
Freescale Semiconductor
Application Note

© Freescale Semiconductor, Inc., 2009. All rights reserved.

This document describes the USB OTG BID2108 errata of
the i.MX25 device. It summarizes the errata and describes
the workaround.

The errata occurs because CRC and long packets errors can
be generated when completing a transfer that has a
maximum size of one or two bytes. A software workaround
is available if no more than four TX endpoints (including
endpoint 0) are needed. A software workaround may be
available if more than four TX endpoints (including endpoint
0) are needed depending on how many TX endpoints have
the ability to send one or two byte packets.

Contents
1. Errata Description . 2
2. Workaround Description . 3

2.1. Allocate Endpoints . 3
2.2. Prime Endpoints . 3

3. Example Code . 5

Workaround for i.MX25 USB OTG
Erratum BID2108
by Multimedia and Applications Division

Freescale Semiconductor, Inc.
Austin, TX

Document Number: AN3683
Rev. 1, 11/2009

Workaround for i.MX25 USB OTG Erratum BID2108 Application Note, Rev. 1

2 Freescale Semiconductor

Errata Description

1 Errata Description
The issue with the USB core is that in the case of one or two byte packets, one read strobe to fetch the EOP
Tag of the FIFO memory is missed. Therefore, the USB logic uses whatever is on the output of the memory
for the read action.

The following cases may trigger a new FIFO read cycle:

• An IN token is sent to an endpoint even if the device address is not equal to current device address

• An OUT token is sent to an endpoint even if the device address is not equal to current device
address

• A SOF packet, bit 11–bit 8 of the Frame_number are treated as the endpoint number

• Software primes a new IN endpoint

As shown in Figure 1, the transmit FIFO memory consists of four physical blocks of memory (Mem_A,
Mem_B, Mem_C, and Mem_D). Each block serves two endpoints:

• Mem_A for endpoints 0 and 1

• Mem_B for endpoints 2 and 3

• Mem_C for endpoints 4 and 5

• Mem_D for endpoints 6 and 7

A new FIFO read to endpoint 0 or 1 only causes the output of Mem_A to change and not the other three
blocks, Mem_B, Mem_C or Mem_D.

Figure 1. Transmit FIFO Memory Diagram

Mem_A

USB
Controller

FIFO_RD

FIFO_ADDR[10:9]

0

0

0

0

 00

 01

 10

 11

Qa

Qb

Qc

Qd

 00

 01

 10

 11

FIFO_Out

Memory Wrapper

Mem_B

Mem_C

Mem_D

Workaround for i.MX25 USB OTG Erratum BID2108 Application Note, Rev. 1

Freescale Semiconductor 3

Workaround Description

2 Workaround Description
This section describes the two steps of the workaround for this errata.

NOTE
The following software workaround becomes invalid after software sets
either the USBCMD.RST bit or the ENDPTFLUSH bit for the
corresponding TX endpoint. Therefore the following software workaround
must be implemented again after software sets either the USBCMD.RST or
ENDPTFLUSH bit.

2.1 Allocate Endpoints
Allocate the endpoint numbers to avoid one endpoint that may send one or two bytes packets to different
memory blocks and this endpoint cannot share the memory block with any other endpoints. There are two
cases:

• If no more than four TX endpoints (including endpoint 0) are needed, software allocates the
endpoints to different memory blocks. To simplify the process, use even endpoints (endpoint 0,
endpoint 2, endpoint 4 and endpoint 6) for IN transactions.

• If more than four TX endpoints (including endpoint 0) are needed, check how many TX endpoints
have the possibility to send one or two byte packets. Each endpoint that may have one or two byte
packets should occupy one full memory block. Every two of other endpoints which do not have the
possibility to send one or two byte packets can share one full memory block. For example, five TX
endpoints are needed, three of them have the possibility to send one or two byte packets and the
other two endpoints do not. Software allocates endpoint 0, endpoint 2, endpoint 4 for the three
endpoints which may have one or two byte packets, and allocates endpoint 6 and endpoint 7 for the
two endpoints which do not send one or two byte packets.

There is no workaround if more than four (greater than or equal to five) TX endpoints (including endpoint
0) are needed, and more than three (greater than or equal to four) of them have the possibility to send one
or two byte packets.

2.2 Prime Endpoints
To avoid the uncontrollable data output which is generated by the redundant read cycle for another
endpoint which uses the same memory block with the one or two byte packet endpoint, the data output of
these endpoints should always be keep to EOP Tag.

Software needs to do following to make sure the data output of these endpoints always keep to EOP tag:

• If EP0 has the possibility to send one or two bytes packet, software should prime EP1 with any two
bytes of data. EP1 only needs to be primed once before the first endpoint prime command in the
current software.

• If EP2 has the possibility to send one or two bytes packet, software should prime EP3 with any two
bytes of data. EP3 only needs to be primed once before the first endpoint prime command in the
current software.

Workaround for i.MX25 USB OTG Erratum BID2108 Application Note, Rev. 1

4 Freescale Semiconductor

Workaround Description

• If EP4 has the possibility to send one or two bytes packet, software should prime EP5 with any two
bytes of data. EP5 only needs to be primed once before the first endpoint prime command in the
current software.

• If EP6 has the possibility to send one or two bytes packet, software should prime EP7 with any two
bytes of data. EP7 only needs to be primed once before the first endpoint prime command in the
current software.

Table 1 shows a summary for the different cases. When the endpoints are primed with two bytes of data,
QH/dTD also needs to be allocated/initialized correctly. Software does not need to set ENDPTCTRLx.
TXE bit and software can release QH/dTD after the prime cycle is complete.

Table 1. Workaround Summary

 Number
of TX (IN)
Endpoints

Number of
TX (IN)

Endpoints
That May
Have One

or Two Byte
Packets

May EP0
Have One or

Two Byte
Packets

Work-
around

Available

Workaround Description

Use for
Endpoints That
May Have One

or Two Byte
Packets

Use for Other Endpoints
Prime with
Two Bytes

≤ 4 Do not care Do not care Yes EP0, EP2, EP4 EP6 EP1, EP3, EP5, EP7

5 ≤ 3 Yes Yes EP0, EP2, EP4 EP6, EP7 EP1, EP3, EP5

No Yes EP2, EP4, EP6 EP0, EP1 EP3, EP5, EP7

> 3 Do not care No —

6 ≤ 2 Yes Yes EP0, EP2 EP4, EP5, EP6, EP7 EP1, EP3

No Yes EP2, EP4 EP0, EP1, EP6, EP7 EP3, EP5

> 2 Do not care No —

7 ≤ 1 Yes Yes EP0, EP2, EP3, EP4, EP5, EP6, EP7 EP1

No Yes EP2 EP0, EP1, EP4, EP5, EP6, EP7 EP3

> 1 Do not care No —

8 0 Do not care Yes Use EP0, EP1, EP2, EP3, EP4, EP5, EP6, EP7 as normal

> 0 Do not care No —

Workaround for i.MX25 USB OTG Erratum BID2108 Application Note, Rev. 1

Freescale Semiconductor 5

Example Code

3 Example Code
Example 1 shows how to dummy prime the EP3 with any two bytes of data when EP2 has the possibility
to send one or two bytes packet. This code should be run before the first endpoint prime command in the
current software.

Example 1. Workaround Code

D_QUEUEHEAD_T * p_otg_endpoint3_DQH_in;
DeviceQueueTransferDescriptor_T * p_otg_endpoint3_DTD_in;

void dummy_prime_ep3(void) {
p_otg_endpoint3_DQH_in = (D_QUEUEHEAD_T*)

(((WORD)&(*p_otg_device_queuehead_list))+64*7);

(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_InterruptOnSetup=1;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_MaximumPacketLength=64;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_ZeroLengthTerminationSelect =0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_Multiplier=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_CurrentdTD=0xDEAD;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_NextTransferElementTerminate=1;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_NextTransferElementPointer=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_Status_TransactionError=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_Status_DataBufferError=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_Status_Halted=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_Status_Active=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_InterruptOnComplete=1;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_TotalBytes=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_CurrentOffset=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_BufferPointerPage0=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_BufferPointerPage1=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_BufferPointerPage2=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_BufferPointerPage3=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_BufferPointerPage4=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_SetupBufferByte0=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_SetupBufferByte1=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_SetupBufferByte2=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_SetupBufferByte3=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_SetupBufferByte4=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_SetupBufferByte5=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_SetupBufferByte6=0;
(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_SetupBufferByte7=0;

(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_NextTransferElementTerminate=1;
(*p_otg_endpoint3_DTD_in).

DeviceTransferDescriptor_NextTransferElementPointer=0xBAD04;
(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_Status_TransactionError=0;
(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_Status_DataBufferError=0;
(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_Status_Halted=0;
(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_Status_Active=1;
(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_InterruptOnComplete=1;
(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_TotalBytes=0x2;
(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_CurrentOffset=

((WORD) p_bulkdata_out)& 0x00000fff;
(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_BufferPointerPage0=

(((WORD) p_bulkdata_out) & 0xfffff000)>>12;
(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_FrameNumber=0;

Workaround for i.MX25 USB OTG Erratum BID2108 Application Note, Rev. 1

6 Freescale Semiconductor

Example Code

(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_BufferPointerPage1=
(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_BufferPointerPage0+1;

(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_BufferPointerPage2=
(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_BufferPointerPage0+2;

(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_BufferPointerPage3=
(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_BufferPointerPage0+3;

(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_BufferPointerPage4=
(*p_otg_endpoint3_DTD_in).DeviceTransferDescriptor_BufferPointerPage0+4;

(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_NextTransferElementPointer=
((WORD)p_otg_endpoint3_DTD_in)>>5;

(*p_otg_endpoint3_DQH_in).DeviceEndPointQueueHead_NextTransferElementTerminate=0;

(WORD)USB_OTG_ENDPTPRIME |= 0x1<<(3+16); // prime In transition in endpoint3
while(*(WORD*)USB_OTG_ENDPTPRIME & (0x1<<(3+16)));

}

Workaround for i.MX25 USB OTG Erratum BID2108 Application Note, Rev. 1

Freescale Semiconductor 7

Example Code

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN3683
Rev. 1
11/2009

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners. ARM
is the registered trademark of ARM Limited.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

	Workaround for i.MX25 USB OTG Erratum BID2108
	1 Errata Description
	Figure 1. Transmit FIFO Memory Diagram

	2 Workaround Description
	2.1 Allocate Endpoints
	2.2 Prime Endpoints
	Table 1. Workaround Summary

	3 Example Code

