AN14454

3-phase Sensorless PMSM Motor Control with S32M244
Rev. 1.0 — 19 October 2024

Application note

Document information
Information Content

Keywords PMSM, S32M244, Motor Control Application Tuning (MCAT) tool

Abstract This application note describes the design of a 3-phase Permanent Magnet Synchronous Motor

(PMSM) vector control (Field Oriented Control - FOC) drive with single shunt current sensing with
and without position sensor.

https://www.nxp.com

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

1 Introduction

This application note describes the design of a 3-phase Permanent Magnet Synchronous Motor (PMSM) vector
control (Field Oriented Control - FOC) drive with single shunt current sensing with and without the position
sensor.

This design serves as an example of motor control design using the NXP family of automotive motor control
MCUs based on a 32-bit ARM Cortex -M4 with floating point unit, optimized for a full range of automotive
applications.

Following are the supported features:

* 3-phase PMSM speed Field Oriented Control

* Current sensing with a single shunt resistor

» Shaft position and speed estimated by a sensorless algorithm or, optionally, by an encoder position sensor
* Application control user interface using FreeMASTER debugging tool

» Motor Control Application Tuning (MCAT) tool

2 System concept

The system is designed to drive a 3-phase permanent magnet (PM) synchronous motor. The application meets
the following performance specifications:

» Targeted at the S32M24x PMSM/BLDC motor control evaluation boards (S32M24xEVB-C064 or
S32M24xEVB-L064) used together with BLDC low voltage motor control accessory kit (see section
References for more information).

» S32 Configuration Tools (S32CT) used as the S32M244 device configuration and control tool being a part of
the S32 Design Studio for S32 Platform IDE (see section References).

» Control technique incorporating:

— Field Oriented Control of 3-phase PM synchronous motor with/without position sensor.

— Flux and torque independent control.

— Bi-directional rotation.

— Field weakening control extending the speed range of the PMSM beyond the base speed.

— Open-loop start up with 2-step rotor alignment.

— Position and speed are estimated by an extended BEMF observer or obtained by Encoder sensor.
— Reconstruction of three-phase motor currents from a single shunt resistor

— FOC state variables sampled with 100 us period.

— Closed-loop speed control with action period 1 ms.

— Closed-loop current control with action period 100ps.

* Automotive Math and Motor Control Library (AMMCLIb) - FOC algorithm built on blocks of precompiled SW
library (see section References).

* FreeMASTER software control interface (motor start/stop, speed setup).

* FreeMASTER software monitor.

* FreeMASTER embedded Motor Control Application Tuning (MCAT) tool (motor parameters, current loop,
sensorless parameters, speed loop) (see section References).

* FreeMASTER software MCAT graphical control page (required speed, actual motor speed, start/stop status,
DC-Bus voltage level, motor current, system status).

* FreeMASTER software speed scope (observes actual and desired speeds, DC-Bus voltage and motor
current).

* FreeMASTER software high-speed recorder (reconstructed motor currents, vector control algorithm
quantities).

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
2/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

o

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

» DC-Bus over-voltage and under-voltage, over-current, overload, and start-up fail protection.

3 PMSM field oriented control

3.1 Fundamental principle of PMSM FOC

The description of a fundamental PMSM FOC principles can be found in NXP application note AN12235: 3-
phase Sensorless PMSM Motor Control Kit with S32K144 (see section References).

3.2 Output voltage actuation and phase current measurement

The 3-phase voltage source inverter shown in Figure 1 uses single DC Bus shunt resistor (R134 and R135 in
parallel), refer to the S32M24xEVB schematic - see section References.

DC Bus current flowing through the shunt resistor produces a voltage drop, which is interfaced to the AD
converter of the microcontroller via the integrated Digital Programmable Gain Amplifier (DPGA) integrated

inside S32M244.

o
o

a7

HOR 1X1
one
o

FET H-Bridge

Teus

gele] HGO_MCU

~ q10
BUK769R680E

eld] HSO_MCU <<

% Phase A
-

5
“““““ > PHASEA pagelen)

TP187 1

TP146 !
° . ® -‘E}‘

geld] L0 MeU <(>—a—— 175, 5

TP149 P14
eld] LSo_MCU <<>>—t¢2% Vo L’?

pageld] HG1_MCU

pageld) HS1_MCU <<

38

HDR 1x1
one
o

GES)
Q12
| BUKTG9RS80E

w0 Phase B
o
HASES 5 phase B

pageld] HG2.

paged7)

HDR 1x1
one
Jasc

 MCU <0 r 07/
| BUKT6SRs 808
TP160

pageld) HS2_MCU <<>>_’MJ“’N—’7

TP16L

DC Bus shunt resistor i

P155 P15 hi 162 P63 =
[SR =) [P N)
o [EOTSRTSIRCe —— e pagels] L62_MCU COY——e—RIZL 5\ 0 Tl gs
BUKToR6-60E U T69R6-90E Uk T69R6-90E
o157 s P IS
pagels] LS1MCU << k‘”.%”gb pages] LS2_MCU << B130 5%, /%
22 2 25
HHHHHHHHHHHHHHHHHH
one one one
Pi02
cn
oew
TR0
® . eam
It A e e — 5 DPGA_AMPPO pages]
‘L Sek= oo X5 DPGAAMPMO pagels] w7
rise v rus! Z0 AoR 1R 1
0% Somi Dpifferential pagets] prASEA Hel
DNP -1000pF = —1000pF « LI TP05 TPI06 TP107 JASC
! ! NP Programmable pagel4T] PHASE B :
RN T Gain Amplifier pageis7] PasEC <& H5) B - B
UL (DPGRO) i
~ MOTOR_oUT

Figure 1. 3-phasehase DC/AC inverter with single shunt resistor for current measurement

Since there is only the DC Bus current measured, the phase motor currents have to be reconstructed by
software. Various approaches of phase current reconstruction can be found in NXP application note AN14164:
Current Sensing Techniques in Motor Control Applications (see section References).

This software example employs an adaptive double switching approach for current sensing and reconstruction
described in the aforementioned AN14164.

As described in AN14164, the method of single shunt current measurement relies upon the fact that while there
is a switching combination in the inverter forming an active vector, the DC Bus current is equal to one of the
motor phase currents or its inverted value, meaning that during the period in which an active vector is present,
one phase current can be measured. The desired output voltage vector is created by a vector combination of
two neighboring active vectors (and zero vectors), therefore in each PWM period two phase currents can be
measured (and the third phase current is calculated). Unfortunately, either in case of low demanded voltage
amplitudes and/or in the vicinity of SVM sector borders, the duration of the active vector (current sampling
window) is not long enough (or there is only one active vector present) to measure reliably the respective phase

AN14454

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 19 October 2024

Document feedback
3/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

current. See Figure 2, where the current, which we are able to measure and reconstruct as phase motor current

is denoted as irpcsense-

V4

ADC
sampling

Phase A
Phase B

ADC sample time

-
>

Ny

Phase C

V6
Shorter than ADC sample time

Not valid readings

ADC
sampling

Phase A

ADC sample time

Phase B

VA Phase C
Vector V0

IRDC
sense

V5 V6
Shorter than ADC sample time

Not valid readings

Figure 2. Operation in the vicinity of sector border (top) and operation with low voltage amplitude (bottom)

Since the FOC needs to have the information of the phase currents always, one of the single shunt techniques
have to be used to always obtain information on phase currents.

In this example, adaptive double switching is used. The principle of the double switching method is the creation
of an appropriate sampling window in two stages:

1. Insertion of zero pulse to the middle of the PWM patterns. This divides the PWM period into two halves
and creates two symmetrical half-pulses per phase per PWM period. The sum of the two half-pulse lengths
needs to be the same as the length of the original pulse. The width of the zero pulse needs to be stipulated
so that the inverter transistors are reliably switched on and off.

2. Shifting the halves of one of the phase patterns (which form an insufficient sampling window) to the sides,
therefore enlarging the sampling window to be able to measure the current reliably. The phase with the
duty cycle of the shortest length is kept as is and either the halves of the phase with the longest (see
the example shown in Figure 3) or mid-length duty cycle are shifted to the sides (in case of low voltage
amplitude both longest and mid-length pulses are shifted). As shown in Figure 3, the double switching
algorithm not only extends the window for current measurement (V1 extension) but also introduces new
vectors (V4) in the way the vector sum gives the same resulting voltage vector as without double switching.

The voltage vectors present during double switching are shown in Figure 3 in blue.

AN14454

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 19 October 2024

Document feedback
4/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

— keep the pattern "as is”

1.Insert zero pulse to the middle

Phase A

Phase B

Phase C

Vector
VO .
'Roc
sense

"l

V1

Sum of the active vectors gives the same resulting vector

Figure 3. Double switching — shifting the phase with the longest duty cycle duration to the sides. Original PWM
(left), inserted zero pulse (middle), final double-switched PWM (right)

The algorithm of double switching can be visualized as per Figure 4.

Start

| Get actual sector and switching pattern |
v
| Insert zero pulse |

Shift mid-length pulse halves
so that
sampling window = MinSamplingWindow

(Sampling window between mid-length and shortest pulse) < MinSamplingWindow

§>

Keep the pattern as is

Shift longest pulse halves
so that

. X N . . (Sampling window between longest and mid—-length pulse) < MinSamplingWindow
sampling window = MinSamplingWindow

Keep the pattern as is

%

Figure 4. Double switching flowchart

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
5/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

On top of the double switching algorithm, the adaptive double switching algorithm has been introduced,
which only applies the double switching algorithm when the window for current measurement is not sufficient,
otherwise the standard PWM (without the zero pulse) is used.

The calculation of the double switching algorithm is performed in src/actuate_s32m.c in
ACTUATE_SetDutyCycle() function. The function calculates the edges of the PWM pattern for each particular
phase for each SVM sector according to the double switching algorithm (Figure 4). It also calculates the triggers
for ADC current measurements, as per Figure 5.

offset

PWM A edges

PWM B edges

current sampling window

Figure 5. Phase PWM edges and triggers calculation

In S32M244, the double switching PWM pattern needs to be created by two consecutive PWM timer cycles,

as described in 4.2.2.1. Thus the function ACTUATE_SetDutyCycle() calculates two sets of PWM edges (1,

2 and 3,4) which are loaded to the PWM timer in either odd or even PWM cycle. This happens during FTM3
reload ISR, which occurs as per Figure 7. The newly calculated two sets of PWM edges are refreshed using the
function ACTUATE_PwmUpdateBuffer(), which is called in PDBO ISR, see the timing diagram Figure 7.

The triggers for current measurement (triggers 1, 2, 4, 5) are calculated for each current sampling window in
the way there is an offset inserted from the end of the particular current sampling window. As per the example
shown in Figure 5, the respective window ends are defined by PWM B edge 1, PWM C edge 1, PWM A edge 4
and PWM B edge 4.

3.2.1 Double switching configuration

The SW example, as mentioned before, uses an adaptive double switching approach for current reconstruction.
The adaptive double switching (employing the double switching pattern only when necessary) is activated

by macro DOUBLE_SW_ADAPTIVE. If the macro is set to zero, then the double switching pattern is active
permanently. Even though the double switching has been tuned for S32M24xEVB in cooperation with the BLDC
PMSM low voltage motor control accessory kit, for a different hardware or motor it may be needed to tune the
parameters. These can be found in src/actuate_s32m.c:

* minZeroPulseCnt — this is half of the zero pulse inserted in the middle of a double-switching PWM pattern. It
needs to be set so the MOSFETSs are reliably able to insert the zero pulse in the middle of the PWM switching
pattern, i.e.: not too short.

* minSamplingPulseCnt - this is the minimal length of the current sampling window. It needs to be set so the
ringing from MOSFET switching does not affect the phase current reconstruction. l.e.: set the parameter
higher if you are seeing ringing from switching affecting the reconstructed motor phase currents.

* minSumPulseCnt — is the sum of minZeroPulseCnt and minSamplingPulseCnt.

» pdbTriggerOffset - is the sampling time of the ADC, not including the conversion time, this parameter defines
the offset mentioned in Figure 5.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
6/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

3.3 Rotor position/speed estimation

In this application, rotor position and speed are either estimated by back-EMF observer or obtained by an
Encoder sensor. Back-EMF observer and incremental Encoder sensor provide only relative position. To get an
absolute position, the initial position must be known. This application uses mechanical rotor alignment when the
rotor is moved from an unknown to a known position applying DC align voltage.

The alignment algorithm applies DC voltage to d-axis resulting full DC voltage applied to phase A and negative
half of the DC voltage applied to phase B, C for a certain period. This causes the rotor to move to the “align”
position, where stator and rotor fluxes are aligned. The rotor position in which the rotor stabilizes after applying
DC voltage is set as zero position. Motor is ready to produce full startup torque once the rotor is properly
aligned. The detailed alignment explanation can be found in the chapter State — ALIGN.

The application, while in Sensorless mode, must start with an open loop start-up sequence to move the motor
up to a speed value where the observer provides sufficiently accurate speed and position estimations. When
the observer provides appropriate estimates, the application transits to closed-loop mode, when the rotor
speed and position calculation are based on the estimation of a BEMF in the stationary reference frame using
a Luenberger type of observer. BEMF observer is as a part of the NXP’s Automotive Math and Motor Control
Library. Structure and implementation details are discussed in section 4.3.4.

3.4 Field weakening

The description of field weakening principles can be found in NXP application note AN12335: 3-phase
Sensorless PMSM Motor Control Kit with S32K144 (see section References).

4 Software implementation on the S32M244

4.1 S32M244 - key modules for PMSM FOC control

The S32M244 is an integrated solution, which comprises Digital part (in this AN referred to as MCU) and Analog
Extension part (in this AN referred to as AE). The Analog Extension part includes modules such as Gate Driver
Unit (GDU) and Digital Programmable Gain Amplifier (DPGA) which allow for using S32M244 in motor control
applications with a minimum of external components. The MCU part includes modules such as the FlexTimer
Module (FTM), Trigger MUX Control (TRGMUX), Programmable Delay Block (PDB) and Analogue-to-Digital
Converter (ADC) suitable for motor control applications. These modules are directly interconnected and can

be configured to meet various motor control application requirements. Figure 6 shows module interconnection
for a typical PMSM FOC application working in Sensorless or Sensor based mode using single shunt current
sensing. The modules are described below and a detailed description can be found in the S32M24x Reference
Manual (see section References).

4.1.1 Module interconnection

As mentioned earlier, S32M24x consists of two parts: MCU and AE, which are connected together via die-to-die
(D2D) connections.

This includes an SPI interface, which serves for parameter settings and status monitoring of AE and
connections used for motor control loop such as connections between FTM3 and GDU, DPGA, and ADC, AE
fault monitoring via GPIO (PTD3), see Figure 6.

The AE comprises modules vital for motor control. The GDU drives the power MOSFETs. The GDU is
interconnected with the outputs of FTM via D2D connections.

The shunt resistor voltage drop signal (proportional to DC Bus current) is conditioned by the integrated DPGA
which output is connected to the ADC via D2D connection.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
7145

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

DC Bus voltage is conditioned via an integrated voltage divider which output is connected to the ADC via D2D
connection.

The MCU modules involved in output actuation, data acquisition and the synchronization of actuation and
acquisition, form the so-called Control Loop. This control loop consists of the FTM, TRGMUX, PDB, and ADC
modules. The control loop is very flexible in operation and can support static, dynamic, or asynchronous timing.

Each control loop cycle can be initiated either by FTM initialization trigger init_trig or by FTM external trigger
ext_trig. While init_trig signal is generated at the beginning of the PWM cycle, ext_trig can be generated
anytime within the PWM period based on the value defined in the corresponding FTM Channel Value register
CnV.

FTM trigger signal is routed to the hardware trigger input of the PDB module through the flexible TRGMUX unit.

PDB pre-triggers chOpretrigx are used as a precondition for ADC module. They are directly connected to
ADHWTS ports to select ADC channels and order of the channels by configurable pre-triggers delays. When
ADC receives the rising edge of the trigger, ADC will start conversion according to the order defined by pre-
triggers chOpretrigx.

PDB pre-trigger delays must be properly set to allow reliable operation between PDB and the corresponding
ADC module. When the first pre-trigger is asserted, the associated lock of the pre-trigger becomes active

until the corresponding conversion is not completed. This associated lock is released by corresponding ADC
conversion complete flag ADC_SC1[COCOx]. This means that the next pre-trigger can be generated only if the
ongoing conversion is completed.

The second FTM module can work in Quadrature Decoder mode, counting the rising/falling edges of the Phase
A and Phase B encoder signals to determine the rotor position and speed independently from the control loop
(see section 4.2.2.2).

A detailed description can be found in the S32M24x Reference Manual (see section References).

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
8/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

Figure 6. S32M244 module interconnection

________________ ————————
| | | '
| |FTms3 LPSPI1 AE |
i AE Control and Condit
| P ﬁ'!,%"fd Monit?)?ir:g and ondiion I Control Block |
I | NTout |
PORTD PTD3 < i |
I AE Fault Detection I I GDU I HD
I eho | PWMO_IN | N 1 [Hso —
| | PWMIIN L ™so —” —I —I
ot SRR 1% BB K
| ch2 } = N (m
s PWM3_IN | L 1 [t \
| [Pwma Ny N |ns2 _” _I _I
I z:: | PWME_IN 2N =2 ENC
1 i 1>]
: init_trig : I I E
ext_trig £
I =1
I [tRemux Vv I | Vot dv. | f
| %)
I init_trig | | SEL | e
I ext_trig I I
V |
| |PDBO , _|Apco aocho A HP-PVA
I D1E6-thg(chOpretrig0 > ADHWTSA i< I I I
I counter | chOpretrigll, rwTse pocrio] g LSENSE | |
ACK| chotrig <+ |
N S ADHWT 1 I
| | _cocoA B | | | - I
| | I |
| | | |PPGA |
I | ! > Roun
| I ' ‘
|
| | LAE _! =
| |
| FTM2 FTM2QD PHA<I AN —ENC A
FTM2_QD_PHB<] g "
| P01 T+ r—ENC_TNDEX
I Input capture I :I_: - :I_:
MCU - T T
I e e e e — o | $32M244

4.1.2 Module involvement in digital PMSM sensorless control loop

This section discusses timing and modules synchronization to accomplish PMSM Sensorless FOC on the
S32M244 and the internal hardware features.

The timing diagram of the automatic synchronization between PWM and ADC in the PMSM application is shown

in Figure 7.

AN14454

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 19 October 2024

Document feedback

9/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

100 us current loop

Y

50 us PWM Period
FTM3 modulo

2000 ticks
FTM3_CnV

NN

active passive passive © passive ° |

init tri active

FTM3_CHO
Fsciz | [T |
FTM3_CH4 |__|

FTM3 reload | o J ’ 2)l 3)I 0
point & ISR} > ...

FTM3 reload ISR ™~~__
TM3 init trig bit = false Y,

(v}

—
PDBO pretrig fo: 1; 2 | 3/ 4/ 5 /\/
| L ”7L7L j
Channel ({0 \‘1 \‘2 3 \4 \§ _FTM3 it trig bit = true, update PWM buffer
Sample point . /- oceurs either at the end of ADC_ISR

i i . / or FTM3_ISR, whichever comes last
Conversion | ; i "NADC interrupt -

Channel 0 - DPGA offset measurement - fixed trigger applic;tion use
Channel 1, 2, 4, 5 - DC Bus current, dynamic trigger
Channel 3 - DC Bus voltage, fixed trigger

Figure 7. Time diagram of PWM and ADC synchronization

The PMSM Sensorless FOC control with single shunt current measurement with double switching approach
is based on dynamic timing; meaning the trigger point instances of the ADC conversions are varying from one
FOC control cycle to the next cycle, depending on the three phase PWM edges timing.

There are, however, two fixed trigger points: in the beginning of the PWM period for DPGA offset measurement
(pretrig 0) and in the middle of the PWM cycle for DC Bus voltage measurement (pretrig 3).

Pretrig0 is disabled when values of Pretrig1 are too low in order to avoid PDBO errors, see 4.3.3.4.1.

Each control cycle starts with FTM3 initialization trigger init_trig, which is generated at the beginning of the
PWM cycle as shown in Figure 7. Initialization trigger restarts the PDBO module and updates its double buffered
registers. ADCO channels are triggered based on the PDBO pre-trigger delays. When the PDB counter reaches
the first pre-trigger delay value, PDB initiates the first ADC channel measurement.

In the beginning of the PWM cycle, the measurement of DPGA offset is triggered (pretrig 0). DC Bus current
measurement is triggered by PDBO at the first sampling window (pretrig 1) in which Phase A current is visible.
DC Bus current measurement is triggered again by PDBO at the second sampling window (pretrig 2) in which
Phase C current is visible. Then, the DC Bus voltage measurement is triggered at the middle point of the PWM
(pretrig 3). The fifth trigger point (pretrig 4) is for DC Bus current sampling when Phase C current is visible.
And the sixth trigger point (pretrig 5) is for DC Bus current sampling when Phase A current is visible. The ADC
conversion results are automatically stored into a predefined queue in memory. The ADC results measured at
pretrig 1 and pretrig 5 are averaged, similarly to the ADC results measured at pretrig 2 and pretrig 4 since in
both of the cases the current of the same phase is visible.

The CPU is triggered by the ADCO conversion complete interrupt service routine. Based on the stored ADCO
values, the current Pl controllers calculate new PWM duty cycles. These are then sent as a new reference for
PWM module (FTM3) and become effective in the next PWM cycle.

The FTM3 initialization trigger is disabled in the FTM3 reload interrupt service routine. As a consequence, PDBO0
is not triggered in the next PWM period due to the missing init_trig signal. FTM3 initialization trigger is reenabled
again in either 3rd FTM3 ISR or in the end of ADC ISR - whichever comes last, since the timing is dynamic and

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
10/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

the beginning of ADC ISR is not fixed, at low duty cycles the ADC ISR may be finished earlier than 3rd FTM3
ISR. This strategy ensures that ADCO sampling occurs in every 100 ps cycle as depicted in Figure 7.

It needs to be noted that double switching is not able to operate with a 100% duty cycle, since there has to be
room left for performing the pulse shifting as a part of the double switching algorithm. The limit has to be set
with respect to the minimal length of the current sampling window and if set too high the reconstructed currents
will be distorted/not accurate at high duty cycles. The limit is set in src/main.c by writing into the variable
drvFOC.AIBeReqDCBLIim.fltLimit. The limit is set to 0.9 in the SW example. The maximum theoretical duty cycle
limit is 93%.

4.2 S32M244 device initialization

To simplify and accelerate application development, an embedded part of the PMSM Sensorless motor control
application has been created using S32K1_S32M24x - Real-Time Drivers for Cortex-M (RTD). S32M244 can be
configured either by means of the S32 Configuration Tool (S32CT) or programmed directly using RTD drivers.
Peripherals are initialized at the beginning of the main() function. For each S32M244 module, there is a specific
configuration function that uses S32M244 RTD APIs and configuration structures generated by S32CT to
configure the MCU:

* McuClockConfig() — MCU clock configuration

* McuCacheConfig() — MCU cache configuration

* McuPowerConfig() — MCU power management configuration
* MculntConfig() — MCU interrupt management configuration
* McuTrigmuxConfig() — TRGMUX module configuration

* McuPinsConfig() — PINs and PORT modules configuration
* McuLpuartConfig() — LPUART module configuration

* McuAdcConfig() — ADC modules configuration

* McuPdbConfig() — PDB modules configuration

* McuFtmConfig() — FTM modules configuration

* McuSPIConfig() — SPI module configuration

AECConfig() — AE module configuration

*» AEC_DPGAConfig() — DPGA module configuration

* AEC_GDUConfig() — GDU module configuration

* AEC_HVMConfig() — HV module configuration

Detailed RTD documentation can be found in the folder created with the S32 Design Studio installation (see
section References). It is recommended to keep calling of the initialization functions in the order in which they
appear in the example code.

4.2.1 Clock configuration and power management

S32M244 features a complex clocking sourcing, distribution, and power management. To run a core of the
S32M244 and some MCU peripherals at maximum frequency 80 MHz in normal RUN mode, the S32M244

is supplied externally by 16 MHz crystal. This clock source supplies a Phase-lock-loop (PLL), which circuit
multiplies frequency by 20 and divides by 2 resulting 160 MHz frequency on output. PLL output is then divided
by 2 to supply core and system (80 MHz), further divided by two and four to supply bus clock (40 MHz) and
flash clock (20 MHz), respectively. This clock configuration belongs to one of the typical and recommended. It is
summarized in Table 1.

Table 1. S32M244 clock configuration in RUN mode

Clock Frequency

CORE_CLOCK 80 MHz

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback

11/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

Table 1. S32M244 clock configuration in RUN mode...continued

Clock Frequency

SYS_CLK 80 MHz

BUS_CLK 40 MHz

FLASH_CLK 20 MHz (max frequency in RUN mode)

The clock configuration can be set up by the S32M244 RTD clocks graphical tool.

Once the clock configuration is set, RTD generates a static configuration structure Clock_Ip_aClockConfig[0],
the respective RTD APl is then called in MCUClockConfig().

Example 1. S3M244 clock configuration controlled by RTD

/***
*

* Function: void McuClockConfig(void)
*

* Description: This function installs the pre-defined clock configuration

table

w3 to the clock manager. For more details see configuration

& in Config Tools.

*

***/
void McuClockConfig (void)
{
Clock Ip Init (&Clock Ip aClockConfig([O0]);
}

As discussed at the beginning of this chapter, power management of the S32M244 is configured for normal
RUN mode. This power mode can be set in the RTD peripherals graphical tool, Figure 8.

% Components i ¥ Peripherals = 2 A POWER

POWER Configuration privers;

MCAL ©| Name POW
Gdu Mode POWER
Drivers © - POWER Configuration Set

m e~
Adc_lp Mec BaseNXP Cache_lp Dpga_lp Name | POWER

~ Power Configuration

Ftm_Pwm Ftm_Qdec_Ip Gpio_Dio Hvm 3 5
Name General McuDebugConfiguration McuModuleConfiguration
il (i) Aptlidlo e Name McuResetConfig McuResetReasonConf McuPowerControl McuModeSettingConf| McuAllowedModes| MculnterruptEvents
Port Ci_lcu Port_Ip POWER Trgmux_Ip i
0s ©

0 “Name " McuModeSettingConf 0
"

"Mode ID n

Operating Mode RUN

Figure 8. S32M244 power management configuration in S32CT peripherals tool

Static configuration generated by RTD is called by the respective RTD API and this is encapsulated in the
MCUPowerConfig() function.

Example 2. S32M244 power management controlled by RTD

/***
*

* Function: void McuPowerConfig(void)
*

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Document feedback
12/ 45

Application note Rev. 1.0 — 19 October 2024

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

* Description: This function configures the Power manager for operation.

& For more details see configuration in Config Tools.
*

***/

void McuPowerConfig (void)

{

/* Power mode configuration for RUN mode */
Power Ip SetMode (&Power Ip aModeConfigPB[0]) ;
}

The same mechanism for peripherals configuration by RTD works for all S32M244 peripherals, which are
discussed below.

4.2.2 FlexTimer Module (FTM)

The FlexTimer module (FTM) is built upon a timer with a 16-bit counter. It contains an extended set of features
that meet the demands of motor control, including the signed up-counter, dead time insertion hardware, fault
control inputs, enhanced triggering functionality, and initialization and polarity control.

4.2.2.1 Edge-aligned PWM mode

FTM3 instance outputs are routed to GDU inputs, therefore FTM3 is used in PMSM sensorless motor control
application to generate center-aligned double switching PWM by six, complementary oriented channels to
control power MOSFETSs.

However, since a double switching approach for single shunt current measurement is used, the advanced
(center-aligned) PWM pattern is generated by edge aligned mode of FTM3. One PWM cycle of the double
switching (50us) is created by two consecutive FTM3 cycles (25us) as depicted in Figure 7.

As depicted in Figure 7, up counting mode is selected as a dedicated counting mode for FTM3 edge-aligned
PWM. The 40 kHz FTM3 PWM frequency is adjusted by FTM3 Modulo register (FTM3_MOD = 2000) taking 80
MHz clock source frequency into account. To protect power MOSFETs against short circuit, dead time 0.5us is
inserted for each complementary channels pair in the number of clock ticks 40 with default dead time prescaler
Divide by 1. This FTM3 configuration can be carried out by using RTD, FTM_Pwm module, Figure 9. Three
complementary output channel pairs are configured in the tab PwmFtmCh, as depicted in Figure 9. For detailed
settings, please see all the settings tabs in the Ftm_Pwm module in S32CT peripherals tool.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
13/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

® Components 1 ¥ Peripherals Ftm_Pwm * 3 POWER

© 1 Ftm Pwm driver pivers

PumFtmCh 0
PumFtmCh 1

RO000O®

7
i
)
2

Figure 9. S32M244 FTM3 configuration in S32CT

As discussed in chapter 4.1.2, to initiate the control loop every second PWM cycle at the beginning of the PWM
period, the initialization trigger is enabled. To be able to synchronize PWM and update FTM double buffered
registers at certain synchronization point simultaneously, Software_sync_trigger and Trigger_on_Reload_Point
are enabled in FTM instance configuration and FTM synchronization configuration tab, Figure 9. It should

be noticed that the max loading point is the time instant, when FTM3 counter equals modulo register value
(FTM3_MOD = 2000).

Once the FTM3 setting is completed, RTD generates configuration structure Ftim_Pwm_Ip_BOARD _
INITPERIPHERALS UserCfg3 which, using the respective RTD API Ftm_Pwm_Ip_Init configures FTM3,
this is encapsulated in function MCUFTMConfig(), which can be found in the SW example in src/Peripherals/
peripherals_config.c.

4.2.2.2 Quadrature decoder mode

The FTM module offers a quadrature decoder mode to decode the quadrature signals generated by rotary
sensors used in the motor control domain. This mode is used to process encoder signals and determine rotor
position and speed.

There are three output signals generated by the incremental encoder as shown in Figure 10. Phase A and
phase B signals consist of a series of pulses, which are phase-shifted by 90° (therefore the term “quadrature” is
used). The third signal (called “Index”) provides the absolute position information. In the motion control, it may
be used to check the pulse-counting consistency, however, it is not used in the example.

position counter values é §°"“
< T

phasea [[L LT LTI LIy
- I I A s I O
Index one revolution ’_‘

Figure 10. Output signals of the 1024 pulses encoder

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
1445

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

To process the Phase A and Phase B signals from the Encoder sensor, quadrature decoder mode with phase
encode mode have to be enabled in S32CT, Figure 11. Note that so-called X4 encoding is used, meaning both
rising and falling edges of phase A and B are counted, which effectively quadruples the number of encoder
pulses. In addition, Max counter value has to be set according to the number of the encoder edges. The value
has to be set to (2*Number of encoder pulses -1), for example: in 1024-pulse encoder the max counter value
has to be set to 2047. The Min Counter value which for correct angle wrapping needs to be equal to (-2*Number
of encoder pulses) is set in the SW in src/main.c/AlignState() since RTD does not allow for setting a negative
number. This is to ensure correct motor angle wrapping in the range of <-180; 180> degrees. for example: In
1024-pulse encoder the value The min counter value is set to 0xF800 what effectively means -2048 pulses. In
quadrature decoder mode, the phase A and phase B signals indicate the counting direction and the counting
rate. If the phase B signal lags the phase A signal, the FTM2 counter increments after every detected rising/
falling edge of both signals. If the phase B signal leads the phase A signal, the FTM2 counter decrements after
every detected rising/falling edge of both signals and the QUADIR bit in the FTM_QDCTRL register indicates
the counting direction. To allow for filtering of possible glitches in the encoder signals, the value of the filter can
be set in A/B PhFilterVal as per Figure 11.

& Components i Peripherals - Ftm_Pwm (5 Trgmu_lp (5 Ftm_Qdec_Ip Hvm 5 IntCtrl_Ip
/pe filter text © ' FTM Qdec Configuration privers
MCAL [+ Name Ftrr
Gdu Mode FTM Mode
Drivers (+]
Adclp Aec BaseNXP Cache.Ip Gl Name ConfigTimeSupport QdecGeneral QdecinstanceConfig
FlexCAN Ftrm_Pwm Ftm Qdec Ip Gpio_Dio |
Hvm IntCtrl_Ip Lpspi Lpuart_Uart Pdb_Adc_Ip 0
o o
-Insta F
Port_Ci_lcu Port_lp POWER Trgmux_lp nNamE | QdecinstanceConfig_0
Maoduleld 0
0s © FTM Module FIM 2

FTM clock source EXTERNAL_CLOCK
v QdecFtmPrescaler
DIV
Encoding Mode MODE_PHASE_ENCODE
MinCounterValue 0
MaxCounterValue 2047

A Phase Filter

A PhFilterVal 3
APhasePolarity PHASE_NORMAL

"8 Phase Filter T
B PhFilterVal 3
BPhasePolarity PHASE_NORMAL

"QdecEnToflsr gl

Figure 11. S32M244 FTM2 configuration in S32CT

The configuration structure of the quadrature decoder mode generated by S32CT is called Ftim_Qdec Ip_
InstanceConfig BOARD _INITPERIPHERALSJO]. This structure is used with RTD API Ftm_Qdec _Ip_Init, which
is called in StateAlign() in src/main.c.

Note: The S32M24xEVB board is designed to process encoder signals through the FTM2 module. Software
example contains a routine for encoder signal processing. This routine is disabled by default since the motor
of the BLDC low voltage motor control accessory kit is not equipped with an Encoder sensor. To enable the
encoder signal processing routine, set ENCODER macro to true.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
15/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

4.2.3 Trigger MUX control (TRGMUX)

The TRGMUX provides an extremely flexible mechanism for connecting various trigger sources to multiple pins/
peripherals. With the TRGMUX, each peripheral that accepts external triggers usually has one specific 32-bit
trigger control register. Each control register supports up to four triggers, and each trigger can be selected from
the available input triggers.

To trigger the PDB0 module by FTM3 initialization trigger signal init_trig, TRGMUX needs to be set
appropriately.

S32CT allows to generate configuration structure Trgmux_Ip_xTrgmuxInitPB that sets all TRGMUX registers to
assign trigger inputs with trigger outputs as demanded, Figure 12.

& Components ¥ Peripherals T Trgmux lp
t S 1 Trigger MUX privers)
MCAL @ Name
Gdu Mode General Mode
(e o~ TRGMUX

Adele - — Cachelp Dpgap Name ConfigTimeSuppart|General Specific Configuration

Mame Trgmux Logic Instance Trgmux Logic Group
Ftm_Pwm Ftm_Qdec_Ip Gpio_Dio Hvm
IntCtrl Ip Lpspi Lpuart Uart Pdb_Adc Ip
o Name trgmuxLogicGroup_0
Hardware Instance | TRGMUX_IP_HW_INST_0
Hardware Group TRGMUX_IP_PDBO

Port_Ci lcu Port Ip POWER Trgmue_Ip
os - 2

Hardware Lock O
“ Trgmux Logic Trigger ~ + %

Name Logic Trigger Name Hardware Output Hardware Input
0 trgmuxlogicliigger 0 TRGMUX_LOGIC_GROUP_ 0 TRIGGER 0 TRGMUX_IP_OUTPUT PDBO_TRIGGER_INO TRGMUX_IP_INPUT FTM3_INIT TRIG

0 Name trgmuxLogicGroup_1
Hardware Instance | TRGMUX_IP_HW_INST_0
Hardware Group TRGMUX_IP_EXTOUTO

Hardware Lock O
“ Trgmux Logic Trigger ~ + %

Name Logic Trigger Name Hardware Output Hardware Input
0 trgmuxlogicliigger 0 TRGMUX_LOGIC GROUP_1 TRIGGER 0 TRGMUX_IP_OUTPUT EXTOUTO TRGMUX_ OUT1 TRGMUX_IP_INPUT FTM3_INIT TRIG
1 trgmurlogicTrigger 1 TRGMUX_LOGIC_GROUP_1_TRIGGER_1 TRGMUX_IP_OUTPUT_EXTOUTO_TRGMUX_OUT2 TRGMUX_IP_INPUT_PDBO_ADCHO_TRIG

0 Name trgmuxLogicGroup_2
Hardware Instance | TRGMUX_IP_HW_INST 0
Hardware Group TRGMUX_IP_EXTOUT1
Hardware Lock O

~ Trgmux Logic Trigger ~ + %

Name Logic Trigger Name Hardware Output Hardware Input
0 trgmuxlogicTiigger. 0 TRGMUX_LOGIC_GROUP 2 TRIGGER 0 TRGMUX_IP_OUTPUT_EXTOUT1_TRGMUX_OUTS TRGMUX_IP_INPUT_ADCO_COCO_0

Figure 12. S32M244 TRGMUX configuration in S32CT

In particular, the FTM3 initialization trigger signal as a source is assigned to two targets namely: PDBO and
TRGMUX output 1. PDBO0 channel 0 trigger is routed to TRGMUX output 2 and ADCO conversion complete
flag COCO is assigned to TRGMUX output 6. TRGMUX outputs are directly assigned to chip pins, so that

the triggering scheme between FTM3, PDBO0, and ADCO can be visualized with oscilloscope as depicted in

Figure 7.

4.2.4 Programmable Delay Block (PDB)

The Programmable Delay Block (PDB) is intended to completely avoid CPU involvement in the timed acquisition
of state variables during the control cycle. The PDB module contains a 16-bit programmable delay counter

that delays FTM3 initialization trigger and schedules ADC channels sampling through PDB pre-triggers delays.
When FTM3 initialization trigger is detected on the PDB0 and PDB1 trigger input, PDB0O and PDB1 generate

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
16 /45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

hardware signal to trigger ADCO and ADC1 channels in order defined by pre-trigger delays, Figure 13. In this
example only PDBO0 and ADCO are used, and PDB1 and ADC1 are free for user specific requirements.

Trigger input event |_|

Ch n pre-trigger 0 | | |
I

Ch n pre-trigger 1

Ch n pre-trigger M-1

Ch n trigger

Figure 13. PDB pre-triggers and trigger output

PDB pre-trigger delays can be set independently using CHnDLYm registers. Since the PDB0 and FTM3

modules are synchronized and share the same source frequency 80 MHz, values of the CHnDLYm registers are
set using the same time base as for PWM. Table 2 shows all PDBO pre-triggers used in PMSM sensorless FOC
motor control application with single shunt current measurement.

Table 2. PDBO pre-triggers

FOC state variable

PDB pre-trigger

CHnDLYm value [ticks]

Relation to PWM

DPGA offset

pdb0_ch0_pretrig0

The beginning of the PWM.
Used for run-time DPGA
offset compensation, see
4.3.3.4.1.

Stator current 1, sample 1

pdb0_chO_pretrig1

dynamic, set according to
PWM pattern

18t sampling window for phase
current

Stator current 2, sample 1

pdb0_ch0_pretrig2

dynamic, set according to
PWM pattern

2nd sampling window for phase
current

DC Bus voltage

pdb0_ch0_pretrig3

2000

In %2 of the PWM

Stator current 2, sample 2

pdb0_chO0_pretrigd

dynamic, set according to
PWM pattern

3" sampling window for phase
current

Stator current 1, sample 2

pdb0_chO0_pretrigs

dynamic, set according to
PWM pattern

4t sampling window for phase
current

PDB sequence error interrupt is activated as redundancy to protect the triggering mechanism once blocked
due to the wrong PDB pre-trigger delay timing. Pre-triggers delays must respect ADC conversion time that
typically takes ~1.25us considering short ADC sample time and 40 MHz ADC input frequency. This time can be
converted to a PDB pre-trigger delay format defined in the number of ticks 100.

Pre-triggers delays are dynamic values, which are changing every 100 ys control cycle according to
corresponding PWM edges values.

It should be also noticed that MOD, IDLY, and CHnDLYx are double buffered registers, meaning values are
loaded from their buffers based on the selected updating method.

General settings of the PDB module such as clock pre-scaler, input trigger source, loading mechanism for
double buffered registers and operation mode for pre-triggers can be configured with S32CT as shown in

Figure 14.

AN14454

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 19 October 2024

Document feedback
17145

https://community.nxp.com/t5/tkb/workflowpage/tkb-id/S32K%40tkb/article-id/268
https://community.nxp.com/t5/tkb/workflowpage/tkb-id/S32K%40tkb/article-id/268
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

ilter text © ' pdb Adc Configuration mivers)
MCAL Q| Name Pdb_Adc_if
Gdu Mode Non-Autosar Mode
e ol ~ PdbAdcip

Adc_lp Aec BaseNXP Cache_Ip Dpaga_lp I

v PdbAdcGeneral

Ftm_Pwm Ftm_Qdec_Ip Gpio_Dio Hvm
Name PdbAdcGeneral
IntCtrl_Ip Lpspi Lpuart_Uart Pdb_Adc_Ip Pdb Dev Error Detect 0
Port_Ci_leu Port_Ip POWER Trgrmux_Ip
Enable SIM Back To Back Mode Support [
0s ©
~ PdbHwUnit +
0 Name PdbHwUnit_0
Pdb Hardware Unit PDBO
Pdb Load Value Mode LOAD_VAL_IMMEDIATELY
Pdb Prescaler Divider CLK_PREDIV_BY 1
Pdb Multiplication Factor CLK_PREMULT_FACT AS_1
Pdb Trigger Input TRIGGER_IND
Pdb Enable Enable Continucus Mode O
Pdb Enable Dma O
Pdb Modulus 7999
Pdb Sequence Error Notification PDBO_SequenceErrorNotif
~ Channel configurations array r
PdbChannel 0 Name PdbChannel_0

Pdb Channel Index 0

~ Control channel configurations + x

EIney Name Chnldx D
Chnid1 Channel Index 0
Chnldx_2 ot Pt =
Chnidx 3 E"‘ihle PfeTﬂggev . &
Chnldx_4 nable PreTrigger Output &
Chnldx_5 Enable PreTrigger Back to Back

Delay Value 0

Figure 14. S32M244 PDB0 module and pre-triggers configuration in S32CT

S32CT generates configuration structures PdbHwUnit_0_BOARD_INITPERIPHERALS for appropriate PDB
registers. This configuration is loaded calling src/peripherals/peripherals_config.c/McuPdbConfig().

4.2.5 Analog-to-Digital Converter (ADC)

The S32M244 device has two 12-bit Analog-to-Digital Converters (ADCs). These are 32-channel multiplexed
input successive approximation ADCs with 16 result registers.

ADC channels are sampled in the order defined by PDB pre-triggers. When the first pre-trigger is asserted, the
associated lock of the pre-trigger becomes active waiting for the conversion complete flag COCO generated by
the corresponding ADC channel. This sequence is repeated for each PDB pre-trigger and ADC channel couple.

The clock source of the ADC module is derived from the system clock frequency, further divided by 2 resulting
40 MHz supply frequency. To combine high conversion resolution and short conversion time, 12-bit resolution
mode with sample time 12 clock cycles are set in S32CT, Figure 15.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
18/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

® Components & ¥ Peripherals
| type filter text o H
MCAL
Gdu
Drivers L+
Adc_lp Aec BaseNXP Cache_lp Dpga_lp
Ftm_Pwm Ftmn_Qdec_Ip Gpio_Dio Hvm
IntCtrl_Ip Lpspi Lpuart_Uart Pdb_Adc_Ip
Port_Ci_lcu Port_Ip POWER Trgmux_Ip
os ©

~"Channel configurations array +| | =
1
AdeChannel 0 Name
AdcChannel 1 Adec Control Channel Index 5
AdcChannel 2 i h |
AdcChannel 3 Adc Physical Channel Name

AdcChannel_4
AdcChannel 5

CIIMADAACinAlaChint Dol BTN Rawd A0

Adc_lp #

n L]

~ AdclpGeneral

Name

Adc Ip Dev Error Detect
Adc Ip Timeout Method

Adec Ip Timeout Value

AdclpGeneral
O

OSIF_COUNTER_DUMMY

10000

Enable SIM Supply Monitoring Channels O
Enable SIM ADC source selection O

" AdcHwUnit +

AdcHwUnit_0

AdeChannel 5

SEB_ADCHE
Ade Enable Channel Interrupt (]

"Name

Adc Hardware Unit
Adec Prescaler Value
Adc Calibration Prescale

Adc Average Enable

Adc Normal Sample Time Duration
Adc User Offset
Adc User Gain
"Adc Conversion Resolution
DMA Enable
Adc Trigger Mode

Voltage reference selection

Enable Continuous Conversions

Enable Compare Feature

Enable Greater-Than Functionality
Enable Range Functionality

First Compare Value

Second Compare Value

Conversion Complete Notification

~"Channel configurations array

AdcChannel 0 [Name
AdcChannel_1
AdcChannel 2
AdcChannel 3
AdcChannel_4

AdcChannel 5

Figure 15. S32M244 ADCO module and channels configuration in S32CT

Adc Control Channel Index 0
Ade Physical Channel Name
Ade Enable Channel Interrupt

"
AdcHwUnit_0
ADCO

RESOLUTION_12

TRIGGER_HARDWARE
PDB prebioger

PDB trigger
VOLTAGEREF_VREF

o000

ADCO_ConversionCompleteNotif
=+| | %

AdcChannel 0

SEE_ADCHE

Channel 0 measures DC Bus current in zero vector, which serves for run-time DPGA offset measurement,
channels 1,2,4,5 measure DC Bus current (signal at DPGA output). Channel 3 measures DC Bus voltage.
Channel 5, being the last channel in the list, has also interrupt enabled.

S32CT generates the module configuration structure AdcHwUnit 0 BOARD_INITPERIPHERALS, which takes
effect calling the respective RTD API in the function src/peripherals/peripherals_config/McuAdcConfig().

4.2.6 Low Power Serial Peripheral Interface (LPSPI)
LPSPI is used as communication interface between S3M244 MCU and AE.

Configuration of LPSPI1 by means of S32CT can be seen in Figure 16. The details on the AE communication
protocol are described in S32M244 reference manual (see section References).

AN14454

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 19 October 2024

Document feedback
19/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

& Components ¢ ¥ Peripherals
type filter text
MCAL
Gdu
Drivers
Adc_lp Aec BaseNXP Cache_Ip
Ftm_Pwm Ftm_Qdec_lp Gpio_Dio
IntCtrl_Ip Lpspi Lpuart_Uart
Port_Ci_lcu Port_Ip POWER
os

Dpga_lp

Pdb_Adc Ip

Trgmux_lp

Adc_lp (% Lpspi
Lpspi Configurati

Name Lpsf

Mode | Lpspi Mode

0N [Drivers]

Name ConfigTimeSuppor! SpiDriver SpiGeneral

Name

SpiEnableDmaFastTransferSupport
SpitalfDuplexModeSupport

“LpspilpDevErorDetect
“SpiGlobalDmaEnable
SpiEnableLargeFrameSize
"SpiTimeoutMethod

“SpiTransmitTimeout
<"SpiPhyUnit +
0

7 spiGeneral

® OSIF_COUNTER DUMMY
" 50000

"Name T spiphyunit.o
SpiPhyUnitMapping LPSPI_1
SpiPinConfiguration 0
SpiSamplePoint 0
SpiPhyUnitSelectClockFunctionalGroup | BOARD_BootClockRUN

"SpiPhyUnitMode " SPI_MASTER

Figure 16. S32M244 LPSPI module configuration in S32CT

Name | SpiDriver
~"SpiExternalDevice

SpixternalDevice_0

+

“Name

SpiBaudrate

"SpiCsldentifier

SpiCsPolarity
spiDataShifttdge
SpiHwlnit
spishiftClockidleLevel
SpiDataWidth
SpiDefaultData
SpilransferStart
SpiTimeClk2Cs
SpiTimeCs2Clk
SpiTimeCs2Cs

SpiCsBehavior

| spifxternalDevice_0
10000000
" pcs3
Low
LEADING
CsiBo
Low
3
1
1s8
207
27

4e-7

CS_KEEP_ASSERTED

LPSPI is then initialized using the S32CT-generated configuration structure in src/peripherals/peripherals_

config/McuSPIConfig().

4.2.7 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

LPUARTO is used as a communication interface between the S32M244 processor and FreeMASTER run-time
debugging and visualization tool. Function src/Peripherals/peripherals _config/MculpuartConfig() initializes

LPUARTO module with baud rate 115200 bps, 8 bits per channel, no parity, and 1 stop bit. This configuration is
carried out by RTD’s LPUART driver.

Configuration structure Lpuart Uart Ip_xHwConfigPB_0 BOARD_INITPERIPHERALS is configured by means

of S32CT as shown in Figure 17.

AN14454

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 19 October 2024

Document feedback
20/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

& Components 2 ¥ Peripherals
type filter text ot
MCAL [+]
Gdu
Drivers. [+]
Adc_Ip Aec BaseNXP Cache_lp Dpga_lp
Ftr_Pwm Ftrn_Qdec_Ip Gpio_Dio Hvm
IntCtrl_Ip Lpspi Lpuart_Uart Pdb_Adc_lp
Port_Ci_lcu Port_Ip POWER Trgmux_Ip
os (+]

=0 Ftm_Qdec_Ip

“Dpga_lp

5 Trgmux_lp [5 Lpuart_Uart

Lpuart Uart Configuration privers)

Name Lpuart Uart

Mode LPUART UART Mode

MName ConfigTimeSupport GeneralConfiguration UantGlobalConfig

-
"Name | UartGlobalConfig

~"UartChannel

UartChannel 0

+

"Name
UartHwUsing LPUART_|P

UartClockFunctionalGroupRef

~ DetailModuleConfiguration
"Name

“Uart hardware channel

Desire Baudrate

4
Uart Asynchronous Method

m_a

Uart Parity Type

Uart Stop Bit Number

Uart Word Length
"Uart Internal Loopback Mode Enable TJ
“Uart Timeout Enable i

Figure 17. S32M244 LPUARTO0 module configuration in S32CT

g UartChannel_0
BOARD_BootClockRUN

7 Detailvod uleConfiguration
" LPUART 0
LPUART_UART_BAUDRATE_115200

LPUART_UART_IP_USING_INTERRUPTS

LPUART_UART_IP_PARITY_DISABLED
LPUART_UART_IP_ONE_STOP_BIT
LPUART_UART_IP_8_BITS_PER_CHAR

4.2.8 Port control and pin multiplexing

PMSM FOC sensorless motor control application requires following on chip pins assignment, Table 3.

Table 3. Pins assignment for S32M244 PMSM sensorless FOC control

Connection Peripheral Signal Pin Description
ADCO DCBI PTB13/ADCO_SE8 |DC Bus current
DCBV PTA6 / ADCO_SE2 DC Bus voltage
PWMA_HS PTA2 / FTM3_CHO PWM A high-side driver
PWMA_LS PTA3 / FTM3_CH1 PWM A low-side driver
FTM3 PWMB_HS PTB10/FTM3_CH2 |PWM B high-side driver
D2D PWMB_LS PTB11/FTM3_CH3 |PWM B low-side driver
PWMC_HS PTC10/FTM3_CH4 |PWM C high-side driver
PWMC_LS PTC11/FTM3_CH5 |PWM C low-side driver
SPI_SCLK PTB14 / LPSPI1_SCK |SPI clock
LPSPI1 SPI_SIN PTB15/LPSPI1_SIN |SPIdatain
PTB16 / LPSPI1_
SPI_SOUT SOUT SPI data out
AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 19 October 2024

Document feedback
21/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

Table 3. Pins assignment for S32M244 PMSM sensorless FOC control ...continued

Connection Peripheral Signal Pin Description
PTB17 / LPSPI1_ .
SPI_CS PCS3 SPI chip select
GPIO AE_Fault PTD3 App'llcatlon Extension fault
(active low)
Receive data from Free
LPUART _In PTC2 / Ipuart_rx
LPUARTO MASTER
LPUART_Out PTC3 / Ipuart_tx Send data to FreeMASTER
TRGMUX_InitTrg | PTDO/ trgmux_out! ||/ M3 Init trigger
visualization
TRGMUX TRGMUX_AdcTrg |PTD1 / trgmux_out2 | DE/ADC trigger
visualization
TRGMUX_CoCo | PTEM /trgmux_outs |~DC0 CH1 conversion
complete visualization
S.32M244 package PTE16 PTE16 Toggleq pin for FOC
pins execution time measurement
LED for indication: steady lit
GPIO LED PTE15 — ready, slow blinking — run,
fast blinking - fault
SWo PTB4 Application control via board
SW1 PTB5 button
ENC_A PTE5 Phase A signal of the
Encoder sensor
FTM2 :
ENC_B PTE4 Phase B signal of the

Encoder sensor

This pins assignment can be carried out by means of the S32CT opening pins tool. Pin assignment of the FTM3
module is shown in Figure 18 as an example.

AN14454

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 19 October 2024

Document feedback
22/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

F= Pins B9 Peripheral Signals & *Ik External User Signals

= B 4 package @ #¥Expansion Header

QQeD v HE

Figure 18. S32M244 pins assignment for FTM3 in S32CT

B8O © e type filter text
CANO ~
EWM
FTM S
FTMO CP1 VODE
1 anco avct can
FTM1 o =)
B FTM2 — — = — e
WLS_OUT . FTM3 FXI0 ITAG APV
v EFT™3 Sl 11aG_smD ITAG_TRACE Lepen (2
[ftm3_ch0 -> [67] PTA2 ‘::Tf Lrsrn T Lrspe :':SL
& ftm3_ch1 -> [68] PTA3 \ERLTE wruro 10 e i
osc vorTA 1 orm -
B ftm3_ch2 -> [73] PTB10 e e
— _ || roRTE PTCO
B ftm3_ch3 -> [74] PTB11 P2 p— e 1 sveren Tt
B ftm3_chd -> [81] PTC10 / routable to 2 pins oy [=
¥ ftm3_ch5 -> [82] PTC11 / routable ta 2 pins Fics fr—rTed
PTAG [m—PTES
ftm3_ch6 - [12] PTE2 v S32M244_| QFP64 - LOFP 64 package
E Routing Details =)
‘Signals ‘ ‘ P type filter text
Routing Details for... (+ < JNES RS
Peripheral Signal Arrow Routed pin/signal Label Identifier Direction Lock Register Open Drain Slew Rate Pull Enable Pull Select [
67 FTM3 ftm3_ch0 [67] PTA2 PWMA_HS n/a Output Unlocked Disabled Fast Slew Rate Disabled Pull Down |
68 FTM3 ftm3_ch1 [68] PTA3 PWMA_LS n/a Output Unlocked Disabled Fast Slew Rate Disabled Pull Down [
73 FTM3 ftm3_ch2 [73] PTB10 PWMB_HS n/a Output Unlocked Disabled Fast Slew Rate Disabled Pull Down [
74 FTIM3 ftm3_ch3 [74] PTB11 PWMB_LS n/a Output Unlocked Disabled Fast Slew Rate Disabled Pull Down [
81 FIM3 ftm3_ch4 [81] PTC10 PWMC_HS n/a Output Unlocked Disabled Fast Slew Rate Disabled Pull Down [
82 FIM3 ftm3_ch5 [82] PTC11 PWMC_LS n/a Output Unlocked Disabled Fast Slew Rate Disabled Pull Down [

The S32CT -generated configuration structure g_pin_mux_InitConfigArr_BOARD _InitPins and the respective
RTD function is then called in src/peripherals/peripherals _config.c/MCUPinsConfig().

Note: At the time of release of example SW version 1.0, ADCO interleave on pin PTB13 was not available in
the S32CT Pins tool, therefore the interleave is set in src/Peripherals/peripherals_config.c/MCUPInsConfig() by
calling Port_Ci_Port_Ip_SetMuxModeSel(IP_PORTB, 13, PORT_MUX_ADC_INTERLEAVE).

4.2.9 Interrupt configuration

The usage of the respective interrupts takes place in the S32CT peripherals tool. The interrupts are configured
as per Table 4.

Table 4. S32M244 interrupt usage

Name Functionality

ADCO_IRQn reading of the ADC results, FOC calculation, calculation of PWM edges and triggers
PDBO0_IRQnN handling of PDB sequence error

PORTD_IRQn handling of AE fault

FTM3_Ovf_Reload_IRQn

loading of PWM edges into FRM3 for odd and even cycles

The configuration of the interrupts in the S32CT peripherals tool is shown in Figure 19.

AN14454

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 19 October 2024

Document feedback
23/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

% Components ¥ Peripherals IntCtrl_Ip ¥
type filter text o |t .
MCAL o 0 Name | IntCtrlConfig_0
Gdu +"PlatformlsrConfig X
Drivers © # Name Interrupt Name Interrupt Enabled Priority Handler
Adclp Aec BaseNXP Cache_lp Dpaa_lp 31 PlatformisrConfig_31 ADCO_RQn [1 Adc 0_lsr
= = = 42 PlatformisrConfig 42 PDBO_IRQn 0 Pdb_0_lsr
Ftm_Pwm Ftm_Qdec_Ip Gpio_Dio Hvm 43 PlatformisrConfig 43 SCG_IRQN (m] 0 undefined_handler
IntCtr_Ip s il Pdb_Adc_Ip 44 PlatformlsrConfig 44 LPTMROJRQn [o undefined_handler
45 PlatformisrConfig_45 PORTA_IRQn [1] undefined_handler
Port_Ci_lcu Port_Ip POWER Trgmux_Ip 46 PlatformisrConfig 46 PORTB_IRQn [1] undefined_handler
pos ° 47 PlatformlsrConfig 47 PORTC_IRQn [o undefined_handler
48 PlatformisrConfig_48 PORTD_IRQn M 2 PORT_CILICU_IP_D_EXT_IRQ_ISR
89 PlatformisrConfig_89 FTM3_Ovf Re.. [) FTM_3_OVF_RELOAD ISR
Figure 19. S32M244 interrupt configuration in RTD

The MCU can detect AE fault through falling edge on PTD3. This event can be handled by PTD3 interrupt, this
needs to be set in S32CT peripherals tool as well, a part of the setting is shown in Figure 20. See the detailed
setting in the S32CT peripherals tool for the module Port_Ci_lcu.

& Components & ¥ Peripherals Port_Ci_lcu ¢
type filter text ot PORT_CI Driver piivers
MCAL ©| Name Port Cilcu
Gdu Mode PORT ICU Mode
Drivers © ¥ PORTCLICU
Name ConfigTimeSupport lcuConfigSet IcuGeneral
Adclp Aec BaseNXP Cachelp Dpgalp d PTmesupport leutontigset o ener
MName lcuMaxChannel lcuChannels | lcuPort | IcuHwinterruptConfiglist
Ftm_Pwrm Ftm_Qdec_Ip Gpio_Dio Hvm
+
IntCtrl_Ip Lpspi Lpuart_Uart Pdb_Adc_lp
lcuChannel 0 " 1
Port_Gi_lcu Port_Ip POWER Trgmu_lp = Name LleuChannel 0
*lcuChannelld 0
os b lcuChannelRef SPort_Ci_lcu/Port_Ci_lcu/PortCiConfigSet/lcuPort_0/lcuPortChannel_3

IcuDefaultStartEdge ICU_FALLING_EDGE
ICU_MODE_SIGNAL_EDGE_DETECT

lcuMeasurementMode

~ lcuSignalEdgeDetection

Name lcuSignalEdgeDetection

~ lcuSignalNotification

PORTD_Notif

Figure 20. S32M244 enabling edge detection

4.2.10 Application Extension (AE) configuration

As discussed earlier, S32M244 comprises an MCU part and an Application Extension (AE). AE needs also to
be configured and the configuration is carried out by sending SPI commands to the AE. The device-specific SPI
protocol is implemented in RTD.

4.2.10.1 AE Power Management Controller (PMC) configuration

The configuration of AE PMC is done using S32CT peripherals tool as per Figure 21. For the SW example, the
only relevant setting is selection of VDD voltage level. Another selection of voltage detectors and enabling of
CANBUS or LINPHY supplies is also possible according to specific customer needs.

© 2024 NXP B.V. All rights reserved.
Document feedback
2445

AN14454
Application note

All information provided in this document is subject to legal disclaimers.

Rev. 1.0 — 19 October 2024

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

% Components &+ Peripherals POWER

type filter text © ' POWER Configuration privers

MCAL ©| Name POWER
Gdu Mode POWER

Drivers o ~ POWER Configuration Set

o o
Adc_Ip Aec BaseNXP Cache_lp Dpga_lp Name POWER

~ Power Configuration
Ftm_Pwm Ftm_Qdec_lp Gpio_Dio Hvm

Name General McuDebugConfiguration McuModuleConfiguration
IntCtrl Ip Lpspi Lpuort Uart Pdb Adc Ip Name McuResetConfig|McuResetReasonConf McuPowerContral MicuMa
Port_Ci_leu Port_Ip POWER Trgmux_Ip "Name T McuPowerControl

os P ~ McuPMC_Config

"Name il McuPMC_Config
Enable Low Voltage Detect Interrupt

O
Enable Low Voltage Waming Interrupt (]
Disable Low Power Oscillator O
Disable Clock Bias O
Enable Bias O

~ McuPMC_AE_Config

"Name T McuPMC_AE_Config

Enable Low Voltage Detect Interrupts On VLS O
Enable Low Voltage Detect Interrupts On VDDC O
Enable HVD On VDD Interrupt O
Enable HVD On VDDINT Or VOD15 Interrupt [
LINPHY Supply Enable

VDDC Enable O

LVD VLS Select LVD_5_5V
LINPHY Supply Select VSUP_PIN
VDD Voltage Level Select VDD_5V

Figure 21. S32M244 PMC AE configuration in S32CT

Note: There was a limitation in the RTD at the time of release of example SW version 1.0: to generate the AE

PMC configuration structure, the respective tick box, as per Figure 22, had to be disabled, otherwise the AE
PMC configuration structure was not generated.

® Components 4 ¥ Peripherals POWER

type filter text © ' POWER Configuration pjivers]
MCAL 0 MName POWER
Gdu Mode POWER
Drivers © | ~ POWER Configuration Set

» "
Adc_Ip Aec BaseNXP Cache_lp Dpga_lp Name | POWER

~ Power Configuration
Ftm_Pwm Ftm_Qdec_lp Gpio_Dio Hvm 5 : : =
Name | General McuDebugConfiguration ! lcuModuleConfiguration
IntCirl Ip Lpspi Lpuart_ Uart Pdb_Adc_Ip "Name 1 MeuDebugConfiguration
Port_Ci_lcu Port_Ip POWER Trgmux_lp
"Mcu SRAM Retention Config API
0s (+]

"Mcu Get PowerMode State API
"Mcu PMC AE Config API
"Mcu AEC Reset Config API

imimln

Figure 22. S32M244 PMC AE necessary setting to enable configuration structure generation

The generated configuration structure is then sent over SPI to AE. The details can be seen in src/Peripherals/

peripherals_config.c/AEC_PMCConfig() where the user can also select whether the internal or external VPRE
ballast transistor is used.

4.2.10.2 AE Reset generator configuration

AE contains several modules, which are enabled by writing to RSTGEN_CFG register of AE over SPI. The
generation of RSTGEN_CFG configuration structure (and enablement of the respective AE modules) is done
via S32CT according to Figure 23. for example: this application uses DPGA and GDU AE modules, therefore
the two are selected in RSTGEN_CFG via McuResetGeneratorConfiguration.

AN14454

Application note

All information provided in this document is subject to legal disclaimers.

Rev. 1.0 — 19 October 2024

© 2024 NXP B.V. All rights reserved.
Document feedback
25/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

% Components ¥ Peripherals . POWER

ilter text o POWER Configuration privers

MCAL O Name i ..
Name McuResetGeneratorConfiguration
Gd Mode POWER
o ot Regs Otp Reset [
Drivers o ~ POWER Configuration Set CANPHY Reset O
" L LINPHY HP Reset [
, I 1 Name | POWER
Adec_lp Aec BaseNXP Cache_Ip Dpga_lp - LINPHY LP Reset O
) ~ Power Configuration
Ftm_Pwm Ftm_Qdec_lp Gpio_Dio Hvm 5 - GDU Reset)
Name |General McuDebugConfiguration ! lcuModuleConfiguration HVI Reset 0O
‘ " sef
IntCerlIp Lpspi Lpuart Vort Pdb_Adc lp "Name MeuDebugConfiguration DPGA Reset
Port_Ci_lcu Port_Ip POWER Trgmux_Ip Tempsensor Reset [
“Mcu SRAM Retention Config API CXPl Reset O
os L+

"Mcu Get PowerMode State API
"Mcu PMC AE Confia API
“Mcu AEC Reset Config APl

}ddd

Figure 23. S32M244 AE RSTGEN_CFG configuration using S32CT

The generated configuration structure is then sent over SPI to AE. The details can be seen in src/Peripherals/
peripherals_config.c/AEC_ResetConfig().

4.2.10.3 AE Digital Programmable Gain Amplifier (DPGA) configuration

The DPGA takes care of the differential measurement of voltage drop across DC Bus shunt resistor, Figure 1.
For detailed DPGA configuration, please refer to the respective chapter describing the DPGA in the S32M24x
Reference Manual.

The SW example DPGA key settings are depicted in Figure 24.
For the SW example, the important settings are:

* Amplifier Gain, which needs to be selected considering shunt resistance, DPGA output range, nominal motor
current and DPGA temperature offset drift. The maximum theoretical amplitude of the measured current can
be calculated as:

Vief (1)
|
max = RepyneDPGAgain

Where V¢ is the ADC reference voltage (5 V or 3.3 V as per VDD settings), Rsnhunt is the shunt resistance and
DPGAgain is the gain of the DPGA.

* Output common mode voltage, which is set to half of the DPGA range, since in motor control application both
directions of DC Bus currents can be expected in certain applications. This parameter sets the "artificial zero"
at DPGA output, enabling for bidirectional DC Bus current measurement.

* Input common mode coarse sets the amount of level shifting current flowing through level shifting resistors
connected between the shunt and the DPGA. Please refer to the S32M24x Reference Manual for details.

The parameters for blanking time allow for setting the blanking time duration and blanking trigger events. The
blanking feature helps overcome a possible saturation of DPGA inputs by disconnecting the DPGA inputs from
the measured circuitry (shunt resistor) during blanking time. Please refer to the S32M24x Reference Manual

for more details (see section References). The rest of the parameters serve for output and input DPGA offset.
These parameters are for static DPGA offset compensation. To achieve better accuracy, a run-time DPGA offset
compensation has also been introduced, see 4.3.3.4.1. Please refer to the S32M24x Reference Manual for
more details on DPGA and DPGA settings (see section References).

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
26/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

& Components 2 % Peripherals
er text ol n
MCAL ©
Gdu
Drivers (+]
Adc_lp Aec BaseNXP Cache_lp Dpga_lp
Ftm_Pwm Ftmn_Qdec_lp Gpio_Dio Hvm
IntCtrl_Ip Lpspi Lpuart_Uart Pdb_Adc_lp
Port_Ci_lcu Port_lp POWER Trgmux_Ip
os]

Dpga_lp
Dpga_lp Configuration privers)
Name
Mode MNon-Autosar Mode

v DPGA_IP

Name GeneralConfiguration Dpga channels

DpgaChannel 0 "Name
Dpga Channel ID 0
Dpga Hardware Channel
~ DpgaConfiguration
"Name
"ﬂmpliliEI Gain
r'Outr.:lut Common Mode Voltage
"Offset compensation
nlnpul Common Mode Coarse
r'Ir'-put Common Mode Fine

n 2 . M
Blanking Time duration

n
n
n

n

nnga Callback
v Blanking Time triggers

Name Trigger Stage
Dpg... NO_EDGE
Dpg... NO_EDGE
Dpg... NO_EDGE
Dpg... NO_EDGE
Dpg... NO_EDGE
Dpg... NO_EDGE

Vi o W = O %

Figure 24. S32M244 AE DPGA configuration using S32CT

" DpgaChannel 0

DPGA_O

L |
DpgaConfiguration
" GAIN_16
* VREF_DIV_2
w
0
L]
SHIFT_100
'E

L

0

n
Dpga_Notif

x

The S32CT-generated configuration structure is then sent over SPI to AE. The details can be seen in src/
peripherals/peripherals_config.c/AEC_DPGAConfig().

This function also allows the user to set the DPGA voltage detector as its setup is currently not supported in the
RTD. The voltage detector is set via AEC_DPGAConfig() function parameters:

* BIVDEN - bidirectional voltage detector enable

VDEN - voltage detector enable
HDFDUR - filter duration for high limit
HDLIM - high limit

LDFDUR - filter duration for low limit
LDLIM - low limit

The voltage detector monitors the voltage drops across the shunt resistor. When set, it generates a fault if the
voltage drop across the shunt resistor is outside the limits set by the respective parameters. Please refer to the
S32M24x Reference Manual for more details on voltage detector and voltage detector limits calculation.

AN14454

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 19 October 2024

Document feedback
27145

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

4.2.10.4 AE Gate Driver Unit (GDU) configuration

The AE comprises an advanced GDU, which offers, for example: advanced slew rate control and desaturation
protection.

The GDU settings are displayed in Figure 25. The SW example uses the desaturation protection and slew rate
settings out of the features offered by the GDU. The other possibilities such as overvoltage detection or boost
may be enabled here according to customer specific needs. The boost feature allows operating the MOSFETs
also in case the HD voltage is below 7 V. See S32M2xx data sheet and S32M24x Reference Manual for details
(see section References). Please note that the boost feature does not boost the voltage for the connected
motor. It boosts the voltage for S32M2xx (including the GDU) on VSUP pin so the MOSFETSs can be controlled
safely.

The parameter HD and High-side divider sets the division ratio of the voltage dividers on HD and HS pins,
please refer to S32M2xx data sheet for the division ratio details (see section References).

It is important to set all the slew rates (only switch-on slew rates for the high side are shown in the picture)
according to customer specific hardware and slew rates demands. This needs to be done for switching on and
off and for high and low side drivers. Please refer to the S32M24x Reference Manual and S32M2xx data sheet
for slew rate setting scheme details.

The slew rate settings principle is displayed in Figure 26. The switching on (left) and switching off (right) process
can be divided into three intervals and for each of the intervals the MOSFET gate current (i.e., slew) can be
adjusted. Note that Figure 26 is for illustration only and the response of an actual MOSFET gate voltage (Vgs)
to the gate current (Ig) depends on the actual MOSFET type and inverter hardware design.

There are separate slew rate settings parameters for switching on and off process for high and low side. The
summary of the parameters is listed in Table 5. The user can set the currents injected into the MOSFET gate for
all three intervals and the length of interval 1 and 2 is adjustable as well.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
28/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

Synchronisation Enable [
HD and High-Side Divider

HD High Voltage Detect
“ Gdu Error Reaction

Name GduEaCfg
Desaturation Action
Overcurrent Action

High Voltage Detection Action

OR8E

~ Gdu Boost

Name GduBoostCfg
GDUICOIL_O

Boost Clock Divider 1

Boost Current Limit

Boost Duty Cycle GDU_DUTY_CYCLE_3 DIV 4

* Gdu Blanking Time

& Components i ¥ Peripherals -
type filter text ot
MCAL [+]
Gdu
Drivers ©
Adc_lp Aec BaseNXP Cache_lp Dpga_lp
Ftrn_Pwm Ftm_Qdec_Ip Gpio_Dio Hvm
IntCtrl_Ip Lpspi Lpuart_ Uart Pdb_Adc Ip
Port_Ci_lcu Port_Ip POWER Trgmux_lp
os [+]
* Gdu Configuration
Name | GduCfg Y |

GDU_IP_DIVIDER_LOW
GDU_IP_VOLTAGE_HIGH

Name | GduBtCfg
Blanking Time Adjustment (0 -> 511) | 200

~ Gdu High Side Slew Rate On

Name GduHssrOn
High Side Turn On Time Point 1 4

High Side Turn On Time Pgint 2 2

High Side Turn On Current Time Point 1 20

High Side Turn On Current Time Point 2 2
High Side Turn On Current Time Point 3 16

1 Gdu
Gdu Configuration picay

Name Gdu

Maode AUTOSAR Mode

Name ConfigTimeSupport Gdu General Configuration CommonPublishedinformation

7 GduGeneral
nGdu\.’ersionInloApi i}

“Gdu Development Error Detect b

n a

"
Name

~ GduNotification x
Gdu_Notif

~ Gdu Control

Name GduCtl

Boost Enable O

Iref Timming by Software []

~ Gdu Interrupt Enable

GdulntEn

O

Name

HD High Voltage Detect Interrupt Enable

Desaturation High-Side 0 Interrupt Enable
Desaturation High-Side 1 Interrupt Enable
Desaturation High-Side 2 Interrupt Enable
Desaturation Low-Side 0 Interrupt Enable

Desaturation Low-Side 1 Interrupt Enable

Desaturation Low-Side 2 Interrupt Enable

~ Gdu Desaturation Level

Name GduDsCfg

GDU_DS _FILTER_1400ns
GDU_DS_FILTER_1400ns
GDU_DS_LEVEL_1450mV

GDU_DS_LEVEL_1450mV

Desaturation Filter High Side
Desaturation Filter Low Side
Desaturation Level High Side

Desaturation Level Low Side

Figure 25. S32M244 AE GDU configuration using S32CT

'
Interval 1 '

HSTONT_P1

Interval 2

HSTONT_P2

'
' Interval 3 ' Interval 1

'
' _ Interval 2

HSTOFF_P1 :HSTOFF_PZ

Interval 3

VGS ' VGS
.
:
: :
. .
: :
. .
: :
: :
: :
HSTONGC_P3 ++ — — — — — e
;
. HSTOFFC_P1..
:
HSTONC P2 — — — — ; HSTOFFC_P2.
RSV | — HSTOFFC_P3

'
'
'
1
M
1
'

Figure 26. S32M244 GDU slew rate settings principle

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 19 October 2024

Document feedback
29/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

Table 5. GDU slew rate settings

3-phase Sensorless PMSM Motor Control with S32M244

Process 1%t interval 2" interval 3% interval

duration gate current duration gate current gate current

High side | Switch on HSTONT_P1 HSTONC_P1 HSTONT_P2 HSTONC_P2 HSTONC_P3
Switch off HSTOFFT_P1 |HSTOFFC_P1 HSTOFFT_P2 |HSTOFFC_P2 HSTOFFC_P3

Low side |Switch on LSTONT_P1 LSTONC_P1 LSTONT_P2 LSTONC_P2 LSTONC_P3
Switch off LSTOFFT_P1 LSTOFFC_P1 LSTOFFT_P2 |LSTOFFC_P2 LSTOFFC_P3

The duration of the intervals is set in AE clock ticks, while the AE clock runs at 42 MHz.

By being able to adjust the gate current in three stages and to control the length of the stages, the user is able
to shape the slew rates and MOSFET response according to application needs with regard to switching losses,
switching performance and EMC. The resolution of gate current adjustment (step size) differs for lower, mid, and
higher level gate currents:

* fine step size — for lower-level gate currents.
* more coarse step size — for mid-level gate currents.
* coarse step size — for higher-level gate currents.

The step size is described in the S32M2xx data sheet. For more details on the slew rate parameters and
how the parameter settings of gate current correspond to actual gate current values, please see S32M24x
Reference Manual and S32M2xx data sheet (References).

The other important parameters are GDU Desaturation levels and blanking time of desaturation protection and
GDU blanking time adjustment (see Figure 25) which are also hardware specific and need to be set according
to customer specific project needs.

The S32CT-generated configuration structure is then sent over SPI to AE. The details can be seen in src/
peripherals/peripherals_config.c/AEC_GDUConfig().

4.2.10.5 Other functions for AE control used in SW example

Various other functions have been prepared for the SW example and can be found under src/Peripherals/
peripherals_config.c/. These are mainly for reset of fault and event flags in the respective AE modules, which
are to be cleared as Write 1 To Clear (W1C). The W1C functions are:

* AEC_PMCResetW1C() for clearing AE PMC W1C faults and events

* AEC_DPGAResetW1C() for clearing AE DPGA W1C faults and events

* AEC_GDUResetW1C() for clearing AE GDU W1C faults and events

* AEC_HVMResetW1C() for clearing AE HVM (High Voltage Module) W1C faults and events
* AEC_AEResetW1C() for clearing AE controller W1C faults and events

Apart from these fault and event clearing functions also functions AEC_VDDE Enable()
and AEC_VDDE_Disable() have been prepared for enabling/disabling the VDDE supply for external sensors.

4.3 Software architecture

4.3.1 Introduction

This section describes the software design of the sensorless PMSM field oriented control framework application.
The application overview and description of software implementation are provided. The aim of this chapter is to
help in understanding of the designed software.

AN14454 All information provided in this document is subject to legal disclaimers.

Rev. 1.0 — 19 October 2024

© 2024 NXP B.V. All rights reserved.
Document feedback
30/45

Application note

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

4.3.2 Application data flow overview

The application software is interrupt driven running in real time. There is one periodic interrupt service routine
associated with the ADC conversion complete interrupt, executing all motor control tasks. This includes both
fast current and slow speed loop control. All tasks are performed in an order described by the application state
machine shown in Figure 29, and application flowcharts shown in Figure 27 and Figure 28.

MAIN
All peripherals required by the application]

are reset and configured

Application peripherals
configuration

Initial state machine settings l

Enable interrupts

Enable real time control l

state = init;
event = e_init;

&
«

Background tasks v

FreeMASTER polling

Figure 27. Flowchart diagram of main function with background loop.

To achieve precise and deterministic sampling of analog quantities and to execute all necessary motor control
calculations, the state machine functions are called within a periodic interrupt service routine. Therefore, to
actually call state machine functions, the peripheral causing this periodic interrupt must be properly configured
and the interrupt enabled. As described in this section 4.2, all peripherals are initially configured and all
interrupts are enabled after a reset of the device. When interrupts are enabled and all S32M244 peripherals

are correctly configured, the state machine functions are called from the ADC interrupt service routine (ISR)
which is pictured in Figure 28. The background loop handles non-critical timing tasks, such as the FreeMASTER
communication polling, this is illustrated in Figure 27.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
31/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

Read HW user controls;

State variable acquisition ¢

Measure DCBus voltage and current;
Reconstruct phase currents;

Fault detection routine ¢

FaultDetection();

v

false

true
faultDetectionEvent
event = e_fault

State machine calling -

StateTable [event][state]();

'

FMSTR_Recorder ();

Figure 28. Flowchart diagram of periodic interrupt service routine.

4.3.3 State machine

The application state machine is implemented using a two-dimensional array of pointers to the functions using
a variable called StateTable[][](). The first parameter describes the current application event, and the second

parameter describes the actual application state. These two parameters select a particular pointer to the state
machine function, which causes a function call whenever State Table[][]() is called.

AN14454 All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024

Document feedback
32/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

Power on / hw. reset
/* Disable all external interrupts
Application peripherals
reset & configuration
/* Enable external interrupts
executed in ISR .
e_init
A
e_init_done e_app_off
INIT
e_app_off e_fault_clear e_app_off
e_fault

' e_fault ‘

e_ready e_run
e_app_on
PP U e_align_done
e_fault e_fault e_fault

‘ e_calib_done ‘

e_calib e_align
Figure 29. Application state machine

The application state machine consists of the following six states, which are selected using the variable state
defined as:

AppStates:

e INIT - state =0
FAULT - state = 1
READY - state =2
CALIB - state =3
e ALIGN - state =4
* RUN - state =5

To signalize/initiate a change of state, eleven events are defined, and are selected using the variable event
defined as:

AppEvents:

* e fault-event=0

« e _fault_clear - event = 1

* e init-event=2

* e_init_done -event=3

* e ready -event=4

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
33/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

* e app_on-event=5

e e _app_off - event = 11

* e calib-event=6

* ¢_calib_done - event=7
* e align-event=38

* e _align_done - event=9
* e run-event=10

4.3.3.1 State — FAULT

e_fault

e_fault_clear
p/v

_t

e_fault

Figure 30. FAULT state with transitions

The application goes immediately to this state when a fault is detected. The system allows all states to pass into
the FAULT state by setting cnirState.event = e_fault. State FAULT is a state that transitions back to itself if the
fault is still present in the system and the user does not request clearing of fault flags. There are two different
variables to signal fault occurrence in the application. The warning register tempFaults represents the current
state of the fault pin/variable to warn the user that the system is getting close to its critical operation. And the
fault register permFaults represents a fault flag, which is set and put the application immediately to fault state.
Even if the fault source disappears, the fault remains set until manually cleared by the user. Such mechanisms
allow for stopping the application and analyzing the cause of failure, even if the fault was caused by a short
glitch on monitored pins/variables. State FAULT can only be left when application variable switchFaultClear is
manually set to true (using FreeMASTER) or by simultaneously pressing the user buttons (SWO0 and SW1) on
the S32M24xEVB evaluation board. That is, the user has acknowledged that the fault source has been removed
and the application can be restarted. When the user sets switchFaultClear = true; a fault-clearing sequence is
executed.

Setting event to cnirState.event = e_fault_clear while in FAULT state represents a new request to proceed to
INIT state. This request is purely user action and does not depend on actual fault status. In other words, it is up
to the user to decide when to set switchFaultClear true. However, according to the interrupt data flow diagram
shown in Figure 28, function FaultDetection() is called before state machine function state_table[event][state]
(). Therefore, all faults will be checked again and if there is any fault condition remaining in the system, the
respective bits in permFaults and tempFaults variables will be set. As a consequence of permFaults not equal
to zero, the function FaultDetection() will modify the application event from e_fault_clear back to e_fault, which
means jump to fall state when state machine function state_table[event][state]() is called. Therefore, INIT state
will not be entered even though the user tried to clear the fault flags using switchFaultClear. When the next
state (INIT) is entered, all fault bits are cleared, which means no fault is detected (permFaults = 0x0) and the
application variable switchFaultClear is manually set to true.

The application is scanning for the following system warnings and errors:

* DC Bus over voltage

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
34/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

* DC Bus under voltage
* Phase over current

The thresholds for fault detection can be modified in the INIT state. Please see References for further
information on how to set these thresholds using the MCAT. In addition, a fault state is entered if following errors
are detected:

» PDB errors (PDB Sequence error)
» Application Extension errors (as per the events and faults enabled by the user for Application Extension)
* FOC error (irrelevant event call in state machine or Back-EMF failure)

4.3.3.2 State — INIT

e_init_done e_app_off

e

Figure 31. INIT state with transitions

State INIT is a “one pass” state/function and can be entered from all states except for READY state, provided
there are no faults detected. All application state variables are initialized in state INIT.

T e_init

Initialization of application variables
(% e_init_done

After the execution of INIT state, the application event is automatically set to cnirState.event=e_init_done, and
state READY is selected as the next state to enter.

Figure 32. Flowchart of state INIT

4.3.3.3 State - READY

e_init_done

e_fault
e_ready

e_app_on

Figure 33. READY state with transitions

In the READY state, the application is waiting for a user command to start the motor. The application is released
from waiting mode by pressing the on board button SWO0 or SW1 or by FreeMASTER interface setting the

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
35/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

variable switchAppOnOff = true (see flowchart in Figure 34). DC Bus voltage and currents are monitored during
READY state for fault detection purposes.

ISR /* ADC end of sequence interrupt service routine

/* Read HW switches

Read HW user controls;

? e_init_done /* User accessible switch
for stopping application

state = ready
event = e_ready.

switchAppOnOff

e _a off
i e_app_on —aPp_ <
D v /* State variable acquisition
Measure DC Bus voltage;
Measure DC Bus Currents
and reconstruct phase currents;

l /* Fault detection routine

faultDetection();

'

Figure 34. Flowchart of state READY

4.3.3.4 State — CALIB

e_app_on

e_app_off

e_calib_done

e_calib e fault

Figure 35. CALIB state with transitions

In this state, ADC DC offset calibration is performed. Once the state machine enters CALIB state, all PWM
outputs are enabled. Calibration of the DC offset is achieved by generating 50% duty-cycle on the PWM
outputs and taking several measurements of the ADCO channels connected to the current sensors. These
measurements are then averaged, and the average value for the channel is stored. This value will be subtracted
from the measured value when in normal operation. This way the half range DC offset, caused by voltage
shift of 2.5 V (according to DPGA settings), is removed in the measured phase. State CALIB is a state

that allows transition back to itself, provided no faults are present, the user does not request stop of the
application (by switchAppOnOff=true), and the calibration process has not finished. The number of samples
for averaging is set by default to 2410 = 1024, and can be modified in the state INIT. After all 1024 samples
have been taken and the averaged values successfully saved, the application event is automatically set

to cntrState.event=e_calib_done, and state machine can proceed to state ALIGN (see flowchart in Figure 36).

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
36/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

state = calib;
event = e_calib;

e_app_on
? _app_ caliblnitDone true

Initialization calibration variables|
l calibDone = 0;

[ACTUATE_EnableOutput(); | callbinitBonci=S;

true

|MEAS_CaIibCurrentSense(); |———>—

CalibStatus == true;

<% e_calib_done

Get offset
offset.fltIDC.fltOffset

- true
calibCntr <= 0x0 -
calibDone

- v

Figure 36. Flowchart of state CALIB

A transition to FAULT state is performed automatically when a fault occurs. A transition to INIT state is
performed by setting the event to cntrState.event=e_app_off, which is done automatically on the falling edge of
switchAppOnOff=false using FreeMASTER.

4.3.3.4.1 Run-time DPGA offset compensation

For better accuracy, also an alternative approach of current measurement offset compensation has been
implemented. DC Bus current is measured in zero vector (as depicted in Figure 7) in the beginning of the PWM
cycle.

The DC Bus current in zero vector is expected to be zero. Since a DC offset has been introduced to measure
bidirectional DC Bus current, a non-zero current (or an "artificial zero") is expected during zero vector. The
measurement of the DPGA offset is done during the calibration sequence and during motor run-time. This
allows for DPGA offset temperature drift compensation while the motor is spinning. The run-time DPGA offset
compensation can be enabled by setting the macro DPGA_OFFSET_COMP. Otherwise, the conventional
"static" DPGA offset calibration (with offset measured only during CALIB state) is used.

To avoid PDB errors or measurement of transients in case the zero vector is too short, the length of the
zero vector is continuously observed and the DPGA offset in the zero vector is only measured when the
zero vector is sufficiently long. The zero vector minimal length (in PDB clock ticks) is set by the value of the
variable minZeroVectorDPGAOffset.

4.3.3.5 State — ALIGN

e_calib_done

e_align_done

Figure 37. ALIGN state with transitions

This state manages alignment of the rotor and stator flux vectors to mark zero position. When using a model
based approach for position estimation, the zero position is not known. The zero position is obtained at ALIGN

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
37145

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

state, where two state alignment is used to avoid sticking at 180 deg. A DC voltage is applied to a g-axis voltage
for a certain period and after that to d-axis voltage for the rest of the alignment time. The ratio between d and

g axis alignment time is given by macro ALIGN_D_FACTOR. This causes the rotor to rotate to “align” position,
where stator and rotor fluxes are aligned. The rotor position in which the rotor stabilizes after applying this DC
voltage is set as zero position. To get the rotor stabilized at aligned position, a certain time is selected for the
alignment process. This time and the amplitude of the DC voltage used for alignment can be modified by an
MCAT tool. Timing is implemented using a software counter that counts from a pre-defined value down to zero.
During this time, the event remains set to cnirState.event=e_align. When the counter reaches zero, the counter
is reset back to the pre-defined value, and the event is automatically set to cntrState.event=e_align_done. This
enables a transition to RUN state see the flow chart in Figure 38.

? e_calib_done

state = align;

event = e_align;

|

EnableOutput();

true false

!

uDQReq.fitArg1 = 0; uDQRegq.fitArg1 = alignVoltage ;
uDQReq.fitArg2 = alignVoltage ; l uDQRegq.fltArg2 = 0;

alignCntr >
alignCntrinitValue *ALIGN_D_FACTOR

thTransform.fitArg1 = GFLIB_Sin(0);
thTransform.fltArg1 = GFLIB_Sin(0);

}

GMCLIB_Parkinv(&uAlBeReq, &thTransform, &uDQReq);

|

false
alignCntr<=0

ClearVariablesAfterAlign ();
Set50%Duty();

event= e_align_done
svmSector = GMCLIB_SvmStd(&(pwmflt),&uAlBeReqDCB);
SetDutycycle();

:

A transition to FAULT state is performed automatically when a fault occurs. Transition to INIT state is
performed by setting the event to cnirState.event=e_app_off, which is done automatically on the falling edge of
switchAppOnOff=false using FreeMASTER or using the user buttons SWO0 and SW1.

Figure 38. Flowchart of state ALIGN

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
38/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

4.3.3.6 State — RUN

e_align_done

Figure 39. RUN state with transitions

In this state, the FOC algorithm is calculated, as described in NXP application note AN12235: 3-phase
Sensorless PMSM Motor Control Kit with S32K144 (see section References).

The control is designed such that the drive might be operated in four modes depending on the source of the
position information:

1. Force mode: The FOC control is based on the generated position (so called open loop position), also this
position is supplied to eBEMF observer to initialize its state.

2. Tracking mode: The FOC control is still using the open loop position, however, the eBEMF observer is left

on its own, meaning that the observer is using its own estimated position and speed one calculation step

delayed.

Sensorless mode: Both FOC control and eBEMF observer using estimated position.

4. Encoder mode: FOC control uses position and speed obtained from an Encoder sensor. This mode is
available only if ENCODER macro is set to true.

@

Position mode can be controlled by the pos_mode variable in the FreeMASTER interface. It might be

modified manually or automatically depending on the state of the variable cntrState.usrControl.controlMode.

If cntrState.usrControl.controlMode = automatic and switchSensor = Sensorless, the application automatically
transits from Force mode (open loop mode) to sensorless mode (closed loop mode) through Tracking mode
based on the actual rotor speed and speed limits defined for each position mode (see section 3.3). Variable
switchSensor defines whether position/speed feedback comes from a back-EMF Observer or Encoder sensor. It
is automatically set to Sensorless if the Encoder sensor is not present (ENCODER=false).

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
39/45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

? e_align_done

state = run;
event =e_run;

manual

automatic |

CalcOpenLoop(); ‘ AutomaticMode();
CalcSensorless(); l ¢
ControlModeSelector();
Control.thRotEIl = OpenLoop.thRotEl;
_< case force: ol Control.wRotEl = 0; L
speedLoopCntr >= SPEED_LOOP_CNTR g Force eBEMF with open loop speed
Force eBEMF with open loop position
false
case tracking: | Control.thRotEl = OpenLoop.thRotEl;
true ”| Control.wRotEl = 0;
‘ FocSlowLoop(); ‘ case sensorless: Control.thRotEl = pospeSensorless.thRotEl | |
Control.wRotEl = pospeSensorless.wRotEl;
‘ ‘ case encoder: Control.thRotEl = pospeEncoder .thRotEl; [
FocFastLoop(); Control.wRotEl = pospeEncoder.wRotEl

l

SetDutycycle();

%> e_app_off

Figure 40. Flowchart of state RUN

Calculation of fast current loop is executed at every ADC end of sequence interrupt, while calculation of slow
speed loop is executed every Nth ADC end of sequence interrupt. Arbitration is done using a counter that
counts from the value N down to zero. When zero is reached, the counter is reset back to N and a slow speed
loop calculation is performed. This way, only one interrupt is needed for both loops and the timing of both loops
is synchronized. Slow loop calculations are finished before entering fast loop calculations (see flowchart in
Figure 39). The value of N depends on the ratio of speed and current loop sample time, which are set in MCAT,
please see the section 5.

Figure 40 shows implementation of FOC algorithm and used functions and variables. As can be seen from the
diagram, rotor position and speed are estimated by eBEMF observer. This is a default rotor position and speed
feedback for FOC. To test encoder based FOC, ENCODER macro must be set to true and PM motor provided
with this motor control kit replaced by PM motor of the comparable power and equipped with Encoder sensor.
As mentioned previously, encoder based FOC can be activated/deactivated by setting switchSensor variable to
encoder/sensorless.

A transition from RUN state to FAULT state is performed automatically when a fault occurs. A transition to INIT
state is performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling
edge of switchAppOnOff=false using FreeMASTER or keeping user buttons SW0 and SW1 pressed.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
40/ 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

3-Phase low power stage
S32K1_$32M24x Automotive Math and B g

- - Motor Control Library Set U_De bus "]
Real-Time Drivers for S3oM24x oT A," ojl’ .
12 vdc
FreeMASTER start [Stop L‘j J% Enc_a Enc_b

Application AE opm% I = Ude _bus l $32M244

Extension Fault Controller GoU Ide_bus
ty o M 'y
MCU LPUART GPIO LPSPI FTM (PWM) —» TRGMUX - PDB B ADC FTM (QUAD)
RTD Driver RTD Driver RTD Driver RTD Driver — RTDDriver —#» RTD Driver — RTD Driver RTD Driver
Application Control B&WVSVEIQET T T
Dut}rcgclec
SPM I'°°P &FW Current Lﬂql Us_alpha_com; uU_dc | 1_dc Theta_enc
Us_beta_comp
Field [s-d-req ® Currentd | s g Modulation 4 | ¢
Weakenin Pl Controller v
9 A Inverse Park Us_alpha) DC_bus Current Angle
Transformation ey Ripple Sensing Tracking
4|_’ d, g—alpha, beta = TP Compensation Processing Observer
> Current q v
Controller PIController [-9 g theta o @91 oo pve g angle
cos <+ 42 Omega_est
Omega_actual_mech E <4———— Tracking Observer
switchSansor = 4Them_(-.xn‘::_filt ry
v L] ‘Omegﬂ_enc_fi\l
— Sensorless | l=d Forward Park £5=gleha Forward Clark ls_o
Encoder sensor Transformation Transformation ls_b
L B9 glpha beta—d, q °-2¢ a, b, c—alpha, beta ¢'5-¢

Figure 41. Sensorless and sensor based FOC with FW implementation on S32M244

4.3.4 AMMCLIib Integration

The integration of AMMCLIb is done in the manner identical to the one described in NXP application note
AN12235: 3-phase sensorless PMSM Motor Control Kit with S32K144 (see References).

5 FreeMASTER and MCAT user interface

The FreeMASTER debugging tool is used to control the application and monitor variables during runtime .
FreeMASTER and MCAT interface enables online application tuning and control.

MCAT (Motor Control Application Tuning) is a graphical tool dedicated to motor control developers and the
operators of modern electrical drives. The main feature of the proposed approach is automatic calculation and
real-time tuning of selected control structure parameters. Connecting and tuning a new electric drive setup
becomes easier because the MCAT tool offers a possibility to split the control structure and consequently to
control the motor at various levels of the cascade control structure.

FreeMASTER and MCAT user interface are described in application note AN12235: 3-phase Sensorless PMSM
Motor Control Kit with S32K144 (see References).

For an in-depth description of motor control application tuning using MCAT, please see NXP application note
AN4642: Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (see References).

6 Conclusion

Design, described in this application note shows the simplicity and efficiency in using the S32M244
microcontroller for sensorless PMSM motor control and introduces it as an appropriate candidate for various
low-cost applications in the automotive area. MCAT tool provides an interactive online tool, which makes the

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
41/ 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

PMSM drive application tuning friendly and intuitive. For other motor control use cases of S32M2, please see
NXP community page (References).

7 References

e S32 Design Studio IDE for S32 Platform

e Real-Time Drivers (RTD)

* FreeMASTER Run-Time Debugging Tool

* Automotive Math and Motor Control Library

» S32M24x Reference Manual

* S32M2xx Data Sheet

* S32M24x PMSM/BLDC Motor Control Evaluation Boards

* BLDC PMSM low voltage motor control accessory kit

» 3-Phase Sensorless PMSM Motor Control Kit with S32K144

* Current Sensing Techniques in Motor Control Applications

* Rashid, M. H. Power Electronics Handbook, 2nd Edition. Academic Press
* Motor Control Application Tuning (MCAT) Tool

» Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM
* NXP community - S32M2xx motor control use cases

* PMSM Electrical Parameters Measurement

8 Revision history

Table 6. Revision history

Document ID Release date Description

AN14454 v.1.0 19 October 2014 Initial release

9 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
4245

https://www.nxp.com/design/design-center/software/automotive-software-and-tools/s32-design-studio-ide/s32-design-studio-for-s32-platform:S32DS-S32PLATFORM
https://www.nxp.com/design/design-center/software/automotive-software-and-tools/real-time-drivers-rtd:AUTOMOTIVE-RTD
https://www.nxp.com/design/design-center/software/development-software/freemaster-run-time-debugging-tool:FREEMASTER?tid=vanFREEMASTER
https://www.nxp.com/design/design-center/software/automotive-software-and-tools/automotive-math-and-motor-control-library-ammclib:AMMCLIB
https://www.nxp.com/webapp/Download?colCode=S32M24XRM
https://www.nxp.com/docs/en/data-sheet/S32M2xx_DS.pdf
https://www.nxp.com/design/design-center/development-boards-and-designs/automotive-motor-control-solutions/s32m24x-pmsm-bldc-motor-control-evaluation-boards:S32M24XEVB
https://www.nxp.com/design/design-center/development-boards-and-designs/automotive-motor-control-solutions/bldc-pmsm-low-voltage-motor-control-accessory-kit:BLDC_KIT
https://www.nxp.com/docs/en/application-note/AN12235.pdf
https://www.nxp.com/docs/en/application-note/AN14164.pdf
https://www.nxp.com/design/design-center/software/development-software/motor-control-application-tuning-mcat-tool:MCATSW
https://www.nxp.com/webapp/Download?colCode=AN4642
https://community.nxp.com/t5/S32K-Knowledge-Base/S32M2xx-Motor-control-use-cases/ta-p/1949879
https://www.nxp.com/webapp/Download?colCode=AN4680&location=null
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454

3-phase Sensorless PMSM Motor Control with S32M244

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 19 October 2024 Document feedback
4345

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

AN14454

All information provided in this document is subject to legal disclaimers.

Suitability for use in automotive applications — This NXP product has
been qualified for use in automotive applications. If this product is used

by customer in the development of, or for incorporation into, products or
services (a) used in safety critical applications or (b) in which failure could
lead to death, personal injury, or severe physical or environmental damage
(such products and services hereinafter referred to as “Critical Applications”),
then customer makes the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, safety,
and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. As such, customer
assumes all risk related to use of any products in Critical Applications and
NXP and its suppliers shall not be liable for any such use by customer.
Accordingly, customer will indemnify and hold NXP harmless from any
claims, liabilities, damages and associated costs and expenses (including
attorneys’ fees) that NXP may incur related to customer’s incorporation of
any product in a Critical Application.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamiQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, pVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 19 October 2024

Document feedback
44/ 45

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors

AN14454

3-phase Sensorless PMSM Motor Control with S32M244

Contents
1 Introduction ... 2 7 References ... 42
2 System concept ..o 2 8 Revision history ... 42
3 PMSM field oriented controlcccceueeeeeet 3 9 Note about the source code in the
3.1 Fundamental principle of PMSM FOC 3 documentooooiiiiiiicccccc s 42
3.2 Output voltage actuation and phase current Legal information ..o 44

MEeasUremMentooociiiiiiiiiee e 3
3.2.1 Double switching configuration 6
3.3 Rotor position/speed estimation 7
3.4 Field weakeningcccooiiiiiiiiieeiee e 7
4 Software implementation on the

S32M244 ... 7
41 S32M244 — key modules for PMSM FOC

CONIOL . 7
411 Module interconnectioncccoocoeiieiiinnen. 7

1.2 Module involvement in digital PMSM

sensorless control 100pccooeecciiiiiiieeenen. 9
4.2 S32M244 device initializationcc.o..... 11
421 Clock configuration and power

Managementooooiiiiieeee e 11
422 FlexTimer Module (FTM)cccciiiiiiiieee. 13
4221 Edge-aligned PWM modecccooeiiieeennnnen. 13
4222 Quadrature decoder modeccccceeeveininnennn. 14
423 Trigger MUX control (TRGMUX)ccccoeeuneeee. 16
424 Programmable Delay Block (PDB) 16
425 Analog-to-Digital Converter (ADC) 18
4.2.6 Low Power Serial Peripheral Interface

(LPSPI) e 19
427 Low Power Universal Asynchronous

Receiver/Transmitter (LPUART)cccoeeieeee. 20
4.2.8 Port control and pin multiplexing 21
429 Interrupt configuration ... 23
4210 Application Extension (AE) configuration 24
4.2.10.1 AE Power Management Controller (PMC)

configuration ... 24
4.210.2 AE Reset generator configuration 25
4.2.10.3 AE Digital Programmable Gain Amplifier

(DPGA) configurationccocceeiiiiiiiieeieen. 26
4.2.10.4 AE Gate Driver Unit (GDU) configuration 28
4.2.10.5 Other functions for AE control used in SW

eXaMPIE ..o 30
4.3 Software architecturecocooiiiiiiiie 30
4.31 Introduction ..o 30
432 Application data flow overview 31
43.3 State machine ... 32
4.3.3.1 State — FAULT ..o 34
4.3.3.2 State — INIT ..o 35
4.3.3.3 State — READYcooooiiiiiiiiiiesie e 35
4334 State — CALIBcccooiiiiiiiiecee e 36
4335 State — ALIGNccooiiiiiiieee e, 37
4.3.3.6 State — RUNcccoooiiiiiiiieee e 39
43.4 AMMCLIb Integrationcccoeoiiiiiiiiiiiee 41
5 FreeMASTER and MCAT user interface 41
6 (0707 T2 (117 ('] o 41

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.

For more information, please visit: https://www.nxp.com Document feedback

Date of release: 19 October 2024
Document identifier: AN14454

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

	1 Introduction
	2 System concept
	3 PMSM field oriented control
	3.1 Fundamental principle of PMSM FOC
	3.2 Output voltage actuation and phase current measurement
	3.2.1 Double switching configuration

	3.3 Rotor position/speed estimation
	3.4 Field weakening

	4 Software implementation on the S32M244
	4.1 S32M244 – key modules for PMSM FOC control
	4.1.1 Module interconnection
	4.1.2 Module involvement in digital PMSM sensorless control loop

	4.2 S32M244 device initialization
	4.2.1 Clock configuration and power management
	4.2.2 FlexTimer Module (FTM)
	4.2.2.1 Edge-aligned PWM mode
	4.2.2.2 Quadrature decoder mode

	4.2.3 Trigger MUX control (TRGMUX)
	4.2.4 Programmable Delay Block (PDB)
	4.2.5 Analog-to-Digital Converter (ADC)
	4.2.6 Low Power Serial Peripheral Interface (LPSPI)
	4.2.7 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)
	4.2.8 Port control and pin multiplexing
	4.2.9 Interrupt configuration
	4.2.10 Application Extension (AE) configuration
	4.2.10.1 AE Power Management Controller (PMC) configuration
	4.2.10.2 AE Reset generator configuration
	4.2.10.3 AE Digital Programmable Gain Amplifier (DPGA) configuration
	4.2.10.4 AE Gate Driver Unit (GDU) configuration
	4.2.10.5 Other functions for AE control used in SW example

	4.3 Software architecture
	4.3.1 Introduction
	4.3.2 Application data flow overview
	4.3.3 State machine
	4.3.3.1 State – FAULT
	4.3.3.2 State – INIT
	4.3.3.3 State – READY
	4.3.3.4 State – CALIB
	4.3.3.4.1 Run-time DPGA offset compensation

	4.3.3.5 State – ALIGN
	4.3.3.6 State – RUN

	4.3.4 AMMCLib Integration

	5 FreeMASTER and MCAT user interface
	6 Conclusion
	7 References
	8 Revision history
	9 Note about the source code in the document
	Legal information
	Contents

