
AN14355
S32G PFE with QNX Hypervisor
Rev. 1.1.0 — 18 July 2024 Application note

Document information
Information Content

Keywords QNX, Linux, PFE, QNX Hypervisor, VirtIO-Net

Abstract How to use PFE within QNX Hypervisor on the S32G platform.

https://www.nxp.com

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

1 Introduction

This is S32G PFE QNX Hypervisor Application Note.

NXP and the NXP logo are trademarks of NXP.

All product or service names are the property of their respective owners.

Copyright (C) 2024 NXP

2 General Description

This Application Note showcases how to use PFE and QNX Hypervisor on S32G platform. It shows how to
prepare Host system and several virtualized Guest systems.

The demo presented in this Application Note can be used for running virtualized Guest QNX and Linux.

The demo was tested on S32G3 Reference Design Board (S32G-VNP-RDB3). Components of the setup that
require building were built on Ubuntu 22.04.

3 Overview

The Application Note is designed to showcase two approaches to providing PFE-accelerated network
connectivity for the guest systems:

• Indirect connection via VirtIO-Net virtual network bridge.
• Direct connection via PFE driver passthrough (requires PFE Master-Slave configuration, for more information

visit PFE QNX Driver User Manual).

PFE
Network BRIDGE

EMAC0 EMAC1 EMAC2

HIF0 HIF1 HIF2 HIF3

Guest 2 [Linux]

.

Guest 1 [QNX]Guest 3 [QNX] Guest 4 [Linux]

HIF_NO_COPY

...

QNX Hypervisor
Host

QNX PFE Master
192.168.10.20

VirtIO-Net
backend

VirtIO-Net
frontend

192.168.10.50

VirtIO-Net
frontend

192.168.10.60

QNX PFE Slave
192.168.10.30

Linux PFE Slave
192.168.10.40

Passthrough
memory - 256MB
interrupt - HIF3

Passthrough
memory - 32MB
interrupt - HIF2

SW Bridge
io-pkt

Figure 1. Demo Topology

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
2 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

Name System Note

Host QNX SDP 7.1 Hypervisor 2.2 QNX Host OS with PFE Master driver and VirtIO-Net backend in a
bridge

Guest 1 QNX SDP 7.1 Guest BSP QNX Guest with PFE Slave driver connected to HIF2

Guest 2 NXP Automotive Linux BSP 41.0 Linux Guest with PFE Slave driver connected to HIF3

Guest 3 QNX SDP 7.1 Guest BSP QNX Guest with VirtIO-Net frontend interface

Guest 4 NXP Automotive Linux BSP 41.0 Linux Guest with VirtIO-Net frontend interface

Table 1. Systems used in the demo

3.1 QNX Hypervisor
QNX Hypervisor is a virtualization technology by BlackBerry® QNX® that lets multiple operating systems run on
one device. Key features include:

• Real-time performance - critical tasks run on time.
• Isolation - keeps virtual machines separate for safety.
• Resource management - efficiently shares CPU, memory, and I/O.
• Flexibility - supports different operating systems.
• Safety and security - meets high safety and security standards.

This demo uses QNX Hypervisor to run several operating systems on one S32G platform.

3.2 VirtIO-Net virtual network bridge
QNX Hypervisor has a feature (VirtIO-Net) for virtual network management. The VirtIO-Net can be used to
create virtual endpoint interfaces in the io-pkt network stack. It also provides the possibility to create a software
bridge between network interfaces, and to establish rules to control the traffic.

With VirtIO-Net, an interface of PFE Driver in Host OS and virtual interfaces of Guest systems can be pooled
into a common bridge. This way, the Guest systems can send/receive network traffic.

This setup does not require PFE Multi-client scenario. It also allows to use more Guest systems than the PFE
passthrough approach. However, it has slightly worse performance than PFE passthrough approach due to
intermediate traffic processing in the software bridge.

For more information about the virtual network bridge, see QNX Hypervisor User's Guide Networking.

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
3 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

Guest 3 - QNX Guest 4 - Linux

VirtIO-Net
devnp-virtio.so VirtIO-Net

....

QNX Hypervisor
Host

VirtIO-Net backend
devnp-vdevpeer-net.so

QNX PFE Master
devnp-pfe-2-master.so

S32G
PFENetwork

HIF0

EMAC

SW Bridge
io-pkt

3.3 PFE driver passthrough
PFE drivers support Multi-client scenario. In this scenario, multiple PFE drivers simultaneously use the PFE.
Typical usecase of this scenario is several operating systems, with each system running its own PFE driver.

To use PFE Multi-client scenario in conjunction with QNX Hypervisor and Guest systems, Hypervisor must be
configured to forward memory and interrupts from the Host OS. This is needed because PFE Slave driver1

needs direct access to PFE peripheral registers. The driver must also allocate memory buffers, which are then
accessed by the PFE peripheral.

QNX Hypervisor has the ability to map memory 1:1, so access inside the Guest system can be directly attached
to memory of the Host OS. Note that due to PFE HW limitations, memory addresses of PFE-related buffers
must be within the 32bit address range.

In QNX BSP, a custom memory area can be reserved during startup of the system (see QNX BSP Host
Hypervisor). The area then stays reserved throughout the runtime and is not available for the OS. Such area
can be directly mapped as a part of the Guest system memory, so the PFE driver of the Guest system can
allocate (and the PFE peripheral can use) all the required buffers.

QNX PFE driver can be easily configured to use a particular reserved memory area.

Linux PFE driver uses the general system memory. Therefore, for Linux Guest systems, all the Guest memory
must be mapped to the memory of the Host OS. This way, PFE peripheral will have access to every possible
allocated memory buffer of Linux PFE driver.

PFE Multi-client scenario supports only up to 4 clients (this is limited by number of PFE HIF channels).
However, PFE driver passthrough allows for maximum networking performance, because there is no
intermediate software traffic processing.

Note: PFE has also a HIF_NO_COPY channel. This channel is reserved for AUTOSAR use.

1 Participant of PFE Multi-client scenario.
AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
4 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

QNX Hypervisor
Host

Guest 1 - QNX Guest 2 - Linux

QNX PFE Slave
devnp-pfe-2-slave.so

Linux PFE Slave
pfeng_slave.ko

....

QNX PFE Master
devnp-pfe-2-master.so

PFE
Network Bridge

Network

Passthrough
Memory
Interrupts

3.4 Memory and Interrupt passthrough configuration
For the demo, the memory and interrupts are forwarded to Guest systems as displayed in the following table.
Mapped memory address for PFE registers is fixed and can't be modified. Users can change PFE driver
memory location in system configuration.

Guest name Passthrough from
Host OS

Guest memory Interrupt

Guest 1
(QNX)

HIF2 channel
32 MB Memory area
PFE registers

256 MB guest virtual memory
Passthrough from Host OS memory:
* PFE driver 32 MB: 0x96000000 - 0x98000000
* PFE registers: 0x46000000 - 0x47000000
* PFE Master detect flag - 0x4007CAEC

pass intr gic:224 # HIF2 Vector Interrupt

Guest 2
(Linux)

HIF3 channel
256 MB Memory area
PFE registers

Passthrough from Host OS memory:
* System 256 MB: 0xB0000000 - 0xBFFFFFFF
* PFE driver: 0xB0000000 - 0xB1000000
* PFE registers : 0x46000000 - 0x47000000
* PFE Master detect flag - 0x4007CAEC

pass intr gic:225 # HIF3 Vector Interrupt ->
GIC_SPI 193 IRQ_TYPE_EDGE_RISING

4 Prerequisites

• S32G-VNP-RDB3 SCH-53060 Reference Design Board.
• Micro SD card formated with partition FAT32 started from offset 8192 sectors (see SD card example partition).
• QNX Hypervisor Licenses:

– QNX Hypervisor - Subscription ver. 2.2 .
– QNX Software Development Platform - Subscription ver. 7.1.0.

• QNX Hypervisor packages installed from QNX Software center.
• Linux build dependencies for creating Linux image.
• GCC Compiler - aarch64-none-linux-gnu from ARM tools site.
• U-Boot with Hypervisor enabled - section U-Boot with Hypervisor.
• QNX PFE Driver.

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
5 / 33

https://developer.arm.com/downloads/-/gnu-a
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

• Linux PFE Driver.
• NXP Automotive Linux BSP.

4.1 Hypervisor packages

Figure 2. QNX Software Center Hypervisor modules

4.2 Necessary packages to install
In this Application Note, following packages were installed to Ubuntu 22.04 for building proces.

apt-get install build-essential device-tree-compiler libssl-dev openssl bc gawk repo flex

5 Components

For the demo, the following components must be prepared and built:

Component Version

U-Boot bootloader U-Boot BSP37 2020.04

Trusted Firmware-A ATF BSP37 2.5

QNX® SDP 7.1 BSP for NXP S32G274A EVB 7.1 BuildID 51 - August 15, 2023

QNX® SDP 7.1 BSP for Hypervisor guest (SDP7.1) for
generic ARM virtual machine

7.1 BuildID 13 - May 18, 2021

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
6 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

Component Version

Linux Device Tree Blob for S32G BSP41 (.dtb) for S32G

NXP Automotive Linux BSP 41.0 BSP41.0 for S32G3

Linux kernel v5.15.153

PFE Firmware 1.9.0

QNX PFE Master driver 1.6.0

QNX PFE Slave driver 1.6.0

Linux PFE Slave driver (pfeng) 1.7.0

Recommended output file structure is in the table Content of SD card. Follow next sections for preparation of
the necessary components.

5.1 U-Boot with Hypervisor support
U-Boot is a bootloader used to boot QNX system and configure PFE peripheral clocks. The system must boot
into Exception Level 2 (EL2) to run a virtualized system.

5.1.1 Artifact name

u-boot-nodtb.bin

5.1.2 Where to get

Build it from source code. The source code can be obtained from the nxp-auto-linux/u-boot GitHub repository.
Checkout version bsp37.0-2020.04.

git clone https://github.com/nxp-auto-linux/u-boot
cd u-boot && git checkout release/bsp37.0-2020.04

5.1.3 Modifications

It is necessary to enable EL2 Exception Level in U-Boot configuration for QNX Hypervisor to work.

make CROSS_COMPILE=aarch64-none-linux-gnu- s32g399ardb3_defconfig
make menuconfig

In the section ARM architecture select and enable Enable Xen EL2 Booting..., as shown on the image U-Boot
enable Xen EL2 Booting. Apply changes by Save and Exit.

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
7 / 33

https://github.com/nxp-auto-linux/u-boot/tree/release/bsp37.0-2020.04
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

Figure 3. U-Boot enable Xen EL2 Booting

For GMAC network interface in QNX, it is necessary to enable clocks in the file drivers/net/
dwc_eth_qos_s32cc.c by adding following function on line 202.

 setup_clocks_enet_gmac(mode,dev);

This patch file can make it easier to modify the file.

drivers/net/dwc_eth_qos_s32cc.c diff patch file

diff --git a/drivers/net/dwc_eth_qos_s32cc.c b/drivers/net/dwc_eth_qos_s32cc.c
index b9cfcdcc57..debf4a7f5e 100644
--- a/drivers/net/dwc_eth_qos_s32cc.c
+++ b/drivers/net/dwc_eth_qos_s32cc.c
@@ -202,6 +202,8 @@ static bool s32ccgmac_set_interface(struct udevice *dev, phy_interface_t mode)
 if (!s32cc)
 return false;

+ setup_clocks_enet_gmac(mode,dev);
+
 setup_iomux_enet_gmac(dev, mode);
 s32cc->mac_intf = mode;

5.1.4 How to build and deploy

Build U-Boot binary with the following command:

make CROSS_COMPILE=aarch64-none-linux-gnu- -j

The output file u-boot-nodtb.bin will be used in next step to build ATF.

5.1.5 U-Boot example configuration

During first start of U-Boot, it is necessary to setup environment variables. Following variables can be used to
boot QNX on S32G RDB3 board:

setenv boot_qnx_atf 'mmc dev 0; scmi_clk gate protocol@14 6 1; scmi_clk gate protocol@14 8 1;
 fatload mmc 0:1 0x83e00000 s32g399a-rdb3.dtb; run atf_fdt_0to3; run atf_fdt_4to7; run release_cpus;
 fatload mmc 0:1 0x80080000 ifs-s32g399a-rdb.ui; pfeng enable; s32ccgmac disable; s32ccgmac enable;
 bootm 0x80080000 - 0x83E00000'

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
8 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

setenv atf_fdt_0to3 'fdt addr 0x83e00000; fdt resize; fdt set /cpus/cpu@1 cpu-release-addr <0x0
 0xa0000010>; fdt set /cpus/cpu@100 cpu-release-addr <0x0 0xa0000010>; fdt set /cpus/cpu@101 cpu-
release-addr <0x0 0xa0000010>;'
setenv atf_fdt_4to7 'fdt set /cpus/cpu@2 cpu-release-addr <0x0 0xa0000010>; fdt set /cpus/cpu@3 cpu-
release-addr <0x0 0xa0000010>; fdt set /cpus/cpu@102 cpu-release-addr <0x0 0xa0000010>; fdt set /
cpus/cpu@103 cpu-release-addr <0x0 0xa0000010>;'
setenv release_cpus 'run cpu_trap; mp 1 release 0xa0000000; mp 2 release 0xa0000000; mp 3 release
 0xa0000000; mp 4 release 0xa0000000; mp 5 release 0xa0000000; mp 6 release 0xa0000000; mp 7 release
 0xa0000000;'
setenv cpu_trap 'dcache off; mw.l 0xa0000000 0xd503205f; mw.l 0xa0000004 0x58000060; mw.l 0xa0000008
 0xb4ffffc0; mw.l 0xa000000C 0xd61f0000; mw.q 0xa0000010 0x00000000; dcache on;'
setenv bootcmd 'run boot_qnx_atf'
setenv hwconfig 'pcie0:mode=rc,clock=ext;pcie1:mode=sgmii,clock=ext,fmhz=125,xpcs_mode=2G5'
setenv pfeng_mode 'enable,sgmii,sgmii,rgmii'
setenv skip_scmi_reset_agent '1'
saveenv

Note: Make sure to copy only one line at once to serial terminal. Every line starts with setenv command. At the
end, command saveenv is used to save the variables.

5.2 Trusted Firmware-A

5.2.1 Artifact name

fip.s32

5.2.2 Where to get

Build it from source code. The source code can be obtained from the public nxp-auto-linux/arm-trusted-firmware
GitHub space. Checkout version bsp37.0-2.5.

git clone https://github.com/nxp-auto-linux/arm-trusted-firmware.git
cd arm-trusted-firmware && git checkout release/bsp37.0-2.5

5.2.3 How to build and deploy

Build ATF with U-Boot binary from component U-Boot with Hypervisor for target platform s32g3xxaevb3.

make CROSS_COMPILE=aarch64-none-linux-gnu- ARCH=aarch64 PLAT=s32g3xxaevb3 \
 BL33=../u-boot/u-boot-nodtb.bin S32_HAS_HV=1 S32_USE_LINFLEX_IN_BL31=1 LOG_LEVEL=40

Write built output binary fip.s32 to a prepared SD card with the dd commands.

Note: The SD card device descriptor can be different.

sudo dd if=build/s32g3xxaevb3/release/fip.s32 of=/dev/sdc conv=notrunc seek=0 bs=256 count=1
sudo dd if=build/s32g3xxaevb3/release/fip.s32 of=/dev/sdc conv=notrunc bs=512 seek=1 skip=1
sync

5.2.4 Prepared SD card example partition

This SD card partition was used for QNX Hypervisor testing:

Disk /dev/sdc: 7,28 GiB, 7817134080 bytes, 15267840 sectors
Disk model: STORAGE DEVICE
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xb25fe294

Device Boot Start End Sectors Size Id Type

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
9 / 33

https://github.com/nxp-auto-linux/arm-trusted-firmware/tree/release/bsp37.0-2.5
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

/dev/sdc1 8192 15267839 15259648 7,3G c W95 FAT32 (LBA)

5.3 QNX BSP Host Hypervisor
QNX BSP is a set of packages, drivers, and applications that are possible to use in the QNX system. For this
usecase, it’s necessary to reserve PFE memory and include the Hypervisor binaries and libraries.

5.3.1 Artifact name

ifs-s32g399a-rdb.ui

5.3.2 Where to get

QNX BSP is distributed through QNX Software Center as QNX® SDP 7.1 BSP for NXP S32G274A EVB. User
must have a valid QNX license for downloading suitable packages - see section Prerequisites. To use the BSP
with Hypervisor, it is necessary to make some modifications. Downloaded BSP zip file BSP_nxp-s32g-evb_
br-710_be-710_SVN984052_JBN51.zip import to QNX Momentics IDE as QNX Source Package and BSP.
For more information, see the PFE QNX Integration Manual documentation.

5.3.3 Modifications

Reserve custom memory area during system startup for use with QNX Guests and PFE driver. In the file nxp-
s32g-evb\src\hardware\startup\boards\s32g\s32g399a-rdb\main.c add the following functions:

nxp-s32g-evb\src\hardware\startup\boards\s32g\s32g399a-rdb\main.c:134

kprintf("Reserving RAM region for PFE driver on EVB/RDB\n");

/* 96MB - PFE QNX Master */
as_add_containing(0x90000000,0x96000000 - 1, AS_ATTR_RAM, "pfe_ddr","ram");
/* 32MB - PFE QNX Slave */
as_add_containing(0x96000000,0x98000000 - 1, AS_ATTR_RAM, "pfe_ddr_hv","ram");
/* 256MB - PFE Linux Slave */
as_add_containing(0xA0000000,0xB0000000 - 1, AS_ATTR_RAM, "hv_guest1","ram");
/* 256MB - PFE Linux Slave */
as_add_containing(0xB0000000,0xC0000000 -1, AS_ATTR_RAM, "hv_guest2","ram");

Next step is to edit the build file nxp-s32g-evb\images\s32g399a-rdb.build with bootscript to include
QNX Hypervisor module with module=qvm and reserve memory as following:

nxp-s32g-evb\images\s32g399a-rdb.build:21

[+keeplinked] startup-s32g399a-rdb -P 8 -r 0x8e0000000,0x20000000,1 -r 0x90000000,0x8000000,1 -r
 0xA0000000,0x20000000,1
[+keeplinked module=qvm] PATH=/proc/boot:/bin:/usr/bin:/opt/bin:/sbin:/usr/sbin LD_LIBRARY_PATH=/proc/boot:/
lib:/usr/lib:/lib/dll:/lib/dll/pci:/opt/lib procnto-smp-instr -vvvvv

Add necessary libraries at the bottom of this file. They will be included into the output BSP filesystem:

nxp-s32g-evb\images\s32g399a-rdb.build:184

###
Hypervisor shared libs
###

/sbin/qvm = qvm
/bin/qvm-check = qvm-check
/bin/smmuman = smmuman
libfdt.so
devnp-vdevpeer-net.so

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
10 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

nxp-s32g-evb\images\s32g399a-rdb.build:184
devnp-virtio.so
vdev-virtio-blk.so
vdev-virtio-console.so
vdev-virtio-net.so
vdev-pl011.so
brconfig

Include SSH server configuration. It makes Hypervisor guests more accessible.

nxp-s32g-evb\images\s32g399a-rdb.build:200

###
sshd support
###
/usr/sbin/sshd=sshd
/usr/bin/scp=scp
/usr/bin/ssh=ssh
/usr/bin/ssh-keygen=ssh-keygen

[uid=0 gid=0 type=dir dperms=0755] /dev/shmem/ssh
[uid=0 gid=0 perms=0644 search=${QNX_TARGET}/etc/ssh] /dev/shmem/ssh/ssh_known_hosts=ssh_known_hosts

[perms=0744] sshd_config = {
Protocol 2
LoginGraceTime 600
PermitRootLogin yes
PermitEmptyPasswords yes
Subsystem sftp /usr/libexec/sftp-server
}

/root/.profile = {
export SYSNAME=nto
export TERM=xterm
export PATH=/proc/boot:/sbin:/bin:/usr/bin:/opt/bin/sbin:/usr/sbin
export LD_LIBRARY_PATH=/proc/boot:/lib:/usr/lib:/lib/dll:/lib/dll/pci
export PCI_HW_MODULE=/lib/dll/pci/pci_hw-fdt.so
export PCI_BKWD_COMPAT_MODULE=/lib/dll/pci/pci_bkwd_compat.so
export PCI_SLOG_MODULE=/lib/dll/pci/pci_slog2.so
export PCI_DEBUG_MODULE=/lib/dll/pci/pci_debug2.so
export PCI_BASE_VERBOSITY=2
}

[uid=0 gid=0 type=dir dperms=0755] /var/chroot/sshd
[type=link] /etc/ssh = /dev/shmem/ssh
[type=link] /var/etc/ssh = /dev/shmem/ssh

Modify install target in nxp-s32g-evb\Makefile to ensure all binaries and libraries from BSP build are
copied to install folder:

nxp-s32g-evb\Makefile:32

install: $(if $(wildcard prebuilt/*),prebuilt)
 $(MAKE) -Csrc hinstall
 $(MAKE) -Csrc install

5.3.4 How to build and deploy

Build this BSP project with QNX Momentics IDE and copy the output file nxp-s32g-evb\images\ifs-
s32g399a-rdb.ui to the root of the prepared SD card.

Note: Make sure that during boot, there is a message 'Reserving RAM region for PFE driver on EVB/RDB'
in the output log. If there is no such message, then make sure the nxp-s32g-evb\Makefile is properly
modified (see section Modifications) and then rebuild the project.

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
11 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

5.4 QNX BSP Guest
QNX Guest BSP is prepared virtual BSP to use with QNX Hypervisor. It is necessary to reserve the memory for
PFE driver during system startup.

5.4.1 Artifact name

qnx710-guest.ifs

5.4.2 Where to get

QNX Guest BSP is distributed through QNX Software Center as QNX® SDP 7.1 BSP for Hypervisor guest
(SDP7.1) for generic ARM virtual machines. To use it with PFE driver, it needs some modifications.

Downloaded zip file import to QNX Momentics IDE as QNX Source Package and BSP the same way as in QNX
BSP Host Hypervisor. New project with name hypervisor-guest-armv7 should be created.

5.4.3 Modifications

Reserve memory during guest startup for use with PFE Slave driver. In the file hypervisor-guest-
armv7\src\hardware\startup\boards\armv8_fm\main.c add following information:

hypervisor-guest-armv7\src\hardware\startup\boards\armv8_fm\main.c:176

kprintf("Reserving RAM region for PFE driver on Hypervisor Guest\n");
as_add_containing(0x96000000,0x98000000 - 1, AS_ATTR_RAM, "pfe_ddr","ram");

In the file hypervisor-guest-armv7\images\build do the following changes to disable PCI server:

hypervisor-guest-armv7\images\build

Disable pci-server by commenting out these lines
52: #pci-server --bus-scan-limit=0
53: #waitfor /dev/pci

Add libpci libraries
131: libpci.so
132: libpci.so.2.3

It is also possible to include other applications or libraries by modifying this build file, the same way as in QNX
BSP Host Hypervisor.

5.4.4 How to build and deploy

Build this BSP project with QNX Momentics IDE and copy the output file hypervisor-guest-armv7\images
\qnx710-guest.ifs into the folder with Guest 1 and Guest 3 QNX system on SD card.

Note: Make sure that during Guest 1 start, there is a message 'Reserving RAM region for PFE driver on
Hypervisor Guest' in the output log. If it doesn't show the message, modify the Makefile the same way as in
QNX BSP Host Hypervisor.

5.5 Linux Guest - File System
This file system is used by Linux Guests. It is customized for S32G3 RDB3 board and can be utilized in QNX
Hypervisor.

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
12 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

5.5.1 Artifact name

fsl-image-base-s32g399ardb3.ext4

5.5.2 Where to get

Build it from source code. The source code is a part of nxp-auto-linux/auto_yocto_bsp repository.

5.5.3 How to build and deploy

Use repo utility to obtain auto_yoct_bsp project.

repo init -u https://github.com/nxp-auto-linux/auto_yocto_bsp -b release/bsp41.0
repo sync

Initialize environment for S32G3 RDB3 board build.

. nxp-setup-alb.sh -m s32g399ardb3

Add user-specific modifications (if any) into build configuration file conf/local.conf. By default, no additional
modifications are needed.

Start the build.

bitbake fsl-image-base

Note: Build operation is very CPU / resource intensive. It can run for several hours. Use a powerful computer to
shorten the build time.

The output File System image is located in build_s32g399ardb3/tmp/deploy/images/s32g399ardb3/
fsl-image-base-s32g399ardb3.ext4. Copy the image to the SD card with other necessary files for Guest
2 and Guest 4.

Note: It is also possible to use a generic Yocto Poky filesystem image for ARM64 QEMU machines.

5.6 Linux Guest - Kernel

5.6.1 Artifact name

Image

5.6.2 Where to get

Use the kernel from step Linux Guest - File System, but apply additional modifications (see below).

The kernel sources are located in the folder build_s32g399ardb3/tmp/work-shared/s32g399ardb3/
kernel-source/.

5.6.3 Modifications

To make the NXP Linux Kernel work correctly in QNX Hypervisor, it is necessary to disable the workaround for
the NXP ERR050481 erratum.

Go to the kernel folder and execute the following commands:

make ARCH=arm64 CROSS_COMPILE=aarch64-none-linux-gnu- clean
make ARCH=arm64 CROSS_COMPILE=aarch64-none-linux-gnu- defconfig

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
13 / 33

https://github.com/nxp-auto-linux/auto_yocto_bsp
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

This command invokes a GUI configuration tool.
make ARCH=arm64 CROSS_COMPILE=aarch64-none-linux-gnu- menuconfig

In the configuration tool, enter the second section (Platform selection). In the section, uncheck the last
option (Enable workaround for the NXP ERR050481 erratum). Save the configuration and exit the
tool.

Figure 4. Disable workaround for the ERR050481

5.6.4 How to build and deploy

make ARCH=arm64 CROSS_COMPILE=aarch64-none-linux-gnu- -j

The output kernel file is located at build_s32g399ardb3/tmp/work-shared/s32g399ardb3/kernel-
source/arch/arm64/boot/Image. Copy the file to the SD card Guest 2 and Guest 4 folders.

5.7 Device Tree Blob for S32G3 RDB3
Device Tree Blob (DTB) file is necessary for booting a QNX system on S32G platform. U-Boot is using this file
for PFE clock configuration and board setup.

5.7.1 Artifact name

s32g399a-rdb3.dtb

5.7.2 Where to get

This component is a part of NXP Linux kernel build artifacts. It can be built from source, or used from previous
step Linux BSP Guest.

Copy DTB file build_s32g399ardb3/tmp/deploy/images/s32g399ardb3/s32g399a-rdb3.dtb to the
root folder of the SD card.

5.8 QNX PFE Driver
QNX PFE driver is used as a library for io-pkt network stack.

5.8.1 Artifact name

devnp-pfe-2-master.so

devnp-pfe-2-slave.so

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
14 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

5.8.2 Where to get

Build the QNX driver from source code. The archive is hosted on NXP FlexNet (nxp.flexnetoperations.com),
under the Automotive SW – S32G Standard Software, under the product Automotive SW - S32G
- PFE Driver + Standard Firmware. Download and extract zip file with PFE driver code PFE-
DRV_S32G_A53_QNX_1.6.0.zip.

5.8.3 How to build and deploy

It is necessary to build:

• QNX PFE Master driver to be run on QNX Host system and connected to PFE HIF0 channel.
• QNX PFE Slave driver to be run on QNX Guest system and connected to PFE HIF2 channel.
• LibFCI CLI for configuration of PFE peripheral.

To setup QNX build environment, run the qnxsdp-env script in terminal before building the driver. The default
path is following:

C:\Users__USERNAME__\qnx710\target\qnxsdp-env.bat

QNX PFE Master

cd sw/devnp-pfe-2/
make PLATFORM=aarch64le clean -j
make PLATFORM=aarch64le PFE_CFG_HIF_DRV_MODE=1 PFE_CFG_PFE0_IF=6 PFE_CFG_PFE1_IF=6 \
 PFE_CFG_PFE2_IF=6 PFE_CFG_MULTI_INSTANCE_SUPPORT=1 PFE_CFG_PFE_MASTER=1 PFE_CFG_MASTER_IF=6 \
 PFE_CFG_AUX_INTERFACE=1 PFE_CFG_HIF_NOCPY_SUPPORT=0 PFE_CFG_PFE0_PROMISC=0 \
 PFE_CFG_PFE1_PROMISC=0 PFE_CFG_PFE2_PROMISC=0 ARTIFACT_JENKINS=devnp-pfe-2-master.so -j

Copy file sw/devnp-pfe-2/build/aarch64le-release/devnp-pfe-2-master.so to root of the SD
card.

QNX PFE Slave

cd sw/devnp-pfe-2/
make PLATFORM=aarch64le clean -j
make PLATFORM=aarch64le PFE_CFG_HIF_DRV_MODE=1 PFE_CFG_PFE0_IF=8 PFE_CFG_PFE1_IF=8 \
 PFE_CFG_PFE2_IF=8 PFE_CFG_MULTI_INSTANCE_SUPPORT=1 PFE_CFG_PFE_MASTER=0 PFE_CFG_MASTER_IF=6 \
 PFE_CFG_AUX_INTERFACE=1 PFE_CFG_HIF_NOCPY_SUPPORT=0 PFE_CFG_PFE0_PROMISC=0 \
 PFE_CFG_PFE1_PROMISC=0 PFE_CFG_PFE2_PROMISC=0 ARTIFACT_JENKINS=devnp-pfe-2-slave.so -j

Copy file sw/devnp-pfe-2/build/aarch64le-release/devnp-pfe-2-slave.so to folder with the
Guest 1 on the SD card.

LibFCI CLI

cd sw/libfci_cli/
make PLATFORM=aarch64le clean
make PLATFORM=aarch64le -j20

Copy file sw/libfci_cli/build/aarch64le-release/libfci_cli to root of the SD card.

5.9 Linux PFE Driver (pfeng)
Linux PFE driver is used as a kernel module. It must be used only with the kernel, which was linked during
build.

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
15 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

5.9.1 Artifact name

pfeng-slave.ko

5.9.2 Where to get

Build the Linux driver from source code. The source code can be obtained from the public nxp-auto-linux/pfeng
GitHub space. Checkout release/linux_1.7.0.

git clone https://github.com/nxp-auto-linux/pfeng.git
cd pfeng && git checkout release/linux_1.7.0

5.9.3 How to build and deploy

It is necessary to provide path for the Linux kernel, which is used with guest system from section Linux Guest
Kernel. Without this kernel, the PFE driver will not be able to load.

cd sw/linux-pfeng/
make KERNELDIR=../../build_s32g399ardb3/tmp/work-shared/s32g399ardb3/kernel-source
 PFE_CFG_MULTI_INSTANCE_SUPPORT=1 \
 PFE_CFG_PFE_MASTER=0 PFE_CFG_FCI_ENABLE=0 PLATFORM=aarch64-none-linux-gnu all

Copy the file sw/linux-pfeng/pfeng-slave.ko to the folder with the Guest 2 on the SD card.

Note: For more information, follow the instructions in Linux PFE Driver User Manual chapter Building the driver,
Use the instructions to build PFE Slave driver.

5.10 Linux Guest DTB for Hypervisor
PFE Linux driver needs a suitable Device Tree Blob for a valid configuration of PFE peripheral. QNX Hypervisor
can provide this DTB as an extension to the default one for the Guest machine.

5.10.1 Artifact name

s32g-pfe-hv.dtb

5.10.2 Where to get

This is the minimal Device Tree configuration to use with PFE Linux Slave driver and to communicate with HIF3
interface. Save following code as a Device Tree Source file (s32g-pfe-hv.dts):

s32g-pfe-hv.dts

/dts-v1/;

/memreserve/ 0xB0000000 0x10000;

/ {
 #address-cells = <2>;
 #size-cells = <2>;

 pfesl_reserved_bdr: pfebufs@B0000000 {
 compatible = "nxp,s32g-pfe-bdr-pool";
 reg = <0 0xB0000000 0 0x10000>;
 status = "okay";
 };

 vgic: interrupt-controller@2c001000 {
 qvm,vdev = "gic";
 #interrupt-cells = <3>;
 #address-cells = <2>;
 interrupt-controller;

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
16 / 33

https://github.com/nxp-auto-linux/pfeng
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

s32g-pfe-hv.dts
 };

 pfe_slave: pfe_slave@46000000 {
 compatible = "nxp,s32g-pfe-slave";
 status = "okay";
 reg = <0x0 0x46000000 0x0 0x1000000>,
 <0x0 0x4007ca00 0x0 0x100>;
 reg-names = "pfe-cbus", "s32g-main-gpr";
 #address-cells = <1>;
 #size-cells = <0>;
 interrupt-parent = <&vgic>;
 interrupts = <0 193 1>; // <GIC_SPI 193 IRQ_TYPE_EDGE_RISING>;
 interrupt-names = "hif3";
 clock-names = "pfe_sys", "pfe_pe", "pfe_ts";
 dma-coherent;
 memory-region = <&pfesl_reserved_bdr>;
 memory-region-names = "pfe-bdr-pool";
 nxp,pfeng-ihc-channel = <3>; // PFE_HIF_CHANNEL_3
 nxp,pfeng-master-channel = <0>; // PFE_HIF_CHANNEL_0

 /* Network interface 'pfe0sl' */
 pfesl_netif0: ethernet@100 {
 compatible = "nxp,s32g-pfe-netif";
 status = "okay";
 reg = <100>;
 nxp,pfeng-netif-mode-mgmt-only;
 local-mac-address = [00 04 9F BE FF 00];
 nxp,pfeng-if-name = "pfe0sl";
 nxp,pfeng-hif-channels = <3>;
 nxp,pfeng-linked-phyif = <0>;
 };

 /* Network interface 'pfe1sl' */
 pfesl_netif1: ethernet@101 {
 compatible = "nxp,s32g-pfe-netif";
 status = "okay";
 reg = <101>;
 nxp,pfeng-netif-mode-mgmt-only;
 local-mac-address = [00 04 9F BE FF 01];
 nxp,pfeng-if-name = "pfe1sl";
 nxp,pfeng-hif-channels = <3>;
 nxp,pfeng-linked-phyif = <1>;
 };

 /* Network interface 'pfe2sl' */
 pfesl_netif2: ethernet@102 {
 compatible = "nxp,s32g-pfe-netif";
 status = "okay";
 reg = <102>;
 nxp,pfeng-netif-mode-mgmt-only;
 local-mac-address = [00 04 9F BE FF 02];
 nxp,pfeng-if-name = "pfe2sl";
 nxp,pfeng-hif-channels = <3>;
 nxp,pfeng-linked-phyif = <2>;
 };

 /* Network interface 'aux0sl' */
 pfesl_aux0: ethernet@103 {
 compatible = "nxp,s32g-pfe-netif";
 status = "okay";
 reg = <103>;
 local-mac-address = [00 04 9F BE FF 80];
 nxp,pfeng-if-name = "aux0sl";
 nxp,pfeng-hif-channels = <3>;
 nxp,pfeng-netif-mode-aux;
 };

 /* Network interface 'hif0sl' */
 pfesl_hif0: ethernet@104 {
 compatible = "nxp,s32g-pfe-netif";
 status = "okay";
 reg = <104>;
 nxp,pfeng-netif-mode-mgmt-only;
 local-mac-address = [00 04 9F BE FF F0];
 nxp,pfeng-if-name = "hif0sl";
 nxp,pfeng-hif-channels = <3>;
 nxp,pfeng-linked-phyif = <6>;
 };
 };
};

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
17 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

5.10.3 How to build and deploy

To build Device Tree Blob, use the following command:

dtc -I dts -O dtb -o s32g-pfe-hv.dtb s32g-pfe-hv.dts

Copy output s32g-pfe-hv.dtb file to SD card folder with Linux PFE Guest 2.

5.11 PFE Firmware
PFE Firmware is a software component running within the PFE peripheral and is processing each packet
reaching PFE.

Firmware binary file must be provided to the PFE peripheral by the PFE Master driver during every initialization.

5.11.1 Artifact name

s32g_pfe_class.fw

s32g_pfe_util.fw

5.11.2 Where to get

The archive with built binaries is hosted on NXP FlexNet (nxp.flexnetoperations.com), under the Automotive SW
– S32G Standard Software, under the product Automotive SW - S32G - PFE Driver + Standard Firmware.

Download file PFE-FW_S32G_1.9.0.zip.

5.11.3 How to build and deploy

Extract zip file and copy following firmware binary files from to the root of the SD card:

• s32g_pfe_class.fw
• s32g_pfe_util.fw

6 Hypervisor Guests configurations

It is necessary to create configuration for each of the guests in the topology (as presented in Overview section)
with QNX Hypervisor configuration qvmconf file.

Save content of the following sections with configuration to files on the SD card inside guest folders.

Guest name Memory Components Filename

Guest 1
QNX PFE

256 MB system virtual
memory
32 MB driver memory

QNX BSP Guest - qnx710-guest.ifs
pl011, virtio-console - console
virtio-blk - SD card files
QNX Slave driver HIF2

qnx-hv-pfe.
qvmconf

Guest 2
Linux PFE

256 MB system mapped
memory

Image - kernel image file
s32g-pfe-hv.dtb - Device Tree Blob
pl011, virtio-console - console
virtio-blk - fsl-image-base-s32g399ardb3.ext4
virtio-blk - SD card files
Linux Slave driver HIF3

linux-hv-pfe.
qvmconf

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
18 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

Guest name Memory Components Filename

Guest 3
QNX VirtIO-
Net

256 MB system virtual
memory

QNX BSP Guest - qnx710-guest.ifs
pl011, virtio-console - console
virtio-net - network interface

qnx-hv-virtio.
qvmconf

Guest 1
Linux VirtIO-
Net

256 MB system virtual
memory

Image - kernel image file
pl011, virtio-console - console
virtio-blk - fsl-image-base-s32g399ardb3.ext4

linux-hv-virtio.
qvmconf

6.1 Guest 1 configuration
This guest uses the QNX system from file qnx710-guest.ifs (QNX BSP Guest) with direct PFE memory mapping
and interrupt passthrough (for more info see table Memory and Interrupt passthrough configuration). It uses
PFE QNX Slave driver connected to HIF2 channel (QNX PFE Driver).

To control the guest with console interface, it is possible to use virtio-console interface from the QNX Host. User
can also attach an SD card file system via virtio-blk interface to transfer files, so it is not necessary to include
PFE driver inside BSP build. QNX Hypervisor can allocate 256 MB of virtual system memory and forward
passthrough 32MB of Host OS memory for PFE driver use.

qnx-hv-pfe.qvmconf

ram 0x80000000,256M

load qnx710-guest.ifs

UART console for startup phase
vdev pl011
 hostdev >-
 loc 0x1c090000
 intr gic:37

Use virtio as the main console
vdev virtio-console
 loc 0x20000000
 intr gic:42

#SD card for testing
vdev virtio-blk
 loc 0x1c0d0000
 intr gic:41
 hostdev /dev/sd0
 name virtio-sd_card

PFE
PFE registers memory
pass loc mem:0x46000000,0x1000000,rw=0x46000000
Master-detect signalization 0x4007CAECU
pass loc mem:0x4007CAEC,0x4,r=0x4007CAEC

PFE driver memory
pass loc mem:0x96000000,0x2000000,m=0x96000000

PFE interrupts
#pass intr gic:222 # HIF0 Vector Interrupt
#pass intr gic:223 # HIF1 Vector Interrupt
pass intr gic:224 # HIF2 Vector Interrupt
#pass intr gic:225 # HIF3 Vector Interrupt

6.2 Guest 2 configuration
This guest is using the Linux system from file fsl-image-base-s32g399ardb3.ext4 and kernel binary from file
Image, with direct memory mapping and interrupt passthrough (for more info see table Memory and Interrupt
passthrough configuration).

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
19 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

It uses PFE Linux Slave driver (Linux PFE driver) with direct PFE registers access and interrupt passthrough
from HIF3 and Device Tree configuration built in step Linux Guest DTB for Hypervisor. All of the system memory
is mapped to the Host OS reserved RAM area with the name hv_guest2, started at physical memory address
0xB0000000 and size of 256 MB.

To control the guest with console interface, it is possible to use virtio-console interface from the QNX Host. User
can also attach an SD card file system via virtio-blk interface to transfer files, so it is not necessary to include
PFE driver inside BSP build.

linux-hv-pfe.qvmconf

pass loc mem:$asinfo_start{hv_guest2},$asinfo_length{hv_guest2},rwcm

kernel
load Image

cmdline "console=ttyAMA0 earlycon=pl011,0x1c090000 rw rootfstype=ext4 root=/dev/vdb"

Device-Tree
fdt load ./s32g-pfe-hv.dtb

UART
vdev pl011
 loc 0x1c090000
 intr gic:37

ROOT FS
vdev virtio-blk
 loc 0x1c0c0000
 intr gic:41
 hostdev fsl-image-base-s32g399ardb3.ext4

SD card for testing
vdev virtio-blk
 loc 0x1c0d0000
 intr gic:42
 hostdev /dev/sd0
 name virtio-sd_card

PFE
PFE registers memory
pass loc mem:0x46000000,0x1000000,rw=0x46000000
Master-detect signalization 0x4007CAECU
pass loc mem:0x4007C400,0x100,rw=0x4007C400

PFE interrupts
#pass intr gic:222 # HIF0 Vector Interrupt
#pass intr gic:223 # HIF1 Vector Interrupt
#pass intr gic:224 # HIF2 Vector Interrupt
pass intr gic:225 # HIF3 Vector Interrupt

6.3 Guest 3 configuration
This guest is also using the QNX system from file qnx710-guest.ifs (QNX BSP Guest) with VirtIO-Net interface.

To control of virtual machine via console, it is also used virtio-console interface from the QNX Host. It is not
needed to attach any SD card, as virtio drivers are included in QNX Guest BSP. Guest does not need to
passthrough any resources from the Host system.

The Guest name for better access from the Host OS is set to qnx-guest. Hypervisor allocates 256 MB of
virtual system memory.

qnx-hv-virtio.qvmconf

system qnx-guest

ram 0x80000000,256M

load qnx710-guest.ifs

UART console for startup phase

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
20 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

qnx-hv-virtio.qvmconf
vdev pl011
 hostdev >-
 loc 0x1c090000
 intr gic:37

Use virtio as the main console
vdev virtio-console
 loc 0x20000000
 intr gic:42

VirtIO-NET interface
vdev virtio-net
 loc 0x1c0e0000
 intr gic:40
 mac aa:aa:aa:aa:aa:aa
 name p2p_qnx
 peer /dev/vdevpeers/vp0

6.4 Guest 4 configuration
This guest is also using the same Linux file system and kernel as Guest 2 Linux but with VirtIO-Net interface.

To control of virtual machine via console, it is also used virtio-console interface from the QNX Host. It is not
needed to attach any SD card, as virtio drivers are already included. Guest doesn't need to passthrough any
resources from the Host system.

The Guest name for better access from the Host OS is set to linux-guest. Hypervisor allocates 256 MB of
virtual system memory.

linux-hv-virtio.qvmconf

system linux-guest

ram 0x80000000,256M

kernel
load Image

cmdline "console=ttyAMA0 earlycon=pl011,0x1c090000 rw rootfstype=ext4 root=/dev/vda"

UART
vdev pl011
 loc 0x1c090000
 intr gic:37

ROOT FS
vdev virtio-blk
 loc 0x1c0c0000
 intr gic:41
 hostdev fsl-image-base-s32g399ardb3.ext4

PFE
vdev virtio-net
 loc 0x1c0e0000
 intr gic:40
 mac aa:aa:aa:aa:bb:cc
 name p2p_linux
 peer /dev/vdevpeers/vp1

7 Running the QNX Hypervisor

Summary of the steps to start the topology descibed in Overview:

1. Prepare and copy all of the files to the SD card
2. Run QNX Host system
3. Setup SSH connection using GMAC network interface
4. Start QNX PFE Master driver and create VirtIO-Net endpoints

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
21 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

5. Configure software bridge between PFE Master and VirtIO-Net network.
6. Start Guest 1 with PFE QNX
7. Start Guest 2 with PFE Linux
8. Start Guest 3 with VirtIO-Net QNX
9. Start Guest 4 with VirtIO-Net Linux

10. Test communication

7.1 Prepare the SD Card
The SD card must be prepared with one FAT32 which starts at offset of 8192 sectors. Write the ATF to the
beginning of the SD card (to the offset) as described in section Trusted Firmware-A.

sudo dd if=build/s32g3xxaevb3/release/fip.s32 of=/dev/sdc conv=notrunc seek=0 bs=256 count=1
sudo dd if=build/s32g3xxaevb3/release/fip.s32 of=/dev/sdc conv=notrunc bs=512 seek=1 skip=1

Note: The SD card can have different file descriptor then /dev/sdc.

Copy all of the prepared components to the new SD card FAT32 partition. Final files structure can look like this:

Content of SD card FAT32 partition

├─ hv/guest1/
│ ├─ devnp-pfe-2-slave.so
│ ├─ qnx710-guest.ifs
│ └─ qnx-hv-pfe.qvmconf
│
├─ hv/guest2/
│ ├─ fsl-image-base-s32g399ardb3.ext4
│ ├─ Image
│ ├─ linux-hv-pfe.qvmconf
│ ├─ pfeng-slave.ko
│ └─ s32g-pfe-hv.dtb
│
├─ hv/guest3/
│ ├─ qnx710-guest.ifs
│ └─ qnx-hv-virtio.qvmconf
│
├─ hv/guest4/
│ ├─ fsl-image-base-s32g399ardb3.ext4
│ ├─ Image
│ └─ linux-hv-virtio.qvmconf
│
├─ devnp-pfe-2-master.so
├─ ifs-s32g399a-rdb.ui
├─ libfci_cli
├─ s32g_pfe_class.fw
├─ s32g_pfe_util.fw
└─ s32g399a-rdb3.dtb

7.2 Run QNX Host
After the SD card is inserted to the S32G3 RDB3 board and the board is turned ON the user can see U-
Boot console output. At the first boot, it is necessary to pause the boot process and insert the environment
configuration from section U-Boot with Hypervisor line by line.

After reboot, the QNX Host system should start (section QNX BSP Host Hypervisor) and the console should
write "Reserving RAM region for PFE driver on EVB/RDB". For more information, visit PFE QNX Integration
Manual documentation.

To mount the SD card with all of the files use this command:

Note: The partition might have a different descriptor than /dev/sd0t*.

mount -t dos /dev/sd0t12 /sdcard

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
22 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

Verify that all necessary files are available.

ls -l /sdcard/

7.3 SSH Connection
QNX user console can't provide multiple sessions, so it is necessary to find a different way to connect and run
more Guest virtual machines. The best way is to have multiple active connections through the SSH terminal.
For that the GMAC interface can be used.

Check if the GMAC driver is running and set the IP address.

ifconfig dwc0 192.168.2.20

Note: It is possible to set any IP addres from the same network subnet as user's PC.

For SSH connection, it is necessary to generate an RSA key, use the right configuration and start SSH server.

ssh-keygen -t rsa -b 2048 -f /etc/ssh/ssh_host_rsa_key -N ''
cp /proc/boot/sshd_config /etc/ssh/
/usr/sbin/sshd

It is not possible to connect the computer directly to the GMAC interface (highlighted in the image S32G-RDB3
board) and connect with IP address using PuTTy or another SSH terminal to network port 22.

7.4 Start the QNX Master driver with sw bridge
When the SSH connection is established and the QNX Host is prepared, it is possible to start PFE QNX Master
driver with vdevpeer-net virtual interfaces for VirtIO-Net backend. This creates new io-pkt instance with memory
area pfe_ddr. To avoid conflicts with already running GMAC io-pkt instance, it is necessary to use different
system prefix master, so every command must be executed with prefix SOCK=/master.

io-pkt-v6-hc -p tcpip reply_ctxt=300,pkt_typed_mem=pfe_ddr,prefix="master" -t 8 -D \
 -d /sdcard/devnp-pfe-2-master.so
 pfe0_mac=0e8c01691d4e,pfe1_mac=9e83193b24d9,pfe2_mac=daef032f419b,class_fw=/sdcard/
s32g_pfe_class.fw,util_fw=/sdcard/s32g_pfe_util.fw \
 -d vdevpeer-net peer=/dev/qvm/qnx-guest/p2p_qnx,bind=/dev/vdevpeers/vp0,mac=a0b0c0d0e0f0 \
 -d vdevpeer-net peer=/dev/qvm/linux-guest/p2p_linux,bind=/dev/vdevpeers/vp1,mac=a0b0c0ddeeff

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
23 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

The output of SOCK=/master ifconfig should contain all of the network interfaces:

More information about QNX PFE driver are descibed in PFE QNX Driver User Manual. Next configure software
network bridge between pfex0 and virtual vp0 and vp1 interfaces:

SOCK=/master ifconfig bridge0 create
SOCK=/master brconfig bridge0 add pfex0 up
SOCK=/master brconfig bridge0 add vp0 up
SOCK=/master brconfig bridge0 add vp1 up

Now it is possible to set IP address and start the network interfaces:

SOCK=/master ifconfig pfex0 192.168.10.20
SOCK=/master ifconfig vp0 up
SOCK=/master ifconfig vp1 up

7.4.1 LibFCI CLI configuration

For communication with PFE and other network devices, user must set PFE configuration for VLAN_BRIDGE
mode using the LibFCI interface. In this mode, every client can communicate with each other.

The libfci_cli application should be on the SD card and needs to be coppied to /tmp/ folder, as it is the only
folder with write and execute permission in QNX system.

cp /sdcard/libfci_cli /tmp/ && chmod +x /tmp/libfci_cli

The following configuration includes all of the HIF channels and EMAC interfaces to the network bridge.

/tmp/libfci_cli bd-update --vlan 1 --uh FORWARD --um FLOOD --mh FORWARD --mm FLOOD

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
24 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

/tmp/libfci_cli bd-insif --vlan 1 --i hif0 --tag OFF
/tmp/libfci_cli bd-insif --vlan 1 --i hif1 --tag OFF
/tmp/libfci_cli bd-insif --vlan 1 --i hif2 --tag OFF
/tmp/libfci_cli bd-insif --vlan 1 --i hif3 --tag OFF
/tmp/libfci_cli bd-insif --vlan 1 --i emac0 --tag OFF
/tmp/libfci_cli bd-insif --vlan 1 --i emac1 --tag OFF
/tmp/libfci_cli bd-insif --vlan 1 --i emac2 --tag OFF
/tmp/libfci_cli phyif-update --i hif0 --E --promisc ON --mode VLAN_BRIDGE
/tmp/libfci_cli phyif-update --i hif1 --E --promisc ON --mode VLAN_BRIDGE
/tmp/libfci_cli phyif-update --i hif2 --E --promisc ON --mode VLAN_BRIDGE
/tmp/libfci_cli phyif-update --i hif3 --E --promisc ON --mode VLAN_BRIDGE
/tmp/libfci_cli phyif-update --i emac0 --E --promisc ON --mode VLAN_BRIDGE
/tmp/libfci_cli phyif-update --i emac1 --E --promisc ON --mode VLAN_BRIDGE
/tmp/libfci_cli phyif-update --i emac2 --E --promisc ON --mode VLAN_BRIDGE

Note: It is better to copy it through SSH.

7.5 Start Guest 1
To start this guest with QNX and PFE, new SSH session will be used (section SSH Connection). In the SD card
folder with Guest 1 files, user can start QNX Hypervisor Manager using the configuration created in section
Guest 1 QNX PFE configuration:

cd /sdcard/hv/guest1
qvm @qnx-hv-pfe.qvmconf

The QNX Guest should start and the console shows some basic information with the output message
"Reserving RAM region for PFE driver on Hypervisor Guest". Now the SD card can be mounted to access all
the files.

devb-virtio virtio smem=0x1c0d0000,irq=41
mount -t dos /dev/hd0t12 /sdcard

Note: The partition might have a different descriptor than /dev/sd0t*.

To initialize the PFE QNX Slave driver, io-pkt network stack needs to be started with the right arguments.

io-pkt-v6-hc -p tcpip pkt_typed_mem=pfe_ddr -d /sdcard/hv/guest1/devnp-pfe-2-slave.so \
 pfe0_mac=523148c01396,pfe1_mac=267d99456b01,pfe2_mac=a6e17c4ec0f9,pfex_mac=be93d6295e3b

Now it is possible to set IP address. It is necessary to use only pfex0 interface for communication in
VLAN_BRIDGE.

ifconfig pfex0 192.168.10.30

The output of ifconfig command should be like in the following image:

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
25 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

7.6 Start Guest 2
To start this guest with Linux and PFE, new SSH session will be used (section SSH Connection). In the folder
with Guest 2 files, user can start QNX Hypervisor Manager using the configuration created in section Guest 2
Linux PFE configuration:

cd /sdcard/hv/guest2
qvm @linux-hv-pfe.qvmconf

The Linux Guest should start and prompt to user login. It is necessary to login with username root, and then
mount the SD card to access the driver file.

mkdir /mnt/sdcard
mount /dev/vda1 /mnt/sdcard

Now user can load the PFE Linux pfeng slave driver.

Note: It is possible to specify IDEX resend delay, or another options from Linux PFE Driver User Manual

insmod /mnt/sdcard/hv/guest2/pfeng-slave.ko idex_resend_delays=300,300

User should be able to see all interfaces with the command ifconfig -a. It is necessary to use only aux0sl
interface for communication in VLAN_BRIDGE.

ifconfig aux0sl 192.168.10.40

The output of ifconfig command should be like in the following image:

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
26 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

7.7 Start Guest 3
To start this guest with QNX and VirtIO-Net driver, new connection to the SSH server needs to be created
(section SSH Connection).

In the SD card folder with Guest 3 files, user can start QNX Hypervisor Manager using the configuration created
in section Guest 3 QNX VirtIO-Net configuration:

cd /sdcard/hv/guest3
qvm @qnx-hv-virtio.qvmconf

The io-pkt instance with the VirtIO-Net driver can be started:

io-pkt-v6-hc -d /proc/boot/devnp-virtio.so smem=0x1c0e0000,irq=40

Now it is possible to set the IP address:

ifconfig vt0 192.168.10.50

The output of ifconfig command should be like in the following image:

7.8 Start Guest 4
To start this guest with Linux and VirtIO-Net, user must connect again with a new SSH session.

In the folder with Guest 4 files, it is possible to start a new QNX Hypervisor Manager the same way as with
other guests using the configuration created in section Guest 4 Linux VirtIO-Net Linux.

cd /sdcard/hv/guest4
qvm @linux-hv-virtio.qvmconf

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
27 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

The network module is started automatically after the system boot by Linux VirtIO-Net generic driver and it is
necessary just to set the IP address:

ifconfig eth0 192.168.10.60 up

The output of the ifconfig command should be like in the following image:

7.9 Test communication
Now, all of the systems should be able to communicate with each other and with external network. It is possible
to ping or make some performance measurements among systems.

System IP address

QNX Host 192.168.10.20

Guest 1 PFE QNX 192.168.10.30

Guest 2 PFE Linux 192.168.10.40

Guest 3 VirtIO-Net QNX 192.168.10.50

Guest 4 VirtIO-Net Linux 192.168.10.60

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
28 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

PFE
Network BRIDGE

EMAC0 EMAC1 EMAC2

HIF0 HIF1 HIF2 HIF3

Guest 2 [Linux]

.

Guest 1 [QNX]Guest 3 [QNX] Guest 4 [Linux]

HIF_NO_COPY

...

QNX Hypervisor
Host

QNX PFE Master
192.168.10.20

VirtIO-Net
backend

VirtIO-Net
frontend

192.168.10.50

VirtIO-Net
frontend

192.168.10.60

PFE Slave
192.168.10.30

PFE Slave
192.168.10.40

Passthrough
memory - 256MB
interrupt - HIF3

Passthrough
memory - 32MB
interrupt - HIF2

SW Bridge
io-pkt B

External
Network

B

Figure 5. Demo Topology

Also it is possible to connect some external devices via PFE and communicate with each of the systems.

8 Troubleshooting

If there are problems with Hypervisor, it is possible to try some of these applications for debugging:

• slog2info - shows all logs output
• pidin syspage=asinfo - memory areas information to check
• slay qvm - force stop Hypervisor Manager
• brconfig -a - show software bridge info in Host system
• /tmp/libfci_cli phyif-print - print PFE configuration on Host

9 References

[1] Linux PFE Driver User Manual, available in Linux PFE driver source code repository; directory /doc/PFE_
S32G_A53_LNX_UserManual.pdf. The repository is at https://github.com/nxp-auto-linux/pfeng.

[2] PFE QNX Driver User Manual, available in QNX PFE driver source code repository; directory /doc/
user_manual/PFE_QNX_DRV_S32G_UserManual.pdf. QNX Driver can be obtained from FlexNet
(nxp.flexnetoperations.com)

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
29 / 33

https://github.com/nxp-auto-linux/pfeng
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

[3] PFE QNX Driver Integration Manual, available in QNX PFE driver source code repository; directory /
doc/qnx_drv_im/PFE_QNX_DRV_IntegrationManual.pdf. QNX Driver can be obtained from FlexNet
(nxp.flexnetoperations.com)

[4] QNX Hypervisor 2.2 User's Guide - Networking, available on page QNX online documentation

10 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

11 Revision History

Document ID Release Date Description

AN14355 v. 1.1.0 18 July 2024 • Update to use NXP Automotive Linux BSP instead of Poky Linux BSP.
• Add QNX Makefile modification for linking problem.
• Disable pci-server from QNX Guest startup file.
• Fix QNX PFE driver build path.

AN14355 v. 1.0.1 20 June 2024 Update topology image, fix misleading information.

AN14355 v. 1.0.0 23 May 2024 Initial version.

Document Revision History

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
30 / 33

https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.hypervisor.user/topic/network/network.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has
been qualified for use in automotive applications. If this product is used
by customer in the development of, or for incorporation into, products or
services (a) used in safety critical applications or (b) in which failure could
lead to death, personal injury, or severe physical or environmental damage
(such products and services hereinafter referred to as “Critical Applications”),
then customer makes the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, safety,
and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. As such, customer
assumes all risk related to use of any products in Critical Applications and
NXP and its suppliers shall not be liable for any such use by customer.
Accordingly, customer will indemnify and hold NXP harmless from any
claims, liabilities, damages and associated costs and expenses (including
attorneys’ fees) that NXP may incur related to customer’s incorporation of
any product in a Critical Application.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
31 / 33

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

Tables
Tab. 1. Systems used in the demo 3

Figures
Fig. 1. Demo Topology ... 2
Fig. 2. QNX Software Center Hypervisor modules 6
Fig. 3. U-Boot enable Xen EL2 Booting 8

Fig. 4. Disable workaround for the ERR050481 14
Fig. 5. Demo Topology ... 29

AN14355 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.1.0 — 18 July 2024 Document feedback
32 / 33

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14355
S32G PFE with QNX Hypervisor

Contents
1 Introduction .. 2
2 General Description ...2
3 Overview ...2
3.1 QNX Hypervisor ...3
3.2 VirtIO-Net virtual network bridge3
3.3 PFE driver passthrough4
3.4 Memory and Interrupt passthrough

configuration .. 5
4 Prerequisites .. 5
4.1 Hypervisor packages ... 6
4.2 Necessary packages to install 6
5 Components ... 6
5.1 U-Boot with Hypervisor support7
5.1.1 Artifact name ... 7
5.1.2 Where to get ..7
5.1.3 Modifications .. 7
5.1.4 How to build and deploy8
5.1.5 U-Boot example configuration 8
5.2 Trusted Firmware-A ... 9
5.2.1 Artifact name ... 9
5.2.2 Where to get ..9
5.2.3 How to build and deploy9
5.2.4 Prepared SD card example partition9
5.3 QNX BSP Host Hypervisor10
5.3.1 Artifact name ... 10
5.3.2 Where to get ..10
5.3.3 Modifications .. 10
5.3.4 How to build and deploy11
5.4 QNX BSP Guest ..12
5.4.1 Artifact name ... 12
5.4.2 Where to get ..12
5.4.3 Modifications .. 12
5.4.4 How to build and deploy12
5.5 Linux Guest - File System 12
5.5.1 Artifact name ... 13
5.5.2 Where to get ..13
5.5.3 How to build and deploy13
5.6 Linux Guest - Kernel 13
5.6.1 Artifact name ... 13
5.6.2 Where to get ..13
5.6.3 Modifications .. 13
5.6.4 How to build and deploy14
5.7 Device Tree Blob for S32G3 RDB3 14
5.7.1 Artifact name ... 14
5.7.2 Where to get ..14
5.8 QNX PFE Driver .. 14
5.8.1 Artifact name ... 14
5.8.2 Where to get ..15
5.8.3 How to build and deploy15
5.9 Linux PFE Driver (pfeng)15
5.9.1 Artifact name ... 16
5.9.2 Where to get ..16
5.9.3 How to build and deploy16

5.10 Linux Guest DTB for Hypervisor16
5.10.1 Artifact name ... 16
5.10.2 Where to get ..16
5.10.3 How to build and deploy18
5.11 PFE Firmware ..18
5.11.1 Artifact name ... 18
5.11.2 Where to get ..18
5.11.3 How to build and deploy18
6 Hypervisor Guests configurations 18
6.1 Guest 1 configuration 19
6.2 Guest 2 configuration 19
6.3 Guest 3 configuration 20
6.4 Guest 4 configuration 21
7 Running the QNX Hypervisor 21
7.1 Prepare the SD Card22
7.2 Run QNX Host ...22
7.3 SSH Connection .. 23
7.4 Start the QNX Master driver with sw bridge 23
7.4.1 LibFCI CLI configuration24
7.5 Start Guest 1 ... 25
7.6 Start Guest 2 ... 26
7.7 Start Guest 3 ... 27
7.8 Start Guest 4 ... 27
7.9 Test communication ...28
8 Troubleshooting ...29
9 References ..29
10 Note about the source code in the

document ..30
11 Revision History .. 30

Legal information ...31

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 18 July 2024
Document identifier: AN14355

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

	1 Introduction
	2 General Description
	3 Overview
	3.1 QNX Hypervisor
	3.2 VirtIO-Net virtual network bridge
	3.3 PFE driver passthrough
	3.4 Memory and Interrupt passthrough configuration

	4 Prerequisites
	4.1 Hypervisor packages
	4.2 Necessary packages to install

	5 Components
	5.1 U-Boot with Hypervisor support
	5.1.1 Artifact name
	5.1.2 Where to get
	5.1.3 Modifications
	5.1.4 How to build and deploy
	5.1.5 U-Boot example configuration

	5.2 Trusted Firmware-A
	5.2.1 Artifact name
	5.2.2 Where to get
	5.2.3 How to build and deploy
	5.2.4 Prepared SD card example partition

	5.3 QNX BSP Host Hypervisor
	5.3.1 Artifact name
	5.3.2 Where to get
	5.3.3 Modifications
	5.3.4 How to build and deploy

	5.4 QNX BSP Guest
	5.4.1 Artifact name
	5.4.2 Where to get
	5.4.3 Modifications
	5.4.4 How to build and deploy

	5.5 Linux Guest - File System
	5.5.1 Artifact name
	5.5.2 Where to get
	5.5.3 How to build and deploy

	5.6 Linux Guest - Kernel
	5.6.1 Artifact name
	5.6.2 Where to get
	5.6.3 Modifications
	5.6.4 How to build and deploy

	5.7 Device Tree Blob for S32G3 RDB3
	5.7.1 Artifact name
	5.7.2 Where to get

	5.8 QNX PFE Driver
	5.8.1 Artifact name
	5.8.2 Where to get
	5.8.3 How to build and deploy

	5.9 Linux PFE Driver (pfeng)
	5.9.1 Artifact name
	5.9.2 Where to get
	5.9.3 How to build and deploy

	5.10 Linux Guest DTB for Hypervisor
	5.10.1 Artifact name
	5.10.2 Where to get
	5.10.3 How to build and deploy

	5.11 PFE Firmware
	5.11.1 Artifact name
	5.11.2 Where to get
	5.11.3 How to build and deploy

	6 Hypervisor Guests configurations
	6.1 Guest 1 configuration
	6.2 Guest 2 configuration
	6.3 Guest 3 configuration
	6.4 Guest 4 configuration

	7 Running the QNX Hypervisor
	7.1 Prepare the SD Card
	7.2 Run QNX Host
	7.3 SSH Connection
	7.4 Start the QNX Master driver with sw bridge
	7.4.1 LibFCI CLI configuration

	7.5 Start Guest 1
	7.6 Start Guest 2
	7.7 Start Guest 3
	7.8 Start Guest 4
	7.9 Test communication

	8 Troubleshooting
	9 References
	10 Note about the source code in the document
	11 Revision History
	Legal information
	Tables
	Figures
	Contents

