LINOS8EY16 Driver
User Manual

HCO08
Microcontrollers

LINOS8EY16DUM
Rev. 2
10/2005

freescale.com Z “freescale:

semiconductor

LINOS8EY16 Driver User Manual

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be
the most current. Your printed copy may be an earlier revision. To verify that you have the latest
information available, refer to http://www.freescale.com.

The following revision history table summarizes changes contained in this document. For your
convenience, the page number designators have been linked to the appropriate location.

Revision History

Revision - Page
Date Level Description Number(s)
10/2005 2 Converted to Freescale template. N/A

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor

http://www.freescale.com
: http://www.freescale.com

Revision History

LINOSEY16 Driver User Manual, Rev. 2

4 Freescale Semiconductor

Contents

Chapter 1

Overview

Chapter 2

Notations
21 Manual StrUCIUrE e 11
2.2 Typographical Conventions e 11
2.3 Definitions, Acronyms and Abbreviations 12
2.4 References. 13

Chapter 3

LIN Concepts

3.1 General Description 15
3.2 LIN CoNnCept. . . oo 15
3.3 Message Frame. 16
3.3.1 Break Field. . .. 17
3.3.2 Synchronization Field. 17
3.3.3 Identifier Field. 17
3.3.3.1 Reserved Identifiers 19
3.34 Data Field. 20
3.35 Checksum Field e 20
3.4 Error Detection. 20
3.5 Synchronization 20
3.6 Wakeup Signal Frame 20

Chapter 4

LIN Driver
41 Driver Configuration. e 23
411 LIN API Configuration e 23
41.2 Freescale APl Configuration e 23
41.2.1 Driver Configuration File (LINCFG.H). e 24
4122 Message Configuration File (LINMSGID.H) 24
4.2 Error Handlingo 25
4.2.1 Bt ErTOr .« . e 26
422 CheCKSUM ErrOr. . oo e e e e 26
4.2.3 Inconsistent-Sync-Field Error. 26
4.3 Timeout Handling. o e 27
4.3.1 NO-BUS-ACHiVItY. 27

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 5

Chapter 5
Freescale API
5.1 GENeral . . oo 29
52 Data TYPES. . . i e e 29
5.3 Constant Definition. 29
5.4 DIIVEr SBIVICES. . . o ot 31
5.41 LIN INit. .« . 31
54.2 LIN _WaKeUD . .ot e e e 32
5.4.3 LIN _GOtORUNo e 32
5.4.4 LIN_DriverStatuso e e e e 33
5.45 LIN _GetMSg. . . .o e e 34
5.4.6 LIN _PUIMSG . . o e 35
5.4.7 LIN_MSgStatus.o e 36
5.4.8 LIN _GetRXEIT. . . .o e 37
5.4.9 LIN _GetTXEIT. . oo e e e e 37
5.4.10 LIN _ClearBXEIro e e 38
5.4.11 LIN _ClearTXErr e e 38
5.4.12 LIN_IAIECIOCK.o 38
5.4.13 LIN_GetSyncPD e 39
5.5 Call-back ServiCeso 40
5.5.1 LIN_Command. e 40
Chapter 6
LIN API
6.1 GEnEral ... e 41
6.2 Data TYPeS. . . .ot 41
6.3 DIIVEr SEIVICES. . . o ottt 42
6.3.1 LSS NIt . e 42
6.3.2 D00 rd . 42
6.3.3 U8 rd. . ot 43
6.3.4 L UTB M. .o 43
6.3.5 D00 Wr e 43
6.3.6 U WK, . 44
6.3.7 U B W, o e 44
6.3.8 o £ 44
6.3.9 I CIr. o e 45
6.3.10 e NIt . o 45
6.3.11 fC _CONNECT . . oo e 45
6.3.12 | fc_diSCONNECT . . . oo 46
6.3.13) (o [| 46
6.3.14) (o < 48
6.3.15 G X ot 49
6.4 Call-back ServiCesot 49
6.4.1 sys_irg_disable e 49
6.4.2 I SYS Mg reSIOrE . . . o e 49

LINOBEY16 Driver User Manual

6 Freescale Semiconductor

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2

8.3
8.3.1

A1
A2
A3

A4

A4A
A4.2
A4.3

B.1
B.2

Chapter 7
Platform Specific
General . . 51
MCU Resources UsSageo vttt e e e e 51
Physical Interface Connection e 51
Disabled Interrupt Code Sections 51
Break Signal Detection 51
Zero Page Usage. 52
Chapter 8
Building Application
General ... e 53
Compilation e 53
LiNKINgG . . oo 54
CodEW IO, . . oo e 54
Appendix A
Sample Application
Sample DescCription 55
Sample Buildingand Running 55
CodeWarrior Project e 55
Troubleshootingot e 56
Environment settings. e 56
Startup Fileso 56
LinSIigFlags Sizeo e 56
Appendix B
Performance Characteristics
Performance Characteristics e 57
Memory ConsUMPLiON 57

LINOBEY16 Driver User Manual

Freescale Semiconductor 7

LINOSEY16 Driver User Manual

Freescale Semiconductor

Chapter 1
Overview

This user manual describes a LIN driver for the Freescale HCOSEY 16 microcontroller.

LIN (Local Interconnect Network) is a serial communications protocol that efficiently supports the control
of mechatronic nodes in distributed automotive applications. The protocol is applicable to buses with a
single master node and a set of slave nodes.

The main properties of the LIN bus are:

Single-master, multiple-slave concept

Low-cost silicon implementation based on common UART/SCI interface hardware, or a software
equivalent, or as pure state machine

Self synchronization without quartz or ceramic resonators in the slave nodes

Deterministic signal transmission

Low-cost single-wire implementation

Speeds up to 20 kbps

The driver is supplied as source code and header files.

The supported toolchain is the CodeWarrior compiler V3.1 or later, with ‘C’ header files for user defined
parameters.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor

Overview

LINOSEY16 Driver User Manual, Rev. 2

10 Freescale Semiconductor

Manual Structure

Chapter 2
Notations

2.1 Manual Structure

This user’s manual comprises the following sections.
Chapter 1 Overview provides the LIN bus overview and describes its main features.

Chapter 2 Notations includes a description of the structure of the document, typographical conventions
used, references to other documents, technical support information, and a list of acronyms.

Chapter 3 LIN Concepts provides a general description of the LIN protocol. It explains the basic concepts
of the LIN network communication model.

Chapter 4 LIN Driver describes the LIN driver configuration and functionality.

Chapter 5 Freescale API provides a detailed description of Freescale Semiconductor LIN driver run-time
services.

Chapter 6 LIN API provides a detailed description of LIN API services compatible with the LIN
specifications.

Chapter 7 Platform Specific covers platform specific features that can be useful in the development of
applications that use the LIN driver.

Chapter 8 Building Application describes the steps for compiling and linking the application.

Appendix A Sample Application contains the sequence of actions needed for creation, building and
execution of sample application included into the LIN driver package.

Appendix B Performance Characteristics contains LIN driver performance characteristics, such as ROM
and RAM usage, timing and CPU load.

2.2 Typographical Conventions

This manual employs the following typographical conventions:
* italic type is used for all names of directives, macros, constants, routines and variables. Also, this
type is used for special terms.
* courier type is used for code examples in the text.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 11

Notations

2.3 Definitions, Acronyms and Abbreviations

8N1
API
bps

connected state

CPU

disconnected state

ELF/DWARF
Frame Error
ID

ISO

LDF

LIN

LIN API

LSB

Master node

MCU
Freescale API
MSB

character coding with eight bits per char, one stop bit, and no parity bit
application program interface (a set of data types and functions)
bits per second

logical state when driver with LIN API can transmit or receive LIN frames (headers
and responses)

central processing unit

logical state when driver with LIN API ignores all LIN frames (headers and
responses)

extensible linking format/debugging with attribute record format
stop bit absence when SCI receives a data byte

identifier

International Standards Organization

LIN description file

Local Interconnection Network

signal oriented API, specified by the LIN Consortium

less/least significant bit/byte

network node that implements the functionality of a LIN bus master and a LIN bus
slave

microcontroller unit (Freescale Semiconductor’s microcontrollers)
message oriented API, specified by Freescale

more/most significant bit/byte

number of target MCU timer ticks per Ty

user-defined number of special function calls (recognized as No-Bus-Activity
condition)

Open Systems Interconnection
random access memory

read only memory

serial communication interface
transmission time of one bit

universal asynchronous receiver/transmitter

LINOSEY16 Driver User Manual, Rev. 2

12

Freescale Semiconductor

References

2.4 References
[1] LIN Specification Package, Revision 1.3, 12 December 2002

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 13

Notations

LINOSEY16 Driver User Manual, Rev. 2

14 Freescale Semiconductor

General Description

Chapter 3
LIN Concepts

3.1 General Description

The LIN protocol has the following properties.
» Single-master, multiple-slave organization (i.e. no bus arbitration)
* Guaranteed latency times for data transmission
» Variable length of message frame: 1 to 8 bytes
* Configuration flexibility
» Multi-cast reception with time synchronization, without quartz or ceramic resonator
» Data-checksum security
* Error detection
* Minimum cost for semiconductor components (die size)
* Transmission without acknowledgment
* Sleep mode control

3.2 LIN Concept

The LIN Protocol Specification [1] defines the Data Link Layer and the Physical Layer according to the
ISO/OSI Reference Model.

The LIN Physical Layer is defined in LIN Protocol Specification [1]. When a signal is referenced in the
manual, it is the logical level that is implied.

A typical LIN bus structure is presented in Figure 3-1.

Master Node Slave Node Slave Node

—————————— A
|

__________ 4

LIN Bus * * *

Figure 3-1. General Concept of LIN

The network consists of a master node and a number of slave nodes. There can be several slave nodes in
the network, but only one master node. The bus traffic is controlled by the master node. All data
transmission is asynchronous.

All nodes exchange data via message frames. The general format of a message frame is shown in
Figure 3-2.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 15

LIN Concepts

Message Frame

-
In-frame response space
Header Response
- P < >
Break Sync ID Byte 1 | Byte 2 / / Byte n | CheckSum
g '

Message Data
Figure 3-2. LIN Bus Frame Format

Master functionality (master task) on a node is responsible for frame header transmission. Slave
functionality (slave task) is responsible for frame header reception, and transmission of the data in
response to the master request.

To request data, the master task sends a message frame header. The frame header consists of a break field
(Break), followed by a synchronization field (Sync) and an identifier field (ID).

The slave task sends back a response. The response consists of a data field and a checksum field. The data
field can be from one to eight bytes long. The checksum field is one byte long. The checksum ensures data
consistency during the transmission. There may be space between the fields of the message frame as well
as between the data bytes. These spaces are limited only by the maximum length of the whole message
frame, i.e. the sum of all spaces may not exceed 40% of the message frame length.

Only the master node containing the master task is allowed to start the transmission of a message frame.
Only one slave task is allowed to answer to the identifier, as there is no arbitration procedure.

During reception, message filtering is based upon the whole identifier. The network configuration must
ensure that not more than one slave task responds to a transmitted identifier.

3.3 Message Frame

As shown in Figure 3-2, the message frame consists of the header which is transmitted by the master task,
and the response which is transmitted by the slave task.

The header comprises the following fields:
* Break
* Synchronization
* Identifier

The response comprises the following fields:
* Data
* Checksum

All these fields are described in detail in this section.

LINOSEY16 Driver User Manual, Rev. 2

16 Freescale Semiconductor

Message Frame

3.3.1 Break Field

To identify clearly the beginning of a message frame, its first field is a break field. The break field is always
sent by the master task. This provides a regular opportunity for slave tasks to synchronize on the frame
start.

The break field consists of two parts (see Figure 3-3). The first part consists of a logic zero state with a
duration of 13 Ty;;. The second part is the synchronization delimiter, which is presented as a logic one with
a minimum duration of 1 Ty;.. This second field is necessary to allow detection of the start bit of the
following synchronization field.

- Break Field > < Sync Field

Break Signal
-

E U

Sync Delimiter
Figure 3-3. Break Field

A logic zero bus state is recognized as the first part of the break field if it is longer than any other regular
zero bit-stream during communication. The first part of the break field is at least thirteen bits long in the
master time base, so that a slave node with lost synchronization is able to distinguish between such a break
and the maximum possible sequence of zero bits within a message frame. The slave node recognizes the
break after ten logic zero bits on the bus.

3.3.2 Synchronization Field

The Sync field contains the information for the clock synchronization. The Sync field is the pattern ‘0x55’
which is characterized by five falling edges within a period of duration 8 T};; (see Figure 3-4). Slave nodes
with no crystal oscillators that have lost synchronization can identify the correct LIN bus frequency and

adjust their Ty;;, accordingly.

In LINOSEY 16, this field is used only for bit error checking, and not for synchronization. (The LIN
synchronization procedure is defined in 3.3.2 Synchronization Field.)

Sync Field

Start Stop
bit bit

Figure 3-4. Synchronization Field

3.3.3 Identifier Field

The identifier field structure is presented in Figure 3-5. The field contains the content of a message. The
content is represented by six identifier bits and two parity bits.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 17

LIN Concepts

Identifier Field

Length
confrol
1

IDO| ID1| 1D2|ID3|ID4 | ID5| PO | P1

Start | K | Stop

a S— bit
Identifier bits Parity
bits

Figure 3-5. Identifier Field

If required (e.g. for compatibility with LIN Specification 1.1), the identifier bits ID4 and ID5 may define
the number of data fields in a message. This divides the set of 64 identifiers into four subsets of sixteen
identifiers, with 2, 4, and 8 data fields, respectively. The coding of the data length is presented in Table 3-1.
In every case, the length of a data field is defined in the configuration description file.

Table 3-1. Standard Message Length

ID5 ID4 Message Length
0 0 2
0 1 2
1 0 4
1 1 8

The parity check bits of the identifier are calculated by a mixed-parity algorithm:
« PO=1ID0® ID1 @ ID2 @ D4 (even parity)
« PI=ID1@ID3 @& D4 @ D5 (odd parity)

With this algorithm, no pattern with all zero bits or all one bits is possible.

The identifiers 0x3C, 0x3D, 0x3E, and 0x3F with their respective identifier fields 0x3C, 0x7D, OxFE, and
OxBF are reserved for command frames (e.g. Sleep mode) and extended frames.

LINOSEY16 Driver User Manual, Rev. 2

18 Freescale Semiconductor

Message Frame

3.3.3.1 Reserved Identifiers
Command Frame Identifier

Two command frame identifiers are reserved to broadcast general command requests for service purposes
from the master to all bus participants. The frame structure is identical to that of a regular 8-byte message
frame and is distinguished only by the reserved identifiers:

* 0x3C: ID Field = 0x3C — Master Request Frame (MasterReq),

* 0x3D: ID Field = 0x7D — Slave Response Frame (SlaveResp).

The identifier 0x3C is a master request frame to send commands and data from the master to the slave
node. The identifier 0x3D is a slave response frame that triggers one slave node (being addressed by a prior
download frame) to send data to the master node.

Command frames with the first byte of their data field containing a value from 0x00 to 0x7F are reserved,
their use will be defined by the LIN Consortium. The remaining command frames can be assigned by the
user. First data byte of command frame:

* bit D7 = 0: reserved

* bit D7 = 1: available for use

Sleep Mode Command

The Sleep mode command is used to broadcast the Sleep mode to all bus nodes. There is no more bus
activity after completion of this message until a wakeup signal frame on the bus ends the Sleep mode. The
Sleep mode command is a download command frame with the first data field being 0x00.

Extended Frame lIdentifier

Two extended frame identifiers are reserved to allow the embedding of user-defined message formats and
future LIN formats into the LIN protocol without violating the current LIN specification. This ensures the
upward compatibility of LIN slaves with future revisions of the LIN protocol.

The extended frames are distinguished by the following reserved identifier fields:
* O0x3E: ID Field = OXFE — user-defined extended frame,
* 0x3F: ID Field = 0xBF — future LIN extension.

The identifier Ox3E (ID field = OxFE) indicates a user defined extended frame which is free for use. The
identifier 0x3F (ID field = 0xBF) is strictly reserved for future extended versions of LIN and must not be
used in current implementations.

The identifier can be followed by an arbitrary number of bytes in the data field. The frame length, the
communication concept, and the data content are not specified here. The length coding of the /D Field does
apply to these two frames.

A slave receiving the extended frame identifier, and not being in the position to make use of the content,
must ignore all subsequent bytes in the data field until the reception of the next Sync Break.

LINO8EY 16 drivers ignore any extended frames. The master node does not send frame headers with
identifiers OxFE, 0xBF. All nodes ignore any response fields for frames with identifiers 0xFE, OxBF.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 19

LIN Concepts

3.3.4 Data Field

The data field consists of data bytes of a message. It is transmitted by the slave task in response to the
master request. The whole data byte is transmitted using the 8N1 scheme, with the LSB of the data byte
first.

The number of data bytes can be defined by the user or chosen according to the Identifier Field.

3.3.5 Checksum Field

The checksum field contains the inverted modulo-256 sum over all data bytes. The sum is calculated by
“ADD with Carry” where the carry from the addition is added to the LSB of the resulting sum. The
checksum byte is transmitted using the 8N1 scheme, with the LSB first.

On reception, the sum of the modulo-256 sum, over all data bytes, and the checksum byte must be equal
to OxFF.

3.4 Error Detection

An acknowledgment procedure for a correctly received message is not defined in the LIN protocol. It can
be implemented on the higher levels. The master node checks the consistency of a message being initiated
by the master task and being received by its own slave task. In the event of an inconsistency (e.g., a missing
slave response or an incorrect checksum), the master task can retransmit the message.

Where a slave has detected an inconsistency, the slave controller saves this information and can provide it
on request to the master node in the form of diagnostics information.

This diagnostics information can be transmitted as a regular message frame with a certain identifier.

3.5 Synchronization

Each message frame starts with a synchronization break (Break), followed by a synchronization field
(Sync), which includes several falling edges (i.e. logic one to logic zero transitions) in defined periods,
which are multiples of the bit time. This period can be measured (e.g., by a timer capture function), and
can be used by the slave nodes to calculate their internal timebase.

The synchronization break frame enables slave nodes that have lost synchronization to identify the
synchronization field. This allows the slave nodes to have an oscillator tolerance up to 15% of the nominal
bit rate.

3.6 Wakeup Signal Frame

The Sleep mode of the bus can be terminated by any node by sending a wakeup signal frame. A wakeup
signal frame can be sent by any node, but only if the bus was previously in S/eep mode and a node-internal
request for wakeup is pending.

The format of the LIN wakeup frame is presented in Figure 3-6. During the wakeup delimiter, the master
node can not send any message header. The length of the wakeup delimiter is 4T},;; minimum, 64 T
maximum.

LINOSEY16 Driver User Manual, Rev. 2

20 Freescale Semiconductor

4
Wakeup Signal Frame

Wakeup Frame

L

Wakeup Break Wakeup Delimiter
g b <

Figure 3-6. LIN Bus Wakeup Frame

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 21

A —
LIN Concepts

LINOSEY16 Driver User Manual, Rev. 2

22 Freescale Semiconductor

Driver Configuration

Chapter 4
LIN Driver

4.1 Driver Configuration

The driver has a static configuration; it can not be changed during run-time.

The driver can be configured to use either:
* Freescale API for slave node, or
* LIN API for slave node.

This is chosen by the proper configuration files, header files and library. The LIN API is compatible with
[1].

4.1.1 LIN API Configuration

To use the LIN API, the user must place #include <1 api.h> in the application file and use
following files:

1 genh

* 1 genc

These files are generated from the LIN Description File (LDF) by a special utility. The LDF is written
using a special configuration language. The description of the language can be found in [1].

4.1.2 Freescale API Configuration

To use the Freescale API, the user must place #include <linapi.h> inthe application file and create
following files:

* lincfg.h

* linmsgid.h

Samples of these files are located in the inc sub-directory of the driver installation directory. The files can
be used several ways, as follows.

The user can edit the files in their origin location for every application. In this case, it is necessary to correct
the files for every new application.

Alternatively, the user can create a separate file with any name for each different application. To bind the
configuration files to the application, the user can define two macros in the compiler command line or
compiler command file during the compilation phase:

* LINCFGH — for the file that substitutes the /incfg.h file

» LINMSGIDH — for the file that substitutes the linmsgid.h file.

This technique is used in the sample application that is described in Appendix A Sample Application.

It is also possible to have only one configuration file, which contains all the information from both.

To use slave node, the user should define the macro SLAVE in the compiler command line or compiler
command file during the compilation phase:

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 23

LIN Driver

4.1.2.1 Driver Configuration File (LINCFG.H)

File lincfg.h contains the general LIN configuration. It contains the definition of some constants used by
the driver. It is usually the same for all nodes, if they all use the same target hardware.

The file configures the following parameters:

LIN_BAUDRATE

This definition configures the LIN bus baud rate. This value must be set according to the usage of the target
MCU SCI register. This means that, for the HCOSEY 16, this 8-bit value will be masked by 0x37 and put
into the SCBR register.

LIN_IDLETIMEOUT

This definition configures the number of calls of the LIN IdleClock() function, after which the
No-Bus-Activity timeout is considered to have expired (see 4.3.1 No-Bus-Activity). The value of the
parameter can not exceed OxFFFF.

LIN_SCIPRESCALERDIVISOR

This definition configures the ESCI prescaler divisor. The driver will compute the ESCI Prescaler register
value during the pre-compilation time and set this value in the register during driver initialization.

LIN_SYNC_SLAVE
When defined this forces the LIN driver to use the self-synchronization capabilities of the ESCI module.

4.1.2.2 Message Configuration File (LINMSGID.H)

File linmsgid.h contains the definition of direction for each message received or transmitted by the node
and the user-defined length of each message with non-standard length.

Message Direction

All messages sent or received by the node should be defined in the message configuration file. This file is
usually different for each node.

The format of the message direction definition is
#define LIN MSG xx direction

where “xx” stands for the hexadecimal message identifier (00 through 3F), and “direction” defines the
direction of message transfer:
* LIN RECEIVE — message is received by the node
* LIN SEND — message is always transmitted by the node
» LIN SEND UPDATED — message is transmitted by the node only if response data has changed
by the user since the last transmission of this message (this type of transmission may be used for
event triggered frames and slave response command frames).

If the message is not defined in the file it will be ignored by the node, i.e. all the API services for this
message will return LIN NO_ID status.

LINOSEY16 Driver User Manual, Rev. 2

24 Freescale Semiconductor

Error Handling

Example of message direction definition:

Message with identifier 0x1A is received by the node; message with identifier Ox1B is always transmitted
by the node; message with identifier 0x3D is transmitted by the node if its data has been changed. The
following statements in the message configuration file should be used.

#define LIN MSG 1A LIN RECEIVE

#define LIN MSG 1B LIN_ SEND

#define LIN MSG 3D LIN_ SEND UPDATED

After the direction of a message is defined in the file, the user should use the same 6-bit message identifier

to refer to a certain message in the API services, e.g.
LIN PutMsg (O0x1A, LIN data);

Message Length

The LIN driver has the capability to use user-defined data lengths, as specified in [1] and LIN specification
vl1.1 standard length coding (see Table 3-1).

All user-defined lengths of messages transmitted or received by the slave node should be defined in the
message configuration file for this slave node.

All user-defined lengths of messages processed in the network should be defined in the message
configuration file. The format of message length definition is:
#define LIN MSG xx LEN len

where “xx” stands for the hexadecimal message identifier (00 through 3D), and “len” defines the number
of the data bytes in the message with this identifier (in the range from 1 through 8).

The user-defined length for the particular message must be defined identically on each slave node that
transmits or receives this message and on the master node on a LIN network.

It is not necessary to define LIN specification v1.1 standard lengths of messages (see Table 3-1). They are
defined automatically by the driver.

Example of message length definition: Message with identifier Ox1A has five data bytes; message with
identifier 0x1B has eight data bytes. The following statements in message configuration file should be
used.

#define LIN MSG 1A LEN 5

#define LIN MSG 1B LEN 8

4.2 Error Handling

Error handling is performed via shift counters. There are two counters Rx and 7x for receive and transmit
errors, respectively. Both counters contain history on the eight last receive or transmit attempts.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 25

LIN Driver

If there was an error during frame reception or transmission, the Rx or Tx counter is shifted to the right
and the MSB is set to 1. Otherwise, it is shifted to the right, and the MSB is set to 0. In either case, only
one counter is shifted; it depends on whether the node transmitted or received the data.

Table 4-1. Error Counter Processing

Situation Rx Counter | Tx Counter
Message response received without errors 0 n
Message response transmitted without errors n 0
Error during message response reception 1 n
Error during message response transmission n 1
Error during message header reception by the slave node 1 n

Message response is ignored by the node and
processed without errors

Error during processing of the message Response
that is ignored by the Slave node

NOTE
‘0’ - error counter is shifted to the right and MSB is set to 0;

‘1’ - error counter is shifted to the right and MSB is set to 1;
‘n’ - error counter is not shifted.

The following message error types are detected by the LIN driver.

4.2.1 Bit Error

A node that is sending a bit on the bus also monitors the bus. A bit error is detected when the byte value
that is sent to the bus is different from the byte value that is received.

Also, a node that is receiving a message response and discovers a frame error (i.e. stop bit is zero) detects
this error.

4.2.2 Checksum Error

A checksum error is detected by a node that is configured to receive the message data. The error condition
occurs if the modulo-256 sum over all received message data bytes and the checksum does not result in
‘OxFF’.

4.2.3 Inconsistent-Sync-Field Error

An inconsistent-sync-field error is detected when a received Sync field byte value is different from 0x55.

An inconsistent-sync-field error is detected when the received Sync field can not be used for
synchronization, i.e. the measured Ty,;; differs from the statically configured Ty;; value by more than 15%.

LINOSEY16 Driver User Manual, Rev. 2

26 Freescale Semiconductor

Timeout Handling

4.3 Timeout Handling

One timeout 1s maintained on the master and slave nodes. This timeout is described below.

4.3.1 No-Bus-Activity

When the Freescale API is used, a No-Bus-Activity condition must be detected if no Break fields were
recognized on the bus for more than Ny, times of the LIN IdleClock() service calls since:
* LIN Init() call, or
LIN GotoRun() call, or
» the end of previous valid Break field,

whichever occurs last.

When the LIN API is used, the No-Bus-Activity condition has to be detected on the particular node if no
Break fields were recognized on the bus for more than Ny times of [_ifc_ioctl_iii (I_op_idleclock,
NULL) service calls since:

* [sys_init() call, or

* [ifc_connect _iii () call, or

» the end of previous valid Break,

whichever occurs last.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 27

]
LIN Driver

LINOSEY16 Driver User Manual, Rev. 2

28 Freescale Semiconductor

General

Chapter 5
Freescale API

5.1 General

This section provides a detailed description of Freescale LIN driver run-time services, with appropriate
examples. All predefined LIN driver data types can be found in 5.2 Data Types.

5.2 Data Types

It is considered that LIN driver services use the following naming conventions for data types:
..Type: describes the values of individual data.

...RefType: describes the identifier referencing an object(l).

The following standards are used for variable types.

Table 5-1. Data Types

Mnemonic C type HCO08 Implementation
LINStatusType unsigned char unsigned 8 bits
LINDriverStatusType unsigned char unsigned 8 bits
LINMsgldType unsigned char unsigned 8 bits
LINMsgRefType unsigned char unsigned 16 bits
LINErrCounterType unsigned char unsigned 8 bits
LINSyncPDType unsigned char unsigned 8 bits

5.3 Constant Definition

There are predefined constant values for some of the data types.

Table 5-2. LIN Status Constant Values

Constant Value Description

LIN_OK No error; service call has succeeded.

The message data buffer is empty (data has not been initialized or

LIN_MSG_NODATA .
received yet).

LIN_MSG_NOCHANGE The message data has not changed since last read.

1. For example, a pointer or an index.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor

29

Freescale API

Table 5-2. LIN Status Constant Values (Continued)

Constant Value Description
LIN_MSG_OVERRUN The message data has not been read and was overwritten.
LIN_REQ_PENDING The message request is already pending.
LIN_INVALID_MODE The service could not be called in the current driver state.
LIN_INVALID_ID lgsnTheeszﬁgﬁéﬂfgctjifci;rf invalid, i.e. the message direction differs
LIN._NO_ID The .message idgntifier is absent, i.e. there is no such identifier

configured on this node.
Table 5-3. LIN Driver Status Constant Values

Constant Value Description
LIN_STATUS_RUN Driver is in Run state
LIN_STATUS_IDLE No-Bus-Activity timeout has expired
LIN_STATUS_PENDING LIN bus frame is pending

LINOSEY16 Driver User Manual, Rev. 2

30

Freescale Semiconductor

Driver Services

5.4 Driver Services

5.4.1 LIN_Init

Syntax: void LIN Init(void);

Applicable: Slave

Parameters: None.

Return: None.

Description: The LIN Init service performs software initialization of the LIN driver:

» sets the current driver state to Run,

 clears error counters,

» resets No-Bus-Activity condition counter,

» changes all message buffers status as it does not contain data,

» sets implementation specific internal states and variables in initial state.

The LIN Init service also performs hardware initialization of the LIN driver:
» sets statically configured baud rate,
» sets Tx pin to idle (recessive) state.

Notes: This service should be called before any another LIN driver API service call.
Otherwise, the result of any another LIN services and the LIN driver behavior will be
unpredictable.

This service call aborts immediately all other LIN driver activity that was in progress,
as soon as physical implementation allows but not later than after the end of the current
LIN bus frame element (break field, sync delimiter, sync field, ID field, data field,
checksum field, wakeup break) transmission or reception.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 31

Freescale API

5.4.2 LIN_Wakeup

Syntax: LINStatusType LIN Wakeup(void);

Applicable: Slave

Parameters: None.

Return: * LIN OK — the LIN bus wakeup frame has been issued successfully.

* LIN INVALID MODE — the current driver state is Sleep.
* LIN REQ PENDING — another LIN bus frame is currently being processed.

Description: The LIN Wakeup service issues the LIN bus wakeup frame transmission. No LIN bus
wakeup frame is issued if:
+ current driver state is Sleep; in this case LIN INVALID MODE is returned,;
« another LIN bus frame is being transmitted or received by the node, or another
wakeup frame is begin transmitted by the node; in this case
LIN REQ PENDING is returned.

Notes: The end of wakeup frame transmission on a slave node is just after the end of wakeup
break. Therefore, on a slave node, the user should not call the LIN Wakeup service
again before the end of the wakeup delimiter.

5.4.3 LIN_GotoRun

Syntax: void LIN GotoRun(void);

Applicable: Slave

Parameters: None.

Return: None.

Description: The LIN GotoRun service changes the current driver state from Sleep to Run and resets

the No-Bus-Activity condition counter. If the current driver state is Run, this service call
does nothing.

LINOSEY16 Driver User Manual, Rev. 2

32 Freescale Semiconductor

Driver Services

5.4.4 LIN DriverStatus

Syntax:
Applicable:
Parameters:

Return:

Description:

Example:

LINDriverStatusType LIN DriverStatus(void);
Slave
None.

Actual driver status bit array. Particular status should be found by applying the mask
constants specified in Table 5-3.

The LIN DriverStatus service returns the actual status of the LIN driver in bit array
form.

void main(void)
{
LIN Init();
while(1)
{
if (LIN DriverStatus() != LIN STATUS RUN)
{
do
{
/*sleep mode*/
} while(LIN DriverStatus() != LIN STATUS RUN) ;
}

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 33

Freescale API

5.4.5 LIN_GetMsg

Syntax: LINStatusType LIN GetMsg(LINMsgIdType <MsgId>,
LINMsgRefType <Data>);

Applicable: Slave

Parameters: <Msgld> — defines message identifier.

<*MsgData>— pointer to the user memory buffer where received data will be copied.

Return: * LIN OK — data has been successfully transferred to the memory buffer.

* LIN NO _ID — the message identifier is absent, i.e. there is no such identifier
configured on this node.

* LIN INVALID ID— the message identifier is invalid, i.e. the message with this
identifier is configured on this node for transmission, but the current content has
been successfully retrieved from the message buffer.

* LIN MSG NODATA — the message data has not been received since driver
initialization.

Description: The LIN GetMsg service retrieves the current content of the specified message to the
specified memory location. This service also updates the status information of the
message accordingly.

Notes: If this service returns code LIN NO _ID or LIN MSG NODATA, then the memory
buffer addressed by the input parameter is unchanged.

The user can read the data from the buffer configured for transmission, but if this buffer
was not written by the user, the service returns unpredictable data.

Example: #define MSG TEMP 0x12
#define MSG SPEED 0x13

unsigned char msgSpeedBuf[2];
unsigned char msgTempBuf[2];

void main(void)
{
LIN Init();

while(1)
{
LIN PutMsg(MSG_SPEED, msgSpeedBuf);
while(LIN GetMsg(MSG TEMP, msgTempBuf) != LIN OK)

msgSpeedBuf [0] = msgTempBuf[0] * 2 + 10;

LINOSEY16 Driver User Manual, Rev. 2

34 Freescale Semiconductor

Driver Services

5.4.6 LIN_PutMsg

Syntax: LINStatusType LIN PutMsg(LINMsgIdType <MsgId>,
LINMsgRefType <Data>);

Applicable: Slave

Parameters: <Msgld> — defines message identifier.

<Data> — pointer to the user memory buffer from where data will be transmitted.
Return: LIN OK — data has been successfully transmitted from the memory buffer to the

message buffer.

LIN NO_ID — the message identifier is absent, i.e. there is no such identifier
configured on this node.

LIN INVALID ID — the message identifier is invalid, i.e. the message with this
identifier is configured on this node for reception.

Description: The LIN PutMsg service transmits the current content of the specified memory
location to the specified message. This service also updates the status information of
the message accordingly.

Notes: This data will be transmitted to the bus on request from the master during the next poll.
The service itself does not cause transmission on the bus. The message buffer addressed
by the input parameter remains unchanged.

Example: See the example in 5.4.5 LIN_GetMsg.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 35

Freescale API

5.4.7 LIN_MsgStatus

Syntax: LINStatusType LIN MsgStatus(LINMsgIdType <MsgId>);
Applicable: Slave

Parameters: <Msgld> — defines message identifier.

Return: * LIN NO _ID — the message identifier is absent, i.e. there is no such identifier

configured on this node.

When message is specified as received:

* LIN OK— new message has been successfully received since the last read via
the LIN GetMsg service call.

* LIN MSG NOCHANGE — the message data has not been changed since the
last read via the LIN_GetMsg service call.

* LIN MSG NODATA — no message data has been received since driver
initialization.

 LIN MSG _OVERRUN — the message data was not been read via the
LIN GetMsg service call and was overwritten by a further message with the
same identifier.

When message is specified as always transmitted:

* LIN OK—master request for this message has been received by the node since
the last message update via the LIN PutMsg service call (it does not matter if
response transmission was successful or not)

* LIN MSG NOCHANGE — header for this message has not been received by
the node since last message update via the LIN PutMsg service call

* LIN MSG NODATA — message data has not been updated via the
LIN PutMsg service call since driver initialization.

Description: The LIN MsgStatus service returns the current status of the specified message. This
service has not updated the status information of the message.

Notes: The return code values depend on specified message direction (if this message
transmitted or received).

LINOSEY16 Driver User Manual, Rev. 2

36 Freescale Semiconductor

Driver Services

5.4.8 LIN_ GetRxErr

Syntax: LINErrCounterType LIN GetRxErr (void);

Applicable: Slave

Parameters: None.

Return: Actual receive error bit queue.

Description: The LIN GetRxErr service provides error information (receive error counter) for latest

eight frames received or ignored by the LIN driver. It returns a bit queue, where each
bit specifies presence (when the bit is set) or absence (when the bit is cleared) of
receive errors for the particular received or ignored messages. The most significant bit
presents the latest message status. See 4.2 Error Handling.

The following errors are counted:
* Biterror
* Checksum error
» Inconsistent-sync-field error

Notes: The error counter is cleared after driver initialization.

5.4.9 LIN _GetTxErr

Syntax: LINErrCounterType LIN GetTxErr(void);

Applicable: Slave

Parameters: None.

Return: Actual transmit error bit queue.

Description: The LIN GetTxErr service provides error information (transmit error counter) for the

latest eight frames transmitted by the LIN driver. It returns a bit queue, where each bit
specifies the presence (when the bit is set) or absence (when the bit is cleared) of
transmit errors for the particular transmitted messages. The most significant bit
represents the latest message status. See 4.2 Error Handling.

The following errors are counted:
* Biterror

Notes: The error counter is cleared after driver initialization.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 37

Freescale API

5.4.10 LIN_ClearRxErr

Syntax:
Applicable:
Parameters:
Return:

Description:

void LIN ClearRxErr(void);
Slave
None.
None.

The LIN ClearRxErr service clears the receive error counter.

5.4.11 LIN_ClearTxErr

Syntax:
Applicable:
Parameters:
Return:

Description:

void LIN ClearTxErr(void);
Slave
None.
None.

The LIN ClearTxErr service clears the transmit error counter.

5.4.12 LIN_ldleClock

Syntax:
Applicable:
Parameters:
Return:

Description:

void LIN IdleClock(void);
Slave
None.
None.

The LIN IdleClock service updates the No-Bus-Activity condition counter by one (See
4.3.1 No-Bus-Activity) and checks if the condition is met. When the counter reaches
the limit, the corresponding bit is set in the driver status constant, according to

Table 5-3.

LINOSEY16 Driver User Manual, Rev. 2

38

Freescale Semiconductor

Driver Services

5.4.13 LIN_GetSyncPD

Syntax: LINSyncPDType LIN GetSyncPD(void);
Applicable: Slave

Parameters: None.

Return: Actual prescaler divisor..

Description: If the self-synchronization of the driver is enabled (define macro LIN_ SYNC SLAVE
in driver configuration file) then the driver will return the latest synchronized prescaler
divisor. With this value the application can compute the trim value for the ICG
(Internal Clock Generator). If the macro LIN_SYNC SLAVE is not defined then the
driver will return the user defined prescaler divisor.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 39

Freescale API

5.5 Call-back Services

5.5.1 LIN Command

Prototype: void LIN Command(void);

Applicable: Slave

Parameters None.

Return None.

Description: The LIN Command must be defined in the user application to perform specific

command actions. The LIN Command service is called by the driver after successful
reception of the master request frame (ID Field value 0x3C) if the node is configured
to receive this frame.

From the LIN Command call-back service, the user can call the LIN GetMsg(0x3C,
data) service and will get the data of the master request frame just received.

If the successfully transmitted command is the Sleep mode command, then the driver
changes its state from Run to Sleep before calling the LIN Command call-back.

Notes: The LIN Command call-back is called from driver’s interrupt. Therefore, the user must
not enable CPU interrupts inside this call-back. Care must be taken when using any
function call from this call-back, as it can use a large number of stack locations.

LINOSEY16 Driver User Manual, Rev. 2

40 Freescale Semiconductor

Chapter 6
LIN API

6.1 General

General

This section provides a detailed description of LIN run-time services, with appropriate examples. All

predefined LIN driver data types can be found in 5.2 Data Types.

All services are applicable only to slave nodes.

6.2 Data Types

The following standard types are used for variables:

Table 6-1. Data Types

Mnemonic C type HCO08 Implementation
|_bool unsigned char unsigned 8 bits
I_u8 unsigned char unsigned 8 bits
l_ul16 unsigned int unsigned 16 bits
|_ioctl_op unsigned char unsigned 8 bits
|_irgmask unsigned char unsigned 8 bits

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor

41

LIN API

6.3 Driver Services

6.3.1 |_sys_init
Syntax: 1 bool 1 sys init(void);
Parameters: None.
Return: Always returns 0.
Description: The [_sys_init service performs software initialization of the LIN driver, i.e.:
» clears all signal flags,
 clears error counters,
» resets No-Bus-Activity condition counter,
» changes all transmitted messages status so they do not contain data.
This service call aborts any LIN driver communication activity as soon as physical
implementation allows, but not later than after the end of the current LIN bus frame
element (break field, sync delimiter, sync field, ID field, data byte, checksum byte,
wakeup frame) transmission or reception.
This service call puts the LIN driver into the disconnected state.
This routine must be executed as a first LIN driver API service call after power-on
reset. It should be executed before any another LIN driver API service call. Otherwise
the result of any another LIN services and the LIN driver behavior will be
unpredictable.
Note: This service must not be called from any interrupt service routine.
6.3.2 |_bool_rd
Syntax: 1 bool 1 bool rd sss(void)
Parameters: None.
Return: The service returns zero if the current value of the sss signal is zero, and a non-zero
value otherwise.
Description: The [bool _rd service returns the current value of signal of size one bit, statically

conﬁgured with the sss name. Service calls for configured signal names only are
applicable.

LINOSEY16 Driver User Manual, Rev. 2

42

Freescale Semiconductor

6.3.3 |_u8_rd

Syntax:
Parameters:

Return:

Description:

6.3.4 |_ul6_rd

Syntax:
Parameters:

Return:

Description:

Driver Services

1 u8 1 u8 rd sss(void)
None.

The service returns the current value of the sss signal. The return value is assumed to
be right-aligned if the signal size is less than eight bits.

The / u8 rd service returns the current value of the signal of size from 2-8 bits,
statically configured with the sss name. Service calls for configured signal names only
are applicable.

1 ule 1 ul6 rd sss(void)
None.

The service returns the current value of the sss signal. The return value is assumed to
be right-aligned if the signal size is less than sixteen bits.

The ! ul6 rd service returns the current value of the signal of size 9—16 bits, statically
configured with sss name. Service calls for configured signal names only are
applicable.

6.3.5 |_bool_wr

Syntax:
Parameters:
Return:

Description:

void 1 bool wr sss(1 bool <v>)
<v> — defines signal data.
None.

The I _bool wr service sets the current value of the signal of size one bit, statically
configured with sss name, to “0” if the value <v> is zero, and to “1”’ otherwise. Service
calls for configured signal names only are applicable.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 43

LIN API

6.3.6 |_u8_wr

Syntax: void 1 u8 wr sss(1 u8 <v>)

Parameters: <v> — defines signal data.

Return: None.

Description: The /_ u8 wr service sets the current value of the signal of size 2—8 bits, statically
configured with sss name, to the value <v>. It is assumed that the <v> parameter is
right-aligned for signal lengths less than eight bits. Service calls for configured signal
names only are applicable.

6.3.7 |_u16_wr

Syntax: void 1 ul6 wr sss(1 ulé <v>)

Parameters: <v> — defines signal data.

Return: None.

Description: The / ul6 wr service shall set the current value of the signal of the size 9-16 bits,
statically configured with sss name, to the value <v>. It is assumed that the <v>
parameter is right-aligned for signal lengths less than sixteen bits. Service calls for
configured signal names only are applicable.

6.3.8 |_flg_tst

Syntax: 1 bool 1 flg tst Rxsss(void)

Parameters: None.

Return: The service returns non-zero value if signal sss is received by the node, and zero
otherwise.

Description: The [flg tst service returns the current state of the signal flag, statically configured

with sss name. The signal flag is set to “1” when the message frame contained by this
signal arrives successfully, i.e. the signal value is updated by driver software. This
service is applicable only to signals that are received at the node.

LINOSEY16 Driver User Manual, Rev. 2

44 Freescale Semiconductor

Driver Services

6.3.9 |_flg_clr

Syntax: void 1 flg clr Rxsss(void)

Parameters: None.

Return: None.

Description: The [flg clr service sets the current state of the signal flag, statically configured with

sss name, to zero. This service is only applicable to signals that are received at the node.

6.3.10 |_ifc_init

Syntax: void 1 ifc init iii(void)

Parameters: None.

Return: None.

Description: The [_ifc_init service performs hardware initialization of the LIN driver, i.e.:

» sets the statically configured baud rate,
+ sets the Tx pin to the high voltage level,
» disables LIN bus frame transmission or reception until the / ifc_connect call.

It is assumed that iii is the statically configured LIN interface name. This service call
aborts any LIN driver communication activity, not later than after the end of current
LIN bus frame element (break field, sync delimiter, sync field, ID field, data byte,
checksum byte, wakeup frame) transmission or reception.

This service call puts the LIN driver into the disconnected state. The service only
initializes the communication hardware; incoming frames are not processed until
[_ifc_connect service is called.

6.3.11 |_ifc_connect

Syntax: void 1 ifc connect iii(void)
Parameters: None.
Return: The service returns a non-zero value if it is called before the / ifc_init service;

otherwise it returns a zero value.

Description: The [_ifc_connect service enables LIN frame transmission, reception and error
detection. It is assumed that iii is the statically configured LIN interface name.

This service call puts the LIN driver into the connected state.

If the [ifc_connect service is called when the interface is already connected, then it
performs nothing.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 45

LIN API

6.3.12 | _ifc_disconnect

Syntax:
Parameters:

Return:

Description:

void 1 ifc disconnect 1iii(void)
None.

The service returns non-zero value if it is called before /_ifc init service; otherwise it
returns zero value.

The [_ifc_disconnect service disables LIN frame transmission, reception and error
detection. It is assumed that iii is the statically configured LIN interface name.

This service call aborts any LIN driver communication activity not later than after the
end of current LIN bus frame element (break field, sync delimiter, sync field, ID field,
data byte, checksum byte, wakeup frame) transmission or reception. All actions are
performed only if the driver is in the connected state.

This service call puts the LIN driver into the disconnected state. This allows the user
to disable the LIN driver temporarily and use the communication hardware. When
needed, the LIN driver can be enabled by the /_ifc_connect service. If, during the
disconnected state, the user has changed any SCI hardware settings, then the [_ifc init
service must be called before the [ifc connect service.

Ifthe [ifc_disconnect service is called when the interface is already disconnected, then
it performs nothing.

6.3.13 |_ifc_ioctl

Syntax: void 1 ifc ioctl iii(i ioctl op <op>, void *<pv>)
Parameters: <op> — specifies required functionality.
<pv> — specifies the pointer to the returned parameter (see Table 6-2).
Return: None.
Description: The [_ifc_ioctl service provides protocol-specific functionality. See Table 6-2 for
details. It is assumed that iii is the statically configured LIN interface name.
LINOSEY16 Driver User Manual, Rev. 2
46 Freescale Semiconductor

Table 6-2. I_ifc_ioctl Functionality Description

Driver Services

<op>parameter
value

Functionality

<pv> parameter value

|_op_getrxerr

Provides error information (receive error counter) for the eight most
recent frames received or ignored by the LIN driver. The counter
represents as a bit queue, where each bit shall specify presence (when
the bit is set) or absence (when the bit is cleared) of receive errors for
the particular received or ignored messages. Most significant bit
presents the latest message status. The following errors are counted:
- Bit error;

- Checksum error;

- Inconsistent-sync-field Error.

Pointer to receive errors bit
queue (_u8%

|_op_gettxerr

Provide error information (transmit error counter) for latest 8 received
or ignored frames by the LIN driver. The counter represents as a bit
queue, where each bit shall specify presence (when the bit is set) or
absence (when the bit is cleared) of transmit errors for the transmitted
messages. Most significant bit presents the latest message status. The
following errors are counted:

Pointer to transmit errors bit
queue (/_u8».

- Bit error.
|_op_clrrxerr Clear the receive error counter of the LIN driver. Not used
|_op_clrtxerr Clear the transmit error counter of the LIN driver. Not used
Issues the LIN bus wakeup frame transmission. No LIN bus wakeup Zozgi;)to operation result
frames shall be issued until: . 3 . .
. . . Operation result is zero, if LIN
|_op_wakeup - another LIN bus wakeup frame is transmitted; .
. o bus wakeup frame is
- another LIN bus frame header is received; .
- : . . transmitted successfully and
- LIN bus frame response is received or transmitted by this node. .
non-zero otherwise.
Pointer to operation result
(L_bool).
|_op_getidle Check No-Bus-Activity condition. (See 4.3.1 No-Bus-Activity) Operation result is non-zero, if
No-Bus-Activity condition is
met and zero otherwise.
|_op_idleclock Update No-Bus-Activity condition (See 4.3.1 No-Bus-Activity) counter Not used

by 1.

|_op_getsyncpd

Provide the actual prescaler divisor. If the self-synchronization of the
driver is enabled (define macro LIN_SYNC_SLAVE in driver
configuration file) then the driver will return the latest synchronized
prescaler divisor. With this value the application can compute the trim
value for the ICG (Internal Clock Generator). If the macro
LIN_SYNC_SLAVE is not defined then the driver will return the user
defined prescaler divisor..

Pointer to the prescaler divisor
value.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor

47

LIN API

Example: 1 u8 result;
1 ifc ioctl sciO8 (1 op getrxerr, é&result);
if (result != 0)

{

/* Call the user’s service for error processing */

error processing ();
}
else
{
/* Clear Rx error counter */
/* Variable <result> is not used by this service */
1 ifc ioctl sciO8 (1 op clrrxerr, é&result);
}
6.3.14 |_ifc_rx
Syntax: void 1 ifc rx iii(void)
Parameters: None.
Return: None.
Description: The | ifc_rx service must be called from:

» auser-defined interrupt handler raised by an SCI when it has received data,
» auser-defined interrupt handler raised by an SCI when it detects a transmission
or reception error.

It is assumed that iii is the statically configured LIN interface name.
This service always clears all SCI interrupt flags.

If the driver is in the connected state, then the / ifc_rx service performs all actions
required to process just received SCI bytes, SCI breaks or SCI errors. It is the user’s
responsibility to not perform any operations that might modify the state of the SCI
before this service call.

If the driver is in the disconnected state, then the / ifc_rx service only clears all SCI
interrupt flags.

LINOSEY16 Driver User Manual, Rev. 2

48 Freescale Semiconductor

6.3.15 |_ifc_tx

Syntax:
Parameters:
Return:

Description:

Call-back Services

void 1 ifc tx iii(void)
None.
None.

Thel ifc tx service can be called from a user-defined interrupt handler raised by a SCI.
It is assumed that iii is the statically configured LIN interface name.

The user should call the [ifc_tx or [ifc_rx service. These services have identical
functionality.

It is the user’s responsibility to not perform any operations that might modify the state
of the SCI before this service call.

6.4 Call-back Services

6.4.1 |_sys_irq_disable

Syntax:
Parameters:
Return:

Description:

1 irgmask 1 sys irqg disable(void)
None.
1 irgmask — original interrupt mask (before disabling).

The [sys irq disable call-back is defined in the user application. The implementation
of this function achieves a state in which no interrupts can occur.

6.4.2 |_sys_irq_restore

Syntax:
Parameters:
Return:

Description:

void 1 sys irg restore(1 irgmask <previous>)
<previous> — previous interrupt mask.
None.

The [sys_irg restore call-back is defined in the user application. The implementation
of this function restores a state identified by the input parameter. It is assumed that the
input parameter contains value stored by the previous / sys irq disable call.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 49

A
LIN API

LINOSEY16 Driver User Manual, Rev. 2

50 Freescale Semiconductor

General

Chapter 7
Platform Specific

7.1 General

This section covers features that can be helpful during the development of applications using the LIN
driver.

For troubleshooting see Appendix A.4 Troubleshooting.

7.2 MCU Resources Usage

The following MCU resources are used by driver and must not be used by the user application code:
* ESCI module registers and interrupt vectors
* PTEO/TxD pin (must be connected to the LIN Physical Interface Tx pin)
* PTE1/RxD pin (must be connected to the LIN Physical Interface Rx pin)

7.3 Physical Interface Connection

It is assumed that the MCU is connected to the LIN bus by means of the Physical Interface. The MCU to
LIN Physical Interface connection is shown in Figure 7-1

MCU Physical Interface
PTEO/TxD P Tx

PTE1/RxD |- Rx

Figure 7-1. Physical Interface Connection

7.4 Disabled Interrupt Code Sections

As the driver code is very time sensitive and interrupt-driven, disabling interrupts in the user application
code is not recommended. However, if disabling interrupts is absolutely necessary, make sure that
interrupts are disabled for a time not longer than 5 T};; transmission period. Otherwise, timeout accuracy
is not guaranteed.

7.5 Break Signal Detection

On an MCU with a stable bus clock and the ESCI LIN driver implementation, the slave node recognizes
the Break signal after ten logic zero bits on the bus.

The slave node recognizes an ESCI frame error, while receiving a byte from the bus, as a potential Break
signal. If the next received byte is 0x55, the driver starts common message header processing.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 51

A
Platform Specific

7.6 Zero Page Usage

To speed up the driver and to decrease its ROM size some variable are located in the zero RAM page, i.e.
addresses from 0x00 to OxFF.

For information on how to use zero page setting for application building refer to the CodeWarrior sample
project.

LINOBEY16 Driver User Manual, Rev. 2

52 Freescale Semiconductor

General

Chapter 8
Building Application

8.1 General

The driver code is supplied as source code targeted at CodeWarrior compilers. The following sections
show general steps of building the user’s application named my app.c.

To know how to build sample application please refer to Appendix A.

8.2 Compilation
There are source files supplied with the library, which must be compiled:

Common files:

e Start08.c
LIN API files:

* 1 cfgec
Freescale API files:

e vector.c

* lincfg.c

* linmsgid.c

Driver files:

* lintmr.c
* linerr.c

* lininit.c
* linmsg.c
» linprot.c
» linsci.c
 linapi.c

The recommended compiler versions are defined in the readme . txt file in the installation root
directory. If other versions are used, problems might arise.

To compile the files properly, the following macros should be defined in the compiler command line or
command file at compilation time:

« HCO8EY16
« HCO8
« CWO08

With the Freescale API, the user can use alternative files with LIN network and message configuration by
specifying the following macros:

 LINCFGH

+ LINMSGIDH

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 53

Building Application

Refer to the CodeWarrior sample project and 4.1.2 Freescale API Configuration for details.

8.3 Linking

The driver object files are linked to the rest of the application by including the object files in the list of files
to be linked. A file containing startup code is also required. A file containing basic startup code is supplied
with the driver and may be modified and compiled as required.

8.3.1 CodeWarrior

To link the files properly the following segment should be defined:
* VECTORS_ DATA — segment for vector table.

An example link file for a Freescale API slave node is shown below.

NAMES
/* other object files to link are passed from the IDF with the linker -Add option */

END

SECTIONS
LIN ZRAM = READ WRITE 0x0040 TO OxOOFF; /* zero page*/
LIN RAM = READ WRITE 0x0100 TO OxOlFF; /* program data */
LIN STACK = READ WRITE 0x0200 TO 0x023F; /* stack*/
LIN ROM = READ ONLY 0xC000 TO OxFDFF; /* program code & constants */
LIN VECTORS = READ ONLY OxFFDC TO OxFFFF; /* interrupt vectors (use your
vector.obj) */
END
PLACEMENT
ZeroSeg, DATA ZEROPAGE INTO LIN_ ZRAM;
DEFAULT ROM, ROM VAR INTO LIN_ROM;
DEFAULT RAM INTO LIN_ RAM;
SSTACK INTO LIN_ STACK;
VECTORS DATA INTO LIN VECTORS;
END

STACKSIZE 0x001F
ENTRIES

_vectab
END

LINOSEY16 Driver User Manual, Rev. 2

54 Freescale Semiconductor

Linking

Appendix A
Sample Application

A.1 Sample Description
The sample application is located in the samp1le directory of the LIN installation.

This sample illustrates the operation of a simple LIN network and is based on Freescale’s LINKits
hardware. It contains master and slave nodes with Freescale API.

The sample runs using a master and any combination of up to sixteen slaves. Each slave controls four
LEDs whose states can be controlled by a single push-button switch. The resulting four bits of data are
returned to the master and displayed on four of'its eight LEDs. The other four LEDs on the master are used
to indicate the slave type and ID. Two LEDs show the slave type (GR, EY, QY or QL) and the other pair
correspond to the four IDs allocated to that particular type. If more than one slave is connected, then the
master's display cycles round all those present on the bus. The sending of header frames from the master
can also be switched off, to demonstrate the slaves' ability to enter low-power Sleep mode in the absence
of LIN activity.

Application Note AN2573 describes the sample in detail (see http://www.freescale.com).

A.2 Sample Building and Running

To build the sample, CodeWarrior software should be installed on the computer. For supported compiler
and debugger versions, refer to the readme . txt file in the sample directory.

If a project based approach is not used, the following environment variables must be set before building
the application:

For CodeWarrior C:
* HICROSSINC — path to CodeWarrior HCO8 include files,
* HICROSSLIB — path to CodeWarrior HC08 library files in ELF 2.0 format.
* Add path to CodeWarrior executable files to the PATH environment variable.

NOTE
This sample includes direct support of the following HCO8 derivatives:

- MC68HCO8EY16

A.3 CodeWarrior Project

The sample comes with a CodeWarrior project that allows simple access to all files and ready configured
code generation settings.

The project is called sample.mcp and contains slave target settings.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 55

: http://www.freescale.com

Building Application

A.4 Troubleshooting

A.4.1 Environment settings

If the application does not compile, check that all required environment variables are set and the PATH
variable includes path to the compiler.

A.4.2 Startup Files

The driver is supplied with startup files for the compilers listed in the readme.txt file. These files can be
changed, to allow you to have different compiler versions, or to replace these startup files with your own
versions. In these circumstances, you must use the driver at your own risk.

A.4.3 LinSigFlags Size

If there is no received signal on the node, and thus the size of the LinSigFlag array in the / gen.c file is
zero, the code will not compile. In this case the size of LinSigFlag array should be explicitly set to 1.

LINOSEY16 Driver User Manual, Rev. 2

56 Freescale Semiconductor

Linking

Appendix B
Performance Characteristics

B.1 Performance Characteristics
CPU performance is calculated as:
L= Tactive / Tframe *100%

where:
* L is the percentage CPU load,
* T,ctive 1S the amount of CPU time expended in executing the driver code in a period Tgames
* Tgame 18 the amount of time taken to transmit or receive a regular LIN bus frame of maximum
length, containing eight bytes of data.

The performance characteristics are presented in Table B-1.

Table B-1. Performance Characteristics

LIN Baud Rate MCU Bus .
Node (bps) Frequency (MHz) MCU Load (%)
Slave
(Freescale API) 19,200 3.6864 <6
(LlsrxllaXT:H) 19,200 3.6864 <7

B.2 Memory Consumption

The results on memory consumption are presented in Table B-2.

Table B-2. Memory Consumption

ltem RAM(RoM® Stack
Slave 20 bytes 1245 bytes <21 bytes
(Freescale API) Y v Y
Slave
(LIN API) 20 bytes 1007 bytes < 21 bytes

NOTES:
1. Plus 1 byte per message.
2. Plus 4 bytes per message.

LINOSEY16 Driver User Manual, Rev. 2

Freescale Semiconductor 57

A
Building Application

LINOBEY16 Driver User Manual, Rev. 2

58 Freescale Semiconductor

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

2 7

> freescale"

semiconductor

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

LINOSEY16DUM
Rev. 2
10/2005

	Chapter 1 Overview
	Chapter 2 Notations
	2.1 Manual Structure
	2.2 Typographical Conventions
	2.3 Definitions, Acronyms and Abbreviations
	2.4 References

	Chapter 3 LIN Concepts
	3.1 General Description
	3.2 LIN Concept
	3.3 Message Frame
	3.3.1 Break Field
	3.3.2 Synchronization Field
	3.3.3 Identifier Field
	3.3.3.1 Reserved Identifiers

	3.3.4 Data Field
	3.3.5 Checksum Field

	3.4 Error Detection
	3.5 Synchronization
	3.6 Wakeup Signal Frame

	Chapter 4 LIN Driver
	4.1 Driver Configuration
	4.1.1 LIN API Configuration
	4.1.2 Freescale API Configuration
	4.1.2.1 Driver Configuration File (LINCFG.H)
	4.1.2.2 Message Configuration File (LINMSGID.H)

	4.2 Error Handling
	4.2.1 Bit Error
	4.2.2 Checksum Error
	4.2.3 Inconsistent-Sync-Field Error

	4.3 Timeout Handling
	4.3.1 No-Bus-Activity

	Chapter 5 Freescale API
	5.1 General
	5.2 Data Types
	5.3 Constant Definition
	5.4 Driver Services
	5.4.1 LIN_Init
	5.4.2 LIN_Wakeup
	5.4.3 LIN_GotoRun
	5.4.4 LIN_DriverStatus
	5.4.5 LIN_GetMsg
	5.4.6 LIN_PutMsg
	5.4.7 LIN_MsgStatus
	5.4.8 LIN_GetRxErr
	5.4.9 LIN_GetTxErr
	5.4.10 LIN_ClearRxErr
	5.4.11 LIN_ClearTxErr
	5.4.12 LIN_IdleClock
	5.4.13 LIN_GetSyncPD

	5.5 Call-back Services
	5.5.1 LIN_Command

	Chapter 6 LIN API
	6.1 General
	6.2 Data Types
	6.3 Driver Services
	6.3.1 l_sys_init
	6.3.2 l_bool_rd
	6.3.3 l_u8_rd
	6.3.4 l_u16_rd
	6.3.5 l_bool_wr
	6.3.6 l_u8_wr
	6.3.7 l_u16_wr
	6.3.8 l_flg_tst
	6.3.9 l_flg_clr
	6.3.10 l_ifc_init
	6.3.11 l_ifc_connect
	6.3.12 l_ifc_disconnect
	6.3.13 l_ifc_ioctl
	6.3.14 l_ifc_rx
	6.3.15 l_ifc_tx

	6.4 Call-back Services
	6.4.1 l_sys_irq_disable
	6.4.2 l_sys_irq_restore

	Chapter 7 Platform Specific
	7.1 General
	7.2 MCU Resources Usage
	7.3 Physical Interface Connection
	7.4 Disabled Interrupt Code Sections
	7.5 Break Signal Detection
	7.6 Zero Page Usage

	Chapter 8 Building Application
	8.1 General
	8.2 Compilation
	8.3 Linking
	8.3.1 CodeWarrior

	Appendix A Sample Application
	A.1 Sample Description
	A.2 Sample Building and Running
	A.3 CodeWarrior Project
	A.4 Troubleshooting
	A.4.1 Environment settings
	A.4.2 Startup Files
	A.4.3 LinSigFlags Size

	Appendix B Performance Characteristics
	B.1 Performance Characteristics
	B.2 Memory Consumption

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

