Freescale Semiconductor
Application Note

Document Number: AN3859

Adding Device(s) to CodeWarrior Flash
Programmer for Microcontrollers V10.0

1. Introduction

This document explains how to use the Flash Tool Kit
to support additional flash devices on the Flash
Programmer for CodeWarrior Development Studio for
Microcontrollers V10.0 by creating new programming
algorithms and support files.. This application note
applies only to the external flash devices used with
ColdFire V2/V3/V4 processors.

This document includes these topics.
e Create a flash device XML configuration file
e Create new target task
e Create external flash alogrithm
e Flash programmer examples
e Create new flash utility
e Flash utility examples

e Troubleshooting flash programmer

2. Preliminary Background

Before you program or erase any flash device, ensure
that the CPU can access the flash device. For example,
you might need a different debug setup that requires

© Freescale Semiconductor, Inc., 2009-2010. All rights reserved.

Contents

1. Introduction........cccccimiiiininn 1
2. Preliminary Background ..........cccceeecmmmismmnnnssnsnnnnnns 1
3. Flash Tool Kit (FTK) Overview.........ccccccceerrrrsrssannees 2
4. Creating Flash Device XML Configuration File.....2
5. Create New Target Task.........ccccurrmrrirremnriscnnnnnns 13
6. Creating External Flash Algorithm....................... 24
7. Flash Programming Examples ........c.ccccecuriiunnnnnas 44
8. Create New Flash Utility.........ccccesremrniimmninicnnnnnnns 55
9. Flash Utility Examples........cccccenismmmissennnisesnnnnns 62
10. Troubleshooting Flash Programmer...........ccceu... 68

a

> freescale



Flash Tool Kit (FTK) Overview

modifications in the debugger configuration file.

Consider the following before you begin:

* Read the flash device ID to verify the correct connection and programmability. Refer section
Troubleshooting Flash Programmer for details.

NOTE Many manufacturers use the same flash device algorithms, so it is likely that flashes can
be programmed using the algorithms included with the CodeWarrior software. In
addition, many manufacturers produce devices compatible with those of Intel, Advanced
Micro Devices (AMD), or STMicroelectronics (ST).

e Check whether the new flash device can be programmed with the same algorithms that ST uses.

e Refer to the section Select Flash Programming Algorithm to determine if the flash device is
programmable with an algorithm already included with the CodeWarrior software.

e Follow the steps in section Creating External Flash Algorithm if the flash device cannot be
programmed with an existing algorithm.

3. Flash Tool Kit (FTK) Overview

Adding a new flash device support requires few new files, including:
= xml configuration file for the new device, which describes the organization,

» xml configuration file for the board, which specifies the flash it must use and where is the RAM
memory located, and

» flash device algorithm if none of the existing algorithms are compatible.

4. Creating Flash Device XML Configuration File

In its default configuration, the CodeWarrior flash programmer supports many flash devices. The
configuration files are located at:

{ CodeWarriorInstallDir ;AMCU\b 1n\plugins\support\Products\ProductData\ColdFir
eFPDevices.mwpdb\FP, where CodeWarriorInstallDir is the location where CodeWarrior is
installed.

To add a new device to the CodeWarrior Flash Programmer, you must add a new file that describes the
device.

Listing 1 shows the file format.

Listing 1. Generic flash device file format

<device-file>

<device>

<content>
<name>NameOfFlashDevice</name>

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

2 Freescale Semiconductor



h

Creating Flash Device XML Configuration File

<manufacturerid>MfgID</manufacturerid>
<chiperase>TRUE or FALSE</chiperase>
<sectors>
<sectorcount>NumberOfSectors</sectorcount>
<sectorsize>SectorSize</sectorsize>

<sectorcount>NumberOfSectors</sectorcount>
<sectorsize>SectorSize</sectorsize>
</sectors>
<ontargetverify>TRUE or FALSE</ontargetverify>
<organization>
<name>Capacity/BusWidth/NumberOfDevices</name>
<id>DeviceID_ ForBusWidth</id>
<algorithm>FlashAlgorithmForVariant</algorithm>
<utility>FlashUtilityForVariant</utility>
</organization>

<organization>
<name>Capacity/BusWidth/NumberOfDevices</name>
<id>DeviceID_ForBusWidth</id>
<algorithm>FlashAlgorithmForVariant</algorithm>
<utility>FlashUtilityForVariant</utility>

</organization>

</content>

</device>

</device-file>

To add flash programming support for a new flash device:

1. Locate the data sheet for the new device and note the following information about the flash
device:

a) Device name

b) Manufacturer ID code

¢) Device ID codes (8-bit, 16-bit)

d) Number of sectors

e) Starting and ending address for each sector

f) Whether the device can be chip-erased

g) Options for data-bits per device (8-bits, 16-bits)

h) Number of flash devices on target

i)  Which devices are most similar in the device configurations
2. Examine the installed devices for the most similar definitions.

3. Copy/edit the definition to make the xml device files conform to the new device.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

Freescale Semiconductor 3



Creating Flash Device XML Configuration File

4.1. Device Name

This is a free-form text field that describes the flash device, taken directly from the data sheet. Use only
displayable ASCII characters with no spaces. Some examples, found in the configurations folder are:
AM29BDD160GB, AM29LV640M, and IN28F128]J3.

The format is:

<name>NameOfFlashDevice</name>

4.2. Manufacturer ID Code and Device ID Codes

These Manufacturer ID and Device ID are read from the flash device after a specific sequence of writes
to the flash device. Although, the data sheet lists both of the IDs, only the Device ID varies among the
flash devices from a given vendor, as the Manufacturer ID remains the same. If the flash device supports
more than one bus width (8-bit, 16-bit), then it might have different Device ID for each mode. For
example, AM29LV160BB.

The formats are:

<manufacturerid>MfgID</manufacturerid>

<id>DeviceID ForBusWidth</id>

4.3. Chip Erasing

Some devices can be completely erased with one chip erase command and this is much faster than
erasing the device sector by sector. Set the chip erase value to TRUE if your flash device supports this
feature.

The format is:

<chiperase>TRUE or FALSE</chiperase>

4.4. Number of Sectors and Sector Size

The data sheet lists the information on sector and sector size. If the data sheet lists sector maps and
tables for both 8-bit and 16-bit data options, use the 8-bit data option. The CodeWarrior flash
programming algorithms require byte-level addresses for each sector. This constraint simplifies the
design of the CodeWarrior flash programming interface for several data bus configurations and sizes.
When the data sheet does not provide a byte-level address, the algorithm creates an 8-bit sector map for
16-, 32-, or 64-bit devices. Table 1 shows an example of converting a 16-bit sector map to an 8-bit map.

The formats are:

<sectorcount>NumberOfSectors</sectorcount>

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

4 Freescale Semiconductor



Creating Flash Device XML Configuration File

<sectorsize>SectorSize</sectorsize>

The sectorcount value is decimal while the sectorsize is hexadecimal.

For example, consider AM29BDD1 6 0GB. The device has eight (8) sectors of 0x2000 bytes each
followed by 30 sectors of 0x10000 bytes and another eight (8) sectors of 0x2000.

The configuration file will contain:

<sectors>
<sectorcount>8</sectorcount>
<sectorsize>2000</sectorsize>
<sectorcount>30</sectorcount>
<sectorsize>10000</sectorsize>
<sectorcount>8</sectorcount>
<sectorsize>2000</sectorsize>

</sectors>

Table 1. Sector Map Conversion

16-bit Sector Map (64K word sectors) 8-bit Sector Map (128Kbyte sectors)
000000..00FFFF 00000..01FFFF
010000..01FFFF 20000..03FFFF
020000..02FFFF 40000..05FFFF
030000..03FFFF 60000..07FFFF

Older flash devices can have sectors of different sizes. If you use such an older device, ensure that each
sector in the configuration file is of the correct size.

4.5. Options for Organization Name

The information that must be specified as an organization name includes: device size, bus width, and
number of devices present on board.

Device size is the size of the device. It can be expressed as KB or MB using K and M suffixes.
Examples: 128K, 1M.

Many flash devices can be set to use either 8-data bits or 16-data bits depending on the status of a
configuration pin (typically named BYTE#) on each device. The <organization> field uses this part
of the flash definition, as described in the next paragraph. Your target uses only one configuration so
you need to support only that configuration. Expanding your new definition to include the other
configurations for this device, however, is good design practice.

Your target may use one, two, or four devices at the same base address to support an 8-bit, 16-bit, 32-bit,
or 64-bit data bus.




Creating Flash Device XML Configuration File

For example, two 8-bit flash devices side-by-side support a 16-bit data bus, and four 16-bit devices
support a 64-bit data bus. The <organization> field summarizes each possible combination of
device capacity, bus width, and number of devices used.

For example, 4Mx16x1 means 4MegHalfwords by 16 data bits per device by 1 flash device, resulting in a
total of 4M 16-bit half words. Similarly, 1Mx8x4 means I1MegaByte by 8 data bits per device by 4 flash
devices, resulting in /M 32-bit words and a 32-bit data bus presented to the processor.

The format is:

<organization>
<name>Capacity/BusWidth/NumberOfDevices</name>

</organization>

4.6. Find Most Similar Device

To find a device most similar to the one for which support is introduced, perform these steps:

1. From the data sheet for target flash devices, determine whether the bus width is 8- or 16- data
bits.

2. Read through the files in the configuration folder of the CodeWarrior Development Studio for
Microcontrollers V10.0 installation and scan for devices from the same manufacturer with
similar part names.

For example, AM29LV640D is similar to AM29LV641DU, and IN28F128J3 is similar to
IN28F640J3.

3. Manufacturers often base new designs on the architecture of previous designs to ensure that new
devices are virtually the same as the previous devices. However, the new devices may have
greater capacity or improved programming features, such as timing and operation. This pattern
simplifies flash programming because the flash programming algorithms remain unchanged. Yet
only the device names, sectors, and Device IDs change.

4. Open the IN28F640J3 . xml file in a text editor and compare the entries with the ones in
IN28F128J3 .xml.

For example, see how the latter was built as an extension of the former. Note also how the part
number of your device may be only a revision letter different from a defined part.

For example, the flash programmer considers AM29DL64 0B to be the same as AM29DL640D
and AM29DL640G. Thus, if you use a part number like this, program the flash programmer so
you are using the defined part and do not need to create a new file.

The format is:
<algorithm>FlashAlgorithmForVariant</algorithm>

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

6 Freescale Semiconductor



Creating Flash Device XML Configuration File

FlashAlgorithmForVariant is the algorithm name without full path (just the . el f file name).

4.7. Select Flash Programming Algorithm

Flash programming algorithms differ depending on the flash manufacturer, bits per device organization,
and the number of the flash devices used. The CodeWarrior flash programmer supports a number of
algorithms that are already compiled * . e1 £ executables. These files can be found at:
{CodeWarrior}\MCU\bin\plugins\support\Flash_Programmer\ColdFire.

Create an algorithm file name by combining the fields: manufacturer, data bits per device, and number
of flash devices. For example, the flash algorithm for two AMD29L.V320MB devices, used in their 16-
bit mode (BYTE#=1), is amdl16x2.elf.

The CodeWarrior Development Studio for Microcontrollers V10.0 has built-in flash programming
algorithm support for AMD and Intel flash devices. If the device does not have built-in algorithm
support, you can create your own algorithm and use it with the CodeWarrior flash programmer. For
more information, refer to Creating External Flash Algorithm.

4.7.1. AMD or Spansion Based Flash Programming Algorithms

AMD or Spansion based devices use two types of flash programming algorithms: common and
alternative.

If the flash memory device supports two types of connections — 8-bits or byte connection and 16-bit or
word connection — use an alternative algorithm.

In all other cases or for the AMD flash devices that do not support two types of connections, use the
common AMD algorithm (Table 2).

Flash command register addresses are the main difference between common and alternative algorithms.

For example, command addresses for the common flash algorithm are: 0x555, 0x2aa, 0x555, while
for alternative connection these addresses are: Oxaaa, 0x555, Oxaaa.

Table 2. AMD Algorithms

Algorithm Device(s) Address Used Algorithm File Name

AMD One device that supports only 8-bits bus 0x555, Ox2aa, 0x555 amd8x1.elf
connection

AMD One device that supports both 8-bit and 16-bit bus 0x555, 0x2aa, 0x555 amd8x1alt.elf
connection in 8-bit mode

AMD Two devices that support only 8-bits bus 0x555, 0x2aa, 0x555 amd8x2.elf
connection

AMD Two devices that support both 8-bit and 16-bit bus | Oxaaa, 0x555, Oxaaa amd8x2alt.elf
connection in 8-bit mod




Creating Flash Device XML Configuration File

Algorithm Device(s) Address Used Algorithm File Name

AMD Four devices that support only 8-bits bus 0x555, O0x2aa, amd8x4.elf
connection 0x555

AMD Four devices that support both 8-bit and 16-bit bus | Oxaaa, 0x555, Oxaaa amd8x4alt.elf
connection in 8-bit mode

AMD One device that supports only 16-bits bus 0x555, 0x2aa, 0x555 amd16x1.elf
connection. One device which supports both 8-bit
and 16-bit bus connection in 16-bit mode.

AMD Two devices that support only 16-bits bus 0x555, Ox2aa, 0x555 amd16x2.elf
connection. Two devices that support both 8-bit
and 16-bit bus connection in 16-bit mode

4.7.2. Intel Based Flash Programming Algorithms

Support for Intel devices (Table 3) includes three types of the flash programming algorithms:
e (3 —For Intel Advanced + Boot Block (C3)
e J3 —For Intel embedded flash memory (J3) and algorithms for Boot Block flash memory
e B3 - Advanced Boot Block (B3) flash memory families

Algorithm packages are written to comply with the J3, C3, or B3 data sheet documented functionality
from Intel for each function: Read, Write, Erase, and ID checking.

Table 3. Intel Algorithms

Algorithm Device(s) Algorithm File Name

Intel One C3 Intel flash device with 8-bit data | Intel8x1c3.elf
connection

Intel One J3 Intel flash device with 8-bit data | Intel8x1j3.elf
connection

Intel One boot flash memory device or Intel8x1.elf
advanced boot (B3) flash memory
device with 8-bit data connection

Intel Two C3 Intel flash devices with 8-bit Intel8x2c3.elf
data connection

Intel Two J3 Intel flash devices with 8-bit data | Intel8x2j3.elf
connection

Intel Two boot flash memory devices or Intel8x2.elf
advanced boot (B3) flash memory
devices with 8-bit data connection

Intel Four C3 Intel flash devices with 8-bit Intel8x4c3.elf
data connection

Intel Four J3 Intel flash devices with 8-bit Intel8x4j3.elf
data connection

Intel Four boot flash memory devices or Intel8x4.elf
advanced boot (B3) flash memory
devices with 8-bit data connection

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
8 Freescale Semiconductor




Creating Flash Device XML Configuration File

Algorithm Device(s) Algorithm File Name
Intel One C3 Intel flash device with 16-bit Intel16x1c3.elf
data connection
Intel One J3 Intel flash device with 16-bit Intel16x1j3.elf
data connection

Intel One boot flash memory device or Intel16x1.elf
advanced boot (B3) flash
memory device with 16-bit data
connection

Intel Two C3 Intel flash devices with 16-bit Intel16x2c3.elf
data connection

Intel Two J3 Intel flash devices with 16-bit Intel16x2j3.elf
data connection

Intel Two boot flash memory devices or Intel16x2.elf

connection

advanced boot (B3) flash
memory devices with 16-bit data

4.7.3. Flash Manufacturers Overview

Many manufacturers use flash device programming algorithms that are not bundled with their own
devices. In many cases, these algorithms are same across multiple manufacturers. For example, AMIC
16x1 and AMD 16x1 flashes are programmed using the same algorithms.

Table 4 lists algorithms, device compatibility, and other information for flash manufacturers.

Table 4. Flash Manufacturers

should be usable (check flash device
specification from manufacturer).

Manufacturer Algorithm Comments
Alliance Flash programming algorithms used for Manufacturer’s site: http://www.alsc.com/
AMD (Spansion) should be usable (check
flash device specification from
manufacturer).
AMD Algorithms are supported in the AMD does not produce its own flash devices any more —
CodeWarrior flash programmer founder of the Spansion Company. Manufacturer’s site:
http://www.spansion.com
AMIC Depending on the particular flash device for | Manufacturer’s site: http://www.amictechnology.com/
flash programming the same flash
programming algorithms used for AMD
(Spansion) or Atmel should be usable
(check flash device specification from
manufacturer).
Atmel Flash programming algorithms are not Manufacturer’s site: http://www.atmel.com/
supported in the CodeWarrior for ColdFire
flash programmer.
Catalyst Flash programming algorithms used for Intel | Manufacturer’s site: http://www.catsemi.com/index.html

Most of the flash devices from Catalyst are identical to the
flash devices from Intel. For example: the CAT28F001 from
Catalyst is the same as Intel E28F001.



http://www.alsc.com/�
http://www.spansion.com/�
http://www.amictechnology.com/�
http://www.atmel.com/�
http://www.catsemi.com/index.html�

Creating Flash Device XML Configuration File

Manufacturer Algorithm Comments
EON Flash programming algorithms used for Manufacturer’s site: http://www.eonsdi.com/
AMD (Spansion) should be usable (check Most of the flash devices from EON have direct references
flash device specification from to the AMD flash devices.
manufacturer).
Fujitsu Flash programming algorithms used for Fujitsu no longer produces its own flash devices— founder
AMD (Spansion) should be usable (check of the Spansion Company
flash device specification from Manufacturer’s site: http://www.spansion.com/
manufacturer).
Hyundai Flash programming algorithms used for Hyu_ndai founded new company for semiconductors, named
AMD (Spansion) should be usable (check Hynix.
flash device specification from Manufacturer’s site: http://www.hynix.com
manufacturer). Most of the flash devices from Hynix have direct references
to the AMD flash devices.
Intel Algorithms are supported in the Manufacturer’s site: http://www.intel.com/
CodeWarrior flash programmer
Micron Flash programming algorithms used for Intel | Manufacturer’s site: http://www.micron.com/
should be usable (check flash device Most of the flash devices from Micron have direct
specification from manufacturer). references to the Intel flashes
MXIC Flash programming algorithms used for Manufacturer’s site: http://www.mxic.com.tw
AMD (Spansion) should be usable (check Most of the flash devices from MXIC have direct references
flash device specification from to the AMD flash devices.
manufacturer).
Samsung Flash programming algorithms are not Manufacturer’s site:
supported in the CodeWarrior flash www.samsung.com/products/semiconductor/OneNAND
programmer. Samsung uses its own algorithm for flash programming, not
compatible with other vendors
Sharp Flash programming algorithms used for Intel | Manufacturer’s site: http://www.sharpsma.com
should be usable (check flash device
specification from manufacturer).
Spansion Algorithms are already supported in the Manufacturer’s site: http://www.spansion.com/
CodeWarrior flash programmer
SST Depending on the particular flash device, for | Produces flash devices compatible with Intel, AMD and
flash programming the same flash Atmel
programming algorithms used for AMD Manufacturer’s site: http://www.sst.com/about/
(Spansion), AMD or Intel should be usable
(check flash device specification from
manufacturer).
ST Flash programming algorithms used for Manufacturer’s site: http://www.st.com
AMD (Spansion) should be usable (check
flash device specification from
manufacturer).
Toshiba Flash programming algorithms used for Intel | Manufacturer’s site: http://www.semicon.toshiba.co.jp/eng
should be usable (check flash device
specification from manufacturer).
White Flash programming algorithms used for Manufacturer’s site: http://www.wedc.com/
AMD (Spansion) should be usable (check
flash device specification from
manufacturer).
Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
10 Freescale Semiconductor



http://www.eonsdi.com/�
http://www.spansion.com/�
http://www.hynix.com/�
http://www.intel.com/�
http://www.micron.com/�
http://www.mxic.com.tw/�
http://www.sharpsma.com/�
http://www.spansion.com/�
http://www.sst.com/about/�
http://www.st.com/�
http://www.semicon.toshiba.co.jp/eng�
http://www.wedc.com/�

Creating Flash Device XML Configuration File

Manufacturer Algorithm Comments

Winbond Flash programming algorithms used for Manufacturer’s site: http://www.winbond-
AMD (Spansion) should be usable (check usa.com/mambo/content/view/289/553/
flash device specification from
manufacturer).

4.8. Set Verify Type

The verify operation can be done in two ways: on target and on host. If the verify operation is done on
host, the CodeWarrior software reads data from the target and compares it to the one that was recently
programmed. When the operation is done on target, a flash utility and the data to be verified are
downloaded.

The format is:

<ontargetverify>TRUE or FALSE</ontargetverify>

4.9. Select Flash Utility

The flash algorithms are used for erase and program operations. Blank check, checksum, and sometimes
verify operations (depending on the value of <ontargetverifty>) are done with another program,
called flash utility. If the flash device is memory mapped (NOR type) we can use the default
Flashutility.elT. This provides support only for blank check and checksum. The verify operation
must be done on host so <ontargetver i fy> should be set to FALSE. If we have a NAND or SPI
device, a special utility must be written. For more information, refer to Specify scratchMemstart address:

The format is:

<utility>FlashUtilityForVariant</utility>

4.10. Add Flash Device in Database

All flash devices are kept in a common database. When a flash device is added from the flash
programmer user interface, it reads the database and displays all devices found. To ensure that the
devices appear correctly, perform these steps:

1. Add the file in database.
2. Change the manifest that specifies which devices exists.

3. The device configuration file must be copied at:
{CodeWarriorInstallDir} \MCU\bin\plugins\support\Products\ProductData\Co
1dFireFPDevices .mwpdb\FP. For this example, assume that the name
NewFlashDevice.xml.

4. Change the manifest file to
{CodeWarriorInstallDir]\MCU\bin\plugins\support\Products\ProductData\Co
1dFireFPDevices .mwpdb\product-manifest.xml.

11


http://www.winbond-usa.com/mambo/content/view/289/553/�
http://www.winbond-usa.com/mambo/content/view/289/553/�

h

= ——
Creating Flash Device XML Configuration File

5. Add a new section in the <device> tag that specifies a new file exists.

Listing 2 shows the beginning of the manifest file.

Listing 2. Beginning of product-manifest.xml

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE product-manifest>
<product-manifest xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="http://www.metrowerks.com/schemas/2003/IDE/ProductManifest.xsd
">
<product-description>
<name>FP</name>
<common-product>FP_COLDFIRE</common-product>
<version>1.0</version>
</product-description>

<product-files>
<product>
<file>
<name>FP_COLDFIRE</name>
<version>1.0</version>
<path>FPDevProductData.xml</path>
</file>
</product>
<device>
<file>
<name>AM29BDD160GB</name>
<version>0</version>
<path>FP/AM29BDD160GB.xml</path>
</file>

6. Add the new file anywhere in <device> tag. For this example, add it at the beginning.

Listing 3 shows the new entry marked in bold.

Listing 3. New entry marked in bold

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE product-manifest>
<product-manifest xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="http://www.metrowerks.com/schemas/2003/IDE/ProductManifest.xsd
">
<product-description>
<name>FP</name>
<common-product>FP_COLDFIRE</common-product>
<version>1.0</version>
</product-description>

<product-files>
<product>

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

12 Freescale Semiconductor



Create New Target Task

<file>
<name>FP_COLDFIRE</name>
<version>1.0</version>
<path>FPDevProductData.xml</path>
</file>
</product>
<device>
<file>
<name>NewFlashDevice</name>
<version>0</version>
<path>FP/NewFlashDevice.xml</path>
</file>
<file>
<name>AM29BDD160GB</name>
<version>0</version>
<path>FP/AM29BDD160GB.xml</path>
</file>

NOTE It is highly recommended to backup the manifest file before updating it. If an error
occurs, the CodeWarrior software may not be able to parse any of the devices.

5. Create New Target Task

All Flash operations run through the Target Task Framework. To open the Target Tasks view:

1. Select Window > Show View > Other from the IDE menu bar. The Show View dialog box
appears.

2. Select Debug > Target Tasks. The Target Tasks view appears.

Next, create a flash programmer task representing the starting point for any flash operation. The task
defines the flash device, the memory buffer, and the flash programmer actions .

5.1. Create New Task

To create a new task, perform these steps:

1. Click the Create a new Target Task (“+) icon on the Target Tasks view toolbar, as shown in
Figure 1.

13



Create New Target Task

Figure 1.

Create a new Target Task Button

(2 Problems | v£) Tasks | B Console | = Properties | @] Target Tasks &2 = 0O

[#] = By ed ¥

Arrange By: Task Groups ™ +| =] Tasks
= Root Mame Task Type Fun Configur ation
< ¥

2. The Create New Target Task wizard appears (Figure 2). Specify information in the following
fields:

Task Name — Name of the target task.

Task Group — Group where the task is to be created. If only Root exists, this option is
disabled.

Run Configuration — Each task must be associated with an existing Launch Configuration or
Active Debug Context. This association is required to be able to make a connection to the
target when doing operations over the flash. Active Debug Context means a connection is
already established and only the task needs to be executed. Use Active Debug Context for
generic tasks or when it is not known which Launch Configurations are available.

Task Type — Type of task created. For ColdFire V234, select Flash Programmer for
ColdFire V234.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

14

Freescale Semiconductor



PR 4

Figure 2.

3. Click Finish. The editor for the new task appears.

Create New Target Task Wizard

2 Create Mew Tanget Task

Create a new target task + il
Task Marme | MewFlashTask |
Task Group | Root Browse ...
Run Configuration | Active Debug Context v |
Task Type | Flash Programmer For ColdFire Y234 “ |
(@ |Finish and Execute < Back Mext = [ Finish ] [ Cancel

5.2. Add Device to Target Task

To add a flash device to the Flash Devices table in the Flash Programmer Task editor, perform these

steps:

1. Select the flash programmer task to which you want to add a Flash device.
2. Click Add Device in the Flash Programmer Task editor. (Figure 3).

Create New Target Task

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

Freescale Semiconductor

15



Create New Target Task

Figure 3. Add Device in Flash Programmer Task Editor

2 MNewFlashTask &7 =0

ColdFire Y234 Flash Programmer Task

Flash Devices Target RARM

Device Name Base Address Address:  Ox | 00000000
Size: O | 00000000

|:| ‘erify Target Memory Writes

Aadd Device l [Remnve Device

Flash Programmer Actions

Enabled  Operation Description

[ Add Erase | Blank Check Action l [ Add Program [ Werify Action l [ Add Checksum Action

,_ add Diagnostics Action ] ,_ add Durmp Flash Action ] ,_ add Protect/Unprotect Action

Flash &ction
The Add Device dialog box appears (Figure 4).

3. Select the required. You should select the devices that suit the board where the task will be
executed. For example, select devices with organization AMD16x1 (Figure 4).

4. Click Add Device. A popup displays that the device has been added.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

16 Freescale Semiconductor



Create New Target Task

Figure 4. Select Organization and Add Device Button

5.3.

Add Device X]
Mame Qrganization -~
AM29BDD160GE 1Mx16x1
AMZOEDDLG0GT 1Mx16x1
AM29BL162C 1Mx16x1
AM29DL162CE 2Mx8x1
AM2ODL162CT 2Mx8x1
AM29DL163CE 2M=8=1
AMZODL163CT 2Mx8x1
AMZODL3Z2CE 4MxEx1
AMZODLSZ2CT 4MxEx1
AMZODLSZ23CE 4MxEx1
AMZODLSZ3CT 4MxEx1
AMZ9DLE400 GMxEx1
AMZ9DLS00BE 1MxEx1
AMZODLS00BT 1MxEx1
AMZ9F00ZE 256K x8x1
AMZOFO0ZNE 256K x8x1
AMZOFO0ZNT 256K x8x1
AM2OF002T 256K x8%1
AM29F004EE S512kx8x1
AM2OFO04ET S512kx8x1
AM29F010 128kx8x1
AM29F016E 2Mx8x1
AM29F017E 2Mx8x1
AM29F0S2E 4MxEx1
AM29F040E S12kx8x1 ho

——

Click Done. The selected devices are added to the Flash Devices table.

Populate Default Values

Base Address — Specifies base address for the devices in the Flash Devices table.

Address in Target Ram panel — Specifies start address of the memory where an algorithm is
downloaded on the target for performing operations on the flash devices

Size — Specifies size of the memory buffer for algorithm. The size must be large enough to fit the
algorithm and data that must be programmed. In case the buffer is not big enough, an error is
displayed when executing the task. The smallest size needed is specified in the Size field.

Verify Target Writes — Checks if the memory is correctly written. This is done by reading the
memory written after each write command. This allows you to check if the RAM memory is
correctly initialized. By default, it comes unchecked due to the loss of speed that comes with the
overhead of reading memory each time.

All these values must be correct for the board where the flash device is located. Figure 5 shows the
default values defined for board M5235EVB. All fields that must be filled are highlighted in red.

17



Create New Target Task

Figure 5. Default Values for Board M5235EVB
& *NewFlashTask 2 =8

ColdFire ¥234 Flash Programmer Task

Flash Devices Tarqet RAM

Device Mame Base Addr... Address: 0x | 0000000

AMZIBDD1A0GE (1Mx16:x1)  0x00000000
AMZIBDDIA0GT (1Mx16:x1)  0x00000000

Size: O | 00000000

D werify Target Memory rites

Add Device ] [Remove Device

Flash Programmer Actions

Enabled = Operation Description

[ Add Erase [ Blank Check Action ] [ Add Program [ verify Ackion ] [ Add Checksum Action ]

[ Add Diagnostics Action ] [ Add Dump Flash Action ] [ Add Prokectinprotect Action ]

Flash Action

5.4. Create Default Actions

The various flash programmer actions that can be added to a target task are:
* FErasing the whole flash device using Chip Erase.
* Blank checking the whole device.
e Programming the file from Launch Configuration used to connect to the target.

e Verifying the file from Launch Configuration used to connect to the target.

You can associate these actions with the target task using the buttons in the Flash Programmer Actions
section in the Flash Programmer Task editor. You can arrange the order of the actions using the Move
Up/Move Down buttons.

5.4.1. Erase/ Blank Check Action

The erase action lets you to erase a selected sector from the flash device and the blank check action
checks the erased sectors in the flash device.

To add an erase / blank check action:

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

18 Freescale Semiconductor



Create New Target Task

Select the flash programmer task to which you want to add program or verify actions.

Click the Add Erase / Blank Check Action button in the Flash Programmer Task editor. The
Add Erase / Blank Check Action dialog box appears.

Select the flash device to which you want to add the erase/blank check action.

Select a sector from the Sectors table and click Add Erase Action to add an erase operation on
the selected sector. You can select multiple sectors by holding CTRL key while selecting the
sectors.

Select a sector from the Sectors table and click Add Blank Check Action to add a blank check
operation on the selected sector.

Check the Erase All Sectors Using Chip Erase Command checkbox to erase entire flash. You
need to erase the entire flash if the size of file to be programmed is unknown. Also, to write

something in flash, you need to erase it first or you will not be able to write the new information.

NOTE For more details regarding these operations, refer to Flash Programming Algorithm for
AMD 16x1 Flash Devices.

Figure 6. Add Erase / Blank Check Action Dialog Box

Add Erase £ Blank Check Action §|
Flash Devices [CErase all sectors Using Chip Erase Command

Dievice Marme Base Addr... Seckars

AMZIEDDLE0GE (1M, 1}

AMZIEDDLE0GT (1Mx16x1)  0x00000000 Sectors Count | Start End &
SA0 00000000 0=00001FFF
Sa1 000002000 0=00003FFF
SAZ 00004000 0=00005FFF
SA3 000005000 0=00007FFF
Sa4 000003000 0=00009FFF
SAS 0000000 0=0000BFFF
SAB 0000000 0=0000DFFF
SAT Ox0000ECOD 0=0000FFFF
2R3 00010000 0=0001FFFF
SA9 00020000 0=0002FFFF
SAl10 00030000 0=0003FFFF
SA11 00040000 0=0004FFFF
SAl2 00050000 0=0005FFFF
SA13 00060000 0=000&FFFF
Sh414 000070000 0x0007FFFF
SA15 000050000 0=0008FFFF
SAls 00090000 0=0009FFFF
SAL7 00040000 0=000AFFFF
SAlE Ox000E0000 0=000BFFFF
SA19 0000000 0=000CFFFF
SAZ0 00000000 0=000DFFFF
SA21 Ox000EQOO0 0=000EFFFF
ShzZ2 O000F0000 0=000FFFFF
SAZ3 000100000 0=0010FFFF
SA24 000110000 DxD011FFFF ¥
Add Erase Action ] [.ﬂ.dd Blank Check. Action ] [Done ]

19



Create New Target Task

7. Click Done to close the Add Erase / Blank Check Action dialog box. The added erase / blank
check action appears in the Flash Programmer Actions table (Figure 7).

Figure 7. Erase and Blank Check Actions Added
= *NewFlashTask 23 =08
ColdFire ¥234 Flash Programmer Task

Flash Devices Target RARM

Device Mame Base Addr. .. Address: 0x | 00000000

i AMZIBDD160GE (1Mx16x1)  Ox00000000
AMZIBDD160GT (1Mx16x1)  Ox00000000

Size: O | 00000000
|:| ‘erify Target Memory Writes

Add Device l [Remnve Device

Flash Programmer Actions

Enabled  Operation Description
Erase from AMZ9BDD160GE ranges: (0x00000000 - 0x00001FFF),
Blank Check  from AM29BDD160GE ranges: (0x00000000 - 0x00001FFF),
[ #dd Erase | Blank Check Action l [ Add Program [ Werify Action l [ Add Checksum Action l
[ Add Diagnostics Action l [ Add Dump Flash Action l [ Add Protect/Unprokect Ackion l
Flash fction

5.4.2. Add Program / Verify Action

The Program action allows the user to specify the file that will be programmed, the location and various
restrictions. The Verify action checks if a file has been programmed without errors. The parameters for
verify and program in this case should be the same.

To add a program or verify action:

1. Select the flash programmer task to which you want to add program or verify actions.

2. Click the Add Program / Verify Action button in the Flash Programmer Task editor. The
Add Program / Verify Action dialog box appears.

Select the flash device to which you want to add a program or verify action.

4. Check the Use File from Launch Configuration checkbox if you want to program/verify the
launch configuration file. Alternatively, specify the file name and file path in the File text box or
click the Workspace, File System, or Variables buttons to select the desired file.

e (lick the Workspace button to select a file from the current Eclipse workspace.
e (lick the File System button to browse through the Windows file system and select the file.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

20 Freescale Semiconductor



8.
9.

Create New Target Task

e (lick the Variables button to insert variables in the path.

Define how the file should be read by selecting appropriate option from the File Type drop-down
list. The following options are available:

— Auto — the Flash Programmer automatically detects files of type Elf and Srec
— EIf - elf executable file
— Srec — Motorola .s19 file format

— Binary — the file is read in binary format, no content interpretation is done.

Check the Restrict to Addresses in this Range checkbox to define a range for flash accesses.
Any program/verify action performed outside this range is ignored. You can specify the range in
the Start and End text boxes, respectively.

Check the Apply Address Offset checkbox to apply an offset to the image to be written to the
flash device. You can specify the offset in the Address text box. This value is added to the
(computed) start address of the file.

The start address is zero for binary files or read from the file header. In case you want to use a
binary file and the flash is not mapped to zero, enable the offset and set the value to the base
address of the flash.

The settings are displayed in Figure 8.

Click the Add Program Action button to add a program action to the flash device.
Click the Add Verify Action button to verify an action for the flash device.

10. Click Done to close the Add Program / Verify Action dialog box.

Figure 8. Add Program / Verify Action Dialog Box

Add Program / Yerify Action

Flash Devices Use File from Launch Configuration

Lievice Mame Base Addr... File:

BMZ9B0D160GE (1Mx16x1) | tx00000000 |

AMZIBDD1A0GT (1Mx16x1)  0x00000000

File Type: |Auko W [Wnrkspace... ] [File System. .. ] [‘v‘ariables...

[TJErase sectors before program

[Jrestrict to addresses in this Range [Japply address Offset

[.ﬂ.dd Program Action ] [.C\dd Verify Action ] [Dnne ]

The added program / verify actions appear in the Flash Programmer Actions table as shown in Figure

9.

21



= ——
Create New Target Task

Figure 9. Flash Programmer Actions Table

& *NewFlashTask 23 =08

ColdFire ¥234 Flash Programmer Task

Flash Devices Target RARM

Device Name Base Addr... Address:  Ox | 00000000
AMZIEDD160GE (1Mx16x1)  Ox00000000

Size: O | 00008000
AMZIBDD160GT (1Mx16x1)  Ox00000000

|:| ‘erify Target Memory Wrikes

Add Device l lRemnve Device

Flash Programmer Actions

Emabled Operation = Description
Erase from AMZ9BDD160GE ranges: (0:x00000000 - 0x00001FFF),
Blark Check  from AM23BDD160GE ranges: (0x00000000 - 0x00001FFF). Marve Diowin
v Program file From launch configuration in AMZ9E00160GE -
v Werify file From launch confiquration in AMZ29B00160GE
l Add Erase | Blank Check Action l l Add Program [ Werify Action l L Add Checksum Action ,|
l Add Diagnostics Action l l Add Dump Flash Action l l Add Protect/Unprokect Action l

Flash fction

5.5. Storing Task

After adding the required actions, you can save the task to an external file or framework..

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
22 Freescale Semiconductor




Create New Target Task

Figure 10. Store Task Dialog Box

Store Task

Do wou wank bo skore this bask bo an external File?

() Save ko framework only
(%) 5ave to file

Task Path: | |

Workspace, ., ] lFiIe Syskem, .. ] [\.-'arial:ules... l

Praject: | 3z |

[ ]Do not ask me again For this kask

To store the task:
1. Press Ctrl + S or click the Save button on the IDE toolbar. The Store Task dialog box appears.
2. Select one of the following options:
— Save to framework only: Saves the task in the task framework.

— Save to file: Saves the task to an external file. Specify the path where you want to store the
task in the Task Path text box. You can use the Workspace, File System, or Variables
buttons to navigate to the desired location.

From the Project drop-down list, select the project where you want to store the target task.

NOTE Check the Do not ask me again for this task checkbox to save these settings for the
current target task. If the Do not ask me again for this task checkbox is checked, the
Store Task dialog box does not appear again on clicking the Save button.

3. Click OK.
The dialog box closes.

NOTE If you do not want the Store Task dialog box to appear on clicking the Save button and
always save the target task in the task framework, select Window > Preferences >
C/C++ > Debug > CodeWarrior Debugger and clear the Show ''Save As'' dialog
when saving a new task checkbox.

5.6. Export Task

The final step is exporting the task to an .xm1 file. To export a task:

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

Freescale Semiconductor 23



Creating External Flash Algorithm

1. In the Target Tasks view, select the task that you want to export. Click the &3 jcon on the
Target Tasks view toolbar. Alternatively, right-click the task and select Export.

The Save As dialog box appears.

Figure 11. Export Target Task

[l Problems [ 42] Tasks | B console |l Properties | 18] Target Tasks 22 (= 8 G = e T T O
Arrange By:Task Groups H = Tasks /
Mame Task Type Run Configuration
i R *> e R
@ gtive Debug C. ..
= Mew Task

= Mew Task Group
Rename
=| Duplicate
# Delete

27 Edit Task Configuration
hange Run Configuration

2. Browse to the desired location, specify the filename, and click the Save button.
The saved task can be imported later using the Import button on the Target Tasks view toolbar.

6. Creating External Flash Algorithm

6.1. Preliminary Background

Before you program or erase any flash device, you must ensure that the CPU can access it. For example,
you might need a different debug setup that requires modifications to the debugger configuration file.
Consider the following before you begin:

* Read the flash device ID to verify correct connection and programmability. Refer to

Troubleshooting Flash Programmer for instructions.

e Many manufacturers use the same flash-device algorithms, so it is likely that flashes can be
programmed using algorithms included with CodeWarrior software. In addition, many
manufacturers produce devices compatible with Intel or AMD.

e Check whether a new flash device can be programmed with an algorithm already included with the
CodeWarrior software, as described in Select Flash Programming Algorithm.

e Follow the steps in Creating External Flash Algorithm if the flash device cannot be programmed
with an existing algorithm.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
24 Freescale Semiconductor




Creating External Flash Algorithm

6.2. Flash Tool Kit (FTK) Overview

The Flash Took Kit (FTK) helps you develop flash programming algorithms for the CodeWarrior flash
programmer (Figure 12).

Figure 12. Flash Tool Kit

EI Code\Warrior Projects &3 =0

|E|laz =) & &£ | File Name =

File Name Size  Type
= :5 FlashToolkitTemplate : Flash Algo Development
|+ ﬁ“Indudes

/7~ = (= Commaon_Files N\
<

_ flash_start.c 1KB C Source File
[£] exit.c 1KB C Source File
D flash_algorithm. Icf 1KB Linker Command...
Common Part flash_commands.h 1KB C Header File
flash_device.h 1KB C Header File
@ flash_main.c 2KB C Source File
[£] Aash_test.c 4KB C Source File
\ generic.h 1KE C Header File J
|=| FlashToolkit Development - PnE USE BOM.launch 19 KB
|=| FlashToolKit Release - PnE USE BOM.launch 18 KB

= = Sources
User Part <] algo_impl.c 3KB CSource File

6.3. Flash Tool Kit (FTK) General Structure

The flash programmer FTK application is divided into three different sets of files:

e FTK Common Files (No Modification Needed): Includes initialization and other files. This
component is common for all flash devices and you should not change it while developing the new
flash programming algorithm. It consists of the following files:

— Tlash_algorithm. Icf file — linker command file. This linker command file is set up
according to the rules for the flash programming applet allocation in physical memory.

— flash_commands.h — header file with API to CodeWarrior flash programmer commands
definition.

— generic.h - header file with the generic data structures and definitions used by the flash
programming algorithms.

— exit.c -—exitpoint for the flash programming applet.
— _flash start.c - flash programmer start-up initialization file.
— _flash main.c —main function and API to the CodeWarrior flash programmer.

e User Files (Implement Algo): Includes flash device specific files. This component is modified for
any flash devices depending on the flash programming algorithm to be used. It consists of the
following files:

25



h o
g |

Creating External Flash Algorithm

— algo_impl.c — functions to implement for the flash device flash algorithm, such as ID,
erase_sector, erase_chip, write.

e User Files (Implement Algo Tests): Includes flash device specific files. This component is

considered to be modified for any flash devices depending on the flash programming algorithm to
be used. It consists of the following files:

— flash_test.c —sample code with the flash unit test functionality implementation.
— flash_device.h — custom flash device definition file.

— flash_info.txt — contains CodeWarrior flash programmer commands. description.
To create the new algorithm for flash programming, make all changes to the algo_impl . c (flash
device algorithm implementation) and Flash_device_h/flash_test.c files (flash device tests).

6.4. Flash Tool Kit (FTK) Build Targets
Several build targets are predefined in FTK:

Flash Algo Development — flash algorithm development and test application. The ELF executable
file, created in Flash Algo Development, should be used to develop, debug, and test the new
CodeWarrior flash programmer algorithm.

- Flash Algo Release — create flash algorithm applet. CodeWarrior flash programmer uses the ELF
executable file, created in Flash Algo Release. This build target shares the flash device algorithm

with the Flash Algo Development build target; it differs, however, because it cannot be debugged
or tested (Figure 13.)

Figure 13. Flash Tool Kit Targets

2 Pproperties for FlashToolKitTemplate

[type fiter text | Settings & - -
Resource
Builders
[ C/C++ Build Configuration: |Flash Algo Development * | | Manage Configurations...
Build Variables Flash Algo Development
Discovery Options Flash Algo Release
Envi t [ All configurations ]
z :Iljronmen & Tool Settings | - Build Steps Build Artifact | [y Binary Parsers | & Error Parsers || Build Tool Versions
ettings
Tool Chain Editor @ ColdFire CPU Processor Family (-proc) | 5235 “
C/C++ General =Y )
X (22 Debugging
Linked Resources =
22 Messages
Project References 2 Librari
Resource Filters [\D orarian
Run/Debug Settings =9 B‘:rner
2 General
=8 ColdFire Linker
@ Input
@ General
2 output
=B raldBira Camnilar

6.5. Flash Programmer API

The CodeWarrior flash programmer communicates with the flash programming algorithm applet
through five different commands:

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

26

Freescale Semiconductor



Creating External Flash Algorithm

get ID
erase sector
erase chip
program

verify

The CodeWarrior flash programmer uses an exchange zone in target memory to communicate with the
flash applet. The Flash Programmer target configuration specifies the target memory buffer; the
exchange zone is at the start of this buffer, as shown in Figure 14.

Figure 14. Target Configuration Buffer Memory Area Start Address

Flash Devices Target RAM

Device Mame Base Addr. .. Address:  0Ox | 20010000

AMZOLY1G00E (1Mx16x1)  0x00000000 Size: 0% | 0o01ioo0o

|:| Yerify Target Memary Writes

add Device ] [Remu:uve Device

Flash Programmer Ackions

Enabled Operation = Description
Erase fFrom AM29LY 16006 ranges: {0x00000000 - Ox00003FFF),
Blank Check  from AM29LY1600E ranges: (0x00000000 - 0x00003FFF),
Program file From launch configuration in AMZ90LY 1 G0DE -
Werify file From launch configuration in AMZ9LY 16006
[ Add Erase [ Blank Check Action ] [ Add Program [ Werify Ackion ] [ Aadd Checksum Action ]
[ Add Diagnostics Ackion ] [ Add Dump Flash Action ] [ Add Protect/Unprokect Action ]

In this sdk, scratchMemStart is the starting address of this zone. Depending on the actions the Flash
Programmer requires of the applet, these exchange zone settings may differ.

Parameter_block_t Structure

On the flash applet side, the commands from the CodeWarrior flash programmer go through
the Parameter_block_t structure, mapped in memory, starting from the
scratchMemStart address.

All commands from CodeWarrior flash programmer are already encoded in the
flash_main. c file. This file can be used for the new flash programming algorithm
without changes. After loading the flash applet to the target board, the CodeWarrior flash
programmer writes the startMemScratch address in the D7 register (Listing 4).

27



Creating External Flash Algorithm

Listing 4. Parameter_block_t pointer initialization

void main (void)

{

unsigned long num_errors;

parameter_block_t *_params;

long res=0;
#ifdef FLASH_ALGO_TEST

int testnumber = 0;
_params = (parameter_block_t *) (unsigned int)&data_1;
#else

asm

{

move.l D7, res

}

_params = (parameter_block_t *)res;

For the detailed description of the Parameter_block_t structure, refer to Listing 5.

Listing 5. Parameter_block_t structure details

typedef struct pb {
unsigned long function; /* What function to perform ? */

pointer_t base_addr; /* where are we going to operate */

unsigned long num_items; /* number of items */

unsigned long result_status;

pointer_t items;
} parameter_block_t;

Listing 5 definitions:

function —command to be executed by the CodeWarrior flash programmer.
base_addr - start address of the flash memory.

num_1items — number of items to be transferred from the CodeWarrior flash programmer to the
flash programming applet.

result_status - status of the command; through this field, the flash programming applet
notifies the CodeWarrior flash programmer about the status of the command being executed.

items - start address of the data to be transferred from the CodeWarrior flash programmer to the
flash programming applet.

The CodeWarrior flash programmer uses the getting chip ID command right after the flash
algorithm is loaded to the memory buffer to check if the applet runs. For the ID command,
the CodeWarrior flash programmer:

* Jloads the flash programming applet to the target board,
e sets the command ID, as shown in the function field of Listing 5,

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

28

Freescale Semiconductor



Creating External Flash Algorithm

e runs flash programming applet,
* waits while flash applet stops execution, and

* checks the status of the command being executed, as shown in the
result_status field of Listing 5.

fEraseChip

The full chip erase command is called by CodeWarrior flash programmer when a full chip
erase is performed. For the fEraseChip command, the CodeWarrior flash programmer:

* Jloads the flash programming applet to the target board,

e sets the command fEraseChip, as shown in the function field of Listing 5,
= runs the flash programming applet,

= waits while the flash applet stops execution, and

* checks the status of the command being executed, as shown in the
result_status field of Listing 5.

NOTE Some flash devices do not support the full chip erase command. Check the flash device’s
specifications, available from the manufacturer.

fWrite
The fWrite program buffer command is called by the flash programmer to program a set of
values at a specific address. For the fiWwrite command, the CodeWarrior flash programmer:
* Jloads the flash programming applet to the target board,
e sets the command fWrite, as shown in the function field of Listing 5,
* gpecifies number of bytes to be programmed, as shown in the num_items field
of Listing 5,
= gpecifies start-up address of data to be programmed, as shown in the i tems field
of Listing 5,
* runs flash programming applet,
* waits while flash applet stops execution, and
* checks the status of the command being executed, as shown in the
result_status field of Listing 5.
fVerify

The £Veri fy function is identical to the £Write function but instead of programming the
device, the fVeri fy function checks if the file programmed actually exists on target. It
returns success if information exists, failure otherwise.

29



Creating External Flash Algorithm

6.6.

Create New Flash Programming Algorithm

To create a new flash programming algorithm for a flash device, which is not supported by the
CodeWarrior software, using FTK:

1.

AN

Store the original version of the FTK files in the CodeWarrior software. Copy the
FlashToolKitTemplate folder

from{ CodeWarriorInstallDir )\MCU\ColdFire_Tools\FlashToolKit to a different
working directory, where CodeWarriorInstallDir specifies the location where the CodeWarrior
software is installed.

Import the FTK Template project:
a) Select File > Import. The Import dialog box appears.

b) Select General > Existing Projects into Workspace and click Next. The Import
Projects page appears.

c) Click Browse to select the folder where you have copied the
FlashToolkitTemplate folder. The Projects list gets populated with all the
projects in the FlashToolkitTemplate folder.

d) Clear the checkboxes next to the projects that you do not want to import and click Finish.
The imported project is displayed in the CodeWarrior Projects view in the C/C++
perspective, as shown in Figure 12. Check that the project is using the Flash Algo
Development build target.

Select Run > Debug Configuration. The Debug Configuration dialog box appears.
Expand the CodeWarrior Download tree node and select the desired launch configuration.
Click the Debugger tab in the right panel.

Select the required target processor from the Target Processor drop-down list, as shown in
Figure 15.

Specify required target initialization and memory configuration files for the connected hardware
in the Target initialization file and Memory Configuration File text boxes.

For supported Freescale Evaluation Boards, you can use the debugger configuration files (*.cfg),
and the debugger memory files (*.mem) available with the CodeWarrior Development Studio:
{CodeWarriorInstallDir}\MCU\ColdFire_Support\Initialization_Files

For example, the configuration settings for the M5235EVB board are shown in Figure 15.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

30

Freescale Semiconductor



b -

g |

Creating External Flash Algorithm

Figure 15. Launch Configuration Settings for M5235EVB Board

2 Debug Configurations E]
Create, manage, and run configurations

Dawnload an application ko a target, then debug or run the application, ﬁ\
> B e
HExX B3

Name: | FlashToolkit Cevelopment - PrE LISB BDM |

[ty Fiker text

Main | 9= Arguments | B Environment | %5 Debugger
[€] CodeWarrior Attach
[] Codetwarrior Connect
=-[€] CodeWarrior Download

B Source | = Common | g Trace and Profile

Debugger: | CodeWarrior Debugger for ColdFire

~
FlashTo ment - Pné LISE BOM Stop on startup at:
[€] FlashToolkit Release - PE USE BDM ) Program entry point
B Launch Group (&) User specified | _Flash_start
Debugger Options

ColdFire | Exceptions | Reset | Interrupts | Download | Cannection | PIC

Target Pracessor | MCF5235 v
Simulator [Emulator

Execute Reset

Remote | Other Executables | Symbalics || OS5 Awareness | view Refresh

[JRun Out of Reset

Inalize target

Target inkislization file | ¢(eclpse_home}/../MCU_L0.0]ColdFire_Suppert/

N .cfg ]

workspace... | [Fie System... | [variables..
[#] Use memary canfiguration file
Memory Configuration File | 4 (eclpse_home} .. /MCU_10.0/ColdFire_Support |
[Juse Default workspace. .| [File System... | [variables... |
Fiter maktched 6 of 6 items
®

NOTE In case of custom hardware design, the debugger configuration and memory mapping

files should be written. Also, the memory initialization file for the flash device should be
checked before trying to create the new flash programming algorithm.

8. Specify an alternate loading address.

a) The flash algorithm, a PIC\PID application, can run from anywhere in memory. An
alternate loading address is where the flash applet code is loaded and executed on the
target board. This address can be either in internal or in external RAM memory, as shown
in Figure 16.

b) The Alternate Load Address should match the address where the code is linked. By

default, the flash programming algorithm is compiled to start at address 0x500; refer to

the TEXT start address value in the flash_algorithm.lcf linker command file as
shown in Listing 6.

If the custom board’s address space where you want to debug the applet is other than
0x0, the alternate address must be changed. For example: if RAM is allocated starting

from address 0x2000000, the alternate loading address will be 0x20000000+0x500
= 0x20000500.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
Freescale Semiconductor

31



Creating External Flash Algorithm

Figure 16. Alternate Load Address

Mame: | FlashToolkit Development - PRE USE DM
[E] Main | 9= Arguments | g Environment | %3 Debugger . Source | E=| Comman Dg? Trace and Profile
Debugger: | Codewarrior Debugger For ColdFire w

Stop on skartup at:

O Prograr entry poink

() User specified | _Flash_start

Debugger Options
ColdFire | Exceptions | Reset | Interrupts | Download | Connection | PIC Remoate | Other Executables | Symbolics | O35 Awareness | View Refresh

[ alternate Load Address

Listing 6. Code start address definition in flash_algorithm.Icf file

# Sample Linker Command File for CodeWarrior for ColdFire

# NOTE: The debugger uses the Illegal Instruction Vector to stop.

# A small subroutine is written at the location VBR+0x408-VBR+0x40B

# to handle the exception. The Illegal Instruction Vector in

# the vector table at VBR+0x10 is then pointed to it. When the

# debugger encounters an illegal instruction, it jumps to this

# subroutine, which ends with an RTE, then exits.

# Do not overwrite this area of memory otherwise the debugger may not
# exit properly.

MEMORY {
TEXT (RX) : ORIGIN = 0x00000500, LENGTH = O # using External DRAM
DATA (RW) : ORIGIN = AFTER(TEXT), LENGTH = 0

9. Specify scratchMemstart address:

a) In order to debug the flash algorithm correctly, set the scratchMemStart Start
address in the f1lash_device.h file. An example of the scratchMemStart setting is
shown in Listing 7.

b) The SCRATCH_MEM_ADDRESS value should be equal to: alternate loading address
minus the compiled start address from the f1lash_algorithm. 1cf file (0x500 default
value). For example, if the alternate loading address is 0x20000500, then
SCRATCH_MEM_ADDRESS = 0x20000500 - 0x500 = 0x20000000.

Listing 7. Setting the address of scratchMemStart in __flash_start.c

/* Flash Programmer SDK
* Copyright © 2007 Freescale Semiconductor. All rights reserved.

*/
/‘k**‘k*‘k"k**‘k‘k**‘k*‘k"k***‘k**‘k*‘k"k***‘k**‘k*‘k"k***‘k********************/
/* */
/* flash_start.c */
/* */

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
32 Freescale Semiconductor




/*
/*
/*

Creating External Flash Algorithm

This file provides support to the position independent */
code in TRD */
*/

/*****************‘k*******************************************/

asm void _flash_start(void);

extern void main( void );

extern unsigned long _SDA_BASE;

extern unsigned long stack_addr;

#ifdef FLASH_ALGO_TEST
#define SCRATCH_MEM_ADDRESS 0x0
#endif

10. Modify the algo_impl . c file:

a) The flash algorithm functionality file algo_imp1l . c should be modified and should
include the correct programming commands, as recommended by the flash device
manufacturer.

11. Modify ID function in the algo_impl . c file:
a) By default, the ID function in the algo_impl . c file looks as shown in Listing 8.
b) The following definitions pertain to Listing 8:

- parameter_block_t *p_pb — Pointer to the parameter_ block_t structure
to be passed to the ID function.

- retwval_t — Result of the function execution.

¢) The correct command sequence should be created for the ID function based on the
recommendations of the flash device manufacturer, as described in Implementation of ID
Function for AMD 16x1 Flash Devices.

Listing 8. ID function template in algo_impl.c file

retval_t ID(parameter_block t *p_pb)

{

*/

retval_t result = 0;
volatile unsigned long* item_addr = (p_pb->items).1;
/* Add code: the correct access size depending on the bus must be used for the base_addr

volatile unsigned short *base_addr = (p_pb->base_addr) .w;

/* Add code: first of all reset the device.

The fID is not called in the new flash programmer plugin therefore
the flash chip must always be brought into the read state.

*/

/* Add code: read the device ID */

/* we currently assume that we have the right value */

33



b -

g |

= ——
Creating External Flash Algorithm

/* anyway, the IDE have to care about the flash ID and compare with the xml file */
return result;

12. Modify the erase_sector function:

a) By default, the erase_sector function in the algo_impl. c file appears as shown
in Listing 9.
b) Listing 9 definitions:

- parameter_block_t *p_pb — Pointer to the parameter_block_t structure
to be passed to the erase_sector function.

- unsigned long sect_index — Index of the sector to be erased.
- retval_t — Result of the function execution.

¢) Based on recommendations from the flash device manufacturer, the correct command
sequence must be created for flash-sector erasing, as described in Implementation of
erase sector Function for AMD 16x1 Flash Devices.

Listing 9. Function template erase_sector in algo_impl.c

retval_t erase_sector (parameter_block_t *p_pb, unsigned long sect_index)
{

int timed_out, got_it;

retval_t result = 0;

/* Add code: the correct access size depending on the bus must be used for the base_addr
*/

volatile unsigned short *base_addr = ((unsigned short **) (p_pb->items) .w) [sect_index];
/* Add code: first of all reset the device.
The fID is not called in the new flash programmer plugin therefore
the flash chip must always be brought into the read state.
*/
/* Add code: erase one sector */
/* Add code: wait for status */
/* Add code: handle error (and timeout if needed) */

/* Add code: put back the flash in read state */

return result;

13. Modify the erase_chip function:

a) By default, the erase_chip function in the algo_impl . c file looks as shown in
Listing 10.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
34 Freescale Semiconductor




Creating External Flash Algorithm

b) Listing 10 definitions:

- parameter_block_t *p_pb — Pointer to the parameter_ block_t structure
to be passed to the erase_chip function.

- retval_t — Result of the function execution.

- Create the correct command sequence for full flash chip erasing based upon
recommendations from the flash device manufacturer, as shown in Implementation of
erase chip Function for AMD 16x1 Flash Devices.

Listing 10. Function template erase_chip in algo_impl.c

retval_t erase_chip (parameter_block_t *p_pb)
{

int errors = 0;

retval_t result = 0;

unsigned short stat;

int got_it;

/* Add code: the correct access size depending on the bus must be used for the base_addr
*/
volatile unsigned short *base_addr = (p_pb->base_addr) .w;
/* Add code: first of all reset the device.
The fID is not called in the new flash programmer plugin therefore
the flash chip must always be brought into the read state.
*/
/* Add code: erase one sector */
/* Add code: wait for status */
/* Add code: handle error (and timeout if needed) */

/* Add code: put back the flash in read state */

return result;

14. Modify the write function:
a) By default, the write function in the algo_impl . c file looks as it appears in Listing 11.
b) Listing 11 definitions:

- parameter_block_t *p_pb - Pointer to the parameter_block_t structure
to be passed to the write function.

- retval_t — Result of the function execution.

c) Create the correct command sequence for flash device programming according to the
recommendations of the flash device manufacturer, as described in Implementation of
Write Function for AMD 16x1 Flash Devices.

35



Creating External Flash Algorithm

Listing 11. Function template write in algo_impl.c

retval_t write(parameter_block *p_pb)

{

*/

int timed_out, got_it;
unsigned long i;
unsigned short stat;
retval_t errors = 0;

/* Add code: the correct access size depending on the bus must be used for the base_addr

volatile unsigned short *base_addr = (p_pb->base_addr) .w;

/* Add code: first of all reset the device.

The fID is not called in the new flash programmer plugin therefore
the flash chip must always be brought into the read state.

*/

/* Add code: program the bytes pointed in the buffer : p_pb->items,

they are p_pb->num_items bytes

handle error (and timeout if needed) for each of the program sequence
*/

/* Add code: put back the flash in read state */

return errors;

15. Flash programming applet unit testing:

a) For flash programming algorithm testing, define custom flash device parameters in the

flash_device.h file. The following parameters should have correct definitions:
- BASE_FLASH ADDRESS — ColdFire CPU view of the flash device’s address.

- SCRATCH_MEM_ADDRESS — scratchMemStart address; refer to step 9.

- SECTOR_ADDRESS_OFFSET — Memory sector size.

-  NUMBER_ITEMS - Test parameter, which defines how much data is programmed

during the flash program testing.
b) Refer to Listing 12.

Listing 12. Flash programming applet parameters in flash_device.h

/* Flash Programming SDK

* Copyright © 2007 Freescale Semiconductor. All rights reserved.

#include "generic.h"

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

36

Freescale Semiconductor



/* Base Address of the flash */
#define BASE_FLASH_ADDRESS OxXFFE00OOQOUL /* For AMD */

/* Offset of the sector to erase for the test */

##define SECTOR_ADDRESS_OFFSET 0x4000UL /* For AMD */

/* Number of bytes to program for the test

This parameter could not be more then Flash size
*/

#define NUMBER_ITEMS 1024

/* Set this to one if chip erase is supported */
#define HAS_CHIP_ERASE 0

Creating External Flash Algorithm

NOTE Refer to the flash device manufacturer for the flash device memory organization. Refer

to hardware description for the flash device addressing.

16. Compile flash algo development target:

a) During new algorithm creation and testing, use the Flash Algo Development build target
of the Flash Development Kit. Compile the Flash Algo Development target with the
flash_algo. c file, which is modified for the flash programming procedures.
Compilation will result in creation of a new FlashAlgDevelopment.elf file.

17. Flash algorithm unit test:

a) To simplify flash programming algorithm creation and testing, flash test functionality is
included with FTK in the Flash Algo Development build target. Check the file
flash_test. c for it. Unit test functions contain basic functionality required for the

flash programming; the following tests are performed:

- checking flash device’s ID,

- erasing flash memory sector, and

- programming flash memory sector with the predefined data (in sample code the

incrementing counter is used).

b) Load the file FlashAlgDevelopment.elf and run it on the target board. Check the
tests results. As an example of the test working, refer to AMD 16x1 Flash Programming

Aleorithm Unit Testing.

18. Compile flash algo release target:

a) When the flash programming algorithm for the new flash device works correctly (as
confirmed in unit testing), compile the Flash Algo Release target. The output of the Flash
Algo Release target — FlashAlgRelease. el f— must be copied to the following

folder:

{CodeWariorInstallDir}\MCU\bin\plugins\support\Flash_Programmer\C

oldFire

37



Creating External Flash Algorithm

19. Add a new flash device to the flash programmer:

a) Refer section Creating Flash Device XML Configuration File for information about how
to add a new flash device.

20. Create a new target task:

a) Refer section Create New Target Task for information about how to create a new target
task.

21. Set flash device configuration in flash programmer:
a) Restart the Eclipse IDE so that the Eclipse IDE can use the updated manifest file.
b) Select Window > Show View > Other from the IDE menu bar.

c) Select Debug > Target Tasks from the Show View dialog box to open the Target
Tasks view.

d) Right-click on the Tasks table and select Import from the context menu (Figure 17).

>
Alternatively, click the = icon on the Target Tasks view toolbar to import a task. The

Open dialog box appears.
Figure 17. Import Task
[ Problems | ¥£] Tasks | Bl Console | = Properties | {®] Target Tasks &2 4 = PE I =
Arrange By:Task Groups ™ H = Tasks
& oot Mame Task Type Run Canfiguration
o MNew Task

(= Mew Task Group

BT

£ Expart

e) Browse to the location of the task that you want to import, select the required task, and
click Open. The imported task gets added to the Tasks table.

f) Right-click the imported task and select Change Run Configuration.

g) Select FlashToolKit Development — PnE USB BDM from the Run Configuration
drop-down list and click OK (Figure 18).

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

38 Freescale Semiconductor



h

Creating External Flash Algorithm

Figure 18. Change Run Configuration

Change Run Configuration

Associake the selected target kasks to a different Run Configuration,

Run Configuration ashToolkit Development - PRE USE BDM w

(7 [ (a4 H Cancel ]

h) Double click the task to open the task in the editor area.

1) Check if the flash device used is the newly introduced. As an example the device has
been named AM29BDD160GB. See Figure 19.

Figure 19. Flash Task Editor
2 *hewFlashTask 23 =0

ColdFire ¥234 Flash Programmer Task

Flash Devices Target RAM
Device Mame Base Addr,.. Address: Ox | 00000000
AMZIBDD160GE (1Mx16:x1)  0x00000000 Size ox [ oonoooon

|:| ‘erify Target Memory Wirites

Add Device ] [Remove Device

Flash Pragrammer Actions

Enabled Operation = Description

Erase from AMZ9BDD160GE ranges: (000000000 - 0x0Q0001FFF),

Blark Check  from AMZ9BDD160GE ranges: (0::00000000 - 0x00001FFF),
Program file From launch configuration in AMZ29EDD160GE -
erify file: From launch configuration in AM29BDD1E0GE

[ Add Erase | Blank Check Action ] [ Add Program [ verify Action ] [ Add Checksum Action ]

[ Add Diagnostics Action ] [ Add Dump Flash Action ] [ Add Protect/Unprotect Action ]

Flash Action

22. Erase and blank check the device:
a) Select only Erase and Blank Check actions as shown in Figure 20.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

Freescale Semiconductor 39



b -

= ——
Creating External Flash Algorithm

Figure 20. Erase and Blank Check actions selected
& *NewFlashTask £ =0

ColdFire ¥234 Flash Programmer Task

Flash Devices Target RAM
Cievice Mame Base Addr... Address: 0: | 00000000
AMZIBDD1E0GE (1Mx16:x1)  0x00000000 Size: 0% | oooooooo

|:| Yerify Target Memory Writes

&dd Device ] [Remove Device

Flash Programmer Actions

Enabled Operation = Description
Erase from AMZ9EDD160GE ranges: (0x00000000 - Ox00001FFF).
Blank Check.  from AMZ9EDD160GE ranges: (0x00000000 - 0x00001FFF). Move Down
Program File Fram launch configuration in AM29EDD160GE N
Werify file From launch configuration in AM29B0D160GE
[ Add Erase § Blank Check Action ] [ Add Program | Werify Action ] [ Add Checksum Action ]
[ Add Diagnostics Action ] [ Add Dump Flash action ] [ Add Protect/Unprotect Action ]

Flash Action

b) Save the task by pressing Ctrl + S or clicking Save button on the toolbar.

c) Select Window > Preferences from the IDE menu bar. The Preferences dialog box
appears.

d) Select C/C++ > Debug > CodeWarrior Debugger and check the Show verbose output
in Target Tasks check box in the CodeWarrior Debugger panel.

e) Right-click the task and select Execute as shown in Figure 21. The Console view shows
the algorithm used in executing the task. Listing 13 and Listing 14 shows the log for erase
operation and erase and blank check actions.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

40 Freescale Semiconductor



\
4

(

Creating External Flash Algorithm

Figure 21. Execute Task

r_z_\ Problems ‘Z.Tasks El console | =] Properties 5 iiiii iiﬁ g = o ® & &=
Arrange By:Task Groups ™ [=| Tasks
== Roat Mame Task Type Run Configuration

(€] NewFlashTask

o Mew Task
(= Mew Task Group

Rename
|:=| Duplicate
# Delete

&7 Edit Task Configuration
Change Run Configuration

g Impart
£ Expart

Listing 13. Algorithm used for Erase operation

cmdwin::fl::erase all
Beginning Operation ...

log: Using Algorithm: FlashAlgDevelopment.elf

Listing 14. Erase and Blank Check actions log

Erasing .. .viiiiiiii ettt teieee
Reading erase return status
Erase Command Succeeded

Blank Checking ............
Reading blank check return status
Blank Check Succeeded

NOTE In case the flash device cannot be erased, check successful erasure of flash device and

hardware connection correctly setup.

23. Perform programming test: The binary S-record files of different sizes are available in the FTK
delivery to check whether the flash device can be programmed. The path to the S-record files is:
{CodeWarriorInstallDir } \MCU\ColdFire_Tools\FlashToolKit\TestSrecFiles

Some of the S-record files at this location are: 64k_at_0.S,128k_at_0.S, 256k_at_0.8S,

1M _at_0.S,2M_at_0.S,and 4M_at_0.S. The filename specify the size of the file. For
example, file 256k_at_0. S is 256 Kilobyte in size and is linked to the O startup address.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

Freescale Semiconductor

41



b -

Creating External Flash Algorithm

a) Enable Program and Verify actions as shown in Figure 22. Save the task (Ctrl + S).

Figure 22. Program and Verify Actions

& *NewFlashTask £

ColdFire ¥234 Flash Programmer Task

Flash Devices

Target RAM
Dievice Mame Base Addr... Address:
AMZIBDD1E0GE (1Mx16:x1)  0x00000000 Size:

&dd Device ] [Remove Device

Flash Programmer Actions

Enabled Operation = Description
Erase From AMZIBDD1E

Blank Check  from AMZ9EDD1E0GE ranges: (0x00000000 - 0x00001FFF).

Werify file From launch configuration in AM29B0D160GE

0GE ranges: (0:x00000000 - 0x00001FFF),

biooip arzaennd AOCE

O | 00000000
O | 00000000

|:| Yerify Target Memory Writes

[ Add Erase § Blank Check Action ] [ Add Program | Werify Action ] [

Add Checksurn Action ]

[ Add Diagnostics Action ] [

Add Dump Flash action ] [ Add Protect/Unprotect Action ]

Flash Action

b) Double-click Program in the Operation column. The Add Program / Verify Action

dialog box appears.

c) Clear the Use File from Launch Configuration checkbox and click the File System
button to select a . S file to be programmed.

d) Check the Restrict to Addresses in this Range and Apply Address Offset checkboxes.
Figure 23 shows the settings.

Figure 23. Edit Program / Verify Action

Add Program / Verify Action

Flash Devices

[Juse File from Launch Configuration

Device Mame Base Addr...
AM29BDD160GE (1Mx16x1) Ox00000000

File: |

File Type:

[C1Erase sectors before proaram
Restrict to Addresses in this Range

Start: Ox | 00000000
End: Ox | D01FFFFF

[Workspace... ] ’File System... ] ’Variables... ]

[

Address: Ox | 00000000

Add Program Action ] [Add Verify Action ]

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

42

Freescale Semiconductor



h

Creating External Flash Algorithm

Add Program / Verify Action k3

Flash Devices [Juse File from Launch Configuration

Device Mame Base Addr...

File: | Ci\Program Files\Freescale\CW MCU Y 10,0\MCU_10,0\ColdFire_Tools\FlashToalkitt |

AM29LVD04ET (512KxB8x2) O0xFFE00CO0

File Type: [Workspace... ] [File System... ] [b‘ariables... ]

Erase sectors before program

Restrict to Addresses in this Range

Start: Ox | FFEDOOO0 Address: Ox | FFEDOOO0
End: 0x | FFEFFFFF

Update Program Action | | Update Verif

e) Figure 22 definitions:

- Restrict to Addresses In this Range - address range of the flash device
- Apply Address Offset - start address, where the test data is programmed in the

flash; it should be the flash device start address.
f) Click the Update Program Action button.
g) Similarly update the Verify action.
h) Execute the task.

i) Check the Console view for the algorithms used in execution of the task, as shown in

Listing 15

Listing 15. Programming test log

Downloading 0x00002800 bytes to be programmed at OxFFEFD800
Writing Program Function Code
Writing the Address
Writing the Size
Writing the address of the buffer
Clearing the status
Setting up Registers
Commanding target to run
Programming
Reading program return status
Program Command Succeeded
log: Programmed total of 0x00100000 bytes
log:
log: Program Command Succeeded

Uploading 0x00010000 bytes starting from address OxFFEF0000
log: Uploading 0x00010000 bytes starting from address OxFFEF0000
log: Verified total of 0x00100000 bytes

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

Freescale Semiconductor

43



Flash Programming Examples

log:
Verify Command Succeeded

If all the program/verify actions pass correctly, you have completed creation of a new flash
programming algorithm. The new flash device can be programmed with CodeWarrior flash programmer
without limitation.

7.Flash Programming Examples

7.1. Flash Programming Algorithm for AMD 16x1 Flash Devices

The AMDI16x1Example project (Figure 24) illustrates how the Flash Development Kit is used with the
AMD 16x1 flash algorithm.

Figure 24. CodeWarrior Projects View Displaying AMD16x1Example Project

@) Codewarrior Projacts 53 =0
T |18, = &5 &2 | File Mame =~
File Mame Sige Type Build
= =% AMD16x1Example @ F
AMD16x1 Develop  19KB v

LY

AMD1Ex1 Release 18 KE
# [pil Inchudes
= = Common_Files
+ |c| _ Fash_start, 1 KB C Source File
o exit.c 1KE  Source File
\=| Flash_algorithr 1 KB Linker Command...

L T A . T T 4

+ [k flash_comman 1 KB C Header Filz
#  [h| Flash_device 1 KE  Header File
+  |.c| Flash_main.c 2 KB C Source File
+ g flash_test.c 4 KB Source File
+ |k genetic.h 1KE C Header Fils
= [—= Sources
# |.g| algo_impl.c SKB C Source File v
< >

7.1.1. Implementation of ID Function for AMD 16x1 Flash Devices

The sequence for getting the Manufacturer ID and Device ID, based on the AMD flash specification, is
shown in Table 5.

Table 5. ID Command Sequence for the AMD Flash

Bus Cycles

Command Sequence First Second Third

Cycles

Addr | Data Addr | Data Addr | Data

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

44 Freescale Semiconductor



Flash Programming Examples

Manufacturer ID 4 555 AA 2AA 55 (BA)555 90

Device ID 6 555 AA 2AA 55 (BA)555 90

Listing 16. ID function sample code for AMD flashes

retval_t ID(parameter_block t *p_pb)

{
volatile unsigned short *baseaddress = (p_pb->base_addr) .w;
retval_t result = 0;

/* reset */
* (baseaddress) = (unsigned short) 0xFOFO0;

/* setup for get id */
* (baseaddress + 0x555)
* (baseaddress + 0x2AA) = (unsigned short) 0x55;
* (baseaddress + 0x555) = (unsigned short)0x90;

(unsigned short) OxAA;

#ifdef FLASH_ALGO_TEST
/* get id */

mf_id = *(baseaddress) ;
part_id = *(baseaddress + 1);
#endif

/* read mode again */
* (baseaddress) = (unsigned char) 0xFO0;

return result;

When using the Algo Development build target, the device ID and manufacturer’s ID are read from the
flash device and stored in the part_id and mf_id variables (Listing 16). Check these during the flash

algorithm testing.

7.1.2. Implementation of erase_sector Function for AMD 16x1 Flash
Devices

The sequence for the Sector Erase command implementation, based on the AMD flash
specification, is shown in Table 6.

Table 6. Sector Erase Command Sequence for AMD Flash

Command 2 Bus Cycles

Sequence © First Second Third Fourth Fifth Sixth
5‘ Addr | Data Addr Data Addr | Data Addr Data | Addr | Data | Addr | Data

%‘ﬁgg 6 555 | AA | 2AA | 55 | 555 | 80 | 555 | AA | 2AA | 55 | SA | 30

Refer to the actual encoding of the erase_sector function for AMD flashes in Listing 17.

45



PR 4

Flash Programming Examples

Listing 17. Function erase_sector sample code for AMD flashes

retval_t erase_sector (parameter_block_t *p_pb, unsigned long sect_index)
{

volatile unsigned short *sectoraddress = ((unsigned short **) (p_pb-
>items) .w) [sect_index];

volatile unsigned short read;

retval_t result = 0;

/* first of all reset the device. The fID is no longer called in the new
flash programmer plugin (it was used in the old AMC MWX-ICE) therefore
the flash chip must always be brought into the read state.

*/

/* reset sector */
* (sectoraddress) = (unsigned short) OxFOFO0;

/* erase sector */

* (sectoraddress + 0x555) = (unsigned short) 0xAA;
* (sectoraddress + 0x2AA) = (unsigned short) 0x55;
* (sectoraddress + 0x555) = (unsigned short) 0x80;
* (sectoraddress + 0x555) = (unsigned short) 0xAA;
* (sectoraddress + 0x2AA) = (unsigned short) 0x55;
* (sectoraddress) = (unsigned short)0x30;

read = * (sectoraddress) ;

/*
Wait for the status value to be read from *addr or
how_long ticks to pass. If how_long ticks pass,
a non-0 value will be returned.
On the AMD chips, DQ7 is inverted until the embedded
algorithm is completed when it flips to the correct
value. The parameter 'hi' will indicate whether that
value is set or cleared.
*/
while ((read & 0x0080) != 0x0080)
{

read = *(sectoraddress);

/* read mode again */
* (sectoraddress) = (unsigned char)OxFO0;

return result;

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
46 Freescale Semiconductor




Flash Programming Examples

7.1.3. Implementation of erase_chip Function for AMD 16x1 Flash Devices

The sequence for the Chip Erase command, based on the AMD flash specification, is shown in Table
7 and Listing 18.

Table 7. Chip Erase Command Sequence for AMD Flash

Command 2 Bus Cycles
Sequence © First Second Third Fourth Fifth Sixth
5‘ Addr | Data Addr Data Addr | Data Addr Data | Addr | Data | Addr | Data
Ec;glsria 6 555 AA 2AA 55 555 80 555 AA 2AA 55 555 10

Listing 18. Function erase_chip encoding for AMD flashes

retval_t erase_chip (parameter_block_t *p_pb)

{

int errors = 0;
retval_t result = 0;
unsigned short stat;
unsigned short mask = (unsigned short)DQ7;
unsigned short masked_src = (unsigned short)DQ7;
int got_it;
volatile unsigned short *base_addr = (p_pb->base_addr) .w;

/* first of all reset the device. The fID is no longer called in the new
flash programmer plugin (it was used in the old AMC MWX-ICE) therefore
the flash chip must always be brought into the read state.

*/

*base_addr = O0xFOFO;

/* erase sector */
* (base_addr + 0x555)
* (base_addr + 0x2AA)
* (base_addr + 0x555)

(unsigned short) 0xAA;

(unsigned short) 0x55;

(unsigned short) 0x80;

/* erase chip */

* (base_addr + 0x555)
* (base_addr + 0x2AA)
* (base_addr + 0x555)

(unsigned short) 0xAA;

(unsigned short) 0x55;

(unsigned short)0x10;

/* Wait for status operation */

mask &= 0x0080; /* Only dg7 flips */
masked_src &= 0x0080;
while ( 1 )
{
if ( (*base_addr & mask) == masked_src )
{
break;

47



Flash Programming Examples

/* return to read mode */
*base_addr = 0xf0;

return result;

7.1.4. Implementation of Write Function for AMD 16x1 Flash Devices

In terms of AMD flash devices specification, the write function realizes the Program command. The
sequence for the Program command, according to the AMD specification, is shown in Table 8.

Table 8. Program command sequence for AMD flash

@ Bus Cycles
Command Sequence ° First Second Third

3 Addr Data Addr Data Addr Data
Program 4 555 AA 2AA 55 555 AO

Refer to the actual encoding of the write function for AMD flashes in the algo_impl. c file as
shown in Listing 19.

Listing 19. Sample write function code for AMD flashes

retval_t write(parameter_block_t *p_pb)

{

int timed_out, got_it;
unsigned long i;
unsigned short stat;
retval_t errors = 0;
unsigned short mask = (unsigned short)DQ7;
unsigned short masked_src = (unsigned short)DQ7;
volatile unsigned short *base_addr = (p_pb->base_addr) .w;
unsigned short *buffer = (p_pb->items) .w;
unsigned long buffer_ len = p_pb->num_items;
unsigned long how_many = buffer_len / sizeof (unsigned short) ;

if ( buffer_len % sizeof (unsigned short) ) {
/* we need to fill the remaining bytes with 'ff' -- this assumes
byte accesses to DRAM will work */
char *p = (char *) ((unsigned long)buffer + buffer_len);
*p++ = '"\xff';

how_many++ ;

/* first of all reset the device. The fID is no longer called in the new
flash programmer plugin (it was used in the old AMC MWX-ICE) therefore
the flash chip must always be brought into the read state.

*/
*base_addr = (unsigned short)O0xf0f0;
for (i1 = 0; (i < how_many) && !errors; i++){

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

48

Freescale Semiconductor




Flash Programming Examples

unsigned short *c = (unsigned short*) ( (unsigned long)base_addr & ~0x1fff);
*((c) + 0x555) = Oxaa;
*((c) + 0x2aa) = 0x55;
*((c) + 0x555) = 0xal;
*base_addr = *buffer;
/* Wait for status operation */
mask &= 0x0080; /* Only dqg7 flips */
masked_src = (unsigned short) ( (unsigned char)DQ7 & *buffer);
masked_src &= 0x0080;
while ( 1 )
{
if ( (*base_addr & mask) == masked_src )
{
break;

base_addr++;
buffer++;

/* go back to the last access */

--base_addr;

/* read mode again */
*base_addr = (unsigned char)0xfO0;

return errors;

7.2. AMD 16x1 Flash Programming Algorithm Unit Testing

This section illustrates an example flash test application working with AMD 16x1. The flash
programming applet is tested on a Freescale M5235EVB with an AM29PL160CB flash device.

7.2.1. Flash Testing Setup

Use the Algo Development target — shown in Figure 25— to run the flash programming test
application.
Upon loading, the application stops at the _flash_start () function as shown in Figure 25.

49



b -

Flash Programming Examples

Figure 25. Unit Test Application Start-up Point

[€] _ flash_start.c 53 =08

| >

#ifdef FLASH ALGO TEST
#define SCEATCH MEM ADDEESS OxO
#endif

sm void _flash start (void)
/% thiz the entry point of the algorithm #/

/% Caloculate 3P wvalue, according to the stack_addr
synbol defined in the lef file.
D7 is set by the flash programuesr to the start address
of the scratch memory area address.
The stack address is enbedded in the flash algorithm, B
the flash algortithm address is using PIC/PID code,
=0 the 2P must be initialized at:
scratch memory address + stack_addr

-/

MOWE.L D7, D1

£

7.2.2. Test I: Read Manufacturer and Device ID

After the execution of the Run command, the application stops at the first test check point, as shown in
Figure 26.

Figure 26. Read Manufacturer and Device ID

:f; Debug &3

= E AMD1Ex] Development - PRE USE EDM [Codetarrior Download]
E@ ColdFire, AMD16x1Examplebebug. elf {(Suspended)
¢\ E-pf® Thread [ID: 0x0] (Suspended: Signal 'Halt' received, Description: User halked thread.)

3 shautabuild),
2 main() Dryautobuild,_docsiFlash
= 1 OxFE4DEFAS (OxFE4DEFAS)) OxFeddefad

[ Flash_test.c &2

{
/% Test 1: Read Manufacturer and Dewviee ID %/
case 1:
asm { halt:}:
/% check the values of mf id and part id here above #/
id = mf_id;
id = part_id;

hreak;
/% Test 2Z: Erase a sector *F
case 2:

asm { halt:}:
/% pheck the sector you want to erase has heen erased /7
hreak;

The results of Test I display the manufacturer ID code 0x01 (for AMD) and the device ID code
0x2245 (for the Am29PL160CB flash device). This confirms basic read/write functionality of the
flash devices.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

50 Freescale Semiconductor



Flash Programming Examples

7.2.3. Test lI: Erase a Sector

With another Run command execution the application stops at the Test II check point, as shown in
Figure 29. In Test II, the sector number one of the flash memory is erased. From the sample flash device
definition for AMD 16x1, we have: BASE_FLASH_ADDRESS equal to 0OxFFE00000 and the
SECTOR_ADDRESS_OFFSET equal to 0x4000. Thus for sector 1, flash memory is erased starting at
address 0OXFFE04000 in memory.

To check that the Erase a Sector command works correctly, open the Memory view with the memory
region starting at address OxFFE04000. Upon erasure, flash memory sector contains OXFFFFFFFF
data in its memory.

To display memory at address 0OXFFE04000:

1. Select Window > Show View > Other from the IDE menu bar.
2. Select Debug > Memory in the Show View dialog box. The Memory view appears.

3. Click the Add Memory Monitor button on the Memory view toolbar (Figure 27). The Memory
Monitor dialog box appears (Figure 28).

Figure 27. Add Memory Monitor Button

I console | & Tasks O Memary &2 @Target Tasks | 2 Problems @ Executables D Memory Browser =0

E- e 4| [E

ik
q

Manikars

Figure 28. Monitor Memory

= Monitor Memory El

Enter address or expression ko monikar;

@ l O ” Cancel l

4. Enter 0OXFFE04000 in the Enter address or expression to monitor field. Click OK.

51



Flash Programming Examples

Figure 29. Erase Sector Functionality Check Point

[ Memary &3 S |lon| BBz 8g - O
Monikors E 3& Renderings I
Default:0xFFe04000 <Hex> |
kddress |0 - 3 a - 7 [z - B [c-F [ ]
FFEO4000 FFFFFFFF FFFFFFFF FFFFFFFF
FFEQ4010 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFEOQ40Z0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF _J

FFEO4030 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFEO4040 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFEO4050 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFEO4060 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF LI

ﬁ? Debug &3

=] E .ﬁ.MDlﬁxl Development - PRE USE BOM [Codetwarrior Download]

E # ColdFire, AMD16x%1ExampleDebug.elf (Suspended)

=" .J_"P Thread [ID: 0] (Suspended: Signal 'Halt' received, Description: User halted thread.)
[Dntautobuild',_docsiFlash Sl MO & 1 ExamnplelCommon_Filesiflash_kest,
z maln() [y autobuildy,_docs\Flash SDKAMD16x 1ExamplelCommon_Files|flash_main.c:32 0x000009Fa
2= 1 0x7E4DEFAS (0xFE4DEFAS)) Ox7e4dsfab

[ flash_test.c 23
{

f* Test 1: Read Manufacturer and Device ID */
case 1:
aszm { halt:}:
/% check the walues of mf id and part id here ashove */
id = mf_id;
id = part_id;

break:
/% Test Z: Erase & Sector *f
case Z:

asm { halt:};
/% pheck the sector you want to erase has been erased */

break:
/% Test 3: Write NUMBER _ITEM3 to the sector */
case 3:

The results of Test II show that flash memory, starting at address 0xFFE04000, is erased. This
confirms that the sector erase function works correctly.

7.2.4. Test lll: Program Flash Memory

Another execution of the Run command stops the test application at the Test III check point, as shown
in Figure 30.Test III fills sector one in flash memory with an incremental counter. The number of the
bytes written to flash memory is determined by the NUMBER__ ITEMS parameter in flash_device.h
file. To verify that the flash programming algorithm works correctly and the write function of the flash
performs correctly, check the memory region of flash sector one. In this case, check the memory starting
at address 0OXxFFE04000.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

52 Freescale Semiconductor



h

Flash Programming Examples

Figure 30. Program Functionality Check Point

3 Memory 532 |_|<>L'||$_E|I§I3I’F=D| EU'VEEI

Monitars =% % Renderings o %

------ % Default:0xffe04000 Default: 0xFfe04000 <Hex > |
kddress |0 - 3 4 - 7 [z - B |c-r | ]
FFEO£000 4 04050607 , OS090L0E , OCODOEOF
FFED4010 4 10111213 , 14151617 , 18191K1F , 1C1D1ELF
FFEO4020 , 20212223 , 24252627 , 2G6292R2F , 2ZCZDZEZF O
FFEO4030 , 30313233 , 34353637 , 36393A36 , 3CID3EIF
FFEO4040 , 40414243 , 44454647 , 45494845 , 4C4D3E4F
FFED4050 , S0515253 , 54555657 , S8595ASE , SCSDSESF
FFEO4060 4, 60616263 , 64656667 , GS696LEE , GCEDGEGF hd|

k
%5 Debug £2
= E AMD16:x1 Development - PRE USE BDM [Codevwarrior Download]
EI @ ColdFire, AMD16x1ExampleDebug.elf (Suspended)
B- '@' Thread [ID: 0x0] (Suspended: Signal 'Halt' received. Description: User halted thread.)
3 check_test) Dnhautobuild',_docs\Flash SDKLAMD1Ex 1 Examplel Common_Filesiflash_test,c: 128 0:00000c1c
2 main) O:hauktobuild)_docs\Flash SOKAMD 161 ExamplebCommon_Files'flash_main.c:32 0x000009F 3
------ = 1 0x7E4DEFAS (Dx7E4DEFABY) Ox7eddsfad

[] flash_test.c 53

/* Teat Z: Erase a sector */
case 2:
asm { halt:}:
/% check the sector yvou want to erase has heen erased */

break:
f* Test 3: Write NUMBER_ITEM3 to the sector */
case 3:

asm { halt;:}:
/% check programming was succesfull */

I break:
/% Test 4: Erase the sector %/
case 4:

asm { halt:}:
/% check the sector you want to erase has been erased */
hreak;

The results of Test III show that flash memory, starting at address OxFFE04000, is changed and
contains an increment by one datum. This confirms that the write function works correctly.

7.2.5. Test |V: Erase Sector

Erase Sector One of flash memory again to check that the results in Figure 30 are not produced in error
(Figure 31)

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
Freescale Semiconductor 53




h o
g |

Flash Programming Examples

Figure 31. Erasing Sector One of Flash Memory After Programming

[ memary 53 jf”jﬁhiu’?c:” gg -~ T O
Moaonitars da & Renderings da K
------ % Defauli0xfFe04000 Default:0xffe04000 <Hex> |

lddress |0 - 3 a -7 |&s - B [c -7 [ 4]
FFEQ4000 FFFFFFFF FFFFFFFF FFFFFFFF
FFEQ4010 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFEQ4020 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF _J
FFEO4030 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFEOQ4040 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFEOQ4050 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFEOQ4060 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF .:J

:;;3? Debug &3

= [E] AMD16x1 Development - PRE USE BOM [CodeMarrior Downlaad)
Eu@ ColdFire, AMD16:x1ExampleDebug.elf (Suspended)
: Iél---.;l‘]"g Thread [ID: 0x0] {Suspended: Signal ‘Halt' received. Description: User halked thread.)
—— check_test) Diyautobuild',_docsiFlash sDKk\AMD 16 1ExamplelyCommon_Filesiflash_test,c: 133 000000020
2 main) Dnhaukobuild,_docsiFlash SDKVAMD 161 ExampletCommon_Filesiflash_main,c: 32 0x000003F
1 0xTE4DEFAS (DxTE4DEFASK) OxFeddsfab

[ €] flash_test.c &3

S+ Test 3: Write NUMEER_ITEMZ to the sector "
case 3:

asm { halt;};
/% check programming was succesfull +/

break;
/% Teat 4: Erase the sector
case 4:

asm { halt;}:
/% check the sector you want to erase has been erased */
I break:

#if HAS CHIP ERASE ==
/% Test 5: Erase the chip */
case 5:
asm { halt:}:
/* check erase was succesfull */
break;

Check the memory starting at address 0XxFFE04000 to verify that the flash memory region is erased
correctly. In this example, since the modified memory region contains OxFFFFFFFF, sector data was
erased successfully.

7.2.6. Flash Testing End Point
After finishing, the flash test application goes to the flash_exit () end point, as shown in Figure 32.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
54 Freescale Semiconductor




Create New Flash Utility

Figure 32. Flash Testing End Point

{:b* Cebug &3
= E AMD16x1 Development - PRE USE BDM [Code'Warrior Download]
E| ColdFire, AMD16x1ExamplaDebug.elf (Suspended)
: E|.J?3 Thread [10: 0x0] (Suspended: Signal 'Halt' received. Description: User halted thread.)
=R Flash_i D:aukobuildl_docsiFlash SOKLAMD 16 1ExampleyCommeon_Files [u]a] ]
i 2 main() D:\autobuildl_docsiFlash SDEVAMD 61 E xamplel Common_Filesiflash_main,c:91 0x00000&28
= 1 0x7E4DEFAS (Dx7E4DEFAS)) OxTeddefas

Lg| exit,c 22
/* Flash Programming SDE

* Copyright © 2007 Freescale Semiconductor. 411 rights reserwved.

=
asm void <flash exit(void):

asm void Zflash exit (void)

{
/% setup the stack pointer */
nop
halt

® _loop: bra _loop

illegal
res

When this test is complete, you can use the flash programming algorithm with the CodeWarrior flash
programmer.

8. Create New Flash Utility

8.1. Preliminary Background

Some flash devices like NAND and SPI aren’t memory mapped. The memory cannot be read directly;
therefore, a special utility is needed for the blank check and checksum operations. This is very similar to
a flash algorithm. It receives the commands through a data structure and passes back the results through
the same structure.

8.2. Flash Utility Template Overview

The Flash Utility Template described in this document also helps you develop flash utilities for the
CodeWarrior flash programmer, as shown in_Figure 33.

55



Create New Flash Utility

Figure 33. Flash Utility

8.3.

K@ Codetarrior Projects &3 =5
| — .::}'33 ‘,Q File =
File Mame =
& B FlashUtilityTemplate @ Flash Uity Development
[} Includes
= = Common Files
EI __Flash_start.c 1 KE o Source
Common Part EI ek, c 1 KB i Source
@ flash_tesk.c ZKE C Source
2] Flash_utiliey.IcF 1 KB Linker Co
Flashlkility . b 2KB C Header
\_ [ wtiley_main.c KB C S-:n_w/
=] FlashlEhty T emplate - Debug. launch 15 KB
Flashitility Template - Release launch 15 KB
E = Sources
User Part 18] FlashUtiliy.c KB  Source
\

Flash Utility General Structure

The Flash Utility application is divided into three different sets of files:

Flash Utility Common Files (No Modification Needed) — Includes initialization and other files.
This component is common for all flash devices and you should not change it while developing the
new flash programming algorithm. It consists of the following files:

— flash_utility.lcf file — Linker command file, which is set up according to the rules for
flash programming applet allocation in physical memory.

— flash_start.c — Flash programmer start-up initialization file.
— utility_main.c —Main function and API to the CodeWarrior Flash Utility.

— FlashUtility.h — Header file with the generic data structures and definitions used by the
flash utilities.

— exit.c — Exit point for the flash utility.

User Files (Implement Utility): Includes flash device specific files. This component is modified for
any flash devices depending on the flash utility to be used. It consists of the following files:

— FlashUtility.c — Includes functions to implement for the flash device utility, such as
executeBlankCheck and executeCheckSum.

User Files (Implement Flash Utility Tests): Includes flash device specific files. This component is
considered to be modified for any flash devices depending on the flash utility to be used. It consists
of the following files:

— flash_test.c — Includes sample code with the flash unit test functionality implementation.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

56

Freescale Semiconductor



Create New Flash Utility

To create a new utility for flash programming, make all changes to FlashUtility.c (flash device
utility implementation) and FlashUtility.h/flash_test.c (for flash utility testing).

8.4. Flash Utility Build Targets

Several build targets are predefined in the Flash Utility Template:

- Flash Utility Development — flash utility development and test application. The ELF executable
file, created in Flash Utility Development, should be used to develop, debug, and test the new
CodeWarrior flash programmer utility.

- Flash Utility Release — create flash utility applet. CodeWarrior flash programmer uses the ELF
executable file, created in Flash Utility Release. This build target shares the flash device utility
with the Flash Utility Development build target; it differs, however, because it cannot be debugged

or tested (Figure 34).

Figure 34. Flash Utility Targets

& Properties for FlashUtilityTemplate |-_‘@@
type Filter taxt Settings e
Resource
Builders
= C/C++ Build Configuration; | Flash Utiity Development i

Build Variables
Discovery Options
Enviranment
Settings

Tool Chain Editor

=]
[ All configurations ]
B3 Tool Settings Build Steps

Build Artifact |ﬂ Binary Parsers | €3 Error Parsers | Build Tool Yersions

@ ColdFire CPU Processor Family {-proc) |5235 -

+- CfC++ General
Linked Resources
Project References
Resource Filters
Run/Debug Settings

@ Debuaging

)

(22 Messages

@ Librarian
=] @ Burner

B Caneral

8.5. Flash Utility API

The CodeWarrior flash programmer communicates with the flash utility applet through two different
commands:

e Blank Check

e Checksum
The same memory zone, parameterBlockType structure, defined for Flash Device Algorithm is
used by the utility.
On the flash utility side, the commands from the CodeWarrior flash programmer go through the
parameterBlockType structure, mapped in memory, starting from the beginning of the memory
buffer.
All commands from CodeWarrior flash programmer are already encoded in utility_main. c file. This
file can be used for the new flash programming algorithm without changes. After loading the utility
applet to the target board, CodeWarrior flash programmer writes all parameters right in the data structure
located at the beginning of the memory buffer.

For the detailed description of the parameterBlockType structure, refer to Listing 20.

57



Create New Flash Utility

Listing 20. parameterBlockType structure details

typedef volatile struct {

unsigned long magicNumber; /* Magic id code used to verify image */

unsigned long function; /* What function to perform ? */

unsigned long result_status; /* Status of the operation */

pointer_type start_address; /* start address of the operation */

pointer_type end_address; /* end address of the operation */

unsigned long numBlankCheckErrors; /* total number of blank check errors found */

unsigned long numRecordedBlankCheckErrors; /* number of mismatches recorded
*/

mismatchErrorType *mismatches; /* address of the array of mismatches*/

unsigned long checksumValue; /* intput and output checksum value */

unsigned long baseAddress; /* Base address of the flash */

} parameterBlockType;

Listing 20 definitions:

* magicNumber is a number written at the beginning of the flash utility parameter block.
CodeWarrior flash programmer reads the first location from the memory buffer upon downloading
the utility. The expected value is 0xBCC5BCCS5.

e function is the command to be executed. It can be blank check or checksum.

e result_status contains the operation result. It can be success, fail, or unknown command.
e start_address is the start address for the requested command.

e end_address is the end address for the requested command.

e numBlankCheckErrors stores the number of errors found during the blank check operation.

e numRecordedBlankCheckErrors is the number of errors found during blank check that
have been recorded. Up to 12 errors are recorded.

e mismatches is a pointer to mismatchErrorType structure defined in Listing 21. It contains
all errors recorded.

e checksumvValue is the checksum computed.

e baseAddress is reserved for future use.

Listing 21. mismatchErrorType structure details

typedef volatile struct {
pointer_type address; /* where the error/mismatch occured */
unsigned long expected;
unsigned long actual ;

} mismatchErrorType

Listing 21 definitions:

— address is a structure of pointer_type defined in Listing 22. It contains the address
where an error has been found.

— expected is the value expected to be found in flash memory.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
58 Freescale Semiconductor




Create New Flash Utility

— actual is the value actually found in flash memory.

Listing 22. pointer_type structure details

typedef union {unsigned char* c;
unsigned short* w;
unsigned long* 1;

unsigned long long* 11;
void* e;} pointer_type;

The pointer_type is a somewhat generic pointer. We can get the data as any type — unsigned char,
short, long, long long, or void.

The supported functions are:

BlankCheck

The BlankCheck command is called by the flash programmer to blank check a memory
range. For the BlankCheck command, CodeWarrior flash programmer:

Checksum

loads the flash utility on the target board,
sets the command BlankCheck, as shown in the function field of Listing 20,

sets the start_address and end_address parameters, as shown in the
function field of Listing 20

runs the flash utility applet,
waits until flash utility stops execution,

checks the status of the command being executed, as shown in the result_status
field of Listing 20, and

reads the number of errors and records the errors and their location if the status reports
an error, as shown in Listing 20.

The Checksum command is called by the flash programmer to blank check a memory range.
For the Checksum command, CodeWarrior flash programmer:

loads the flash utility on the target board,
sets the command Checksum, as shown in the function field of Listing 20,

sets the start_address and end_address parameters, as shown in the function
field of Listing 20,

runs the flash utility applet,
waits until flash utility stops execution,

checks the status of the command being executed, as shown in the result_status
field of Listing 20, and

59



Create New Flash Utility

- reads the checksum result if status is success, as shown in Listing 20.

8.6. Create New Flash Utility

To create a new CodeWarrior flash programmer flash utility using the Flash Utility Template, for a flash
device not supported by the CodeWarrior software:

1.

2.

A

Store the original version of Flash Utility Template available in the CodeWarrior delivery to a
different working directory. The location of the FlashUtilityTemplate folderis:
{CodeWarriorInstallDir]\MCU\ColdFire_Tools\FlashToolKit

Import Flash Utility Template project:
a) Select File > Import from the IDE menu bar. The Import dialog box appears.

b) Select General > Existing Projects into Workspace. Click Next. The Import Projects
page appears.

c) Click Browse, browse to the location containing the folder where you have copied the
FlashUtilityTemplate folder, select the folder, and click OK. The Projects list
gets populated with the projects available in the FlashUtilityTemplate folder.

d) Clear the checkboxes next to the projects that you do not want to import and click Finish.
The imported project is displayed in the CodeWarrior Projects view in the C/C++
perspective, as shown in Figure 33. Check that the project is using the Flash Utility
Development build target.

Select Run > Debug Configuration. The Debug Configuration dialog box appears.
Expand the CodeWarrior Download tree node and select the desired launch configuration.
Click the Debugger tab in the right panel.

Select the required target processor from the Target Processor drop-down list.

Specify required target initialization and memory configuration files for the connected hardware
in the Target initialization file and Memory Configuration File text boxes.

For supported Freescale Evaluation Boards, you can use the debugger configuration files

(* . cfg), and the debugger memory files (* . mem) available with the CodeWarrior Development
Studio. Check the folder:
{CodeWarriorInstallDir}\MCU\ColdFire_Support\Initialization_Files

Specify an alternate loading address.

a) The flash utility, a PIC\PID application, can run from anywhere in memory. An alternate
loading address is where the flash utility code is loaded and executed on the target board.
This address can be either in internal or external RAM memory, as shown in Figure 35.

b) The Alternate Load Address should match the address where the code is linked. By
default, the flash programming algorithm is compiled to start at address 0x0; refer to the
TEXT start address value in the f1lash_utility.lcf linker command file, as shown
in Listing 23.

c) If the custom board’s address space where you want to debug the applet is other than

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

60

Freescale Semiconductor



Create New Flash Utility

0x0, the alternate address must be changed. For example, if RAM is allocated starting
from address 0x2000000, the alternate loading address will be 0x20000000+0x500
= 0x20000500.

Figure 35. Alternate Load Address

Mame: | FlashUtility Template - Debug
B2 Main | ¢9= arguments | B Environment | %3 Debugger 2 Source | =] Comman Dg? Trace and Profile

Debugger: | CodeWWarrior Debugger for ColdFire -

Stop on skartup at:

O Pragrarm entry poink

() User specified | _flash_start

Debugger Options
ColdFire | Exceptions | Reset | Interrupts | Download | Connection | PIC Remate | Other Executables | Symbolics | OS5 Awareness

[ alternate Load Address

Listing 23. Code start address definition in flash_utility

H

FH oH H H H H FH H*

Sample Linker Command File for Metrowerks Embedded 68K/ColdFire

NOTE: The debugger uses the Illegal Instruction Vector to stop.

A small subroutine is written at the location VBR+0x408-VBR+0x40B
to handle the exception. The Illegal Instruction Vector in

the the vector table at VBR+0x10 is then pointed to it. When the
debugger encounters an illegal instruction, it jumps to this
subroutine, which ends with an RTE, then exits.

Do not overwrite this area of memory otherwise the debugger may not
exit properly.

MEMORY {

).

.data (RW) : ORIGIN = 0x00000000, LENGTH = 0 # using External DRAM
.text (RX) : ORIGIN = AFTER(.data), LENGTH = 0
lcf file

9. Specify FLASH_DEVICE_START_ ADDRESS and FLASH_DEVICE_END_ADDRESS in the
FlashUtility.h file. They are used for testing the command functions.

10. Modify executeBlankCheck function in the FlashUtility.c file. The function must

read the command options, perform the blank check action, and place the results in the parameter

block. See Modify ID function in the algo impl.c file: for an implementation example.

11. Modify executeCheckSum function in the FlashUtility. c file. The function must read
the command options, peform the checksum, and place the results back in the parameter block.
See Modify ID function in the algo impl.c file: for an implementation example.

12. Compile Flash Utility Development target. While creating and testing a new utility, use the Flash

61



Flash Utility Examples

Utility Development build target of the Flash Utility Template project. Compilation results in
creation of anew FlashUtilityTemplateDebug.elf file.

13. Flash utility unit testing:

a) To simplify flash utility creation and testing, flash utility test functionality is included
with FTK in the Flash Utility Development target. The flash utility test functionality is
available in the file f1lash_test.c forit. Unit testing functions contain basic
functionality required for the flash utility:

- check the blank check function
- check the checksum function

b) Load the file FlashUtilityTemplateDebug.elf and run it on a target board.
Check the tests results. As an example of the test working, refer to Modify ID function in
the algo impl.c file:.

14. Compile Flash Utility Release target. Copy the resulted file in the following folder:
{CodeWarriorInstallDir \MCU\bin\plugins\support\Flash_Programmer\ColdFi
re

15. Use the new flash utility in the device description xml file. Run a Flash Programmer with the
new device/utility in the similar way the Flash Programmer is run for the flash algorithm. For

more information, refer Create New Flash Programming Algorithm.

9. Flash Utility Examples

9.1. Flash Utility Example for NOR Flash Devices

The FlashUtilityExample project (Figure 36) implements a flash utility for the NOR flash
devices.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

62 Freescale Semiconductor



Flash Utility Examples

Figure 36. FlashUtilityExample Project

g Codetvarrior Projects 53 =0
i | =S, File =

File Mame = I Size I Twpe

B == FlashUkilityExample

[pi Includes
El = Cammaon Files

\c| _ Flash_skart.c 1 KB C Source
L] exit.c 1 KB C Source
\c| Flash_test.c ZKB CSource
= Flash_utilitsylcF 1 KB Linker Car
FlashUtility b 2 KB © Header
L] utility_mmain.c 1 KB C Source
= Debug
FlashUtilityExample - Debog. launch 18 KB
FlashUtilitwExample - Release,launch 18 KB
= Release

B Sources

L] FlashUkiliky ¢ 3IKE C Source

9.1.1. Implementation of executeBlankCheck Function

Listing 24 shows the implementation of the function.

Listing 24. Implementation of executeBlankCheck function

void executeBlankCheck ()

{
unsigned char *endAddress;
unsigned char *currentAddress;
unsigned long recordedMismatches;
unsigned long totalMismatches;

// Retrieve the operating bounds from the parameter block

currentAddress = gParams.start_address.c;
endAddress = gParams.end_address.c;
recordedMismatches = 0;

totalMismatches = 0;

while ( currentAddress <= endAddress )

{
if ( *currentAddress != FLASH UTILITY ERASED VALUE )
{

totalMismatches++;

if ( recordedMismatches < FLASH UTILITY MAX MISMATCH_ERRORS )
{

gMismatches|[recordedMismatches] .address.c = currentAddress;

63



b -

Flash Utility Examples

gMismatches|[recordedMismatches] .expected

FLASH_UTILITY_ERASED_VALUE;
gMismatches|[recordedMismatches] .actual = *currentAddress;

recordedMismatches++;

// make sure we don't have a problem getting out of the
// loop at OXFFFFFFFF

if ( currentAddress == endAddress )
break;
currentAddress++;

// Update the output parameters for the flash programmer to read ...
if ( totalMismatches != 0 )

gParams.result_status =
FLASH_UTILITY_STATUS_BLANKCHECK_FAIL;
}

else

FLASH_UTILITY_STATUS_SUCCESS;

gParams.result_status

totalMismatches;

gParams .numBlankCheckErrors
gParams .numRecordedBlankCheckErrors = recordedMismatches;

The function reads from start_address to end_address and compares all memory values with
the erased memory value. The errors equal to the value of the parameter
FLASH _UTILITY_MAX_ MISMATCH_ERRORS are stored and returned through the parameter block

structure.

9.1.2. Implementation of executeCheckSum Function

Listing 25 shows the implementation of the function.

Listing 25. Implementation of executeCheckSum function

void executeCheckSum ()

{
unsigned char *endAddress;
unsigned char *currentAddress;
unsigned long checksumValue;

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

64 Freescale Semiconductor



h

Flash Utility Examples

// Retrieve the operating bounds from the parameter block

currentAddress = gParams.start_address.c;
endAddress = gParams.end_address.c;
checksumvValue = gParams.checksumValue;

while ( currentAddress <= endAddress )

{

checksumValue += *currentAddress;

if ( currentAddress == endAddress )
break;
currentAddress++;

// Update the output parameters
gParams.checksumValue = checksumValue;

// Update the output status
gParams.result_status = FLASH_UTILITY_ STATUS_SUCCESS;

The function computes the checksum between start_address and end_address, and then returns

the result through the parameter block structure.

9.2. Flash Utility Unit Testing

This section illustrates a flash utility example for NOR flashes. It has been tested on a Freescale
M523 5EVB board with an AM29PL160CB flash device.

9.2.1. Flash Utility Testing Setup

Use the Flash Utility target to run the flash utility. Upon loading, the application stops at the
_flash_start () function, as shown in Figure 37.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

Freescale Semiconductor

65



(O
P

Flash Utility Examples

Figure 37. Flash Utility Entry Point

[¢] _ flash_start.c &3

10asm void _flash startc(void); ;I
11

1Zextern void main| void |
liextern unsigned long _SDL_BASE;
l4extern unsigned long stack saddr;

1Sextern unsigned long end of text;
16
17asm wvoid _flash start (void)
164
19 /% Calculate Load Address  +/
» 20| lea Oipe), Al
21 mowve.l A1, D1
22 sub. 1 #2, D1
23 lea _flash_start, Az I
Z4 sub. 1l Az,D1

9.2.2. Test I: Perform Blank Check Function

After the execution of the Run command, the application stops at the first test check point as shown in
Figure 38.

Figure 38. Blank Check Function Test Result

#5 Debug 53 i 6 B e |z & & 5% |

= E FlashUtilityExample - Debug [Code'Warrior Download]
E@ ColdFire, FlashUtilityExampleDebug.elf (Suspended)
: E--m@ Thread [ID: 0x0] (Suspended: Signal 'Halt' received. Description: User halted thread.)
= check_test() D:\autobuild'_docsFlash SOK\FlashUtilityExamplel, Common Filesiflash_test, c: 72 0x0000041c
= 2 main() Dilautobuildi_docsiFlash SDKFlashUktyExamplelCamman Filesiutiity_main,c:27 0x00000<4d0
= 1 OxEZ32C874 (0xE232CE74)() OxeZ32ca7d

m o~

[¢] Flash_test.c &3

R o

59 case eEmbeddedElankCheck:
a0l /f check test results for blank check
61 /f get the result, value zero weans success, any other is error
B2 regult = params->result_sStatus;
63 /¢ number of blank check errors found
G4 hlankCheckErrors = params-—->numElankCheckErrors:
55 /f nunber of recorded hlank check errors
514 recordedBlankCheckErrors = params-rnunBecordedBlankCheckErrors:
a7 /f get the mismatches in an array of pointers
151 // this will allow easier inspect for
59 #f expected wvalue, found value and address
7o for (i = 0; i <« recordedBlankCheckErrors: i++)
71 mismatches[i] = params—>mismwatches + i
3 7z asm {halt:}:
73 break:

Inspect the variables to see the test results:
e result contains the following possible values:
— 0, if the blank check was successful.
— 1, if the command was invalid.
— 2, if blank check failed.

e blankCheckErrors is the number of errors found.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
66 Freescale Semiconductor




Flash Utility Examples

e recordedBlankCheckErros is the number of errors returned through the parameter block

structure.

* mismatches is an array of pointers to structures that contains all errors found.

9.2.3. Test lI: Perform CheckSum Function

After the execution of the Run command, the application stops at the second test check point, as shown

in Figure 39.

Figure 39. Checksum Function Test Result

%5 Debug 53

= E FlashUkilitvExample - Debug [Codew arrior Download]
E| ColdFire, FlashUtilityExanpleDebug. elf (Suspended)

SD BRI

=g Thread [ID: 0x0] (Suspended: Signal 'Halt' received, Description: User halted thread. )

3 check_test) D;hautobuild,_docsiFlash S0 FlashiltilicvExamplet Common Filestflash_test,c: 33 0x00000444
2 mainf) D:hautobuildy_docsiFlash SDE\FlashUtilityvExampleyCommon Filesiutility _main,c:27 0x000004d0

= 1 0xE232C874 (0xE232C874)) Oxe232c874

7o
7a
77
=
=l
t=]u]
=k i
=1
=k

SR

.c| Flash_test.c &2 Flashltility b \I

case eEmbeddedCheckSum:

// check test results for checksum

/f get the results, zero value means success, any other is error
result = params->result status;

/4 the cowmputed checksum

checksunValue = params—>checksurialue:

asm {halt;}:

hreak;

Inspect the variables to see the test results:

e result contains the following possible values:

— 0, if the checksum was successful.

— 1, if the command was invalid.

e checksumvalue is the checksum value computed.

9.2.4. Flash Utility Testing End Point

After finishing, the flash test application goes to the FLASH_BC_CS_Exit () end point, as shown in

Figure 40.

67



Troubleshooting Flash Programmer

Figure 40. Flash Utility Testing End Point
%5 Debug 13 & B O = | T RS | i m -~

= E FIashUtiIityExampIe - Diebug [Codewarrior Download]
E| & ColdFire, FlashUtilityExampleDebug. elf (Suspended)
E| d? Thread [I0: 0x0] (Suspended: Signal 'Halt' received, Description: User halted thread.)

5 FLASH_BC_C5_Exit() D:\aukobuildl_docs\Flash SDKYFlashUklitvExamplelCommon Files

i 2 maln() Dhautobuildy,_docs\Flash SO FlashUkilieyE xamplet Common Filesiutilicy_main.c:51 DxDDDDD4Fc
LB 1 0xE2320674 (DXE232CE74)() Oxe232cB74

[€] exit.c 22 FlashUkility. b 1

lasm void FLAZH BC_C3 Exit (void):
2

Gasm void FLASH BC C5_Exit (void)
44

5 /* setup the stack pointer */
[ nop
7 halt
» &_loop: bra _loop
=] illegal

10 rts
When this test is complete, you can use the flash utility with the CodeWarrior flash programmer.

10. Troubleshooting Flash Programmer

It is possible that the CodeWarrior flash programmer does not recognize the flash devices on your target,
or has a problem with erasing or programming. If so, use the troubleshooting techniques in this topic to
ensure that basic reads and writes to flash function correctly. If you still cannot program your flash
devices, please contact Technical Support at:

http://www. freescale.com/support

This topic explains how to configure your target flash devices to display their manufacturer and device
ID codes. If the devices can display this information, then basic reads and writes to the devices are
functioning correctly. This means that you are unable to program your flash due to either:

e flash device configuration file or

e flash-programming algorithm

10.1. Theory

Current flash devices use a common method for preventing unintentional programming. A specific
sequence of write cycles must precede each flash programming write cycle to enable programming of a
byte (8 bits) or a word (16 bits). These preceding write cycles walk through an internal-state machine
that enables the flash for one device-programming write cycle. This write-enabling process is necessary
for each flash address to be programmed.

You can use same method to configure a flash device to display its manufacturer and device ID codes:

e The manufacturer ID code is the same for all devices from each manufacturer. Common codes are
0x01 for AMD, 0x1F for Atmel, and 0x89 for Intel.

* Device ID codes are unique for each device; each device’s data sheet specifies its ID code.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
68 Freescale Semiconductor



http://www.freescale.com/support�

Troubleshooting Flash Programmer

Reading these ID codes requires successful write and read cycles to each flash device. This indicates that
the flash-programming problems exist in the CodeWarrior flash programmer rather than in the target
hardware.

Similarly, inability to read these ID codes indicates a low-level problem with reading/writing target
flash. You must resolve such hardware problems for the flash programmer to work.

10.2. Practice

To write to or read from the target flash:
1. Start a debugging session.
2. Open the Debugger Shell view.

3. Run commands change and display. The change command writes to the memory and the
display command reads from the memory.

The formats of the change and display commands are:

change p:<address><value><bus-width>
display p:<start_address>..<end_address><bus-width>

where:

e <address>, <start_address>, and <end_address> are address values that
comply with the CodeWarrior default radix, or with an explicitly defined radix.

e <value> is a data value that complies with the CodeWarrior default radix, or with an
explicitly defined radix.

e <bus_width> is 8bit, 16bit, 32bit, or 64bit.

The change and display commands are used to push flash commands to the devices on your target
and then to read the data that the flash presents. All flash devices use a flash command state machine to
process commands, such as ReadDevice ID, Erase Sector, and Program. Refer to the data sheet for
details of the device command sequences.

To use these command sets:

* Enter each change and display command exactly as listed, except for substituting the correct
high-order address string with $%%. For example, if the flash base address is 0xf£e00000, the
replacement string for $%% is £ fe. The data values must remain same.

* Examine the information you obtain from the display command for the ID codes defined in the
data sheet for your flash device.

If the manufacturer of your target flash device is not AMD, Atmel, or Intel, compare the command
sequences of your device with the command sequences of the devices manufactured by AMD, Atmel,
and Intel. Most likely, your device uses the command sequence of one of these device manufacturers.

69



Troubleshooting Flash Programmer

Fujitsu flash devices, for example, use the same commands as AMD devices. Sharp flash devices use the
same commands as Intel devices. And even if your flash device does not use exactly the AMD, Atmel,
or Intel command sequence, the command sequence should be nearly similar. You can therefore easily
adapt the command sequences of other device manufacturers.

10.3. Using CodeWarrior Script Files

The CodeWarrior source command reads the contents of a text file as a list of sequential CodeWarrior
commands. You can copy the contents of any listing listed in Table 9, to a text file with extension
. tcl. Then, use the source command to invoke the script. Refer Examples for more information.

10.4. Before You Start

Before you can start diagnosing flash problems, gather as much of this information as possible:
e Device manufacturer, such as AMD, Atmel, or Intel
e Device part number
e Number of devices on your target
e Number of data bits (8 or 16) each flash device uses

e Starting flash address on the target

NOTE You can also troubleshoot your flash device without the information listed above,
however that would increase your efforts.

To ensure that your ID-value interrogation does not fail:

1. Make sure that the writes to flash and reads from flash occur exactly as the manufacturer defines
for reading out the manufacturer and device ID codes. Make sure that you disable all address-
translation and memory management features.

2. Disable all processor caches. You must write to/read from the actual flash devices, not a cached
copy of flash.

3. Check the target schematic, to make sure that each WE# (write-enable) processor signal reaches
the correct WE# pin of each target flash device. The target hardware, the target processor
configuration, or both can disable the WE# signal.

4. Check the memory-control registers of the target processor, to make sure that flash accesses are
not read-only.

5. For a 16-bit flash device, determine whether the processor’s least-significant address line is
connected to the flash device. If so, you can rely on the addresses of the flash data sheet. An
example is the AMD AM29L.V640D/AM29L.V641D data sheet, which specifies this sequence
for reading device and manufacturer ID codes:

%%%0555 = AA
%%%02AA = 55
%%%0555 = 90

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

70 Freescale Semiconductor



Troubleshooting Flash Programmer

But many processors do not have the least-significant address line connected to the flash device,
as there is no reason to address individual bytes. If this is the arrangement for your target, you
must compensate by shifting data sheet addresses left by one. This would change the sequence
above to:
0AAA
0554
0AAA

AA
55
90

6. Confirm that data bus least significant bit of each flash device connects to the least significant bit
of the processor. The CodeWarrior flash programmer does not support reverse wired flash
devices.

o oP o°
o oP o°
o0 oP o°

10.4.1. AMD Devices

Some AMD devices are dual-mode, supporting either 8 bit or 16 bit modes. To determine the mode,
check the state of the flash BYTE pin: BYTE = 0 means 8 bit mode configuration; BYTE = 1 means
16 bit mode configuration.

Listing 26 through Listing 34 provides command sequences for AMD flash devices.

10.4.2. Atmel Devices
Listing 35 through Listing 40 provides command sequences for Atmel flash devices.

10.4.3. Intel Devices

Listing 41 through Listing 46 provides command sequences for Intel flash devices. The status register
read outs of these listings is not required for reading out the ID codes. However, if you enter these
commands correctly, the status register results show an operation successful status or possible chip
errors.

Some Intel devices are dual-mode, supporting either 8 bit or 16 bit modes. To determine the mode,
check the state of the flash BYTE# pin: BYTE# = 0 means 8 bit mode configuration; BYTE# = 1
means 16 bit mode configuration.

10.5. Procedure

Perform these steps:
1. Start a CodeWarrior debugging session for your target.
2. Identify the appropriate command sequence for your device using Table 9.
a) If your manufacturer is Fujitsu, use the AMD listing.
b) If your manufacturer is Sharp, use the Intel listing.

c) Otherwise, find the closest match for your device arrangement, so that you can modify the
command sequence as explained in Step 3.

71



Troubleshooting Flash Programmer

3. Substitute the high order address string with %% % in the code of the selected listing and perform
either of the following:

a) Enter the listing commands one after another, in the Debugger Shell view, or

b) Copy the commands, paste them into a . tcl text file, then use a source command in the
Debugger Shell view to invoke the new script.

4. In the output of the display command, look for the ID codes of your flash device. The
device’s data sheet specifies these code values.

a) If the output includes the ID codes, you have confirmed that flash device basic reads and
writes function properly. This means that any programming problem lies with the
CodeWarrior software, so you should report the issue to Freescale Technical Support:
http://www.freescale.com/support.

b) If the output does not include the ID codes, you have confirmed a low-level problem with
reading from or writing to your flash devices. You must solve this problem locally for the
CodeWarrior flash programmer to work.

Two examples follow the command-sequence listings.

10.6. Command-Sequence Listings

Table 9 lists various flash device arrangements and the corresponding command sequences.

Table 9. Flash Device Command Sequences

Manufacturer Devices Command Sequence
One 8-bit device Listing 27
One 8-bit/16-bit device, in 8-bit mode Listing 28
Two 8-bit devices Listing 29
Two 8-bit/16-bit devices, in 8-bit mode Listing 30
AMD Four 8-bit devices Listing 31
Four 8-bit/16-bit devices, in 8-bit mode Listing 32
One 16-bit device Listing 33
Two 16-bit devices Listing 34
Four 16-bit devices Listing 35
One 8-bit device Listing 36
Two 8-bit devices Listing 37
Atmel Four 8bit devices Listing 38
One 16-bit device Listing 39
Two 16-bit devices Listing 40
Four 16-bit devices Listing 41
Intel One 8-bit device 0

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

72 Freescale Semiconductor


http://www.freescale.com/support�

h

Troubleshooting Flash Programmer

Two 8-bit devices Listing 43
Four 8-bit devices Listing 44
One 16-bit device Listing 45
Two 16-bit devices Listing 46
Four 16-bit devices Listing 46

Listing 26. AMD: One 8-bit Device

# Set device to Read state
change p:%%%00000 f0 8bit

# Get Mfg and Device ID values
change p:%%%00555 aa 8bit
change p:%%%002aa 55 8bit
change p:%%%00555 90 8bit

# Display Mfg ID value at offset
0# Display Dev ID value at offset 1
display p:%%%00000..%%%00002 8bit

# Reset device to Read state
change p:%%%00000 f0 8bit

Listing 27. AMD: One 8-bit/16-bit Device, in 8-bit Mode

# Set device to Read state
change p:%%%00000 f0 8bit

# Get Mfg and Device ID values
change p:%%%00aaa aa 8bit
change p:%%%00555 55 8bit
change p:%%%00aaa 90 8bit

# Display Mfg ID value at offset 0
# Display Dev ID value at offset 1
display p:%%%00000..%%%00002 8bit

# Reset device to Read state
change p:%%%00000 f0 8bit

Listing 28. AMD: Two 8-bit Devices

# Set devices to Read state
change p:%%%00000 f0f0 16bit

# Get Mfg and Device ID values
change p:%%%00aaa aaaa 1l6bit
change p:%%%00554 5555 1l6bit
change p:%%%00aaa 9090 1lé6bit

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
Freescale Semiconductor 73




h

Troubleshooting Flash Programmer

# Display Mfg ID values at offsets 0, 1
# Display Dev ID values at offsets 2, 3
display p:%%%00000..%%%00004 8bit

# Reset devices to Read state
change p:%%%00000 f0f0 16bit

Listing 29. AMD: Two 8-bit/16-bit Devices, in 8-bit Mode

# Set devices to Read state
change p:%%%00000 f0f0 16bit

# Get Mfg and Device ID values
change p:%%%001554 aaaa 1l6bit
change p:%%%00aa8 5555 16bit
change p:%%%01554 9090 16bit

# Display Mfg ID values at offsets 0, 1
# Display Dev ID values at offsets 2, 3
display p:%%%00000..%%%00004 8bit

# Reset devices to Read state
change p:%%%00000 f0f0 16bit

Listing 30. AMD: Four 8-bit Devices

# Set devices to Read state
change p:%%%00000 fO0f0f0f0 32bit

# Get Mfg and Device ID values

change p:%%%01554 aaaaaaaa 32bit
change p:%%%00aa8 55555555 32bit
change p:%$%%01554 90909090 32bit

# Display Mfg ID values at offsets 0, 1, 2, 3
# Display Dev ID values at offsets 4, 5, 6, 7
display p:%%%00000..%$%%00008 8bit

# Reset devices to Read state
change p:%%%00000 fO0f0f0f0 32bit

Listing 31. AMD: Four 8-bit/16-bit Devices, in 8-bit Mode

# Set devices to Read state
change p:%%%00000 f0f0f0f0 32bit
# Get Mfg and Device ID values
change p:%%%02aa8 aaaaaaaa 32bit
change p:%%%01550 55555555 32bit
change p:%%%02aa8 90909090 32bit

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
74 Freescale Semiconductor




h

# Display Mfg ID values at offsets 0, 1,
# Display Dev ID values at offsets 4, 5,
display p:%%%00000..%%%00008 8bit

# Reset devices to Read state

change p:%%%00000 fO0f0f0f0 32bit

Troubleshooting Flash Programmer

Listing 32. AMD: One 16-bit Device

# Set device to Read state
change p:%%%00000 f0f0 16bit

# Get Mfg and Device ID values
change p:%%%00aaa aaaa 1l6bit
change p:%%%00554 5555 16bit
change p:%%%00aaa 9090 1l6bit

# Display Mfg ID value at offset 0
# Display Dev ID value at offset 2
display p:%%%00000..%%%00004 16bit

# Reset device to Read state
change p:%%%00000 f0f0 16bit

Listing 33. AMD: Two-16 bit Devices

# Set devices to Read state
change p:%%%00000 fO0f0f0f0 32bit

# Get Mfg and Device ID values

change p:%%%01554 aaaaaaaa 32bit
change p:%%%00aa8 55555555 32bit
change p:%$%%01554 90909090 32bit

# Display Mfg ID values at offsets 0, 2
# Display Dev ID values at offsets 4, 6
display p:%%%00000..%%%00008 16bit

# Reset devices to Read state
change p:%%%00000 fO0f0f0f0 32bit

Listing 34. AMD: Four 16-bit Devices

# Set devices to Read state

change p:%%%00000 fOf0f0f0f0f0f0f0 64bit
# Get Mfg and Device ID values

change p:%%%02aa8 aaaaaaaaaaaaaaaa 64bit
change p:%%%01550 5555555555555555 64bit
change p:%%%02aa8 9090909090909090 64bit

# Display Mfg ID values at offsets 0, 2,
# Display Dev ID values at offsets 8, a,

4,

c,

6
e

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

Freescale Semiconductor



h

Troubleshooting Flash Programmer

display p:%%%00000..%%%00010 lé6bit

# Reset devices to Read state
change p:%%%00000 fOfOf0f0f0f0f0f0 64bit

Listing 35. Atmel: One 8-bit Device

# Set device to Read state
change p:%%%05555 aa 8bit
change p:%%%02aaa 55 8bit
change p:%%%05555 f0 8bit

# Get Mfg and Device ID values
change p:%%%05555 aa 8bit
change p:%%%02aaa 55 8bit
change p:%%%05555 90 8bit

# Display Mfg ID value at offset 0
# Display Dev ID value at offset 1
display p:%%%00000..%%%00002 8bit

# Reset device to Read state
change p:%%%05555 aa 8bit
change p:%%%02aaa 55 8bit
change p:%%%05555 f0 8bit

Listing 36. Atmel: Two 8-bit Devices

# Set devices to Read state
change p:%%%0aaaa aaaa 1l6bit
change p:%%%05554 5555 16bit
change p:%%%0aaaa f0f0 1l6bit

# Get Mfg and Device ID values
change p:%%%0aaaa aaaa 1l6bit
change p:%%%05554 5555 1l6bit
change p:%%%0aaaa 9090 1l6bit

# Display Mfg ID values at offsets 0, 1
# Display Dev ID values at offsets 2, 3
display p:%%%00000..%%%00004 8bit

# Reset devices to Read state
change p:%%%0aaaa aaaa 16bit
change p:%%%05554 5555 16bit
change p:%%%0aaaa f0f0 1l6bit

Listing 37. Atmel: Four 8-bit Devices

# Set devices to Read state
change p:%%%15554 aaaaaaaa 32bit
change p:%%%0aaa8 55555555 32bit

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
76 Freescale Semiconductor




Troubleshooting Flash Programmer

change p:%%%15554 fOf0f0£f0 32bit

# Get Mfg and Device ID values

change p:%%%15554 aaaaaaaa 32bit
change p:%%%0aaa8 55555555 32bit
change p:%%%15554 90909090 32bit

# Display Mfg ID values at offsets 0, 1, 2, 3
# Display Dev ID values at offsets 4, 5, 6, 7
display p:%%%00000..%%%00008 8bit

# Reset devices to Read state

change p:%%%15554 aaaaaaaa 32bit
change p:%%%0aaa8 55555555 32bit
change p:%%%15554 f0f0f0£f0 32bit

Listing 38. Atmel: One 16-bit Device

# Set device to Read state

change p:%%%0aaaa 00aa 1l6bit
change p:%%%05554 0055 16bit
change p:%%%0aaaa 00f0 1l6bit

# Get Mfg and Device ID values
change p:%%%0aaaa 00aa 1l6bit
change p:%%%05554 0055 16bit
change p:%%%0aaaa 0090 1l6bit

# Display Mfg ID value at offset 0
# Display Dev ID value at offset 2
display p:%%%00000..%%%00004 16bit

# Reset device to Read state
change p:%%%0aaaa 00aa 1l6bit
change p:%%%05554 0055 1l6bit
change p:%%%0aaaa 00f0 1l6bit

Listing 39. Atmel: Two 16-bit Devices

# Set devices to Read state

change p:%%%15554 00aal0aa 32bit
change p:%%%0aaa8 00550055 32bit
change p:%%%15554 00£000£f0 32bit

# Get Mfg and Device ID values

change p:%%%15554 00aalOaa 32bit
change p:%%%0aaa8 00550055 32bit
change p:%$%%15554 00900090 32bit

# Display Mfg ID values at offsets 0, 2
# Display Dev ID values at offsets 4, 6
display p:%%%00000..%%%00008 16bit

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

Freescale Semiconductor 77



PR 4

Troubleshooting Flash Programmer

# Reset devices to Read state

change p:%%%15554 00aal0aa 32bit
change p:%%%0aaa8 00550055 32bit
change p:%%%15554 00£f000£f0 32bit

Listing 40. Atmel: Four 16-bit Devices

# Set devices to Read state

change p:%%%02998 00aal0aall0aallaa 64bit
change p:%%%01550 0055005500550055 64bit
change p:%%%02aa8 00f000f£000£f000£f0 64bit

# Get Mfg and Device ID values

change p:%%%02998 00aal0aall0aallaa 64bit
change p:%%%01550 0055005500550055 64bit
change p:%%%02aa8 0090009000900090 64bit

# Display Mfg ID values at offsets 0, 2, 4, 6
# Display Dev ID values at offsets 8, a, c, e
display p:%%%00000..%%%00010 16bit

# Reset devices to Read state
change p:%%%02998 00aal0aall0aallaa 64bit
change p: 01550 0055005500550055 64bit

%%
change p:%%%02aa8 00£f000£000£000f0 64bit

Listing 41. Intel: One 8-bit Device

# Set device to Read state
# and clear status register
change p:%%%00000 ff 8bit
change p:%%%00000 50 8bit

# Get Mfg and Device ID values
change p:%%%00000 90 8bit

# Display Mfg ID value at offset 0
# Display Dev ID value at offset 1
display p:%%%00000..%%%00002 8bit

# Read and display status register
change p:%%%00000 70 8bit
display p:%%%00000..%%%00001 8bit

# Reset device to Read state
change p:%%%00000 ff 8bit

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
78 Freescale Semiconductor




Troubleshooting Flash Programmer

Listing 42. Intel: Two 8-bit Devices

# Set devices to Read state
# and clear status registers
change p:%%%00000 ffff 16bit
change p:%%%00000 5050 16bit

# Get Mfg and Device ID values
change p:%%%00000 9090 16bit

# Display Mfg ID values at offsets 0, 1
# Display Dev ID values at offsets 2, 3
display p:%%%00000..%%%00004 8bit

# Read and display status registers
change p:%%%00000 7070 1l6bit
display p:%%%00000..%%%00002 8bit

# Reset devices to Read state
change p:%%%00000 ffff 16bit

Listing 43. Intel: Four 8-bit Devices

# Set devices to Read state
# and clear status registers
change p:%%%00000 ffffffff 32bit
change p:%%%00000 50505050 32bit

# Get Mfg and Device ID values
change p:%%%00000 90909090 32bit

# Display Mfg ID values at offsets 0, 1, 2, 3
# Display Dev ID values at offsets 4, 5, 6, 7
display p:%%%00000..%%%00008 8bit

# Read and display status registers
change p:%%%00000 70707070 32bit
display p:%%%00000..%%%00004 8bit

# Reset devices to Read state
change p:%%%00000 ffffffff 32bit

Listing 44. Intel: One 16-bit Device

# Set device to Read state

# and clear status register
change p:%%%00000 ffff 16bit
change p:%%%00000 5050 1l6bit

# Get Mfg and Device ID values
change p:%%%00000 9090 16bit

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
Freescale Semiconductor 79




PR 4

Troubleshooting Flash Programmer

# Display Mfg ID value at offset 0
# Display Dev ID value at offset 2
display p:%%%00000..%%%00004 16bit

# Read and display status register
change p:%%%00000 7070 1l6bit
display p:%%%00000..%%%00002 16bit

# Reset device to Read state
change p:%%%00000 ffff 16bit

Listing 45. Intel: Two 16-bit Devices

# Set devices to Read state
# and clear status registers
change p:%%%00000 ffffffff 32bit
change p:%%%00000 50505050 32bit

# Get Mfg and Device ID values
change p:%$%%00000 90909090 32bit

# Display Mfg ID values at offsets 0, 2
# Display Dev ID values at offsets 4, 6
display p:%%%00000..%%%00007 16bit

# Read and display status registers
change p:%%%00000 70707070 32bit
display p:%%%00000..%%%00003 16bit

# Reset devices to Read state
change p:%%%00000 ffffffff 32bit

Listing 46. Intel: Four 16-bit Devices

# Set devices to Read state
# and clear status registers
change p:%%%00000 fEfffffffffffffff 64bit
change p:%%%00000 5050505050505050 64bit

# Get Mfg and Device ID values
change p:%$%%00000 9090909090909090 64bit

# Display Mfg ID values at offsets 0, 2, 4, 6
# Display Dev ID values at offsets 8, a, c, e
display p:%%%00000..%%%00008 16bit

# Read and display status registers
change p:%%%00000 7070707070707070 64bit
display p:%%%00000..%%%00004 16bit

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0
80 Freescale Semiconductor




Troubleshooting Flash Programmer

# Reset devices to Read state
change p:%%%00000 ffffffffffffffff 64bit

10.7. Examples

Following are example flash interrogations that are common for some target boards that use both AMD
and Intel devices.

10.7.1. One 16 bit AMD Device
Freescale derivatives M520SEVBE, M52277EVB, M5282EVB, and M5235EVB all use AMD 16x1

devices. These devices have Manufacturer ID 0x01. The commands have been executed on the
M5235EVB board.
Perform these steps for one 16 bit AMD device:
1. Copy the code in Listing 32 into the text file check_flash. tcl, making the code a script.
2. Substitute the string FFE with all instances of %% %.

3. Use the source command to invoke the script.

Listing 47 shows the resulting code.

NOTE The comment lines in Listing 47 and Listing 48 are for clarification. The CodeWarrior
source command discards comment lines, so you will not see such comments in the
Debugger Shell view.

Listing 47. Example one results

# Set device to Read state
change p:FFE00000 f0f0 16bit

# Get Mfg and Device ID values
change p:FFEOOaaa aaaa 1l6bit
change p:FFE00554 5555 16bit
change p:FFEOOaaa 9090 1l6bit

# Display Mfg ID value at offset 0
# Display Dev ID value at offset 2
display p:FFE00000..%%%00004 16bit

££fe00000 $0001 $2245 $0000 .. "E ..

# Reset device to Read state
change p:FFE00000 f0f0 16bit




Troubleshooting Flash Programmer

The result shows that the manufacturer ID code for the device is 0x1 and the device ID code is
0x2245. This confirms basic read/write functionality of the flash device.

10.7.2. One 16 bit Intel Device
Freescale derivatives M5329EVBE, M5373EVB, M5475EVB, and M5485EVB all use Intel 16x1

devices. These devices have Manufacturer ID 0x89. The commands have been executed on a
M5329EVBE board..
Perform these steps for one 16 bit Intel device,:

1. Copy the code in Listing 44 into text file check_flash. tcl, making the code a script.

2. Substitute the string 000 with all instances of $%%.

3. Use the source command to invoke the script.

Listing 48 shows the resulting code.

Listing 48. Example Two Results

# Set device to Read state

# and clear status register
change p:00000000 ffff 16bit
change p:00000000 5050 16bit

# Get Mfg and Device ID values
change p:00000000 9090 16bit

# Display Mfg ID value at offset 0

# Display Dev ID value at offset 2

display p:00000000..%%%00004 16bit
0 $0089 $88C3 $0001

# Read and display status register

change p:00000000 7070 1lé6bit

display p:00000000..%%%00002 16bit

0 $0080 $0080

# Reset device to Read state
change p:00000000 ffff 16bit

The result shows that the manufacturer ID code is 0x0089 and the device ID code is 0x88C3. This
confirms basic read/write functionality of the flash device.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

82 Freescale Semiconductor



Troubleshooting Flash Programmer

10.8. Summary

For most flash devices in use today, programming involves state machine like cycles of multiple writes
that must proceed the final write cycle. To diagnose flash programming failures, you must determine
whether the cause of the failure is in target hardware or flash programming software. The general
method of document lets you make this determination through simple, low level writes and reads,
without the use of expensive and complicated logic analyzers. If these reads and writes fail, the problem
most likely is on the target. If these reads and writes succeed, the problem most likely is in the flash
programming software, so please contact Technical Support at http://www.freescale.com/support.

Adding Device(s) to CodeWarrior Flash Programmer for Microcontrollers V10.0

Freescale Semiconductor

83


http://www.freescale.com/support�

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, German

+44 1296 380 456 (English

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia @freescale.com

Document Number: AN3859
21 September 2011

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in
this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and
all liability, including without limitation consequential or incidental damages. “Typical” parameters that
may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including
“Typicals”, must be validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for
any other application in which the failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior and ColdFire are trademarks of Freescale Semiconductor,
Inc., Reg. U.S. Pat. & Tm. Off. ColdFire+, Kinetis, Processor Expert, and Qorivva are trademarks of
Freescale Semiconductor, Inc. All other product or service names are the property of their respective
owners. ARM is the registered trademark of ARM Limited. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© Freescale Semiconductor, Inc. 2009-2010. All rights.

<
> 4
o

>~ freescale



	FlashAlgorithmForVariant is the algorithm name without full path (just the .elf file name).
	The added program / verify actions appear in the Flash Programmer Actions table as shown in Figure 9.
	How to Reach Us:
	Home Page:
	E-mail:
	USA/Europe or Locations Not Listed:
	Freescale Semiconductor
	Europe, Middle East, and Africa:
	Freescale Halbleiter Deutschland GmbH
	Japan:
	Asia/Pacific:
	For Literature Requests Only:
	Freescale Semiconductor Literature Distribution Center
	Document Number: AN3859

