
Freescale Semiconductor
Application Note

© 2010 Freescale Semiconductor, Inc. All rights reserved.

The Das Universal Bootloader (U-Boot) is a
firmware/bootloader for hardware platforms. The U-Boot is
widely used in embedded designs. The U-Boot supports
common processor architectures such as ARM®, Power
Architecture®, Microprocessor without Interlocked Pipeline
Stages (MIPS), and x86®. In addition to the bootstrapping
functionality, the U-Boot also supports other features that are
part of the open source project, which is available under
General Purpose Line (GPL). For example, device drivers,
networking and file systems support, utilities to assist board
bring-up, testing, and so on.

The U-Boot firmware is ported to operate on the several
i.MX application processors and development boards.
However, customers are often required to adapt to some key
areas of the source code to make the source code operate on
a new hardware platform based on the i.MX processor.

This application note deals with the i.MX51 Evaluation Kit
(EVK) U-Boot source code where adaptation is required.
Also, this application note define guidelines for configuring
Eclipse IDE for U-Boot development. For more information,
See Appendix A, “Configuring Eclipse IDE for U-Boot
Development.”

Document Number: AN4173
Rev. 0, 07/2010

Contents
1. Requirements . 2
2. U-Boot Project Overview . 2
3. Getting the U-Boot Source Code 3
4. Source Code Tree Overview . 4
5. Create a New Board Based on the i.MX51 EVK 7
6. Customize the Code . 8
7. Boot Modes . 8
8. Enable Debugging Information 14
9. Revision History . 14
A. Configuring Eclipse IDE for U-Boot Development . 15

U-Boot for i.MX51 Based Designs
Source Code Overview and Customization

by Multimedia Applications Division
Freescale Semiconductor, Inc.
Austin, TX

U-Boot for i.MX51 Based Designs, Rev. 0

2 Freescale Semiconductor

Requirements

1 Requirements
The requirements for the U-Boot project are as follows:

• Host computer with a Linux Operating System (OS)

• Basic knowledge of Linux

• U-Boot source code for the i.MX platforms. See Section 3, “Getting the U-Boot Source Code,” for
information about the U-Boot source code

• MCIMX51 Multimedia Applications Processor Reference Manual (MCIMX51RM)

• i.MX51 EVK 1.6 Linux User’s Guide

• i.MX51 EVK Hardware User’s Guide

• Basic knowledge of C language and ARM assembly language

• Eclipse IDE with C/C++ development plug-in (required if the reader wants to follow the
instructions in Appendix A, “Configuring Eclipse IDE for U-Boot Development.”)

2 U-Boot Project Overview
The U-Boot project is a combination of two small bootloaders—PPCboot and ARMboot—these
bootloaders are merged to create a U-Boot that provides support for expanded number of processors and
boards. The home page of this project is available at http://www.denx.de/wiki/U-Boot/WebHome. The
source code and documentation are distributed under the GPL license and is available free of cost.

The U-Boot project uses some portions of the Linux kernel code and maintains a similar source code
structure and configuration scheme. This fact along with its set of features such as stability, support for
many processors and boards, easiness of porting, and active community of developers enhancing and
supporting the project have contributed to make U-Boot, the most used bootloaders. The U-Boot is widely
used in the embedded space where low cost and reliability are critical.

The features of the U-Boot firmware are as follows:

• Bootstrap the hardware platform

• Load an OS image and transfer control to execute the OS

• Network download—Trivial File Transfer Protocol (TFTP), Bootstrap Protocol (BOOTP),
Dynamic Host Configuration Protocol (DHCP), and Network File System (NFS)

• Serial download—s-record and binary through Kermit

• Flash management—copy, erase, protect, cramfs, and jffs2

• Support for Flash types—CFI NOR Flash, NAND Flash, and Multi Media Card (MMC) or Secured
Digital (SD) cards

• Memory utilities—copy, dump, crc, check, and mtest

• IDE, SATA, boot from disk—raw block, ext2, fat, and reiserfs

• Interactive shell—choice of simple or busybox shell with many scripting features

For further information about the U-Boot project and FAQ, visit the U-Boot home page available at
http://www.denx.de/wiki/U-Boot/WebHome.

http://www.denx.de/wiki/U-Boot/WebHome
http://www.denx.de/wiki/U-Boot/WebHome
http://www.denx.de/wiki/U-Boot/WebHome

U-Boot for i.MX51 Based Designs, Rev. 0

Freescale Semiconductor 3

Getting the U-Boot Source Code

3 Getting the U-Boot Source Code
The U-Boot source code is sent along with the Linux Board Support Package (BSP) for the i.MX51 EVK.
This BSP is present inside the Linux Software Development Kit (SDK). The Linux SDK for the i.MX51
processor and documentation is available at http://www.freescale.com/imx51evk

At the time of creating this application note, the latest available version of Linux SDK was
IMX_SDK16_LINUX_BSP, and it contained the BSP based on the Linux kernel version 2.6.28. To install
Linux BSP in the host computer, refer to the relevant documents.

After successful installation of the Linux BSP, the Linux Target Image Builder (LTIB) and GNU tool chain
(for ARM) are ready for use. In this application note, the LTIB installation path is referenced as
<LTIB_DIR>.

To obtain the U-Boot source code for the i.MX platforms, use the following command:

cd <LTIB_DIR>
./ltib -m prep -p u-boot

From this set of commands, the U-Boot source code package is extracted and the i.MX patches are applied.
The patch source code is located at:

<LTIB_DIR>/rpm/BUILD/u-boot-2009.01

To rebuild the source code using LTIB, use the following command:

./ltib -m scbuild -p u-boot

Executing this command configures the U-Boot for the i.MX51 EVK platform and the following binaries
are generated:

• u-boot—file in Executable and Linkable Format (ELF) with symbols and debugging information.

• u-boot.bin—plain binary file. This file is programmed to a boot media (NAND, NOR, SD, and so
on) to bootstrap the i.MX51 EVK platform.

NOTE
It is recommended to verify with the Freescale representative if new U-Boot
patches or code is available for the i.MX platforms before code
customization.

In the U-Boot source code, the acronym BBG is used to refer to the i.MX51
EVK platform (this was the former name of the platform). In addition, there
is another i.MX51 platform (3-stack) within the U-Boot source code. This
application note focuses only on the EVK but if required, refer to the
i.MX51 3-stack code.

http://www.freescale.com/imx25pdk

U-Boot for i.MX51 Based Designs, Rev. 0

4 Freescale Semiconductor

Source Code Tree Overview

4 Source Code Tree Overview
The U-Boot source code structure is similar to the one used by the Linux Kernel. This section gives an
overview of the source code tree. To list the directory tree, use the following commands:

cd <LTIB_DIR>/rpm/BUILD/u-boot-2009.01
ls

Table 1 outlines the top-level directory tree and a brief description of each directory.

Table 1. U-Boot Source Code Top-Level Directories

Directory Description

api U-Boot machine/arch independent API for external applications

api_examples Example applications using the API

board Board dependent files or directories

common Misc architecture independent functions

cpu CPU specific files

disk Code for disk drive partition handling

doc Basic documentation files

drivers Device drivers for common peripherals

examples Example code for standalone applications

Fs Common file systems support

include Header files (.h)

lib_arm Files generic to the ARM architecture

lib_avr32 Files generic to the AVR32 architecture

lib_blackfin Files generic to the blackfin architecture

libfdt Flat tree manipulation library

lib_generic Files generic to all architectures

lib_i386 Files generic to the i386 architecture

lib_m68k Files generic to the m68k architecture

lib_microblaze Files generic to the microblaze architecture

lib_mips Files generic to the MIPS architecture

lib_nios Files generic to the NIOS architecture

lib_nios2 Files generic to the NIOS2 architecture

lib_ppc Files generic to the PowerPC architecture

lib_sh Files generic to the SH architecture

lib_sparc Files generic to the SPARC architecture

nand_spl Support for the NAND Flash boot with stage 0 boot loader

net Networking support (bootp, tftp, rarp, nfs, and so on)

U-Boot for i.MX51 Based Designs, Rev. 0

Freescale Semiconductor 5

Source Code Tree Overview

Table 2 outlines the list of files in the top-level directory and their description.

4.1 The i.MX51 Related Source Files
The i.MX51 application processors (based on ARM Cortex-A8) and its development platform EVK are
added to the U-Boot project.

Table 3 outlines the files and directories of the i.MX51 processor and a brief description of each directory.

onenand_ipl One NAND initial program loader

patches Patches for the i.MX platforms (these are already applied during -prep with LTIB)

post Power on self test

tools Tools for building s-record files, U-Boot images, and so on

Table 2. U-Boot Source Code Top-Level Files

File Description

README This file gives information about the U-Boot project. Several sections of this application note are based on the
information from this file.

Makefile The top-level Makefile. This file is used when executing the board configuration and the build processes. The
new board configurations are to be added to this file.

MAKEALL This script is used to configure and build all the supported boards in one step. The list of boards in this file must
be updated manually when a new board is added.

CREDITS The author and main contributors of the U-Boot project are listed in this file (includes their email).

COPYING This file contains the license of the U-Boot source code.

Table 3. i.MX51 Related Source Files

Directory/File Description

board/freescale/imx51/board-imx51.h CPLD definitions (not used for the i.MX51 EVK)

board/freescale/imx51/flash_header.S Image header that is appended to the u-boot.bin file; includes Device
Configuration Data (DCD)

board/freescale/imx51/imx51.c Board and SoC initialization routines in C language

board/freescale/imx51/lowlevel_init.S Board low-level initialization routines in the assembly language

board/freescale/imx51/u-boot.lds Linker script

board/freescale/imx51/config.mk Defines the base address for binary (TEXT_BASE)

cpu/arm_cortexa8/cpu.c CPU setup code in the C language: interrupts, stack, mmu, and cache setup
routines

cpu/arm_cortexa8/start.S CPU low-level initialization code. The first function executed when the U-Boot
starts is defined here

cpu/arm_cortexa8/mx51/crm_regs.h Clock and reset module register definitions and masks

Table 1. U-Boot Source Code Top-Level Directories (continued)

Directory Description

U-Boot for i.MX51 Based Designs, Rev. 0

6 Freescale Semiconductor

Source Code Tree Overview

cpu/arm_cortexa8/mx51/generic.c Routines for calculating the CPU and peripheral clocks and a function to call the
on-chip Ethernet initialization routine and one function to print CPU information

cpu/arm_cortexa8/mx51/interrupts.c Starts a timer and provides functions around the timer count. Also, implements
the reset_cpu function

cpu/arm_cortexa8/mx51/iomux.c IOMUX setup routines

cpu/arm_cortexa8/mx51/mxc_nand_load.S Low-level NAND boot support for i.MX51

cpu/arm_cortexa8/mx51/serial.c On-chip Universal Asynchronous Receiver/Transmitter (UART) driver and serial
I/O functions

include/asm-arm/arch-mx51/imx_spi.h Serial Peripheral Interface (SPI) functions, structures and masks definitions

include/asm-arm/arch-mx51/imx_spi_nor.h SPI NOR Flash definitions and masks

include/asm-arm/arch-mx51/imx_spi_pmic.h SPI Power Management Integrated Circuit (PMIC) functions definitions

include/asm-arm/arch-mx51/iomux.h IOMUX control definitions and functions

include/asm-arm/arch-mx51/mmc.h Nothing defined in here

include/asm-arm/arch-mx51/mx51.h On-chip modules base addresses and registers definitions

include/asm-arm/arch-mx51/mx51_pins.h i.MX51 I/O pin list

include/asm-arm/arch-mx51/mxc_nand.h NAND Flash Controller (NFC) registers definitions and macros

include/asm-arm/arch-mx51/sdhc.h Secure Digital Host Controller (SDHC) register definitions and functions

include/configs/imx51.h i.MX51 EVK board high-level configuration

lib_arm/board.c This file implements high-level board initialization functions and allows the user
to configure the initialization sequence

drivers/mtd/nand/mxc_nand.c NFC low-level driver

drivers/mtd/nand/nand.c NAND Flash definitions and the initialization function

drivers/mtd/nand/nand_base.c NAND Flash generic to the Memory Technology Device (MTD) driver

drivers/mtd/nand/nand_bbt.c Bad block table support for the NAND Flash driver

drivers/mtd/nand/nand_ecc.c Error correction code support for NAND Flash

drivers/mtd/nand/nand_ids.c NAND Flash chips ID list

drivers/mtd/nand/nand_util.c Utilities for working with NAND Flash, write and read skipping bad blocks, lock
the NAND Flash during accesses, and so on

drivers/mtd/spi/imx_spi_nor_atmel.c SPI NOR driver for an ATMEL device

drivers/mtd/spi/imx_spi_nor_sst.c SPI NOR driver for an SST device

drivers/spi/imx_spi.c On-chip SPI driver

drivers/spi/imx_spi_pmic.c PMIC driver, defines R/W functions

drivers/mmc/fsl_esdhc.c Functions to use MMC/SD cards

drivers/mmc/fsl_mmc.c I/O control access for MMC/SD cards

common/env_mmc.c Functions to store and retrieve environment variables from MMC/SD card

Table 3. i.MX51 Related Source Files (continued)

Directory/File Description

U-Boot for i.MX51 Based Designs, Rev. 0

Freescale Semiconductor 7

Create a New Board Based on the i.MX51 EVK

5 Create a New Board Based on the i.MX51 EVK
In the process of adapting U-Boot to a custom design, it is recommended to create a new board directory
within the code tree where all the files and new configurations are stored. By creating a new board
directory, the original files that are used as base (in this case, the i.MX51 EVK board) are not changed and
available for comparison. If the device drivers or any other non-board specific code is adapted, it is a good
practice to take a backup copy of the original code and make it available in the source tree for comparison.
If required, see Appendix A, “Configuring Eclipse IDE for U-Boot Development,” for information about
Eclipse IDE configuration before proceeding with the following sections.

To create a new board based on the i.MX51 EVK, perform the following steps:

1. Clean the source code tree (all the output files of previous build are deleted):

make distclean

2. Copy the contents of the current imx51 board directory to a new directory and provide a
meaningful name to identify the design. This application note uses imx51_custom as a new
directory name.

cp -r board/freescale/imx51/ board/freescale/imx51_custom

3. Copy the contents of the current i.MX51 EVK board configuration file to a new file and provide
a meaningful name. This application note uses imx51_custom.h as a new file name.

cp include/configs/imx51.h include/configs/imx51_custom.h

4. Create an entry in the top-level directory, Makefile, for the new custom board configuration. This
file is sorted in the alphabetical order:

imx51_custom_config : unconfig
@$(MKCONFIG) $(@:_config=) arm arm_cortexa8 imx51_custom freescale mx51

NOTE
The U-Boot project developers recommend to add any new board to the
MAKEALL script and run the script to verify if the new code has not broken any
other platform builds. This is necessary if a patch is submitted back to the
U-Boot community. For more information, refer to the U-Boot README file.

5. Adapt to any fixed paths. In this case, the linker script, imx51_custom/u-boot.lds, has two paths.

board/freescale/imx51_custom/flash_header.o

board/freescale/imx51_custom/libimx51.a

6. Set the CROSS_COMPILE and PATH environment variables in the console as the build process is
executed manually (without LTIB):

common/env_sf.c Functions to store and retrieve environment variables from SPI Flash

common/cmd_sf.c Commands for serial (SPI) Flash

common/cmd_spi.c Commands for SPI control

drivers/net/mxc_fec.c On-chip Fast Ethernet Controller (FEC) device driver

Table 3. i.MX51 Related Source Files (continued)

Directory/File Description

U-Boot for i.MX51 Based Designs, Rev. 0

8 Freescale Semiconductor

Customize the Code

export CROSS_COMPILE=arm-none-linux-gnueabi-
export
PATH=/opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin
/:$PATH

7. Configure the system for the new board:

make imx51_custom_config

8. Build the new board. Verify that no errors are found and the U-Boot binaries are created:

make

The new board is a replica of the i.MX51 EVK board. The next step is to adapt some portions of the code
to make it suitable for the new hardware design.

The following sections provide guidelines to proceed further with the code customization process.

6 Customize the Code
This section describes the key areas within the source code where customizing is required. Also, note that
depending on the design and requirements, the code needs to be modified accordingly.

7 Boot Modes
The i.MX51 applications processor provides two internal boot modes and these are described in detail in
the MCIMX51 Multimedia Applications Processor Reference Manual (MCIMX51RM).

The i.MX51 has no external boot modes but provides the following internal boot modes:

• Internal boot mode—allows selection of all boot sources such as NOR, NAND, MMC/SD,
OneNAND, Parallel Advanced Technology Attachment (P-ATA), Serial ROM/Flash, and so on.
After Power On Reset (POR) or reset, the ROM code of the processor samples the boot pins or
eFuses and loads the first set of code from the selected boot media. This code must have a Flash
header at a particular offset and it varies depending on the boot source. The Flash header stores
information about the application in a specific structure. It can also store DCD, which is a block of
data processed by the i.MX51 to configure the hardware at boot time. This enables the
configuration of some on-chip modules and external peripherals before moving to the entry point
of the application.

• Internal boot mode (ROM select)—is equivalent to the Internal boot, BOOT_MODE[1:0] = 00, with
the only difference being General Purpose Input/Output (GPIO) boot override pins are ignored,
regardless of the BT_GPIO_SEL setting. The boot program uses only the boot eFuse settings. This
allows the user to burn fuses on the closed production device with no external muxes on the
BOOT_MODE, pull-ups/pull-downs, and no uncertainty of serial downloader is invoked by the
unknown boot pin values during the initial boot of the device.

7.1 Flash Header
The Flash header, board/imx51_custom/flash_header.S, is appended to the top of the u-boot.bin file as
indicated by the linker script. One of the elements of the Flash header is the DCD, which is a block of data
processed by the i.MX ROM code to configure some on-chip modules and external peripherals at boot up.

U-Boot for i.MX51 Based Designs, Rev. 0

Freescale Semiconductor 9

Boot Modes

For more information, refer to the System Boot chapter of the MCIMX51 Multimedia Applications
Processor Reference Manual (MCIMX51RM).

The Flash header is appended to the image when the following configurations are set:
#define CONFIG_FLASH_HEADER 1
#define CONFIG_FLASH_HEADER_OFFSET 0x400
#define CONFIG_FLASH_HEADER_BARKER 0xB1

In addition, if DCD is used and the SDRAM initialization is performed by the DCD data, the user can set
the following configuration to disable the U-Boot relocation to RAM, because it is already performed by
the i.MX ROM code:
#define CONFIG_SKIP_RELOCATE_UBOOT

7.2 Customize SDRAM Initialization
If the SDRAM device is changed in the custom platform, the i.MX51 Enhanced SDRAM Controller and
initialization sequence code require adaptation to operate with the new device.

In this case, modify the Flash header (DCD data)—open the flash_header.S file and modify the values of
the MXC_DCD_ITEM macros (add/remove values) in accordance with the specification sheet of SDRAM
devices and the MCIMX51 Multimedia Applications Processor Reference Manual (MCIMX51RM).

The MXC_DCD_ITEM macro transforms an identifier number, address of a register, value to write to this
register, and length of the access into the corresponding data, which is to be appended to the U-Boot binary.

NOTE
Make sure to adjust the length of the DCD structure if data is added or
removed from it.

The pads for the SDRAM device needs to be configured before attempting
its initialization. Configure the IOMUXC properly with DCD before
executing the following step.

If the SDRAM base or size is changed, the following values in the custom board configuration file needs
to be modified:
/*---
* Physical Memory Map
*/
#define CONFIG_NR_DRAM_BANKS 1
#define PHYS_SDRAM_1 CSD0_BASE_ADDR
#define PHYS_SDRAM_1_SIZE (512 * 1024 * 1024)

7.3 Board Initialization Sequence
As part of the U-Boot boot up process, the start_armboot function executes the initialization sequence of
a board. This sequence defines the order in which other routines are called and is customized by the user.
To adapt it, modify the init_sequence[] array defined in the lib_arm/board.c file:

init_fnc_t *init_sequence[] = {
cpu_init, /* basic cpu dependent setup */
board_init, /* basic board dependent setup */
interrupt_init, /* set up exceptions */

U-Boot for i.MX51 Based Designs, Rev. 0

10 Freescale Semiconductor

Boot Modes

env_init, /* initialize environment */
init_baudrate, /* initialze baudrate settings */
serial_init, /* serial communications setup */
console_init_f, /* stage 1 init of console */
display_banner, /* say that we are here */

#if defined(CONFIG_DISPLAY_CPUINFO)
print_cpuinfo, /* display cpu info (and speed) */

#endif
#if defined(CONFIG_DISPLAY_BOARDINFO)

checkboard, /* display board info */
#endif
#if defined(CONFIG_HARD_I2C) || defined(CONFIG_SOFT_I2C)

init_func_i2c,
#endif

dram_init, /* configure available RAM banks */
display_dram_config,
NULL,

};

7.4 Include, Exclude, or Remap Device Drivers
After the build, the U-Boot binary should only include the code to be used at the target board. The i.MX51
EVK board configuration file includes device drivers such as I2C, SPI, UART, FEC, NAND, and so on for
both the on-chip and off-chip peripherals.

In the process of customizing U-Boot, the drivers included in the custom board configuration file must be
reviewed to verify if all of these drivers are needed for the design. Depending on the requirements, include
or exclude the device drivers, or remap them in case the base address is changed in the design. Some
examples are described in the following sections.

7.4.1 UART Driver
The current configuration includes the UART driver using the CONFIG_MX51_UART constant and selects the
UART1 driver using the CONFIG_MX51_UART1 constant. To remap the UART driver, perform the following
steps:

1. Change the 1 used in the #define CONFIG_MX51_UART1 file with the UART number that is used.

2. Change the IOMUX and pad configuration for the UARTx in the
board/freescale/imx51_custom/imx51.c file with the new UART number.

static void setup_uart(void)
{
unsigned int pad = PAD_CTL_HYS_ENABLE | PAD_CTL_PKE_ENABLE |
PAD_CTL_PUE_PULL | PAD_CTL_DRV_HIGH;
mxc_request_iomux(MX51_PIN_UART1_RXD, IOMUX_CONFIG_ALT0);
mxc_iomux_set_pad(MX51_PIN_UART1_RXD, pad | PAD_CTL_SRE_FAST);
mxc_request_iomux(MX51_PIN_UART1_TXD, IOMUX_CONFIG_ALT0);
mxc_iomux_set_pad(MX51_PIN_UART1_TXD, pad | PAD_CTL_SRE_FAST);
mxc_request_iomux(MX51_PIN_UART1_RTS, IOMUX_CONFIG_ALT0);
mxc_iomux_set_pad(MX51_PIN_UART1_RTS, pad);
mxc_request_iomux(MX51_PIN_UART1_CTS, IOMUX_CONFIG_ALT0);
mxc_iomux_set_pad(MX51_PIN_UART1_CTS, pad);
}

U-Boot for i.MX51 Based Designs, Rev. 0

Freescale Semiconductor 11

Boot Modes

7.4.2 MMC Driver and Commands
Depending on the need, the MMC device driver is included or excluded from the U-Boot build. To do so,
add or remove the following definitions from the board configuration file:

#define CONFIG_FSL_MMC //Includes the MMC driver
#define CONFIG_MMC 1 //Required for other definitions inside the MMC driver
#define CONFIG_CMD_MMC //Enables the MMC U-Boot commands
#define CONFIG_DOS_PARTITION 1 //Enables DOS partition read/write
#define CONFIG_CMD_FAT 1 //Enables the U-Boot FAT commands
#define CONFIG_MMC_BASE 0x0 //Defines the base of MMC card
#define CONFIG_ENV_IS_IN_MMC 1 //Environment variables will be stored in MMC card
#define CONFIG_ENV_OFFSET (768 * 1024) //Offset within the MMC card where the
environment variables will be stored at

7.4.3 SPI NOR Flash Driver and Commands
The i.MX51 EVK board provides an ATMEL SPI NOR Flash and its driver. To use this driver, the i.MX
SPI must be included in the U-Boot build. The following configuration is used to configure the driver and
select the slave number for the ATMEL SPI NOR device:

#define CONFIG_FSL_SF 1
#define CONFIG_CMD_SPI
#define CONFIG_CMD_SF
#define CONFIG_SPI_FLASH_IMX_ATMEL 1
#define CONFIG_SPI_FLASH_CS 1
#define CONFIG_IMX_SPI

7.4.4 NAND Flash Driver and Commands
If the NAND Flash driver is used in the custom design, the driver must be included in the U-Boot build.
This is done by setting the CONFIG_MX51 and CONFIG_CMD_NAND options.

For the NAND driver and MTD subsystem, it is important to highlight the place where the NAND chip
IDs are defined. This is because sometimes it is necessary to add a new NAND manufacturer ID or Device
ID to the list of supported NANDs. To do so, check the following structures in the
drivers/mtd/nand/nand_ids.c file:

struct nand_flash_dev nand_flash_ids[] = {
.....
.....

{"NAND 128MiB 1,8V 16-bit", 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 128MiB 3,3V 16-bit", 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16},
{"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0},

.....

.....
{NULL,}

};
struct nand_manufacturers nand_manuf_ids[] = {

{NAND_MFR_TOSHIBA, "Toshiba"},
{NAND_MFR_SAMSUNG, "Samsung"},
{NAND_MFR_FUJITSU, "Fujitsu"},

.....

.....

U-Boot for i.MX51 Based Designs, Rev. 0

12 Freescale Semiconductor

Boot Modes

{0x0, "Unknown"}
};

7.4.5 PMIC Driver
The ATLAS Application Processor Light (APL) PMIC is connected to the i.MX51 EVK through a SPI
port. Therefore, the PMIC driver uses the i.MX SPI driver. To include this SPI driver and configure the
slave for PMIC, use the following configurations:
#define CONFIG_IMX_SPI
#define CONFIG_IMX_SPI_PMIC
#define CONFIG_IMX_SPI_PMIC_CS 0

Also, if BOARD_LATE_INIT is defined in the board configuration file, the board_late_init function in the
board/freescale/imx51_custom/imx51.c file is included and executed. This function calls the power_init
routine that sets up the ATLAS APL and if required, adapt the code accordingly.

7.5 Miscellaneous Customizations
This section describes the various types of customizations with the help of code.

7.5.1 Environment Variables and Auto Boot Command
The U-Boot shell allows the user to set environment variables similar to the Linux shell. The environment
variables are defined at the U-Boot prompt using the setenv command or can be hardcoded in the source
code. One of the variables, bootcmd, is executed automatically when the auto boot feature is enabled. To
configure the variables, refer to the custom board configuration file and modify the following code:

#define CONFIG_BOOTDELAY 3
#define CONFIG_PRIME "FEC0"
#define CONFIG_LOADADDR 0x90800000 /* loadaddr env var */
#define CONFIG_EXTRA_ENV_SETTINGS \

"netdev=eth0\0" \
"ethprime=FEC0\0" \
"uboot_addr=0xa0000000\0" \
"uboot=u-boot.bin\0" \
"kernel=uImage\0" \
"nfsroot=/opt/eldk/arm\0" \
"bootargs_base=setenv bootargs console=ttymxc0,115200\0"\
"bootargs_nfs=setenv bootargs ${bootargs} root=/dev/nfs "\
"ip=dhcp nfsroot=${serverip}:${nfsroot},v3,tcp\0"\
"bootcmd=run bootcmd_net\0" \
"bootcmd_net=run bootargs_base bootargs_nfs; " \
"tftpboot ${loadaddr} ${kernel}; bootm\0" \
"prg_uboot=tftpboot ${loadaddr} ${uboot}; " \
"protect off ${uboot_addr} 0xa003ffff; " \
"erase ${uboot_addr} 0xa003ffff; " \
"cp.b ${loadaddr} ${uboot_addr} ${filesize}; " \
"setenv filesize; saveenv\0"

U-Boot for i.MX51 Based Designs, Rev. 0

Freescale Semiconductor 13

Boot Modes

7.5.2 Change the Board Name and the U-Boot Prompt
When the U-Boot boots up and before it reaches the prompt, there are some debug messages displayed in
the console and one of these messages is the name of the board. This is printed when executing the
checkboard function in the board/freescale/imx51_custom/imx51.c file along with the latest root cause of
reset. If required, replace the name of the board with a suitable string.

int checkboard(void)
{

printf("Board: MX51 BABBAGE ");
if (system_rev & CHIP_REV_2_5) {

printf("2.5 [");
} else if (system_rev & CHIP_REV_2_0) {

printf("2.0 [");
} else if (system_rev & CHIP_REV_1_1) {

printf("1.1 [");
} else {

printf("1.0 [");
}
switch (__REG(SRC_BASE_ADDR + 0x8)) {
case 0x0001:

printf("POR");
break;

case 0x0009:
printf("RST");
break;

case 0x0010:
case 0x0011:

printf("WDOG");
break;

default:
printf("unknown");

}
printf("]\n");
return 0;

}

The U-Boot prompt is displayed after all the setup functions are executed. The string displayed at the
prompt can be changed in the include/configs/imx51_custom.h file using the following definition:
#define CONFIG_SYS_PROMPT "BBG U-Boot >"

7.5.3 Change the Linux Machine Type and Address of ATAGs
When the U-Boot is used to boot a Linux OS, the kernel parameters are placed in a special area in memory
in the form of ATAGs (if this feature is enabled in the board configuration file). The address of this location
in memory is user configurable. In addition, one of the parameters passed to the kernel is the machine type,
which is a number used to identify the board and it must match between Linux and U-Boot. If the machine
type does not match, the Linux kernel does not boot up. To change the parameters, refer to the
board/freescale/imx51_custom/imx51.c file and modify the following code:
gd->bd->bi_arch_number = MACH_TYPE_MX51_BABBAGE; /* board id for linux */
/* address of boot parameters */
gd->bd->bi_boot_params = PHYS_SDRAM_1 + 0x100;

U-Boot for i.MX51 Based Designs, Rev. 0

14 Freescale Semiconductor

Enable Debugging Information

The ATAGs are enabled with the following definitions in the board configuration file:

#define CONFIG_CMDLINE_TAG 1 /* enable passing of ATAGs */
#define CONFIG_REVISION_TAG 1
#define CONFIG_SETUP_MEMORY_TAGS 1
#define CONFIG_INITRD_TAG 1

8 Enable Debugging Information
While customizing U-Boot, debugging is the most time consuming activity. During this phase, it is useful
to have as much information as possible to detect the root cause of errors. For this purpose, the U-Boot
source code contains several functions or macros that, when enabled, print extra information in the console
at runtime. Some examples are as follows:

In the include/common.h file, two debug macros are defined. When the #define DEBUG macro is set in this
file, all the files that include common.h and use the debug(fmt, args…) or debugX(level, fmt, args…) macro
print the additional information. If too much information is printed, enable the #define DEBUG macro only
in a particular file(s) before including common.h. In both the cases, the source code needs to be recompiled.

In addition, there are other files that have their own debug macros or functions. In the MTD subsystem and
NAND driver, the #define CONFIG_MTD_DEBUG file and a debug level are used to print the additional
information. Other examples are #define DEBUG_SPI in the SPI subsystem, #define DEBUG_I2C in the I2C
subsystem, and #define DEBUG_JFFS2.

9 Revision History
Table 4 provides the revision history for this application note.

Table 4. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 07/2010 Initial release

U-Boot for i.MX51 Based Designs, Rev. 0

Freescale Semiconductor 15

Configuring Eclipse IDE for U-Boot Development

Appendix A Configuring Eclipse IDE for U-Boot
Development

To assist during the source code customization process, it is recommended to set up an Integrated
Development Environment (IDE) in the host computer. This section provides the instructions to set-up the
Eclipse IDE (for C/C++ developers).

Eclipse installation is beyond the scope of this application note. For information about installing Eclipse
in the host computer, refer to the following link—http://www.eclipse.org/cdt/

After installing the Eclipse IDE in the Linux host, perform the following steps to configure the Eclipse
IDE for the U-Boot development:

1. Open Eclipse.

2. Click on File > New > Project.

3. In the New Project wizard, select C > Standard Make C Project. (See Figure 1)

Figure 1 shows the new project wizard of the Eclipse IDE.

Figure 1. Eclipse IDE New Project Wizard

4. Click Next.

5. The C/Make Project window appears. Type a project name in the Project name field and deselect
the Use default location check box.

6. Click on the Browse button to search for the path where the U-Boot source code is located. (See
Figure 2)

http://www.eclipse.org/cdt/

U-Boot for i.MX51 Based Designs, Rev. 0

16 Freescale Semiconductor

Configuring Eclipse IDE for U-Boot Development

Figure 2 shows the name and location of the project.

Figure 2. Project Name and Location

7. Click on the Finish button to close the wizard.

8. In the Eclipse main window, deselect the Project > Build automatically option.

9. Configure the project properties. Click on Project > Properties to open the properties window.

10. Select the C/C++ Include Paths and Symbols option and perform the following steps in this
window:

– Disable all the automatically discovered paths and symbols (multiple selection is allowed to
disable all of them at once).

– Add the include path from workspace. For example—U-Boot_Customized/include. (See
Figure 3)

U-Boot for i.MX51 Based Designs, Rev. 0

Freescale Semiconductor 17

Configuring Eclipse IDE for U-Boot Development

Figure 3 shows the paths to be included from the workspace.

Figure 3. Include Path from Workspace

11. Select the C/C++ Indexer and perform the following steps:

– It is recommended to enable the fast C/C++ Indexer to assist source code navigation.
Optionally, select the full indexer, but this takes more time to complete.

12. Select the C/C++ Make Project and perform the following steps:

– Make Builder tab:

Deselect the Build on resource save (Auto Build) option.

Select Stop on first build error option.

– Environment tab:

Select the Replace native environment with specified environment radio button.

Add the environment variables listed in Table 5. (See Figure 4)

Table 5 shows the environment variables that are to be set.

Table 5. Environment Variables to Set

Variable Value

CROSS_COMPILE arm-none-linux-gnueabi

PATH /opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin/:/usr/local/sbin:/usr/lo
cal/bin:/usr/sbin:/usr/bin:/sbin:/bin

U-Boot for i.MX51 Based Designs, Rev. 0

18 Freescale Semiconductor

Configuring Eclipse IDE for U-Boot Development

Figure 4 shows the environment variables in the Eclipse make builder.

Figure 4. Environment Variables in Eclipse Make Builder

– Binary Parser tab:

Deselect the Elf parser.

Select the GNU Elf Parser and configure the addr2line and c++filt commands as listed in
Table 6.

Table 6 shows the GNU binary parser selection.

– Discovery Options tab:

Deselect the Automate discovery of paths and symbols option.

13. Click OK to save and close the properties window.

14. Go to Project > Create Make Target to open a new window. For the U-Boot project, create the
make targets listed in Table 7. (See Figure 5)

Table 6. GNU Binary Parser Selection

Binary Parser Options Value

addr2line /opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin/arm-none-linux-gnu
eabi-addr2line

c++filt /opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/bin/arm-none-linux-gnu
eabi-c++filt

U-Boot for i.MX51 Based Designs, Rev. 0

Freescale Semiconductor 19

Configuring Eclipse IDE for U-Boot Development

Table 7 shows the target names and their descriptions.

The make targets are used to configure the system for the target board before executing the build process.
If the system is not configured, the following error is displayed:

Make all
System not configured - see README
Make: *** [all] Error 1

Additionally, the Dist Clean target is used to perform a full clean up of the source tree (remove all the
resulting files of previous build).

Figure 5 shows the making of the targets in eclipse projects.

Figure 5. Make Targets in Eclipse Project

After successful configuration of the Eclipse IDE, perform the following steps:

• Build the Dist Clean make target (optional).

• Configure the system using the desired make target (from the list above).

• Build the project.

After successful build, the output files are placed in the U-Boot source code path. (See Figure 6)

Table 7. Make Targets to Create

Target Name Make Target Description

Dist Clean distclean Full clean up of the source tree

i.MX51 EVK imx51_config Configure the U-Boot source tree to be built for
an i.MX51 EVK board

i.MX51 Custom imx51_custom_config Configure the U-Boot source tree to be built for
a custom i.MX51 based design

U-Boot for i.MX51 Based Designs, Rev. 0

20 Freescale Semiconductor

Configuring Eclipse IDE for U-Boot Development

Figure 6 shows the output of the build process at the console.

Figure 6. Console Output of Building Process

U-Boot for i.MX51 Based Designs, Rev. 0

Freescale Semiconductor 21

Configuring Eclipse IDE for U-Boot Development

THIS PAGE INTENTIONALLY LEFT BLANK

U-Boot for i.MX51 Based Designs, Rev. 0

22 Freescale Semiconductor

Configuring Eclipse IDE for U-Boot Development

THIS PAGE INTENTIONALLY LEFT BLANK

U-Boot for i.MX51 Based Designs, Rev. 0

Freescale Semiconductor 23

Configuring Eclipse IDE for U-Boot Development

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN4173
Rev. 0
07/2010

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.
Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited. ARM Cortex-A8 is the trademark of ARM
Limited.
© 2010 Freescale Semiconductor, Inc.

	U-Boot for i.MX51 Based Designs
	1 Requirements
	2 U-Boot Project Overview
	3 Getting the U-Boot Source Code
	4 Source Code Tree Overview
	Table 1. U-Boot Source Code Top-Level Directories
	Table 2. U-Boot Source Code Top-Level Files
	4.1 The i.MX51 Related Source Files
	Table 3. i.MX51 Related Source Files

	5 Create a New Board Based on the i.MX51 EVK
	6 Customize the Code
	7 Boot Modes
	7.1 Flash Header
	7.2 Customize SDRAM Initialization
	7.3 Board Initialization Sequence
	7.4 Include, Exclude, or Remap Device Drivers
	7.4.1 UART Driver
	7.4.2 MMC Driver and Commands
	7.4.3 SPI NOR Flash Driver and Commands
	7.4.4 NAND Flash Driver and Commands
	7.4.5 PMIC Driver

	7.5 Miscellaneous Customizations
	7.5.1 Environment Variables and Auto Boot Command
	7.5.2 Change the Board Name and the U-Boot Prompt
	7.5.3 Change the Linux Machine Type and Address of ATAGs

	8 Enable Debugging Information
	9 Revision History
	Table 4. Document Revision History

	Appendix A Configuring Eclipse IDE for U-Boot Development
	Figure 1. Eclipse IDE New Project Wizard
	Figure 2. Project Name and Location
	Figure 3. Include Path from Workspace
	Table 5. Environment Variables to Set
	Figure 4. Environment Variables in Eclipse Make Builder
	Table 6. GNU Binary Parser Selection
	Table 7. Make Targets to Create
	Figure 5. Make Targets in Eclipse Project
	Figure 6. Console Output of Building Process

