

© 2016 NXP B.V.

Sensorless PMSM Field-Oriented Control
on Kinetis KV and KE
By: Josef Tkadlec

1. Introduction
This application note describes the implementation of
the sensorless Motor Control Reference Solution
Package (MCRSP) software for a 3-phase Permanent
Magnet Synchronous Motor (PMSM), including
a motor parameters identification algorithm, running on
32-bit Kinetis V and E series MCUs. The sensorless
control software itself and the PMSM control theory in
general is described in Sensorless PMSM Field-
Oriented Control (document DRM148). The NXP
Freedom board (FRDM-MC-LVPMSM), Tower
System modular development platform module
(TWR-MC-LV3PH), and High-Voltage Platform
power stages (HVP-MC3PH) are used as hardware
platforms for the PMSM control reference solution.
The hardware-dependent part of the sensorless control
software is addressed as well, including detailed
peripheral setup and the Motor Control Peripheral
Drivers (MCDRV). The motor parameters
identification theory and the algorithms are also
described in this document. The last part of this
document introduces and explains the user interface
represented by the Motor Control Application Tuning
(MCAT) page based on FreeMASTER run-time
debugging tool. These tools represent a simple and
user-friendly way of motor parameter identification,
algorithm tuning, software control, debugging, and
diagnostics.

NXP Semiconductors Document Number: AN5237

Application Note Rev. 3 , 10/2016

Contents

1. Introduction .. 1
2. Development Platforms .. 2

2.1. FRDM-MC-LVPMSM .. 2
2.2. TWR-MC-LV3PH ... 3
2.3. HVP-MC3PH .. 3

3. MCU Features and Peripheral Settings 4
3.1. KV1x family .. 4
3.2. KV3x family .. 9
3.3. KV4x family .. 12
3.4. KV5x family .. 16
3.5. KE1xZ family .. 19
3.6. KE1xF family .. 22

4. Motor Control Peripheral Drivers 24
4.1. Motor Control Peripheral Drivers initialization 25
4.2. Motor Control Peripheral Drivers API 26

5. Tuning and Controlling the Application 27
5.1. PMSM parameter identification 29
5.2. PMSM sensorless application control and tuning
using MCAT .. 34

6. Conclusion .. 48
7. Acronyms and Abbreviations ... 49
8. References .. 49
9. Revision History ... 50

http://www.nxp.com/doc/DRM148

Development Platforms

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
2 NXP Semiconductors

2. Development Platforms
There are these three standard NXP power stages:

• FRDM-MC-LVPMSM
• TWR-MC-LV3PH
• HVP-MC3PH

2.1. FRDM-MC-LVPMSM
This evaluation board (in a shield form factor) effectively turns a Freedom development board into a
complete motor-control reference design, compatible with the existing Freedom development boards—
FRDM-KV31F, FRDM-KV10Z, and FRDM-KE15Z. The Freedom motor-control headers are
compatible with Arduino™ R3 pin layout.

The FRDM-MC-LVPMSM board has a power-supply input voltage of 24–48 V DC with a reverse
polarity protection circuitry. An auxiliary power supply of 5.5 V DC is available to provide power to
the FRDM MCU boards. The output current reaches up to 5 A RMS. The inverter is realized by the
3-phase bridge inverter (six MOSFETs) and the 3-phase MOSFET gate driver. Analog quantities (such
as 3-phase motor currents, DC-Bus voltage, and DC-Bus current) are measured on this board. There is
also an interface for speed/position sensors (Encoder Hall). The block diagram of a complete Freedom
motor-control development kit is shown in this figure:

Figure 1. Freedom motor-control development platform block diagram

The FRDM-MC-LVPMSM board does not require a complicated setup and there is only one way to
connect this shield board to the Freedom MCU board. See the user’s guide for your version of MCRSP
(document PMSMCRSPUG). For more information about the Freedom development platform,
visit www.nxp.com/freedom.

http://www.nxp.com/doc/PMSMCRSPUG
http://www.nxp.com/freedom

Development Platforms

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 3

2.2. TWR-MC-LV3PH
This module effectively turns a Tower System development module into a complete motor-control
reference design, compatible with the existing Tower System Kinetis V and E modules. This module
provides all necessary feedback signals to drive PMSM and BLDC motors. The TWR-MC-LV3PH
module has the power-supply input voltage of 12–24 V DC, extendable up to 50 V DC, with reverse
polarity protection circuitry. An auxiliary power supply of 5 V DC and 3.3 V DC provides power supply
for the Tower System MCU modules. The output current reaches up to 5 A RMS. The inverter is
realized by the 3-phase bridge inverter (six MOSFETs) and the 3-phase MOSFET gate driver. Analog
quantities (such as 3-phase motor currents, 3-phase motor back-EMF voltage, DC-bus voltage, and DC-
bus current) are measured on this board. There is an interface for speed/position sensors (Encoder Hall)
and a connector for a braking resistor. There is also a user LED, a power-on LED, and six PWM LED
diodes for diagnostics. The block diagram of a complete Tower System motor-control development kit
is shown in this figure:

Figure 2. Tower System motor-control development platform block diagram

The TWR-MC-LV3PH module does not require a complicated setup. Keep in mind that the side with
the white stripe must be connected to the primary (white) elevator. See the user’s guides for the TWR-
MC-LV3PH (document TWRMCLV3PHUG) and for your version of MCRSP
(document PMSMCRSPUG). For more information about the Tower System visit www.nxp.com/tower.

2.3. HVP-MC3PH
The 3-phase High-Voltage Development Platform (HVP) is a 115/230 V, 1 kW power stage that is an
integral part of the embedded motion-control series of development tools. It is supplied in the
HVP-MC3PH kit. Combined with the HVP daughter board, it provides a ready-made software
development platform for more than one-horsepower motors. The block diagram of a complete
high-voltage motor-control development kit is shown in the following figure.

http://www.nxp.com/doc/TWRMCLV3PHUG
http://www.nxp.com/doc/PMSMCRSPUG
http://www.nxp.com/tower

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
4 NXP Semiconductors

Figure 3. High-Voltage Development Platform block diagram

The HVP-MC3PH power stage does not require any complicated setup and there is only one way to
connect a daughter board to the HVP. See the user’s guides for the HVP power stage
(document HVPMC3PHUG) and for your version of MCRSP (document PMSMCRSPUG).

NOTE
Due to high voltage, the HVP platform can represent a safety risk when
not handled properly. For more information about the High-Voltage
Development Platform, visit www.nxp.com/hvp.

3. MCU Features and Peripheral Settings
The peripherals used for motor control vary among different Kinetis V MCUs. The following sections
describe the peripheral settings and application timing for each MCU. There are also differences among
the MC platforms for different MCUs. These differences are summarized in tables.

3.1. KV1x family
The KV10Z and KV11Z MCU families are highly scalable members of the Kinetis V series and provide
a cost-competitive motor-control solution. Built upon the ARM® Cortex®-M0 core running at 75 MHz
with up to 128 KB of flash and up to 16 KB of RAM, the MCUs deliver a platform that enables the
customers to build a scalable solution portfolio. The additional features include dual 16-bit ADCs
sampling at up to 1.2 MS/s in 12-bit mode and 20 channels of flexible motor-control timers (PWMs)
across six independent time bases. For more information, see KV11F Sub-Family Reference Manual
(document KV11P64M75RM).

http://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com/doc/PMSMCRSPUG
http://www.nxp.com/hvp
http://www.nxp.com/doc/KV11P64M75RM

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 5

3.1.1. Hardware timing and synchronization
A correct and precise timing is crucial in motor-control applications. The motor-control dedicated
peripherals handle the timing and synchronization on the hardware layer. In addition, you can set the
PWM frequency as a multiple of the ADC interrupt (FOC calculation) frequency; in this case,
FOC freq = PWM freq /2. The timing diagram is shown in this figure:

Figure 4. Hardware timing and synchronization on KV11Z and KV10Z

• The top signal (PWM counter) shows the FTM counter reloads. The dead time is emphasized
at the PWM top and PWM bottom signals. The FTM_TRIG is generated on the PWM reload,
which triggers the PDB (resets the PDB counter).

• The PDB generates the first pre-trigger for the first ADC (phase current) sample with a delay of
approximately Tdeadtime / 2. This delay ensures correct current sampling at duty cycles close
to 100 %.

• When the conversion of the first ADC sample (phase current) is completed, the ADC ISR is
entered. At first, the next FTM_TRIG is disabled (TRIG off). This ensures that the
PDB counter is not reset at the next PWM reload. The FOC is then calculated.

• The PDB ISR is called in the middle of the next PWM period (PDB delay). This interrupt
enables the FTM_TRIG (TRIG on) at the next PWM reload. The PDB ISR has lower priority
than the ADC ISR. The PDB delay length determines the ratio between the PWM and FOC
frequencies.

• The PDB uses the back-to-back mode to automatically generate the pre-trig 1 (for DC-bus
voltage measurement) immediately after the first conversion is completed.

PWM
reload

PWM
reload

ADC ISR

PDB ISR

PDB counter

PWM bottom

PWM top

PWM counter

TRIG
off

TRIG
on

Tdeadtime

PDB
delay

pre-
trig 0

pre-
trig 1

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
6 NXP Semiconductors

3.1.2. Peripheral settings
The peripherals used for motor control are described in this section. On KV10Z and KV11Z, a 6-channel
FlexTimer (FTM) is used for 6-channel PWM generation, and two 16-bit SAR ADCs are used for phase
currents and DC-bus voltage measurement. The FTM and ADC are synchronized by the Programmable
Delay Block (PDB). One channel from another independent FTM is used for slow loop interrupt
generation.

3.1.2.1. PWM generation—FTM0

• The FTM is clocked from the 75 MHz System clock.
• Only six channels are used, the other two are masked in the OUTMASK register.
• The channels (0+1, 2+3, and 4+5) are combined into pairs, with each pair running in a

complementary mode.
• The Fault mode is enabled for each combined pair with automatic fault clearing (the PWM

outputs are re-enabled at the first PWM reload after the fault input returns to zero).
• The PWM period (frequency) is determined as a time needed for the FTM to count from CNTIN

to MOD. By default, CNTIN = -MODULO / 2 = -3750 and MOD = MODULO / 2 - 1 = 3749.
Because the FTM is clocked from the 75 MHz System clock, it takes 0.0001 s (10 kHz).

• Inserting dead time is enabled for each combined pair. The dead time length is calculated as
System clock 75 MHz × T deadtime . The dead time varies among platforms.

• The FTM generates a trigger to PDB at counter initialization.
• The FTM fault input is enabled, but its polarity and source vary among platforms.

3.1.2.2. Analog sensing—ADC0, ADC1
• The ADCs operate as 12-bit, single-ended converters.
• The clock source for both ADCs is the 25 MHz Bus clock divided by 2 = 12.5 MHz.
• For ADC calibration purposes, the ADC clock is set to 3.125 MHz. Continuous conversion and

averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the SC
register is filled with its default values and the clock is set back to 12.5 MHz.

• Both ADCs are triggered from the PDB pre-triggers.
• An interrupt that serves the FOC fast-loop algorithm is generated after the first conversion is

completed.

3.1.2.3. PWM and ADC synchronization—PDB0
• Unlike FTM, the PDB is clocked from the Bus clock, which is 3× slower than the System clock

(used for FTM). Therefore the modulo value at PDB is divided by 3.
• The PDB is triggered from the FTM0_TRIG.
• At each channel, the pre-trigger 0 is generated 0.5 × T deadtime after the FTM0_TRIG.

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 7

• At each channel, the pre-trigger 1 is generated immediately after the first conversion is
completed using the back-to-back mode.

• The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result
register is not read and the same pre-trigger occurs at this ADC.

• The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached.
This interrupt enables the FTM_TRIG (see Figure 4).

• The PDB Sequence Error and PDB Delay interrupts share a common interrupt vector.
Which event generates the interrupt is determined at the beginning of the interrupt according to
the ERR flag.

3.1.2.4. Over-current detection at FRDM platform—CMP1
• The plus input to the CMP is taken from the analog pin.
• The minus input to the CMP is taken from the 6-bit DAC0 reference. The DAC reference is set

to 3.197 V (62 / 64 × VDD) which corresponds to 7.73 A (in 8.25 A scale).
• The CMP filter is enabled and four consecutive samples must match.

3.1.2.5. Slow-loop interrupt generation—FTM2
• The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the

System clock / 16 to keep its modulo value reasonably low.
• The FTM counts from CNTIN = 0 to SPEED_MODULO.
• The interrupt is enabled and generated at the counter reload that serves the slow loop.

3.1.2.6. Communication with MC33937 MOSFET driver—SPI
• The SPI runs in the master mode.
• The SPI chip select 1 signal is active in logic high.
• The baud rate is 3.12 MHz.

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
8 NXP Semiconductors

3.1.3. Peripheral settings differences among platforms
There are differences in peripheral settings among different platforms. This table summarizes these
differences:

Table 1. KV10 and KV11 platform differences

Peripheral Feature
Platform

FRDM Tower System HVP

FTM0

PWM polarity high sides active high
low sides active high

high sides active low
low sides active high

high sides active high
low sides active high

Fault source FLT0, CMP1 out FLT1, input pin FLT0, input pin
Fault polarity Active high Active high Active low

Dead time 0.5 µs 0.5 µs 1.5 µs
SPI Driver on SPI No Yes No
PDB Pre-trigger 0 delay 0.25 µs 0.25 µs 0.75 µs

3.1.4. CPU load and memory usage
The following information apply to the demo application built using IAR® Embedded Workbench® IDE
in release configuration (maximum optimization for speed). Table 4 shows the memory usage and CPU
load. The memory usage is calculated from the linker .map file, including 2 KB FreeMASTER recorder
buffer (allocated in RAM) and 4.2 KB FreeMASTER TSA (Target-Side Addressing) table (allocated in
flash). The CPU load is measured using the SysTick timer. The CPU load is dependent on the fast loop
(FOC calculation) and slow loop (speed loop) frequency. In this case, it applies to the fast loop of 10
kHz and the slow loop of 1 kHz. The total CPU load is calculated according to these equations:

Eq. 1 𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 ∙
𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇
𝒇𝒇𝑪𝑪𝑪𝑪𝑪𝑪

∙ 𝟏𝟏𝟏𝟏𝟏𝟏 [%]

Eq. 2 𝑪𝑪𝑪𝑪𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 ∙
𝒇𝒇𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝒇𝒇𝑪𝑪𝑪𝑪𝑪𝑪

∙ 𝟏𝟏𝟏𝟏𝟏𝟏 [%]

Eq. 3 𝑪𝑪𝑪𝑪𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 + 𝑪𝑪𝑪𝑪𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 [%]

where:

𝑪𝑪𝑪𝑪𝑪𝑪𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 —CPU time consumed by the fast loop

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 —number of cycles consumed by the fast loop

𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 —frequency of the fast loop calculation (10 kHz)

𝒇𝒇𝑪𝑪𝑪𝑪𝑪𝑪 —CPU frequency

𝑪𝑪𝑪𝑪𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 —CPU time consumed by the slow loop

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 —number of cycles consumed by the slow loop

𝒇𝒇𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 —frequency of the slow loop calculation (1 kHz)

𝑪𝑪𝑪𝑪𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 —total CPU load consumed by the motor control

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 9

Table 2. KV10 and KV11 CPU load and memory usage

— KV10 KV11
CPU clock [MHz] 75 75

Fast Control Loop [cycles] (%) 4355 (58.1 %) 3438 (45.8 %)
Slow Control Loop [cycles] (%) 632 (0.8 %) 515 (0.7 %)

Total CPU load [%] 58.9 % 46.5 %
Flash usage [B] 24 232 24 288
RAM usage [B] 3 853 3 857

3.2. KV3x family
The KV31F MCU is a highly scalable member of the Kinetis V series and provides a high-performance,
cost-competitive motor-control solution. Built upon the ARM Cortex-M4 core running at 120 MHz,
with up to 512 KB of flash and up to 96 KB of RAM combined with the floating-point unit, it delivers a
platform enabling customers to build a scalable solution portfolio. The additional features include dual
16-bit ADCs sampling at up to 1.2 MS/s in 12-bit mode, 20 channels of flexible motor-control timers
(PWMs) across four independent time bases, and a large RAM block, enabling local execution of fast
control loops at full clock speed. For more information, see KV31F Sub-Family Reference Manual
(document KV31P100M120SF7RM).

3.2.1. Hardware timing and synchronization
A correct and precise timing is crucial in motor-control applications. The motor-control dedicated
peripherals handle the timing and synchronization on the hardware layer. You can set the PWM
frequency as a multiple of the ADC interrupt (FOC calculation) frequency, in this case
FOC freq = PWM freq /2. The timing diagram is shown in this figure:

Figure 5. Hardware timing and synchronization on KV31F

PWM
reload

PWM
reload

ADC ISR

PDB ISR

PDB counter

PWM bottom

PWM top

PWM counter

TRIG
off

TRIG
on

Tdeadtime

PDB
delay

pre-
trig 0

pre-
trig 1

http://www.nxp.com/doc/KV31P100M120SF7RM

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
10 NXP Semiconductors

• The top signal (PWM counter) shows the FTM counter reloads. The dead time is emphasized
on the PWM top and PWM bottom signals. The FTM_TRIG is generated at the PWM reload,
which triggers the PDB (resets the PDB counter).

• The PDB generates a first pre-trigger for the first ADC (phase current) sample with a delay of
approximately Tdeadtime / 2. This delay ensures correct current sampling at duty cycles close
to 100 %.

• When the conversion of the first ADC sample (phase current) is completed, the ADC ISR is
entered. At first, the next FTM_TRIG is disabled (TRIG off). This ensures that the
PDB counter does not reset at the next PWM reload. The FOC is then calculated.

• In the middle of the next PWM period (PDB delay) the PDB ISR is called. This interrupt
enables the FTM_TRIG (TRIG on) at the next PWM reload. The PDB ISR has lower priority
than the ADC ISR. The PDB delay length determines the ratio between the PWM and FOC
frequencies.

• The PDB uses back-to-back mode to automatically generate the pre-trig 1 (to measure the
DC-bus voltage) immediately after the first conversion is completed.

3.2.2. Peripheral settings
This section describes only the peripherals used for motor control. KV31F uses a 6-channel FlexTimer
(FTM) to generate a 6-channel PWM, and two 16-bit SAR ADCs to measure the phase currents and
DC-bus voltage. The FTM and ADC are synchronized via Programmable Delay Block (PDB).
One channel from another independent FTM is used for slow-loop interrupt generation.

3.2.2.1. PWM generation—FTM0

• The FTM is clocked from the 60 MHz Bus clock.
• Only six channels are used, the other two are masked in the OUTMASK register.
• Channels 0+1, 2+3, and 4+5 are combined in pairs and they are running in a complementary

mode.
• The Fault mode is enabled for each combined pair with automatic fault clearing (PWM outputs

are re-enabled at the first PWM reload after the fault input returns to zero).
• The PWM period (frequency) is determined as a time for the FTM to count from CNTIN to

MOD. By default, CNTIN = -MODULO / 2 = -3000 and MOD = MODULO / 2 - 1 = 2999.
The FTM is clocked from the 60 MHz System clock, so it takes 0.0001 s (10 kHz).

• Dead time insertion is enabled for each combined pair. The dead time length is calculated as
System clock 60 MHz × T deadtime . The dead time varies among platforms.

• The FTM generates a trigger for the PDB on counter initialization.
• The FTM fault input is enabled, but its polarity and source vary among platforms.

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 11

3.2.2.2. Analog sensing—ADC0 and ADC1
• The ADCs operate as 12-bit, single-ended converters.
• The clock source for both ADCs is the 48 MHz IRC48 clock, divided by 2 = 24 MHz.
• For ADC calibration purposes, the ADC clock is set to 6 MHz. Continuous the conversion and

averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the SC
register is filled with its default values and the clock is set back to 24 MHz.

• Both ADCs are triggered by the PDB pre-triggers.
• There is an interrupt that serves the FOC fast-loop algorithm, and it is generated after the first

conversion is completed.

3.2.2.3. PWM and ADC synchronization—PDB0
• Like the FTM, the PDB is clocked from the 60 MHz Bus clock.
• The PDB is triggered by the FTM0_TRIG.
• The pre-trigger 0 at each channel is generated 0.5 × T deadtime after the FTM0_TRIG.
• The pre-trigger 1 at each channel is generated immediately after the first conversion is completed

using the back-to-back mode.
• The PDB Sequence Error interrupt is enabled. This interrupt is generated when a certain result

register is not read and the same pre-trigger occurs at the ADC.
• The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached.

This interrupt enables the FTM_TRIG (Figure 5).
• The PDB Sequence Error and PDB Delay interrupts both share a common interrupt vector.

Which event generated the interrupt is determined at the beginning of the interrupt according to
the ERR flag.

3.2.2.4. FRDM platform over-current detection—CMP1
• The plus input for the CMP is taken from the analog pin.
• The minus input for the CMP is taken from the 6-bit DAC0 reference. The DAC reference is set

to 3.197 V (62 / 64 × VDD), which corresponds to 7.73 A (in the 8.25 A scale).
• The CMP filter is enabled and four consecutive samples must match.

3.2.2.5. Slow-loop interrupt generation—FTM2
• The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the

System clock / 16 to keep its modulo value reasonably low.
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.
• The interrupt that serves the slow loop is enabled and generated at the reload.

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
12 NXP Semiconductors

3.2.2.6. Communication with MC33937 MOSFET driver—SPI
• The SPI runs in the master mode.
• The SPI chip-select 1 signal is active in logic high.
• The baud rate is 3.12 MHz.

3.2.3. Peripheral settings differences among platforms
There are differences in peripheral settings among different platforms. This table summarizes these
differences:

Table 3. KV31 platform differences

Peripheral Feature
Platform

Freedom Tower System HVP

FTM0

PWM polarity high sides active high
low sides active high

high sides active low
low sides active high

high sides active high
low sides active high

Fault source FLT1, CMP1 out GPIO pin checked in SW,
no HW connection to FTM. FAULT 0, input pin

Fault polarity Active high Active high Active low
Dead time 0.5 µs 0.5 µs 1.5 µs

SPI Driver on SPI No Yes No
PDB Pre-trigger 0 delay 0.25 µs 0.25 µs 0.75 µs

3.2.4. CPU load and memory usage
The following information apply to the demonstration application built using IAR Embedded
Workbench IDE. Table 4 shows the memory usage and CPU load. The memory usage is calculated from
the linker .map file, including 2 KB FreeMASTER recorder buffer (allocated in RAM) and 4.2 KB
FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using
the SysTick timer. The CPU load depends on the fast loop (FOC calculation) and slow loop (speed loop)
frequencies. In this case, it applies to the fast loop frequency of 10 kHz and the slow loop frequency of 1
kHz. The total CPU load is calculated according to Eq. 3.

Table 4. KV31 CPU load and memory usage

— KV31
CPU clock [MHz] 120

Fast Control Loop [cycles] (%) 3042 (25.4 %)
Slow Control Loop [cycles] (%) 543 (0.4 %)

Total CPU load [%] 25.8 %
Flash usage [B] 24 896
RAM usage [B] 3 797

3.3. KV4x family
The KV46F family of Kinetis MCUs is a high-performance solution built upon the ARM Cortex-M4
core running at 168 MHz with floating-point unit and up to 256 KB of flash and 32 KB of RAM. It is
targeted mainly at motor-control applications. Advanced peripherals, such as high-resolution
Pulse-Width Modulation (PWM) modules with a total of 30 PWM channels and dual 12-bit

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 13

Analog-to-Digital Converters (ADCs) make these devices ideal for high-end motor-control applications.
For more information, see KV4x Reference Manual (document KV4XP100M150RM).

3.3.1. Hardware timing and synchronization
A correct and precise timing is crucial in motor-control applications. The motor-control peripherals
handle the timing and synchronization on the hardware layer. You can set the PWM frequency as a
multiple of the ADC interrupt (FOC calculation) frequency, in this case FOC freq = PWM freq / 2.
The timing diagram is shown in this figure:

Figure 6. Hardware timing and synchronization on KV46F

• The top signal (SM0 counter) shows the eFlexPWM counter. The dead time is emphasized in
the PWM top and PWM bottom signals. The SM0 submodule generates the master reload at
every second opportunity.

• The SM3 counter runs with a SM0 counter / 2 frequency, and its reload is synchronized with
the master reload.

• The SM3 generates a trigger (val4 – TRIG0) for the ADC scan with a delay of approximately
Tdeadtime / 2. This delay ensures correct current sampling at duty cycles close to 100 %.

• When the ADC scan completes, the ADC ISR is entered. The FOC calculation is made in this
interrupt.

3.3.2. Peripheral settings
Only the peripherals used for motor control are described in this section. On KV46F, three submodules
from the enhanced FlexPWM (eFlexPWM) are used to generate a 6-channel PWM, and two 12-bit
cyclic ADCs are used to measure the phase currents and DC-bus voltage. The eFlexPWM and ADC are
synchronized using the fourth eFlexPWM submodule. One channel from the independent FTM is also
used to generate the slow-loop interrupt.

master
reload

ADC ISR

PWM bottom

PWM top

SM0 counter
Tdeadtime

SM3 counter

master
reload

master
reload

val 4 - TRIG0

http://www.nxp.com/doc/KV4XP100M150RM

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
14 NXP Semiconductors

3.3.2.1. PWM generation—PWMA
• The eFlexPWM is clocked from the 74 MHz Fast Peripheral clock.
• Six channels from three submodules are used to generate a 3-phase PWM. Submodule 0

generates a master reload event every nth opportunity, depending on user-defined
M1_FOC_FREQ_VS_PWM_FREQ. Submodules 1, 2, and 3 are reloaded when the master reload
occurs.

• Submodules 1 and 2 are clocked from submodule 0.
• The counters at submodules 1 and 2 are synchronized with the master sync signal from

submodule 0. The counter at submodule 3 is synchronized with the master reload signal from
submodule 0.

• Submodule 3 is used for synchronization with the ADC. The clock for submodule 3 is divided
by 2 (37 MHz). The Val 4 register generates the output trigger Tdeadtime / 2 after the PWM reload.

• The fault mode is enabled for channels A and B at submodules 0, 1, and 2 with automatic fault
clearing. The PWM outputs are re-enabled at the first PWM reload after the fault input returns to
zero). The PWM fault input pin and its polarity vary among platforms.

• The PWM period (frequency) is the time the counter needs to count from INIT to VAL1.
By default INIT = -MODULO / 2 = -3700 and VAL1 = MODULO / 2 - 1 = 3699. The eFlexPWM
clock runs at 74 MHz, so the frequency is 0.0001 s (10 kHz).

• Dead time insertion is enabled. The dead time length is calculated as the Fast Peripheral clock
74 MHz × T deadtime . The dead time varies among platforms.

3.3.2.2. Analog sensing—ADC12
• The ADC12 wrapper contains two independent ADCs. The ADCs operate as 12-bit, single-ended

converters. ADC12 operates in a triggered parallel mode (ADC0 and ADC1 convert
SAMPLE0+SAMPLE8 and SAMPLE1+SAMPLE9 simultaneously). The ADC scan is triggered
by the SYNC0 signal.

• The clock source for ADC12 is the 74 MHz Fast Peripheral clock divided by 3 = 24.6 MHz.
• Only SAMPLE0, SAMPLE1, SAMPLE8, and SAMPLE9 are enabled.
• The end-of-scan interrupt that serves the FOC fast loop algorithm is generated after the entire

scan is completed.

3.3.2.3. Peripheral interconnections—XBARA
• The PWMA_TRG0 output trigger generated by submodule 3 is connected to the ADC_SYNC0

input.
• The over-current pin input signal is connected to the PWMA fault input that varies among

platforms.

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 15

3.3.2.4. Slow loop interrupt generation—FTM1
• The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the

System clock / 16 to keep its modulo value reasonably low.
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.
• The interrupt enabled and generated at the reload serves the slow loop.

3.3.2.5. Communication with MC33937 MOSFET driver—SPI
• The SPI runs in the master mode.
• The SPI chip select 1 signal is active in logic high.
• The baud rate is 3.12 MHz.

3.3.3. Peripheral settings differences among platforms
There are some differences in peripheral settings among different platforms. This table summarizes
those differences:

Table 5. KV46 platform differences

Peripheral Feature
Platform

Tower System HVP

PWMA

PWM polarity high sides active low
low sides active high

high sides active high
low sides active high

Fault source FAULT 0, input pin FAULT 1, input pin
Fault polarity Active high Active low

Dead time 0.5 µs 1.5 µs
SM3_VAL4 10 dec (delay 0.27 µs) 28 dec (delay 0.76 µs)

SPI Driver on SPI Yes No

3.3.4. CPU load and memory usage
The following information apply to the demonstration application built using IAR Embedded
Workbench IDE. Table 6 shows the memory usage and CPU load. The memory usage is calculated from
the linker .map file, including 2 KB FreeMASTER recorder buffer (allocated in RAM) and 4.2 KB
FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using
the SysTick timer. The CPU load depends on the fast loop (FOC calculation) and slow loop (speed loop)
frequencies. In this case, it applies to the fast loop frequency of 10 kHz and the slow loop frequency of 1
kHz. The total CPU load is calculated according to Eq. 3.

Table 6. KV46 CPU load and memory usage

— KV46
CPU clock [MHz] 148

Fast Control Loop [cycles] (%) 2230 (15.1 %)
Slow Control Loop [cycles] (%) 380 (0.2 %)

Total CPU load [%] 15.3 %
Flash usage [B] 24 772
RAM usage [B] 3 753

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
16 NXP Semiconductors

3.4. KV5x family
The KV58F family of Kinetis MCUs is a high-performance solution built upon the ARM Cortex-M7
core running at 220 MHz with floating-point unit and up to 1 MB of flash and 64 KB of RAM.
The advanced peripherals, such as high-resolution Pulse-Width Modulation (PWM) modules with a total
of 42 PWM channels and four 12-bit high-speed Analog-to-Digital Converters (ADCs) with a sampling
rate of 5 MSPS, make these devices ideal for high-end multi-motor control applications. For more
information, see KV5x Reference Manual (document KV5XP144M220RM).

3.4.1. Hardware timing and synchronization
A correct and precise timing is crucial in motor-control applications. Therefore, the motor-control
dedicated peripherals handle the timing and synchronization on the hardware layer. You can set the
PWM frequency as a multiple of the ADC interrupt (FOC calculation) frequency, in this case
FOC freq = PWM freq / 2. The timing diagram is shown in this figure:

Figure 7. Hardware timing and synchronization on KV58F

• The top signal (SM0 counter) shows the eFlexPWM counter. The dead time is emphasized in
the PWM top and PWM bottom signals. The SM0 submodule generates the master reload
every second opportunity.

• The SM3 counter runs with a frequency of SM0 counter / 2 and its reload is synchronized
with master reload.

• The SM3 generates a trigger (val4 – TRIG0) for the ADC scan with a delay of approximately
Tdeadtime / 2. This delay ensures correct current sampling at duty cycles close to 100 %.

• When the ADC scan is completed, the ADC ISR is entered. The FOC calculation is done in this
interrupt.

master
reload

ADC ISR

PWM bottom

PWM top

SM0 counter
Tdeadtime

SM3 counter

master
reload

master
reload

val 4 - TRIG0

http://www.nxp.com/doc/KV5XP144M220RM

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 17

3.4.2. Peripheral settings
Only the peripherals used for motor control are described in this section. On KV46F, three submodules
from the enhanced FlexPWM (eFlexPWM) are used to generate a 6-channel PWM, and two 12-bit
high-speed ADCs are used to measure the phase currents and DC-bus voltage. The eFlexPWM and
HSADC are synchronized via the fourth eFlexPWM submodule. One channel from an independent FTM
is used to generate the slow-loop interrupt.

3.4.2.1. PWM generation—PWMA

• eFlexPWM is clocked from the 100 MHz Fast Peripheral clock.
• Six channels from three submodules are used to generate a 3-phase PWM. Submodule 0

generates the master reload event every nth opportunity, depending on user-defined
M1_FOC_FREQ_VS_PWM_FREQ. Submodules 1, 2, and 3 are reloaded when the master reload
occurs.

• Submodules 1 and 2 are clocked from submodule 0.
• The counters at submodules 1 and 2 are synchronized with the master sync signal from

submodule 0. The counter at submodule 3 is synchronized with the master reload signal from
submodule 0.

• Submodule 3 is used for synchronization with the ADC. The clock for submodule 3 is divided
by 2 (50 MHz). The Val 4 register generates the output trigger T deadtime / 2 after the PWM
reload.

• The fault mode is enabled for channels A and B at submodules 0, 1, and 2 with automatic fault
clearing (PWM outputs are re-enabled the first PWM reload after the fault input returns to zero).
The PWM fault input pin and its polarity vary among platforms.

• The PWM period (frequency) is determined as a time for the counter to count from INIT to
VAL1. By default INIT = -MODULO / 2 = -5000 and VAL1 = MODULO / 2 - 1 = 4999.
The eFlexPWM clock is 100 MHz, so the PWM period is 0.0001 s (10 kHz).

• The dead time insertion is enabled. The dead time length is calculated as the Fast peripheral
clock 100 MHz × T deadtime . The dead time varies among the platforms.

3.4.2.2. Analog sensing—ADC12
• The HSADC wrappers are similar to the cyclic ADC12 wrapper at KV46. There are two

wrappers—HSADC0 and HSADC1. The HSADC0A and HSADC1A are used for MC analog
sensing.

• The clock source for HSADC0A and HSADC1A is the 100 MHz Fast Peripheral clock divided
by 4 = 25 MHz.

• The ADCs operate as 12-bit, single-ended converters. ADC12 operates in a triggered sequential
mode (HSADC0A converts SAMPLE0 and SAMPLE1, and HSADC1A also converts
SAMPLE0 and SAMPLE1). Each HSADC scan is triggered by the SYNC0 generated by
the eFlexPWM.

• Only SAMPLE0 and SAMPLE1 are enabled at each ADC.

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
18 NXP Semiconductors

• The end-of-scan interrupt that serves the FOC fast-loop algorithm is generated after the entire
scan (SAMPLE0, SAMPLE1) is completed by HSADC0.

3.4.2.3. Peripheral interconnections—XBARA
• The PWM0_OUT_TRG30 output trigger generated by submodule 3 is connected to the

HSADC0A_SYNC and HSADC1A_SYNC inputs.
• The over-current pin input signal is connected to the PWM0_FAULT0 fault input.

3.4.2.4. Slow-loop interrupt generation—FTM2
• The slow loop is usually 10× slower than the fast loop. Therefore the FTM2 is clocked from the

System clock / 16 to keep its modulo value reasonably low.
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.
• The interrupt that serves the slow loop is enabled and generated at reload.

3.4.2.5. Communication with MC33937 MOSFET driver—SPI
• SPI runs in a master mode.
• The SPI chip select 1 signal is active in logic high.
• The baud rate is 3.12 MHz.

3.4.3. Peripheral settings differences among platforms
There are differences in peripheral settings among different platforms. This table summarizes those
differences:

Table 7. KV58 platform differences

Peripheral Feature
Platform

Tower System

PWMA

PWM polarity high sides active low
low sides active high

Fault source FAULT 0, input pin
Fault polarity Active high

Dead time 0.5 µs
SM3_VAL4 13 dec (delay 0.26 µs)

SPI Driver on SPI Yes

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 19

3.4.4. CPU load and memory usage
The following information apply to the demonstration application built using IAR Embedded
Workbench IDE. Table 8 shows the memory usage and CPU load. The memory usage is calculated from
the linker .map file, including 2 KB FreeMASTER recorder buffer (allocated in RAM) and 4.2 KB
FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using
the SysTick timer. The CPU load depends on the fast loop (FOC calculation) and slow loop (speed loop)
frequencies. In this case, it applies to the fast loop frequency of 10 kHz and the slow loop frequency of 1
kHz. The total CPU load is calculated according to Eq. 3.

Table 8. KV58 CPU load and memory usage

— KV58
CPU clock [MHz] 237.5

Fast Control Loop [cycles] (%) 1709 (7.2 %)
Slow Control Loop [cycles] (%) 271 (0.1 %)

Total CPU load [%] 7.3 %
Flash usage [B] 25 917
RAM usage [B] 3 793

3.5. KE1xZ family
The KE15Z is a part of Kinetis E series of ARM Cortex-M0+ MCUs. The Kinetis E series family is a
product portfolio with an enhanced ESD/EFT performance for cost-sensitive, high-reliability
applications used in the environments with high electrical noise.

Built upon the ARM Cortex-M0+ core running at 72 MHz with up to 256 KB of flash and 32 KB of
RAM, it delivers a platform that enables you to build a scalable solution portfolio. For more
information, see KE1xZ Sub-Family Reference Manual (document KE1xZP100M72SF0RM).

http://www.nxp.com/doc/KE1xZP100M72SF0RM

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
20 NXP Semiconductors

3.5.1. Hardware timing and synchronization
A correct and precise timing is crucial in motor-control applications. The motor-control dedicated
peripherals handle the timing and synchronization on the hardware layer. The timing diagram is shown
in this figure:

Figure 8. Hardware timing and synchronization on KV11Z and KV10Z

3.5.2. Peripheral settings
This section describes only the peripherals used for motor control. The KE15Z uses a 6-channel
FlexTimer (FTM) to generate a 6-channel PWM and two 12-bit SAR ADCs to measure the back-EMF
voltage, DC-bus current, and DC-bus voltage. The FTM and ADC are synchronized via the
Programmable Delay Block (PDB). One channel from another independent FTM is used for the
slow-loop interrupt generation.

3.5.2.1. PWM generation—FTM0
• The FTM is clocked from the 72-MHz System clock.
• Only six channels are used, the other two are masked in the OUTMASK register.
• Channels 0+1, 2+3, and 4+5 are combined in pairs and running in a complementary mode.
• The PWM period (frequency) is determined as a time for the FTM to count from CNTIN to

MOD. By default, CNTIN = -MODULO / 2 = -3600 and MOD = MODULO / 2 - 1 = 3599. The
FTM is clocked from the 72-MHz System clock, so the PWM period is 0.0001 s (10 kHz).

• The dead time insertion is enabled for each combined pair. The dead time length is calculated as
System clock 72 MHz × Tdeadtime. The dead time length is 0.5 µs.

• The FTM generates a trigger for the PDB on the counter initialization.

PWM
reload

PWM
reload

ADC ISR

PDB ISR

PDB counter

PWM bottom

PWM top

PWM counter

TRIG
off

TRIG
on

Tdeadtime

PDB
delay

pre-
trig 0

pre-
trig 1

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 21

3.5.2.2. Analog sensing—ADC0 and ADC1
• The ADCs operate as 12-bit, single-ended converters.
• The clock source for both ADCs is the 24-MHz Bus clock divided by 2 = 12 MHz.
• For the ADC calibration purposes, the ADC clock is set to 3 MHz. The continuous conversion

and averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the
SC register is filled with its default values and the clock is set back to 12 MHz.

• Both ADCs are triggered by the PDB pre-triggers.
• An interrupt that serves for the fast-loop algorithm calculation is generated when the first

conversion is completed.

3.5.2.3. PWM and ADC synchronization—PDB0
• Like the FTM, the PDB is clocked from the 72-MHz System clock.
• The PDB is triggered by the FTM0_TRIG.
• At each channel, the pre-trigger 0 is generated 0.5 × Tdeadtime after the FTM0_TRIG.
• At each channel, the pre-trigger 1 is generated immediately after the first conversion is

completed using the back-to-back mode.
• The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached.

This interrupt enables the FTM_TRIG (see Figure 8).
• The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result

register is not read and the same pre-trigger occurs at this ADC. For more information about the
PDB error sequence handling, see Tips and Tricks Using PDB in Motor Control Applications on
Kinetis (document AN4822).

3.5.2.4. Slow-loop interrupt generation—FTM2
• The slow loop is usually 10× (or more) slower than the fast loop. Therefore, the FTM2 is clocked

from the System clock / 16 to keep its modulo value reasonably low.
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.
• The interrupt that serves the slow loop is enabled and generated at the reload.

3.5.3. CPU load and memory usage
The following information apply to the demonstration application built using the IAR Embedded
Workbench IDE. Table 9 shows the memory usage and CPU load. The memory usage is calculated from
the linker .map file, including the 2 KB FreeMASTER Recorder buffer (allocated in RAM) and 4.2 KB
FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is measured using
the SysTick timer. The CPU load depends on the fast-loop (FOC calculation) and slow-loop
(speed-loop) frequencies. In this case, it applies to the fast-loop frequency of 10 kHz and the slow-loop
frequency of 1 kHz. The total CPU load is calculated according to Eq. 3.

http://www.nxp.com/doc/AN4822

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
22 NXP Semiconductors

Table 9. KE15Z CPU load and memory usage

— KE15Z
CPU clock [MHz] 72

Fast Control Loop [cycles] (%) 4177 (58.0 %)
Slow Control Loop [cycles] (%) 605 (0.8 %)

Total CPU load [%] 58.8 %
Flash usage [B] 20 665
RAM usage [B] 3 727

3.6. KE1xF family
The KE18F is a part of Kinetis E series of ARM Cortex-M4 MCUs. This device is a 32-bit Kinetis MCU
based on the ARM Cortex-M4 processor. It is an extension of the existing Kinetis E series MCU family
with an enhanced CPU performance and additional memories and peripherals. This sub-family provides
up to 168 MHz CPU performance, 512 KB flash, and 64 KB SRAM.

For more information, see KE1xZ Sub-Family Reference Manual (document KE1xFP100M168SF0RM).

3.6.1. Hardware timing and synchronization
A correct and precise timing is crucial in motor-control applications. The motor-control-dedicated
peripherals handle the timing and synchronization on the hardware layer. The timing diagram is shown
in this figure:

Figure 9. Hardware timing and synchronization on KV11Z and KV10Z

PWM
reload

PWM
reload

ADC ISR

PDB ISR

PDB counter

PWM bottom

PWM top

PWM counter

TRIG
off

TRIG
on

Tdeadtime

PDB
delay

pre-
trig 0

pre-
trig 1

http://www.nxp.com/doc/KE1xFP100M168SF0RM

MCU Features and Peripheral Settings

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 23

3.6.2. Peripheral settings
This section describes only the peripherals used for motor control. The KE18F uses a 6-channel
FlexTimer (FTM) to generate a 6-channel PWM, and two 12-bit SAR ADCs to measure the back-EMF
voltage, DC-bus current, and DC-bus voltage. The FTM and ADC are synchronized via the
Programmable Delay Block (PDB). One channel from another independent FTM is used for the
slow-loop interrupt generation.

3.6.2.1. PWM generation—FTM0

• The FTM is clocked from the 168-MHz System clock.
• Only six channels are used, the other two are masked in the OUTMASK register.
• Channels 0+1, 2+3, and 4+5 are combined in pairs and running in a complementary mode.
• The PWM period (frequency) is determined as a time for the FTM to count from CNTIN to

MOD. By default, CNTIN = -MODULO / 2 = -8400 and MOD = MODULO / 2 - 1 = 8399. The
FTM is clocked from the 168-MHz System clock, so it takes 0.0001 s (10 kHz).

• The dead time insertion is enabled for each combined pair. The dead time length is calculated as
System clock 168 MHz × Tdeadtime. The dead time length is 0.5 µs.

• The FTM generates a trigger for the PDBs on the counter initialization.

3.6.2.2. Analog sensing—ADC0 and ADC2
• The ADCs operate as 12-bit, single-ended converters.
• The clock source for both ADCs is the 84-MHz Bus clock divided by 2 = 42 MHz.
• For the ADC calibration purposes, the ADC clock is set to 10.5 MHz. The continuous conversion

and averaging with 32 samples are enabled in the SC3 register. After the calibration is done, the
SC register is filled with its default values and the clock is set back to 42 MHz.

• Both ADCs are triggered by the PDB pre-triggers.
• The interrupt that serves for the fast-loop algorithm calculation is generated when the first

conversion is completed.

3.6.2.3. PWM and ADC synchronization—PDB0, PDB2
• Like the FTM, the PDB is clocked from the 168-MHz System clock.
• The PDB is triggered by the FTM0_TRIG.
• At each channel, the pre-trigger 0 is generated 0.5 × Tdeadtime after the FTM0_TRIG.
• At each channel, the pre-trigger 1 is generated immediately after the first conversion is

completed using the back-to-back mode.
• The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached.

This interrupt enables the FTM_TRIG (see Figure 9).
• The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result

register is not read and the same pre-trigger occurs at this ADC. For more information about the

Motor Control Peripheral Drivers

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
24 NXP Semiconductors

PDB error sequence handling, see Tips and Tricks Using PDB in Motor Control Applications on
Kinetis (document AN4822).

3.6.2.4. Slow-loop interrupt generation—FTM2
• The slow loop is usually 10× (or more) slower than the fast loop. Therefore, the FTM2 is clocked

from the System clock / 16 to keep its modulo value reasonably low.
• The FTM counts from CNTIN = 0 to MOD = SPEED_MODULO.
• The interrupt that serves the slow loop is enabled and generated at the reload.

3.6.2.5. Communication with MC33937 MOSFET driver—LPSPI
• The SPI runs in the master mode.
• The SPI chip select 2 signal is active in the logic high.
• The baud rate is 0.5 MHz.

3.6.3. CPU load and memory usage
The following information apply to the demonstration application built using the IAR Embedded
Workbench IDE. Table 10 shows the memory usage and CPU load. The memory usage is calculated
from the linker .map file, including the 2 KB FreeMASTER Recorder buffer (allocated in RAM) and
4.2 KB FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load is
measured using the SysTick timer. The CPU load depends on the fast-loop (FOC calculation) and
slow-loop (speed-loop) frequencies. In this case, it applies to the fast-loop frequency of 10 kHz and the
slow-loop frequency of 1 kHz. The total CPU load is calculated according to Eq. 3.

Table 10. KE18F CPU load and memory usage

— KE18F
CPU clock [MHz] 168

Fast Control Loop [cycles] (%) 2296 (13.7 %)
Slow Control Loop [cycles] (%) 283 (0.2 %)

Total CPU load [%] 13.9 %
Flash usage [B] 23 247
RAM usage [B] 3 785

4. Motor Control Peripheral Drivers
Motor Control Peripheral Drivers (MCDRV) represent a simple way of peripheral initialization and
access for the purposes of 3-phase ACIM or PMSM control. The features provided by the MCDRV
library are 3-phase PWM generation and 3-phase current measurement, as well as the DC-bus voltage
and auxiliary quantity measurement. The principles of both the 3-phase current measurement and PWM
generation using the Space Vector Modulation (SVM) technique are described in Sensorless PMSM
Field-Oriented Control (document DRM148).

The MCDRV are divided into two parts:
• The first part is the peripheral initialization module, consisting of mcdrv_<platform>-

http://www.nxp.com/doc/AN4822
http://www.nxp.com/doc/DRM148

Motor Control Peripheral Drivers

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 25

<device>.c and mcdrv_<platform>-<device>.h files, which are unique for each supported
device. The header file includes all MCDRV setup options including the ADC channel
assignment. The source file contains the functions to initialize all peripherals used for motor
control. This module is described in Section 4.2, “Motor Control Peripheral Drivers API”.

• The second part consists of the peripheral driver library modules for each supported periphery.
Generally, all ADC and PWM periphery drivers share the same API within their class. This
enables the higher-level code to be platform-independent, as the peripheral driver function calls
were replaced by universally named macros. The list of supported peripherals and the API of
their drivers is described in Section 4.2, “Motor Control Peripheral Drivers API”.

4.1. Motor Control Peripheral Drivers initialization
The MCDRV initialization module consists of a set of MCU peripheral-initialization functions, as well
as all the definitions that you can specify. The functions are contained in device-specific
mcdrv_<platform><device>.c source and mcdrv_<platform><device>.h header files. Out of all
functions in the MCDRV initialization module, call the MCDRV_Init_M1() function during MCU
startup and before calling any other MCDRV functions. All peripherals used by a given device for
motor-control purposes are initialized within this function.

The mcdrv_<platform><device>.h header files offer several macros that you can define:
• M1_MCDRV_ADC—this macro specifies the ADC periphery used. If you select an unsupported

periphery, the preprocessor error is issued.
• M1_MCDRV_PWM3PH—this macro specifies the PWM periphery used. If you select an

unsupported periphery, the preprocessor error is issued.
• M1_PWM_FREQ—PWM frequency, for example, 10 kHz.
• M1_FOC_FREQ_VS_PWM_FREQ—enables you to call the fast loop interrupt every 1st, 2nd,

3rd, and nth PWM reload. This is convenient when the PWM frequency must be higher than the
maximal fast-loop interrupt length (running out of CPU performance).

• M1_PWM_PAIR_PH[A..C]—these macros enable simple assignment of the physical motor
phases to the PWM periphery channels or submodules. Change the order of the motor phases
this way.

• M1_ADC[0,1]_PH_[A..C]—these macros serve to assign the ADC channels for phase-current
measurement. The general rule is that at least one of the phase currents must be measurable on
both ADC converters and the remaining two phase currents must be measurable on different
ADC converters. The reason for this is that the selection of the phase-current pair to measure
depends on the current SVM sector. When this rule is broken, preprocessor error is issued.
For more information about the 3-phase current measurement, see Sensorless PMSM
Field-Oriented Control (document DRM148). The unassigned ADC channels are set to the
MCDRV_CHAN_OFF value.

• M1_ADC[0,1]_UDCB and M1_ADC[0,1]_AUX—use these defines to select the ADC channel
to measure the DC-bus voltage and one user-defined auxiliary quantity, which is not used
directly for motor control (the IPM temperature is measured by default). The rule for the ADC
channel assignment is that the DC-bus voltage and the auxiliary quantity must be measurable on
different ADC converters. If this rule is broken, preprocessor error is issued.

http://www.fsls.co/doc/DRM148
http://www.fsls.co/doc/DRM148

Motor Control Peripheral Drivers

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
26 NXP Semiconductors

4.2. Motor Control Peripheral Drivers API
The ADC and PWM motor-control drivers share the same API within their class. To ensure the device
independency of MCDRV API, all driver functions are accessible via universally named macros in the
mcdrv_<platform>-<device>.h files.

The available API for the ADC MC drivers is:
• bool_t M1_MCDRV_ADC_PERIPH_INIT()—by default, this function is called during the ADC

peripheral initialization procedure invoked by the MCDRV_Init_M1() function, and it must not
be called again after the peripheral initialization is done.

• bool_t M1_MCDRV_CURR_3PH_CHAN_ASSIGN(MCDRV_ADC_T*)—calling this function
assigns the proper ADC channels for the next 3-phase current measurement based on the SVM
sector. This function always returns true.

• bool_t M1_MCDRV_CURR_3PH_CALIB_INIT(MCDRV_ADC_T*)—this function initializes the
phase-current channel-offset measurement. This function always returns true.

• bool_t M1_MCDRV_CURR_3PH_CALIB(MCDRV_ADC_T*)—this function reads the current
information from the unpowered phases of a standstill motor and filters them using moving
average filters. The goal is to obtain the value of the measurement offset. The length of the
window for moving average filters is set to eight samples by default. This function always
returns true.

• bool_t M1_MCDRV_CURR_3PH_CALIB_SET(MCDRV_ADC_T*)—this function asserts the
phase-current measurement offset values to the internal registers. Call this function after
a sufficient number of M1_MCDRV_CURR_3PH_CALIB() calls. This function always
returns true.

• bool_t M1_MCDRV_ADC_GET (MCDRV_ADC_T*)—this function reads and calculates the
actual values of the 3-phase currents, DC-bus voltage, and auxiliary quantity. This function
always returns true.

The API for the PWM MC drivers is:
• bool_t M1_MCDRV_PWM_PERIPH_INIT (M1_MCDRV_PWM_T*)—this function is called by

default during the PWM periphery-initialization procedure invoked by the MCDRV_Init_M1()
function. This function always returns true.

• bool_t M1_MCDRV_PWM3PH_SET(M1_MCDRV_PWM_T*)—this function updates the PWM
phase duty cycles based on the required values stored in the M1_MCDRV_PWMIO_DUTY
variable. This function always returns true.

• bool_t M1_MCDRV_PWM3PH_EN(M1_MCDRV_PWM_T*)—calling this function enables all
PWM channels. This function always returns true.

• bool_t M1_MCDRV_PWM3PH_DIS (M1_MCDRV_PWM_T*)—calling this function disables all
PWM channels. This function always returns true.

• bool_t M1_MCDRV_PWM3PH_FAULT_GET(M1_MCDRV_PWM_T*)—this function returns
the state of the over-current fault flags and automatically clears the flags (if set). This function
returns true when the over-current event occurs, otherwise, it returns false.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 27

5. Tuning and Controlling the Application
This section provides information about the tools and recommended procedures for controlling the
sensorless PMSM Field-Oriented Control (FOC) application. The application contains the
embedded-side driver of FreeMASTER real-time debug monitor and data visualization tool for
communication with the PC. It supports non-intrusive monitoring as well as the modification of target
variables in real time, which is very useful for algorithm tuning. Besides the target-side driver,
FreeMASTER requires installing the PC application as well. For more information,
visit www.nxp.com/freemaster.

Control and tune the PMSM sensorless FOC application easily using Motor Control Application Tuning
(MCAT) page for PMSM. The MCAT for PMSM is a user-friendly modular page, which runs within
FreeMASTER. To launch it, execute the .pmp file located next to your project. See the user’s guide for
your version of MCRSP_PMSM for more information (document MCRSPPMSMUG). Figure 10 shows
the MCAT for PMSM welcome page. The tool consists of a tab menu (point one), tuning mode selector
(point two), and the workspace (point three). Each tab represents a submodule, which enables tuning or
controlling different aspects of the application. Besides the MCAT page for PMSM, several scopes,
recorders, and variables in the variable watch window are predefined in the FreeMASTER project file to
further simplify motor parameter tuning and debugging. The Basic and Expert tuning modes are
available. Selecting the Expert mode grants you the access to modify all parameters and fields available
in MCAT. The Basic mode is intended for inexperienced users. When FreeMASTER is not connected to
the target, the “App ID” line shows “offline”. When the communication with the target MCU (with
correct software) is established, the “App ID” line displays the MCU and platform, and all stored
parameters for the given MCU are loaded.

http://www.nxp.com/freemaster
http://www.nxp.com/doc/MCRSPPMSMUG

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
28 NXP Semiconductors

Figure 10. MCAT layout

In the default configuration, these tabs are available:
• “Introduction”—welcome page with the PMSM sensorless FOC diagram and a short description

of the application.
• “Motor Identif”—PMSM semi-automated parameter-measurement control page. The PMSM

parameter identification is described in detail later on in this document.
• “Parameters”—this page enables you to modify the motor parameters, the specification of

hardware and application scales, and fault limits.
• “Current Loop”—current-loop PI controller gains and output limits.
• “Speed Loop”—this tab contains fields to specify the speed controller proportional and integral

gains as well as the output limits and parameters of the speed ramp.
• “Sensorless”—this page enables you to tune the parameters of the BEMF observer, tracking

observer, and open-loop startup.
• “Control Struc”—the application control page enables you to select and control the PMSM using

different techniques (scalar—Volt/Hertz control, voltage FOC, current FOC, and speed FOC).
The application state is also shown in this tab.

• “Output file”—this tab enables the user to view all calculated constants that are required by the
PMSM sensorless FOC application. It also enables you to generate the m1_pmsm_appconfig.h
file, which is then used to preset all application parameters permanently at project rebuild.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 29

• “Control page”—this tab contains graphical elements such as speed gauges, DC-bus voltage
measurement bar, and variety of switches that enable simple, quick, and user-friendly application
control. Here you can control the fault-clearing and demo mode, which sets various predefined
required speeds over time.

Most tabs offer the possibility to immediately write the parameters specified in MCAT into the target
using the “Update target” button, and save them to or restore them from the hard drive file using the
“Reload Data” and “Store Data” buttons.

The following sections provide simple instructions for identifying the parameters of a connected PMSM,
and tuning the application appropriately.

5.1. PMSM parameter identification
Because the model-based control methods of PMSM drives are the most effective and usable, obtaining
an accurate model of a motor is an important part of the drive design and control. To implement the
FOC algorithms, you must know the values of stator resistance R s , direct inductance Ld , quadrature
inductance Lq , and BEMF constant K e .

5.1.1. Power stage characterization
Each inverter introduces the total error voltage U error , which is caused by the dead time,
current-clamping effect, and transistor voltage drop. The total error voltage U error depends on the phase
current i s and this dependency is measured during the power stage characterization process. An example
of the inverter error characteristic is shown in Figure 11. The power stage characterization is a part of
MCAT, which can be controlled using the “Motor Identif” tab. To perform the characterization, connect
the motor with a known stator resistance R s , and set this value in the “Calib Rs” field. Then specify the
“Calibration Range”, which is the range of the stator current i s , in which the measurement of U error is to
be performed. Start the characterization by clicking the “Calibrate” button. The characterization
gradually performs 65 i sd current steps (from i s = -I s,calib to i s = I s,calib), with each step lasting 300 ms.
The whole process then takes about 20 seconds and the motor must withstand this load. The acquired
characterization data is saved to a file and used later for the phase-voltage correction during the R s
measurement process. Perform the following R s measurement with a maximum current I s,calib . It is
recommended to use a motor with a low R s for characterization purposes.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
30 NXP Semiconductors

Figure 11. Example power stage characteristic

The power stage characterization is necessary only when you use your own hardware. When using NXP
power stages with the application, omit the characterization process. The acquired characterization data
is saved to a file, so it is necessary to do it only once for a given hardware.

5.1.2. Stator resistance measurement
Stator resistance R s is measured using the DC current I phN value, which is applied to the motor for
1200 ms. DC voltage UDC is maintained using current controllers. Their parameters are selected
conservatively to ensure stability. Stator resistance R s is calculated using Ohm’s law as:

Eq. 4 𝑹𝑹𝒔𝒔 = 𝑼𝑼𝑫𝑫𝑫𝑫−𝑼𝑼𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆
𝑰𝑰𝒑𝒑𝒑𝒑𝒑𝒑

 [Ω]

5.1.3. Stator inductance
For the stator inductance LS identification purposes, a sinusoidal measurement voltage is applied to the
motor. During LS measurement, voltage control is enabled. The frequency and amplitude of the
sinusoidal voltage are obtained during the tuning process, before the actual measurement. The tuning
process starts with a 0 V amplitude and F start frequency, which are applied to the motor. The amplitude
is gradually increased by Ud inc up to half of the DC-bus voltage (DCbus/2) until I s AC is reached.
If I s AC is not reached even with DCbus/2 and F start, the frequency of the measurement signal is again
gradually decreased by F dec down to F min, until I s AC is reached. If I s AC is still not reached, the
measurement continues with DCbus/2 and F min. The tuning process is shown in the following figure.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 31

Figure 12. Tuning Ls measurement signal

When the tuning process is complete, the sinusoidal measurement signal (with the amplitude and
frequency obtained during the tuning process) is applied to the motor. The total impedance of the RL
circuit is then calculated from the voltage and current amplitudes, and L s is calculated from the total
impedance of the RL circuit.

Eq. 5 𝒁𝒁𝑹𝑹𝑹𝑹 = 𝑼𝑼𝒅𝒅
𝑰𝑰𝒅𝒅 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂

 [Ω]

Eq. 6 𝑿𝑿𝑳𝑳𝑳𝑳 = �𝒁𝒁𝑹𝑹𝑹𝑹𝟐𝟐−𝑹𝑹𝑺𝑺𝟐𝟐 [Ω]

Eq. 7 𝑳𝑳𝒔𝒔 = 𝑿𝑿𝑳𝑳𝑳𝑳
𝟐𝟐𝟐𝟐𝟐𝟐

 [H]

The direct inductance (Ld) and quadrature inductance (Lq) measurements are done in the same way as
the LS measurement. Before the Ld and Lq measurements take place, DC current is applied to the D-
axis, which aligns the rotor. For Ld measurement, the sinusoidal voltage is applied in the D-axis, and for
Lq measurement, the sinusoidal voltage is applied in the Q-axis.

5.1.4. BEMF constant measurement
Before the actual BEMF constant (K e) measurement, MCAT calculates the current controllers and
BEMF-observer constants from the previously measured R s , Ld , and Lq . To measure the K e , the motor
must be spinning. The I d is controlled using I s DC, and the electrical open-loop position is generated by
integrating the required speed, derived from N nom. When the motor reaches the required speed,
the BEMF voltages obtained by the BEMF observer are filtered, and K e is calculated as follows:

Eq. 8 𝑲𝑲𝒆𝒆 = 𝑼𝑼𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩
𝝎𝝎𝒆𝒆𝒆𝒆

 [𝑽𝑽.𝒔𝒔
𝒓𝒓𝒓𝒓𝒓𝒓

]

Ud inc

Ud inc

Ud inc

Ud

UDCbus/2

300 ms

F start

300 ms

F start

300 ms

F start

300 ms

F start – F dec

300 ms 300 ms 300 ms

F start – 2*F dec F start – 3*F dec F min

Amplitude tuning Frequency tuning

t

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
32 NXP Semiconductors

While K e is being measured, look at the motor to determine whether it is spinning properly. If the motor
is not spinning properly, perform these steps:

• Ensure that the number of pole-pairs (pp) is correct. The required speed for the K e measurement
is also calculated from pp, so an incorrect pp causes an incorrect K e .

• Increase the value of I s DC to produce a higher torque when spinning during the open loop.
• Decrease the value of N nom to decrease the required speed for the K e measurement.

5.1.5. Number of pole-pairs assistant
The number of pole-pairs cannot be measured without a position sensor, however, there is a simple
assistant to determine the number of pp. The number of pole-pairs assistant performs one electrical
revolution and stops for a few seconds, and then repeats it. Because the pp value is a ratio between the
electrical and mechanical speeds, it is determined as the number of stops per one mechanical revolution.
It is recommended not to count the stops during the first mechanical revolution, because the alignment
which affects the number of stops occurs during the first revolution. During the pp measurement,
the current loop is enabled, and current Id is controlled to I s DC. The electrical position is generated by
integrating the open-loop speed. If the rotor does not move after starting the number of pole-pairs
assistant, stop the assistant, increase I s DC, and restart the assistant.

5.1.6. PMSM electrical parameter measurement process
Control and set up the motor identification process using the MCAT “Motor Identif” tab, which is
shown in Figure 13. To measure your own motor, follow these steps (shown in Figure 14):

• Select your hardware board. You can select the standard NXP hardware or use your own. If you
use your own hardware, specify its scales (I max, U DCB max, Fast Loop Period).

• If you don’t know the number of motor pole-pairs, use the number of pole-pairs assistant
described in Section 5.1.5, “Number of pole-pairs assistant”.

• If you use your own hardware for the first time, perform the power stage characterization
described in Section, 5.1.1, “Power stage characterization”.

• Enter the motor measurement parameters (depending on “Basic” or “Expert” mode) and start the
measurement by pressing the “Measure” button. You can observe which parameter is being
measured in the “Status” bar.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 33

Figure 13. PMSM identification tab

Figure 14. Measurement process diagram

Connect motor

Enter Application
Scales, Is DC and Is AC

pp know ?

Enter pp

Run Number
of pp assistant

User HW
board ?

Perform Measurement

Perform
Characterization

Faults or
Warnings?

Measurement successful

Yes

Yes

Yes

No
No

No

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
34 NXP Semiconductors

Faults and warnings may occur during the measurement. Do not confuse these faults with application
faults such as over-current, under-voltage, and others. The list of these faults and their description and
possible troubleshooting is shown in this table:

Table 11. Measurement faults and warnings

Fault

no.
Fault description Fault reason Troubleshooting

01 Motor not connected I s > 50 mA cannot be reached with the
available DC-bus voltage. Check that the motor is connected.

02 R s too high for calibration Calibration I cannot be reached with the
available DC-bus voltage.

Use a motor with a lower R s for power
stage characterization.

03 Current measurement I s
DC not reached

User-defined I s DC is not reached, so the
measurement is taken with a lower I s

DC.

Raise the DC-bus voltage to reach the I s
DC or lower the I s DC to avoid this

warning.

04
Current amplitude

measurement I s AC not
reached

User-defined I s AC is not reached, so the
measurement is taken with a lower I s AC.

Raise the DC-bus voltage or lower the
F min to reach the I s AC or lower the I s AC

to avoid this warning.

05 Wrong characteristic data
Characteristic data that is used for

voltage correction does not correspond to
the actual power stage.

Select “User HW” and perform the
calibration.

5.2. PMSM sensorless application control and tuning using MCAT
Use FreeMASTER enabled with the MCAT page to control and tune the PMSM sensorless FOC
application easily. The MCAT for PMSM submodule tabs are described here.

5.2.1. Application control using MCAT
Control the application using the “Control Struc” tab (shown in Figure 15). The “State Control” area on
the left-hand side of the screen shows the current application state and enables turning the main
application switch on or off (turning the running application off disables all PWM outputs).
The “Cascade Control Structure Composition” area is on the right-hand side of the screen.
Choose between the scalar and FOC control using the appropriate buttons. Enable the selected parts of
the FOC cascade structure by selecting “Voltage FOC”, “Current FOC”, or “Speed FOC”. This is useful
for application tuning and debugging.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 35

Figure 15. MCAT for PMSM control page

The scalar control diagram is in Figure 16. It is the simplest type of a motor-control technique. Keep the
ratio between the magnitude of the stator voltage and the frequency (frequency information is hidden in
the “Speed_req” value) at the nominal ratio. This control method is sometimes called Volt per Hertz or
V/Hz. Pay attention when entering the required voltage and speed in the Expert tuning mode. The ratio
stays constant in the Basic mode and only the speed is required. The position-estimation BEMF observer
and the tracking observer algorithms are running in the background even if the estimated position
information is not directly used. See Sensorless PMSM Field-Oriented Control (document DRM148) for
more information. This is useful for BEMF observer tuning.

Figure 16. Scalar control mode

http://www.nxp.com/doc/DRM148

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
36 NXP Semiconductors

The block diagram of the voltage FOC is shown in the following figure. As opposed to scalar control,
the position feedback is closed using the BEMF observer, and the stator voltage magnitude is not
dependent on motor speed. Specify the d-axis and q-axis stator voltages using the “Ud_req” and
“Uq_req” fields. This control method is useful for the BEMF observer functionality check.

Figure 17. Voltage FOC control mode

The current FOC (or torque control) requires transforming the rotor position feedback (as well as the
currents) into the d-q reference frame. The reference variables “Id_req” and “Iq_req” are available for
motor control (see the following figure). The d-axis current component i sd_req is responsible for the rotor-
flux control, while the q-axis current component of the current isq_req generates torque, and the motor runs
when it is applied. When changing the polarity of the current isq_req, the motor changes the rotation
direction. When tuning the BEMF observer correctly, tune the current PI controllers using the current
FOC control structure.

Figure 18. Current (torque) control mode

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 37

Activate the speed PMSM sensorless FOC (whose diagram is shown in the following figure) by
enabling the “Speed FOC” control structure. Enter the required speed into the “Speed_req” field. The d-
axis current reference is kept at 0 during the entire FOC operation. This control scheme is used for the
speed PI controller design, which is the final stage of the PMSM sensorless application tuning.

Figure 19. Speed FOC control mode

5.2.2. PMSM sensorless application tuning using MCAT
This section provides a guide for running your motor in several steps. It is highly recommended to go
through all the steps carefully to eliminate any issues during the tuning process. The state diagram in the
following figure shows a typical PMSM sensorless control tuning process. The tuning phases are
described in the following sections.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
38 NXP Semiconductors

Figure 20. Running a new PMSM

5.2.3. Initial configuration setting and update
1. Open the PMSM sensorless control application FreeMASTER project containing the dedicated

MCAT plug-in module.
2. Select the “Basic” mode—recommended for users who are not experienced in motor-control

theory. The number of required input parameters is reduced.
3. Select the “Parameters” tab.
4. Leave the measured motor parameters as they are, or specify the parameters manually. Obtain

the motor parameters from the motor data sheet or using the PMSM parameters measurement
procedure described in PMSM electrical parameters measurement (document AN4680).
All parameters provided in the following table are accessible in both the Basic and the Expert
modes. The motor inertia J expresses the overall system inertia that is very often difficult to
obtain. Obtain the additional methods to identify the drive inertia from other resources, for
example, from IEEE. The J parameter is used to calculate the speed controller constant. You can
also use manual controller tuning to calculate this constant.

Connect motor

Motor params.
identification

Application parameters
specification

- Enter (or keep default)
parameters at all tabs

- Click Store Data and
Update Target

Select Scalar Control and
spin the motor

Motor aligns
properly with
the two stage

alignment

false

Increase V/rpm factor if
motor spins with glitches

Parameters tab:
- Switch to Expert
- Tune Alignment

parameters
- Click update

Select Speed FOC and
spin the motor

Amplitude and
shape of all currents

similar

false

true

Estimated speed
without significant
noise or glitches

false Sensorless tab:
- Switch to Expert
- Tune BEMF and

Tracking observer
- Click update

true

Check HW

true

Motor starts and
smoothly switches

to closed loop

false
Sensorless tab:
- Switch to Expert
- Tune Open Loop

Start-up
- Click update

Estimated Speed
follows the Required

speed well

false
Speed tab:
- Switch to Expert
- Tune Speed PI

controller
- Click update

true

Motor runs with
required dynamics

false
Tune:
- Current Loop
- BEMF & Tracking

observers
- Speed Loop

parameters

true

Generate output
Header file with

final configuration

true

http://www.fsls.co/doc/AN4680

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 39

Table 12. MCAT motor parameters

Parameter Units Description Typical range

pp — Motor pole-pairs 1–10
Rs [Ω] One-phase stator resistance 0.3–50
Ld [H] One-phase direct inductance 0.00001–0.1
Lq [H] One-phase quadrature inductance 0.00001–0.1

Ke [V.sec/rad] BEMF constant 0.001–1

J [kg.m2] System inertia 0.000001–1

Iph nom [A] Motor nominal phase current 0.5–8

Uph nom [V] Motor nominal phase voltage 10–300

N nom [rpm] Motor nominal speed 1000–2000

5. Set the hardware scales—modifying these two fields is not required when using a reference to
the standard power stage board. These scales specify the maximum measurable current and
voltage analog quantities.

6. Check the fault limits—these fields are not accessible in the “Basic” mode and they are
calculated using the motor parameters and hardware scales. See this table:

Table 13. Fault limits

Parameter Units Description Typical range

U DCB trip [V] Voltage value when the external braking resistor switch is
turned on

U DCB
Over~U DCB max

U DCB under [V] Trigger value when the under-voltage fault is detected 0~U DCB Over

U DCB over [V] Trigger value when the over-voltage fault is detected U DCB
Under~U max

N over [rpm] Trigger value when the over-speed fault is detected N nom~N max
N min [rpm] Minimal actual speed value for the sensorless control (0.05~0.2) * N max

E block [V]
Bemf voltage threshold for blocked rotor detection. If the

Bemf voltage drops down under this threshold, the blocked
rotor fault sets on (see Figure 19).

0.1 * E max

Figure 21. Blocked rotor detection

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
40 NXP Semiconductors

7. Check the application scales—these fields are not accessible in the Basic mode and are
calculated using the motor parameters and hardware scales.

Table 14. Application scales

Parameter Units Description Typical range
N max [rpm] Speed scale >1.1 * N nom
E max [V] BEMF scale Ke * N max

kt [Nm/A] Motor torque constant —

8. Check the alignment parameters—these fields are not accessible in the Basic mode and are

calculated using the motor parameters and hardware scales. The parameters express the required
voltage value applied to the motor during rotor alignment and its duration.

9. Click the “Store Data” button to save the modified parameters into the inner file.

5.2.4. Control structure modes
1. Select scalar control by clicking the “DISABLED” button in the “Scalar Control” section.

The button color changes to red, and the text changes to “ENABLED”.
2. Turn the application switch on. The application state changes to RUN.
3. Set the required speed value in the “Speed_req” field (e.g., 500 rpm in the “Scalar Control”

section). The motor starts running (see the following figure).

Figure 22. MCAT scalar control

4. Select the “Phase Currents” recorder from FreeMASTER project tree “Scalar and Voltage
Control”.

5. Find the optimal ratio for the V/Hz profile by changing the V/Hz factor directly or using the
UP/DOWN buttons. The shape of the motor currents must be close to a sinusoidal shape:

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 41

Figure 23. Phase currents

6. Select the “Position” recorder to check the observer functionality. The difference between the
“Position Electrical Scalar” and the “Position Estimated” must be minimal (see the following
figure) for the Back-EMF position and speed observer to work properly. The position difference
depends on the motor load. The higher the load, the bigger the difference between the positions
(due to the load angle).

Figure 24. Generated and estimated positions

7. If an opposite speed direction is required, set a negative value in the “Speed_req” field.
8. A proper observer functionality and measurement of analog quantities is expected at this step.
9. Enable the voltage FOC mode by clicking the “DISABLED” button in the “Voltage FOC”

section while the main application switch is turned off.
10. Turn the main application switch on and put a non-zero value into the “Uq_req” field. The FOC

algorithm uses the estimated position to run the motor.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
42 NXP Semiconductors

5.2.5. Alignment tuning
The alignment procedure sets the rotor to an accurate initial position and enables applying a full start-up
torque to the motor. The rotor-alignment parameters are available for editing in the Expert mode.
A correct initial position is needed mainly for high start-up loads (compressors, washers, and others).
The aim of the alignment is to have the rotor in a stable position (without oscillations) before the startup.

1. The alignment voltage is a value applied to the d-axis during alignment. Increase this value for a
higher shaft load.

2. The alignment duration expresses the time for which the alignment routine is to be called. Tune
this parameter to have the rotor without oscillations or movement at the end of the alignment
process.

5.2.6. Current loop tuning
Parameters for the current D,Q PI controllers are fully calculated in the Basic mode using the motor
parameters and no action is required in this mode. If the calculated loop parameters do not correspond to
the required response, tune the bandwidth and attenuation parameters.

1. Switch the tuning mode to “Expert”.
2. Set the required loop bandwidth and attenuation and click the “Update Target” button in the

“Current Loop” tab. The tuning loop bandwidth parameter defines the speed of the loop
response, whilst the tuning loop attenuation parameter defines the actual quantity-overshoot
magnitude.

3. Select the “Current Controller Id” recorder.
4. Select the “Control Structure” tab, switch to the “Current FOC”, set the “Iq_req” to a very low

value (e.g., 0.01), and set the required step to “Id_req”. The control-loop response is shown in
the recorder (see Figure 6).

5. Tune the loop bandwidth and attenuation until you achieve the required response. The example
waveforms show the correct and incorrect settings of the current loop parameters:

— The loop bandwidth is low (110 Hz) and the settling time of the “Id” current is long:

Figure 25. Slow step response of Id current controller

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 43

— The loop bandwidth (400 Hz) is optimal and the response time of the “Id” current is
sufficient:

Figure 26. Optimal step response of Id current controller

— The loop bandwidth is high (700 Hz) and the response time of the “Id” current is very
fast, but it contains oscillation and overshoot:

Figure 27. Fast step response of Id current controller

5.2.7. Actual speed filter
The estimated speed from the BEMF observer is fed into the speed PI controller through the IIR filter.
Modify the filter cut-off frequency in the Expert mode in the “Speed Loop” tab. The speed loop sample
time is typically several milliseconds, so the actual speed filter cut-off frequency mostly ranges from
5 Hz to 100 Hz.

Track the filter output in the “Speed” scope. Write the modified filter cut-off frequency value to the
MCU by clicking the “Update Target” button.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
44 NXP Semiconductors

5.2.8. Speed ramp tuning
The “Speed” command is applied to the speed controller through a speed ramp. The ramp function
contains two increments (up and down) that express motor acceleration and deceleration per second.
If the increments are very high, they can cause an over-current fault during acceleration and an
over-voltage fault during deceleration. In the “Speed” scope, you can see whether the “Speed Actual
Filtered” waveform shape equals the “Speed Ramp” profile.

Increments are common for the scalar and speed control. The increment fields are located in the
“Speed Loop” tab and they are accessible in both tuning modes. Clicking the “Update Target” button
writes the changes to the MCU. An example speed profile is shown in the following figure. The ramp
down increment is set to 500rpm/sec, while the up increment is set to 3,000 rpm/sec.

The start-up ramp increment is located in the “Sensorless” tab and its value is usually higher than the
value of the speed loop ramp.

Figure 28. Speed profile

5.2.9. Open-loop startup
Tune the start-up process by a set of parameters located in the “Sensorless” tab. You can access two of
them (ramp increment and current) in both tuning modes. The start-up tuning can be processed in all
control modes, except for the scalar control. Set the optimal values to achieve a proper motor startup.
An example start-up state of low-dynamic drives (fans, pumps) is shown in Figure 29.

1. Select the “Startup” recorder from the FreeMASTER project tree.
2. Set the start-up ramp increment to a higher value than the speed-loop ramp increment.
3. Set the start-up current according to the required start-up torque. For drives such as fans or

pumps, the start-up torque is not very high and you can set it to 15 % of the nominal current.
4. Set the required merging speed—the threshold when the open-loop and estimated-position

merging starts, mostly set in the range of 5 %~10 % of the nominal speed.
5. Set the merging coefficient—the position-merging process duration, where 100 % corresponds to

a half of the electrical revolution. The higher the value is, the faster the merge is done. Values

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 45

close to 1 % are set for drives where a high start-up torque and a smooth transition between
the open loop and the closed loop are required.

6. Click the “Update Target” button to write the changes to the MCU.
7. Switch to the “Control Structure” tab, and enable “Speed FOC”.
8. Set the required speed higher than the merging speed.
9. Check the start-up response in the recorder.
10. Tune the start-up parameters until you achieve an optimal response.
11. If the rotor does not run, increase the start-up current.
12. If the merging process fails (the rotor is stuck or stopped), decrease the start-up ramp increment,

increase the merging speed, and set the merging coefficient to 5 %.

Figure 29. Motor startup

5.2.10. BEMF observer tuning
The BEMF observer and tracking observer parameters are fully calculated in the Basic mode using the
motor parameters and no action is required in this mode. If the calculated loop parameters do not
correspond to the optimal response, tune the bandwidth and attenuation parameters.

1. Switch the tuning mode to “Expert”.
2. Select the “Observer” recorder from the FreeMASTER project tree.
3. Set the required bandwidth and attenuation of the BEMF observer—the bandwidth is typically

set to a value close to the current loop bandwidth.
4. Set the required bandwidth and attenuation of the tracking observer—the bandwidth is typically

set in the range from 10 Hz to 20 Hz for most low-dynamic drives (fans, pumps).
5. Click the “Update Target” button to write the changes to the MCU.
6. Check the observer response in the recorder.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
46 NXP Semiconductors

5.2.11. Speed PI controller tuning
The motor speed control loop is a first-order function with a mechanical time constant that depends on
the motor inertia and friction. If these mechanical constants are available, tune the PI controller
constants using the loop bandwidth and attenuation. The values of the motor and load inertias and
frictions are very often unknown and it is quite difficult to obtain them. Therefore, manual tuning of the
P and I portions of the speed controllers is available to obtain the required speed response (see the
example response in Figure 10). There are dozens of approaches for tuning the PI controller constants.
These steps provide an example of setting and tuning the speed PI controller for a PM synchronous
motor.

1. Select “Speed Controller” from the FreeMASTER project tree.
2. Select the “Speed loop” tab.
3. Check “Manual Constant Tuning”—that is, the bandwidth and attenuation fields are disabled,

and “SL_Kp” and “SL_Ki” are enabled.
4. Tune the proportional gain:

— Set the “SL_Ki” integral gain to zero.
— Set the speed ramp to 1000 rpm/sec (or higher).
— Switch to the “Control Structure” tab and run the motor at a convenient speed

(about 30 % of the nominal speed).
— Set the step in the required speed to 40 % of N nom.
— Switch back to the “Speed Loop” tab.
— Keep tuning the proportional gain “SL_Kp” until the system responds properly to the

required value (without oscillations or excessive overshoot):
– If “SL_Kp” is set low, then the system response is slow.
– If the “SL_Kp” is set high, then the system response is tighter.
– If the “SL_Ki” is set to zero, then the system may not achieve the required speed.

— Click the “Update Target” button to write the changes to the MCU.
5. Tune the integral gain:

— Increase the “SL_Ki” slowly to minimize the difference between the required and actual
speeds to zero.

— Adjust the “SL_Ki” so that you do not see any oscillation or large overshoot of the actual
speed value while applying the required speed step.

— Click the “Update Target” button to write the changes to the MCU.

Tuning and Controlling the Application

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 47

6. Keep tuning the loop bandwidth and attenuation until you achieve the required response.
The waveform examples with correct and incorrect settings of the current loop parameters are
shown in the following figures:

— The “SL_Ki” value is low, and the “Speed Actual Filtered” does not achieve the
“Speed Ramp”:

Figure 30. Speed controller response—“SL_Ki” is low, “Speed Ramp” not achieved

— The “SL_Kp” value is low, “Speed Actual Filtered” greatly overshoots, and the long
settling time is not wanted:

Figure 31. Speed controller response—“SL_Kp” is low, “Speed Actual Filtered” greatly overshoots

Conclusion

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
48 NXP Semiconductors

— Speed loop response has a small overshoot, and the “Speed Actual Filtered” settling time
is sufficient. Such response is considered optimal:

Figure 32. Speed controller response—speed loop response with small overshoot

5.2.12. Generating MCAT output file
When you successfully finish tuning the application and want to store all calculated parameters to the
embedded application, navigate to the “Output File” tab. View the list of all definitions generated by
MCAT. Clicking the “Generate Configuration File” button overwrites the old version of the
m1_pmsm_appconfig.h file, which contains these definitions. Provide a correct path to the file for a
proper generation of the motor parameter file. To change the path, navigate the cursor to the right corner
of the MCAT screen, and a symbol with a screw driver and a wrench appears. When clicking this
symbol, the “Application Settings Page” appears. Modify the path to the m1_pmsm_appconfig.h file in
the “Project Path Selection” area.

6. Conclusion
This application note describes the implementation of a sensorless Field-Oriented Control of the 3-phase
PMSM using 32-bit Kinetis V series devices and the High-Voltage Platform, Tower System, and
Freedom development platforms. The hardware-dependent part of the sensorless control software
(including a detailed peripheral setup), Motor Control Peripheral Drivers (MCDRV), and application
timing are described in Section 3, “MCU Features and Peripheral Settings”. The motor parameters
identification theory and the identification algorithms are described in Section 5.1, “PMSM parameter
identification”. The last part of the document describes the user interface represented by Motor Control
Application Tuning (MCAT) tool, based on FreeMASTER communication interface.

References

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
NXP Semiconductors 49

7. Acronyms and Abbreviations
Table 15. Acronyms and abbreviations

AC Alternating Current

ADC Analog-to-Digital Converter

AN Application Note

CPU Central Processing Unit

CMP Comparator

DC Direct Current

DRM Design Reference Manual

FOC Field-Oriented Control

FTM FlexTimer Module

GPIO General-Purpose Input/Output

I/O
Input/Output interfaces between a computer system and the external world (A CPU
reads an input to sense the level of an external signal and writes to an output to
change the level of an external signal.)

MCAT Motor Control Application Tuning tool

MCU Microcontroller Unit

PDB Programmable Delay Block

PI Proportional Integral controller

PWM Pulse-Width Modulation

UART Universal Asynchronous Receiver/Transmitter

8. References
These references are available on nxp.com:

• Sensorless PMSM Field-Oriented Control (document DRM148)
• Kinetis KV11: 75 MHz Cortex-M0+ 64/128 KB Flash (32-64 pin) (document KV11P64M75RM)
• KV31F Sub-Family Reference Manual (document KV31P100M120SF7RM)
• KV4x Reference Manual (document KV4XP100M168RM)
• KV5x Sub-Family Reference Manual (document KV5XP144M220RM)
• NXP High-Voltage Motor Control Platform User's Guide (document HVPMC3PHUG)
• HVP-KV31F120M User’s Guide (document HVPKV31F120MUG)
• Using FlexTimer in ACIM/PMSM Motor Control Applications (document AN3729)
• Tips and Tricks Using PDB in Motor Control Applications on Kinetis (document AN4822)
• Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (document AN4642)

http://www.nxp.com/
http://www.nxp.com/doc/DRM148
http://www.nxp.com/doc/KV11P64M75RM
http://www.nxp.com/doc/KV31P100M120SF7RM
http://www.nxp.com/doc/KV4XP100M168RM
http://www.nxp.com/doc/KV5XP144M220RM
http://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com/doc/HVPKV31F120MUG
http://www.nxp.com/doc/AN3729
http://www.nxp.com/doc/AN4822
http://www.nxp.com/doc/AN4642

Revision History

Sensorless PMSM Field-Oriented Control on Kinetis KV and KE, Application Note, Rev. 3, 10/2016
50 NXP Semiconductors

9. Revision History
This table summarizes the changes done to this document since the initial release:

Table 16. Revision history

Revision number Date Substantive changes

0 02/2016 Initial release.

1 06/2016 Updated FSLESL 4.1 to RTCESL 4.3. Added blocked rotor threshold detection. Bug fixes.

2 09/2016 Added KE1xZ and KE1xF MCUs.

3 10/2016 CPU load and memory usage tables extended and updated.

Document Number: AN5237
Rev. 3

10/2016

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further
notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does NXP assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in NXP data sheets and/or specifications can and do
vary in different applications, and actual performance may vary over time. All operating
parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. NXP does not convey any license under its patent rights
nor the rights of others. NXP sells products pursuant to standard terms and conditions
of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,
Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V.

Tower and Freedom are trademarks of NXP B.V. ARM, the ARM Powered logo, and
Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. IAR is a trademark and IAR Embedded Workbench is a registered
trademark of IAR Systems AB. All other product or service names are the property of
their respective owners. All rights reserved.

© 2016 NXP B.V.

http://www.nxp.com/
http://www.nxp.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Sensorless PMSM Field-Oriented Control on Kinetis KV and KE
	1. Introduction
	2. Development Platforms
	2.1. 9BFRDM-MC-LVPMSM
	2.2. 10BTWR-MC-LV3PH
	2.3. 11BHVP-MC3PH

	3. MCU Features and Peripheral Settings
	3.1. 12BKV1x family
	3.1.1. 20BHardware timing and synchronization
	3.1.2. 21BPeripheral settings
	3.1.2.1. 54BPWM generation—FTM0
	3.1.2.2. 55BAnalog sensing—ADC0, ADC1
	3.1.2.3. 56BPWM and ADC synchronization—PDB0
	3.1.2.4. 57BOver-current detection at FRDM platform—CMP1
	3.1.2.5. 58BSlow-loop interrupt generation—FTM2
	3.1.2.6. 59BCommunication with MC33937 MOSFET driver—SPI

	3.1.3. 22BPeripheral settings differences among platforms
	3.1.4. 23BCPU load and memory usage

	3.2. 13BKV3x family
	3.2.1. 24BHardware timing and synchronization
	3.2.2. 25BPeripheral settings
	3.2.2.1. 60BPWM generation—FTM0
	3.2.2.2. 61BAnalog sensing—ADC0 and ADC1
	3.2.2.3. 62BPWM and ADC synchronization—PDB0
	3.2.2.4. 63BFRDM platform over-current detection—CMP1
	3.2.2.5. 64BSlow-loop interrupt generation—FTM2
	3.2.2.6. 65BCommunication with MC33937 MOSFET driver—SPI

	3.2.3. 26BPeripheral settings differences among platforms
	3.2.4. 27BCPU load and memory usage

	3.3. 14BKV4x family
	3.3.1. 28BHardware timing and synchronization
	3.3.2. 29BPeripheral settings
	3.3.2.1. 66BPWM generation—PWMA
	3.3.2.2. 67BAnalog sensing—ADC12
	3.3.2.3. 68BPeripheral interconnections—XBARA
	3.3.2.4. 69BSlow loop interrupt generation—FTM1
	3.3.2.5. 70BCommunication with MC33937 MOSFET driver—SPI

	3.3.3. 30BPeripheral settings differences among platforms
	3.3.4. 31BCPU load and memory usage

	3.4. 15BKV5x family
	3.4.1. 32BHardware timing and synchronization
	3.4.2. 33BPeripheral settings
	3.4.2.1. 71BPWM generation—PWMA
	3.4.2.2. 72BAnalog sensing—ADC12
	3.4.2.3. 73BPeripheral interconnections—XBARA
	3.4.2.4. 74BSlow-loop interrupt generation—FTM2
	3.4.2.5. 75BCommunication with MC33937 MOSFET driver—SPI

	3.4.3. 34BPeripheral settings differences among platforms
	3.4.4. 35BCPU load and memory usage

	3.5. KE1xZ family
	3.5.1. Hardware timing and synchronization
	3.5.2. Peripheral settings
	3.5.2.1. PWM generation—FTM0
	3.5.2.2. Analog sensing—ADC0 and ADC1
	3.5.2.3. PWM and ADC synchronization—PDB0
	3.5.2.4. Slow-loop interrupt generation—FTM2

	3.5.3. CPU load and memory usage

	3.6. KE1xF family
	3.6.1. Hardware timing and synchronization
	3.6.2. Peripheral settings
	3.6.2.1. PWM generation—FTM0
	3.6.2.2. Analog sensing—ADC0 and ADC2
	3.6.2.3. PWM and ADC synchronization—PDB0, PDB2
	3.6.2.4. Slow-loop interrupt generation—FTM2
	3.6.2.5. Communication with MC33937 MOSFET driver—LPSPI

	3.6.3. CPU load and memory usage

	4. Motor Control Peripheral Drivers
	4.1. 16BMotor Control Peripheral Drivers initialization
	4.2. 17BMotor Control Peripheral Drivers API

	5. Tuning and Controlling the Application
	5.1. 18BPMSM parameter identification
	5.1.1. 36BPower stage characterization
	5.1.2. 37BStator resistance measurement
	5.1.3. 38BStator inductance
	5.1.4. 39BBEMF constant measurement
	5.1.5. 40BNumber of pole-pairs assistant
	5.1.6. 41BPMSM electrical parameter measurement process

	5.2. 19BPMSM sensorless application control and tuning using MCAT
	5.2.1. 42BApplication control using MCAT
	5.2.2. 43BPMSM sensorless application tuning using MCAT
	5.2.3. 44BInitial configuration setting and update
	5.2.4. 45BControl structure modes
	5.2.5. 46BAlignment tuning
	5.2.6. 47BCurrent loop tuning
	5.2.7. 48BActual speed filter
	5.2.8. 49BSpeed ramp tuning
	5.2.9. 50BOpen-loop startup
	5.2.10. 51BBEMF observer tuning
	5.2.11. 52BSpeed PI controller tuning
	5.2.12. 53BGenerating MCAT output file

	6. Conclusion
	7. Acronyms and Abbreviations
	8. References
	9. Revision History

