
1 Introduction
The Linux Debug Print tool encapsulates a target server
responsible for collecting Kernel Ring Buffer log user space
applications messages in the unformatted way and a host
which requests periodically the kernel log data from the server
and displays it in a view.

The main objective of this tool is to provide a user-friendly
way of monitoring the activities in a CodeWarrior console. It
is composed of several modules:

• Target side:

Debug Print server – reads on demand, the Kernel Ring
Buffer log. It optionally clears the log and sends it to the
clients using TCP/IP connection. It collects the
redirected standard output from the user space
applications.

Debug Print dynamic library - is responsible for
redirection of the user space application's standard
output messages to the target server.

• Host side:

Debug Print probe – is the actual client of the Debug
Print server; it can be started from the Debug Print
view. When started, it reads periodically the kernel log
data from the server and sends it to the Debug Print
view to display the kernel log data and other
communication messages.

NXP Semiconductors Document Number: AN5128

Application Note Rev. 11.3.2, 08/2018

Linux Kernel and User
Applications Debug Print using
CodeWarrior

Contents

1 Introduction..1

2 Debug Print tool functionality................................... 2

2.1 Configure Debug Print server..... 2

2.2 Configure Debug Print library.... 3

2.3 Start Debug Print probe..................................3

2.4 Open Configure Debug Print
dialog.. 4

2.5 Configure Debug Print settings in
Preferences dialog.. 4

2.6 Create Debug Print filters...............................5

3 Using Debug Print with Remote
Systems Explorer..................................... 8

4 Functional examples.................... 16

4.1 Basic ARMv8 example.................................16

4.2 ARMv8 dynamic debug
example......................................22

5 Test application............................25

6 Dynamic debug demo script....................................27

Debug Print view – displays the log data and other communication messages in a user-friendly manner, also allows to
filter the displayed data on the basis of timestamp, module name/application path and pid, or a custom string contained
in each log message.

NOTE
The Arm binaries have been compiled with tool chain gcc-linaro-aarch64-linux-gnu-4.9.3 and LS2 SDK.

NOTE
The Debug Print is a standalone tool. It is independent from the other CodeWarrior components and does
not require a debug session.

2 Debug Print tool functionality
Perform the following steps in order to see the functionality of the Debug Print tool.

1. Configure Debug Print server
2. Configure Debug Print library
3. Start Debug Print probe
4. Open Configure Debug Print dialog
5. Configure Debug Print settings in Preferences dialog

2.1 Configure Debug Print server

The debug print target server cross-compiled for Arm is located in CodeWarrior in directory: <CWInstallDir>/ARMv8/sa_ls/
linux.armv8.debugprint/bin, which needs to be copied on the target (for example, to the home directory), using Remote
System Explorer view, or an SCP connection, or manually if you have the target root file system on NFS.

The server command line is ls.target.server [PORT] [-k] and requires a single argument; the port number on which
clients will listen. If not specified, it will start on the default port 5000. Specify –k to keep the kernel buffer unaltered (same
as dmesg), with a server processing overhead.

Start a ssh console on the target and then start the server:

ssh root@target_ip_address

./ls.target.server

You can access the server either as root or as a normal user. With root access, server processing overhead is less.

Accessing the server from root differs from accessing the server as a normal user in the following ways:

• Root: More efficient from both processing and communication point of view. This is because, by default, root access
clears the kernel buffer after reading the messages and sends only the new messages generated by the kernel to the host,
with no additional processing overhead. Another advantage of running as root is the timestamp synchronization
between the kernel and the user space messages.

• User: By default, a normal user access reads all the kernel messages and sends them to the host. The detection of the
new messages is done on the host, by maintaining a history of the last few messages. This has an overhead on the
communication size, since buffer is always sent to host, but no other processing is done on the target.

• Both: Option –k, which stands for keep does not clear the kernel buffer, but uses an internal server logic for
determining which are the newer messages, by maintaining a history in the target memory. This has the same
communication efficiency as if clearing the kernel buffer, but adds a processing overhead on determining the newer
messages.

Debug Print tool functionality

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

2 NXP Semiconductors

2.2 Configure Debug Print library

The dynamic library cross-compiled for Arm is located in CodeWarrior directory at: <CWInstallDir>/ARMv8/sa_ls/
linux.armv8.debugprint/lib, which needs to be copied on the target using the Remote Systems Explorer (RSE) view,
or an SCP connection, or manually if you have the target root file system on NFS. This library must be loaded by the shell
before the C runtime when you are running the user space applications which need to be monitored by setting the
environment variable LD_PRELOAD.

NOTE

The code for the test-arm application is available at the Test application section.

To compile this code, create a Linux application project, replace the default code in the
Linux application project with the test-arm application code, compile the application, and
transfer the application to the board.

Preload the debug print library and run the test application:

export LD_PRELOAD=~/libls.linux.debugprint.lib.so

./test-arm

or

LD_PRELOAD=~/libls.linux.debugprint.lib.so; ./test-arm

You will notice next time that the test application will not display any of its standard output messages to the console, but only
its standard error messages.

The standard output is sent to the target server.

2.3 Start Debug Print probe

On the host machine, open the Debug Print view. The Debug Print Probe can be started from the Debug Print view and it
communicates using TCP/IP connection with the server. When started, it reads periodically the kernel log data from the
server and sends it to the Debug Print view to display. To open the Debug Print view, select Window > Show View >
Other > Software Analysis > Debug Print. The Debug Print view appears.

Figure 1. Debug Print view

The table below describes the icons available in the Debug Print view.

Debug Print tool functionality

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

NXP Semiconductors 3

Table 1. Debug Print view icons

Icons Description

 Clear All
Removes all text from the view.

 Start/Stop

Two-state button used for starting and stopping the Debug Print probe.

 Scroll Lock/Unlock
Two-state button used for locking and unlocking the scrollbar. If the scrollbar is
unlocked, it would always auto-scroll to the latest Debug Print message.

 Configure
Opens a dialog for entering the server address and port.

 Create Debug Print Filters
Opens a dialog for configuring what information is to be displayed in the Debug
Print view (specific to timestamp, module name/application path and pid, other
string patterns).

Additionally, the text manipulation Eclipse command Copy (CTRL-C) is available.

2.4 Open Configure Debug Print dialog

To configure the Debug Print server, click Configure icon on the toolbar. The Configure Debug Print dialog appears. You
can specify the server address, port number at which the server will listen to client, and the target description (for example,
address 192.168.0.2, port 5000 – must be the same as for the server at which the server will listen to client, and the target
description).

Figure 2. Configure Debug Print dialog

2.5 Configure Debug Print settings in Preferences dialog

There is also a Preference page associated to Debug Print view, which can be accessed by clicking Window > Preferences,
expanding Software Analysis node, and then selecting Debug Print.

Debug Print tool functionality

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

4 NXP Semiconductors

Figure 3. Preferences dialog

Table 2. Debug Print settings

Options Description

Maximum line count Limits the number of lines the Debug Print view should display. If this limit is
exceeded, the old messages are deleted.

Log Debug Print contents to external file If selected, the messages will be appended to an external file besides displaying
them into the Debug Print view.

File name Path for the external log file

2.6 Create Debug Print filters

The Create Debug Print Filters configuration dialog allows creation of multiple filters, each of them able to match the
module name, application path, or PID of the messages displayed by the Debug Print view. These filters are OR-ed, which
means that the view will display all messages which match at least one of the filters.

This dialog has three tabs:

• Module tab: allows creation of new filters, by selecting from the Existing list a module name/application path, PID, or
both (if available). Click Add Filter to add the filter in the Current Filters list. These filters can be qualified with a
timestamp range or a string pattern.

Debug Print tool functionality

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

NXP Semiconductors 5

The Existing list contains all the module names/application paths/PIDs from the messages already displayed in the
Debug Print view. When you want to filter messages from a certain module or application that is not started or did not
print any messages yet, you can manually enter the module name/path or PID in the Custom text box.

When no module filter is selected, and no global qualification is selected, (any) is displayed in the Current Filters,
which means that no filter is applied (all messages are displayed).

Figure 4. Create Debug Print Filters dialog - Module tab
• Timestamp tab: allows adding timestamp qualification to the existing filters, or a global qualification if no other filter

is created (that is a generic filter which applies to all messages, with all module names, paths and PIDs).
After the user choses the timestamp ranges in the Lower Limit/Upper Limit Spinners, you must click Qualify in order
to add the timestamp qualification to all existing filters. If no filter exists, a global qualification is performed.

Debug Print tool functionality

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

6 NXP Semiconductors

Figure 5. Create Debug Print Filters dialog - Timestamp tab
• Other tab: allows adding other type of qualifications to existing filters, or a global qualification if no other filter is

created. Currently, the only qualification in this tab is a string pattern which is searched in all the messages (except for
timestamps and module names/paths/PIDS). After you input the string pattern, you must click Qualify in order to add
this qualification to all the existing filters. If no filter exists, a global qualification is performed.

Debug Print tool functionality

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

NXP Semiconductors 7

Figure 6. Create Debug Print Filters dialog - Other tab

3 Using Debug Print with Remote Systems Explorer
Remote Systems Explorer (RSE) can be used to browse the target file system, transfer files to the target directly from the
CodeWarrior software, and start ssh consoles.

To enable RSE:
1. Select Windows > Preferences. The Preferences dialog appears.
2. Select Remote Systems in the left panel.
3. Set Linux and SSH Only system types to True.
4. Click Apply > Apply and Close.

When the target is connected to the host running the CodeWarrior software, you can create a Linux or SSH Only connection
to the target.

1. To open the Remote Systems Explorer view, click Window > Perspective > Open Perspective > Other > Remote
System Explorer.

The Remote Systems view appears.

2. Click Define a connection to remote system available in the Remote Systems view toolbar.

The New Connection wizard appears.

3. Expand General and select Linux option from the list.

Using Debug Print with Remote Systems Explorer

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

8 NXP Semiconductors

Figure 7. New Connection wizard
4. Click Next.

The Remote Linux System Connection page appears.

Using Debug Print with Remote Systems Explorer

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

NXP Semiconductors 9

Figure 8. Remote Linux System Connection page
5. Specify the Host name and the Connection name and click Next.

The Files page appear.

Using Debug Print with Remote Systems Explorer

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

10 NXP Semiconductors

Figure 9. Files page
6. Select the ssh.files checkbox and click Next.

The Processes page appears.

Using Debug Print with Remote Systems Explorer

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

NXP Semiconductors 11

Figure 10. Processes page
7. Select the processes.shell.linux checkbox and click Next.

The Shells page appears.

Using Debug Print with Remote Systems Explorer

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

12 NXP Semiconductors

Figure 11. Shells page
8. Select the ssh.shells checkbox and click Finish.
9. In the Remote Systems view, you can see the new connection. The connection name is linux-connection.

10. Browse to the root directory to establish connection with the target board.

Using Debug Print with Remote Systems Explorer

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

NXP Semiconductors 13

Figure 12. Establish connection to target
11. To add debug print binary, that is server or user space library, perform either of the following:

• Right-click root home directory, select Add Debug Print support, and refresh the directory tree.

Using Debug Print with Remote Systems Explorer

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

14 NXP Semiconductors

• Copy the debug print server and library binaries from the directory:

<CWInstallDir>/ARMv8/sa_ls/linux.armv8.debugprint/bin

Right-click the root home directory in the RSE view, select Paste to paste the binaries on the target. Then, select
Properties > Permissions from the root home directory context menu, and set Execute permissions on the target
server.

Using Debug Print with Remote Systems Explorer

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

NXP Semiconductors 15

Figure 13. Set properties
12. Right-click the root home directory and select Launch Terminal to launch RSE ssh consoles. In this console, you can

start the server or run other applications.

4 Functional examples
This section lists the following examples for ARMv8:

• Basic ARMv8 example
• ARMv8 dynamic debug example

4.1 Basic ARMv8 example

You can perform the steps in this example to see the Debug Print tool functionality. The Arm binaries are compiled with the
tool chain, gcc-linaro-aarch64-linux-gnu-4.9.3, available in CodeWarrior for ARMv8.

Functional examples

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

16 NXP Semiconductors

Before working on the Debug Print tool, check that TCP/IP communication is established between the host and the target.

1. Deploy the Software Analysis target binaries on the target using Remote Systems Explorer view, or an SCP
connection, or if you have the target root file system on NFS, you can copy ls.target.server and
libls.linux.debugprint.lib.so* to the host location [NFS_PATH]/home/root).

2. Start a ssh console on the target where the SA binaries have been deployed, and then start the server on default port
5000:

ssh root@target_ip_address

./ls.target.server

3. Open the Debug Print view.
4. Click the (Configure) button, enter the server address and port. For example, 192.168.0.2, port 5000. The port

number must be same as the server.
5. Click the Start icon; you will see the kernel log messages are being populated in the view’s text area.

Figure 14. Debug Print view - messages from server

NOTE
The module name of the Kernel space messages is colored in Blue, the module
name of the user space messages is colored in Magenta, and the message log level
is colored in green. See http://linux.die.net/man/2/syslog for more information
about supported log levels.

6. Open another console on the target in the same directory, preload the debug print library and run the test application:

export LD_PRELOAD=~/libls.linux.debugprint.lib.so; ./test-arm

./test-arm

7. You will see the application messages getting appended in the Debug Print view.

Functional examples

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

NXP Semiconductors 17

http://linux.die.net/man/2/syslog

Figure 15. Debug Print view - application messages
8. To see the real time functionality of the Debug Print view, add some more messages to the view, both from kernel and

the test application from the same console where the test application was running on the target:

echo Hello World > /dev/kmsg

./test-arm

echo Helloooooo > /dev/kmsg

9. See the new messages displayed in the Debug Print text area as you enter them in the target shell.

Functional examples

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

18 NXP Semiconductors

Figure 16. Debug Print view - messages from server
10. Click the Create Debug Print Filters button to filter the messages displayed in the Debug Print view. The Create

Debug Print Filters dialog appears.
11. To filter messages from an existing module, such as test-arm.elf:

a. Deselect the PID checkbox.
b. Select test.arm in the Existing group.
c. Click Add Filter.

Functional examples

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

NXP Semiconductors 19

Figure 17. Create Debug Print Filters dialog
d. Click OK and see the new content of the view. The following figure shows the messages displayed in the Debug

Print view using the test-arm.elf filter.

Functional examples

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

20 NXP Semiconductors

Figure 18. Debug Print view displays messages with Module filter
12. To filter all messages containing the string pattern Hello:

a. Click the Create Debug Print Filters button in the Debug Print view..
b. Click the Clear Filters button.
c. Click the Other tab.
d. Enter the string, Hello, based on which you want to filter the messages in the Messages containing string text

box.
e. Click the Qualify button.

Functional examples

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

NXP Semiconductors 21

Figure 19. Create Debug Print Filters dialog - Other tab

a. Click OK. The following figure shows the messages displayed in the Debug Print view using the Hello string.

Figure 20. Debug Print view displays messages with string filter in Other tab

4.2 ARMv8 dynamic debug example

Dynamic debug lets you customize the kernel log activity when you insert/call a kernel module or anything using a printk
call.

If the kernel is built with the dynamic debug support, you can enable various log messages for kernel modules and monitor
them. See https://www.kernel.org/doc/html/v4.11/admin-guide/dynamic-debug-howto.html for information about enabling
dynamic debug and Dynamic debug demo script for details about Debug Print with dynamic debug.

Execute the following command to display the kernel log messages.

. ./generate_kmsg.sh

Functional examples

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

22 NXP Semiconductors

https://www.kernel.org/doc/html/v4.11/admin-guide/dynamic-debug-howto.html

The output is displayed in the SSH console.

Figure 21. SSH console view

The following output is displayed in the Debug Print view.

Functional examples

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

NXP Semiconductors 23

Figure 22. Debug Print view

Functional examples

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

24 NXP Semiconductors

5 Test application
Here is the test application used in this application note.

Listing 1. test-arm.c
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <time.h>
#include <limits.h>

/**
 * print human readable time:
 * "ddd yyyy-mm-dd hh:mm:ss:nanoseconds"
 */
void print_time(struct timespec timestamp)
{
 time_t now = timestamp.tv_sec;
 struct tm ts;
 char buf[100];
 // Format time, "ddd yyyy-mm-dd hh:mm:ss"
 ts = *localtime(&now);
 strftime(buf, sizeof(buf), "%a %Y-%m-%d %H:%M:%S", &ts);
 printf("%s:%09ld\n", buf, timestamp.tv_nsec);
}

static struct timespec MINUS = {-1, -1};

/**
 * @return t1 - t2
 */
struct timespec dif_time(struct timespec t1, struct timespec t2)
{
 if ((t1.tv_sec < t2.tv_sec) || (t1.tv_sec == t2.tv_sec && t1.tv_nsec < t2.tv_nsec))
 return MINUS;

 struct timespec res;
 res.tv_sec = t1.tv_sec - t2.tv_sec;
 if (t1.tv_nsec > t2.tv_nsec) {
 res.tv_nsec = t1.tv_nsec - t2.tv_nsec;
 } else {
 res.tv_sec--;
 res.tv_nsec = 1000000000L - t2.tv_nsec + t1.tv_nsec;
 }

 return res;
}

int main(int argc, char **argv)
{
 /* get monotonic boot time */
 struct timespec up_time, crt_time;
 int i;

 clock_gettime(CLOCK_MONOTONIC, &up_time);

 /* code goes here */

#ifdef INFINITE
 for (;;) {
#endif
 int ret = puts("Start of test");
 for (i = 0; i < 10; i++) {

Test application

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

NXP Semiconductors 25

 {
 char* str = "New iteration\n";
 write(STDOUT_FILENO, str, strlen(str));
 }
 fprintf(stdout, "Test message %d\n", i);
 {
 char* str = "Test message\n1st half; ";
 fwrite(str, strlen(str), 1, stdout);
 }
 printf("2nd half %d\n", i);
 }

 ret = puts("End of test\n");
#ifdef INFINITE
 }
#endif

 /* end code */

 clock_gettime(CLOCK_MONOTONIC, &crt_time);
 fprintf(stderr, "start up time: %ld.%09ld\n", up_time.tv_sec, up_time.tv_nsec);
 fprintf(stderr, "current time: %ld.%09ld\n", crt_time.tv_sec, crt_time.tv_nsec);
 crt_time = dif_time(crt_time, up_time);
 fprintf(stderr, "execution took time: %ld.%09ld\n", crt_time.tv_sec, crt_time.tv_nsec);

 exit(0);
}

Listing 2. Makefile
export PATH = [PATH_TO_BUILD_TOOLS]/gcc-linaro-arm-linux-gnueabi-4.9-2015.03_linux/bin:$$
{PATH}

CC = arm-linux-gnueabi-gcc
CPP = arm-linux-gnueabi-g++

CFLAGS = -g -DDEBUG -D_DEBUG -DUNICODE -D_UNICODE
LDFLAGS ?= -L"."

LDLIBS = -ldl -lrt

BIN_DIR ?= bin/

SOURCES = arm-test.c

EXE = $(BIN_DIR)/test-arm

EXE_INFINITE = $(BIN_DIR)/test-arm-infinite

.PHONY: clean bindir

all: $(EXE) $(EXE_INFINITE)

bindir:
 ((mkdir -p $(BIN_DIR)) &> /dev/null) || true

$(EXE): bindir $(SOURCES)
 $(CC) -o "$@" $(SOURCES) $(CFLAGS) $(LDFLAGS) $(LDLIBS) -rdynamic

$(EXE_INFINITE): bindir $(SOURCES)
 $(CC) -o "$@" $(SOURCES) -DINFINITE $(CFLAGS) $(LDFLAGS) $(LDLIBS) -rdynamic

clean:
 (rm -f *.o) || true
 (rm -f $(EXE) $(EXE_INFINITE)) || true

Test application

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

26 NXP Semiconductors

6 Dynamic debug demo script
The following script can be used to demonstrate the Debug Print feature with dynamic debug.

192.168.0.1 is the host IP, and /debugfs is a link to /sys/kernel/debug

Listing 3. generate_kmsg.sh
echo "<0>Start Dynamic Debug" > /dev/kmsg
echo "<0>-------------------" > /dev/kmsg

echo "Basic dynamic debug" > /dev/kmsg
echo -n 'module ping =p' > /debugfs/dynamic_debug/control
ping -c 1 192.168.0.1

echo "Dynamic debug with module" > /dev/kmsg
echo -n 'module ping =pm' > /debugfs/dynamic_debug/control
ping -c 1 192.168.0.1

echo "Dynamic debug with function and line" > /dev/kmsg
echo -n 'module ping =pfl' > /debugfs/dynamic_debug/control
ping -c 1 192.168.0.1

echo "Dynamic debug with module and line" > /dev/kmsg
echo -n 'module ping =pml' > /debugfs/dynamic_debug/control
ping -c 1 192.168.0.1

echo "Dynamic debug with all on" > /dev/kmsg
echo -n 'module ping +pmltf' > /debugfs/dynamic_debug/control
ping -c 1 192.168.0.1

echo "<1>-----------------" > /dev/kmsg
echo "<1>End Dynamic Debug" > /dev/kmsg

echo "<2>Start User log" > /dev/kmsg
echo "<2>--------------" > /dev/kmsg

LD_PRELOAD=~/libls.linux.debugprint.libd.so.1.0 ~/test-arm

echo "<3>------------" > /dev/kmsg
echo "<3>End User log" > /dev/kmsg

Dynamic debug demo script

Linux Kernel and User Applications Debug Print using CodeWarrior, Rev. 11.3.2, 08/2018

NXP Semiconductors 27

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use
NXP products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this document. NXP reserves the right to
make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does NXP assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets
and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “ typicals ,” must be validated for each customer application
by customer's technical experts. NXP does not convey any license under its patent rights nor the
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions .

While NXP has implemented advanced security features, all products may be subject to unidentified
vulnerabilities. Customers are responsible for the design and operation of their applications and
products to reduce the effect of these vulnerabilities on customer’s applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers should implement
appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP, the NXP logo, Freescale, the Freescale logo, and QorIQ are trademarks of are trademarks of
NXP B.V. All other product or service names are the property of their respective owners. Arm, Cortex
are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and
trade secrets. All rights reserved.

© 2014-2018 NXP B.V.

.

Document Number AN5128
Revision 11.3.2, 08/2018

http://nxp.com
http://nxp.com/support
http://nxp.com/salestermsandconditions

	Introduction
	Debug Print tool functionality
	Configure Debug Print server
	Configure Debug Print library
	Start Debug Print probe
	Open Configure Debug Print dialog
	Configure Debug Print settings in Preferences dialog
	Create Debug Print filters

	Using Debug Print with Remote Systems Explorer
	Functional examples
	Basic ARMv8 example
	ARMv8 dynamic debug example

	Test application
	Dynamic debug demo script

