AN13844

BTS6403U Evaluation Board Application Note

Rev. 1.1 — 15 April 2024

Application note

1 Introduction

This application note focuses on the BTS6403U Evaluation board, the application diagram, board layout, bill of materials and control signals are described. Also some typical measurement graphs are shown, even under Digital Pre-Distortion (DPD) conditions.

Refer to the datasheet for the detailed RF performance of the BTS6403U.

The Customer Evaluation Kit contains the following items:

- BTS6403U EVB
- 5 loose samples

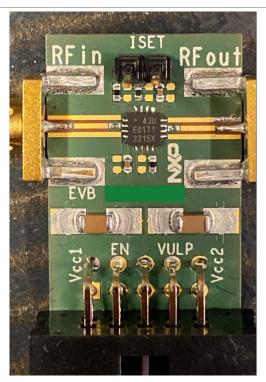


Figure 1. BTS6403U customer evaluation board (EVB). VULP is for internal test purpose only.

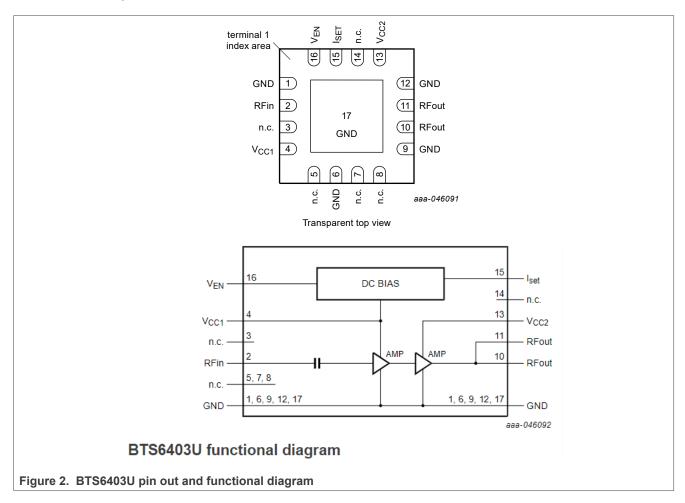
BTS6403U Evaluation Board Application Note

2 Ordering information

Table 1. Ordering information

Description	Part name	Ordering 12NC
BTS6403U Customer Evaluation Kit	OM1714/BTS6403U	9354 533 62598

3 Product description


The BTS6403U is a wideband, high linearity, pre-driver amplifier for 5G massive MIMO infrastructure applications, with fast on-off switching to support TDD systems. The amplifier is designed to operate between 2.3 GHz and 5 GHz. It is housed in a 3 mm× 3 mm × 0.85 mm 16 terminal plastic thin small outline package HVQFN16 (SOT758-1). The amplifier is ESD protected on all terminals.

The BTS6403U key features and benefits are listed below.

- High saturated output power P_{o(sat)} = 29.5 dBm
- High power-gain Gp = 38.5 dB
- High linearity performance ACLR = -45 dBc
- · Unconditionally stable
- · Fast switching to support TDD systems
- 5 V single supply, quiescent current 100 mA
- Small 16-terminal leadless package 3 mm × 3 mm × 0.85 mm
- · ESD protection on all terminals
- · Moisture sensitivity level 1

BTS6403U Evaluation Board Application Note

3 Product description...continued

BTS6403U Evaluation Board Application Note

4 Application information

4.1 Application circuit

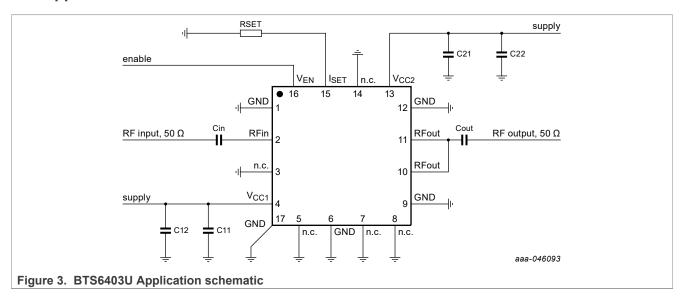


Table 2. List of components

Table 2. Elect of components						
Component	Description	Value	Remarks			
Cin	capacitor	18pF	For DC blocking			
Cout	capacitor	3.9pF	For DC blocking			
C11, and C21	capacitor	10nF	Must be close (<10 mm) to the IC			
C12, and C22	capacitor	10uF	Depending on low frequency impedance of regulator applied			
RSET	Resistor	10 kΩ	If lower value is applied, a stability check is required			

Ven protection:

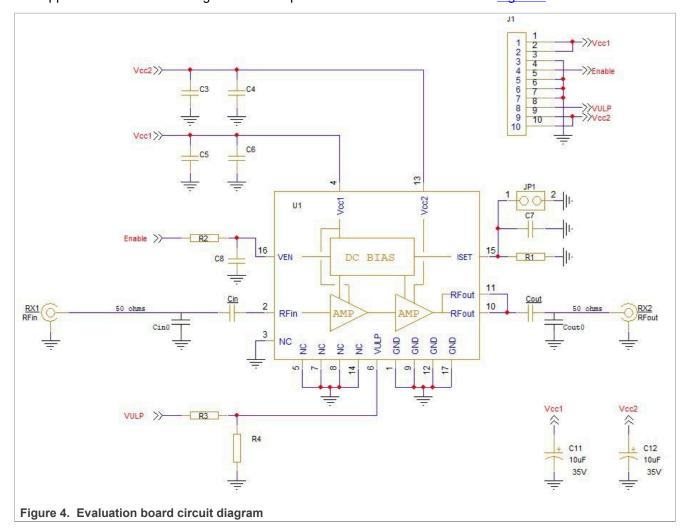
When there are requirements for maximum currents in the control lines (under all possible conditions), apply a series resistor in the Ven line to limit the maximum current. High Ven current may happen when Vcc is low (or low impedance to GND) and Ven is high (not a normal operating condition).

When a series resistor is placed in the Ven line the maximum current is limited. This series resistor can be necessary when Ven is HIGH.

If Vcc is low impedance to ground and Ven rises above one forward diode voltage (ESD protection diode), the current in the Ven line is unlimited.

With $5k\Omega$ series resistance the current at any condition is limited to few mA (depending on Ven value), but switching time is hardly affected.

BTS6403U Evaluation Board Application Note


5 Evaluation board

The BTS6403U evaluation board simplifies the RF evaluation of this pre driver. The evaluation board enables testing the RF performance of the device, in an isolated environment. To de-embed applied RF output connector and transmission line up to the DC blocking capacitor, de-embedding data is available on request.

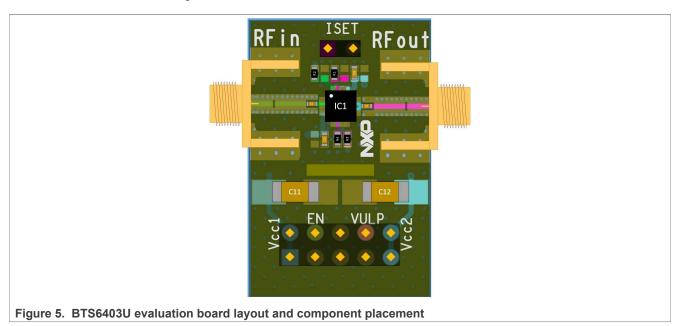
The BTS6403U evaluation board is fabricated on a 26 mm x 48 mm x 1 mm thick 4 layer PCB. The 0.254 mm top layer uses R4350B or TU862 for optimal RF performance. The board is fully assembled according to the schematic shown below. The board is supplied with two SMA connectors to connect input and output to the RF test equipment.

5.1 Evaluation circuit

The application board circuit diagram that is implemented on the EVB is shown in Figure 4.

BTS6403U Evaluation Board Application Note

5.1.1 Explanation of the connections


- •VCC1: supply for the first amplifiers stages and biasing / regulator circuitry. Apply at least 10 nF decoupling close to the pin and a larger value capacitor further away (depending on the supply low frequency impedance).
- •VCC2: supply for the last amplifier stage. Apply at least 10 nF decoupling close to the pin and a larger value capacitor further away (depending on the supply low frequency impedance).
- •Iset: used to adjust the quiescent current. The adjustment is inversed proportional to the resistor value. NXP recommends keeping R1 10 $k\Omega$ to maintain good stability.
- •RFout (two pins): DC coupled RF output (parallel pins), DC blocking capacitor required.
- •Vulp: for internal test purposes only, connect to ground.
- •RFin: AC coupled RF input, however due to internal ESD protection circuitry the amount of DC allowed to this input is limited. For this reason NXP recommends applying an additional DC blocking capacitor
- •Ven: logic input. In the NXP EVB a series SMD placeholder, populated with 0 R (zero Ω), is available. When the Ven is logic high and VCC is low impedance to ground (none standard "use case") current flows into this Ven pin. To limit the current, a 5.6 k Ω resistor can be used in position R2.

5.2 PCB Layout information and component selection

- A good PCB layout is an essential part of an RF circuit design. The evaluation board of the BTS6403U can serve as a guideline for laying out a board using the BTS6403U.
- The evaluation board uses micro strip coplanar ground structures for controlled impedance lines for the high frequency input and output.
- C6, C11 and C4, C12 decoupling capacitors respectively bypass VCC1 and VCC2. C4 and C6 preferably should be located as close as possible < 1 mm to the device, to avoid AC leakage via the bias lines. For long bias lines, it may be necessary to add decoupling capacitors along the line further away from the device
- In this report, as well as in the data sheet the value of C1 and C2 are stated as 18 pF and 3.9pF. The values of C1 and C2 are critical for power on/off settling time. When the value for those capacitors is increased significantly the switching speed is affected.
- Proper grounding of the GND pins is also essential for good RF performance. Either connect the GND pins directly to the ground plane or through vias, or do both, which is recommended. The layout and component placement of the BTS6403U evaluation board is given in Figure 6
- Resistor R2 in the Venable Line on EVB is chosen to be 0 Ohm, for current limitations in the system application it is recommended to use a resister value of $2k\Omega$ to $5k\Omega$.
- Although the RF input port is DC free a blocking capacitor is recommended in order to protect the pin for DC voltages above one forward diode voltage (ESD protection diodes)

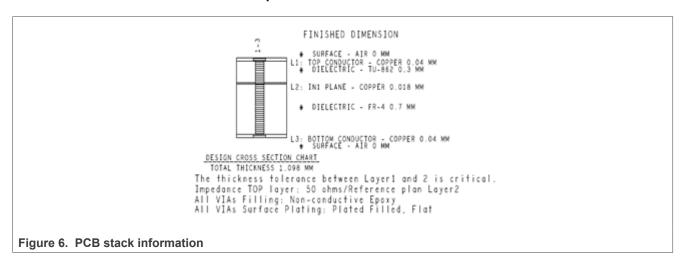
BTS6403U Evaluation Board Application Note

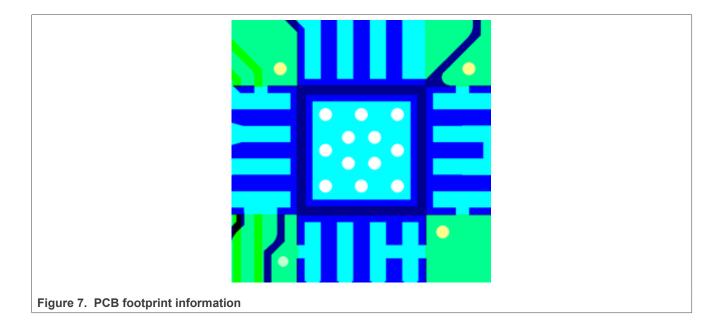
5.2.1 Evaluation board layout

5.2.2 Bill of materials

Table 3. Evaluation board BOM
Gives the bill of materials as is used on the EVB

Designator	Description	Footprint	Value	Supplier Name/type	Comment/function
IC1	BTS6403U				
PCB	28x17x1mm				TU-862 for top-layers
C1	Capacitor	0201	18pF	Various	DC block RF-in
C2	Capacitor	0201	3.9pF	Various	DC block RF-out
C4,C6	Capacitor	0402	10nF	Various	RF decoupling
C11,C12	Capacitor	1206	10uF	Various	Optional
R1	Resistor	0402	10kOhm	Various	Quiescent current setting
R2,R3.R4	Resistor	0402	0 Ohm	Various	Bridge
RC1,RC2	SMA RF connector			Johnson, End launch SMA 142-0701-841	RF connections
JP1	Jumper			Molex, PCB header,	
J1	DC header			Molex, PCB header, straight, 2 row 5 way	DC connections


5.2.3 PCB stack and recommended footprint


The PCB material used to implement the pre-driver circuit is a 0.3 mm TU-862 low loss printed circuit board which is merged to a 0.7 mm FR4 layer for mechanical stiffness. See <u>Figure 6</u>. The official drawing of the recommended footprint can be found via following link <u>SOT758-1.pdf</u>. When micro strip coplanar PCB technology is used it is recommended to use at least 12 ground-via holes of 300um in the ground plane under the device, this is also used on the EVBs as shown in <u>Figure 7</u>.

AN13844

BTS6403U Evaluation Board Application Note

5.2.3 PCB stack and recommended footprint...continued

BTS6403U Evaluation Board Application Note

6 Evaluating the BTS6403U

All RF performance results given in the next chapters are referenced to the SMA connectors unlesss stated otherwise on the evaluation board. In the data sheet characteristics, board connectors and PCB tracks are deembedded up-to the product input and output DC blocking capacitors.

The typical device performance given in the data sheet is characterized on the evaluation board equal to the board described in this application note. The BTS6403U mounted on the evaluation board in the customer evaluation kit is industrially tested on the most important RF parameters. Like Gain, Noise Figure, IP3o, and PL(1dB).

All connection names are clearly displayed on the board. See Figure 1.

Note: Because of the standard layout, the board is used for different products. Not all connections are used, like VULP

6.1 Typical results

For detailed performance of the BTS6403U we refer to the device product datasheet.

VCC = 5.0 V; $V_{en} = 1.8 \text{ V}$; $T_{amb} = 25 \,^{\circ}\text{C}$; input and output 50 Ω ; unless otherwise specified. All RF parameters have been characterized on the evaluation board described in this application note

Table 4. Typical results

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
I _{CC}	supply current	ON state, P _o = 15 dBm	-	122	150	mA		
		ON state, quiescent	-	100	125	mA		
		OFF state	-	1.2	2.5	mA		
Gp	power gain	ON state, t_{amb} = -40 °C to 115 °C ^[1]						
		f = 2.6 GHz	36.5	39.0	42.0	dB		
		f = 3.5 GHz	35.0	38.5	40.5	dB		
		f = 4.2 GHz	33.5	36.5	39.0	dB		
		OFF state	-	-49.0	-	dB		
P _{L(1dB)}	output power at1 dB gain compression	f = 2.6 GHz	-	28.0	-	dBm		
		f = 3.5 GHz	-	29.0	-	dBm		
		f = 4.2 GHz	-	28.0	-	dBm		
IP3 _o	output third- order intercept point	2-tone; tone spacing = 100 MHz; P _o = 15 dBm	-	34.5	-	dBm		

^[1] These values are guaranteed via final test at t_{amb}

BTS6403U Evaluation Board Application Note

6.2 Graphs

6.2.1 S-parameters

The measured S-parameters referenced to the DC blocking caps are given in <u>Figure 8</u>, <u>Figure 9</u>, <u>Figure 10</u>, <u>Figure 11</u>, For the measurements, a typical BTS6403U EVB is used. All the S-parameter measurements have been carried out using the setup <u>Figure 21</u>

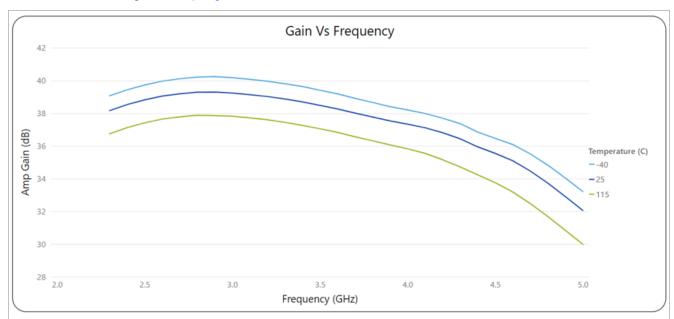


Figure 8. BTS6403U S_{21} Gain versus frequency over temperature (typical values). V_{cc} = 5 V, Pin = -30 dBm

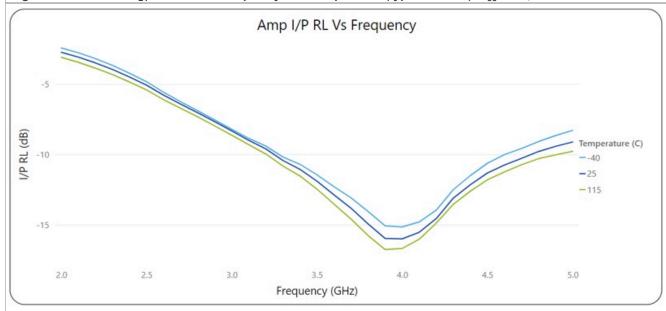


Figure 9. BTS6403U S_{11} versus frequency over temperature (typical values), V_{cc} = 5 V, Pin = -30 dBm

BTS6403U Evaluation Board Application Note

6.2.1 S-parameters...continued

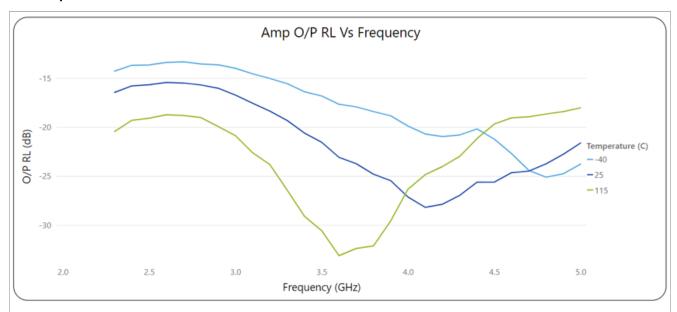


Figure 10. BTS6403U S_{22} versus frequency over temperature (typical values). V_{cc} = 5 V, Pin = -30 dBm

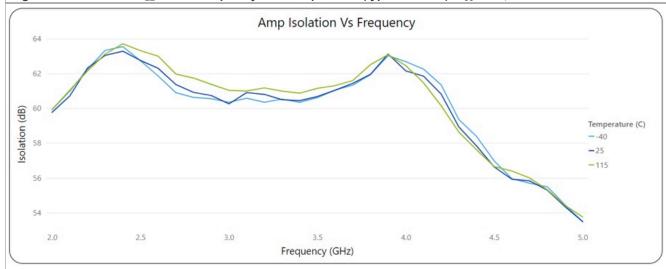
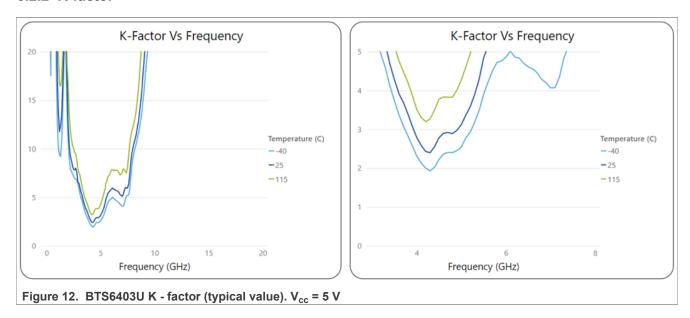
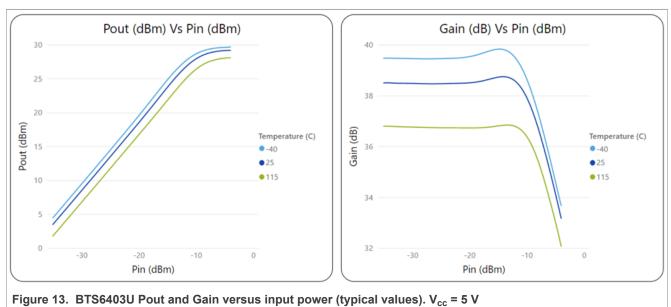
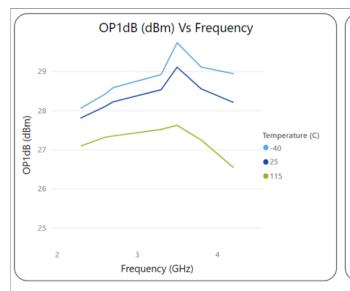



Figure 11. BTS6403U S_{12} versus frequency over temperature (typical values). V_{cc} = 5 V, Pin = -30 dBm


BTS6403U Evaluation Board Application Note

6.2.2 K-factor

6.2.3 Pout and Gain versus Pi


Curves have been measured using the set up shown in Fig 12.

BTS6403U Evaluation Board Application Note

6.2.4 OP1dB and OP3dB (Saturated output power)

The saturated output power been measured using the set up shown in Figure 21.a

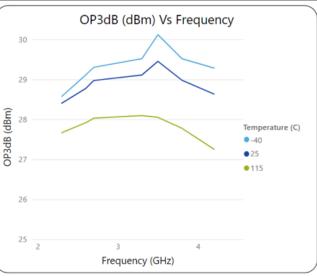
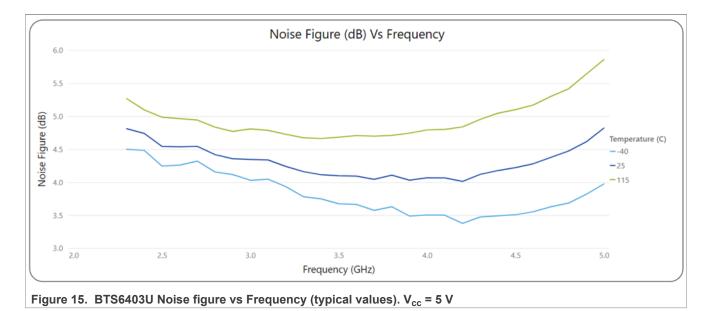
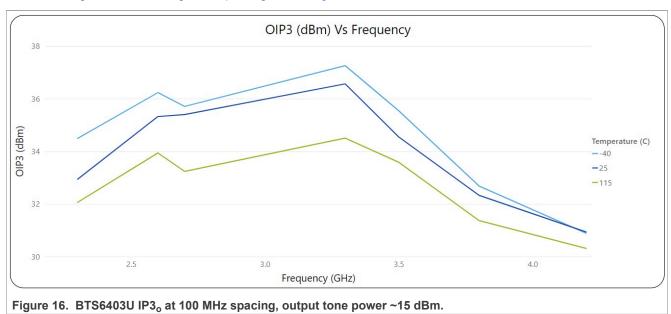



Figure 14. BTS6403U OP1dB vs Frequency (typical values). $V_{cc} = 5 \text{ V}$


6.2.5 Noise Figure

BTS6403U Evaluation Board Application Note

6.2.6 Third order intercept point

OIP3 is being measured using a setup like given in Figure 21.

6.2.7 ACLR under DPD

In the TX line ups for MIMO Digital Pre-Distortion (DPD) is applied to linearize the final stages to gain efficiency while improving on linearity related parameters.

To what extend the BTS6403U needs to be pre-distorted depends on factors like applied output power and crest factor at the BTS6403U. As an example the BTS6403U was measured on ALCR at given Pout with and without applying DPD to note the differences.

The DPD engine is 62 coefficients internal developed platform, based on Volterra series.

BTS6403U Evaluation Board Application Note

6.2.7 ACLR under DPD...continued

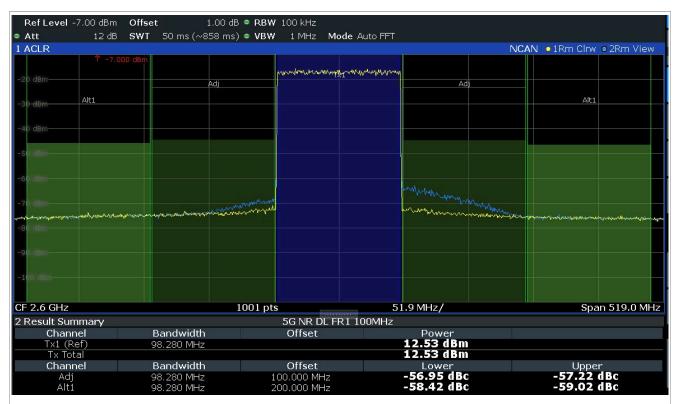
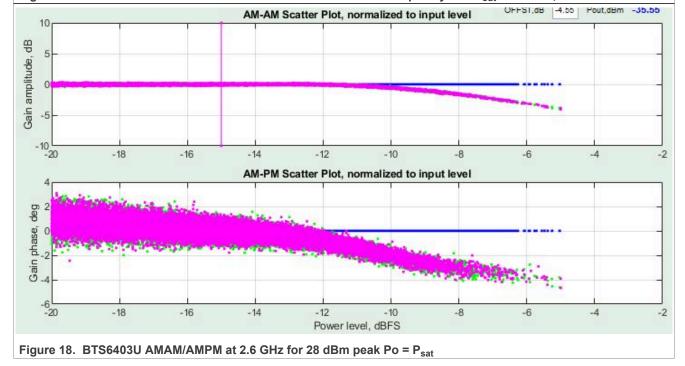
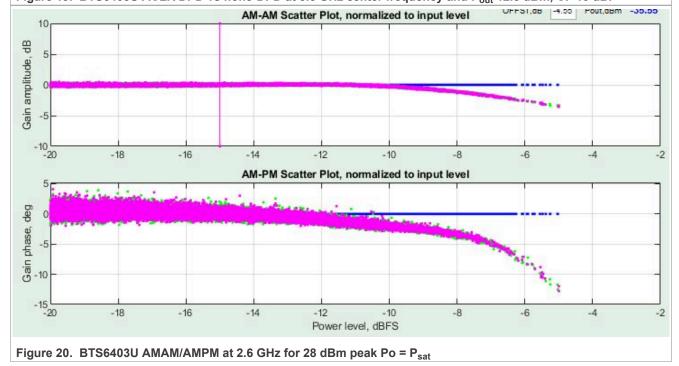



Figure 17. BTS6403U ACLR DPD vs none-DPD at 2.6 GHz center frequency and Pout 12.5 dBm, CF 10 dB.



BTS6403U Evaluation Board Application Note

6.2.7 ACLR under DPD...continued

Figure 19. BTS6403U ACLR DPD vs none-DPD at 3.6 GHz center frequency and Pout 12.5 dBm, CF 10 dB.

BTS6403U Evaluation Board Application Note

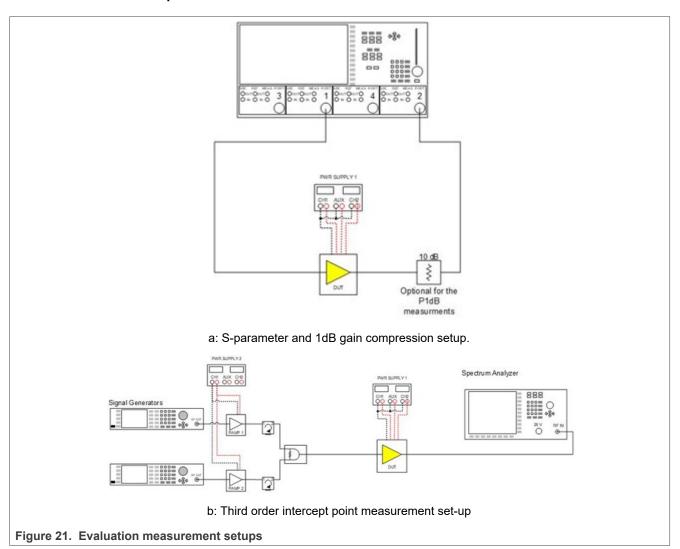
6.3 Required Equipment

For the BTS6403U evaluation the following equipment is needed as a base-line:

- 1 DC power supply 5V, 200 mA (Vcc1 and Vcc2)
- 1 DC power supply 1.8V, 5mA (Ven) or a pulse generator in case pulsed measurements are required
- A suitable Balun
- A network analyzer for S-parameter measurements, and P1dB measurements (in case the NA is a 4 port version two ports could be defined as differential outputs, in such case the Balun is not required for Spa measurements and the differential mode related parameters can be evaluated)
- 2 RF generators up to 12 GHz + combiner for IP3 measurements
- A spectrum analyzer with NF option for IP3 and Noise figure measurements.
- High Quality RF cables with SMA/3.5mm RF connectors.
- · DC currents meters.

Vcc1 and Vcc2 are usually combined and fed to the 5V PSU. After switching on the power supply, the BTS6403U comes up in the quiescent current 1.8V enable voltage also needs to be applied preferable the supply start-up sequence is as follows.

First switch on Vcc1 second Vcc2 and third Ven. But this is not critical..


The typical current at 5V supply is 78 mA, in power-down mode Ven(0V) - 0.5 mA.

6.4 Connection and setup

- 1. Connect the EVB to a calibrated network analyzer see Fig 11, we advise the following settings for S-parameter measurements:
 - a. Port power -30dBm
 - b. IF Bandwidth 100Hz
- 2. The network analyzer can also be used for the 1 dB gain compression evaluation, for this we advise the following NWA setting
 - a. Port 1 power sweep -30dBm up to -10dBm
 - b. Port 2 20dB attenuation on the receiver port b2.
 - c. IF Bandwidth 100Hz.
- 3. Gain and 1dB gain compression data can also be determined using an RF generator and spectrum analyzer.
- 4. Turn on the DC power supplies and it should read typical Icc = mA.
- 5. Nonlinear distortion measurements IP3 can be performed with a set-up like is depicted in <u>Figure 21</u>. The following settings are recommended to perform the IP3 evaluation.
 - a. -20dBm for each fundamental tone.
 - b. RBW and VBW of the spectrum analyzer 100 Hz
 - c. Tone spacing 100 MHz

BTS6403U Evaluation Board Application Note

6.4 Connection and setup...continued

7 EMC information

CAUTION

This product has not undergone formal EMC assessment. It is the responsibility of the user to ensure that any finished assembly complies with applicable regulations on EMC interference. EMC testing, and other testing requirements for CE is the responsibility of the user.

8 Revision history

Table 5. Revision history

Document ID	Release date	Description
AN13844 Rev. 1.1	15 April 2024	Updated Legal information and brought to current standard
AN13844 Rev. 1.0	3 May 2023	Initial release of application note

AN13844

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

BTS6403U Evaluation Board Application Note

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

AN13844

BTS6403U Evaluation Board Application Note

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

BTS6403U Evaluation Board Application Note

Contents

1	Introduction	
2	Ordering information	
3 4	Product description	
4 4.1	Application information	
	Application circuit	
5	Evaluation board	
5.1	Evaluation circuit	
5.1.1	Explanation of the connections	6
5.2	PCB Layout information and component selection	6
5.2.1	Evaluation board layout	
5.2.2	Bill of materials	
5.2.3	PCB stack and recommended footprint	7
6	Evaluating the BTS6403U	
6.1	Typical results	
6.2	Graphs	
6.2.1	S-parameters	
6.2.2	K-factor	
6.2.3	Pout and Gain versus Pi	12
6.2.4	OP1dB and OP3dB (Saturated output	
	power)	13
6.2.5	Noise Figure	
6.2.6	Third order intercept point	
6.2.7	ACLR under DPD	
6.3	Required Equipment	
6.4	Connection and setup	
7	EMC information	
8	Revision history	
-	Legal information	

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.