
AN14430
PN7160/PN7220 – Android 14 porting guide
Rev. 1.0 — 3 September 2024 Application note

Document information
Information Content

Keywords PN7160, PN7220, NCI, EMVCo, NFC Forum, Android, NFC

Abstract This document describes how to port PN7160/PN7220 common middleware release to Android
14.

https://www.nxp.com

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

1 Introduction

This guide provides detailed instructions on how to integrate NXP NCI-based NFC controllers, PN7160
and PN7220, into an Android environment. The process involves installing the necessary kernel driver and
configuration of MW (see [1]). For further information, refer to the product page for PN7160 [2] and PN7220 [3].

The Android Open Source Project (AOSP) has been updated to incorporate support for both PN7160 and
PN7220 NFC controllers.

The PN7220 comes in two configurations: single-host and dual-host. The stack is generally the same for both.
In dual-host mode, SMCU is added that means that all EMVCo related tasks are executed on SMCU. In single-
host EMVCo is executed in a dedicated EMVCo MW stack.

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
2 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

2 Android MW stack

Figure 1 illustrates the architecture of the PN7220 Android NFC stack.

Figure 1. PN7220 Android NFC stack

• The NXP I2C Driver is a kernel module that allows access to the hardware resources of PN7220.
• The HAL module is an implementation of the NXP NFC controller-specific hardware abstraction layer.
• LibNfc-Nci is a native library that provides NFC functionality.
• NFC JNI acts as a bridge between Java and Native classes.
• The NFC and EMVCo Framework is a module of the application framework that allows access to NFC and

EMVCo functionalities.

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
3 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

Figure 2 shows the architecture of the PN7160 Android NFC stack.

Figure 2. PN7160 Android MW stack

• The NXP I2C Driver is a kernel module that allows access to the hardware resources of PN7160.
• The HAL module is an implementation of the NXP NFC controller-specific hardware abstraction layer.
• LibNfc-nci is a native library that provides NFC functionality.
• NFC JNI acts as a bridge between Java and Native classes.
• The NFC is a module of the application framework that allows access to NFC functionalities.
• The MW source code is the same for PN7160 and PN7220, but there are a few limitations.

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
4 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

Table 1 shows unsupported features of each NFC controller.

NFC controller Unsupported features

PN7160 • EMVCo MW stack
• SMCU
• CT feature

PN7220 • NFCEE_NDEF

Table 1. Unsupported features

Note: From Android 14 onwards P2P is also not supported on PN7160.

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
5 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

3 Kernel driver

To establish connection with the PN7220 or PN7160, the Android stack uses the nxpnfc kernel driver. It can be
found in [4].

3.1 Driver details
PN7220 supports I2C physical interface, while PN7160 supports I2C or SPI physical interface. When installed
into the kernel, the driver is exposed via the device node in /dev/nxpnfc.

Note: PN7160 and PN7220 use two different drivers, selection of the correct driver is required based on the
chip type.

3.2 Getting the PN7160 driver source code
Copy the nfcandroid_platform_drivers/drivers/pn7160/nfc driver repository into the kernel directory, replacing the
existing implementation. Refer to [4] for the kernel files.

$rm -rf drivers/nfc
$git clone "https://github.com/nxp-nfc-infra/nfcandroid_platform_drivers.git" -b
 br_ar_14_comm_infra_dev

This ends up with the folder drivers/nfc containing the following files:

• README.md: repository information
• Makefile: driver heading makefile
• Kconfig: driver configuration file
• License: driver licensing terms
• nfc subfolder containing:

– commoc.c: generic driver implementation
– common.h: generic driver interface definition
– i2c_drv.c: i2c specific driver implementation
– i2c_drv.h: i2c specific driver interface definition
– spi_drv.c: spi specific driver implementation
– spi_drv.h: spi specific driver interface definition
– Makefile: makefile that is included in the makefile of the driver
– Kbuild => build file
– Kconfig => driver configuration file

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
6 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

3.3 Getting the PN7220 driver source code
Copy the nfcandroid_platform_drivers/drivers/pn7220cs/nfc (single-host usecase) or nfcandroid_platform_
drivers/drivers/pn7220cms/nfc (dual-host usecase) into the kernel directory drivers/nfc, replacing the existing
driver. Refer to [4] for the kernel files.

$rm -rf drivers/nfc
$git clone "https://github.com/nxp-nfc-infra/nfcandroid_platform_drivers.git" -b
 br_ar_14_comm_infra_dev

Following this command, the folder drivers/nfc contains the following files:

• README.md: repository information
• Makefile: driver heading makefile
• Kconfig: driver configuration file
• License: driver licensing terms
• nfc subfolder containing:

– commoc.c: generic driver implementation
– common.h: generic driver interface definition
– i2c_drv.c: i2c specific driver implementation
– i2c_drv.h: i2c specific driver interface definition
– Makefile: makefile that is included in the makefile of the driver
– Kbuild => build file
– Kconfig => driver configuration file

3.4 Building the driver
The devicetree is responsible for adding the driver to the kernel and loading it on device boot.

After upgrading the devicetree specification, the platform-related devicetree must be rebuilt. NXP recommends
using kernel version 5.10 as it provides comprehensive validation.

To build the driver, the following steps must be performed:

1. Get the kernel driver
2. Get the source code for the driver
3. Modify the devicetree definition, which is unique to the device in use.
4. Build the driver:

a. Through the menuconfig procedure, add the target driver into the build.

After rebuilding the completed kernel, the driver will be included in the kernel image. All new kernel images must
be copied into the AOSP build.

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
7 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

4 AOSP adaptation

NXP adds modifications to the AOSP code. This means that the AOSP code is used as a foundation, but
extended for NXP-specific features. [5] is the current AOSP tag used by NXP. After obtaining the AOSP build,
the existing AOSP code must be replaced, and a number of patches must be applied.

Note: A different version of the AOSP code can be used, but additional modifications must be performed.

4.1 AOSP build
1. Get AOSP source code.

$ repo init -u https://android.googlesource.com/platform/manifest -b
 android-14.0.0_r2
$ repo sync

Note: The repo tool must be installed on the system. Refer to [6] for instructions.

2. Build source code.

$cd Android_AROOT
$source build/envsetup.sh
$lunch select_target #target is DH we want to use for example: evk_8mn-userdebug
$make -j

3. Copy all NXP repositories into the target location.

Android version Branch

Android 14 br_ar_14_comm_infra_dev

Table 2. Branche for specific Android version

Note: While cloning, it is important to select the correct branch.

AOSP Repos NXP GitHub Repos

"$ANDROID_ROOT"/packages/
apps/Nfc

https://github.com/nxp-nfc-infra/nxp_nci_hal_nfc/tree/br_ar_14_comm_infra_dev

"$ANDROID_ROOT"/system/nfc https://github.com/nxp-nfc-infra/nxp_nci_hal_libnfc-nci/tree/br_ar_14_comm_infra_dev

"$ANDROID_ROOT"/hardware/
nxp/nfc

https://github.com/nxp-nfc-infra/nfcandroid_nfc_hidlimpl/tree/br_ar_14_comm_infra_dev

"$ANDROID_ROOT"/vendor/nxp/
frameworks

https://github.com/nxp-nfc-infra/nfcandroid_frameworks/tree/br_ar_14_comm_infra_dev

"$ANDROID_ROOT"/hardware/
nxp/emvco

https://github.com/nxp-nfc-infra/nfcandroid_emvco_aidlimpl/tree/
br_ar_14_comm_infra_dev

“$ANDROID_ROOT” https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/
br_ar_14_comm_infra_dev

Table 3. Clone repositories

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
8 / 28

https://github.com/nxp-nfc-infra/nxp_nci_hal_nfc/tree/br_ar_14_comm_infra_dev
https://github.com/nxp-nfc-infra/nxp_nci_hal_libnfc-nci/tree/br_ar_14_comm_infra_dev
https://github.com/nxp-nfc-infra/nfcandroid_nfc_hidlimpl/tree/br_ar_14_comm_infra_dev
https://github.com/nxp-nfc-infra/nfcandroid_frameworks/tree/br_ar_14_comm_infra_dev
https://github.com/nxp-nfc-infra/nfcandroid_emvco_aidlimpl/tree/br_ar_14_comm_infra_dev
https://github.com/nxp-nfc-infra/nfcandroid_emvco_aidlimpl/tree/br_ar_14_comm_infra_dev
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

Folder in GitHub AOSP Repos NXP GitHub IC Supported

test_apps/SMCU_Switch "$ANDROID_ROOT"/
packages/apps/

https://github.com/
nxp-nfc-infra/
nfcandroid_infra_test_apps

PN7220

test_apps/EMVCoMode
SwitchApp

"$ANDROID_ROOT"/
packages/apps/Nfc/

https://github.com/
nxp-nfc-infra/
nfcandroid_infra_test_apps

PN7220

test_apps/Cockpit "$ANDROID_ROOT"/
hardware/nxp/nfc/

https://github.com/
nxp-nfc-infra/
nfcandroid_infra_test_apps

PN7220

test_apps/SelfTest "$ANDROID_ROOT"/
hardware/nxp/nfc/

https://github.com/
nxp-nfc-infra/
nfcandroid_infra_test_apps

PN7220

test_apps/SelfTest_pn7160 "$ANDROID_ROOT"/
hardware/nxp/nfc/

https://github.com/
nxp-nfc-infra/
nfcandroid_infra_test_apps

PN7160

test_apps/load_unload "$ANDROID_ROOT"/
hardware/nxp/nfc/

https://github.com/
nxp-nfc-infra/
nfcandroid_infra_test_apps

PN7220

test_apps/SelfTestAidl "$ANDROID_ROOT"/
hardware/nxp/nfc/

https://github.com/
nxp-nfc-infra/
nfcandroid_infra_test_apps

PN7220

nfc_tda "$ANDROID_ROOT"/system/ https://github.com/
nxp-nfc-infra/
nfcandroid_infra_comm_libs

PN7220

emvco_tda "$ANDROID_ROOT"/
hardware/nxp/emvco/

https://github.com/
nxp-nfc-infra/
nfcandroid_infra_comm_libs

PN7220

emvco_tda_test "$ANDROID_ROOT"/
hardware/nxp/emvco/

https://github.com/
nxp-nfc-infra/
nfcandroid_infra_comm_libs

PN7220

NfcTdaTestApp “$ANDROID_ROOT”/
packages/apps/Nfc/

https://github.com/
nxp-nfc-infra/
nfcandroid_infra_comm_libs

PN7220

Table 4. Clone repositories for test applications and TDA support

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
9 / 28

https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_test_apps
https://github.com/nxp-nfc-infra/nfcandroid_infra_comm_libs
https://github.com/nxp-nfc-infra/nfcandroid_infra_comm_libs
https://github.com/nxp-nfc-infra/nfcandroid_infra_comm_libs
https://github.com/nxp-nfc-infra/nfcandroid_infra_comm_libs
https://github.com/nxp-nfc-infra/nfcandroid_infra_comm_libs
https://github.com/nxp-nfc-infra/nfcandroid_infra_comm_libs
https://github.com/nxp-nfc-infra/nfcandroid_infra_comm_libs
https://github.com/nxp-nfc-infra/nfcandroid_infra_comm_libs
https://github.com/nxp-nfc-infra/nfcandroid_infra_comm_libs
https://github.com/nxp-nfc-infra/nfcandroid_infra_comm_libs
https://github.com/nxp-nfc-infra/nfcandroid_infra_comm_libs
https://github.com/nxp-nfc-infra/nfcandroid_infra_comm_libs
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

4. Apply patches.

Location to apply Patch to apply Location of the patch

"$ANDROID_ROOT"/build/
bazel/

AROOT_build_bazel.
patch

https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/
tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/

"$ANDROID_ROOT"/build/
make/

AROOT_build_make.
patch

https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/
tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/

"$ANDROID_ROOT"/build/
soong/

AROOT_build_soong.
patch

https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/
tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/

"$ANDROID_ROOT"/
frameworks/base/

AROOT_frameworks_
base.patch

https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/
tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/

"$ANDROID_ROOT"/
frameworks/native/

AROOT_frameworks_
native.patch

https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/
tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/

"$ANDROID_ROOT"/
system/logging/

AROOT_system_logging.
patch

https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/
tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/

"$ANDROID_ROOT"/
packages/modules/
Bluethooth/

AROOT_packages_
modules_Bluethooth.
patch

https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/
tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/

"$ANDROID_ROOT"/
framework/proto_logging/

AROOT_framework_
proto_logging.patch

https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/
tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/

Table 5. Apply patches

Note: Check the output after applying the patch, if any issue was observed during the patching.

5. Add FW libraries. Refer to [8] for FW.

Note: Not mandatory. FW can always be updated.

For PN7160:

$git clone https://github.com/NXP/nfc-NXPNFCC_FW.git
$cp -r nfc-NXPNFCC_FW/InfraFW/pn7220/64-bit/libpn7160_fw.so AROOT/vendor/
nxp/7160/firmware/lib64/libpn7160_fw.so
$cp -r nfc-NXPNFCC_FW/InfraFW/pn7220/32-bit/libpn7160_fw.so AROOT/vendor/
nxp/7160/firmware/lib/libpn7160_fw.so

For PN7220:

$git clone https://github.com/NXP/nfc-NXPNFCC_FW.git
$cp -r nfc-NXPNFCC_FW/InfraFW/pn7220/64-bit/libpn7220_64bit.so AROOT/vendor/nxp/
pn7220/firmware/lib64/libpn72xx_fw.so

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
10 / 28

https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://github.com/nxp-nfc-infra/nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/build_pf_patches/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

6. Adding NFC to the build

In the device.mk makefile (for example, device/brand/platform/device.mk), include specific makefiles:

$(call inherit-product, vendor/nxp/nfc/device-nfc.mk)

In the BoardConfig.mk makefile (for example, device/brand/platform/BoardConfig.mk), include a specific
makefile:

-include vendor/nxp/nfc/BoardConfigNfc.mk

7. Adding the DTA application

$git clone https://github.com/NXPNFCProject/NXPAndroidDTA.git
$patch -p1 nfc-dta.patch #located in https://github.com/nxp-nfc-infra/
nfcandroid_platform_reference/tree/br_ar_14_comm_infra_dev/build_cfg/
build_mw_patches/db845c
$ cp -r nfc-dta /system/nfc-dta
$<AROOT>/system/nfc-dta/$ mm -j

8. Build AOSP with changes:

$cd framework/base
$mm
$cd ../..
$cd vendor/nxp/frameworks
$mm #after this one, com.nxp.emvco.jar and com.nxp.nfc.jar should be inside out/
target/product/xxxx/system/framwework/
$cd ../../..
$cd hardware/nxp/nfc
$mm
$cd ../../..
$make -j

Now, flash the device with new Android images.

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
11 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

4.2 Android NFC Apps and Lib on targets
After the build, the created libraries must be installed on the target device. Section 4.2 specifies the project
location, the corresponding library, and the target device location where to be installed.

Note: EMVCo binaries are applicable only with PN7220.

Project location Compiled Files Comments Location in target
device

"$ANDROID_ROOT"/
packages/apps/Nfc

NfcNci.odex
NfcNci.vdex
lib/NfcNci.apk
oat/libnfc_nci_jni.so

/system/app/NfcNci/
oat/arm64/
/system/app/NfcNci/
oat/arm64/
/system/app/NfcNci/
/system/lib64/

"$ANDROID_ROOT"/
system/nfc

libnfc_nci.so /system/lib64/

"$ANDROID_ROOT"/
system/nfc_tda"

nfc_tda.so Applicable only for CT
feature.

/system/lib64/

"$ANDROID_ROOT"/
hardware/nxp/nfc

nfc_nci_nxp_pn72xx.so
android.hardware.nfc_72xx@1.2-service
android.hardware.nfc_72xx@1.2-service.rc
android.hardware.nfc@1.0.so
android.hardware.nfc@1.1.so
android.hardware.nfc@1.2.so
vendor.nxp.nxpnfc@2.0.so
vendor.nxp.nxpnfc@1.0.so

/vendor/lib64
/vendor/bin/hw/
/vendor/etc/init
/system/lib64/
/system/lib64/
/system/lib64/
/vendor/lib64/
/vendor/lib64/

"$ANDROID_ROOT/
hardware/interfaces/nfc"

android.hardware.nfc-V1-ndk.so
android.hardware.nfc@1.0.so
android.hardware.nfc@1.1.so
android.hardware.nfc@1.2.so
android.hardware.nfc@1.0.so
android.hardware.nfc@1.1.so
android.hardware.nfc@1.2.so

/system\/ib64/
/system/lib64/
/system/lib64/
/system/lib64/
/vendor/lib64/
/vendor/lib64/
/vendor/lib64/

"$ANDROID_ROOT"/
vendor/nxp/frameworks

com.nxp.emvco.jar (PN7220)
com.nxp.nfc.jar

/system/framework
/system/framework

"$ANDROID_ROOT"/
hardware/nxp/emvco

emvco_poller.so (PN7220)
vendor.nxp.emvco-V1-ndk.so
vendor.nxp.emvco-V2-ndk.so
vendor.nxp.emvco-V2-ndk.so
vendor.nxp.emvco-service
vendor.nxp.emvco-service.rc

/vendor/lib64/
/system/lib64/
/system/lib64/
/vendor/lib64/
/vendor/bin/hw/
/vendor/etc/init/

"$ANDROID_ROOT/
hardware/nxp/emvco_tda"

emvco_tda.so Applicable only for CT
feature.

/vendor/lib64/

Table 6. Compiled files with device target

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
12 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

4.3 Block mapping
Mapping the block name from Section 1 to target location in AOSP code.

Block name Location in AOSP code

NFC HAL and EMVCo HAL hardware/interfaces/

NFC Stack hardware/nxp/nfc/

EMVCo L1 Data Exchange Layer = EMVCo Stack hardware/nxp/emvco/

LibNfc-Nci system/nfc/

NFC JNI packages/apps/nfc/

NFC Service packages/apps/nfc/

NFC Framework frameworks/base/

EMVCo Framework vendor/nxp/frameworks/

Table 7. Patch location in NFC Stack

4.4 EMVCo API
PN7220 MW stack extends AOSP code with EMVCo MW stack. This section describes the EMVCo APIs.

Note: APIs can be called only when using PN7220 IC. If calling it with PN7160 IC, the API does not work.

EMVCo Profile Discovery. Those APIs can be used with contact and contactless profiles.

• registerEMVCoEventListener()
– ndk::ScopedAStatus registerEMVCoEventListener (const std::shared_ptr<

 INxpEmvcoClientCallback > & in_clientCallback,
bool * in_aidl_return
)

– Description: Register EMVCo callback function to receive the events from a listener device
– Note: This function is must to ball before invoking any other api.
– Parameters:

– [in] *in_clientCallback: has EMVCo client HAL callback
– [in] *in_aidl_return: indicates register status in return to caller

– Returns
– boolean returns true, if success and returns false, if failed to register

• getCurrentDiscoveryMode()
– ndk::ScopedAStatus

 getCurrentDiscoveryMode(::aidl::vendor::nxp::emvco::NxpDiscoveryMode *
_aidl_return)

– Description: returns the current active profile type.
– Returns

– NxpDiscoveryMode - NFC/EMVCo/Unknown

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
13 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

• onNfcStateChange()
– ndk::ScopedAStatus onNfcStateChange(NxpNfcState in_nfcState)

– Description: updated NFC state to EMVCo HAL.
– Parameters:

– [in] in_nfcState: specifies the NFC state
– Returns:

– void
• registerNFCStateChangeCallback()

– ndk::ScopedAStatus registerNFCStateChangeCallback (const
 std::shared_ptr< ::aidl::vendor::nxp::emvco::INxpNfcStateChangeRequestCallback
 > & in_nfcStateChangeRequestCallback,
bool * _aidl_return
)

– Description: Register an NFC callback function to receive the events from a listener device.
– Note: This function is must call before invoking any other api.
– Parameters:

– [in] in_nfcStateChangeCallback: INxpNfcStateChangeRequestCallback the event callback function to be
passed by the caller. It should implement to turn ON/OFF NFC based on the request received.

– Returns: boolean returns true, if success and returns false, if failed to register.
• setByteConfig()

ndk::ScopedAStatus setByteConfig (::aidl::vendor::nxp::emvco::NxpConfigType
 in_type,
 int32_t in_length,
 int8_t in_value,
 ::aidl::vendor::nxp::emvco::NxpEmvcoStatus * _aidl_return
)

• setEMVCoMode()
ndk::ScopedAStatus setEMVCoMode (int8_t in_disc_mask,
 bool in_isStartEMVCo
)

– Description: Starts the EMVCo mode with the Device-Controller. Once the Application Data Channel is
established, the Application may send start the EMVCo mode with the Device-Controller.

– Parameters:
– [in] in_disc_mask EMVCo: polling technologies are configured through this parameter
– [in]in_isStartEMVCo: specifies to start or stop the EMVCo mode

– Returns:
– void

• setLed()
ndk::ScopedAStatus setLed (::aidl::vendor::nxp::emvco::NxpLedControl
 in_ledControl,
 ::aidl::vendor::nxp::emvco::NxpEmvcoStatus * emvco_status
)

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
14 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

For Contact EMVCo, the following APIs can be used on top of the previous ones.

• closeTDA()
ndk::ScopedAStatus closeTDA (int8_t in_tdaID,
bool in_standBy
)

– Description: Closes the smart card connected over TDA
– Parameters:

– [in] tdaID: id of the tda slot to be closed
– Exceptions:

– EMVCO_STATUS_INVALID_PARAMETER, if provided tdaID is in-valid
– EMVCO_STATUS_FEATURE_NOT_SUPPORTED when the contact card feature is not supported.

– Returns:
– void

• discoverTDA()
ndk::ScopedAStatus discoverTDA
 (std::vector<::aidl::vendor::nxp::emvco::NxpEmvcoTDAInfo > * emvcoTDAInfo)

Description: discoverTDA provides all the details of smart card connected over TDA
– Parameters:

– [in]*in_clientCallback: provides EMVCo state and TDA state as callback
– Exceptions:

– – EMVCO_STATUS_FEATURE_NOT_SUPPORTED when the contact card feature is not supported.
– Returns:

– NxpEmvcoTDAInfo[] returns all the smart card connected over TDA. valid emvcoTDAInfo is received
only when the status is EMVCO_STATUS_OK

• openTDA()
ndk::ScopedAStatus openTDA (int8_t in_tdaID,
bool in_standBy,
int8_t * out_connID
)

Description: opens the smart card connected over TDA
– Parameters:

– [in]tdaID: tda id of the smart card received through discoverTDA
– Exceptions:

– EMVCO_STATUS_INVALID_PARAMETER, if provided tdaID is in-valid
– EMVCO_STATUS_FEATURE_NOT_SUPPORTED when the contact card feature is not supported.

– Returns:
– byte returns the connection id of the smart card. valid connection id received only when status is

EMVCO_STATUS_OK

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
15 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

• registerEMVCoCTListener()
ndk::ScopedAStatus registerEMVCoCTListener (const
 std::shared_ptr<::aidl::vendor::nxp::emvco::INxpEmvcoTDACallback > &
 in_in_clientCallback,
bool * _aidl_return
)

– Description: registers the EMVCoCT callback to the EMVCo stack
– Parameters:

– [in]*in_in_clientCallback: provides EMVCo state and TDA state as callback
– Returns:

– void

• transceive()
ndk::ScopedAStatus transceive (const std::vector< uint8_t > & in_cmd_data,
std::vector< uint8_t > * out_rsp_data
)

– Description: sends application data with the Device-Controller and receives response data from the
controller

– Note: connection id of the TDA should be added as part of the NCI header.
– Parameters:

– [in]in_cmd_data: Application command data buffer
– Exceptions:

– EMVCO_STATUS_INVALID_PARAMETER, if provided connection id is in-valid
– EMVCO_STATUS_FEATURE_NOT_SUPPORTED when the contact card feature is not supported.

– Returns:
– Response APDU received from controller. valid Response APDU received only when status is

EMVCO_STATUS_OK

For EMVCo contactless, the following APIs can be called:

• registerEMVCoEventListener()
ndk::ScopedAStatus registerEMVCoEventListener (const std::shared_ptr<
 INxpEmvcoClientCallback > & in_clientCallback,
bool * _aidl_return
)

– Description: Register an EMVCo callback function to receive the events from a listener device.
– Note: This function is must call before invoking any other api.
– Parameters:

– [in]*in_clientCallback: has EMVCo client HAL callback
– [in]*in_aidl_return: indicates register status in return to caller

– Returns:
– boolean returns true, if success and returns false, if failed to register

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
16 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

• setEMVCoMode()
ndk::ScopedAStatus setEMVCoMode (int8_t in_config,
bool in_isStartEMVCo
)

– Description: Starts the EMVCo mode with the Device-Controller. Once the Application Data Channel is
established, the Application may send start the EMVCo mode with the Device-Controller.

– Parameters:
– [in]in_config: EMVCo polling technologies are configured through this parameter
– [in]in_isStartEMVCo: specifies to start or stop the EMVCo mode

– Returns:
– void

• stopRFDisovery()
ndk::ScopedAStatus stopRFDisovery
 (::aidl::vendor::nxp::emvco::NxpDeactivationType in_deactivationType,
::aidl::vendor::nxp::emvco::NxpEmvcoStatus * emvco_status
)

– Description: stops the RF field and moves in to the specified deactivation state.
– Parameters:

– [in]in_deactivationType: specifies the state to be in after RF deactivation
– Returns:

– NxpEmvcoStatus returns EMVCO_STATUS_OK if command processed successfully and returns
EMVCO_STATUS_FAILED, if command is not processed due to in-valid state. EMVCo mode should be
ON to call this API

• transceive()
ndk::ScopedAStatus transceive (const std::vector< uint8_t > & in_data,
int32_t * _aidl_return
)

– Description: send application data with the Device-Controller.
– Note: In case if send data is failed, the Application shall again invoke open() before invoking this API.
– Parameters:

– [in]in_data: Application data buffer
– Returns:

– NxpEmvcoStatus indicating execution status

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
17 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

4.5 Configuration files PN7160
For PN7160, there are two different configuration files.

1. libnfc-nci.conf
2. libnfc-nxp.conf

Note: Configuration files provided by NXP are examples related to the NFC controller demo board.
These files must be adopted according to the targeted integration.

Configuration files must be placed in the target location (see Table 8).

Name of configuration file Location in device

libnfc-nci.conf system/etc

libnfc-nxp.conf vendor/etc

Table 8. Locations of configuration files

To get more informations on the configuration files, see [9].

4.6 Configuration files PN7220
For PN7220, there are five different configuration files.

1. libemvco-nxp.conf
2. libnfc-nci.conf
3. libnfc-nxp.conf
4. libnfc-nxp-eeprom.conf
5. libnfc-nxp-rfExt.conf

Note: Configuration files provided by NXP are examples related to the NFC controller demo board.
These files must be adopted according to the targeted integration.

Configuration files need to be placed in the target location (see Table 9).

Name of configuration file Location in device

libemvco-nxp.conf vendor/etc

libnfc-nci.conf system/etc

libnfc-nxp.conf vendor/etc

libnfc-nxp-eeprom.conf vendor/etc

libnfc-nxprfExt.conf vendor/etc

Table 9. Locations of configuration files

To get more informations on the configuration files, see [9].

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
18 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

4.7 DTA application
To allow NFC Forum certification testing, a device test application is provided. It is composed of several
components in the different Android layers, which must be built and included in the Android image.

To push the DTA application, the following steps must be executed:

1. Copy all DTA files to one location

$cp -rf "out/target/product/hikey960/system/lib64/libosal.so" /DTA-PN7220
$cp -rf "out/target/product/hikey960/system/lib64/libmwif.so" /DTA-PN7220
$cp -rf "out/target/product/hikey960/system/lib64/libdta.so" /DTA-PN7220
$cp -rf "out/target/product/hikey960/system/lib64/libdta_jni.so" /DTA-PN7220
$cp -rf "out/target/product/hikey960/system/app/NxpDTA/NxpDTA.apk" /DTA-
PN7220

2. Push the binaries to the device as bellow

adb shell mkdir /system/app/NxpDTA/
adb push libosal.so /system/lib64/
adb push libdta.so /system/lib64/
adb push libdta_jni.so /system/lib64/
adb push libmwif.so /system/lib64/
adb push NxpDTA.apk /system/app/NxpDTA/

After flashing the target, the DTA application should then be present in the list of installed applications. Refer to
[7] for a detailed description of how to use the application.

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
19 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

5 Abbreviations

Acronym Description

APDU application protocol data unit

AOSP Android Open Source Project

DH device host

HAL hardware abstraction layer

FW firmware

I2C Inter-Integrated Circuit

LPCD lower powered card detection

NCI NFC controller interface

NFC near-field communication

MW middleware

PLL phase-locked loop

P2P peer to peer

RF radio frequency

SDA serial data

SMCU secure microcontroller

SW software

Table 10. Abbreviations

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
20 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

6 References

[1] GitHub repository – PN7160 and PN7220 Common MW: (link)
[2] Web page – PN7160 – NFC Plug and Play Controller with Integrated Firmware and NCI Interface (link)
[3] Web page – PN7220 – EMV L1 Compliant NFC Controller with NCI Interface Supporting EMV and NFC

Forum Applications (link)
[4] GitHub repository – PN7160 and PN7220 kernel driver: (link)
[5] Resources – AOSP r2 tag (link)
[6] Resources – Source control tools (link)
[7] User guide – UG10068 – PN7220 – Quick start guide (link)
[8] GitHub repository – PN7160 and PN7220 FW location: (link)
[9] Application note – AN14431 – PN7160/PN7220 configuration files (link)

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
21 / 28

https://github.com/nxp-nfc-infra
https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-readers/nfc-plug-and-play-controller-with-integrated-firmware-and-nci-interface:PN7160
https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-readers/emv-l1-compliant-nfc-controller-with-nci-interface-supporting-emv-and-nfc-forum-applications:PN7220
https://github.com/nxp-nfc-infra/nfcandroid_platform_drivers
https://android.googlesource.com/platform/manifest/+/refs/heads/android-14.0.0_r2
https://source.android.com/docs/setup/download
https://www.nxp.com/docs/en/user-guide/UG10068.pdf
https://github.com/NXP/nfc-NXPNFCC_FW/tree/master/InfraFW
https://www.nxp.com/docs/en/application-note/AN14431.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

7 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
22 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

8 Revision history

Document ID Release date Description

AN14430 v.1.0 03 September 2024 • Initial version

Table 11. Revision history

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
23 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
24 / 28

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

Licenses
Purchase of NXP ICs with NFC technology — Purchase of an NXP
Semiconductors IC that complies with one of the Near Field Communication
(NFC) standards ISO/IEC 18092 and ISO/IEC 21481 does not convey an
implied license under any patent right infringed by implementation of any of
those standards. Purchase of NXP Semiconductors IC does not include a
license to any NXP patent (or other IP right) covering combinations of those
products with other products, whether hardware or software.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
I2C-bus — logo is a trademark of NXP B.V.

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
25 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

Tables
Tab. 1. Unsupported features ..5
Tab. 2. Branche for specific Android version8
Tab. 3. Clone repositories ... 8
Tab. 4. Clone repositories for test applications and

TDA support .. 9
Tab. 5. Apply patches ..10

Tab. 6. Compiled files with device target12
Tab. 7. Patch location in NFC Stack 13
Tab. 8. Locations of configuration files18
Tab. 9. Locations of configuration files18
Tab. 10. Abbreviations ...20
Tab. 11. Revision history ...23

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
26 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

Figures
Fig. 1. PN7220 Android NFC stack3 Fig. 2. PN7160 Android MW stack4

AN14430 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 3 September 2024 Document feedback
27 / 28

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

NXP Semiconductors AN14430
PN7160/PN7220 – Android 14 porting guide

Contents
1 Introduction .. 2
2 Android MW stack ... 3
3 Kernel driver .. 6
3.1 Driver details ..6
3.2 Getting the PN7160 driver source code6
3.3 Getting the PN7220 driver source code7
3.4 Building the driver ..7
4 AOSP adaptation ... 8
4.1 AOSP build .. 8
4.2 Android NFC Apps and Lib on targets 12
4.3 Block mapping ... 13
4.4 EMVCo API ... 13
4.5 Configuration files PN716018
4.6 Configuration files PN722018
4.7 DTA application ..19
5 Abbreviations ... 20
6 References ..21
7 Note about the source code in the

document ..22
8 Revision history ...23

Legal information ...24

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 3 September 2024
Document identifier: AN14430

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14430

	1 Introduction
	2 Android MW stack
	3 Kernel driver
	3.1 Driver details
	3.2 Getting the PN7160 driver source code
	3.3 Getting the PN7220 driver source code
	3.4 Building the driver

	4 AOSP adaptation
	4.1 AOSP build
	4.2 Android NFC Apps and Lib on targets
	4.3 Block mapping
	4.4 EMVCo API
	4.5 Configuration files PN7160
	4.6 Configuration files PN7220
	4.7 DTA application

	5 Abbreviations
	6 References
	7 Note about the source code in the document
	8 Revision history
	Legal information
	Tables
	Figures
	Contents

