
AN14276
Voice Seeker and VoiceSpot for i.MX
Rev. 1.0 — 24 June 2024 Application note

Document information
Information Content

Keywords AN14276, Voice Processing, VoiceSeeker, VoiceSpot

Abstract NXP created the Voice Processing environment, which is continuously improved. This
environment enables customers to use it for their application with low latency, low false-positives,
low energy consumption, and with minimum effort.

https://www.nxp.com

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

1 Introduction

NXP created the Voice Processing environment, which is continuously improved. This environment enables
customers to use it for their application with low latency, low false-positives, low energy consumption, and with
minimum effort.

VoiceSeeker and VoiceSpot are some of the tools that NXP offers for voice processing. They can be used with
most of the i.MX 8M family and with low CPU usage.

2 Purpose

This document introduces VoiceSeeker, a library providing high-resolution beamforming and multichannel
Acoustic Echo Cancellation (AEC), without requiring a predetermined fixed microphone geometry, which
translates to more flexibility on board design.

Alongside VoiceSeeker, this document describes VoiceSpot, a speech-detection engine which does not require
to be recompiled to work with different models. It fits perfectly with VoiceSeeker, because both of them were
designed to work together. VoiceSeeker removes the noise from the audio. When it is done, VoiceSeeker sends
the buffer to VoiceSpot, which only focuses on detecting the wake word. If a wake word is detected, VoiceSpot
sends feedback back to VoiceSeeker.

The main objectives of this document are:

• To fully understand what VoiceSeeker, VoiceSpot, and AFE are.
• To configure VoiceSeeker and VoiceSpot as well as their dependencies.
• To distinguish the difference between the default and external configurations.
• To understand the calibration process.

3 Overview

The first stage of a voice assistance is having the ability to listen when spoken to. Despite being the first stage
of voice assistance, it is very important since the buffer used to trigger the voice assistance is the same buffer
used in the following steps. This means that the buffer should be cleaned and have only the human artifacts
to have a good accuracy of the wake-word detection and the interpretation of the commands. The main goal
of VoiceSeeker is to clean up the input microphone data while VoiceSpot is the mechanism used to detect the
wake word and trigger the next stages of voice assistance.

VoiceSeeker is a library that processes the microphone input. One of these processes is to remove unwanted
noise from the data captured by the microphones. The core of VoiceSeeker is a static library, which has the
APIs to process the audio. Imx-voiceui project takes that static library and adds a new layer, which makes it
easier to work with. The addition of this layer with the static library gives a shared object as the result. From now
on, when talking about VoiceSeeker, it will be a reference to this shared object.

The VoiceSeeker library comes preinstalled on most of the NXP Linux distributions, so you can have a quick
taste of some of its capabilities. VoiceSeeker is a library, which means that it requires an application that can
load it at runtime. The application that can load it is called AFE and it also comes preinstalled.

AFE is a program which allows to select the desire engine for voice processing at runtime; for example,
choosing either VoiceSeeker or Conversa. An overview of AFE is provided in the following chapters and
focused on the use case, where it loads the VoiceSeeker library. For more use cases of the AFE, see the
TODO.md file on GitHub.

The voice_ui_app is another program from NXP’s Voice Processing Environment. The voice_ui_app is
waiting for the output of VoiceSeeker to search if there are any voice artifacts. Voice artifacts can be either the
wake word or a voice command and each of them is handled in a different way. First, it looks for the wake word

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
2 / 29

https://www.nxp.com/VOICE
https://www.nxp.com/VOICESEEKER
https://www.nxp.com/VOICESPOT
https://github.com/nxp-imx/imx-voiceui
https://github.com/nxp-imx/nxp-afe/blob/lf-6.1.1-1.0.0/TODO.md
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

with the help of VoiceSpot and if VoiceSpot finds the wake word command, it has the ability to trigger a third-
party application so the third party starts listening to the capture stream. VoiceSpot also sends the buffer to VIT
so it can look for the voice commands. In the scenario where VoiceSpot could not find the wake word it would
only send the buffer to VIT without sending any type of signal to the third-party application. This document
only explains the workflow from the microphone capture using AFE with VoiceSeeker until the detection of the
wake word with VoiceSpot in voice_ui_app. For more detailed information about the VoiceSpot API, see its
documentation.

VIT (Voice Intelligent Technology) is another NXP product to handle voice commands. It is not in the scope
of this document, but it can be integrated with VoiceSeeker and VoiceSpot (see Section 5.1.4). If you want to
learn more about VIT, visit its website or see Getting Started with VIT for i.MX RT devices: Voice Intelligent
Technology SDK demo (document IMXRTVITGSUG).

4 Materials

This section describes the hardware and software requirements needed to properly execute the example shown
in this document.

4.1 Software requirements
The following software is needed to run the example described in this document:

• i.MX Linux BSP version 6.6.23 or higher (the recommended version or any other version can be downloaded
from https://www.nxp.com/IMXLINUX).

• Audacity or a similar software.

For more information about how to flash the board and get it ready to run the BSP, see the i.MX Linux User's
Guide (document IMXLUG).

4.2 Hardware requirements
The following hardware is needed to run the example described in this document:

• i.MX 8MP EVK board.
• 8MIC-RPI-MX8 board.
• Speakers with AUX connection.
• USB-A to USB-C cable.
• USB-A to USB-B micro cable.
• 3.5 mm jack audio cable.

If you have any concerns about the hardware setup, the i.MX 8M Plus EVK Quick Start Guide explains how to
download the software and boot the board.

5 Voice-UI framework

This section explains the Voice-UI framework.

5.1 Integration to NXP Linux BSP
All programs and binaries mentioned in this document come with each BSP release. However, some of
those libraries or programs are for evaluation only. For example, VoiceSeeker only comes with microphone
beamforming features, which allow to detect wake words using VoiceSpot. The full version of VoiceSeeker
comes with the AEC (Acoustic Echo Cancellation) and DOA (Direction Of Arrival) features. These features are

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
3 / 29

https://github.com/nxp-imx/imx-voiceui/tree/MM_04.07.02_2210_L5.15.y/voicespot_release/Doc
https://www.nxp.com/design/software/embedded-software/voice-intelligent-technology:VOICE-INTELLIGENT-TECHNOLOGY
http://www.nxp.com/doc/IMXRTVITGSUG
https://www.nxp.com/IMXLINUX
http://www.nxp.com/doc/IMXLUG
https://www.nxp.com/docs/en/quick-reference-guide/8MPLUSEVKQSG.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

useful when developing voice applications. If you are interested in testing the full version, send an email to
voice@nxp.com to receive further information about this.

5.1.1 Architecture

VoiceSeeker and VoiceSpot were designed to work independently from each other. However, it is recommended
to use them together to achieve the best behavior of each library. VoiceSeeker requires feedback that indicates
that a wake word was activated so that it can be adjusted based on this information. This feedback is given
by VoiceSpot in the exact moment that it detects a wake word. If VoiceSeeker is working alone, you may want
to implement such a mechanism to reach the best performance on the beamforming. The reason to do so is
because each library is running on separate processes and VoiceSeeker needs the feedback to work correctly.
However, if they are running together, this mechanism is already implemented in the libraries they are wrapped
on.

The binaries that come in the Linux release demonstrate a use case where a small voice assistance can
process certain number of commands locally. This small assistance does not depend on the Internet connection
to work. The cleanup of the signal is done by VoiceSeeker. VoiceSpot searches for the wake word and VIT
decodes and processes the voice command. The VIT library also runs in voice_ui_app.

The architecture of the full use case described in this document is shown in Figure 1.

MICFILSAI

Drivers

NXP Audio Front End

Application

AudioStream

PDMI2S

Delay -

ALSA

voice_ui_app

VoiceSpot

VIT

Cortex-Ax Memroy & HW
Peripherals

VoiceSeeker

CaptureCapture Playback

User Space

Linux Kernel

Figure 1. Use case diagram

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
4 / 29

mailto:voice@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

Another independent application, which must use the default ALSA device, is responsible for starting
the playback stream so that AFE can manage the incoming and outgoing data. It is assumed that the
asound.conf file has a configuration compatible with AFE. Therefore, voice_ui_app must be started
before anything else with the VoiceSpot and VIT libraries. AFE must be started after it. AFE loads VoiceSeeker
dynamically. Finally, a playback stream can be started. On the other side, if the asound.conf file does not
have a compatible configuration (AFE will not be able to open its devices), AFE issues an error and stops its
execution. The compatible asound.conf file is described later on in the document.

When VoiceSeeker (which is running on AFE) finishes its process, VoiceSpot is notified to look for a wake word
in the VoiceSeeker output, a buffer with only human voice artifacts. Finally, if a wake word is found, VoiceSpot
can notify a third application for the processing of the voice command and VoiceSpot gives the feedback to
VoiceSeeker to adjust the beamforming. Since VoiceSpot is the last process in this flow, it must be the first to
initialize, even before AFE. The initialization process of this use case or any other similar use case is as follows:

1. Start the VoiceSpot shared library with voice_ui_app or with other software.
2. Start the AFE with VoiceSeeker for AEC and beamforming (only after voice_ui_app finishes its

initialization).
3. Run the upper application (any application that plays audio; for example, aplay, gst_launche, Alexa).

5.1.1.1 External references signal

The architecture described above is useful when there is no extra postprocessing beyond the AFE (the data
handled by AFE is the same data played on the speakers) or when it is not a real-time system, where meeting
a deadline is critical. In those scenarios, the architecture of the system may require some changes. AFE can
handle those scenarios as well.

The initialization process is similar to the above use case, unless you use an RTOS for real-time process. In this
scenario, be sure that the RTOS is up and running and exposing a sound card on the Linux side. On Linux, run
VoiceSpot and AFE, as mentioned above. This is a multicore application where it is required to have a real-time
OS managing the playback and another OS to process the voice commands.

Both scenarios are described in this document (loopback and external modes). An external configuration is
when the audio played is not generated in the user space. Instead, the audio source comes from a sound card
and not from an application in the user space.

5.1.2 NXP AFE

The NXP AFE is an audio-stream managing module for the i.MX Linux BSP. It was designed so it could load
and execute a given voice algorithm (selected as a command-line argument). It manages the connection
between ALSA audio cards and the algorithm’s input and output buffers.

AFE was created as a solution for voice-processing libraries, where you must control the audio inputs and
outputs of the system. In the particular case of VoiceSeeker, the output signal (the one heard through the
speakers) must be stored as a reference to filter out noise. The incoming signal (the one captured by the
microphones which have noise, references, and human voice) must be cleaned up before going to a deeper
process. Both signals are used by VoiceSeeker and a third buffer, which only contains the human voices coming
from the microphones, is generated.

AFE removes the stream control out of the voice-processing stage. This means that you can have a processing
stage that only manipulates the buffers and leaves the audio flow to AFE. AFE calls these processes whenever
the required buffers are ready to be processed. In the case of VoiceSeeker, whenever the microphones' and
references' buffers are ready.

Finally, AFE handles the output buffer from the voice process and sends it to the default ALSA device, where
any other client can be listening and waiting for a clean voice signal. Some examples of clients include
VoiceSpot, VIT, MS Teams, Alexa, and others.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
5 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

AFE only controls the streams. It does not even fix the delay between the streams (acoustic delay). Keep this
in mind, because you might require a mechanism to solve such a delay (the solution and explanation of the
acoustic delay are described further on in this document).

AFE on its own does not do any audio processing. It needs an additional library to process the signals. It can
load any library that uses its APIs and it is located in the /usr/lib/nxp-afe folder. If the library follows these
two rules, AFE can load it and work with it. To tell AFE which engine to use is done by providing its name as an
argument (just the name, not the full path or extension). For more information on how to use AFE with different
libraries, see the TODO.md file.

5.1.2.1 asound.conf

AFE relies on the asound.conf file. In this file, the ALSA (Advanced Linux Sound Architecture) devices are
defined and can be opened through the ALSA APIs (Application Programming Interfaces). AFE uses those APIs
to control the data flow feeding the voice engine and the ALSA default capture device.

The i.MX Linux BSP contains asound files for each board. The files are located in /unit_tests/nxp-afe/
asound.conf_<platform> and can be customized when the hardware is different. There is a different
asound.conf file for each board, because each board uses a different playback codec.

On each file, there are six main devices. Four of those devices are controlled by AFE and the last two of them
are the main default playback and capture devices, where the application should write to (pwloop) and read
from (crloop). The audio that must be heard through the speakers should write to pwloop. To capture the
voice artifacts, the application must use crloop. The other devices are managed by AFE. Two of them are the
actual physical source and sink-audio devices. One plays through the speaker (spk) and the other captures the
input of the microphones (mics). The last two are virtual devices. One acts as a sink, while the other one acts
as a source. prloop is a sink that captures the audio that the application is trying to play. It copies the buffer
and writes it to the speakers. Similarly, cwloop is a virtual device that works as a source for the application,
trying to capture the voice artifacts. AFE passes this buffer to VoiceSeeker, which uses this buffer to remove the
data coming from the speakers (using the copy it just made of the speaker data). When the process finishes,
it returns a new buffer with the clean audio. AFE propagates the data to the default capture device (crloop)
through cwloop.

Figure 2 illustrates the data flow through AFE:

AFE

Application

pwloop prloop cwloop

spk

Speech Detection / App

crloop

Voice Engine

mic

Figure 2. Data flow through AFE

Table 1 shows the properties of the six devices.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
6 / 29

https://github.com/nxp-imx/nxp-afe/blob/lf-6.1.1-1.0.0/TODO.md
https://github.com/nxp-imx/nxp-afe/blob/lf-6.1.1-1.0.0/misc/asound.conf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

Device name Owner Access Type Pipeline

pwloop Application Write Loopback Playback

prloop AFE Read Loopback Playback

spk AFE Write Hardware Playback

mic AFE Read Hardware Capture

cwloop AFE Write Loopback Capture

crloop Application Read Loopback Capture

Table 1. Device properties

5.1.2.1.1 External references signal

In the external references configuration, AFE disables the spk device, because it is not responsible of playing
the audio and the prloop is not opened. Instead, it opens another device, which must have the same data that
is being played on the speakers. The capture pipeline remains the same.

AFE

Application

cwloop

External

Speech Detection / App

crloop

Voice Engine

micspk

Figure 3. External references configuration AFE

5.1.3 VoiceSeeker

VoiceSeeker is NXP's voice-processing library used to clean up the incoming data. The full name of the solution
is VoiceSeeker Light (VSL). VoiceSeeker can do the following:

• Detect the microphone from which the spoken word comes from and focus on that microphone
(beamforming).

• Remove the ambient background noise and give a clean version of the word being spoken (AEC).
• Adapt to any microphone array, regardless of its physical location.
• Fix the acoustic delay (see Section 8.1).

VoiceSeeker is an example of a library that uses AFE APIs, has all its methods, and is built as a share object,
allowing AFE to load it (if required). AFE can load VSL using the afe libvoiceseekerlight command.
When the AFE loads the VoiceSeeker library, it sets up the ALSA devices according to the library requirements.
The default requirements from VoiceSeeker are the following:

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
7 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

• Four channels for microphone input.
• Two channels for speaker output.
• 16000-kHz sample rate on all devices.
• S32_LE format on all devices.

When all the devices are opened and configured, AFE initializes the respective ALSA devices and starts
streaming. AFE controls the streams, and when there is enough data to process, the VSL process is called.
Inside the VSL process, the delay is fixed before processing the data and the audio is cleaned. When VSL
finishes processing the data, it writes the data to the output buffer for which AFE is responsible to write to the
loopback interface where the rest of the applications are listening.

This is a brief explanation of what VSL does inside AFE. However, there are important parts of the process
that you should be aware of and configure. Starting from the beginning, on VSL initialization, there are a few
things going on. The first one is the initialization of some variables, which depends on the number of channels
to be processed. If you want to use more channels than the default ones (four microphones and two references
signals) you must change the heap_size and the scratch_size. Another variable that depends on the
number of reference channels is sizeBufDelay, which also depends on the amount of acoustic delay on the
system. If you have more reference signals, or microphones too far from the speakers, change this variable.

Continuing with the initialization, VSL can be configured using the vsl_config variable, which is a structure
that contains the elements listed in Table 2:

Element Description

num_mics Number of microphones

num_spks Number of speakers (references)

framesize_out Output buffer size

buffer_length_sec Time of the expected wake word

aec_filter_length_ms Window size

create_aec Enable AEC

create_doa Enables DOA (Direction of Arrival)

mic_xyz_mm Distance between microphones

device_id Platform ID for i.MX 8M or i.MX 9, listed here

Table 2. variable vsl_config elements

The first two variables are self-explanatory, they just hold the amount of reference and microphones. The third
one is a little bit tricky. VoiceSeeker processes chunks of 32 frames per iteration and it returns a pointer to the
filtered buffer when the buffer length has the number of samples requested. This number of samples is set using
the framesize_out file, which is 200 samples. It is the default and recommended value due to the VoiceSpot
limitation. The fourth element is related to the wake word size. For example, if you use a long word as a wake
word (like “Hey NXP”), increase this value up to three seconds. If it is shorter (like “Alexa”), the value of this
element can be set to 1.5 seconds (which is the default value).

aec_filter_length_ms is the window size. With a higher value, it takes longer on each iteration and it is not
effective. Keeping it between 150 ms and 300 ms is a good choice.

The next variable enables the AEC algorithm. The free version does not allow to enable AEC. To get the full
version, contact our team at Voice@nxp.com. This document covers the free and nonfree version of the library.
The other thing that you can enable is the Direction of Arrival (DOA), but this feature is disabled by default on
the preinstalled version and not covered in this document.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
8 / 29

https://github.com/nxp-imx/imx-voiceui/blob/MM_04.08.02_2310_L6.1.y/voiceseeker/platforms/iMX8M_CortexA53/rdsp_utilities_public/include/RdspDeviceConfig.h
mailto:Voice@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

mic_xyz_mm is a matrix with the size of the number of channels times three dimensions (width, depth, and
height). The distance between an origin and the microphones is measured in millimeters. The origin can be
anywhere, not necessarily in one of the microphones.

VSL must know where it is running, because it has some optimization depending on which platform it is running
on and that is what the last variable is for.

The last thing about the constructor function is that the mechanism, used to fix the acoustic delay, is created
and initialized. This mechanism needs calibration before it is used to achieve a reliable performance. The
calibration method is described in Section 8.1.

5.1.3.1 Config.ini

VoiceSeeker reads a file to be properly configured. This file is called Config.ini and it is located in the /
unit_tests/nxp-afe/ folder. During initialization, VoiceSeeker, as well as VoiceSpot, reads and parses the
file to configure itself.

The parameters of the files and what they do is described in Table 3.

Field Type Description Options

WWDectionDisable Int Disables the wake word detection in VoiceSpot
or VIT.

0 or 1

WakeWordEngine String The engine used for the wake word. VoiceSpot or VIT

DebugEnable Int Enables the dump of the buffer into a file.
Required for the library calibration.

0 or 1

RefSignalDelay Int Value of the existing acoustic delay in samples. [0, sizeBuffDelay - 1]

mic0 Float Distance between the origin at the first
microphone in milliseconds.

Float

mic1 Float Distance between the origin at the second
microphone in milliseconds.

Float

mic2 Float Distance between the origin at the third
microphone in milliseconds.

Float

mic3 Float Measure between the origin at the fourth
microphone in milliseconds.

Float

VoiceSpotModel File Model file to use within VoiceSpot. This is a
field for VoiceSpot. VoiceSpot looks for the file
in the same path where the Config.ini file is
located.

String

VoiceSpotParams File Model parameters file. This is a field for Voice
Spot. VoiceSpot looks for the file in the same
path where the Config.ini file is located.

String

VITLanguage String Language of the VIT model Please visit VIT for the
available languages.

Table 3. File parameters

VoiceSeeker uses this file to configure itself. If the file is not present, VoiceSeeker falls back to the default
values. The default values are the same as those listed in the file. If a field is not present in the configuration
file, VoiceSeeker sets up with the default one, so make sure that there are no typos in the fields.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
9 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

5.1.4 VoiceSpot

As well as VoiceSeeker, VoiceSpot is a library that is wrapped in a class (called
SignalProcessor_VoiceSpot) for easy use of the voice engine. VoiceSpot is an independent program that
can communicate to VoiceSeeker to retrieve the feedback of where and when a voice signal is detected. This
is why VoiceSeeker and VoiceSpot work together perfectly. VoiceSeeker notifies when there is a chunk of data
available and VoiceSpot tells VoiceSeeker if there are voice artifacts in that incoming data, so VoiceSeeker can
focus its attention on that channel and readjust its filter on the run.

Just as VoiceSeeker, VoiceSpot is an object. There must be a main process that controls the workflow of the
data and creates an instance of the library. This program is called voice_ui_app. It was previously called
voicespot. The program is responsible for opening the capture ALSA device. When the data is ready, it calls
either VoiceSpot or VIT for the voice decoding. It notifies (if configured to do so) a third application so that it can
start an action based on the command that just arrived or on the wake word. Such applications can be voice
assistance (or similar applications).

Voice_ui_app works with VIT for the wake-word detection and command detection or just the command
detection. In the first scenario, VoiceSpot is completely disabled and VIT is responsible for notifying
VoiceSeeker when a wake word or a command is detected. When VoiceSpot is enabled, voice_ui_app calls
VoiceSpot to search for the wake word. If VoiceSpot is able to detect the wake word, then it passes the buffer to
VIT to process the incoming voice command. To set up VIT for the wake-word engine, edit the configuration file.
Set the WakeWordEngine variable to VIT instead of VoiceSpot.

The notification mechanism is enabled by passing the -notify flag when running voice_ui_app. If the flag
is passed, both engines notify a third application. This means that VoiceSpot notifies when there is a wake
word on the buffer and VIT notifies the ID of the voice command detected. When VoiceSpot is disabled, VIT still
notifies when a wake word is detected.

5.1.4.1 Model

VoiceSpot uses a Machine Learning (ML) model, which had been trained with the best qualities and
environment to achieve great precision even in a nosy environment, to detect the wake word. Therefore, if there
is an interest in using VoiceSpot with a different model, contact us at Voice@nxp.com to get a better idea of the
costs and time it takes to train the model for your custom wake word.

When you have your model and the parameters of the model, make sure that those files are in the /
unit_tests/nxp-afe folder, so that VoiceSpot can find them.

6 Installation guide

This section describes the installation.

6.1 Hardware checklist
This section describes the hardware checklist.

6.1.1 For i.MX 8M Plus

VoiceSeeker and VoiceSpot are currently supported by NXP i.MX ArmV8-A processors, such as i.MX 8M Plus
and i.MX 8M MINI, and it supports the ArmV8.2 architecture, such as i.MX 93. The i.MX 8M Plus EVK packages
(as well as the other packages) contain the following items to evaluate VoiceSeeker and VoiceSpot:

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
10 / 29

mailto:Voice@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

Quantity Name Description

1 i.MX 8M Plus EVK board NXP evaluation board for the i.MX 8M Plus.

1 Power supply USB-Type C 45-W power delivery supply, 5 V/3 A; 9 V/3 A; 15 V/3 A;
20 V/2.25 A supported.

1 Type-C male to type-A male cable Assembly, USB 3.0 compliant.

1 Type-A male to micro-B male
cable

Assembly, USB 2.0 for UART debug.

Table 4. Items to evaluate VoiceSeeker and VoiceSpot

Additional hardware is also required:

Quantity Name Description

1 8MIC-RPI-MX8 NXP 8 microphone board. Available at https://www.nxp.com/part/8MIC-RPI-MX8#/.

1 Speakers A speaker or two speakers compatible with a 3.5-mm audio jack connection.

1 3.5-mm cable A 3.5-mm audio connection cable which connects the EVK and the speakers.

Table 5. Additional hardware

6.2 Setup view
This section describes a common setup to test the VoiceSeeker and VoiceSpot libraries. Each setup can vary
but the connection must be the same.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
11 / 29

https://www.nxp.com/part/8MIC-RPI-MX8#/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

Figure 4. Common setup

1. For the 8MIC-RPI-IMX8 board:
a. Mount the board onto the EXP_CN of the EVK. Make sure that its pin numbering matches that on the

EVK.
b. Unmute the board by pulling down its mute switch. The switch indicates the muting when the board is

powered on if this is not set.
c. Pull up the MIC_SEL so that the ON position is active.

2. For the 8M Plus:
a. Connect the audio jack table to the EVK and to the speakers.
b. Connect the power supply.
c. Connect the debug table to a PC.

6.3 Software installation
This section describes all the software, programs, and files that are required by VoiceSeeker and VoiceSpot.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
12 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

6.3.1 Software checklist

The recommended BSP version is MM_04.09.00_2405_lf6.6.23 or higher. The latest image can be installed
from https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/embedded-linux-
for-i-mx-applications-processors:IMXLINUX.

When the image is fully downloaded, you can install it by following the steps in the i.MX Linux User's Guide
(document IMXLUG).

The image should contain the files and drivers shown in Table 6.

File Location Description

libvoiceseekerlight.so /usr/lib/nxp-afe/ VoiceSeeker wrapper. Loaded by AFE at
runtime.

afe /unit_tests/nxp-afe/ AFE binary.

voice_ui_app /unit_tests/nxp-afe/ Main application.

asound.conf_imx8mp /unit_tests/nxp-afe/ ALSA configuration file.

Confing.ini /unit_tests/nxp-afe/ VoiceSeeker and VoiceSpot configuration
file.

HeyNXP_1_params.bin /unit_tests/nxp-afe/ NXP parameters for wake word.

HeyNXP_en-US_1.bin /unit_tests/nxp-afe/ NXP wake-word model.

snd-aloop /lib/modules/<bs_version> /kernel/sound/drivers Driver for creating loopback devices inside
ALSA.

Table 6. Files and drivers

7 Software setup

This section describes the software setup.

7.1 Selecting the device tree for the 8MIC-RPI-MX8 board
After flashing the Linux BSP to the desired storage medium of the EVK, boot the board and stop at the U-Boot
terminal. This can be done by pressing any key after the U-Boot prompt during boot. When the U-Boot console
is ready, enter the following commands:

u-boot=> editenv fdtfile
edit: imx8mp-evk-<revision>-8mic-revE.dtb
u-boot=> saveenv
u-boot=> boot

The given device trees for the revisions are shown in Table 7:

Device tree Supported i.MX 8MP EVK revision

Imx8mp-evk-revb4-8mic-revE.dtb B3, B4

Imx8mp-evk-revA3-8mic-revE.dtb A3, B, B1

Imx8mp-evk.dtb A2 or older

Table 7. Device trees

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
13 / 29

https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX
https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX
http://www.nxp.com/doc/IMXLUG
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

7.2 Installing missing drivers
By default, the image does not load the drivers that allow ALSA to do a loopback stream. Therefore, it is
required to manually install it using the following command:

$ modprobe snd-aloop

7.3 Editing the ALSA asound configuration for VoiceSeeker
The following commands overwrite the ALSA virtual devices to properly work with VoiceSeeker while saving a
backup of the original configuration.

$ cd /unit_tests/nxp-afe/
$ mv /etc/asound.conf{,.back}
$ cp asound.conf_imx8mp /etc/asound.conf

Copy the asound.conf_imx8mp_revb4 file if the EVK revision is B3 or B4.

8 Audio lab guides

This section describes how to put the library in shape, as well as ways to test the library.

8.1 Delay measurement
As mentioned in the introduction, the AFE performs AEC (by loading the VoiceSeeker library) by subtracting
the playback signal from the capture signal (which is a mix of the playback and voice signals). But the playback
signal that comes in the capture stream mixed with voice artifacts has some delay with respect to the original
playback because of the time that takes the sound to travel from the speakers to the microphones and be
recorded, so it is important to have a precise measurement of this delay to achieve a good performance.

Before measuring the delay, it is necessary to mention a few things:

1. This is a one-time calibration, as long as the setup does not change. If the distance between microphones
and speakers changes, it requires a recalibration.

2. The delay varies between measurements, but the range between measurements should be around one or
two samples.

3. There are other ways to measure the delay. For example, another method is to use a cross-correlation
between the L/R (Left and Right) speakers, and the microphone channels. You can use MATLAB, Python, or
any other language that has a library that does that.

4. The method used in this document is a more visual method with an audio-tuning application, which counts
the samples between two points in the analyzed audio stream.

To measure the delay, it is necessary to make a sample recording using AFE. In this sample recording, AFE
generates three audio files: the playback + capture stream, the playback stream alone, and the capture stream
alone (the result of AEC, which is not needed for calibration purposes). These files help us to measure the
delay.

Before running the programs as the TODO.md file suggests, the VoiceSeeker configuration must be changed.
The debug feature must be enabled and the delay property must be set up to 0. This is done by changing the
Config.ini file as follows:

$ vi Config.ini

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
14 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

Set the following values for the DebugEnable and RefSignalDelay properties. The DebugEnable variable
can be turned off when the calibration is done, but it is kept until the end for the sake of this document.

DebugEnable = 1
RefSignalDelay = 0

Save the file and quit Vi.

Launch voice_ui_app and AFE using the VoiceSeeker library, as described in the TODO.md file. It is
important to have both the AFE and voice_ui_app running in the background. When one of them is not
running, it can cause unexpected behaviors.

$./voice_ui_app &

To verify that the voice_ui_app is initialized properly, look at the log. If voice_ui_app prints the available
VIT commands, the voice_ui_app initializes VoiceSpot and VIT properly.

$./afe libvoiceseekerlight &

To produce a known signal, use GST. Create a minimal pipeline using gst-launch-1.0. The command
produces a periodic tick which makes it easier to measure the delay. Play the audio for a few ticks.

$ gst-launch-1.0 audiotestsrc wave=8 ! alsasink

The ticks are heard in the speakers.

For further information about any GST plugin, run the gst-inspect-1.0 command.

$ gst-inspect-1.0 audiotestsrc #As an example

After playing the audio for a few ticks, stop the pipeline by pressing Ctrl + C and terminate AFE and
voice_ui_app.

$ pkill afe
$ pkill voice_ui_app

The three mentioned audios should be generated and located in the /tmp/ directory:

$ ls -lh /tmp/*.wav
-rw-r--r-- 1 root root 8.4M Mar 5 07:31 mic_in_delay_S0_E1.wav
-rw-r--r-- 1 root root 2.1M Mar 5 07:31 mic_out_S0_E1.wav
-rw-r--r-- 1 root root 4.2M Mar 5 07:31 ref_in_delay_S0_E1.wav

• The mic_in_delay_S0_E1.wav file contains the mixed signal (playback and voice) played from the
speaker and recorded from the 8MIC board (delayed signal).

• The mic_out_S0_E1.wav file contains the clean voice (ideally null in this case, because no voice is
recorded) obtained from AEC algorithm.

• The ref_in_delay_S0_E1.wav file contains the original playback stream (tick tone) without being recorded
(signal with no delay).

Where:

• _S0_ (Start minute): the minutes it started recording.
• _E1_ (End minute): the minute it stops recording.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
15 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

By default, the library records a pair of minutes (0-1, 2-3, 4-5, and so on). To change the default behavior,
change the MINUTE_INTERVAL_WAV_FILE configuration macro (located in <root_dir>/voiceseeker/
src/SignalProcessor_VoiceSeekerLight.h). For example, to record all the minutes on independent
files, set up the macro with a value of 1.

Only the mic_in_delay_S0_E1.wav and ref_in_delay_S0_E1.wav files are needed to measure the
delay. Copy those files to the host machine (using scp or any other method), open one of them with Audacity,
and drag and drop the other wave file into the same Audacity window.

Figure 5. Audacity window

To achieve a better view of the data, perform the following steps to add some gain to the microphone input.

1. Select the four microphone channels.
2. Go to "Effect -> Volume and Compression -> Amplify".
3. A pop-up window appears. Check the “Allow clipping” box and set the amplification so that you clearly see

the tick wave.

Figure 6. Tick wave

To achieve good accuracy, zoom into the beginning of the first tick on the reference signal and select all the
samples between the reference point and its representation in the microphone channel.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
16 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

Figure 7. Microphone channel

The delay can be measured either in time or in sample units. VoiceSeeker works with the delay in samples. The
audio editors usually allow time-frame measurements in sample units. To do so in Audacity, go to the bottom-left
corner and change the option bar to “Start and Length of Selection”. Then you will see for how many samples
the signal is delayed.

Figure 8. Signal delay

Set RefSignalDelay with this new value.

8.2 Beamforming
This section explains the performance of the beamforming capabilities of VoiceSeeker in conjunction with
VoiceSpot.

Beamforming is the ability to highlight a section of a signal when it detects certain properties. VoiceSeeker uses
beamforming when it detects a wake word.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
17 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

The clearest way of seeing this feature is by playing a pure tone, trigger the wake word, and say a voice
command from VIT.

Be sure to work with latest WAV files by removing the temporary files first.

$ rm -v /tmp/*.wav

Start VoiceSpot and VIT using voice_ui_app and run VoiceSeeker using AFE.

$./voice_ui_app &
$./afe libvoiceseekerlight &

Play a pure tone using GST.

$ gst-launch-1.0 audiotestsrc wave=0 ! alsasink

Say the wake word and voice command; for example, “Hey NXP! Mute”. Wait a few seconds and then repeat it.
The wake word and the voice command can be changed.

Press "Ctrl + C" to stop GST and stop the processes, as you did previously.

$ pkill voice_ui_app
$ pkill afe

This time the required wave files are mic_in_delay_S0_E1.wav and mic_out_S0_E1.wav. In the first file,
the voice sounds as if it was in the background and the second one sounds as if the voice moved to the front.

Copy those files to the host machine, open the mic_out_S0_E1.wav file and then drag and drop the other file.

Figure 9. mic_in_delay_S0_E1.wav and mic_out_S0_E1.wav

Select all channels and apply some gain to them. Before playing the audio, you can see how the beamforming
acts on the microphone output signal, isolating the voice when it detects it.

Another way to compare the audio is by playing each one in the solo mode by pressing the "solo" button on the
left-hand side on each channel. When playing any channel from the microphone, the voice sounds as if it was
in the background. It truly is, because the speakers are closer to the microphone. However, when playing the
microphone output data, the voice seems to be closer to the microphones than the speakers.

8.3 External references
This section explains how the external signal feature can be tested using the current setup.

The idea is to create a virtual device that is in charge of writing to the speakers and feeding AFE with the
references signal, as shown in Figure 10:

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
18 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

AFE

Application

prloop

Speech Detection / AppVoice Engine

micexternal

micexternal

pwloopspk micfilaudio

Loopback

cwloop

cwloop crloop
ALSA

Drivers

default

Figure 10. Virtual device

8.3.1 asound.conf

To test the feature, add the following devices to the /etc/asound.conf file. The idea is to duplicate the
playback stream at the ALSA level, which is in charge of writing to the speakers and feeding AFE with the
streamed data. The application must write to a different device than the default one, but it can be transparent to
the application if the external device replaces the plug:mix device in the default pipeline.

Open the asound.conf file using an editor of your choice and add the following lines to it:

pcm.external {
 type plug
 slave.pcm "stereo2quad"
}

pcm.stereo2quad {
 type route
 slave.pcm "loopNspk"
 ttable.0.0 1
 ttable.1.1 1
 ttable.0.2 1
 ttable.1.3 1
}

pcm.loopNspk {
 type multi
 slaves.a.pcm "spk"
 slaves.a.channels 2
 slaves.b.pcm "pwloop"
 slaves.b.channels 2
 bindings.0 { slave a; channel 0; }
 bindings.1 { slave a; channel 1; }
 bindings.2 { slave b; channel 0; }
 bindings.3 { slave b; channel 1; }
}

Save the file and quit.

The above code creates three devices. The first device (external) is the first element of the chain and the
one that the application must talk to. It is responsible for converting the format/rate to a supported output. The
second device (stereo2quad) duplicates the channels. The third device (loopNspk) is where the main part
is. This device is responsible for writing to two different sound cards. One is for the speaker and the other one
opens the device that writes to the AFE input device.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
19 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

The difference between using these devices and using the default one is that ALSA manages the playback
thread. When running the following command, it causes the speakers to start playing even before AFE gets
executed.

$ gst-launch-1.0 audiotestsrc wave=0 ! alsasink device=external

8.3.2 Running the pipeline

This section explains how to run the pipeline.

8.3.2.1 voice_UI

The voice_ui_app runs in the same way as earlier, it does not require any changes.

$./voice_ui_app &

8.3.2.2 AFE

Running AFE in the external mode is very easy, as described earlier on. The most important thing in this
configuration is to know which device should be opened and AFE does the rest. In this case, prloop is the
default device that must be opened to get the reference signal. However, running the program in the same way
as before may produce an error, because the speaker device is already taken by another application. AFE must
disable this device to avoid any errors at runtime. All of this is done by the following command:

$./afe libvoiceseekerlight prloop &

When AFE has opened the device that contains the reference data, execute the playback application:

$ gst-launch-1.0 audiotestsrc wave=0 ! alsasink device=external

Stop the application after a few seconds. Copy the ref_in_delay_S0_E1.wav file to the host machine and
open it using Audacity to verify that the file is not empty. Also, executing hexdump is sufficient.

8.4 AEC enablement
This section describes how to build VoiceSeeker with the AEC enabled. A similar process is required to build
VoiceSpot without timeout.

VoiceSeeker AEC provides an attenuation from 25 dB to 30 dB of the reference signal when it is properly
configured and when there is no vibration in the system or any extra post processing in the signal that AFE is
not aware of.

8.4.1 Getting the library

To enable the AEC (Acoustic Echo Cancellation), upgrade the VoiceSeeker library by contacting the NXP Voice
Team at voice@nxp.com.

The Voice Team provide a folder for the requested platform, similar to those located in the voiceseeker/
platforms folder in the imx-voiceui repository. After getting the folder, install it into the source code and
compile the binaries again.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
20 / 29

mailto:voice@nxp.com
https://github.com/nxp-imx/imx-voiceui/tree/MM_04.08.02_2310_L6.1.y
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

8.4.2 Installing the library

Clone the repository from GitHub:

$ git clone https://github.com/nxp-imx/imx-voiceui.git

Move to the latest branch:

$ cd imx-voiceui
$ git switch MM_04.09.00_2405_L6.6.y

Replace the voiceseeker/platforms/iMX8M_CortexA53 folder with the new folder, which contains the full
version of VoiceSeeker:

$ cp -r ../iMX8M_CortexA53/* ./voiceseeker/platforms/iMX8M_CortexA53

8.4.3 Compiling the library

The instructions to compile the library with the AEC enabled are in the readme.md file. However, setting up the
AEC variable from the terminal is easier and requires fewer keypresses when building the image.

$ export AEC=1
$ make

After the previous step, the following message should be printed just before the compilation starts:

Building with AEC

Building the library generates the release folder, which contains the voice_ui_app binary and
libvoiceseekerlight.so.2.0, along with other files that do not have to be deployed to the board, because
they were not changed.

8.4.4 Board deployment

The only truly needed binary (in this case) is VoiceSeeker, but it is a good practice to overwrite both binaries.

$ scp release/libvoiceseekerlight.so.2.0 root@<BOARD_IP>:/usr/lib/nxp-afe/
$ scp release/voice_ui_app root@<BOARD_IP>:/unit_tests/nxp-afe/

When the binaries are installed on the target board, run them to verify that they work properly.

When VoiceSeeker is initialized, it dumps a configuration status, telling how it is configured. In that part, there is
a property called create_aec, which has a value of "1" when AEC is enabled and a value of "0" when it is not.

8.5 Low power voice demo
Since this topic is too complex, it requires a dedicated document to cover it all. See Low Power Voice UI Demo
(document AN13957) for how to enable it.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
21 / 29

https://github.com/nxp-imx/imx-voiceui.git
https://github.com/nxp-imx/imx-voiceui/blob/MM_04.08.02_2310_L6.1.y/readme.md
http://www.nxp.com/doc/AN13957
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

9 Appendix

9.1 Using NXP SWPDM with AFE
This section explains how to integrate the NXP SWPDM ALSA Plugin to the voice pipeline.

9.1.1 NXP SWPDM

NXP SWPDM is a solution for the i.MX 8MM and i.MX 8MN processors, which do not have a 32-bit width
resolution required for voice-processing tasks. By adding this ALSA plugin to the pipeline, it increases the
accuracy of the wake words and voice commands without significantly increasing the CPU load.

The SWPDM plugin uses a CIC filter algorithm to convert the PDM data from the microphones to a PCM format
required for any audio postprocessing activities.

9.1.2 Adding SWPDM to the VoiceSeeker pipeline

This section explains the steps needed to integrate SWPDM to the VoiceSeeker pipeline. Although the 8M Plus
does not require the plugin, it is compatible with it and the steps are the same regardless of the board (8M Plus,
8MM, or 8MN).

9.1.2.1 Using SWPDM

To use the SWPDM plugin, see the Community Post, which describes this topic and steps to integrate the plugin
with AFE and voice_ui_app.

9.2 Microphone arrangement
This section explains how to edit the expected geometry of microphones to match the geometry of microphones
located on the 8MIC-RPI-MX8 board. The same idea can be applied to fit any other microphone geometry.

9.2.1 Microphone routing

The 8MiC-RPI-MX8 board has eight microphones, numbered from zero to seven and placed as shown in
Figure 11.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
22 / 29

https://community.nxp.com/t5/i-MX-Processors-Knowledge-Base/Getting-started-with-ALSA-SWPDM-Plugin/ta-p/1821896
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

Figure 11. Microphones

The relative microphone positions are also needed to enhance the AEC. These positions are shown in
Figure 12. In this case, the distances are measured from the center of the microphones in millimeters.

Figure 12. Microphone relative positions

Each microphone can be routed to any available channel of the recording audio stream by modifying the /etc/
asound.conf file using ttable:

pcm.mic {
type route
slave.pcm “hw:micfilauio,0”
slave.channels 8
ttable.0.0 1

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
23 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

ttable.1.1 1
ttable.2.2 1
ttable.3.3 1
ttable.4.4 1
ttable.5.5 1
ttable.6.6 1
ttable.7.7 1 }

The ttable property can reroute a physical microphone to any audio stream channel as follows:

The legend for the above snippet is ttable.A.B 1, where:

• A represents the channel index used in the audio stream.
• B represents the physical microphone index on the board.
• 1 represents the number of microphones.

For example, line ttable.3.6 1 routes the audio signal coming from microphone 6 to channel 3.

9.2.2 Microphone position configuration

AFE uses the config.ini file to set up the microphone relative coordinates.

The config.ini file must be also edited. The following code snippet shows a typical microphone coordinate
setup:

mic0 = 0.00, 0.00, 0.00
mic1 = 36.00, 0.00, 0.00
mic2 = -18.00, 30.75, 0.00
mic3= -18.00, -30.75, 0.00
mic4 = 18.00, -30.75, 0.00
mic5 = -36.00, 0.00, 0.00
mic6 = 18.00, 30.75, 0.00
mic7 = -18.00, 0.00, 0.00

Number x in the micx variable refers to the virtual microphone channel in the audio stream and not the physical
microphone index. If you want to set up the coordinates of physical microphone three, route it to a channel
(using channel five as an example) in the asound.conf file:

ttable.5.3 1

Set the coordinates to the same channel (channel five) in the config.ini file:

mic5 = -35.0, 18.0, 0.0

The coordinates are written as follows:

micX = x-coordinate, y-coordinate, z-coordinate

The coordinates are measured in millimeters and they are relative to an arbitrary point. The location of this point
can be anywhere, in a microphone, in a point on the board, or even in a location outside the board.

For simplicity reasons, a microphone can be chosen as the origin by setting its coordinates to 0, 0, 0 and writing
the coordinates of the other microphones in relation to the origin.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
24 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

9.2.3 Microphone arrangement example

This example shows the configuration to use a custom set of microphones (the ones circled in purple). The
intention of this example is to route microphones 6, 5, 3, and 1 to channels, 0, 1, 2, and 3, respectively.

Figure 13. Microphone numbers in yellow and desired channels in blue

To route the microphones to the desired channels, use the following ttable configuration in the asound.conf
file:

pcm.mic {
type route
 slave.pcm ”hw:micfilaudio,0”
 slave.channels 8
 ttable.0.6 1
 ttable.1.5 1
 ttable.2.3 1
 ttable.3.1 1
}

To set the microphone corresponding coordinates, use the following configuration in the config.ini file:

mic0 = 0.0, 0.0, 0.0
mic1 = 18.0, 30.0, 0.0
mic2 = -35.0, 0.0, 0.0
mic3 = 18.0, -30.0, 0.0

In this case, the physical microphone six on channel zero is chosen as the origin, and the other three channel
positions are measured using this microphone as the origin. Figure 14 shows the four chosen microphones and
their relative coordinates.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
25 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

Figure 14. Four chosen microphones and their relative coordinates

10 Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

11 Revision history

Table 8 summarizes the revisions to this document.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
26 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

Document ID Release date Description

AN14276 v.1.0 24 June 2024 Initial public release

Table 8. Revision history

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
27 / 29

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
i.MX — is a trademark of NXP B.V.
MATLAB — is a registered trademark of The MathWorks, Inc.
Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.

AN14276 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 24 June 2024 Document feedback
28 / 29

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors AN14276
Voice Seeker and VoiceSpot for i.MX

Contents
1 Introduction .. 2
2 Purpose ...2
3 Overview ...2
4 Materials ... 3
4.1 Software requirements3
4.2 Hardware requirements 3
5 Voice-UI framework ... 3
5.1 Integration to NXP Linux BSP 3
5.1.1 Architecture ..4
5.1.1.1 External references signal 5
5.1.2 NXP AFE ... 5
5.1.2.1 asound.conf ... 6
5.1.3 VoiceSeeker ...7
5.1.3.1 Config.ini ..9
5.1.4 VoiceSpot ...10
5.1.4.1 Model ... 10
6 Installation guide ... 10
6.1 Hardware checklist .. 10
6.1.1 For i.MX 8M Plus ...10
6.2 Setup view ... 11
6.3 Software installation ...12
6.3.1 Software checklist ..13
7 Software setup ...13
7.1 Selecting the device tree for the 8MIC-RPI-

MX8 board ... 13
7.2 Installing missing drivers 14
7.3 Editing the ALSA asound configuration for

VoiceSeeker ...14
8 Audio lab guides ... 14
8.1 Delay measurement ...14
8.2 Beamforming ..17
8.3 External references ..18
8.3.1 asound.conf ... 19
8.3.2 Running the pipeline ..20
8.3.2.1 voice_UI ...20
8.3.2.2 AFE ..20
8.4 AEC enablement ... 20
8.4.1 Getting the library .. 20
8.4.2 Installing the library ... 21
8.4.3 Compiling the library ..21
8.4.4 Board deployment ..21
8.5 Low power voice demo21
9 Appendix ...22
9.1 Using NXP SWPDM with AFE22
9.1.1 NXP SWPDM .. 22
9.1.2 Adding SWPDM to the VoiceSeeker

pipeline ...22
9.1.2.1 Using SWPDM ...22
9.2 Microphone arrangement22
9.2.1 Microphone routing ..22
9.2.2 Microphone position configuration 24
9.2.3 Microphone arrangement example 25

10 Note about the source code in the
document ..26

11 Revision history ...26
Legal information ...28

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 24 June 2024
Document identifier: AN14276

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

	1 Introduction
	2 Purpose
	3 Overview
	4 Materials
	4.1 Software requirements
	4.2 Hardware requirements

	5 Voice-UI framework
	5.1 Integration to NXP Linux BSP
	5.1.1 Architecture
	5.1.1.1 External references signal

	5.1.2 NXP AFE
	5.1.2.1 asound.conf
	5.1.2.1.1 External references signal

	5.1.3 VoiceSeeker
	5.1.3.1 Config.ini

	5.1.4 VoiceSpot
	5.1.4.1 Model

	6 Installation guide
	6.1 Hardware checklist
	6.1.1 For i.MX 8M Plus

	6.2 Setup view
	6.3 Software installation
	6.3.1 Software checklist

	7 Software setup
	7.1 Selecting the device tree for the 8MIC-RPI-MX8 board
	7.2 Installing missing drivers
	7.3 Editing the ALSA asound configuration for VoiceSeeker

	8 Audio lab guides
	8.1 Delay measurement
	8.2 Beamforming
	8.3 External references
	8.3.1 asound.conf
	8.3.2 Running the pipeline
	8.3.2.1 voice_UI
	8.3.2.2 AFE

	8.4 AEC enablement
	8.4.1 Getting the library
	8.4.2 Installing the library
	8.4.3 Compiling the library
	8.4.4 Board deployment

	8.5 Low power voice demo

	9 Appendix
	9.1 Using NXP SWPDM with AFE
	9.1.1 NXP SWPDM
	9.1.2 Adding SWPDM to the VoiceSeeker pipeline
	9.1.2.1 Using SWPDM

	9.2 Microphone arrangement
	9.2.1 Microphone routing
	9.2.2 Microphone position configuration
	9.2.3 Microphone arrangement example

	10 Note about the source code in the document
	11 Revision history
	Legal information
	Contents

