AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm

Rev. 2.0 — 21 June 2016 Application note

Document information

Info Content

Abstract This application note documents the Jacobi rotation eigenanalysis
algorithm in the NXP Sensor Fusion Library software.

-
2

NXP Semiconductors ANSOZO

Determining Matrix Eigenvalues and Eigenvectors by Jacobi Algorithm

Revision history

Document Release date Supercedes
ID
AN5020 v2.0 /20160606 AN5020 v1.0

Modifications: |[e Minor changes

e The format of this document has been redesigned to comply with the new identity guidelines of NXP
Semiconductors. Legal texts have been adapted to the new company name where appropriate.

AN5020 v1.0 |2015 September —

Contact information

For more information, please visit: http://www.nxp.com

AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 20f11

http://www.nxp.com/

NXP Semiconductors ANSOZO

Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm

1. Introduction

1.1 Summary

This application note documents the Jacobi rotation eigenanalysis algorithm in the NXP
Sensor Fusion Library software and implemented by the two functions
eigencomputelO and eigencompute4 in the file matrix.c.

The two functions are identical except for their function headers which specify 10x10 and
4x4 input matrices respectively. This is for software portability with early C standards in
which C functions cannot be defined to handle arrays with variable numbers of columns.

The functions are used for a variety of mathematical solutions including magnetic hard
and soft iron calibration, precision accelerometer calibration and for taking the square
root of a symmetric matrix.

1.2 Terminology

Symbol Definition

A General square matrix

AT Transpose of matrix 4
A1 Inverse of matrix A

R; i-th Givens rotation matrix
Ry, Givens rotation matrix with non-zero
elements in row p and column g

X Matrix of column eigenvectors

Bi I-th eigenvector

Ai i-th eigenvalue

Diagonal eigenvalue matrix

¢ Jacobi rotation angle

1.3 Software Functions

Functions Description Reference
void elgencomputelO Computes the eigenvalues and 2
(float A[][10], float eigenvectors of an n by n square
eigval[], float matrix stored in the upper left of a
eigvec[][10], int8 n) 10x10 array.
void eilgencompute4 Computes the eigenvalues and 2
(float A[][4], float eigenvectors of an n by n square
eigval[], float matrix stored in the upper left of a
eigvec[][4]., int8 n) 4x4 array.

AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 3of11

NXP Semiconductors AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm

2. Eigenanalysis by Jacobi Algorithm

2.1 Introduction
The it" column eigenvector B; and eigenvalue A; of any square NxN matrix A are defined
as satisfying:
AB; = 4B 1
The NxN matrix X formed from the N individual column eigenvectors B; is:
X = (Bo Bl BN—l) @)
Equation (1) can then be written in the form:

AX = XA ®3)

where A is the NxN matrix formed from the eigenvalues lying on the diagonal:

0 .. 0
A — 0 Al s 0 (4)
0 0 s A,N_l

If the inverse matrix X1 exists then equation (3) implies:

A=XAX""! (5)

A=XTtAX (6)

A diagonal matrix is unaffected by pre-and post-multiplication by any rotation
matrix. Pre- and post-multiplying equation (6) by any inverse and forward rotation
matrix R therefore gives:

R!AR =A =R 'X'AXR)

The Jacobi algorithm underlying the functions eigencomputel0 and
eigencompute4 computes the eigenvalues and eigenvectors of a symmetric (and
therefore square) NxN matrix A by successive pre- and post-multiplication by inverse and
forward two-dimensional plane rotation matrices R; termed Givens rotation matrices
designed to obtain the diagonal matrix A:

8
A=Ry'..R,”'R,"AR,R,R, ..Ry ®

AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 4 0f 11

NXP Semiconductors

ANS5020

Application note

2.2

AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm

9)

=>A=Ry 1..R, 'R, 7Y (XAX V)RR, ..R,

10
=X =R,R,..Ry (10)

The eigenvectors of a symmetric matrix are orthogonal and another way of interpreting
equations (8) through (10) is that the sequence of Givens rotations matrices rotates the
matrix of eigenvectors to be aligned with the base vectors of the N dimensional
coordinate system.

The eigenvalues of the matrix A are then the elements of the diagonal matrix A derived
by zeroing off-diagonal elements in A and the matrix of eigenvectors X is the product of
the sequence of matrices R; used to perform the diagonalization.

Givens Rotation Matrix

The Givens matrix R, for rotation angle ¢ has form:
0 0 0 0 0 0
.. cos¢p .. sing .. O
lo .. . v w0
| —sing cos¢ 0 |

1
\0 1 0/
0 0 0 0 0 0 1

All the diagonal elements are one except for the two elements at positions p,p and g, q.
All off-diagonal elements are zero except for the two elements at positions p, g and g, p.
The Givens rotation matrix is orthonormal as required for a rotation matrix.

R,, = (12)

SO OO

A general matrix A4 is transformed by pre- and post-multiplication by the Givens rotation
matrix with non-zero elements in rows p and q as:

1 T
A’ =R,,"AR,, (12)

The elements in A changed by this operation are:

(e e aop ao,q e \
! ! ! I
Apo - Gpp p.q Apn-1
A= . o 13)
! ! ! !
| ag,0 Qqp Qq,q Agn-1 |
! !
\ An-1p Un-14 /

All information provided in this document is subject to legal disclaimers.

Rev. 2.0 — 21 June 2016

© NXP B.V. 2016. All rights reserved.

50f 11

NXP Semiconductors ANSOZO

Determining Matrix Eigenvalues and Eigenvectors by Jacobi

Algorithm
The changed elements of equation (13) are:
Arp = Gy pCOSP — Ay gSing (r # p,1 # q) (14)
Arq = Ay qCOSP + Ay psing (r # p, v # q) (15)
App = Ay pCOS* P + ag 4Sin° ¢ — 2a, 4singcose (16)
Ay q = AppSIN°P + ag 4c05°P + 2a, gsingpcose (17)
ap g = yq(cos?p — sin?@) + (a,, — agq)singcose (18)

2.3 Determining the Givens Rotation Angle

The required rotation angle ¢ is that which zeroes out element a,, ; in equation (18):

(cos*¢p —sin*p) _ (agq — app) (19)
singcosgp a Apq

r_
ap_q—0=>

Standard trigonometry identities allow the cotangent of twice the rotation angle (2¢) to be
written as:

cos(2¢) cos*¢p — sin’¢

= = (20)
cot2¢) sin(2¢) 2singcosep
Combining equations (19) and (20) defines the rotation angle ¢ as:
_ %4 " %p
cot(2¢) = —Zap,q (21)
cos?¢p —sin*¢p 1 —tan®¢
cot(2¢) = = = tan? ¢ + 2cot(2¢p) tangp — 1 =0 (22)

2singcos¢p ~ 2tang
= tan g = —cot(2¢) +/cot2(2¢) + 1 (23)

Taking the positive square root for tan ¢ gives:

tan ¢ = —cot(2¢) + /cot2(2¢) + 1 (24)

AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 6 of 11

NXP Semiconductors ANSOZO

Determining Matrix Eigenvalues and Eigenvectors by Jacobi
Algorithm

_ (—cot(qu) + /cot?(2¢) + 1)(—cot(2¢>) —Jcot?*(2¢) + 1)
(—cot(2¢) — Jeot2(2¢) + 1) 5)

-1
- —cot(2¢p) —/cot*(2¢) + 1

Taking the negative square root gives:

tan ¢ = —cot(2¢p) — +/cot2(2¢) + 1 (26)
_ (—cot2¢) —Jcot?(2¢) + 1)(—cot(2¢) + y/cot?(2¢) + 1)

(—cot(2¢) ++/cot2(2¢) + 1) @)
_ -1
—cot(2¢) + /cot?(2¢p) + 1
For 8 negative, the smaller magnitude of the two solutions is:
t(2
tan sgn(cot29)) (28)
(—cot(qu) + 1/cotz(qu) +) (|cot(2¢)| +/cot?2(2¢) +)
For 8 positive, the smaller magnitude of the two solutions is:
sgn(cot(2¢)) (29)
(cot(Zq.’)) + ,/cotz(Zq.’)) +) (lcot(2¢)| + /cot?(2¢) +)
In both cases:
t(2
tan ¢ = sgn(cot(29)) (30)
(lcot(2¢)| + /cot?(2¢) + 1)
If 6 is so large that cot(2¢) squared would overflow, the alternative is:
an ¢ = Sgn(c0t@9) 1 (31)
2|cot(2¢)| 2cot(2¢)
AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 7 of 11

NXP Semiconductors

AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi

Algorithm
A trigonometric identity used later is:
. o (P [
sing _ 2sin (7) cos (7> — tan (ﬂ) 32)
1+ cos¢ 2c0s? (%) 2

2.4 The Jacobi Algorithm

To avoid roundoff error, the iterative updates below are used for equations (14) to (19).
Equation (19):

By definition, the rotation angle ¢ is selected so that equation (19) results in zero a,, ,.

apq =02 a,,(cos?p — sin’P) + (a,, — ag4)singcosg = 0

(33)
sing{a, ,(cos?¢ — sin?d) + a, ,sindcos
> a,45in%¢ = o pal ¢) + appsing ¢} (34)
’ cos¢
Equation (16):
Substituting equation (34) into equation (16) gives:
.)] apq(cos?ep — sin¢) + a, ,sinpcosd] (35)
App = AppCOS=P + sing cosg — 2ap 4Singpcosd
; 2¢ — sin%d) — 2 i 2
—a,+ (ap,qsmqb(cos ¢ — sin®¢) — 2a, ;sinpcos qb) (36)
’ cos¢
, _ (sin?¢ + cos?¢
= App = Qpp — Ap gSing T osd s =app, — apqtane (37)
Equation (18):
Since the rotation angle ¢ is selected to zero a,, ;, equation (18) can be written as:
ap q(cos?¢ — sin*¢) + (a,, — ag 4)singcosp =0 (38)
(cos?¢p —sin*P)ay 4
= - ’ 39
= Gp = Yaq { singcosd (39)

ANS5020

All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.
Application note Rev. 2.0 — 21 June 2016

8of 11

NXP Semiconductors AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi

Algorithm
Equation (17):
Substituting equation (39) into equation (17) gives:
, - (cos?¢p — sin*P)ay,,) ,
Qqq = Sin“¢iaqq — sinpcose + agqcos°p + 2a, singcosd (40)
sin?¢ + cos?
> agq = Aqq + Sing <_¢ZOS¢ ¢> Apq = Aqq T Qpqtane (41)
Equation (14):
With trivial manipulation, equation (14) can be written as:
Arp = Qrp — Arp(1 — cosp) — a, 4sing (42)
_) (1= cos¢p)(1 + cosp)a,)) a,,sin®¢
= a,, — sing {am + sing (11 cosp) } = a,, — sing {arvq + m} (43)
Substituting equation (32) gives:
a;p = ay, — sing (ar,q + a, ytan (%)) (44)
Equation (15):
Similarly, with trivial manipulation, equation (15) can be written as:
Argq = Qr g — Ay q(1 — cosp) + a, ,sing (45)
3] (1 —cos¢)(1 + cosdplarq)] Ay gSin*¢
= dng sing {a”’ T g o) J - e TS T s oy ()
Substituting equation (32) gives:
Ay q = Ay q + sing (ar_p — a,q tan (?)) (47)
AN5020 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2016. All rights reserved.

Application note Rev. 2.0 — 21 June 2016 9of 11

NXP Semiconductors

AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi

3. Legal information

Algorithm

3.1 Definitions

Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

3.2 Disclaimers

Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves
the right to make changes without further notice to any products herein. NXP
makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability
arising out of the application or use of any product or circuit, and specifically

AN5020 All information provided in this document is subject to legal disclaimers.

Rev. 2.0 — 21 June 2016

Application note

disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/ or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's
technical experts. NXP does not convey any license under its patent rights
nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address:
nxp.com/salestermsandconditions.

3.3 Trademarks

Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP, the NXP logo, Freescale, and the Freescale logo are trademarks of
NXP B.V. ARM and Cortex are registered trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere.

© NXP B.V. 20164. All rights reserved.

10 of 11

NXP Semiconductors

AN5020

Determining Matrix Eigenvalues and Eigenvectors by Jacobi

4. Contents

Algorithm

11
1.2
1.3

21
2.2
2.3
2.4

3.1
3.2
3.3

INErOAUCTION ..eeiiiiiicie e 3
SUMMAIY ..t 3
Terminologycoooiieiiiiee e 3
Software FUNCLONScooviiiiiiiieiiieeeiiieee e 3

Eigenanalysis by Jacobi Algorithm 4
INtroduction ... 4
Givens Rotation MatriX.........cccoveveeiiiieeeiiiieeennne 5
Determining the Givens Rotation Angle 6
The Jacobi Algorithmccccccveeeiiiiciiiiieeeeee 8

Legal informationcccoeevvvveiieciiiiiiiiiiee e 10
DefiNitioNSccovvviiiiiiie e 10
DISCIAIMETS....cciiiiiiiiiiiie e 10
TrademarkS.......cccceeeeeeei, 10

CONEENTS ... 11

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section ‘Legal information'.

© NXP B.V. 2016. All rights reserved.
For more information, visit: http://www.nxp.com

Date of release: 21 June 2016
Document identifier: AN5020

	1. Introduction
	1.1 Summary
	1.2 Terminology
	1.3 Software Functions

	2. Eigenanalysis by Jacobi Algorithm
	2.1 Introduction
	2.2 Givens Rotation Matrix
	2.3 Determining the Givens Rotation Angle
	2.4 The Jacobi Algorithm

	3. Legal information
	3.1 Definitions
	3.2 Disclaimers
	3.3 Trademarks

	4. Contents

