-current measurement offset values to the internal registers. Call this function after 
a sufficient number of M1_MCDRV_CURR_3PH_CALIB() calls. This function always 
returns true. 

• bool_t M1_MCDRV_ADC_GET (MCDRV_ADC_T*)—this function reads and calculates the 
actual values of the 3-phase currents, DC-bus voltage, and auxiliary quantity. This function 
always returns true. 

The API for the PWM MC drivers is: 
• bool_t M1_MCDRV_PWM_PERIPH_INIT (M1_MCDRV_PWM_T*)—this function is called by 

default during the PWM periphery-initialization procedure invoked by the MCDRV_Init_M1() 
function. This function always returns true. 

• bool_t M1_MCDRV_PWM3PH_SET(M1_MCDRV_PWM_T*)—this function updates the PWM 
phase duty cycles based on the required values stored in the M1_MCDRV_PWMIO_DUTY 
variable. This function always returns true. 

• bool_t M1_MCDRV_PWM3PH_EN(M1_MCDRV_PWM_T*)—calling this function enables all 
PWM channels. This function always returns true. 

• bool_t M1_MCDRV_PWM3PH_DIS (M1_MCDRV_PWM_T*)—calling this function disables all 
PWM channels. This function always returns true. 

• bool_t M1_MCDRV_PWM3PH_FAULT_GET(M1_MCDRV_PWM_T*)—this function returns 
the state of the over-current fault flags and automatically clears the flags (if set). This function 
returns true when the over-current event occurs, otherwise, it returns false. 
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5. Tuning and Controlling the Application 
This section provides information about the tools and recommended procedures for controlling the 
sensorless PMSM Field-Oriented Control (FOC) application. The application contains the 
embedded-side driver of FreeMASTER real-time debug monitor and data visualization tool for 
communication with the PC. It supports non-intrusive monitoring as well as the modification of target 
variables in real time, which is very useful for algorithm tuning. Besides the target-side driver, 
FreeMASTER requires installing the PC application as well. For more information, 
visit www.nxp.com/freemaster.  

Control and tune the PMSM sensorless FOC application easily using Motor Control Application Tuning 
(MCAT) page for PMSM. The MCAT for PMSM is a user-friendly modular page, which runs within 
FreeMASTER. To launch it, execute the .pmp file located next to your project. See the user’s guide for 
your version of MCRSP_PMSM for more information (document MCRSPPMSMUG). Figure 10 shows 
the MCAT for PMSM welcome page. The tool consists of a tab menu (point one), tuning mode selector 
(point two), and the workspace (point three). Each tab represents a submodule, which enables tuning or 
controlling different aspects of the application. Besides the MCAT page for PMSM, several scopes, 
recorders, and variables in the variable watch window are predefined in the FreeMASTER project file to 
further simplify motor parameter tuning and debugging. The Basic and Expert tuning modes are 
available. Selecting the Expert mode grants you the access to modify all parameters and fields available 
in MCAT. The Basic mode is intended for inexperienced users. When FreeMASTER is not connected to 
the target, the “App ID” line shows “offline”. When the communication with the target MCU (with 
correct software) is established, the “App ID” line displays the MCU and platform, and all stored 
parameters for the given MCU are loaded.  

http://www.nxp.com/freemaster
http://www.nxp.com/doc/MCRSPPMSMUG
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Figure 10. MCAT layout 

In the default configuration, these tabs are available: 
• “Introduction”—welcome page with the PMSM sensorless FOC diagram and a short description 

of the application. 
• “Motor Identif”—PMSM semi-automated parameter-measurement control page. The PMSM 

parameter identification is described in detail later on in this document. 
• “Parameters”—this page enables you to modify the motor parameters, the specification of 

hardware and application scales, and fault limits.  
• “Current Loop”—current-loop PI controller gains and output limits. 
• “Speed Loop”—this tab contains fields to specify the speed controller proportional and integral 

gains as well as the output limits and parameters of the speed ramp. 
• “Sensorless”—this page enables you to tune the parameters of the BEMF observer, tracking 

observer, and open-loop startup. 
• “Control Struc”—the application control page enables you to select and control the PMSM using 

different techniques (scalar—Volt/Hertz control, voltage FOC, current FOC, and speed FOC). 
The application state is also shown in this tab. 

• “Output file”—this tab enables the user to view all calculated constants that are required by the 
PMSM sensorless FOC application. It also enables you to generate the m1_pmsm_appconfig.h 
file, which is then used to preset all application parameters permanently at project rebuild. 

  



Tuning and Controlling the Application 

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016 
NXP Semiconductors  29 
  

• “Control page”—this tab contains graphical elements such as speed gauges, DC-bus voltage 
measurement bar, and variety of switches that enable simple, quick, and user-friendly application 
control. Here you can control the fault-clearing and demo mode, which sets various predefined 
required speeds over time.  

Most tabs offer the possibility to immediately write the parameters specified in MCAT into the target 
using the “Update target” button, and save them to or restore them from the hard drive file using the 
“Reload Data” and “Store Data” buttons. 

The following sections provide simple instructions for identifying the parameters of a connected PMSM, 
and tuning the application appropriately. 

5.1. PMSM parameter identification 
Because the model-based control methods of PMSM drives are the most effective and usable, obtaining 
an accurate model of a motor is an important part of the drive design and control. To implement the 
FOC algorithms, you must know the values of stator resistance R s , direct inductance Ld , quadrature 
inductance Lq , and BEMF constant K e .  

5.1.1. Power stage characterization 
Each inverter introduces the total error voltage U error , which is caused by the dead time, 
current-clamping effect, and transistor voltage drop. The total error voltage U error  depends on the phase 
current i s  and this dependency is measured during the power stage characterization process. An example 
of the inverter error characteristic is shown in Figure 11. The power stage characterization is a part of 
MCAT, which can be controlled using the “Motor Identif” tab. To perform the characterization, connect 
the motor with a known stator resistance R s , and set this value in the “Calib Rs” field. Then specify the 
“Calibration Range”, which is the range of the stator current i s , in which the measurement of U error is to 
be performed. Start the characterization by clicking the “Calibrate” button. The characterization 
gradually performs 65 i sd  current steps (from i s  = -I s,calib  to i s  = I s,calib ), with each step lasting 300 ms. 
The whole process then takes about 20 seconds and the motor must withstand this load. The acquired 
characterization data is saved to a file and used later for the phase-voltage correction during the R s  
measurement process. Perform the following R s  measurement with a maximum current I s,calib . It is 
recommended to use a motor with a low R s  for characterization purposes.  
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Figure 11. Example power stage characteristic 

The power stage characterization is necessary only when you use your own hardware. When using NXP 
power stages with the application, omit the characterization process. The acquired characterization data 
is saved to a file, so it is necessary to do it only once for a given hardware. 

5.1.2. Stator resistance measurement 
Stator resistance R s  is measured using the DC current I phN  value, which is applied to the motor for 
1200 ms. DC voltage UDC is maintained using current controllers. Their parameters are selected 
conservatively to ensure stability. Stator resistance R s  is calculated using Ohm’s law as: 

Eq. 4 𝑹𝑹𝒔𝒔 = 𝑼𝑼𝑫𝑫𝑫𝑫−𝑼𝑼𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆
𝑰𝑰𝒑𝒑𝒑𝒑𝒑𝒑

 [Ω] 

5.1.3. Stator inductance 
For the stator inductance LS  identification purposes, a sinusoidal measurement voltage is applied to the 
motor. During LS  measurement, voltage control is enabled. The frequency and amplitude of the 
sinusoidal voltage are obtained during the tuning process, before the actual measurement. The tuning 
process starts with a 0 V amplitude and F start frequency, which are applied to the motor. The amplitude 
is gradually increased by Ud inc up to half of the DC-bus voltage (DCbus/2) until I s  AC is reached. 
If I s  AC is not reached even with DCbus/2 and F start, the frequency of the measurement signal is again 
gradually decreased by F dec down to F min, until I s  AC is reached. If I s  AC is still not reached, the 
measurement continues with DCbus/2 and F min. The tuning process is shown in the following figure. 
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Figure 12. Tuning Ls measurement signal 

When the tuning process is complete, the sinusoidal measurement signal (with the amplitude and 
frequency obtained during the tuning process) is applied to the motor. The total impedance of the RL 
circuit is then calculated from the voltage and current amplitudes, and L s  is calculated from the total 
impedance of the RL circuit. 

Eq. 5 𝒁𝒁𝑹𝑹𝑹𝑹 = 𝑼𝑼𝒅𝒅
𝑰𝑰𝒅𝒅 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂

 [Ω] 

Eq. 6 𝑿𝑿𝑳𝑳𝑳𝑳 = �𝒁𝒁𝑹𝑹𝑹𝑹𝟐𝟐−𝑹𝑹𝑺𝑺𝟐𝟐 [Ω] 

Eq. 7 𝑳𝑳𝒔𝒔 = 𝑿𝑿𝑳𝑳𝑳𝑳
𝟐𝟐𝟐𝟐𝟐𝟐

 [H] 

The direct inductance (Ld ) and quadrature inductance (Lq) measurements are done in the same way as 
the LS  measurement. Before the Ld  and Lq  measurements take place, DC current is applied to the D-
axis, which aligns the rotor. For Ld  measurement, the sinusoidal voltage is applied in the D-axis, and for 
Lq  measurement, the sinusoidal voltage is applied in the Q-axis. 

5.1.4. BEMF constant measurement 
Before the actual BEMF constant (K e ) measurement, MCAT calculates the current controllers and 
BEMF-observer constants from the previously measured R s , Ld , and Lq . To measure the K e , the motor 
must be spinning. The I d  is controlled using I s  DC, and the electrical open-loop position is generated by 
integrating the required speed, derived from N nom. When the motor reaches the required speed, 
the BEMF voltages obtained by the BEMF observer are filtered, and K e  is calculated as follows: 

Eq. 8 𝑲𝑲𝒆𝒆 = 𝑼𝑼𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩
𝝎𝝎𝒆𝒆𝒆𝒆

 [ 𝑽𝑽.𝒔𝒔
𝒓𝒓𝒓𝒓𝒓𝒓

] 

Ud inc
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While K e  is being measured, look at the motor to determine whether it is spinning properly. If the motor 
is not spinning properly, perform these steps: 

• Ensure that the number of pole-pairs (pp) is correct. The required speed for the K e  measurement 
is also calculated from pp, so an incorrect pp causes an incorrect K e . 

• Increase the value of I s  DC to produce a higher torque when spinning during the open loop. 
• Decrease the value of N nom to decrease the required speed for the K e  measurement. 

5.1.5. Number of pole-pairs assistant 
The number of pole-pairs cannot be measured without a position sensor, however, there is a simple 
assistant to determine the number of pp. The number of pole-pairs assistant performs one electrical 
revolution and stops for a few seconds, and then repeats it. Because the pp value is a ratio between the 
electrical and mechanical speeds, it is determined as the number of stops per one mechanical revolution. 
It is recommended not to count the stops during the first mechanical revolution, because the alignment 
which affects the number of stops occurs during the first revolution. During the pp measurement, 
the current loop is enabled, and current Id  is controlled to I s  DC. The electrical position is generated by 
integrating the open-loop speed. If the rotor does not move after starting the number of pole-pairs 
assistant, stop the assistant, increase I s  DC, and restart the assistant. 

5.1.6. PMSM electrical parameter measurement process 
Control and set up the motor identification process using the MCAT “Motor Identif” tab, which is 
shown in Figure 13. To measure your own motor, follow these steps (shown in Figure 14): 

• Select your hardware board. You can select the standard NXP hardware or use your own. If you 
use your own hardware, specify its scales (I max, U DCB max, Fast Loop Period). 

• If you don’t know the number of motor pole-pairs, use the number of pole-pairs assistant 
described in Section 5.1.5, “Number of pole-pairs assistant”. 

• If you use your own hardware for the first time, perform the power stage characterization 
described in Section, 5.1.1, “Power stage characterization”. 

• Enter the motor measurement parameters (depending on “Basic” or “Expert” mode) and start the 
measurement by pressing the “Measure” button. You can observe which parameter is being 
measured in the “Status” bar. 
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Figure 13. PMSM identification tab 

 
 

 
Figure 14. Measurement process diagram 
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Faults and warnings may occur during the measurement. Do not confuse these faults with application 
faults such as over-current, under-voltage, and others. The list of these faults and their description and 
possible troubleshooting is shown in this table: 

Table 11. Measurement faults and warnings 

Fault 

no. 
Fault description Fault reason Troubleshooting 

01 Motor not connected I s  > 50 mA cannot be reached with the 
available DC-bus voltage. Check that the motor is connected. 

02 R s  too high for calibration Calibration I cannot be reached with the 
available DC-bus voltage. 

Use a motor with a lower R s  for power 
stage characterization. 

03 Current measurement I s  
DC not reached 

User-defined I s  DC is not reached, so the 
measurement is taken with a lower I s  

DC. 

Raise the DC-bus voltage to reach the I s  
DC or lower the I s  DC to avoid this 

warning. 

04 
Current amplitude 

measurement I s  AC not 
reached 

User-defined I s  AC is not reached, so the 
measurement is taken with a lower I s  AC. 

Raise the DC-bus voltage or lower the 
F min to reach the I s  AC or lower the I s  AC 

to avoid this warning. 

05 Wrong characteristic data 
Characteristic data that is used for 

voltage correction does not correspond to 
the actual power stage. 

Select “User HW” and perform the 
calibration. 

5.2. PMSM sensorless application control and tuning using MCAT 
Use FreeMASTER enabled with the MCAT page to control and tune the PMSM sensorless FOC 
application easily. The MCAT for PMSM submodule tabs are described here. 

5.2.1. Application control using MCAT 
Control the application using the “Control Struc” tab (shown in Figure 15). The “State Control” area on 
the left-hand side of the screen shows the current application state and enables turning the main 
application switch on or off (turning the running application off disables all PWM outputs). 
The “Cascade Control Structure Composition” area is on the right-hand side of the screen. 
Choose between the scalar and FOC control using the appropriate buttons. Enable the selected parts of 
the FOC cascade structure by selecting “Voltage FOC”, “Current FOC”, or “Speed FOC”. This is useful 
for application tuning and debugging. 
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Figure 15. MCAT for PMSM control page 

The scalar control diagram is in Figure 16. It is the simplest type of a motor-control technique. Keep the 
ratio between the magnitude of the stator voltage and the frequency (frequency information is hidden in 
the “Speed_req” value) at the nominal ratio. This control method is sometimes called Volt per Hertz or 
V/Hz. Pay attention when entering the required voltage and speed in the Expert tuning mode. The ratio 
stays constant in the Basic mode and only the speed is required. The position-estimation BEMF observer 
and the tracking observer algorithms are running in the background even if the estimated position 
information is not directly used. See Sensorless PMSM Field-Oriented Control (document DRM148) for 
more information. This is useful for BEMF observer tuning.   

 
Figure 16. Scalar control mode 

http://www.nxp.com/doc/DRM148
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The block diagram of the voltage FOC is shown in the following figure. As opposed to scalar control, 
the position feedback is closed using the BEMF observer, and the stator voltage magnitude is not 
dependent on motor speed. Specify the d-axis and q-axis stator voltages using the “Ud_req” and 
“Uq_req” fields. This control method is useful for the BEMF observer functionality check.  

 
Figure 17. Voltage FOC control mode 

The current FOC (or torque control) requires transforming the rotor position feedback (as well as the 
currents) into the d-q reference frame. The reference variables “Id_req” and “Iq_req” are available for 
motor control (see the following figure). The d-axis current component i sd_req is responsible for the rotor-
flux control, while the q-axis current component of the current isq_req generates torque, and the motor runs 
when it is applied. When changing the polarity of the current isq_req, the motor changes the rotation 
direction. When tuning the BEMF observer correctly, tune the current PI controllers using the current 
FOC control structure. 

 
Figure 18. Current (torque) control mode 
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Activate the speed PMSM sensorless FOC (whose diagram is shown in the following figure) by 
enabling the “Speed FOC” control structure. Enter the required speed into the “Speed_req” field. The d-
axis current reference is kept at 0 during the entire FOC operation. This control scheme is used for the 
speed PI controller design, which is the final stage of the PMSM sensorless application tuning. 

 
Figure 19. Speed FOC control mode 

5.2.2. PMSM sensorless application tuning using MCAT 
This section provides a guide for running your motor in several steps. It is highly recommended to go 
through all the steps carefully to eliminate any issues during the tuning process. The state diagram in the 
following figure shows a typical PMSM sensorless control tuning process. The tuning phases are 
described in the following sections. 
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Figure 20. Running a new PMSM 

5.2.3. Initial configuration setting and update 
1. Open the PMSM sensorless control application FreeMASTER project containing the dedicated 

MCAT plug-in module. 
2. Select the “Basic” mode—recommended for users who are not experienced in motor-control 

theory. The number of required input parameters is reduced. 
3. Select the “Parameters” tab. 
4. Leave the measured motor parameters as they are, or specify the parameters manually. Obtain 

the motor parameters from the motor data sheet or using the PMSM parameters measurement 
procedure described in PMSM electrical parameters measurement (document AN4680). 
All parameters provided in the following table are accessible in both the Basic and the Expert 
modes. The motor inertia J expresses the overall system inertia that is very often difficult to 
obtain. Obtain the additional methods to identify the drive inertia from other resources, for 
example, from IEEE. The J parameter is used to calculate the speed controller constant. You can 
also use manual controller tuning to calculate this constant. 
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Table 12. MCAT motor parameters 

Parameter Units Description Typical range 

pp — Motor pole-pairs 1–10 
Rs [Ω] One-phase stator resistance 0.3–50 
Ld [H] One-phase direct inductance 0.00001–0.1 
Lq [H] One-phase quadrature inductance 0.00001–0.1 

Ke [V.sec/rad] BEMF constant 0.001–1 

J [kg.m2] System inertia 0.000001–1 

Iph nom [A] Motor nominal phase current 0.5–8 

Uph nom [V] Motor nominal phase voltage 10–300 

N nom [rpm] Motor nominal speed 1000–2000 

5. Set the hardware scales—modifying these two fields is not required when using a reference to 
the standard power stage board. These scales specify the maximum measurable current and 
voltage analog quantities. 

6. Check the fault limits—these fields are not accessible in the “Basic” mode and they are 
calculated using the motor parameters and hardware scales. See this table: 

Table 13. Fault limits 

Parameter Units Description Typical range 

U DCB trip [V] Voltage value when the external braking resistor switch is 
turned on 

U DCB 
Over~U DCB max 

U DCB under [V] Trigger value when the under-voltage fault is detected 0~U DCB Over 

U DCB over [V] Trigger value when the over-voltage fault is detected U DCB 
Under~U max 

N over [rpm] Trigger value when the over-speed fault is detected N nom~N max 
N min [rpm] Minimal actual speed value for the sensorless control (0.05~0.2) * N max 

E block [V] 
Bemf voltage threshold for blocked rotor detection. If the 

Bemf voltage drops down under this threshold, the blocked 
rotor fault sets on (see Figure 19). 

0.1 * E max 

 
Figure 21. Blocked rotor detection 
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7. Check the application scales—these fields are not accessible in the Basic mode and are 
calculated using the motor parameters and hardware scales.  

Table 14. Application scales 

Parameter  Units  Description  Typical range  
N max  [rpm]  Speed scale  >1.1 * N nom  
E max  [V]  BEMF scale   Ke * N max 

kt  [Nm/A]  Motor torque constant  —  

 
8. Check the alignment parameters—these fields are not accessible in the Basic mode and are 

calculated using the motor parameters and hardware scales. The parameters express the required 
voltage value applied to the motor during rotor alignment and its duration.  

9. Click the “Store Data” button to save the modified parameters into the inner file. 

5.2.4. Control structure modes 
1. Select scalar control by clicking the “DISABLED” button in the “Scalar Control” section. 

The button color changes to red, and the text changes to “ENABLED”.  
2. Turn the application switch on. The application state changes to RUN.  
3. Set the required speed value in the “Speed_req” field (e.g., 500 rpm in the “Scalar Control” 

section). The motor starts running (see the following figure). 

 
Figure 22. MCAT scalar control 

4. Select the “Phase Currents” recorder from FreeMASTER project tree “Scalar and Voltage 
Control”. 

5. Find the optimal ratio for the V/Hz profile by changing the V/Hz factor directly or using the 
UP/DOWN buttons. The shape of the motor currents must be close to a sinusoidal shape: 
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Figure 23. Phase currents 

6. Select the “Position” recorder to check the observer functionality. The difference between the 
“Position Electrical Scalar” and the “Position Estimated” must be minimal (see the following 
figure) for the Back-EMF position and speed observer to work properly. The position difference 
depends on the motor load. The higher the load, the bigger the difference between the positions 
(due to the load angle). 

 
Figure 24. Generated and estimated positions 

7. If an opposite speed direction is required, set a negative value in the “Speed_req” field. 
8. A proper observer functionality and measurement of analog quantities is expected at this step. 
9. Enable the voltage FOC mode by clicking the “DISABLED” button in the “Voltage FOC” 

section while the main application switch is turned off. 
10. Turn the main application switch on and put a non-zero value into the “Uq_req” field. The FOC 

algorithm uses the estimated position to run the motor. 
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5.2.5. Alignment tuning 
The alignment procedure sets the rotor to an accurate initial position and enables applying a full start-up 
torque to the motor. The rotor-alignment parameters are available for editing in the Expert mode. 
A correct initial position is needed mainly for high start-up loads (compressors, washers, and others). 
The aim of the alignment is to have the rotor in a stable position (without oscillations) before the startup. 

1. The alignment voltage is a value applied to the d-axis during alignment. Increase this value for a 
higher shaft load. 

2. The alignment duration expresses the time for which the alignment routine is to be called. Tune 
this parameter to have the rotor without oscillations or movement at the end of the alignment 
process. 

5.2.6. Current loop tuning 
Parameters for the current D,Q PI controllers are fully calculated in the Basic mode using the motor 
parameters and no action is required in this mode. If the calculated loop parameters do not correspond to 
the required response, tune the bandwidth and attenuation parameters. 

1. Switch the tuning mode to “Expert”. 
2. Set the required loop bandwidth and attenuation and click the “Update Target” button in the 

“Current Loop” tab. The tuning loop bandwidth parameter defines the speed of the loop 
response, whilst the tuning loop attenuation parameter defines the actual quantity-overshoot 
magnitude. 

3. Select the “Current Controller Id” recorder. 
4. Select the “Control Structure” tab, switch to the “Current FOC”, set the “Iq_req” to a very low 

value (e.g., 0.01), and set the required step to “Id_req”. The control-loop response is shown in 
the recorder (see Figure 6). 

5. Tune the loop bandwidth and attenuation until you achieve the required response. The example 
waveforms show the correct and incorrect settings of the current loop parameters: 

— The loop bandwidth is low (110 Hz) and the settling time of the “Id” current is long: 

 
Figure 25. Slow step response of Id current controller 
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— The loop bandwidth (400 Hz) is optimal and the response time of the “Id” current is 
sufficient: 

 
Figure 26. Optimal step response of Id current controller 

— The loop bandwidth is high (700 Hz) and the response time of the “Id” current is very 
fast, but it contains oscillation and overshoot: 

 
Figure 27. Fast step response of Id current controller 

5.2.7. Actual speed filter 
The estimated speed from the BEMF observer is fed into the speed PI controller through the IIR filter. 
Modify the filter cut-off frequency in the Expert mode in the “Speed Loop” tab. The speed loop sample 
time is typically several milliseconds, so the actual speed filter cut-off frequency mostly ranges from 
5 Hz to 100 Hz. 

Track the filter output in the “Speed” scope. Write the modified filter cut-off frequency value to the 
MCU by clicking the “Update Target” button. 
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5.2.8. Speed ramp tuning 
The “Speed” command is applied to the speed controller through a speed ramp. The ramp function 
contains two increments (up and down) that express motor acceleration and deceleration per second. 
If the increments are very high, they can cause an over-current fault during acceleration and an 
over-voltage fault during deceleration. In the “Speed” scope, you can see whether the “Speed Actual 
Filtered” waveform shape equals the “Speed Ramp” profile. 

Increments are common for the scalar and speed control. The increment fields are located in the 
“Speed Loop” tab and they are accessible in both tuning modes. Clicking the “Update Target” button 
writes the changes to the MCU. An example speed profile is shown in the following figure. The ramp 
down increment is set to 500rpm/sec, while the up increment is set to 3,000 rpm/sec. 

The start-up ramp increment is located in the “Sensorless” tab and its value is usually higher than the 
value of the speed loop ramp. 

 
Figure 28. Speed profile 

5.2.9. Open-loop startup 
Tune the start-up process by a set of parameters located in the “Sensorless” tab. You can access two of 
them (ramp increment and current) in both tuning modes. The start-up tuning can be processed in all 
control modes, except for the scalar control. Set the optimal values to achieve a proper motor startup. 
An example start-up state of low-dynamic drives (fans, pumps) is shown in Figure 29. 

1. Select the “Startup” recorder from the FreeMASTER project tree. 
2. Set the start-up ramp increment to a higher value than the speed-loop ramp increment. 
3. Set the start-up current according to the required start-up torque. For drives such as fans or 

pumps, the start-up torque is not very high and you can set it to 15 % of the nominal current. 
4. Set the required merging speed—the threshold when the open-loop and estimated-position 

merging starts, mostly set in the range of 5 %~10 % of the nominal speed. 
5. Set the merging coefficient—the position-merging process duration, where 100 % corresponds to 

a half of the electrical revolution. The higher the value is, the faster the merge is done. Values 
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close to 1 % are set for drives where a high start-up torque and a smooth transition between 
the open loop and the closed loop are required. 

6. Click the “Update Target” button to write the changes to the MCU. 
7. Switch to the “Control Structure” tab, and enable “Speed FOC”. 
8. Set the required speed higher than the merging speed. 
9. Check the start-up response in the recorder. 
10. Tune the start-up parameters until you achieve an optimal response. 
11. If the rotor does not run, increase the start-up current. 
12. If the merging process fails (the rotor is stuck or stopped), decrease the start-up ramp increment, 

increase the merging speed, and set the merging coefficient to 5 %. 

 
Figure 29. Motor startup 

5.2.10. BEMF observer tuning 
The BEMF observer and tracking observer parameters are fully calculated in the Basic mode using the 
motor parameters and no action is required in this mode. If the calculated loop parameters do not 
correspond to the optimal response, tune the bandwidth and attenuation parameters. 

1. Switch the tuning mode to “Expert”. 
2. Select the “Observer” recorder from the FreeMASTER project tree. 
3. Set the required bandwidth and attenuation of the BEMF observer—the bandwidth is typically 

set to a value close to the current loop bandwidth. 
4. Set the required bandwidth and attenuation of the tracking observer—the bandwidth is typically 

set in the range from 10 Hz to 20 Hz for most low-dynamic drives (fans, pumps). 
5. Click the “Update Target” button to write the changes to the MCU. 
6. Check the observer response in the recorder. 
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5.2.11. Speed PI controller tuning 
The motor speed control loop is a first-order function with a mechanical time constant that depends on 
the motor inertia and friction. If these mechanical constants are available, tune the PI controller 
constants using the loop bandwidth and attenuation. The values of the motor and load inertias and 
frictions are very often unknown and it is quite difficult to obtain them. Therefore, manual tuning of the 
P and I portions of the speed controllers is available to obtain the required speed response (see the 
example response in Figure 10). There are dozens of approaches for tuning the PI controller constants. 
These steps provide an example of setting and tuning the speed PI controller for a PM synchronous 
motor. 

1. Select “Speed Controller” from the FreeMASTER project tree. 
2. Select the “Speed loop” tab. 
3. Check “Manual Constant Tuning”—that is, the bandwidth and attenuation fields are disabled, 

and “SL_Kp” and “SL_Ki” are enabled. 
4. Tune the proportional gain: 

— Set the “SL_Ki” integral gain to zero. 
— Set the speed ramp to 1000 rpm/sec (or higher). 
— Switch to the “Control Structure” tab and run the motor at a convenient speed 

(about 30 % of the nominal speed). 
— Set the step in the required speed to 40 % of N nom. 
— Switch back to the “Speed Loop” tab. 
— Keep tuning the proportional gain “SL_Kp” until the system responds properly to the 

required value (without oscillations or excessive overshoot): 
– If “SL_Kp” is set low, then the system response is slow. 
– If the “SL_Kp” is set high, then the system response is tighter. 
– If the “SL_Ki” is set to zero, then the system may not achieve the required speed. 

— Click the “Update Target” button to write the changes to the MCU. 
5. Tune the integral gain: 

— Increase the “SL_Ki” slowly to minimize the difference between the required and actual 
speeds to zero. 

— Adjust the “SL_Ki” so that you do not see any oscillation or large overshoot of the actual 
speed value while applying the required speed step. 

— Click the “Update Target” button to write the changes to the MCU. 
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6. Keep tuning the loop bandwidth and attenuation until you achieve the required response. 
The waveform examples with correct and incorrect settings of the current loop parameters are 
shown in the following figures: 

— The “SL_Ki” value is low, and the “Speed Actual Filtered” does not achieve the 
“Speed Ramp”: 

 
Figure 30. Speed controller response—“SL_Ki” is low, “Speed Ramp” not achieved 

— The “SL_Kp” value is low, “Speed Actual Filtered” greatly overshoots, and the long 
settling time is not wanted: 

 
Figure 31. Speed controller response—“SL_Kp” is low, “Speed Actual Filtered” greatly overshoots 
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— Speed loop response has a small overshoot, and the “Speed Actual Filtered” settling time 
is sufficient. Such response is considered optimal: 

 
Figure 32. Speed controller response—speed loop response with small overshoot 

5.2.12. Generating MCAT output file 
When you successfully finish tuning the application and want to store all calculated parameters to the 
embedded application, navigate to the “Output File” tab. View the list of all definitions generated by 
MCAT. Clicking the “Generate Configuration File” button overwrites the old version of the 
m1_pmsm_appconfig.h file, which contains these definitions. Provide a correct path to the file for a 
proper generation of the motor parameter file. To change the path, navigate the cursor to the right corner 
of the MCAT screen, and a symbol with a screw driver and a wrench appears. When clicking this 
symbol, the “Application Settings Page” appears. Modify the path to the m1_pmsm_appconfig.h file in 
the “Project Path Selection” area. 

6. Conclusion 
This application note describes the implementation of a sensorless Field-Oriented Control of the 3-phase 
PMSM using 32-bit Kinetis V series devices and the High-Voltage Platform, Tower System, and 
Freedom development platforms. The hardware-dependent part of the sensorless control software 
(including a detailed peripheral setup), Motor Control Peripheral Drivers (MCDRV), and application 
timing are described in Section 3, “MCU Features and Peripheral Settings”. The motor parameters 
identification theory and the identification algorithms are described in Section 5.1, “PMSM parameter 
identification”. The last part of the document describes the user interface represented by Motor Control 
Application Tuning (MCAT) tool, based on FreeMASTER communication interface.  
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7. Acronyms and Abbreviations 
Table 15. Acronyms and abbreviations 

AC Alternating Current 

ADC Analog-to-Digital Converter 

AN Application Note 

CPU Central Processing Unit 

CMP Comparator 

DC Direct Current 

DRM Design Reference Manual 

FOC Field-Oriented Control 

FTM FlexTimer Module 

GPIO General-Purpose Input/Output 

I/O 
Input/Output interfaces between a computer system and the external world (A CPU 
reads an input to sense the level of an external signal and writes to an output to 
change the level of an external signal.) 

MCAT Motor Control Application Tuning tool 

MCU Microcontroller Unit 

PDB Programmable Delay Block 

PI Proportional Integral controller 

PWM Pulse-Width Modulation 

UART Universal Asynchronous Receiver/Transmitter 

8. References 
These references are available on nxp.com: 

• Sensorless PMSM Field-Oriented Control (document DRM148) 
• Kinetis KV11: 75 MHz Cortex-M0+ 64/128 KB Flash (32-64 pin) (document KV11P64M75RM) 
• KV31F Sub-Family Reference Manual (document KV31P100M120SF7RM) 
• KV4x Reference Manual (document KV4XP100M168RM) 
• KV5x Sub-Family Reference Manual (document KV5XP144M220RM) 
• NXP High-Voltage Motor Control Platform User's Guide (document HVPMC3PHUG) 
• HVP-KV31F120M User’s Guide (document HVPKV31F120MUG) 
• Using FlexTimer in ACIM/PMSM Motor Control Applications (document AN3729) 
• Tips and Tricks Using PDB in Motor Control Applications on Kinetis (document AN4822) 
• Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (document AN4642) 
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9. Revision History 
This table summarizes the changes done to this document since the initial release: 

Table 16. Revision history 

Revision number Date Substantive changes 

0 02/2016 Initial release. 

1 06/2016 Updated FSLESL 4.1 to RTCESL 4.3. Added blocked rotor threshold detection. Bug fixes. 

2 09/2016 Added KE1xZ and KE1xF MCUs. 

3 10/2016 CPU load and memory usage tables extended and updated. 
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