
AN14454
3-phase Sensorless PMSM Motor Control with S32M244
Rev. 1.0 — 19 October 2024 Application note

Document information
Information Content

Keywords PMSM, S32M244, Motor Control Application Tuning (MCAT) tool

Abstract This application note describes the design of a 3-phase Permanent Magnet Synchronous Motor
(PMSM) vector control (Field Oriented Control - FOC) drive with single shunt current sensing with
and without position sensor.

https://www.nxp.com

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

1 Introduction

This application note describes the design of a 3-phase Permanent Magnet Synchronous Motor (PMSM) vector
control (Field Oriented Control - FOC) drive with single shunt current sensing with and without the position
sensor.

This design serves as an example of motor control design using the NXP family of automotive motor control
MCUs based on a 32-bit ARM

®
 Cortex

®
-M4 with floating point unit, optimized for a full range of automotive

applications.

Following are the supported features:

• 3-phase PMSM speed Field Oriented Control
• Current sensing with a single shunt resistor
• Shaft position and speed estimated by a sensorless algorithm or, optionally, by an encoder position sensor
• Application control user interface using FreeMASTER debugging tool
• Motor Control Application Tuning (MCAT) tool

2 System concept

The system is designed to drive a 3-phase permanent magnet (PM) synchronous motor. The application meets
the following performance specifications:

• Targeted at the S32M24x PMSM/BLDC motor control evaluation boards (S32M24xEVB-C064 or
S32M24xEVB-L064) used together with BLDC low voltage motor control accessory kit (see section
References for more information).

• S32 Configuration Tools (S32CT) used as the S32M244 device configuration and control tool being a part of
the S32 Design Studio for S32 Platform IDE (see section References).

• Control technique incorporating:
– Field Oriented Control of 3-phase PM synchronous motor with/without position sensor.
– Flux and torque independent control.
– Bi-directional rotation.
– Field weakening control extending the speed range of the PMSM beyond the base speed.
– Open-loop start up with 2-step rotor alignment.
– Position and speed are estimated by an extended BEMF observer or obtained by Encoder sensor.
– Reconstruction of three-phase motor currents from a single shunt resistor
– FOC state variables sampled with 100 μs period.
– Closed-loop speed control with action period 1 ms.
– Closed-loop current control with action period 100µs.

• Automotive Math and Motor Control Library (AMMCLib) - FOC algorithm built on blocks of precompiled SW
library (see section References).

• FreeMASTER software control interface (motor start/stop, speed setup).
• FreeMASTER software monitor.
• FreeMASTER embedded Motor Control Application Tuning (MCAT) tool (motor parameters, current loop,

sensorless parameters, speed loop) (see section References).
• FreeMASTER software MCAT graphical control page (required speed, actual motor speed, start/stop status,

DC-Bus voltage level, motor current, system status).
• FreeMASTER software speed scope (observes actual and desired speeds, DC-Bus voltage and motor

current).
• FreeMASTER software high-speed recorder (reconstructed motor currents, vector control algorithm

quantities).

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
2 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

• DC-Bus over-voltage and under-voltage, over-current, overload, and start-up fail protection.

3 PMSM field oriented control

3.1 Fundamental principle of PMSM FOC
The description of a fundamental PMSM FOC principles can be found in NXP application note AN12235: 3-
phase Sensorless PMSM Motor Control Kit with S32K144 (see section References).

3.2 Output voltage actuation and phase current measurement
The 3-phase voltage source inverter shown in Figure 1 uses single DC Bus shunt resistor (R134 and R135 in
parallel), refer to the S32M24xEVB schematic - see section References.

DC Bus current flowing through the shunt resistor produces a voltage drop, which is interfaced to the AD
converter of the microcontroller via the integrated Digital Programmable Gain Amplifier (DPGA) integrated
inside S32M244.

FET H-Bridge

DPGA0M0

Phase A Phase B

Differential
Programmable
Gain Amplifier
(DPGA0)

Phase C

DPGA0P0

HD

HG0_MCUpage[4] HG1_MCUpage[4] HG2_MCUpage[4]

HS0_MCUpage[4] HS1_MCUpage[4] HS2_MCUpage[4]

PHASE_A page[4,7] PHASE_B page[4,7] PHASE_C page[4,7]

LG0_MCUpage[4] LG1_MCUpage[4] LG2_MCUpage[4]

LS0_MCUpage[4] LS1_MCUpage[4] LS2_MCUpage[4]

DPGA_AMPP0 page[4]
DPGA_AMPM0 page[4]

PHASE_Apage[4,7]

PHASE_Bpage[4,7]

PHASE_Cpage[4,7]

J42
HDR 1X1
DNP
PHASE_C1

R130 00603

Q11
BUK769R6-80E

1

3
4

R135
0.02

R123 00603

TP155
TPAD_040

TP143
TPAD_040

J59
HDR 1X1
DNP
PHASE_C1

TP154
TPAD_040

TP167
TPAD_040

TP149
TPAD_040

TP142
TPAD_040

R124 00603

TP162
TPAD_040

J47

CON 1x3
MOTOR_OUT

1

2

3

TP148
TPAD_040

J37

HDR 1X1

DNP
HD

1

TP166
TPAD_040

TP151
TPAD_040

TP163
TPAD_040

TP157
TPAD_040

TP150
TPAD_040

J38

HDR 1X1

DNP
HD

1

TP145
TPAD_040

R136 5.1K

TP156
TPAD_040

R131 5.1K

C72
1000pF

TP158
TPAD_040

TP144
TPAD_040

J39

HDR 1X1

DNP
JASC

1

R125 00603

J44

HDR 1X1

DNP
I_DCM

1

TP164
TPAD_040

C73
1000pF
DNP

TP159
TPAD_040

TP153
TPAD_040

TP165
TPAD_040

J43

HDR 1X1

DNP
I_DCM

1

TP152
TPAD_040

J57
HDR 1X1
DNP
PHASE_A1

Q13
BUK769R6-80E

1

3
4

R126 00603

TP105

1

R119 00603

J45

HDR 1X1

DNP
I_DCM

1

TP160
TPAD_040

R128 00603

J40
HDR 1X1
DNP
PHASE_A1

TP106

1

Q14
BUK769R6-80E

1

3
4

J201
HDR 1X2

DNP

SILK = I_DCM1
2

TP161
TPAD_040

R127 00603

TP107

1

Q10
BUK769R6-80E

1

3
4

R120 00603

J41
HDR 1X1
DNP
PHASE_B1

Q15
BUK769R6-80E

1

3
4

JASC

1

R129 00603

R122 00603

J58
HDR 1X1
DNP
PHASE_B1

TP147
TPAD_040

Q12
BUK769R6-80E

1

3
4

R134
0.02

R121 00603

TP102
I_DCM

1

TP146
TPAD_040

I_DCM

DC Bus shunt resistor

Figure 1. 3-phasehase DC/AC inverter with single shunt resistor for current measurement

Since there is only the DC Bus current measured, the phase motor currents have to be reconstructed by
software. Various approaches of phase current reconstruction can be found in NXP application note AN14164:
Current Sensing Techniques in Motor Control Applications (see section References).

This software example employs an adaptive double switching approach for current sensing and reconstruction
described in the aforementioned AN14164.

As described in AN14164, the method of single shunt current measurement relies upon the fact that while there
is a switching combination in the inverter forming an active vector, the DC Bus current is equal to one of the
motor phase currents or its inverted value, meaning that during the period in which an active vector is present,
one phase current can be measured. The desired output voltage vector is created by a vector combination of
two neighboring active vectors (and zero vectors), therefore in each PWM period two phase currents can be
measured (and the third phase current is calculated). Unfortunately, either in case of low demanded voltage
amplitudes and/or in the vicinity of SVM sector borders, the duration of the active vector (current sampling
window) is not long enough (or there is only one active vector present) to measure reliably the respective phase

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
3 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

current. See Figure 2, where the current, which we are able to measure and reconstruct as phase motor current
is denoted as iRDCsense.

V1

V2V3

V4

V5 V6

I.

II.
III.

IV.

V.

VI.

V

V1

V2

Phase A

Phase B

Phase C

Phase A

Phase B

Phase C

V0 V7V1 V2

iA

Shorter than ADC sample time

Vector

iRDCsense

V2 V1 V0

ADC
sampling

iA

Not valid readings

ADC sample time

V1

V2V3

V4

V5 V6

I.

II.
III.

IV.

V.

VI.

V

V1

V2
V0 V7V1V2Vector

iRDCsense

V2 V1 V0

ADC
sampling

ADC sample time

Shorter than ADC sample time
Not valid readings

Figure 2. Operation in the vicinity of sector border (top) and operation with low voltage amplitude (bottom)

Since the FOC needs to have the information of the phase currents always, one of the single shunt techniques
have to be used to always obtain information on phase currents.

In this example, adaptive double switching is used. The principle of the double switching method is the creation
of an appropriate sampling window in two stages:

1. Insertion of zero pulse to the middle of the PWM patterns. This divides the PWM period into two halves
and creates two symmetrical half-pulses per phase per PWM period. The sum of the two half-pulse lengths
needs to be the same as the length of the original pulse. The width of the zero pulse needs to be stipulated
so that the inverter transistors are reliably switched on and off.

2. Shifting the halves of one of the phase patterns (which form an insufficient sampling window) to the sides,
therefore enlarging the sampling window to be able to measure the current reliably. The phase with the
duty cycle of the shortest length is kept as is and either the halves of the phase with the longest (see
the example shown in Figure 3) or mid-length duty cycle are shifted to the sides (in case of low voltage
amplitude both longest and mid-length pulses are shifted). As shown in Figure 3, the double switching
algorithm not only extends the window for current measurement (V1 extension) but also introduces new
vectors (V4) in the way the vector sum gives the same resulting voltage vector as without double switching.
The voltage vectors present during double switching are shown in Figure 3 in blue.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
4 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Phase A

Phase B

Phase C

V7

V1

V2 V2Vector

1.Insert zero pulse to the middle

iRDCsense

V0

Sum of the active vectors gives the same resulting vector

-iC -iC

V7V7Vector

iRDCsense

V0

V1

V2V3

V4

I.
II.

III.

IV.

V.

VI.

V

V1

V2

V2

V1

V2V3

V4

I.
II.

III.

IV.

V.

VI.

V

V1V4

V2

-iC -iC

V2 V2

V1

-iC -iC

V7V7Vector

iRDCsense

V0
iA

V1

iA

V2 V2V1

V4

2.too narrow?

keep the pattern ¨as is¨

create appropriate sampling window by phase shift

Figure 3. Double switching – shifting the phase with the longest duty cycle duration to the sides. Original PWM
(left), inserted zero pulse (middle), final double-switched PWM (right)

The algorithm of double switching can be visualized as per Figure 4.

Start

-

Start

(Sampling window between mid−length and shortest pulse) < MinSamplingWindow

Insert zero pulse

-
+

Keep the pattern as is

-

-
+ (Sampling window between longest and mid−length pulse) < MinSamplingWindow

Shift mid-length pulse halves
so that

sampling window = MinSamplingWindow

Shift longest pulse halves
so that

sampling window = MinSamplingWindow

StartEnd

Get actual sector and switching pattern

Keep the pattern as is

Figure 4. Double switching flowchart

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
5 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

On top of the double switching algorithm, the adaptive double switching algorithm has been introduced,
which only applies the double switching algorithm when the window for current measurement is not sufficient,
otherwise the standard PWM (without the zero pulse) is used.

The calculation of the double switching algorithm is performed in src/actuate_s32m.c in
ACTUATE_SetDutyCycle() function. The function calculates the edges of the PWM pattern for each particular
phase for each SVM sector according to the double switching algorithm (Figure 4). It also calculates the triggers
for ADC current measurements, as per Figure 5.

PWM A edges

PWM B edges

PWM C edges
triggers

current sampling window

offset

10 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4
5

Figure 5. Phase PWM edges and triggers calculation

In S32M244, the double switching PWM pattern needs to be created by two consecutive PWM timer cycles,
as described in 4.2.2.1. Thus the function ACTUATE_SetDutyCycle() calculates two sets of PWM edges (1,
2 and 3,4) which are loaded to the PWM timer in either odd or even PWM cycle. This happens during FTM3
reload ISR, which occurs as per Figure 7. The newly calculated two sets of PWM edges are refreshed using the
function ACTUATE_PwmUpdateBuffer(), which is called in PDB0 ISR, see the timing diagram Figure 7.

The triggers for current measurement (triggers 1, 2, 4, 5) are calculated for each current sampling window in
the way there is an offset inserted from the end of the particular current sampling window. As per the example
shown in Figure 5, the respective window ends are defined by PWM B edge 1, PWM C edge 1, PWM A edge 4
and PWM B edge 4.

3.2.1 Double switching configuration

The SW example, as mentioned before, uses an adaptive double switching approach for current reconstruction.
The adaptive double switching (employing the double switching pattern only when necessary) is activated
by macro DOUBLE_SW_ADAPTIVE. If the macro is set to zero, then the double switching pattern is active
permanently. Even though the double switching has been tuned for S32M24xEVB in cooperation with the BLDC
PMSM low voltage motor control accessory kit, for a different hardware or motor it may be needed to tune the
parameters. These can be found in src/actuate_s32m.c:

• minZeroPulseCnt – this is half of the zero pulse inserted in the middle of a double-switching PWM pattern. It
needs to be set so the MOSFETs are reliably able to insert the zero pulse in the middle of the PWM switching
pattern, i.e.: not too short.

• minSamplingPulseCnt - this is the minimal length of the current sampling window. It needs to be set so the
ringing from MOSFET switching does not affect the phase current reconstruction. I.e.: set the parameter
higher if you are seeing ringing from switching affecting the reconstructed motor phase currents.

• minSumPulseCnt – is the sum of minZeroPulseCnt and minSamplingPulseCnt.
• pdbTriggerOffset - is the sampling time of the ADC, not including the conversion time, this parameter defines

the offset mentioned in Figure 5.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
6 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

3.3 Rotor position/speed estimation
In this application, rotor position and speed are either estimated by back-EMF observer or obtained by an
Encoder sensor. Back-EMF observer and incremental Encoder sensor provide only relative position. To get an
absolute position, the initial position must be known. This application uses mechanical rotor alignment when the
rotor is moved from an unknown to a known position applying DC align voltage.

The alignment algorithm applies DC voltage to d-axis resulting full DC voltage applied to phase A and negative
half of the DC voltage applied to phase B, C for a certain period. This causes the rotor to move to the “align”
position, where stator and rotor fluxes are aligned. The rotor position in which the rotor stabilizes after applying
DC voltage is set as zero position. Motor is ready to produce full startup torque once the rotor is properly
aligned. The detailed alignment explanation can be found in the chapter State – ALIGN.

The application, while in Sensorless mode, must start with an open loop start-up sequence to move the motor
up to a speed value where the observer provides sufficiently accurate speed and position estimations. When
the observer provides appropriate estimates, the application transits to closed-loop mode, when the rotor
speed and position calculation are based on the estimation of a BEMF in the stationary reference frame using
a Luenberger type of observer. BEMF observer is as a part of the NXP’s Automotive Math and Motor Control
Library. Structure and implementation details are discussed in section 4.3.4.

3.4 Field weakening
The description of field weakening principles can be found in NXP application note AN12335: 3-phase
Sensorless PMSM Motor Control Kit with S32K144 (see section References).

4 Software implementation on the S32M244

4.1 S32M244 – key modules for PMSM FOC control
The S32M244 is an integrated solution, which comprises Digital part (in this AN referred to as MCU) and Analog
Extension part (in this AN referred to as AE). The Analog Extension part includes modules such as Gate Driver
Unit (GDU) and Digital Programmable Gain Amplifier (DPGA) which allow for using S32M244 in motor control
applications with a minimum of external components. The MCU part includes modules such as the FlexTimer
Module (FTM), Trigger MUX Control (TRGMUX), Programmable Delay Block (PDB) and Analogue-to-Digital
Converter (ADC) suitable for motor control applications. These modules are directly interconnected and can
be configured to meet various motor control application requirements. Figure 6 shows module interconnection
for a typical PMSM FOC application working in Sensorless or Sensor based mode using single shunt current
sensing. The modules are described below and a detailed description can be found in the S32M24x Reference
Manual (see section References).

4.1.1 Module interconnection

As mentioned earlier, S32M24x consists of two parts: MCU and AE, which are connected together via die-to-die
(D2D) connections.

This includes an SPI interface, which serves for parameter settings and status monitoring of AE and
connections used for motor control loop such as connections between FTM3 and GDU, DPGA, and ADC, AE
fault monitoring via GPIO (PTD3), see Figure 6.

The AE comprises modules vital for motor control. The GDU drives the power MOSFETs. The GDU is
interconnected with the outputs of FTM via D2D connections.

The shunt resistor voltage drop signal (proportional to DC Bus current) is conditioned by the integrated DPGA
which output is connected to the ADC via D2D connection.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
7 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

DC Bus voltage is conditioned via an integrated voltage divider which output is connected to the ADC via D2D
connection.

The MCU modules involved in output actuation, data acquisition and the synchronization of actuation and
acquisition, form the so-called Control Loop. This control loop consists of the FTM, TRGMUX, PDB, and ADC
modules. The control loop is very flexible in operation and can support static, dynamic, or asynchronous timing.

Each control loop cycle can be initiated either by FTM initialization trigger init_trig or by FTM external trigger
ext_trig. While init_trig signal is generated at the beginning of the PWM cycle, ext_trig can be generated
anytime within the PWM period based on the value defined in the corresponding FTM Channel Value register
CnV.

FTM trigger signal is routed to the hardware trigger input of the PDB module through the flexible TRGMUX unit.

PDB pre-triggers ch0pretrigx are used as a precondition for ADC module. They are directly connected to
ADHWTS ports to select ADC channels and order of the channels by configurable pre-triggers delays. When
ADC receives the rising edge of the trigger, ADC will start conversion according to the order defined by pre-
triggers ch0pretrigx.

PDB pre-trigger delays must be properly set to allow reliable operation between PDB and the corresponding
ADC module. When the first pre-trigger is asserted, the associated lock of the pre-trigger becomes active
until the corresponding conversion is not completed. This associated lock is released by corresponding ADC
conversion complete flag ADC_SC1[COCOx]. This means that the next pre-trigger can be generated only if the
ongoing conversion is completed.

The second FTM module can work in Quadrature Decoder mode, counting the rising/falling edges of the Phase
A and Phase B encoder signals to determine the rotor position and speed independently from the control loop
(see section 4.2.2.2).

A detailed description can be found in the S32M24x Reference Manual (see section References).

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
8 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

ADC0PDB0

GDU

ch5
ch4

ch3
ch2
ch1

ch0
HS0
LS0
HS1

LS1
HS2
LS2

PWM0_IN
PWM1_IN
PWM2_IN

PWM3_IN
PWM4_IN
PWM5_IN

16-bit
DELAY
counter

HD

ADCH0

D
C

 b
us

 c
ur

re
nt

ADHWTSA
ch0pretrig0

ADHWTch0trig

init_trig
ext_trig

init_trig
ext_trig

ACK

COCO A, B

FTM2

Input capture

FTM2_QD_PHA
FTM2_QD_PHB

ENC_A
ENC_B
ENC_INDEX

GPIO

FTM3
Edge-Aligned
PWM Mode

TRGMUX

RShunt

DPGA

LPSPI1

PORTD PTD3
INT_OUT

AE Fault Detection

AE
Control Block

HD_DIV_A

I_SENSEADHWTSB
ch0pretrig1

ADCH1

AE Control and Condition
Monitoring

ENC

volt. div.

SEL

M

AE

MCU S32M244

Figure 6. S32M244 module interconnection

4.1.2 Module involvement in digital PMSM sensorless control loop

This section discusses timing and modules synchronization to accomplish PMSM Sensorless FOC on the
S32M244 and the internal hardware features.

The timing diagram of the automatic synchronization between PWM and ADC in the PMSM application is shown
in Figure 7.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
9 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

FTM3

PDB0

ADC0

FTM3 modulo
2000 ticks

FTM3_CnV

init trig active passive activepassive passive

FTM3_CH2
FTM3_CH0

FTM3 reload
 point & ISR

PDB0 pretrig 1 2 3 4 5

Channel 1 2 3 4 5

Conversion
Sample point

FTM3_CH4

FTM3 reload ISR
FTM3 init trig bit = false

0

0

CPU
FOC calculation

ADC interrupt

Free
for

application use

50 us PWM Period

100 us current loop

Channel 0 - DPGA offset measurement - fixed trigger
Channel 1, 2, 4, 5 - DC Bus current, dynamic trigger
Channel 3 - DC Bus voltage, fixed trigger

FTM3 init trig bit = true, update PWM buffer
- occurs either at the end of ADC_ISR
or FTM3_ISR, whichever comes last

0 01 2 3

Figure 7. Time diagram of PWM and ADC synchronization

The PMSM Sensorless FOC control with single shunt current measurement with double switching approach
is based on dynamic timing; meaning the trigger point instances of the ADC conversions are varying from one
FOC control cycle to the next cycle, depending on the three phase PWM edges timing.

There are, however, two fixed trigger points: in the beginning of the PWM period for DPGA offset measurement
(pretrig 0) and in the middle of the PWM cycle for DC Bus voltage measurement (pretrig 3).

Pretrig0 is disabled when values of Pretrig1 are too low in order to avoid PDB0 errors, see 4.3.3.4.1.

Each control cycle starts with FTM3 initialization trigger init_trig, which is generated at the beginning of the
PWM cycle as shown in Figure 7. Initialization trigger restarts the PDB0 module and updates its double buffered
registers. ADC0 channels are triggered based on the PDB0 pre-trigger delays. When the PDB counter reaches
the first pre-trigger delay value, PDB initiates the first ADC channel measurement.

In the beginning of the PWM cycle, the measurement of DPGA offset is triggered (pretrig 0). DC Bus current
measurement is triggered by PDB0 at the first sampling window (pretrig 1) in which Phase A current is visible.
DC Bus current measurement is triggered again by PDB0 at the second sampling window (pretrig 2) in which
Phase C current is visible. Then, the DC Bus voltage measurement is triggered at the middle point of the PWM
(pretrig 3). The fifth trigger point (pretrig 4) is for DC Bus current sampling when Phase C current is visible.
And the sixth trigger point (pretrig 5) is for DC Bus current sampling when Phase A current is visible. The ADC
conversion results are automatically stored into a predefined queue in memory. The ADC results measured at
pretrig 1 and pretrig 5 are averaged, similarly to the ADC results measured at pretrig 2 and pretrig 4 since in
both of the cases the current of the same phase is visible.

The CPU is triggered by the ADC0 conversion complete interrupt service routine. Based on the stored ADC0
values, the current PI controllers calculate new PWM duty cycles. These are then sent as a new reference for
PWM module (FTM3) and become effective in the next PWM cycle.

The FTM3 initialization trigger is disabled in the FTM3 reload interrupt service routine. As a consequence, PDB0
is not triggered in the next PWM period due to the missing init_trig signal. FTM3 initialization trigger is reenabled
again in either 3rd FTM3 ISR or in the end of ADC ISR - whichever comes last, since the timing is dynamic and

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
10 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

the beginning of ADC ISR is not fixed, at low duty cycles the ADC ISR may be finished earlier than 3rd FTM3
ISR. This strategy ensures that ADC0 sampling occurs in every 100 μs cycle as depicted in Figure 7.

It needs to be noted that double switching is not able to operate with a 100% duty cycle, since there has to be
room left for performing the pulse shifting as a part of the double switching algorithm. The limit has to be set
with respect to the minimal length of the current sampling window and if set too high the reconstructed currents
will be distorted/not accurate at high duty cycles. The limit is set in src/main.c by writing into the variable
drvFOC.AlBeReqDCBLim.fltLimit. The limit is set to 0.9 in the SW example. The maximum theoretical duty cycle
limit is 93%.

4.2 S32M244 device initialization
To simplify and accelerate application development, an embedded part of the PMSM Sensorless motor control
application has been created using S32K1_S32M24x - Real-Time Drivers for Cortex-M (RTD). S32M244 can be
configured either by means of the S32 Configuration Tool (S32CT) or programmed directly using RTD drivers.
Peripherals are initialized at the beginning of the main() function. For each S32M244 module, there is a specific
configuration function that uses S32M244 RTD APIs and configuration structures generated by S32CT to
configure the MCU:

• McuClockConfig() – MCU clock configuration
• McuCacheConfig() – MCU cache configuration
• McuPowerConfig() – MCU power management configuration
• McuIntConfig() – MCU interrupt management configuration
• McuTrigmuxConfig() – TRGMUX module configuration
• McuPinsConfig() – PINs and PORT modules configuration
• McuLpuartConfig() – LPUART module configuration
• McuAdcConfig() – ADC modules configuration
• McuPdbConfig() – PDB modules configuration
• McuFtmConfig() – FTM modules configuration
• McuSPIConfig() – SPI module configuration
• AECConfig() – AE module configuration
• AEC_DPGAConfig() – DPGA module configuration
• AEC_GDUConfig() – GDU module configuration
• AEC_HVMConfig() – HV module configuration

Detailed RTD documentation can be found in the folder created with the S32 Design Studio installation (see
section References). It is recommended to keep calling of the initialization functions in the order in which they
appear in the example code.

4.2.1 Clock configuration and power management

S32M244 features a complex clocking sourcing, distribution, and power management. To run a core of the
S32M244 and some MCU peripherals at maximum frequency 80 MHz in normal RUN mode, the S32M244
is supplied externally by 16 MHz crystal. This clock source supplies a Phase-lock-loop (PLL), which circuit
multiplies frequency by 20 and divides by 2 resulting 160 MHz frequency on output. PLL output is then divided
by 2 to supply core and system (80 MHz), further divided by two and four to supply bus clock (40 MHz) and
flash clock (20 MHz), respectively. This clock configuration belongs to one of the typical and recommended. It is
summarized in Table 1.

Clock Frequency

CORE_CLOCK 80 MHz

Table 1. S32M244 clock configuration in RUN mode

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
11 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Clock Frequency

SYS_CLK 80 MHz

BUS_CLK 40 MHz

FLASH_CLK 20 MHz (max frequency in RUN mode)

Table 1. S32M244 clock configuration in RUN mode...continued

The clock configuration can be set up by the S32M244 RTD clocks graphical tool.

Once the clock configuration is set, RTD generates a static configuration structure Clock_Ip_aClockConfig[0],
the respective RTD API is then called in MCUClockConfig().

Example 1. S3M244 clock configuration controlled by RTD

/***
 *
 * Function: void McuClockConfig(void)
 *
 * Description: This function installs the pre-defined clock configuration
 table
 * to the clock manager. For more details see configuration
 * in Config Tools.
 *
 ***/
void McuClockConfig(void)
{
Clock_Ip_Init(&Clock_Ip_aClockConfig[0]);
}

As discussed at the beginning of this chapter, power management of the S32M244 is configured for normal
RUN mode. This power mode can be set in the RTD peripherals graphical tool, Figure 8.

Figure 8. S32M244 power management configuration in S32CT peripherals tool

Static configuration generated by RTD is called by the respective RTD API and this is encapsulated in the
MCUPowerConfig() function.

Example 2. S32M244 power management controlled by RTD

/***
 *
 * Function: void McuPowerConfig(void)
 *

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
12 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

 * Description: This function configures the Power manager for operation.
 * For more details see configuration in Config Tools.
 *
 ***/
void McuPowerConfig(void)
{
/* Power mode configuration for RUN mode */
Power_Ip_SetMode(&Power_Ip_aModeConfigPB[0]);
}

The same mechanism for peripherals configuration by RTD works for all S32M244 peripherals, which are
discussed below.

4.2.2 FlexTimer Module (FTM)

The FlexTimer module (FTM) is built upon a timer with a 16-bit counter. It contains an extended set of features
that meet the demands of motor control, including the signed up-counter, dead time insertion hardware, fault
control inputs, enhanced triggering functionality, and initialization and polarity control.

4.2.2.1 Edge-aligned PWM mode

FTM3 instance outputs are routed to GDU inputs, therefore FTM3 is used in PMSM sensorless motor control
application to generate center-aligned double switching PWM by six, complementary oriented channels to
control power MOSFETs.

However, since a double switching approach for single shunt current measurement is used, the advanced
(center-aligned) PWM pattern is generated by edge aligned mode of FTM3. One PWM cycle of the double
switching (50us) is created by two consecutive FTM3 cycles (25us) as depicted in Figure 7.

As depicted in Figure 7, up counting mode is selected as a dedicated counting mode for FTM3 edge-aligned
PWM. The 40 kHz FTM3 PWM frequency is adjusted by FTM3 Modulo register (FTM3_MOD = 2000) taking 80
MHz clock source frequency into account. To protect power MOSFETs against short circuit, dead time 0.5μs is
inserted for each complementary channels pair in the number of clock ticks 40 with default dead time prescaler
Divide_by_1. This FTM3 configuration can be carried out by using RTD, FTM_Pwm module, Figure 9. Three
complementary output channel pairs are configured in the tab PwmFtmCh, as depicted in Figure 9. For detailed
settings, please see all the settings tabs in the Ftm_Pwm module in S32CT peripherals tool.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
13 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Figure 9. S32M244 FTM3 configuration in S32CT

As discussed in chapter 4.1.2, to initiate the control loop every second PWM cycle at the beginning of the PWM
period, the initialization trigger is enabled. To be able to synchronize PWM and update FTM double buffered
registers at certain synchronization point simultaneously, Software_sync_trigger and Trigger_on_Reload_Point
are enabled in FTM instance configuration and FTM synchronization configuration tab, Figure 9. It should
be noticed that the max loading point is the time instant, when FTM3 counter equals modulo register value
(FTM3_MOD = 2000).

Once the FTM3 setting is completed, RTD generates configuration structure Ftm_Pwm_Ip_BOARD_
INITPERIPHERALS_UserCfg3 which, using the respective RTD API Ftm_Pwm_Ip_Init configures FTM3,
this is encapsulated in function MCUFTMConfig(), which can be found in the SW example in src/Peripherals/
peripherals_config.c.

4.2.2.2 Quadrature decoder mode

The FTM module offers a quadrature decoder mode to decode the quadrature signals generated by rotary
sensors used in the motor control domain. This mode is used to process encoder signals and determine rotor
position and speed.

There are three output signals generated by the incremental encoder as shown in Figure 10. Phase A and
phase B signals consist of a series of pulses, which are phase-shifted by 90° (therefore the term “quadrature” is
used). The third signal (called “Index”) provides the absolute position information. In the motion control, it may
be used to check the pulse-counting consistency, however, it is not used in the example.

Figure 10. Output signals of the 1024 pulses encoder
AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
14 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

To process the Phase A and Phase B signals from the Encoder sensor, quadrature decoder mode with phase
encode mode have to be enabled in S32CT, Figure 11. Note that so-called X4 encoding is used, meaning both
rising and falling edges of phase A and B are counted, which effectively quadruples the number of encoder
pulses. In addition, Max counter value has to be set according to the number of the encoder edges. The value
has to be set to (2*Number of encoder pulses -1), for example: in 1024-pulse encoder the max counter value
has to be set to 2047. The Min Counter value which for correct angle wrapping needs to be equal to (-2*Number
of encoder pulses) is set in the SW in src/main.c/AlignState() since RTD does not allow for setting a negative
number. This is to ensure correct motor angle wrapping in the range of <-180; 180> degrees. for example: In
1024-pulse encoder the value The min counter value is set to 0xF800 what effectively means -2048 pulses. In
quadrature decoder mode, the phase A and phase B signals indicate the counting direction and the counting
rate. If the phase B signal lags the phase A signal, the FTM2 counter increments after every detected rising/
falling edge of both signals. If the phase B signal leads the phase A signal, the FTM2 counter decrements after
every detected rising/falling edge of both signals and the QUADIR bit in the FTM_QDCTRL register indicates
the counting direction. To allow for filtering of possible glitches in the encoder signals, the value of the filter can
be set in A/B PhFilterVal as per Figure 11.

Figure 11. S32M244 FTM2 configuration in S32CT

The configuration structure of the quadrature decoder mode generated by S32CT is called Ftm_Qdec_Ip_
InstanceConfig_BOARD_INITPERIPHERALS[0]. This structure is used with RTD API Ftm_Qdec_Ip_Init, which
is called in StateAlign() in src/main.c.

Note: The S32M24xEVB board is designed to process encoder signals through the FTM2 module. Software
example contains a routine for encoder signal processing. This routine is disabled by default since the motor
of the BLDC low voltage motor control accessory kit is not equipped with an Encoder sensor. To enable the
encoder signal processing routine, set ENCODER macro to true.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
15 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

4.2.3 Trigger MUX control (TRGMUX)

The TRGMUX provides an extremely flexible mechanism for connecting various trigger sources to multiple pins/
peripherals. With the TRGMUX, each peripheral that accepts external triggers usually has one specific 32-bit
trigger control register. Each control register supports up to four triggers, and each trigger can be selected from
the available input triggers.

To trigger the PDB0 module by FTM3 initialization trigger signal init_trig, TRGMUX needs to be set
appropriately.

S32CT allows to generate configuration structure Trgmux_Ip_xTrgmuxInitPB that sets all TRGMUX registers to
assign trigger inputs with trigger outputs as demanded, Figure 12.

Figure 12. S32M244 TRGMUX configuration in S32CT

In particular, the FTM3 initialization trigger signal as a source is assigned to two targets namely: PDB0 and
TRGMUX output 1. PDB0 channel 0 trigger is routed to TRGMUX output 2 and ADC0 conversion complete
flag COCO is assigned to TRGMUX output 6. TRGMUX outputs are directly assigned to chip pins, so that
the triggering scheme between FTM3, PDB0, and ADC0 can be visualized with oscilloscope as depicted in
Figure 7.

4.2.4 Programmable Delay Block (PDB)

The Programmable Delay Block (PDB) is intended to completely avoid CPU involvement in the timed acquisition
of state variables during the control cycle. The PDB module contains a 16-bit programmable delay counter
that delays FTM3 initialization trigger and schedules ADC channels sampling through PDB pre-triggers delays.
When FTM3 initialization trigger is detected on the PDB0 and PDB1 trigger input, PDB0 and PDB1 generate
AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
16 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

hardware signal to trigger ADC0 and ADC1 channels in order defined by pre-trigger delays, Figure 13. In this
example only PDB0 and ADC0 are used, and PDB1 and ADC1 are free for user specific requirements.

Figure 13. PDB pre-triggers and trigger output

PDB pre-trigger delays can be set independently using CHnDLYm registers. Since the PDB0 and FTM3
modules are synchronized and share the same source frequency 80 MHz, values of the CHnDLYm registers are
set using the same time base as for PWM. Table 2 shows all PDB0 pre-triggers used in PMSM sensorless FOC
motor control application with single shunt current measurement.

FOC state variable PDB pre-trigger CHnDLYm value [ticks] Relation to PWM

DPGA offset pdb0_ch0_pretrig0 0 The beginning of the PWM.
Used for run-time DPGA
offset compensation, see
4.3.3.4.1.

Stator current 1, sample 1 pdb0_ch0_pretrig1 dynamic, set according to
PWM pattern

1st sampling window for phase
current

Stator current 2, sample 1 pdb0_ch0_pretrig2 dynamic, set according to
PWM pattern

2nd sampling window for phase
current

DC Bus voltage pdb0_ch0_pretrig3 2000 In ½ of the PWM

Stator current 2, sample 2 pdb0_ch0_pretrig4 dynamic, set according to
PWM pattern

3rd sampling window for phase
current

Stator current 1, sample 2 pdb0_ch0_pretrig5 dynamic, set according to
PWM pattern

4th sampling window for phase
current

Table 2. PDB0 pre-triggers

PDB sequence error interrupt is activated as redundancy to protect the triggering mechanism once blocked
due to the wrong PDB pre-trigger delay timing. Pre-triggers delays must respect ADC conversion time that
typically takes ~1.25µs considering short ADC sample time and 40 MHz ADC input frequency. This time can be
converted to a PDB pre-trigger delay format defined in the number of ticks 100.

Pre-triggers delays are dynamic values, which are changing every 100 μs control cycle according to
corresponding PWM edges values.

It should be also noticed that MOD, IDLY, and CHnDLYx are double buffered registers, meaning values are
loaded from their buffers based on the selected updating method.

General settings of the PDB module such as clock pre-scaler, input trigger source, loading mechanism for
double buffered registers and operation mode for pre-triggers can be configured with S32CT as shown in
Figure 14.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
17 / 45

https://community.nxp.com/t5/tkb/workflowpage/tkb-id/S32K%40tkb/article-id/268
https://community.nxp.com/t5/tkb/workflowpage/tkb-id/S32K%40tkb/article-id/268
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Figure 14. S32M244 PDB0 module and pre-triggers configuration in S32CT

S32CT generates configuration structures PdbHwUnit_0_BOARD_INITPERIPHERALS for appropriate PDB
registers. This configuration is loaded calling src/peripherals/peripherals_config.c/McuPdbConfig().

4.2.5 Analog-to-Digital Converter (ADC)

The S32M244 device has two 12-bit Analog-to-Digital Converters (ADCs). These are 32-channel multiplexed
input successive approximation ADCs with 16 result registers.

ADC channels are sampled in the order defined by PDB pre-triggers. When the first pre-trigger is asserted, the
associated lock of the pre-trigger becomes active waiting for the conversion complete flag COCO generated by
the corresponding ADC channel. This sequence is repeated for each PDB pre-trigger and ADC channel couple.

The clock source of the ADC module is derived from the system clock frequency, further divided by 2 resulting
40 MHz supply frequency. To combine high conversion resolution and short conversion time, 12-bit resolution
mode with sample time 12 clock cycles are set in S32CT, Figure 15.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
18 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Figure 15. S32M244 ADC0 module and channels configuration in S32CT

Channel 0 measures DC Bus current in zero vector, which serves for run-time DPGA offset measurement,
channels 1,2,4,5 measure DC Bus current (signal at DPGA output). Channel 3 measures DC Bus voltage.
Channel 5, being the last channel in the list, has also interrupt enabled.

S32CT generates the module configuration structure AdcHwUnit_0_BOARD_INITPERIPHERALS, which takes
effect calling the respective RTD API in the function src/peripherals/peripherals_config/McuAdcConfig().

4.2.6 Low Power Serial Peripheral Interface (LPSPI)

LPSPI is used as communication interface between S3M244 MCU and AE.

Configuration of LPSPI1 by means of S32CT can be seen in Figure 16. The details on the AE communication
protocol are described in S32M244 reference manual (see section References).

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
19 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Figure 16. S32M244 LPSPI module configuration in S32CT

LPSPI is then initialized using the S32CT-generated configuration structure in src/peripherals/peripherals_
config/McuSPIConfig().

4.2.7 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

LPUART0 is used as a communication interface between the S32M244 processor and FreeMASTER run-time
debugging and visualization tool. Function src/Peripherals/peripherals_config/McuLpuartConfig() initializes
LPUART0 module with baud rate 115200 bps, 8 bits per channel, no parity, and 1 stop bit. This configuration is
carried out by RTD’s LPUART driver.

Configuration structure Lpuart_Uart_Ip_xHwConfigPB_0_BOARD_INITPERIPHERALS is configured by means
of S32CT as shown in Figure 17.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
20 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Figure 17. S32M244 LPUART0 module configuration in S32CT

4.2.8 Port control and pin multiplexing

PMSM FOC sensorless motor control application requires following on chip pins assignment, Table 3.

Connection Peripheral Signal Pin Description

DCBI PTB13 / ADC0_SE8 DC Bus current
ADC0

DCBV PTA6 / ADC0_SE2 DC Bus voltage

PWMA_HS PTA2 / FTM3_CH0 PWM A high-side driver

PWMA_LS PTA3 / FTM3_CH1 PWM A low-side driver

PWMB_HS PTB10 / FTM3_CH2 PWM B high-side driver

PWMB_LS PTB11 / FTM3_CH3 PWM B low-side driver

PWMC_HS PTC10 / FTM3_CH4 PWM C high-side driver

FTM3

PWMC_LS PTC11 / FTM3_CH5 PWM C low-side driver

SPI_SCLK PTB14 / LPSPI1_SCK SPI clock

SPI_SIN PTB15 / LPSPI1_SIN SPI data in

D2D

LPSPI1

SPI_SOUT PTB16 / LPSPI1_
SOUT SPI data out

Table 3. Pins assignment for S32M244 PMSM sensorless FOC control

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
21 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Connection Peripheral Signal Pin Description

SPI_CS PTB17 / LPSPI1_
PCS3 SPI chip select

GPIO AE_Fault PTD3 Application Extension fault
(active low)

LPUART_In PTC2 / lpuart_rx Receive data from Free
MASTERLPUART0

LPUART_Out PTC3 / lpuart_tx Send data to FreeMASTER

TRGMUX_InitTrg PTD0 / trgmux_out1 FTM3 Init trigger
visualization

TRGMUX_AdcTrg PTD1 / trgmux_out2 PDB/ADC trigger
visualizationTRGMUX

TRGMUX_CoCo PTE11 / trgmux_out5 ADC0 CH1 conversion
complete visualization

PTE16 PTE16 Toggled pin for FOC
execution time measurement

LED PTE15
LED for indication: steady lit
– ready, slow blinking – run,
fast blinking - fault

SW0 PTB4

GPIO

SW1 PTB5
Application control via board
button

ENC_A PTE5 Phase A signal of the
Encoder sensor

S32M244 package
pins

FTM2
ENC_B PTE4 Phase B signal of the

Encoder sensor

Table 3. Pins assignment for S32M244 PMSM sensorless FOC control ...continued

This pins assignment can be carried out by means of the S32CT opening pins tool. Pin assignment of the FTM3
module is shown in Figure 18 as an example.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
22 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Figure 18. S32M244 pins assignment for FTM3 in S32CT

The S32CT -generated configuration structure g_pin_mux_InitConfigArr_BOARD_InitPins and the respective
RTD function is then called in src/peripherals/peripherals_config.c/MCUPinsConfig().

Note: At the time of release of example SW version 1.0, ADC0 interleave on pin PTB13 was not available in
the S32CT Pins tool, therefore the interleave is set in src/Peripherals/peripherals_config.c/MCUPinsConfig() by
calling Port_Ci_Port_Ip_SetMuxModeSel(IP_PORTB, 13, PORT_MUX_ADC_INTERLEAVE).

4.2.9 Interrupt configuration

The usage of the respective interrupts takes place in the S32CT peripherals tool. The interrupts are configured
as per Table 4.

Name Functionality

ADC0_IRQn reading of the ADC results, FOC calculation, calculation of PWM edges and triggers

PDB0_IRQn handling of PDB sequence error

PORTD_IRQn handling of AE fault

FTM3_Ovf_Reload_IRQn loading of PWM edges into FRM3 for odd and even cycles

Table 4. S32M244 interrupt usage

The configuration of the interrupts in the S32CT peripherals tool is shown in Figure 19.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
23 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Figure 19. S32M244 interrupt configuration in RTD

The MCU can detect AE fault through falling edge on PTD3. This event can be handled by PTD3 interrupt, this
needs to be set in S32CT peripherals tool as well, a part of the setting is shown in Figure 20. See the detailed
setting in the S32CT peripherals tool for the module Port_Ci_Icu.

Figure 20. S32M244 enabling edge detection

4.2.10 Application Extension (AE) configuration

As discussed earlier, S32M244 comprises an MCU part and an Application Extension (AE). AE needs also to
be configured and the configuration is carried out by sending SPI commands to the AE. The device-specific SPI
protocol is implemented in RTD.

4.2.10.1 AE Power Management Controller (PMC) configuration

The configuration of AE PMC is done using S32CT peripherals tool as per Figure 21. For the SW example, the
only relevant setting is selection of VDD voltage level. Another selection of voltage detectors and enabling of
CANBUS or LINPHY supplies is also possible according to specific customer needs.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
24 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Figure 21. S32M244 PMC AE configuration in S32CT

Note: There was a limitation in the RTD at the time of release of example SW version 1.0: to generate the AE
PMC configuration structure, the respective tick box, as per Figure 22, had to be disabled, otherwise the AE
PMC configuration structure was not generated.

Figure 22. S32M244 PMC AE necessary setting to enable configuration structure generation

The generated configuration structure is then sent over SPI to AE. The details can be seen in src/Peripherals/
peripherals_config.c/AEC_PMCConfig() where the user can also select whether the internal or external VPRE
ballast transistor is used.

4.2.10.2 AE Reset generator configuration

AE contains several modules, which are enabled by writing to RSTGEN_CFG register of AE over SPI. The
generation of RSTGEN_CFG configuration structure (and enablement of the respective AE modules) is done
via S32CT according to Figure 23. for example: this application uses DPGA and GDU AE modules, therefore
the two are selected in RSTGEN_CFG via McuResetGeneratorConfiguration.
AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
25 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Figure 23. S32M244 AE RSTGEN_CFG configuration using S32CT

The generated configuration structure is then sent over SPI to AE. The details can be seen in src/Peripherals/
peripherals_config.c/AEC_ResetConfig().

4.2.10.3 AE Digital Programmable Gain Amplifier (DPGA) configuration

The DPGA takes care of the differential measurement of voltage drop across DC Bus shunt resistor, Figure 1.
For detailed DPGA configuration, please refer to the respective chapter describing the DPGA in the S32M24x
Reference Manual.

The SW example DPGA key settings are depicted in Figure 24.

For the SW example, the important settings are:

• Amplifier Gain, which needs to be selected considering shunt resistance, DPGA output range, nominal motor
current and DPGA temperature offset drift. The maximum theoretical amplitude of the measured current can
be calculated as:

(1)

Where Vref is the ADC reference voltage (5 V or 3.3 V as per VDD settings), Rshunt is the shunt resistance and
DPGAgain is the gain of the DPGA.

• Output common mode voltage, which is set to half of the DPGA range, since in motor control application both
directions of DC Bus currents can be expected in certain applications. This parameter sets the "artificial zero"
at DPGA output, enabling for bidirectional DC Bus current measurement.

• Input common mode coarse sets the amount of level shifting current flowing through level shifting resistors
connected between the shunt and the DPGA. Please refer to the S32M24x Reference Manual for details.

The parameters for blanking time allow for setting the blanking time duration and blanking trigger events. The
blanking feature helps overcome a possible saturation of DPGA inputs by disconnecting the DPGA inputs from
the measured circuitry (shunt resistor) during blanking time. Please refer to the S32M24x Reference Manual
for more details (see section References). The rest of the parameters serve for output and input DPGA offset.
These parameters are for static DPGA offset compensation. To achieve better accuracy, a run-time DPGA offset
compensation has also been introduced, see 4.3.3.4.1. Please refer to the S32M24x Reference Manual for
more details on DPGA and DPGA settings (see section References).

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
26 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Figure 24. S32M244 AE DPGA configuration using S32CT

The S32CT-generated configuration structure is then sent over SPI to AE. The details can be seen in src/
peripherals/peripherals_config.c/AEC_DPGAConfig().

This function also allows the user to set the DPGA voltage detector as its setup is currently not supported in the
RTD. The voltage detector is set via AEC_DPGAConfig() function parameters:

• BIVDEN - bidirectional voltage detector enable
• VDEN - voltage detector enable
• HDFDUR - filter duration for high limit
• HDLIM - high limit
• LDFDUR - filter duration for low limit
• LDLIM - low limit

The voltage detector monitors the voltage drops across the shunt resistor. When set, it generates a fault if the
voltage drop across the shunt resistor is outside the limits set by the respective parameters. Please refer to the
S32M24x Reference Manual for more details on voltage detector and voltage detector limits calculation.
AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
27 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

4.2.10.4 AE Gate Driver Unit (GDU) configuration

The AE comprises an advanced GDU, which offers, for example: advanced slew rate control and desaturation
protection.

The GDU settings are displayed in Figure 25. The SW example uses the desaturation protection and slew rate
settings out of the features offered by the GDU. The other possibilities such as overvoltage detection or boost
may be enabled here according to customer specific needs. The boost feature allows operating the MOSFETs
also in case the HD voltage is below 7 V. See S32M2xx data sheet and S32M24x Reference Manual for details
(see section References). Please note that the boost feature does not boost the voltage for the connected
motor. It boosts the voltage for S32M2xx (including the GDU) on VSUP pin so the MOSFETs can be controlled
safely.

The parameter HD and High-side divider sets the division ratio of the voltage dividers on HD and HS pins,
please refer to S32M2xx data sheet for the division ratio details (see section References).

It is important to set all the slew rates (only switch-on slew rates for the high side are shown in the picture)
according to customer specific hardware and slew rates demands. This needs to be done for switching on and
off and for high and low side drivers. Please refer to the S32M24x Reference Manual and S32M2xx data sheet
for slew rate setting scheme details.

The slew rate settings principle is displayed in Figure 26. The switching on (left) and switching off (right) process
can be divided into three intervals and for each of the intervals the MOSFET gate current (i.e., slew) can be
adjusted. Note that Figure 26 is for illustration only and the response of an actual MOSFET gate voltage (VGS)
to the gate current (IG) depends on the actual MOSFET type and inverter hardware design.

There are separate slew rate settings parameters for switching on and off process for high and low side. The
summary of the parameters is listed in Table 5. The user can set the currents injected into the MOSFET gate for
all three intervals and the length of interval 1 and 2 is adjustable as well.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
28 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Figure 25. S32M244 AE GDU configuration using S32CT

VGS

IG

HSTONT_P1 HSTONT_P2

HSTONC_P1

HSTONC_P2

HSTONC_P3

VGS

IG

HSTOFF_P1 HSTOFF_P2

HSTOFFC_P3

HSTOFFC_P2

HSTOFFC_P1

Interval 1 Interval 2 Interval 3 Interval 1 Interval 2 Interval 3

Figure 26. S32M244 GDU slew rate settings principle

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
29 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

1st interval 2nd interval 3rd intervalProcess

duration gate current duration gate current gate current

Switch on HSTONT_P1 HSTONC_P1 HSTONT_P2 HSTONC_P2 HSTONC_P3High side

Switch off HSTOFFT_P1 HSTOFFC_P1 HSTOFFT_P2 HSTOFFC_P2 HSTOFFC_P3

Switch on LSTONT_P1 LSTONC_P1 LSTONT_P2 LSTONC_P2 LSTONC_P3Low side

Switch off LSTOFFT_P1 LSTOFFC_P1 LSTOFFT_P2 LSTOFFC_P2 LSTOFFC_P3

Table 5. GDU slew rate settings

The duration of the intervals is set in AE clock ticks, while the AE clock runs at 42 MHz.

By being able to adjust the gate current in three stages and to control the length of the stages, the user is able
to shape the slew rates and MOSFET response according to application needs with regard to switching losses,
switching performance and EMC. The resolution of gate current adjustment (step size) differs for lower, mid, and
higher level gate currents:

• fine step size – for lower-level gate currents.
• more coarse step size – for mid-level gate currents.
• coarse step size – for higher-level gate currents.

The step size is described in the S32M2xx data sheet. For more details on the slew rate parameters and
how the parameter settings of gate current correspond to actual gate current values, please see S32M24x
Reference Manual and S32M2xx data sheet (References).

The other important parameters are GDU Desaturation levels and blanking time of desaturation protection and
GDU blanking time adjustment (see Figure 25) which are also hardware specific and need to be set according
to customer specific project needs.

The S32CT-generated configuration structure is then sent over SPI to AE. The details can be seen in src/
peripherals/peripherals_config.c/AEC_GDUConfig().

4.2.10.5 Other functions for AE control used in SW example

Various other functions have been prepared for the SW example and can be found under src/Peripherals/
peripherals_config.c/. These are mainly for reset of fault and event flags in the respective AE modules, which
are to be cleared as Write 1 To Clear (W1C). The W1C functions are:

• AEC_PMCResetW1C() for clearing AE PMC W1C faults and events
• AEC_DPGAResetW1C() for clearing AE DPGA W1C faults and events
• AEC_GDUResetW1C() for clearing AE GDU W1C faults and events
• AEC_HVMResetW1C() for clearing AE HVM (High Voltage Module) W1C faults and events
• AEC_AEResetW1C() for clearing AE controller W1C faults and events

Apart from these fault and event clearing functions also functions AEC_VDDE_Enable()
and AEC_VDDE_Disable() have been prepared for enabling/disabling the VDDE supply for external sensors.

4.3 Software architecture

4.3.1 Introduction

This section describes the software design of the sensorless PMSM field oriented control framework application.
The application overview and description of software implementation are provided. The aim of this chapter is to
help in understanding of the designed software.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
30 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

4.3.2 Application data flow overview

The application software is interrupt driven running in real time. There is one periodic interrupt service routine
associated with the ADC conversion complete interrupt, executing all motor control tasks. This includes both
fast current and slow speed loop control. All tasks are performed in an order described by the application state
machine shown in Figure 29, and application flowcharts shown in Figure 27 and Figure 28.

while(1)

Application peripherals
configuration

MAIN

FreeMASTER polling

END

true

false

Background tasks

Enable real time control

All peripherals required by the application
are reset and configured

Initial state machine settings

Enable interrupts

event = e_init;
state = init;

Figure 27. Flowchart diagram of main function with background loop.

To achieve precise and deterministic sampling of analog quantities and to execute all necessary motor control
calculations, the state machine functions are called within a periodic interrupt service routine. Therefore, to
actually call state machine functions, the peripheral causing this periodic interrupt must be properly configured
and the interrupt enabled. As described in this section 4.2, all peripherals are initially configured and all
interrupts are enabled after a reset of the device. When interrupts are enabled and all S32M244 peripherals
are correctly configured, the state machine functions are called from the ADC interrupt service routine (ISR)
which is pictured in Figure 28. The background loop handles non-critical timing tasks, such as the FreeMASTER
communication polling, this is illustrated in Figure 27.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
31 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Read HW user controls;

ISR

Measure DCBus voltage and current;
Reconstruct phase currents;

FaultDetection();

faultDetectionEvent

StateTable [event][state]();

FMSTR_Recorder ();

Return

State variable acquisition

Fault detection routine

State machine calling

true

false
event = e_fault

Figure 28. Flowchart diagram of periodic interrupt service routine.

4.3.3 State machine

The application state machine is implemented using a two-dimensional array of pointers to the functions using
a variable called StateTable[][](). The first parameter describes the current application event, and the second
parameter describes the actual application state. These two parameters select a particular pointer to the state
machine function, which causes a function call whenever StateTable[][]() is called.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
32 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

INIT

READY

CALIB

FAULT

ALIGN

Power on / hw. reset

Application peripherals
reset & configuration

e_init

RUN

e_init_done e_app_off

e_app_on

e_app_off e_app_off

e_calib_done

e_align_done

e_aligne_calib

e_ready e_run

e_fault

e_fault

e_fault_clear

e_fault e_fault

e_fault e_fault

/* Enable external interrupts

/* Disable all external interrupts

executed in ISR

Figure 29. Application state machine

The application state machine consists of the following six states, which are selected using the variable state
defined as:

AppStates:

• INIT - state = 0
• FAULT - state = 1
• READY - state = 2
• CALIB - state = 3
• ALIGN - state = 4
• RUN - state = 5

To signalize/initiate a change of state, eleven events are defined, and are selected using the variable event
defined as:

AppEvents:

• e_fault - event = 0
• e_fault_clear - event = 1
• e_init - event = 2
• e_init_done - event = 3
• e_ready - event = 4

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
33 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

• e_app_on - event = 5
• e_app_off - event = 11
• e_calib - event = 6
• e_calib_done - event = 7
• e_align - event = 8
• e_align_done - event = 9
• e_run - event = 10

4.3.3.1 State – FAULT

FAULT

e_fault

e_fault

e_fault_clear

Figure 30. FAULT state with transitions

The application goes immediately to this state when a fault is detected. The system allows all states to pass into
the FAULT state by setting cntrState.event = e_fault. State FAULT is a state that transitions back to itself if the
fault is still present in the system and the user does not request clearing of fault flags. There are two different
variables to signal fault occurrence in the application. The warning register tempFaults represents the current
state of the fault pin/variable to warn the user that the system is getting close to its critical operation. And the
fault register permFaults represents a fault flag, which is set and put the application immediately to fault state.
Even if the fault source disappears, the fault remains set until manually cleared by the user. Such mechanisms
allow for stopping the application and analyzing the cause of failure, even if the fault was caused by a short
glitch on monitored pins/variables. State FAULT can only be left when application variable switchFaultClear is
manually set to true (using FreeMASTER) or by simultaneously pressing the user buttons (SW0 and SW1) on
the S32M24xEVB evaluation board. That is, the user has acknowledged that the fault source has been removed
and the application can be restarted. When the user sets switchFaultClear = true; a fault-clearing sequence is
executed.

Setting event to cntrState.event = e_fault_clear while in FAULT state represents a new request to proceed to
INIT state. This request is purely user action and does not depend on actual fault status. In other words, it is up
to the user to decide when to set switchFaultClear true. However, according to the interrupt data flow diagram
shown in Figure 28, function FaultDetection() is called before state machine function state_table[event][state]
(). Therefore, all faults will be checked again and if there is any fault condition remaining in the system, the
respective bits in permFaults and tempFaults variables will be set. As a consequence of permFaults not equal
to zero, the function FaultDetection() will modify the application event from e_fault_clear back to e_fault, which
means jump to fall state when state machine function state_table[event][state]() is called. Therefore, INIT state
will not be entered even though the user tried to clear the fault flags using switchFaultClear. When the next
state (INIT) is entered, all fault bits are cleared, which means no fault is detected (permFaults = 0x0) and the
application variable switchFaultClear is manually set to true.

The application is scanning for the following system warnings and errors:

• DC Bus over voltage

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
34 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

• DC Bus under voltage
• Phase over current

The thresholds for fault detection can be modified in the INIT state. Please see References for further
information on how to set these thresholds using the MCAT. In addition, a fault state is entered if following errors
are detected:

• PDB errors (PDB Sequence error)
• Application Extension errors (as per the events and faults enabled by the user for Application Extension)
• FOC error (irrelevant event call in state machine or Back-EMF failure)

4.3.3.2 State – INIT

INIT

e_init

e_init_done e_app_off

Figure 31. INIT state with transitions

State INIT is a “one pass” state/function and can be entered from all states except for READY state, provided
there are no faults detected. All application state variables are initialized in state INIT.

e_init

Initialization of application variables

e_init_done

Figure 32. Flowchart of state INIT

After the execution of INIT state, the application event is automatically set to cntrState.event=e_init_done, and
state READY is selected as the next state to enter.

4.3.3.3 State – READY

READY

e_init_done

e_app_on

e_ready
e_fault

Figure 33. READY state with transitions

In the READY state, the application is waiting for a user command to start the motor. The application is released
from waiting mode by pressing the on board button SW0 or SW1 or by FreeMASTER interface setting the

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
35 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

variable switchAppOnOff = true (see flowchart in Figure 34). DC Bus voltage and currents are monitored during
READY state for fault detection purposes.

state = ready
event = e_ready;

e_init_done

e_app_on

/* Fault detection routine

/* State variable acquisition

Measure DC Bus voltage;
Measure DC Bus Currents
and reconstruct phase currents;

faultDetection();

switchAppOnOff

e_app_one_app_off

/* User accessible switch
for stopping application

ISR
/* ADC end of sequence interrupt service routine

Read HW user controls;

/* Read HW switches

Figure 34. Flowchart of state READY

4.3.3.4 State – CALIB

CALIB

e_app_on

e_app_off

e_calib_done
e_calib e_fault

Figure 35. CALIB state with transitions

In this state, ADC DC offset calibration is performed. Once the state machine enters CALIB state, all PWM
outputs are enabled. Calibration of the DC offset is achieved by generating 50% duty-cycle on the PWM
outputs and taking several measurements of the ADC0 channels connected to the current sensors. These
measurements are then averaged, and the average value for the channel is stored. This value will be subtracted
from the measured value when in normal operation. This way the half range DC offset, caused by voltage
shift of 2.5 V (according to DPGA settings), is removed in the measured phase. State CALIB is a state
that allows transition back to itself, provided no faults are present, the user does not request stop of the
application (by switchAppOnOff=true), and the calibration process has not finished. The number of samples
for averaging is set by default to 2^10 = 1024, and can be modified in the state INIT. After all 1024 samples
have been taken and the averaged values successfully saved, the application event is automatically set
to cntrState.event=e_calib_done, and state machine can proceed to state ALIGN (see flowchart in Figure 36).

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
36 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

state = calib;
event = e_calib;

e_app_on
calibInitDone true

Initialization calibration variables
calibDone = 0;

calibInitDone = 1;ACTUATE_EnableOutput();

MEAS_CalibCurrentSense();

CalibStatus == true;

e_calib_done

calibDone

Get offset
offset.fltIDC.fltOffset

calibCntr <= 0x0

true

true
calibDone

true

Figure 36. Flowchart of state CALIB

A transition to FAULT state is performed automatically when a fault occurs. A transition to INIT state is
performed by setting the event to cntrState.event=e_app_off, which is done automatically on the falling edge of
switchAppOnOff=false using FreeMASTER.

4.3.3.4.1 Run-time DPGA offset compensation

For better accuracy, also an alternative approach of current measurement offset compensation has been
implemented. DC Bus current is measured in zero vector (as depicted in Figure 7) in the beginning of the PWM
cycle.

The DC Bus current in zero vector is expected to be zero. Since a DC offset has been introduced to measure
bidirectional DC Bus current, a non-zero current (or an "artificial zero") is expected during zero vector. The
measurement of the DPGA offset is done during the calibration sequence and during motor run-time. This
allows for DPGA offset temperature drift compensation while the motor is spinning. The run-time DPGA offset
compensation can be enabled by setting the macro DPGA_OFFSET_COMP. Otherwise, the conventional
"static" DPGA offset calibration (with offset measured only during CALIB state) is used.

To avoid PDB errors or measurement of transients in case the zero vector is too short, the length of the
zero vector is continuously observed and the DPGA offset in the zero vector is only measured when the
zero vector is sufficiently long. The zero vector minimal length (in PDB clock ticks) is set by the value of the
variable minZeroVectorDPGAOffset.

4.3.3.5 State – ALIGN

ALIGN

e_app_off

e_calib_done

e_align_done

e_align
e_fault

Figure 37. ALIGN state with transitions

This state manages alignment of the rotor and stator flux vectors to mark zero position. When using a model
based approach for position estimation, the zero position is not known. The zero position is obtained at ALIGN

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
37 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

state, where two state alignment is used to avoid sticking at 180 deg. A DC voltage is applied to a q-axis voltage
for a certain period and after that to d-axis voltage for the rest of the alignment time. The ratio between d and
q axis alignment time is given by macro ALIGN_D_FACTOR. This causes the rotor to rotate to “align” position,
where stator and rotor fluxes are aligned. The rotor position in which the rotor stabilizes after applying this DC
voltage is set as zero position. To get the rotor stabilized at aligned position, a certain time is selected for the
alignment process. This time and the amplitude of the DC voltage used for alignment can be modified by an
MCAT tool. Timing is implemented using a software counter that counts from a pre-defined value down to zero.
During this time, the event remains set to cntrState.event=e_align. When the counter reaches zero, the counter
is reset back to the pre-defined value, and the event is automatically set to cntrState.event=e_align_done. This
enables a transition to RUN state see the flow chart in Figure 38.

state = align;

event = e_align;

e_calib_done

EnableOutput();

uDQReq.fltArg1 = 0;
uDQReq.fltArg2 = alignVoltage;

thTransform.fltArg1 = GFLIB_Sin(0);
thTransform.fltArg1 = GFLIB_Sin(0);

alignCntr<=0

true

false

GMCLIB_ParkInv(&uAlBeReq, &thTransform, &uDQReq);

SetDutycycle();

ClearVariablesAfterAlign ();
Set50%Duty();

svmSector = GMCLIB_SvmStd(&(pwmflt),&uAlBeReqDCB);

alignCntr >
alignCntrInitValue *ALIGN_D_FACTOR

true false

uDQReq.fltArg1 = alignVoltage;
uDQReq.fltArg2 = 0;

event = e_align_done

Figure 38. Flowchart of state ALIGN

A transition to FAULT state is performed automatically when a fault occurs. Transition to INIT state is
performed by setting the event to cntrState.event=e_app_off, which is done automatically on the falling edge of
switchAppOnOff=false using FreeMASTER or using the user buttons SW0 and SW1.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
38 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

4.3.3.6 State – RUN

RUN

e_app_off

e_align_done

e_run
e_fault

Figure 39. RUN state with transitions

In this state, the FOC algorithm is calculated, as described in NXP application note AN12235: 3-phase
Sensorless PMSM Motor Control Kit with S32K144 (see section References).

The control is designed such that the drive might be operated in four modes depending on the source of the
position information:

1. Force mode: The FOC control is based on the generated position (so called open loop position), also this
position is supplied to eBEMF observer to initialize its state.

2. Tracking mode: The FOC control is still using the open loop position, however, the eBEMF observer is left
on its own, meaning that the observer is using its own estimated position and speed one calculation step
delayed.

3. Sensorless mode: Both FOC control and eBEMF observer using estimated position.
4. Encoder mode: FOC control uses position and speed obtained from an Encoder sensor. This mode is

available only if ENCODER macro is set to true.

Position mode can be controlled by the pos_mode variable in the FreeMASTER interface. It might be
modified manually or automatically depending on the state of the variable cntrState.usrControl.controlMode.
If cntrState.usrControl.controlMode = automatic and switchSensor = Sensorless, the application automatically
transits from Force mode (open loop mode) to sensorless mode (closed loop mode) through Tracking mode
based on the actual rotor speed and speed limits defined for each position mode (see section 3.3). Variable
switchSensor defines whether position/speed feedback comes from a back-EMF Observer or Encoder sensor. It
is automatically set to Sensorless if the Encoder sensor is not present (ENCODER=false).

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
39 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

state = run;
event = e_run;

e_align_done

CalcOpenLoop();
CalcSensorless();

ControlModeSelector();

speedLoopCntr >= SPEED_LOOP_CNTR

true

false

SetDutycycle();

FocSlowLoop();

FocFastLoop();

e_app_off

AutomaticMode();

controlMode
manual

automatic

pos_mode

case force:

case sensorless:

case tracking:

Control.thRotEl = OpenLoop.thRotEl;
Control.wRotEl = 0;
Force eBEMF with open loop speed
Force eBEMF with open loop position

;

Control.thRotEl = pospeSensorless.thRotEl
Control.wRotEl = pospeSensorless.wRotEl;;

case encoder: Control.thRotEl = pospeEncoder.thRotEl;
Control.wRotEl = pospeEncoder.wRotEl

Control.thRotEl = OpenLoop.thRotEl;
Control.wRotEl = 0;

Figure 40. Flowchart of state RUN

Calculation of fast current loop is executed at every ADC end of sequence interrupt, while calculation of slow
speed loop is executed every Nth ADC end of sequence interrupt. Arbitration is done using a counter that
counts from the value N down to zero. When zero is reached, the counter is reset back to N and a slow speed
loop calculation is performed. This way, only one interrupt is needed for both loops and the timing of both loops
is synchronized. Slow loop calculations are finished before entering fast loop calculations (see flowchart in
Figure 39). The value of N depends on the ratio of speed and current loop sample time, which are set in MCAT,
please see the section 5.

Figure 40 shows implementation of FOC algorithm and used functions and variables. As can be seen from the
diagram, rotor position and speed are estimated by eBEMF observer. This is a default rotor position and speed
feedback for FOC. To test encoder based FOC, ENCODER macro must be set to true and PM motor provided
with this motor control kit replaced by PM motor of the comparable power and equipped with Encoder sensor.
As mentioned previously, encoder based FOC can be activated/deactivated by setting switchSensor variable to
encoder/sensorless.

A transition from RUN state to FAULT state is performed automatically when a fault occurs. A transition to INIT
state is performed by setting the event to cntrState.event=e_app_off, which is done automatically on falling
edge of switchAppOnOff=false using FreeMASTER or keeping user buttons SW0 and SW1 pressed.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
40 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Figure 41. Sensorless and sensor based FOC with FW implementation on S32M244

4.3.4 AMMCLib Integration

The integration of AMMCLib is done in the manner identical to the one described in NXP application note
AN12235: 3-phase sensorless PMSM Motor Control Kit with S32K144 (see References).

5 FreeMASTER and MCAT user interface

The FreeMASTER debugging tool is used to control the application and monitor variables during runtime .
FreeMASTER and MCAT interface enables online application tuning and control.

MCAT (Motor Control Application Tuning) is a graphical tool dedicated to motor control developers and the
operators of modern electrical drives. The main feature of the proposed approach is automatic calculation and
real-time tuning of selected control structure parameters. Connecting and tuning a new electric drive setup
becomes easier because the MCAT tool offers a possibility to split the control structure and consequently to
control the motor at various levels of the cascade control structure.

FreeMASTER and MCAT user interface are described in application note AN12235: 3-phase Sensorless PMSM
Motor Control Kit with S32K144 (see References).

For an in-depth description of motor control application tuning using MCAT, please see NXP application note
AN4642: Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (see References).

6 Conclusion

Design, described in this application note shows the simplicity and efficiency in using the S32M244
microcontroller for sensorless PMSM motor control and introduces it as an appropriate candidate for various
low-cost applications in the automotive area. MCAT tool provides an interactive online tool, which makes the

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
41 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

PMSM drive application tuning friendly and intuitive. For other motor control use cases of S32M2, please see
NXP community page (References).

7 References

• S32 Design Studio IDE for S32 Platform
• Real-Time Drivers (RTD)
• FreeMASTER Run-Time Debugging Tool
• Automotive Math and Motor Control Library
• S32M24x Reference Manual
• S32M2xx Data Sheet
• S32M24x PMSM/BLDC Motor Control Evaluation Boards
• BLDC PMSM low voltage motor control accessory kit
• 3-Phase Sensorless PMSM Motor Control Kit with S32K144
• Current Sensing Techniques in Motor Control Applications
• Rashid, M. H. Power Electronics Handbook, 2nd Edition. Academic Press
• Motor Control Application Tuning (MCAT) Tool
• Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM
• NXP community - S32M2xx motor control use cases
• PMSM Electrical Parameters Measurement

8 Revision history

Document ID Release date Description

AN14454 v.1.0 19 October 2014 Initial release

Table 6. Revision history

9 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
42 / 45

https://www.nxp.com/design/design-center/software/automotive-software-and-tools/s32-design-studio-ide/s32-design-studio-for-s32-platform:S32DS-S32PLATFORM
https://www.nxp.com/design/design-center/software/automotive-software-and-tools/real-time-drivers-rtd:AUTOMOTIVE-RTD
https://www.nxp.com/design/design-center/software/development-software/freemaster-run-time-debugging-tool:FREEMASTER?tid=vanFREEMASTER
https://www.nxp.com/design/design-center/software/automotive-software-and-tools/automotive-math-and-motor-control-library-ammclib:AMMCLIB
https://www.nxp.com/webapp/Download?colCode=S32M24XRM
https://www.nxp.com/docs/en/data-sheet/S32M2xx_DS.pdf
https://www.nxp.com/design/design-center/development-boards-and-designs/automotive-motor-control-solutions/s32m24x-pmsm-bldc-motor-control-evaluation-boards:S32M24XEVB
https://www.nxp.com/design/design-center/development-boards-and-designs/automotive-motor-control-solutions/bldc-pmsm-low-voltage-motor-control-accessory-kit:BLDC_KIT
https://www.nxp.com/docs/en/application-note/AN12235.pdf
https://www.nxp.com/docs/en/application-note/AN14164.pdf
https://www.nxp.com/design/design-center/software/development-software/motor-control-application-tuning-mcat-tool:MCATSW
https://www.nxp.com/webapp/Download?colCode=AN4642
https://community.nxp.com/t5/S32K-Knowledge-Base/S32M2xx-Motor-control-use-cases/ta-p/1949879
https://www.nxp.com/webapp/Download?colCode=AN4680&location=null
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
43 / 45

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has
been qualified for use in automotive applications. If this product is used
by customer in the development of, or for incorporation into, products or
services (a) used in safety critical applications or (b) in which failure could
lead to death, personal injury, or severe physical or environmental damage
(such products and services hereinafter referred to as “Critical Applications”),
then customer makes the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, safety,
and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. As such, customer
assumes all risk related to use of any products in Critical Applications and
NXP and its suppliers shall not be liable for any such use by customer.
Accordingly, customer will indemnify and hold NXP harmless from any
claims, liabilities, damages and associated costs and expenses (including
attorneys’ fees) that NXP may incur related to customer’s incorporation of
any product in a Critical Application.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

AN14454 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 19 October 2024 Document feedback
44 / 45

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

NXP Semiconductors AN14454
3-phase Sensorless PMSM Motor Control with S32M244

Contents
1 Introduction .. 2
2 System concept ... 2
3 PMSM field oriented control 3
3.1 Fundamental principle of PMSM FOC 3
3.2 Output voltage actuation and phase current

measurement ... 3
3.2.1 Double switching configuration 6
3.3 Rotor position/speed estimation 7
3.4 Field weakening ...7
4 Software implementation on the

S32M244 ..7
4.1 S32M244 – key modules for PMSM FOC

control .. 7
4.1.1 Module interconnection7
4.1.2 Module involvement in digital PMSM

sensorless control loop9
4.2 S32M244 device initialization 11
4.2.1 Clock configuration and power

management .. 11
4.2.2 FlexTimer Module (FTM) 13
4.2.2.1 Edge-aligned PWM mode13
4.2.2.2 Quadrature decoder mode 14
4.2.3 Trigger MUX control (TRGMUX)16
4.2.4 Programmable Delay Block (PDB) 16
4.2.5 Analog-to-Digital Converter (ADC)18
4.2.6 Low Power Serial Peripheral Interface

(LPSPI) .. 19
4.2.7 Low Power Universal Asynchronous

Receiver/Transmitter (LPUART) 20
4.2.8 Port control and pin multiplexing 21
4.2.9 Interrupt configuration23
4.2.10 Application Extension (AE) configuration24
4.2.10.1 AE Power Management Controller (PMC)

configuration .. 24
4.2.10.2 AE Reset generator configuration25
4.2.10.3 AE Digital Programmable Gain Amplifier

(DPGA) configuration26
4.2.10.4 AE Gate Driver Unit (GDU) configuration 28
4.2.10.5 Other functions for AE control used in SW

example ... 30
4.3 Software architecture30
4.3.1 Introduction .. 30
4.3.2 Application data flow overview 31
4.3.3 State machine ..32
4.3.3.1 State – FAULT ... 34
4.3.3.2 State – INIT ... 35
4.3.3.3 State – READY ..35
4.3.3.4 State – CALIB ..36
4.3.3.5 State – ALIGN ... 37
4.3.3.6 State – RUN .. 39
4.3.4 AMMCLib Integration 41
5 FreeMASTER and MCAT user interface 41
6 Conclusion ... 41

7 References ..42
8 Revision history ...42
9 Note about the source code in the

document ..42
Legal information ...44

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 19 October 2024
Document identifier: AN14454

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14454

	1 Introduction
	2 System concept
	3 PMSM field oriented control
	3.1 Fundamental principle of PMSM FOC
	3.2 Output voltage actuation and phase current measurement
	3.2.1 Double switching configuration

	3.3 Rotor position/speed estimation
	3.4 Field weakening

	4 Software implementation on the S32M244
	4.1 S32M244 – key modules for PMSM FOC control
	4.1.1 Module interconnection
	4.1.2 Module involvement in digital PMSM sensorless control loop

	4.2 S32M244 device initialization
	4.2.1 Clock configuration and power management
	4.2.2 FlexTimer Module (FTM)
	4.2.2.1 Edge-aligned PWM mode
	4.2.2.2 Quadrature decoder mode

	4.2.3 Trigger MUX control (TRGMUX)
	4.2.4 Programmable Delay Block (PDB)
	4.2.5 Analog-to-Digital Converter (ADC)
	4.2.6 Low Power Serial Peripheral Interface (LPSPI)
	4.2.7 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)
	4.2.8 Port control and pin multiplexing
	4.2.9 Interrupt configuration
	4.2.10 Application Extension (AE) configuration
	4.2.10.1 AE Power Management Controller (PMC) configuration
	4.2.10.2 AE Reset generator configuration
	4.2.10.3 AE Digital Programmable Gain Amplifier (DPGA) configuration
	4.2.10.4 AE Gate Driver Unit (GDU) configuration
	4.2.10.5 Other functions for AE control used in SW example

	4.3 Software architecture
	4.3.1 Introduction
	4.3.2 Application data flow overview
	4.3.3 State machine
	4.3.3.1 State – FAULT
	4.3.3.2 State – INIT
	4.3.3.3 State – READY
	4.3.3.4 State – CALIB
	4.3.3.4.1 Run-time DPGA offset compensation

	4.3.3.5 State – ALIGN
	4.3.3.6 State – RUN

	4.3.4 AMMCLib Integration

	5 FreeMASTER and MCAT user interface
	6 Conclusion
	7 References
	8 Revision history
	9 Note about the source code in the document
	Legal information
	Contents

